WO2022179031A1 - 复合测试机及其使用方法 - Google Patents

复合测试机及其使用方法 Download PDF

Info

Publication number
WO2022179031A1
WO2022179031A1 PCT/CN2021/103891 CN2021103891W WO2022179031A1 WO 2022179031 A1 WO2022179031 A1 WO 2022179031A1 CN 2021103891 W CN2021103891 W CN 2021103891W WO 2022179031 A1 WO2022179031 A1 WO 2022179031A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
module
tested
sample
testing machine
Prior art date
Application number
PCT/CN2021/103891
Other languages
English (en)
French (fr)
Inventor
陈永烜
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/600,413 priority Critical patent/US20240053398A1/en
Publication of WO2022179031A1 publication Critical patent/WO2022179031A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2868Complete testing stations; systems; procedures; software aspects
    • G01R31/287Procedures; Software aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2894Aspects of quality control [QC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/022Detection or location of defective auxiliary circuits, e.g. defective refresh counters in I/O circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/06Acceleration testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C29/56008Error analysis, representation of errors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C29/56012Timing aspects, clock generation, synchronisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C29/56016Apparatus features

Definitions

  • the present disclosure relates to, but is not limited to, a composite testing machine and a method of using the same.
  • Product reliability testing usually includes product life testing and product functional characteristic testing. The former is used to test and obtain the expected life of the integrated circuit, and the latter is used to obtain the electrical performance parameters of the integrated circuit.
  • General product life tests include burn-in tests, also known as burn-in tests, which accelerate the aging of integrated circuits by subjecting integrated circuits to high temperature and high pressure, and detect changes in electrical performance parameters and circuit failures during aging, and then Calculate life expectancy.
  • the present disclosure provides a composite testing machine and a method of using the same.
  • a first aspect of the present disclosure provides a composite testing machine, comprising: a collapse aging test module configured to perform an aging test on a sample to be tested located in a first area; a function test module configured to perform an aging test on the sample to be tested located in a second area The sample to be tested is subjected to a functional test, and the second area and the first area at least partially overlap.
  • a second aspect of the present disclosure provides a method for using a composite testing machine, including: providing the composite testing machine described in the first aspect; providing a sample to be tested, and placing the sample to be tested in an overlapping area to prevent collapse
  • the burn-in test module and the function test module can test the sample to be tested; start the composite testing machine, so that the composite test can test the sample to be tested according to an internal program.
  • the testing area of the aging test module and the testing area of the functional testing module at least partially overlap, so that the composite testing machine can be tested without moving the sample to be tested.
  • the sample to be tested is subjected to aging test and functional test in turn. Since the sample to be tested does not need to be moved between different tests, it can save the time required to move the sample to be tested and avoid the pollution introduced by moving the sample to be tested, thereby shortening the test time. and reduce external pollution.
  • the distribution and comparison of the failure locations caused by different failure causes can be counted, and then the root cause of the problem can be analyzed according to the statistical results to optimize the design and manufacturing of integrated circuits.
  • Fig. 1 is a test flow schematic diagram of a test system
  • FIG. 2 is a schematic test flow diagram of a composite testing machine provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic functional structure diagram of a composite testing machine provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a temperature change of a test environment of a sample to be tested according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for using a composite testing machine provided by an embodiment of the present disclosure.
  • the test system includes a crash burn-in tester 11, a first slow-speed function tester 12, a second slow-speed function tester 13 and a high-speed function tester 14.
  • the chip to be tested first enters the break-in burn-in tester 11, After the burn-in test is completed, the site is transferred according to the test results, that is, the normal chips are transferred to the first slow function tester 12, and the failed chips are additionally processed; and so on, after the test of each tester is completed, the normal chips are transferred to The next test machine performs the corresponding life test or function test, and the failed chip performs additional processing.
  • test procedure stipulated by Company A is to first perform the aging test in the collapse aging tester 11, and then perform the low temperature test in the first slow function tester 12. Slow function test, and finally perform high temperature slow function test in the first slow function tester 12; the test procedure specified by Company B is to first carry out the aging test in the collapse aging tester 11, and then perform the aging test in the first slow function tester 12. The high temperature slow function test is carried out in the testing machine 12 , and finally the low temperature slow function test is carried out in the first slow function test machine 12 .
  • An embodiment of the present disclosure provides a composite testing machine, in which the test area of the aging test module and the test area of the functional testing module at least partially overlap, so that the composite testing machine can sequentially test the samples to be tested without moving the samples to be tested. Carry out burn-in test and functional test, since the sample to be tested does not need to be moved between different tests, it can save the time required to move the sample to be tested and avoid external contamination introduced by moving the sample to be tested, thereby improving test efficiency and test accuracy .
  • FIG. 2 is a schematic diagram of a test flow of a composite testing machine provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic functional structure diagram of a composite testing machine provided by an embodiment of the present disclosure
  • the composite testing machine 20 includes: a collapse aging test module 21, which is configured to perform an aging test on the sample to be tested located in the first area; and a functional test module 22, which is configured to perform a function on the sample to be tested located in the second area.
  • the second area at least partially overlaps the first area.
  • the first area is the test area corresponding to the breakdown aging test module 21, and the second area is the test area corresponding to the functional test module 22.
  • the sample to be tested can be placed in the first area.
  • the overlapping area of one area and the second area so that after the burn-in test is completed, the functional test can be performed sequentially without moving the sample to be tested; accordingly, since there is no need to move the sample to be tested, it can eliminate the need to move the sample to be tested in the overall test duration.
  • the required moving time improves the test efficiency, avoids the introduction of external contamination, and improves the test yield and test accuracy of the chip to be tested.
  • the breakdown aging test module 21 and the function test module 22 are two relatively independent hardware modules, and the test areas of the two hardware modules overlap partially or completely;
  • the aging test function and the functional test function of the functional test module are different functions of the same device, and the switching of different functions is realized by software switching.
  • the aging test module and the functional test module are essentially the same device, and the first area and the second area are completely Overlapping; in some embodiments, the crash burn-in test module includes first hardware and general-purpose hardware, the functional test module includes second hardware and shared general-purpose hardware, and by adjusting the connection between the general-purpose hardware and the first hardware or the second hardware, the collapse is realized The burn-in test module and the functional test module should be switched, with the first area and the second area partially overlapping or completely overlapping.
  • an aging test is performed first. After the aging test is completed, a functional test is performed on the normal chip and the failed chip. After the functional test is completed, the normal chip is output, and the failed chip is tested. extra processing. That is to say, if multiple tests are carried out in the composite testing machine 20, the failed chips are removed only after the last test is completed, and the failed chips include chips that fail due to any test step, so it is beneficial to save the removal and inventory. Normal wafer time, improve test efficiency.
  • the composite testing machine 20 further includes a temperature control module 23, the temperature control module 23 is configured to adjust a temperature program, and the temperature program contains temperature information corresponding to a time point to perform the aging test and function test. Since the breakdown burn-in test module 21 and the functional test module 22 are packaged as the same composite tester, the two have overlapping test areas, so the temperature program of the overlapping area can be adjusted by the temperature control module 23 to suit the chips of different chip development companies It is not necessary to adjust the temperature program of each relatively independent test module one by one, and there is no need to consider the temperature connection between different test steps, which is beneficial to improve the test efficiency.
  • test program of the breakdown aging test module 21 and the test program of the function test module 22 are written in the same programming language. In this way, it is possible to use the same programming language to write the temperature programs of different test modules without directly adjusting the temperature programs of the overlapping area, instead of using multiple programming languages to write relatively independent temperature programs for different test modules Program, and do not need to consider the connection and cooperation between different temperature programs, which is beneficial to improve the test efficiency.
  • the functional testing module 22 includes a slow functional testing sub-module 221 and a high-speed functional testing sub-module 222.
  • the slow functional testing sub-module 221 is set to perform a slow functional test on the sample to be tested
  • the high-speed functional testing sub-module 222 is set to For high-speed functional testing of samples to be tested.
  • the clock pulse of the chip under test should be greater than 500MHz
  • the clock pulse of the chip under test should be greater than 1800MHz, so as to accurately measure the performance parameters of the chip under test under different working conditions
  • Ground, during the burn-in test the clock pulse of the chip to be tested only needs to be greater than 50MHz.
  • the temperature program of the slow function test can be different from the temperature program of the high-speed function test, and it can also be different from the temperature program of the burn-in test. make adjustments.
  • the temperature program of the burn-in test can be set to a constant temperature a
  • the temperature program of the slow function test can be set to first temperature b and then the temperature c
  • the temperature program of the high-speed function test can be set to first temperature n and then temperature n+1.
  • the aging test module 21, the slow function test sub-module 221 and the high-speed function test sub-module 222 are packaged and classified as a test component 20a, and the test component 20a is not a substance. Structure, but a classification name, other modules connected with the test assembly 20a, such as the temperature control module 23, are regarded as connected with all the test modules in the test assembly 20a to realize corresponding functions. It should be noted that FIG. 3 only actually exemplifies three types of test modules, and there may actually be more types of test modules, and these test modules are all classified into the test component 20a.
  • the functional testing module 22 includes a plurality of functional testing sub-modules, and the test overlapping regions of the functional testing sub-modules include the second region. Since the second area and the first area at least partially overlap, the second area is a part of the test area of each functional test sub-module, therefore, arranging the sample to be tested in the overlapping area of the first area and the second area is beneficial to ensure that the The aging test corresponding to the collapse aging test module 21 and the functional tests corresponding to the multiple functional test sub-modules are completed without moving the sample to be tested.
  • the plurality of functional testing sub-modules include a slow functional testing sub-module 221 and a high-speed functional testing sub-module 222
  • the test area of the slow functional testing sub-module 221 includes the second area
  • the high-speed functional testing sub-module 222 tests The region contains the second region.
  • the composite testing machine 20 further includes a sequence control module 24 configured to adjust the test sequence of the slow-speed functional testing sub-module 221 and the high-speed functional testing sub-module 222 .
  • the sequence control module can adjust the test sequence of all test modules, for example, perform slow-speed functional testing first. High-speed function test, then burn-in test, and finally high-speed function test.
  • the sequence control module 24 is set to adjust the switching sequence of software or programs; if the method of switching different test modules is to switch hardware or When the connection relationship is switched, the sequence control module 24 is configured to switch the application sequence of the hardware or switch the connection relationship.
  • the composite testing machine 20 further includes a failure recording module 25, which is configured to record the failure position of the sample to be tested during the aging test and the function test.
  • the function of recording the failure position includes the following two points: first, it is convenient to repair the failure position, so that the failed chip can be converted into a normal chip; second, it is convenient for summarizing, according to the test results of multiple chips to be tested, statistics are easy to cause failure.
  • the failure recording module is further configured to detect the failure cause of the failure position, and classify the failure position according to the failure cause. By classifying the failure locations according to the failure causes, the distribution and comparison of the failure locations caused by different failure causes can be counted, and the root cause of the problem can be analyzed according to the statistical results to optimize the design and manufacturing of integrated circuits.
  • the failure causes include any one or any combination of failure of a single storage bit, failure of a connected storage bit, failure of a single word line, or failure of a connected word line.
  • the composite testing machine 20 further includes a repair module 26, which is configured to repair the failure position.
  • the chip to be tested contains spare bits. If a failed bit is found during or after a certain test step, the structure of the connection line can be changed by blowing the fuse, so that the future of the failed chip can be changed. The failed part is connected to the spare bit, that is, the spare bit is used to replace the failed bit in the failed position, so as to achieve the purpose of repairing the failed position and repairing the failed chip. After patching, the current test or all tests that have been conducted need to be re-run to ensure that the repair is successful.
  • the composite testing machine 20 further includes a power management unit 27, which is configured to provide a voltage excitation signal or a current excitation signal to the sample to be tested, and to measure the working voltage or current of the sample to be tested during the aging test and the functional test. .
  • a power management unit 27 is configured to provide a voltage excitation signal or a current excitation signal to the sample to be tested, and to measure the working voltage or current of the sample to be tested during the aging test and the functional test.
  • the sample to be tested can be controlled to be in a rated operating state or a fully loaded state, so as to promote or accelerate the occurrence of defects in the chip to be tested in the operating state; in addition, It is also possible to determine whether the chip under test has a failure problem and determine the failure position of the chip under test by measuring the working parameters of the chip under test.
  • working parameters such as temperature and operating frequency of the chip to be tested can also be measured by a temperature sensor to further determine whether the chip to be tested has a failure problem and determine the failure position of the chip to be tested, thereby improving the test accuracy.
  • the composite testing machine 20 further includes an interface module 28, which is configured to connect to an external measurement unit 29, such as an oscilloscope.
  • the external measurement unit 29 can detect the working parameters of the sample to be tested, and the working parameters include working voltage, working current or working parameters. frequency. In this way, the test condition of the chip under test can be monitored by the external measuring unit without installing the internal measuring unit or when the internal measuring unit is unavailable.
  • the test area of the avalanche aging test module and the test area of the functional test module at least partially overlap.
  • the composite testing machine can perform the aging test and the functional test on the sample to be tested in turn without moving the sample to be tested.
  • the time required for moving the sample to be tested can be saved and the contamination introduced by moving the sample to be tested can be avoided, thereby shortening the test time and reducing external contamination.
  • Embodiments of the present disclosure also provide a method for using a composite testing machine, which is used for using any of the above composite testing machines.
  • the use method of the composite testing machine includes the following steps:
  • Step 101 Provide the composite testing machine 20 and the sample to be tested, and place the sample to be tested in the overlapping area.
  • the overlapping area is the overlapping portion of the first area and the second area. Placing the sample to be tested in the overlapping area enables the aging test module 21 and the functional test module 22 to perform corresponding tests on the sample to be tested.
  • Step 102 connect the external measurement unit 29 through the interface module 28 .
  • the external measuring unit 29 before starting the composite testing machine 20, the external measuring unit 29 is connected, and the external measuring unit 29 is set to measure the working parameters of the sample to be tested, and the working parameters include any one of working voltage, working current or working frequency or any combination; in other embodiments, the composite testing machine is provided with an internal measuring unit, and the working parameters of the sample to be tested are directly measured by the internal measuring unit. In this case, step 102 can be skipped and step 103 can be directly performed.
  • Step 103 Start the composite testing machine 20, so that the composite testing machine 20 can test the sample to be tested according to the internal program.
  • the function test module 22 includes a slow function test sub-module 221 and a high-speed function test sub-module 222; step 103 includes a first sub-step 103a: adjust or confirm the slow function test sub-module 221 and The test sequence of the high-speed functional test sub-module 222.
  • step 103 further includes a second sub-step 103b : adjusting or confirming the temperature program through the temperature control module 23 .
  • the temperature program includes the temperature relationship corresponding to the time point. By adjusting or confirming the temperature program, aging tests and functional tests can be performed under the required temperature conditions. The steps of adjusting or confirming the temperature program can be performed before or after adjusting the test sequence.
  • the third sub-step 103c is performed: detecting the working parameters of the sample to be tested.
  • the execution body of the detection action may be the external measurement unit 29 or the internal measurement unit.
  • Step 104 Determine whether the sample to be tested fails according to the working parameters, and if failure occurs, record the failure position of the sample to be tested.
  • recording the specific content of the failure position of the sample to be tested includes: judging the failure cause of the failure position according to the working parameters, and classifying the failure position according to the failure cause.
  • Step 105 Repair the failure position of the sample to be tested.
  • testing the sample to be tested by the above-mentioned method is beneficial to save the transfer and inventory time of the sample to be tested, avoid the introduction of foreign pollution, and improve the testing efficiency and testing accuracy.
  • the testing area of the aging test module and the testing area of the functional testing module at least partially overlap, so that the composite testing machine can be tested without moving the sample to be tested.
  • the sample to be tested is subjected to aging test and functional test in turn. Since the sample to be tested does not need to be moved between different tests, it can save the time required to move the sample to be tested and avoid the pollution introduced by moving the sample to be tested, thereby shortening the test time. and reduce external pollution.
  • the distribution and comparison of the failure locations caused by different failure causes can be counted, and then the root cause of the problem can be analyzed according to the statistical results to optimize the design and manufacturing of integrated circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种复合测试机及其使用方法,复合测试机(20)包括:崩应老化测试模块(21),设置为对位于第一区域的待测样品进行老化测试;功能测试模块(22),设置为对位于第二区域的待测样品进行功能测试,第二区域与第一区域至少部分重叠。

Description

复合测试机及其使用方法
本公开要求在2021年02月25日提交中国专利局、申请号为202110215090.6、发明名称为“复合测试机及其使用方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及但不限于一种复合测试机及其使用方法。
背景技术
在集成电路制造完成之后,还需要经过产品可靠性测试来判断其性能的好坏,以保证出厂的集成电路具有良好的电学性能以及具有预设长度的寿命。
产品可靠性测试通常包括产品寿命测试和产品功能特性测试,前者用于测试并获取集成电路的预期寿命,后者用于获取集成电路的电学性能参数。一般的产品寿命测试包括崩应(Burn-in)测试,也叫做老化测试,通过对集成电路进行高温和高压处理,加速其老化,并在老化期间检测电学性能参数的变化趋势和电路故障,进而推算出预期寿命。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供一种复合测试机及其使用方法。
本公开的第一方面提供一种复合测试机,包括:崩应老化测试模块,设置为对位于第一区域的待测样品进行老化测试;功能测试模块,设置为对位于第二区域的所述待测样品进行功能测试,所述第二区域与所述第一区域至少部分重叠。
本公开的第二方面提供一种复合测试机的使用方法,包括:提供第一方面所述的复合测试机;提供待测样品,并将所述待测样品置于重叠 区域,以使崩应老化测试模块和功能测试模块可对所述待测样品进行测试;启动所述复合测试机,以使所述复合测试根据内部程式对所述待测样品进行测试。
本公开实施例所提供的复合测试机及其使用方法中,崩应老化测试模块的测试区域与功能测试模块的测试区域至少部分重叠,如此,复合测试机可在不移动待测样品的情况下,对待测样品依次进行老化测试和功能测试,由于待测样品在不同测试之间无需移动,因此可节约移动待测样品所需的时间以及避免移动待测样品而引入的污染,从而缩短测试时间和减少外部污染。
另外,通过根据失效原因对失效位置进行分类,可统计不同失效原因导致的失效位置的分布情况和对比情况,进而根据统计结果分析得到问题根源,以优化集成电路的设计和制造环节。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1为一种测试***的测试流程示意图;
图2为本公开实施例提供的复合测试机的测试流程示意图;
图3为本公开实施例提供的复合测试机的功能结构示意图;
图4为本公开实施例提供的待测样品的测试环境的温度变化示意图;
图5为本公开实施例提供的复合测试机的使用方法流程图。
具体实施方式
下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全 部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
参考图1,测试***包括崩应老化测试机11、第一慢速功能测试机12、第二慢速功能测试机13以及高速功能测试机14,待测芯片首先进入崩应老化测试机11,在完成老化测试之后,根据测试结果进行站点转移,即将正常芯片转移至第一慢速功能测试机12,将失效芯片进行额外处理;依次类推,在每一测试机测试结束之后,正常芯片转移至下一测试机进行对应的寿命测试或功能测试,失效芯片进行额外处理。
正常芯片在不同测试机之间进行转移时,需要先从当前所在测试机内取出以进行晶片数量的盘点和确认,再转移至下一测试机,在此过程中需要花费大量时间,芯片测试效率较低;同时,由于芯片需要从设备内取出并进行转移,容易引入外部污染,导致本来正常的芯片可能因外部污染而失效或性能不佳,进而使得测试准确率偏低,或者说,使得实际测得的良率下降;此外,为适应不同晶片开发公司的芯片测试流程需求,需要编写不同的程式以执行不同的测试流程,且需要在相邻芯片的测试间隔内对测试机内的测试程式进行替换,工作量较大。
其中,不同的测试流程可通过以下两个示例进行说明,例如:甲公司规定的测试流程为先在崩应老化测试机11内进行老化测试,再在第一慢速功能测试机12内进行低温慢速功能测试,最后在第一慢速功能测试机12内进行高温慢速功能测试;乙公司规定的测试流程为先在崩应老化测试机11内进行老化测试,再在第一慢速功能测试机12内进行高温慢速功能测试,最后在第一慢速功能测试机12内进行低温慢速功能测试。
本公开实施例提供一种复合测试机,崩应老化测试模块的测试区域与功能测试模块的测试区域至少部分重叠,如此,复合测试机可在不移动待测样品的情况下,对待测样品依次进行老化测试和功能测试,由于待测样品在不同测试之间无需移动,因此可节约移动待测样品所需的时间以及避免移动待测样品而引入的外部污染,从而提高测试效率和测试准确性。
图2为本公开实施例提供的复合测试机的测试流程示意图;图3为本公 开实施例提供的复合测试机的功能结构示意图;图4为本公开实施例提供的待测样品的测试环境的温度变化示意图。
参考图2,复合测试机20包括:崩应老化测试模块21,设置为对位于第一区域的待测样品进行老化测试;功能测试模块22,设置为对位于第二区域的待测样品进行功能测试,第二区域与第一区域至少部分重叠。
其中,第一区域为崩应老化测试模块21对应的测试区域,第二区域为功能测试模块22对应的测试区域,在对待测样品进行老化测试和功能测试时,可将待测样品放置于第一区域与第二区域的重叠区域,从而在完成老化测试之后,无需移动待测样品,即可顺序执行功能测试;相应地,由于无需移动待测样品,因此可消除整体测试时长中移动待测样品所需的移动时间,提高测试效率,且可避免引入外部污染,提高待测芯片的测试良率以及测试准确率。
本实施例中,崩应老化测试模块21和功能测试模块22为相对独立的两个硬件模块,两个硬件模块的测试区域部分重叠或全部重叠;在一些实施例中,崩应老化测试模块的老化测试功能和功能测试模块的功能测试功能为同一设备的不同功能,不同功能的切换通过软件切换实现,崩应老化测试模块和功能测试模块实质上为同一设备,第一区域和第二区域完全重叠;在一些实施例中,崩应老化测试模块包括第一硬件和通用硬件,功能测试模块包括第二硬件和共用的通用硬件,通过调整通用硬件与第一硬件或第二硬件连接,实现崩应老化测试模块和功能测试模块切换,其中第一区域和第二区域部分重叠或完全重叠。
本实施例中,在将待测样品放置于重叠区域之后,先进行老化测试,完成老化测试后,对正常芯片和失效芯片进行功能测试,功能测试完成后,输出正常芯片,并对失效芯片进行额外处理。也就是说,若复合测试机20内进行多项测试,只有在完成最后一项测试之后,才移出失效芯片,该失效芯片包含因任一测试步骤失效的芯片,如此,有利于节省取出并盘点正常晶片的时间,提高测试效率。
参考图2和图3,复合测试机20还包括温度控制模块23,温度控制模块23设置为调整温度程式,温度程式包含与时间点对应的温度信息,以在所需温度条件下进行老化测试和功能测试。由于崩应老化测试模块21和功能测试 模块22被封装为同一复合测试机,两者具有重叠的测试区域,因此可通过温度控制模块23调整重叠区域的温度程式,以适应不同晶片开发公司的芯片测试流程需求,无需逐一调整相对独立的每个测试模块的温度程式,且无需考虑不同测试步骤之间的温度衔接,有利于提高测试效率。
本实施例中,崩应老化测试模块21的测试程式与功能测试模块22的测试程式采用同一程序语言编写而成。如此,可以在不能直接调整重叠区域的温度程式的情况下,采用同一程序语言编写不同测试模块的温度程式,无需因不同测试模块的程序语言不同,而采用多种程序语言编写相对独立的不同温度程式,且无需考虑不同温度程式之间的衔接配合,有利于提高测试效率。
本实施例中,功能测试模块22包括慢速功能测试子模块221和高速功能测试子模块222,慢速功能测试子模块221设置为对待测样品进行慢速功能测试,高速功能测试子模块222设置为对待测样品进行高速功能测试。其中,慢速功能测试过程中,待测芯片的时脉应当大于500MHz,高速功能测试过程中,待测芯片的时脉应当大于1800MHz,以准确测量待测芯片在不同工作条件下性能参数;相应地,老化测试过程中,待测芯片的时脉仅需大于50MHz。
慢速功能测试的温度程式可与高速功能测试的温度程式不同,也可与老化测试的温度程式不同,实际上,可以根据晶片开发公司的不同需求,通过温度控制模块23对不同测试的温度程式进行调整。举例来说,参考图4,可设置老化测试的温度程式为恒定的温度a,设置慢速功能测试的温度程式为先温度b再温度c,设置高速功能测试的温度程式为先温度n再温度n+1。
参考图3,为了图示的简洁和理解的便利,将崩应老化测试模块21、慢速功能测试子模块221和高速功能测试子模块222打包归类为测试组件20a,测试组件20a并非一个实质结构,而是一个分类名称,与测试组件20a连接的其他模块,例如温度控制模块23,视为与测试组件20a内的所有测试模块连接,以实现相应的功能。需要说明的是,图3仅实际示例出了三种类型的测试模块,实际上还可以有更多类型的测试模块,这些测试模块都归类于测试组件20a。
本实施例中,功能测试模块22包括多个功能测试子模块,多个功能测试子模块的测试重叠区域包含第二区域。由于第二区域与第一区域至少部分重叠,第二区域为每一功能测试子模块的部分测试区域,因此,将待测样品设 置于第一区域和第二区域的重叠区域,有利于保证在不移动待测样品的情况下完成崩应老化测试模块21对应的老化测试和多个功能测试子模块对应的功能测试。
本实施例中,多个功能测试子模块包括慢速功能测试子模块221和高速功能测试子模块222,慢速功能测试子模块221的测试区域包含第二区域,高速功能测试子模块222的测试区域包含第二区域。
本实施例中,复合测试机20还包括顺序控制模块24,设置为调整慢速功能测试子模块221和高速功能测试子模块222的测试顺序。如此,有利于进一步适应晶片开发公司的需求,根据需求先进行慢速功能测试或高速功能测试;在其他实施例中,顺序控制模块可以调整所有测试模块的测试顺序,举例来说,先进行慢速功能测试,再进行老化测试,最后进行高速功能测试。
需要说明是,若切换不同测试模块的方式是切换不同软件或同一软件中的不同程序,则顺序控制模块24设置为调整软件或程序的切换顺序;若切换不同测试模块的方式是通过切换硬件或者切换连接关系,则顺序控制模块24设置为切换硬件的应用顺序或者切换连接关系。
本实施例中,复合测试机20还包括失效记录模块25,设置为记录待测样品在老化测试和功能测试过程中的失效位置。记录失效位置的作用包含以下两点:第一,便于对失效位置进行修补,以使得失效芯片转为正常芯片;第二,便于归纳总结,根据多个待测芯片的测试结果统计易发生失效的芯片位置以及失效位置的分布示意图,进而根据分析反馈至芯片设计和制造环节,优化芯片质量,提高芯片良率。
本实施例中,失效记录模块还设置为检测失效位置的失效原因,并根据失效原因对失效位置进行分类。通过根据失效原因对失效位置进行分类,可统计不同失效原因导致的失效位置的分布情况和对比情况,进而根据统计结果分析得到问题根源,以优化集成电路的设计和制造环节。
其中,失效原因包括单一存储位元失效、相连存储位元失效、单一字元线失效或相连字元线失效中的任意一者或任意组合。
本实施例中,复合测试机20还包括修补模块26,设置为对失效位置进行修补。具体来说,待测芯片中包含备用位元,若进行某一测试步骤的过程中或之后发现有失效的位元,则可以通过熔断器的熔断来改变连接线路的结 构,使失效芯片的未失效部分连接到备用位元上,即以备用位元替代处于失效位置的失效位元,从而达到修复失效位置和修复失效芯片的目的。在进行修补之后,需要重新进行当前测试或已进行的所有测试,以保证修复成功。
本实施例中,复合测试机20还包括电源管理单元27,设置为在老化测试和功能测试中,向待测样品提供电压激励信号或电流激励信号,以及测量待测样品的工作电压或工作电流。通过对处于测试条件下的待测样品提供电压激励信号和电流激励信号,可控制待测样品处于额定运行状态或满载状态,以促使或加速促使待测芯片在运行状态下的缺陷出现;此外,还可以通过测量待测芯片的工作参数,判定待测芯片是否存在失效问题以及判定待测芯片的失效位置。
在其他实施例中,还可以通过温度传感器对待测芯片的温度、工作频率等工作参数进行测量,以进行一步判定待测芯片是否存在失效问题以及判定待测芯片的失效位置,提高测试准确率。
本实施例中,复合测试机20还包括接口模块28,设置为连接外部测量单元29,例如示波器,外部测量单元29可对待测样品的工作参数进行检测,工作参数包括工作电压、工作电流或工作频率。如此,可在不安装内部测量单元或内部测量单元不可用的情况下,通过外部测量单元对待测芯片的测试情况进行监测。
本实施例中,崩应老化测试模块的测试区域与功能测试模块的测试区域至少部分重叠,如此,复合测试机可在不移动待测样品的情况下,对待测样品依次进行老化测试和功能测试,由于待测样品在不同测试之间无需移动,因此可节约移动待测样品所需的时间以及避免移动待测样品而引入的污染,从而缩短测试时间和减少外部污染。
本公开实施例还提供一种复合测试机的使用方法,用于使用上述任一项复合测试机。
参考图3和图5,复合测试机的使用方法包括以下步骤:
步骤101:提供复合测试机20和待测样品,并将待测样品置于重叠区域。
重叠区域为第一区域和第二区域的重叠部分,将待测样品置于重叠区域,可使得崩应老化测试模块21和功能测试模块22能够对待测样品进行相应测试。
步骤102:通过接口模块28连接外部测量单元29。
本实施例中,在启动复合测试机20之前,连接外部测量单元29,外部测量单元29设置为对待测样品的工作参数进行测量,工作参数包括工作电压、工作电流或工作频率中的任意一者或任意组合;在其他实施例中,复合测试机内设置有内部测量单元,直接通过内部测量单元测量待测样品的工作参数,此时可跳过步骤102,直接进行步骤103。
步骤103:启动复合测试机20,以使复合测试机20根据内部程式对待测样品进行测试。
本实施例中,功能测试模块22包括慢速功能测试子模块221和高速功能测试子模块222;步骤103包含第一子步骤103a:通过顺序控制模块24调整或确认慢速功能测试子模块221和高速功能测试子模块222的测试顺序。
本实施例中,步骤103还包含第二子步骤103b:通过温度控制模块23调整或确认温度程式。温度程式包括与时间点对应的温度关系,通过调整或确认温度程式,可在所需温度条件下进行老化测试和功能测试。调整或确认温度程式的操作步骤可在调整测试顺序之前进行,也可以在调整测试顺序之后进行。
在执行完第一子步骤103a和第二子步骤103b之后,执行第三子步骤103c:检测待测样品的工作参数。检测动作的执行主体可以是外部测量单元29或内部测量单元。
步骤104:根据工作参数判断待测样品是否发生失效,若发生失效,则记录待测样品的失效位置。其中,记录待测样品的失效位置的具体内容,包括:根据工作参数判断失效位置的失效原因,并根据失效原因对失效位置进行分类。
步骤105:对待测样品的失效位置进行修补。
本实施例中,通过上述使用方法对待测样品进行测试,有利于节省待测样品的转移和盘点时间,以及避免引入外来污染,提高测试效率和测试准确率。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例所提供的复合测试机及其使用方法中,崩应老化测试模块的测试区域与功能测试模块的测试区域至少部分重叠,如此,复合测试机可 在不移动待测样品的情况下,对待测样品依次进行老化测试和功能测试,由于待测样品在不同测试之间无需移动,因此可节约移动待测样品所需的时间以及避免移动待测样品而引入的污染,从而缩短测试时间和减少外部污染。另外,通过根据失效原因对失效位置进行分类,可统计不同失效原因导致的失效位置的分布情况和对比情况,进而根据统计结果分析得到问题根源,以优化集成电路的设计和制造环节。

Claims (19)

  1. 一种复合测试机,其中,所述复合测试机包括:
    崩应老化测试模块,设置为对位于第一区域的待测样品进行老化测试;
    功能测试模块,设置为对位于第二区域的所述待测样品进行功能测试,所述第二区域与所述第一区域至少部分重叠。
  2. 根据权利要求1所述的复合测试机,所述复合测试机还包括:温度控制模块,所述温度控制模块设置为调整温度程式,温度程式包含与时间点对应的温度信息,以在所需温度条件下进行所述老化测试和所述功能测试。
  3. 根据权利要求1所述的复合测试机,其中,所述崩应老化测试模块的测试程式与所述功能测试模块的测试程式采用同一程式语言编写而成。
  4. 根据权利要求1所述的复合测试机,其中,所述功能测试模块包括慢速功能测试子模块与高速功能测试子模块,所述慢速功能测试子模块设置为对所述待测样品进行慢速功能测试,所述高速功能测试子模块设置为对所述待测样品进行高速功能测试。
  5. 根据权利要求4所述的复合测试机,其中,所述慢速功能测试子模块的测试区域包含所述第二区域,所述高速功能测试子模块的测试区域包含所述第二区域。
  6. 根据权利要求4所述的复合测试机,所述复合测试机还包括:顺序控制模块,设置为调整慢速功能测试子模块和高速功能测试子模块的测试顺序。
  7. 根据权利要求1所述的复合测试机,所述复合测试机还包括:失效记录模块,设置为记录所述待测样品在所述老化测试和所述功能测试过程中的失效位置。
  8. 根据权利要求7所述的复合测试机,其中,所述失效记录模块还设置为检测所述失效位置的失效原因,并根据所述失效原因对所述失效位置进行分类。
  9. 根据权利要求8所述的复合测试机,其中,所述失效原因包括单一存储位元失效、相连存储位元失效、单一字元线失效或相连字元线失效中的任意一者或任意组合。
  10. 根据权利要求7所述的复合测试机,所述复合测试机还包括:修补模块,设置为对所述失效位置进行修补。
  11. 根据权利要求1所述的复合测试机,所述复合测试机还包括:电源管理单元,设置为在老化测试和功能测试中,向所述待测样品提供电压激励信号或电流激励信号,以及测量所述待测样品的工作电压或工作电流。
  12. 根据权利要求1所述的复合测试机,所述复合测试机还包括:接口模块,设置为连接外部测量单元,所述外部测量单元可对所述待测样品的工作参数进行检测,所述工作参数包括工作电压、工作电流或工作频率。
  13. 一种复合测试机的使用方法,其中,所述复合测试机的使用方法包括:
    提供如权利要求1所述的复合测试机;
    提供待测样品,并将所述待测样品置于重叠区域,以使崩应老化测试模块和功能测试模块可对所述待测样品进行测试;
    启动所述复合测试机,以使所述复合测试根据内部程式对所述待测样品进行测试。
  14. 根据权利要求13所述的复合测试机的使用方法,其中,所述功能测试模块包括慢速功能测试子模块与高速功能测试子模块;启动所述复合测试机的操作步骤包括:通过顺序控制模块调整或确认所述慢速功能测试子模块与所述高速功能测试子模块的测试顺序。
  15. 根据权利要求13所述的复合测试机的使用方法,其中,启动所述复合测试机的操作步骤包括:通过温度控制模块调整或确认温度程式,温度程式包含与时间点对应的温度信息,以在所需温度条件下进行所述老化测试和所述功能测试。
  16. 根据权利要求13所述的复合测试机的使用方法,在启动所述复合测试机之前,还包括:通过接口模块连接外部测量单元,所述外部测量单元设置为对所述待测样品的工作参数进行测量,所述工作参数包括工作电压、工作电流或工作频率中任意一者或任意组合。
  17. 根据权利要求13所述的复合测试机的使用方法,其中,对所述待测样品进行测试包括:在所述老化测试和所述功能测试过程中,检测所述待测样品的工作参数,并根据所述工作参数判断所述待测样品是否发生失效;若 所述待测样品发生失效,则记录所述待测样品的失效位置。
  18. 根据权利要求17所述的复合测试机的使用方法,其中,记录所述待测样品的失效位置,包括:根据所述工作参数判断所述失效位置的失效原因,并根据所述失效原因对所述失效位置进行分类。
  19. 根据权利要求17所述复合测试机的使用方法,若所述待测样品发生失效,还包括:对所述待测样品的失效位置进行修补。
PCT/CN2021/103891 2021-02-25 2021-06-30 复合测试机及其使用方法 WO2022179031A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/600,413 US20240053398A1 (en) 2021-02-25 2021-06-30 Composite testing machine and method for using composite testing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110215090.6A CN113030697A (zh) 2021-02-25 2021-02-25 复合测试机及其使用方法
CN202110215090.6 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022179031A1 true WO2022179031A1 (zh) 2022-09-01

Family

ID=76462263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103891 WO2022179031A1 (zh) 2021-02-25 2021-06-30 复合测试机及其使用方法

Country Status (3)

Country Link
US (1) US20240053398A1 (zh)
CN (1) CN113030697A (zh)
WO (1) WO2022179031A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030697A (zh) * 2021-02-25 2021-06-25 长鑫存储技术有限公司 复合测试机及其使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379259A (en) * 1980-03-12 1983-04-05 National Semiconductor Corporation Process of performing burn-in and parallel functional testing of integrated circuit memories in an environmental chamber
US20090058450A1 (en) * 2007-08-31 2009-03-05 Albert Jason T Method of and system for functionally testing multiple devices in parallel in a burn-in-environment
US7519880B1 (en) * 2005-07-05 2009-04-14 Advanced Micro Devices, Inc. Burn-in using system-level test hardware
CN102053220A (zh) * 2009-11-10 2011-05-11 中芯国际集成电路制造(上海)有限公司 崩应架构及崩应方法
CN104345231A (zh) * 2013-07-24 2015-02-11 爱德万测试公司 测试片与托盘间的高速测试机通信接口
CN109425388A (zh) * 2018-03-08 2019-03-05 佛山市顺德区美的电热电器制造有限公司 一种智能动态可靠性测试***及方法
CN111444051A (zh) * 2020-03-26 2020-07-24 杭州涂鸦信息技术有限公司 一种产品的整机产测方法及***
CN113030697A (zh) * 2021-02-25 2021-06-25 长鑫存储技术有限公司 复合测试机及其使用方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055199A (en) * 1998-10-21 2000-04-25 Mitsubishi Denki Kabushiki Kaisha Test circuit for a semiconductor memory device and method for burn-in test
MY152599A (en) * 2007-02-14 2014-10-31 Eles Semiconductor Equipment S P A Test of electronic devices at package level using test boards without sockets
CN101858956B (zh) * 2010-05-27 2012-10-03 北京新润泰思特测控技术有限公司 老化测试***
WO2015123078A1 (en) * 2014-02-14 2015-08-20 Micro Control Company Semiconductor device burn-in temperature sensing
CN103823171A (zh) * 2014-02-16 2014-05-28 成都市中州半导体科技有限公司 一种集成电路高温老化测试***及高温老化测试方法
CN104460652B (zh) * 2014-10-27 2018-02-23 上海原动力通信科技有限公司 板卡老化装置和板卡老化装置的使用方法
US20170330876A1 (en) * 2014-12-02 2017-11-16 Glenn J. Leedy Vertical system integration
CN205484607U (zh) * 2016-03-18 2016-08-17 深圳长城开发科技股份有限公司 电子产品老化自动测试平台
CN106771982B (zh) * 2017-01-20 2019-12-10 珠海全志科技股份有限公司 芯片自动测试方法及***
CN208206189U (zh) * 2018-03-08 2018-12-07 佛山市顺德区美的电热电器制造有限公司 一种智能动态可靠性测试***
CN109390031A (zh) * 2018-10-23 2019-02-26 江苏华存电子科技有限公司 一种半导体存储产品高温老化测试方法
CN110907798A (zh) * 2019-10-23 2020-03-24 盛科网络(苏州)有限公司 集成SoC的交换芯片的测试验证板、测试装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379259A (en) * 1980-03-12 1983-04-05 National Semiconductor Corporation Process of performing burn-in and parallel functional testing of integrated circuit memories in an environmental chamber
US7519880B1 (en) * 2005-07-05 2009-04-14 Advanced Micro Devices, Inc. Burn-in using system-level test hardware
US20090058450A1 (en) * 2007-08-31 2009-03-05 Albert Jason T Method of and system for functionally testing multiple devices in parallel in a burn-in-environment
CN102053220A (zh) * 2009-11-10 2011-05-11 中芯国际集成电路制造(上海)有限公司 崩应架构及崩应方法
CN104345231A (zh) * 2013-07-24 2015-02-11 爱德万测试公司 测试片与托盘间的高速测试机通信接口
CN109425388A (zh) * 2018-03-08 2019-03-05 佛山市顺德区美的电热电器制造有限公司 一种智能动态可靠性测试***及方法
CN111444051A (zh) * 2020-03-26 2020-07-24 杭州涂鸦信息技术有限公司 一种产品的整机产测方法及***
CN113030697A (zh) * 2021-02-25 2021-06-25 长鑫存储技术有限公司 复合测试机及其使用方法

Also Published As

Publication number Publication date
US20240053398A1 (en) 2024-02-15
CN113030697A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
US6138256A (en) Intelligent binning for electrically repairable semiconductor chips
US5764650A (en) Intelligent binning for electrically repairable semiconductor chips
US7856332B2 (en) Real time system for monitoring the commonality, sensitivity, and repeatability of test probes
US8036848B2 (en) Semiconductor wafer testing apparatus and method of testing semiconductor wafer
WO2022179031A1 (zh) 复合测试机及其使用方法
US7719301B2 (en) Testing method of semiconductor integrated circuit and information recording medium
JP2008002900A (ja) 半導体装置のスクリーニング方法と装置並びにプログラム
CN117648892A (zh) 一种利用ai动态调节老化测试参数的方法及***
US7284213B2 (en) Defect analysis using a yield vehicle
US7793186B1 (en) System and method for increasing the extent of built-in self-testing of memory and circuitry
US20080077827A1 (en) Test method for semiconductor device
US7822567B2 (en) Method and apparatus for implementing scaled device tests
KR100821095B1 (ko) 반도체 테스트장치 및 그 테스트방법
KR100718457B1 (ko) 반도체 테스트 장치와 이를 이용한 반도체 소자 검사방법
CN112710942B (zh) 晶圆区域性问题的分析***及方法
US6717870B2 (en) Method for assessing the quality of a memory unit
JP2001083211A (ja) 半導体検査装置および半導体検査方法
KR100934793B1 (ko) 반도체 소자 테스트 방법 및 그 장치, 적정 스트레스 전압검출 방법
KR20010081625A (ko) 테스트 중인 반도체 디바이스를 이용한 반도체 테스트장치의 타이밍 파라메터 점검 및 보정 방법
JP2002131372A (ja) 半導体デバイスの検査方法及び検査装置
CN114563689A (zh) 一种芯片管脚性能测试的方法
JPH1038965A (ja) 半導体装置の信頼性評価方法
JP2009222505A (ja) 半導体集積回路装置及びその検査方法
JP2005164467A (ja) Iddq測定回路
KR20020025303A (ko) 웨이퍼 레벨 특성 검사를 이용한 반도체 소자 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17600413

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927461

Country of ref document: EP

Kind code of ref document: A1