WO2022177017A1 - Rubber composition, tire, and additive for tire - Google Patents

Rubber composition, tire, and additive for tire Download PDF

Info

Publication number
WO2022177017A1
WO2022177017A1 PCT/JP2022/007065 JP2022007065W WO2022177017A1 WO 2022177017 A1 WO2022177017 A1 WO 2022177017A1 JP 2022007065 W JP2022007065 W JP 2022007065W WO 2022177017 A1 WO2022177017 A1 WO 2022177017A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
rubber
rubber composition
metal salt
Prior art date
Application number
PCT/JP2022/007065
Other languages
French (fr)
Japanese (ja)
Inventor
洋 黒川
Original Assignee
株式会社Moresco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Moresco filed Critical 株式会社Moresco
Publication of WO2022177017A1 publication Critical patent/WO2022177017A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to rubber compositions, tires, and tire additives.
  • Patent Document 1 discloses a rubber composition containing a rubber component, a white filler containing silica, a silane coupling agent, and a compound such as monoalkanolamide in order to improve the dispersibility of silica in the rubber composition. is disclosed.
  • An object of one aspect of the present invention is to provide a rubber composition and a tire in which rolling resistance is reduced while maintaining grip on wet road surfaces, and a tire additive capable of realizing these.
  • the inventors diligently studied to solve the above problems. As a result, by blending the alkylarylsulfonic acid metal salt in addition to the rubber component, silica, and silane coupling agent, it is possible to reduce the rolling resistance while maintaining the grip on wet road surfaces of the resulting rubber composition. found that it can be done, and came to complete the present invention.
  • one embodiment of the present invention includes the following configurations.
  • [1] (a) a rubber component containing at least one selected from a diene-based synthetic rubber and a natural rubber, (b) silica, (c) an alkylarylsulfonic acid metal salt, and (d) a silane coupling agent wherein the content of (b) silica is 20 to 120 parts by weight per 100 parts by weight of the (a) rubber component.
  • a rubber composition and a tire in which rolling resistance is reduced while maintaining grip on wet road surfaces, and a tire additive capable of realizing these can be provided.
  • a rubber composition according to one embodiment of the present invention comprises (a) a rubber component containing at least one selected from diene-based synthetic rubbers and natural rubbers, (b) silica, and (c) a metal alkylarylsulfonate. It contains a salt and (d) a silane coupling agent.
  • the rubber component includes at least one selected from diene-based synthetic rubber and natural rubber.
  • diene-based synthetic rubber examples include polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), butyl rubber (IIR), ethylene-propylene copolymer rubber (EPR, EPDM), Styrene-isoprene-butadiene copolymer rubber (SIBR), acrylonitrile-butadiene copolymer rubber (NBR), chloroprene rubber (CR), acrylic rubber (ACR), urethane rubber (PUR) and the like.
  • IR polyisoprene rubber
  • BR polybutadiene rubber
  • SBR styrene-butadiene copolymer rubber
  • IIR butyl rubber
  • EPR ethylene-propylene copolymer rubber
  • SIBR Styrene-isoprene-butadiene copoly
  • the silica is not particularly limited, and those used in ordinary rubber compositions can be used, including wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), colloidal silica, and precipitated silica. etc. can be used.
  • the silica content is 20 to 120 parts by weight with respect to 100 parts by weight of the rubber component. When the silica content is 20 parts by weight or more relative to 100 parts by weight of the rubber component, the wet grip property is good, and when it is 120 parts by weight or less, the abrasion resistance is good.
  • the content of the silica is preferably 40 parts by weight or more, more preferably 60 parts by weight or more, and preferably 110 parts by weight or less, relative to 100 parts by weight of the rubber component. The following are more preferable.
  • the alkylarylsulfonic acid metal salt is one or more compounds selected from synthetic alkylarylsulfonic acid metal salts and petroleum sulfonic acid metal salts.
  • the petroleum sulfonic acid is not particularly limited, but for example, a mixture of sulfonated hydrocarbons generally known as a reaction product of sulfuric acid and an aromatic component of lubricating oil produced during petroleum refining. can be
  • the alkylarylsulfonic acid includes the petroleum sulfonic acid derived from a petroleum distillate, a synthetic alkylarylsulfonic acid produced by sulfonating an alkylated aromatic compound, or the petroleum sulfonic acid and the synthetic alkylarylsulfonic acid. can be mentioned.
  • the alkylarylsulfonic acid is not particularly limited as long as it is a sulfonated alkylated aromatic compound.
  • the alkylated aromatic compound include alkylated aromatic compounds having a weight average molecular weight of 300 to 1,000, preferably 330 to 900, and even more preferably 350 to 800.
  • the alkyl groups of the alkylarylsulfonic acid may be linear, branched, cyclic, or combinations thereof.
  • the aromatic compound is also not particularly limited, and examples thereof include benzene, naphthalene, indane, biphenyl, and phenyl ether. Among them, the aromatic compound is more preferably benzene, naphthalene, phenyl ether, and the like, and more preferably benzene, naphthalene, and the like.
  • the weight-average molecular weight of the alkylated aromatic compound is the weight-average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC), and is measured under the following measurement conditions, for example.
  • GPC gel permeation chromatography
  • More specific examples of the alkylarylsulfonic acid include didodecylbenzenesulfonic acid, diundecylbenzenesulfonic acid, ditridecylbenzenesulfonic acid, ditetradecylbenzenesulfonic acid, and dinonylnaphthalenesulfonic acid. be able to.
  • the metal constituting the alkylarylsulfonic acid metal salt is not limited to this, but is more preferably, for example, an alkali metal or an alkaline earth metal.
  • examples of such metals include at least one metal selected from the group consisting of Li, Na, K, Mg, Ca, Sr, Ba, Zn, and the like. Among them, the metal is more preferably at least one metal selected from the group consisting of Na, Ca and Ba.
  • the alkylarylsulfonic acid metal salt is more preferably oil-soluble.
  • oil-soluble means that the compound dissolves in mineral oil at 25° C. in an amount of preferably 30% by weight or more, more preferably 60% by weight or more. Since the alkylarylsulfonic acid metal salt is oil-soluble, it is easily mixed with rubber, which is a dispersion medium, and the dispersibility of silica can be more suitably improved, which is preferable. Therefore, the effect of the present invention that the rolling resistance can be reduced while maintaining the grip properties of the obtained rubber composition on wet road surfaces can be obtained more preferably.
  • the weight average molecular weight of the alkylarylsulfonic acid group of the alkylarylsulfonic acid metal salt is preferably 380-1080, more preferably 410-980, and even more preferably 430-880.
  • the weight-average molecular weight of the metal salt of alkylarylsulfonate is 380 or more, the dispersibility of silica can be more suitably improved, which is preferable. Therefore, the effect of the present invention that the rolling resistance can be reduced while maintaining the grip properties of the resulting rubber composition on wet road surfaces can be achieved more favorably.
  • the weight average molecular weight of the alkylarylsulfonic acid metal salt is a value measured according to the standard test method for analysis of oil-soluble petroleum sulfonates according to ASTM D 3712:2005.
  • a commercially available product can also be used as the alkylarylsulfonic acid metal salt.
  • Metal salts of synthetic alkylarylsulfonic acids include, for example, MORESCO Amber SN-60 (manufactured by MORESCO Co., Ltd.), and metal salts of petroleum sulfonic acids include, for example, Throughhol (registered trademark) 500, Throughhole 600, CA-45N ( manufactured by MORESCO Corporation) and the like.
  • silane coupling agent examples include, but are not limited to, bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)trisulfide, bis(3-triethoxysilyl) propyl) disulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3- Mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-nitropropyltrimethoxysilane, 3-nitropropyltriethoxysilane, 3-chloropropyl
  • the (c) alkylarylsulfonic acid metal salt and the (d) silane coupling agent are contained in a total amount of preferably 1 to 20 parts by weight with respect to 100 parts by weight of silica (b).
  • the total content of (c) the alkylarylsulfonic acid metal salt and (d) the silane coupling agent is more preferably 3 parts by weight or more, more preferably 5 parts by weight or more, relative to 100 parts by weight of (b) silica. , more preferably 12 parts by weight or less, and still more preferably 10 parts by weight or less.
  • the (c) alkylarylsulfonic acid metal salt and the (d) silane coupling agent are contained in a total of 1 to 20 parts by weight with respect to 100 parts by weight of the (b) silica, It is preferable because it can reduce rolling resistance while maintaining wet grip properties.
  • the content of the (c) metal alkylarylsulfonate is intended to be the content of the metal alkylarylsulfonate as a solid content.
  • the weight ratio of (c) the alkylarylsulfonic acid metal salt and (d) the silane coupling agent is from the viewpoint that the rolling resistance can be more suitably reduced while maintaining the grip of the rubber composition on wet road surfaces. Therefore, the ratio is preferably 1:9 to 9:1, but is not limited thereto.
  • the weight ratio of (c) the alkylarylsulfonic acid metal salt and (d) the silane coupling agent is 1:9 to 7: from the viewpoint that a rubber composition having excellent wet grip properties and tensile stress can be obtained. 3 is more preferred. More preferably, the weight ratio of (c) the alkylarylsulfonic acid metal salt and (d) the silane coupling agent is 3:7 to 7:3.
  • the (c) alkylarylsulfonic acid metal salt is preferably 1 part by weight to 9 parts by weight, more preferably 1 part by weight to 7 parts by weight, and still more preferably 3 parts by weight to 100 parts by weight of silica (b). Contains 7 parts by weight.
  • the (d) silane coupling agent is preferably 1 part by weight to 9 parts by weight, more preferably 3 parts by weight to 9 parts by weight, still more preferably 3 parts by weight to 7 parts by weight, relative to 100 parts by weight of silica (b). part included.
  • the (c) alkylarylsulfonic acid metal salt is preferably 0.8 to 7.2 parts by weight, more preferably 0.8 to 5.6 parts by weight, per 100 parts by weight of the rubber component (a). Part is more preferred.
  • the (d) silane coupling agent is preferably 0.8 to 7.2 parts by weight, preferably 2.4 to 7.2 parts by weight, per 100 parts by weight of the rubber component (a). It is more preferable to have
  • the rubber composition according to one embodiment of the present invention includes softeners, waxes, processing aids, stearic acid, zinc oxide, anti-aging agents, vulcanizing agents, vulcanization accelerators, and resins. Oils, vulcanization retarders, etc. can be appropriately added.
  • Sulfur is preferably used as the vulcanizing agent, although it is not limited to this.
  • Sulfur includes powdered sulfur, oil treated sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur and the like.
  • the vulcanizing agent is preferably blended in an amount of 0.1 to 5 parts by weight per 100 parts by weight of the rubber component.
  • vulcanization accelerator examples include sulfenamide-based, thiazole-based, thiuram-based, thiourea-based, guanidine-based, dithiocarbamic acid-based, aldehyde-amine-based or aldehyde-ammonia-based, imidazoline-based, or xanthate-based vulcanization accelerators. etc. One or more of these can be used.
  • the vulcanization accelerator is preferably blended in an amount of 1 to 8 parts by weight per 100 parts by weight of the rubber component.
  • the rubber composition according to one embodiment of the present invention includes, for example, the rubber component, the silica, the alkylarylsulfonic acid metal salt, the silane coupling agent, and, if necessary, the vulcanizing agent and A kneaded product obtained by kneading compounding agents other than the vulcanization accelerator may also be used. Alternatively, it may be a product obtained by blending the kneaded material with a vulcanizing agent and a vulcanization accelerator and vulcanizing the kneaded material.
  • the production of the rubber composition (product) includes, for example, first, the rubber component, the silica, the alkylarylsulfonic acid metal salt, and the silane coupling and, if necessary, compounding agents other than the vulcanizing agent and vulcanization accelerator are kneaded using an internal kneader such as an open roll mixer, a Banbury mixer, or a kneader.
  • an internal kneader such as an open roll mixer, a Banbury mixer, or a kneader.
  • a vulcanizing agent and a vulcanization accelerator are added to the resulting kneaded product, kneaded, molded, and vulcanized to obtain a rubber product.
  • the temperature at which each component is kneaded using the internal kneader is not particularly limited, it is, for example, 150 to 170°C.
  • the kneading time is also not particularly limited, but is, for example, 3 to 10 minutes.
  • the vulcanization temperature is not particularly limited, but is, for example, 150 to 200°C.
  • Vulcanization time is also not particularly limited, but is, for example, 10 to 30 minutes.
  • the rubber composition according to one embodiment of the present invention has low rolling resistance. This is believed to be due to the improved dispersibility of silica contained in the rubber composition.
  • the rolling resistance is low, so the fuel efficiency is improved.
  • wet grip properties and tire strength are also good.
  • the rubber composition (kneaded product) according to one embodiment of the present invention is used for tire members of pneumatic tires such as tire treads, undertreads, carcasses, sidewalls, and bead portions, belts such as conveyor belts, and anti-vibration rubbers. It can be suitably used for production. Among others, the rubber composition according to one embodiment of the present invention can reduce rolling resistance while maintaining wet grip properties, and therefore can be very suitably used for tire treads.
  • a tire additive according to one aspect of the present invention includes an alkylarylsulfonic acid metal salt.
  • a rubber composition obtained by blending the tire additive together with the rubber component, the silica, and the silane coupling agent has reduced rolling resistance while maintaining wet grip properties.
  • the alkylaryl sulfonic acid metal salt is the one described in [1. rubber composition], so the description is omitted here.
  • a tire according to one embodiment of the present invention may be a pneumatic tire and is manufactured by a conventional method using the rubber composition described above.
  • a tire according to one embodiment of the present invention is manufactured by, for example, extruding a rubber composition containing a vulcanizing agent and a vulcanization accelerator according to the shape of the tread, bonding it with other members on a tire molding machine, and molding it. It is produced by preparing an unvulcanized tire by heating and pressurizing it in a vulcanizer.
  • the manufactured tire has low rolling resistance, which improves fuel efficiency. It also has good wet grip properties and tire strength.
  • One embodiment of the present invention may have the following configuration. [1] (a) a rubber component containing at least one selected from a diene-based synthetic rubber and a natural rubber, (b) silica, (c) an alkylarylsulfonic acid metal salt, and (d) a silane coupling agent wherein the content of (b) silica is 20 to 120 parts by weight per 100 parts by weight of the (a) rubber component.
  • the above-mentioned (c) alkylarylsulfonic acid metal salt is at least one metal salt selected from the group consisting of Na, Ca, and Ba, according to any one of [1] to [4]. rubber composition.
  • a tire comprising the rubber composition according to any one of [1] to [6].
  • a tire additive containing an alkylarylsulfonic acid metal salt [8] A tire additive containing an alkylarylsulfonic acid metal salt.
  • 60°C tanD was measured according to the method described in JIS K6394 using a viscoelasticity measuring machine (manufactured by Ueshima Seisakusho Co., Ltd., "VR7120"). Measurement conditions and evaluation are as follows.
  • the 60° C. tanD of each test piece is indexed with the 60° C. tanD of Comparative Example 1 as 100 for easy comparison with Comparative Example 1 of each example.
  • 60°C tanD is an index of rolling resistance, and the smaller the value of 60°C tanD, the smaller the rolling resistance.
  • Measurement conditions ⁇ Vibration frequency: 10Hz ⁇ Vibration strain amplitude: 10 ⁇ 2% ⁇ Distance between chucks: 20 mm Evaluation ⁇ : Less than 90 ⁇ : 90 or more and less than 100 ⁇ : 100 or more and less than 110 ⁇ : 110 or more ⁇ wet grip>
  • the 0° C. tanD was measured on the test piece described above to evaluate the wet grip properties.
  • 0°C tanD was measured according to the method described in JIS K6394 using a viscoelasticity measuring machine (manufactured by Ueshima Seisakusho Co., Ltd., "VR7120"). Measurement conditions and evaluation are as follows.
  • the 0°C tanD of each test piece is represented by indexing the 0°C tanD of Comparative Example 1 as 100.
  • 0°C tanD is an index of wet grip performance, and the larger the numerical value of 0°C tanD, the higher the wet grip performance, that is, the shorter the braking stopping distance.
  • the tensile stress and elongation of each test piece are indexed with the tensile stress and elongation of Comparative Example 1 set to 100, respectively.
  • Tensile stress and elongation are indicators of the strength of a rubber composition.
  • the dynamic storage elastic modulus E1 was measured on the test piece for viscoelasticity measurement described above to evaluate the dispersibility of silica.
  • the dynamic storage modulus E1 was measured according to the method described in JIS K6394 using a viscoelasticity measuring machine (manufactured by Ueshima Seisakusho Co., Ltd., "VR7120").
  • the measurement conditions are as follows.
  • ⁇ E1 is an index of dispersibility of silica, and the smaller the numerical value of ⁇ E1, the better the dispersibility of silica.
  • Measurement conditions ⁇ Vibration frequency: 10Hz ⁇ Excitation strain amplitude: 10 ⁇ 5% ⁇ Distance between chucks: 20mm Evaluation was performed by obtaining ⁇ E1 from the following formula.
  • ⁇ E1 E1max-E1min
  • E1max maximum value of E1
  • E1min minimum value of E1
  • Example 1 As shown in Table 1 below, SBR (manufactured by JSR Corporation, HPR355): 80 parts by weight, BR (manufactured by JSR Corporation, BR01): 20 parts by weight, silica (manufactured by Tosoh Silica Corporation, Nipsil AQ): 80 parts by weight Part, antiozonant (manufactured by Seiko Chemical Co., Ltd., Ozonon (registered trademark) 6C): 2 parts by weight, zinc white (manufactured by Seido Chemical Industry Co., Ltd., zinc white 2 types): 2 parts by weight, stearic acid: 2 Parts by weight, plasticizer (manufactured by ENEOS, Aromax (registered trademark) 3) TDAE (Treated Distillate Aromatic Extracts): 22.2 parts by weight, metal salt of alkylarylsulfonic acid (MORESCO Corporation Thruhole 600 (manufactured by Evonik): 0.8 parts by
  • Example 2 to 5 Each component was blended according to the composition shown in Table 1, and rubber compositions of Examples 2 to 5 were obtained in the same manner as in Example 1. In Examples 2 to 5, the compounding ratio of the alkylarylsulfonic acid metal salt and the silane coupling agent was changed from Example 1.
  • Comparative Example 1 A rubber composition of Comparative Example 1 was obtained in the same manner as in Example 1, except that 8 parts by weight of a silane coupling agent (Si69, manufactured by Evonik) was added without blending an alkylarylsulfonic acid metal salt. .
  • a silane coupling agent Si69, manufactured by Evonik
  • Comparative Example 2 The procedure was the same as in Example 1, except that a silane coupling agent was not blended, and 8 parts by weight of an alkylarylsulfonic acid metal salt (Suruhol 600, manufactured by MORESCO Co., Ltd.) (as an alkylarylsulfonic acid metal salt) was blended. Thus, a rubber composition of Comparative Example 2 was obtained.
  • an alkylarylsulfonic acid metal salt (Suruhol 600, manufactured by MORESCO Co., Ltd.) (as an alkylarylsulfonic acid metal salt)
  • Table 1 shows that the rubber compositions of Examples 1 to 5 containing both the alkylarylsulfonic acid metal salt and the silane coupling agent have reduced rolling resistance and excellent wet grip properties.
  • the rubber composition of Comparative Example 1 which does not contain an alkylarylsulfonic acid metal salt and contains a silane coupling agent, does not sufficiently reduce the rolling resistance.
  • the rubber composition of Comparative Example 2 which does not contain a silane coupling agent and contains an alkylarylsulfonic acid metal salt, is inferior in wet grip properties.
  • a rubber composition containing only one of an alkylarylsulfonic acid metal salt and a silane coupling agent cannot achieve both reduction in rolling resistance and maintenance of wet grip properties.
  • the rubber compositions of Examples 1 to 5 are excellent in tensile stress and elongation, indicating that they maintain high strength.
  • the weight ratio of the alkylarylsulfonic acid metal salt and the silane coupling agent is 1:9 to 7:3, the wet grip property and tensile stress are superior to when the weight ratio is 9:1.
  • said weight ratio is preferably less than 9:1, more preferably said weight ratio is between 1:9 and 7:3.
  • a rubber sheet produced using an unvulcanized rubber composition containing the vulcanizing agent and vulcanization accelerator of Example 3 and Comparative Example 1 was produced in the shape of a tread, and laminated with other members to produce a green tire. was made. Next, the raw tire was press-molded in a vulcanizer at 170° C. for 20 minutes to produce a tire of size 195/65R15.
  • the rubber composition according to the present invention can be suitably used for tire members of pneumatic tires such as tire treads, undertreads, carcasses, sidewalls and bead portions, belts such as conveyor belts, and rubber products such as anti-vibration rubbers. can.

Abstract

Provided is a rubber composition which attains reduced rolling resistance while maintaining grip performance on wet road surfaces. The rubber composition comprises (a) a rubber component including at least one rubber selected from among diene-based synthetic rubbers and natural rubber, (b) silica, (c) a metal salt of an alkylarylsulfonic acid, and (d) a silane coupling agent, wherein the content of the silica (b) is 20-120 parts by weight per 100 parts by weight of the rubber component (a).

Description

ゴム組成物、タイヤ、及びタイヤ用添加剤Rubber composition, tire, and tire additive
 本発明はゴム組成物、タイヤ、及びタイヤ用添加剤に関する。 The present invention relates to rubber compositions, tires, and tire additives.
 近年、タイヤの転がり抵抗を低下させて、燃費性能を向上させることが要求されている。この目的のために、タイヤ用ゴム組成物の転がり抵抗低減と湿潤路面でのグリップ性とを両立させる充填剤として、タイヤ用ゴム組成物にシリカを配合することが多くなっている。例えば、特許文献1には、ゴム組成物へのシリカの分散性を向上するために、ゴム成分、シリカを含む白色充填剤、シランカップリング剤、及びモノアルカノールアミド等の化合物を含むゴム組成物が開示されている。 In recent years, there has been a demand for lowering the rolling resistance of tires to improve fuel efficiency. For this purpose, silica is often blended into tire rubber compositions as a filler that achieves both a reduction in rolling resistance of tire rubber compositions and good grip on wet road surfaces. For example, Patent Document 1 discloses a rubber composition containing a rubber component, a white filler containing silica, a silane coupling agent, and a compound such as monoalkanolamide in order to improve the dispersibility of silica in the rubber composition. is disclosed.
日本国特開2014-167055号公報Japanese Patent Application Laid-Open No. 2014-167055
 しかしながら、特許文献1のゴム組成物では、シリカの分散性が未だ不十分であり、ゴム組成物の転がり抵抗を低減させるという観点からさらなる改善の余地があった。 However, in the rubber composition of Patent Document 1, the dispersibility of silica is still insufficient, and there is room for further improvement from the viewpoint of reducing the rolling resistance of the rubber composition.
 本発明の一態様は、湿潤路面でのグリップ性を維持しつつ転がり抵抗が低減されたゴム組成物、及びタイヤ、並びに、これらを実現することが可能なタイヤ用添加剤を提供することを目的とする。 An object of one aspect of the present invention is to provide a rubber composition and a tire in which rolling resistance is reduced while maintaining grip on wet road surfaces, and a tire additive capable of realizing these. and
 本発明者らは、前記課題を解決するために鋭意検討した。その結果、ゴム成分、シリカ、及びシランカップリング剤に加えてアルキルアリールスルホン酸金属塩を配合することにより、得られるゴム組成物の湿潤路面でのグリップ性を維持しつつ転がり抵抗を低減することができることを見出し、本発明を完成させるに至った。 The inventors diligently studied to solve the above problems. As a result, by blending the alkylarylsulfonic acid metal salt in addition to the rubber component, silica, and silane coupling agent, it is possible to reduce the rolling resistance while maintaining the grip on wet road surfaces of the resulting rubber composition. found that it can be done, and came to complete the present invention.
 すなわち本発明の一実施形態は、以下の構成を含む。
 〔1〕(a)ジエン系合成ゴム及び天然ゴムから選択される少なくとも1種を含むゴム成分と、(b)シリカと、(c)アルキルアリールスルホン酸金属塩と、(d)シランカップリング剤とを含み、前記(b)シリカの含有量は、前記(a)ゴム成分100重量部に対し、20重量部~120重量部である、ゴム組成物。
That is, one embodiment of the present invention includes the following configurations.
[1] (a) a rubber component containing at least one selected from a diene-based synthetic rubber and a natural rubber, (b) silica, (c) an alkylarylsulfonic acid metal salt, and (d) a silane coupling agent wherein the content of (b) silica is 20 to 120 parts by weight per 100 parts by weight of the (a) rubber component.
 本発明の一態様のゴム組成物によれば、湿潤路面でのグリップ性を維持しつつ転がり抵抗が低減されたゴム組成物、及びタイヤ、並びに、これらを実現することが可能なタイヤ用添加剤を提供することができる。 According to the rubber composition of one aspect of the present invention, a rubber composition and a tire in which rolling resistance is reduced while maintaining grip on wet road surfaces, and a tire additive capable of realizing these can be provided.
 以下、本発明の実施の形態について詳細に説明する。ただし、本発明はこれに限定されるものではなく、記述した範囲内で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意図する。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to this, and various modifications are possible within the scope described, and the present invention also includes embodiments obtained by appropriately combining technical means disclosed in different embodiments. included in the technical scope of In this specification, unless otherwise specified, "A to B" representing a numerical range intends "A or more and B or less".
 〔1.ゴム組成物〕
 本発明の一実施形態に係るゴム組成物は、(a)ジエン系合成ゴム及び天然ゴムから選択される少なくとも1種を含むゴム成分と、(b)シリカと、(c)アルキルアリールスルホン酸金属塩と、(d)シランカップリング剤とを含む。前記の構成により、得られるゴム組成物の湿潤路面でのグリップ性(以下、本明細書において、「ウエットグリップ性」と称することがある。)を維持しつつ転がり抵抗を低減することができる。
[1. Rubber composition]
A rubber composition according to one embodiment of the present invention comprises (a) a rubber component containing at least one selected from diene-based synthetic rubbers and natural rubbers, (b) silica, and (c) a metal alkylarylsulfonate. It contains a salt and (d) a silane coupling agent. With the above configuration, it is possible to reduce the rolling resistance while maintaining the grip properties of the obtained rubber composition on wet road surfaces (hereinafter sometimes referred to as "wet grip properties" in this specification).
 (1-1.(a)ゴム成分)
 前記ゴム成分は、ジエン系合成ゴム及び天然ゴムから選択される少なくとも1種を含む。前記ジエン系合成ゴムとしては、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン‐ブタジエン共重合体ゴム(SBR)、ブチルゴム(IIR)、エチレン‐プロピレン共重合体ゴム(EPR、EPDM)、スチレン‐イソプレン‐ブタジエン共重合体ゴム(SIBR)、アクリロニトリル‐ブタジエン共重合体ゴム(NBR)、クロロプレンゴム(CR)、アクリルゴム(ACR)、ウレタンゴム(PUR)等が挙げられる。これらのジエン系合成ゴム及び天然ゴムは、一種を単独で用いてもよく、二種以上をブレンドして用いてもよい。ゴム組成物をトラック等の大型車両のタイヤに用いる場合、天然ゴムを多く配合することが好ましい。
(1-1. (a) rubber component)
The rubber component includes at least one selected from diene-based synthetic rubber and natural rubber. Examples of the diene synthetic rubber include polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), butyl rubber (IIR), ethylene-propylene copolymer rubber (EPR, EPDM), Styrene-isoprene-butadiene copolymer rubber (SIBR), acrylonitrile-butadiene copolymer rubber (NBR), chloroprene rubber (CR), acrylic rubber (ACR), urethane rubber (PUR) and the like. These diene-based synthetic rubbers and natural rubbers may be used singly or in combination of two or more. When the rubber composition is used for tires of large vehicles such as trucks, it is preferable to blend a large amount of natural rubber.
 (1-2.(b)シリカ)
 前記シリカは、特に限定されるものではなく、通常のゴム組成物に使用されているものを使用でき、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ、及び沈殿法シリカ等を使用することができる。前記シリカの含有量は、前記ゴム成分100重量部に対し、20重量部~120重量部である。前記シリカの含有量が前記ゴム成分100重量部に対し、20重量部以上である場合、ウエットグリップ性が良好であり、120重量部以下である場合、耐摩耗性が良好である。前記シリカの含有量は、前記ゴム成分100重量部に対し、40重量部以上であることが好ましく、60重量部以上であることがより好ましく、110重量部以下であることが好ましく、100重量部以下であることがより好ましい。
(1-2. (b) silica)
The silica is not particularly limited, and those used in ordinary rubber compositions can be used, including wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), colloidal silica, and precipitated silica. etc. can be used. The silica content is 20 to 120 parts by weight with respect to 100 parts by weight of the rubber component. When the silica content is 20 parts by weight or more relative to 100 parts by weight of the rubber component, the wet grip property is good, and when it is 120 parts by weight or less, the abrasion resistance is good. The content of the silica is preferably 40 parts by weight or more, more preferably 60 parts by weight or more, and preferably 110 parts by weight or less, relative to 100 parts by weight of the rubber component. The following are more preferable.
 (1-3.(c)アルキルアリールスルホン酸金属塩)
 前記アルキルアリールスルホン酸金属塩は、合成アルキルアリールスルホン酸の金属塩、及び石油スルホン酸金属塩から選択される1種以上の化合物である。前記石油スルホン酸は、特に限定されるものではないが、例えば石油精製の際に生成する潤滑油の芳香族成分と硫酸との反応物として一般的に知られている炭化水素のスルホン化物の混合物でありうる。
(1-3. (c) alkylarylsulfonic acid metal salt)
The alkylarylsulfonic acid metal salt is one or more compounds selected from synthetic alkylarylsulfonic acid metal salts and petroleum sulfonic acid metal salts. The petroleum sulfonic acid is not particularly limited, but for example, a mixture of sulfonated hydrocarbons generally known as a reaction product of sulfuric acid and an aromatic component of lubricating oil produced during petroleum refining. can be
 前記アルキルアリールスルホン酸としては、石油留分に由来する前記石油スルホン酸、アルキル化芳香族化合物のスルホン化により製造される合成アルキルアリールスルホン酸、又は、前記石油スルホン酸と前記合成アルキルアリールスルホン酸の混合物を挙げることができる。 The alkylarylsulfonic acid includes the petroleum sulfonic acid derived from a petroleum distillate, a synthetic alkylarylsulfonic acid produced by sulfonating an alkylated aromatic compound, or the petroleum sulfonic acid and the synthetic alkylarylsulfonic acid. can be mentioned.
 前記アルキルアリールスルホン酸は、アルキル化芳香族化合物がスルホン化されたものであれば特に限定されるものではない。前記アルキル化芳香族化合物としては、例えば重量平均分子量が、300~1000、より好ましくは330~900、さらに好ましくは350~800のアルキル化芳香族化合物を挙げることができる。前記アルキルアリールスルホン酸のアルキル基は、直鎖状であっても分岐状、環状、又はこれらの組み合わせであってもよい。前記芳香族化合物も特に限定されるものではなく、例えば、ベンゼン、ナフタレン、インダン、ビフェニル、及びフェニルエーテル等を挙げることができる。中でも、前記芳香族化合物は、ベンゼン、ナフタレン、及びフェニルエーテル等であることがより好ましく、ベンゼン、及びナフタレン等であることがさらに好ましい。 The alkylarylsulfonic acid is not particularly limited as long as it is a sulfonated alkylated aromatic compound. Examples of the alkylated aromatic compound include alkylated aromatic compounds having a weight average molecular weight of 300 to 1,000, preferably 330 to 900, and even more preferably 350 to 800. The alkyl groups of the alkylarylsulfonic acid may be linear, branched, cyclic, or combinations thereof. The aromatic compound is also not particularly limited, and examples thereof include benzene, naphthalene, indane, biphenyl, and phenyl ether. Among them, the aromatic compound is more preferably benzene, naphthalene, phenyl ether, and the like, and more preferably benzene, naphthalene, and the like.
 アルキル化芳香族化合物の重量平均分子量は、ゲル透過クロマトグラフィー(GPC)により測定される標準ポリスチレン換算での重量平均分子量であり、例えば以下の測定条件で測定されたものである。
・装置:EXTREMA(JASCO)
・カラム:KF-802(8.0mm×300mm)×2本
・試料溶液、試料濃度:クロロホルム5.0mlに対し、試料0.01g
・流速:1.0ml/min
・測定温度:40℃
 前記アルキルアリールスルホン酸のより具体的な一例としては、例えば、ジドデシルベンゼンスルホン酸、ジウンデシルベンゼンスルホン酸、ジトリデシルベンゼンスルホン酸、ジテトラデシルベンゼンスルホン酸、及びジノニルナフタレンスルホン酸等を挙げることができる。
The weight-average molecular weight of the alkylated aromatic compound is the weight-average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC), and is measured under the following measurement conditions, for example.
・Equipment: EXTREMA (JASCO)
・ Column: KF-802 (8.0 mm × 300 mm) × 2 ・ Sample solution, sample concentration: 0.01 g of sample per 5.0 ml of chloroform
・Flow rate: 1.0 ml/min
・Measurement temperature: 40°C
More specific examples of the alkylarylsulfonic acid include didodecylbenzenesulfonic acid, diundecylbenzenesulfonic acid, ditridecylbenzenesulfonic acid, ditetradecylbenzenesulfonic acid, and dinonylnaphthalenesulfonic acid. be able to.
 アルキルアリールスルホン酸金属塩を構成する金属としては、これに限定されるものではないが、例えば、アルカリ金属、又はアルカリ土類金属であることがより好ましい。かかる金属としては、例えば、Li、Na、K、Mg、Ca、Sr、Ba、及びZn等からなる群から選択される少なくとも1種の金属を挙げることができる。中でも前記金属は、Na、Ca、及びBaからなる群から選択される少なくとも1種の金属であることがより好ましい。 The metal constituting the alkylarylsulfonic acid metal salt is not limited to this, but is more preferably, for example, an alkali metal or an alkaline earth metal. Examples of such metals include at least one metal selected from the group consisting of Li, Na, K, Mg, Ca, Sr, Ba, Zn, and the like. Among them, the metal is more preferably at least one metal selected from the group consisting of Na, Ca and Ba.
 前記アルキルアリールスルホン酸金属塩は油溶性であることがより好ましい。ここで、油溶性とは、25℃において、鉱物油に好ましくは30重量%以上、より好ましくは60重量%以上溶解することをいう。前記アルキルアリールスルホン酸金属塩が油溶性であることにより、分散媒であるゴムに混ざりやすく、シリカの分散性をより好適に向上させることができるため好ましい。それゆえ、得られるゴム組成物の湿潤路面でのグリップ性を維持しつつ転がり抵抗を低減することができるという本発明の効果をより好適に得ることができる。 The alkylarylsulfonic acid metal salt is more preferably oil-soluble. Here, the term “oil-soluble” means that the compound dissolves in mineral oil at 25° C. in an amount of preferably 30% by weight or more, more preferably 60% by weight or more. Since the alkylarylsulfonic acid metal salt is oil-soluble, it is easily mixed with rubber, which is a dispersion medium, and the dispersibility of silica can be more suitably improved, which is preferable. Therefore, the effect of the present invention that the rolling resistance can be reduced while maintaining the grip properties of the obtained rubber composition on wet road surfaces can be obtained more preferably.
 前記アルキルアリールスルホン酸金属塩のアルキルアリールスルホン酸基の重量平均分子量は、好ましくは380~1080であり、より好ましくは410~980であり、さらに好ましくは430~880である。前記アルキルアリールスルホン酸金属塩の重量平均分子量が380以上である場合、シリカの分散性をより好適に向上させることができるため、好ましい。それゆえ、得られるゴム組成物の湿潤路面でのグリップ性を維持しつつ転がり抵抗を低減することができるという本発明の効果がより好適に奏される。なお、ここで、前記アルキルアリールスルホン酸金属塩の重量平均分子量は、ASTM D 3712:2005による油溶性石油スルホネートの分析の標準試験方法に準拠して測定された値である。 The weight average molecular weight of the alkylarylsulfonic acid group of the alkylarylsulfonic acid metal salt is preferably 380-1080, more preferably 410-980, and even more preferably 430-880. When the weight-average molecular weight of the metal salt of alkylarylsulfonate is 380 or more, the dispersibility of silica can be more suitably improved, which is preferable. Therefore, the effect of the present invention that the rolling resistance can be reduced while maintaining the grip properties of the resulting rubber composition on wet road surfaces can be achieved more favorably. Here, the weight average molecular weight of the alkylarylsulfonic acid metal salt is a value measured according to the standard test method for analysis of oil-soluble petroleum sulfonates according to ASTM D 3712:2005.
 前記アルキルアリールスルホン酸金属塩としては市販のものを使用することもできる。合成アルキルアリールスルホン酸の金属塩としては、例えば、モレスコアンバーSN-60(株式会社MORESCO製)、石油スルホン酸金属塩としては、例えば、スルホール(登録商標)500、スルホール600、CA-45N(株式会社MORESCO製)等を挙げることができる。 A commercially available product can also be used as the alkylarylsulfonic acid metal salt. Metal salts of synthetic alkylarylsulfonic acids include, for example, MORESCO Amber SN-60 (manufactured by MORESCO Co., Ltd.), and metal salts of petroleum sulfonic acids include, for example, Throughhol (registered trademark) 500, Throughhole 600, CA-45N ( manufactured by MORESCO Corporation) and the like.
 (1-4.(d)シランカップリング剤)
 前記シランカップリング剤としては、特に限定されるものではないが、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-ニトロプロピルトリメトキシラン、3-ニトロプロピルトリエトキシシラン、3-クロロプロピルメトキシシラン、3-クロロプロピルトリエトキシシラン、2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、3-ニトロプロピルジメトキシメチルシラン、3-クロロプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾールテトラスルフィド、並びに、「NXT(登録商標) Silane」(化学名:3-オクタノイルチオプロピルトリメトキシシラン、Momentive Performance Material社製)、「NXT Low-V Silane」(Momentive Performance Materials社製)、「NXT Ultra Low-V Silane」(Momentive Performance Materials社製)、及び「NXT-Z」(Momentive Performance Materials社製)等のシランカップリング剤等の少なくとも1種が挙げられる。
(1-4. (d) silane coupling agent)
Examples of the silane coupling agent include, but are not limited to, bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)trisulfide, bis(3-triethoxysilyl) propyl) disulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3- Mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-nitropropyltrimethoxysilane, 3-nitropropyltriethoxysilane, 3-chloropropylmethoxysilane, 3-chloropropyltriethoxysilane Ethoxysilane, 2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyl Tetrasulfide, 2-triethoxysilylethyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropyl methacrylate mono sulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis(3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, 3-nitropropyldimethoxymethylsilane, 3-chloropropyldimethoxymethylsilane, dimethoxy Methylsilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, dimethoxymethylsilylpropylbenzothiazole tetrasulfide, and "NXT® Silane" (chemical name: 3-octanoylthiopropyltrimethoxysilane, Momentive Performance Material (manufactured by Momentive Performance Materials), “NXT Ultra Low-V Silane” (manufactured by Momentive Performance Materials), “NXT Ultra Low-V Silane” (manufactured by Momentive Performance Materials (manufactured by Momentive Performance Materials), and at least one silane coupling agent such as "NXT-Z" (manufactured by Momentive Performance Materials).
 前記(c)アルキルアリールスルホン酸金属塩と前記(d)シランカップリング剤とは、(b)シリカ100重量部に対し、合計で、好ましくは1重量部~20重量部含まれる。(b)シリカ100重量部に対する、前記(c)アルキルアリールスルホン酸金属塩と前記(d)シランカップリング剤との合計含有量は、より好ましくは3重量部以上、さらに好ましくは5重量部以上であり、より好ましくは12重量部以下、さらに好ましくは10重量部以下である。 The (c) alkylarylsulfonic acid metal salt and the (d) silane coupling agent are contained in a total amount of preferably 1 to 20 parts by weight with respect to 100 parts by weight of silica (b). The total content of (c) the alkylarylsulfonic acid metal salt and (d) the silane coupling agent is more preferably 3 parts by weight or more, more preferably 5 parts by weight or more, relative to 100 parts by weight of (b) silica. , more preferably 12 parts by weight or less, and still more preferably 10 parts by weight or less.
 前記(c)アルキルアリールスルホン酸金属塩と前記(d)シランカップリング剤とが、(b)シリカ100重量部に対し、合計で、1重量部~20重量部含まれる場合、ゴム組成物のウエットグリップ性を維持しつつ転がり抵抗を低減することができるため、好ましい。ここで、前記(c)アルキルアリールスルホン酸金属塩の含有量は、アルキルアリールスルホン酸金属塩の固形分としての含有量を意図する。 When the (c) alkylarylsulfonic acid metal salt and the (d) silane coupling agent are contained in a total of 1 to 20 parts by weight with respect to 100 parts by weight of the (b) silica, It is preferable because it can reduce rolling resistance while maintaining wet grip properties. Here, the content of the (c) metal alkylarylsulfonate is intended to be the content of the metal alkylarylsulfonate as a solid content.
 (c)アルキルアリールスルホン酸金属塩と(d)シランカップリング剤との重量比率は、ゴム組成物の湿潤路面でのグリップ性を維持しつつ転がり抵抗をより好適に低減することができるという観点から、1:9~9:1であることが好ましいが、これに限定されるものではない。(c)アルキルアリールスルホン酸金属塩と(d)シランカップリング剤との重量比率は、さらにウエットグリップ性及び引張応力により優れたゴム組成物を得ることができるという観点から1:9~7:3であることがより好ましい。(c)アルキルアリールスルホン酸金属塩と(d)シランカップリング剤との重量比率は、3:7~7:3であることがさらに好ましい。 The weight ratio of (c) the alkylarylsulfonic acid metal salt and (d) the silane coupling agent is from the viewpoint that the rolling resistance can be more suitably reduced while maintaining the grip of the rubber composition on wet road surfaces. Therefore, the ratio is preferably 1:9 to 9:1, but is not limited thereto. The weight ratio of (c) the alkylarylsulfonic acid metal salt and (d) the silane coupling agent is 1:9 to 7: from the viewpoint that a rubber composition having excellent wet grip properties and tensile stress can be obtained. 3 is more preferred. More preferably, the weight ratio of (c) the alkylarylsulfonic acid metal salt and (d) the silane coupling agent is 3:7 to 7:3.
 前記(c)アルキルアリールスルホン酸金属塩は、(b)シリカ100重量部に対し、好ましくは1重量部~9重量部、より好ましくは1重量部~7重量部、さらに好ましくは3重量部~7重量部含まれる。前記(d)シランカップリング剤は、(b)シリカ100重量部に対し、好ましくは1重量部~9重量部、より好ましくは3重量部~9重量部、さらに好ましくは3重量部~7重量部含まれる。 The (c) alkylarylsulfonic acid metal salt is preferably 1 part by weight to 9 parts by weight, more preferably 1 part by weight to 7 parts by weight, and still more preferably 3 parts by weight to 100 parts by weight of silica (b). Contains 7 parts by weight. The (d) silane coupling agent is preferably 1 part by weight to 9 parts by weight, more preferably 3 parts by weight to 9 parts by weight, still more preferably 3 parts by weight to 7 parts by weight, relative to 100 parts by weight of silica (b). part included.
 前記(c)アルキルアリールスルホン酸金属塩は、(a)ゴム成分100重量部に対し、0.8重量部~7.2重量部であることが好ましく、0.8重量部~5.6重量部であることがより好ましい。 The (c) alkylarylsulfonic acid metal salt is preferably 0.8 to 7.2 parts by weight, more preferably 0.8 to 5.6 parts by weight, per 100 parts by weight of the rubber component (a). Part is more preferred.
 前記(d)シランカップリング剤は、(a)ゴム成分100重量部に対し、0.8重量部~7.2重量部であることが好ましく、2.4重量部~7.2重量部であることがより好ましい。 The (d) silane coupling agent is preferably 0.8 to 7.2 parts by weight, preferably 2.4 to 7.2 parts by weight, per 100 parts by weight of the rubber component (a). It is more preferable to have
 (1-5.その他の配合剤)
 本発明の一実施形態に係るゴム組成物には、前述の成分以外にも、軟化剤、ワックス、加工助剤、ステアリン酸、酸化亜鉛、老化防止剤,加硫剤、加硫促進剤、樹脂類、オイル類及び加硫遅延剤等を適宜配合することができる。
(1-5. Other compounding agents)
In addition to the above-described components, the rubber composition according to one embodiment of the present invention includes softeners, waxes, processing aids, stearic acid, zinc oxide, anti-aging agents, vulcanizing agents, vulcanization accelerators, and resins. Oils, vulcanization retarders, etc. can be appropriately added.
 前記加硫剤としては、これに限定されるものではないが、硫黄が好適に用いられる。硫黄としては、粉末硫黄、油処理硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄等が挙げられる。加硫剤は、ゴム成分100重量部に対し、0.1重量部~5重量部配合することが好ましい。 Sulfur is preferably used as the vulcanizing agent, although it is not limited to this. Sulfur includes powdered sulfur, oil treated sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur and the like. The vulcanizing agent is preferably blended in an amount of 0.1 to 5 parts by weight per 100 parts by weight of the rubber component.
 前記加硫促進剤としては、例えばスルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド-アミン系若しくはアルデヒド-アンモニア系、イミダゾリン系、又はキサンテート系加硫促進剤等が挙げられる。これらは、1種以上を用いることができる。加硫促進剤は、ゴム成分100重量部に対し、1重量部~8重量部配合することが好ましい。 Examples of the vulcanization accelerator include sulfenamide-based, thiazole-based, thiuram-based, thiourea-based, guanidine-based, dithiocarbamic acid-based, aldehyde-amine-based or aldehyde-ammonia-based, imidazoline-based, or xanthate-based vulcanization accelerators. etc. One or more of these can be used. The vulcanization accelerator is preferably blended in an amount of 1 to 8 parts by weight per 100 parts by weight of the rubber component.
 (1-6.ゴム組成物)
 本発明の一実施形態に係るゴム組成物は、例えば、前記ゴム成分と、前記シリカと、前記アルキルアリールスルホン酸金属塩と、前記シランカップリング剤と、必要に応じて、前記加硫剤及び加硫促進剤以外の配合剤とを混練した混練物であってもよい。また、当該混錬物に、加硫剤及び加硫促進剤を配合して加硫することにより、製造して得られた製品であってもよい。
(1-6. Rubber composition)
The rubber composition according to one embodiment of the present invention includes, for example, the rubber component, the silica, the alkylarylsulfonic acid metal salt, the silane coupling agent, and, if necessary, the vulcanizing agent and A kneaded product obtained by kneading compounding agents other than the vulcanization accelerator may also be used. Alternatively, it may be a product obtained by blending the kneaded material with a vulcanizing agent and a vulcanization accelerator and vulcanizing the kneaded material.
 本発明の一実施形態に係るゴム組成物(製品)の製造は、より具体的には、例えば、まず、前記ゴム成分と、前記シリカと、前記アルキルアリールスルホン酸金属塩と、前記シランカップリング剤と、必要に応じて、前記加硫剤及び加硫促進剤以外の配合剤とをオープンロール、バンバリーミキサー,ニーダー等の密閉式混錬機を用いて混練する。得られた混錬物に、さらに加硫剤及び加硫促進剤を配合し、混錬して成形し、加硫することにより、ゴム製品が得られる。 More specifically, the production of the rubber composition (product) according to one embodiment of the present invention includes, for example, first, the rubber component, the silica, the alkylarylsulfonic acid metal salt, and the silane coupling and, if necessary, compounding agents other than the vulcanizing agent and vulcanization accelerator are kneaded using an internal kneader such as an open roll mixer, a Banbury mixer, or a kneader. A vulcanizing agent and a vulcanization accelerator are added to the resulting kneaded product, kneaded, molded, and vulcanized to obtain a rubber product.
 前記密閉式混錬機を用いて各成分を混練する温度は特に限定されるものではないが、例えば、150~170℃である。混練時間も特に限定されるものではないが、例えば、3~10分間である。また、加硫するときの温度も特に限定されるものではないが、例えば、150~200℃である。加硫の時間も特に限定されるものではないが、例えば、10~30分間である。 Although the temperature at which each component is kneaded using the internal kneader is not particularly limited, it is, for example, 150 to 170°C. The kneading time is also not particularly limited, but is, for example, 3 to 10 minutes. Also, the vulcanization temperature is not particularly limited, but is, for example, 150 to 200°C. Vulcanization time is also not particularly limited, but is, for example, 10 to 30 minutes.
 本発明の一実施形態に係るゴム組成物は、転がり抵抗が低い。これは、ゴム組成物に含まれるシリカの分散性が向上したためであると考えられる。ゴム組成物がタイヤである場合、転がり抵抗が低いので、燃費性能が向上する。そして、ウエットグリップ性、タイヤ強度も良好である。 The rubber composition according to one embodiment of the present invention has low rolling resistance. This is believed to be due to the improved dispersibility of silica contained in the rubber composition. When the rubber composition is a tire, the rolling resistance is low, so the fuel efficiency is improved. In addition, wet grip properties and tire strength are also good.
 (1-7.用途)
 本発明の一実施形態に係るゴム組成物(混練物)は、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部分等の空気入りタイヤのタイヤ部材、コンベアベルト等のベルト,防振ゴム等の製造に好適に用いることができる。中でも、本発明の一実施形態に係るゴム組成物は、ウエットグリップ性を維持しつつ転がり抵抗を低減することができるため、タイヤトレッドに非常に好適に用いることができる。
(1-7. Applications)
The rubber composition (kneaded product) according to one embodiment of the present invention is used for tire members of pneumatic tires such as tire treads, undertreads, carcasses, sidewalls, and bead portions, belts such as conveyor belts, and anti-vibration rubbers. It can be suitably used for production. Among others, the rubber composition according to one embodiment of the present invention can reduce rolling resistance while maintaining wet grip properties, and therefore can be very suitably used for tire treads.
 〔2.タイヤ用添加剤〕
 本発明の一態様に係るタイヤ用添加剤は、アルキルアリールスルホン酸金属塩を含む。該タイヤ用添加剤を、前記ゴム成分と、前記シリカと、前記シランカップリング剤とともに配合してなるゴム組成物は、ウエットグリップ性が維持されつつ転がり抵抗が低減している。ここで、アルキルアリールスルホン酸金属塩は、〔1.ゴム組成物〕で説明したとおりであるのでここでは説明を省略する。
[2. Additives for tires]
A tire additive according to one aspect of the present invention includes an alkylarylsulfonic acid metal salt. A rubber composition obtained by blending the tire additive together with the rubber component, the silica, and the silane coupling agent has reduced rolling resistance while maintaining wet grip properties. Here, the alkylaryl sulfonic acid metal salt is the one described in [1. rubber composition], so the description is omitted here.
 〔3.タイヤ〕
 本発明の一実施形態に係るタイヤは、空気入りタイヤであり得、前述のゴム組成物を用いて通常の方法により製造される。本発明の一実施形態に係るタイヤは、例えば、加硫剤及び加硫促進剤を含むゴム組成物をトレッドの形状に合わせて押出加工し、タイヤ成型機上で他の部材とともに貼り合わせ、成型して未加硫のタイヤを作製し、加硫機中で加熱及び加圧することにより製造される。製造されたタイヤは転がり抵抗が低いので、低燃費性が向上する。そして、良好なウエットグリップ性、及びタイヤ強度も有する。
[3. tire〕
A tire according to one embodiment of the present invention may be a pneumatic tire and is manufactured by a conventional method using the rubber composition described above. A tire according to one embodiment of the present invention is manufactured by, for example, extruding a rubber composition containing a vulcanizing agent and a vulcanization accelerator according to the shape of the tread, bonding it with other members on a tire molding machine, and molding it. It is produced by preparing an unvulcanized tire by heating and pressurizing it in a vulcanizer. The manufactured tire has low rolling resistance, which improves fuel efficiency. It also has good wet grip properties and tire strength.
 本発明の一実施形態は、以下の構成であってよい。
 〔1〕(a)ジエン系合成ゴム及び天然ゴムから選択される少なくとも1種を含むゴム成分と、(b)シリカと、(c)アルキルアリールスルホン酸金属塩と、(d)シランカップリング剤とを含み、前記(b)シリカの含有量は、前記(a)ゴム成分100重量部に対し、20重量部~120重量部である、ゴム組成物。
One embodiment of the present invention may have the following configuration.
[1] (a) a rubber component containing at least one selected from a diene-based synthetic rubber and a natural rubber, (b) silica, (c) an alkylarylsulfonic acid metal salt, and (d) a silane coupling agent wherein the content of (b) silica is 20 to 120 parts by weight per 100 parts by weight of the (a) rubber component.
 〔2〕前記(c)アルキルアリールスルホン酸金属塩と前記(d)シランカップリング剤との重量比率は、1:9~9:1である、〔1〕に記載のゴム組成物。 [2] The rubber composition according to [1], wherein the weight ratio of (c) the alkylarylsulfonic acid metal salt and (d) the silane coupling agent is 1:9 to 9:1.
 〔3〕前記(b)シリカ100重量部に対し、前記(c)アルキルアリールスルホン酸金属塩と(d)シランカップリング剤とを、合計で1重量部~20重量部含む、〔1〕又は〔2〕のいずれかに記載のゴム組成物。 [3] A total of 1 to 20 parts by weight of the (c) alkylarylsulfonic acid metal salt and (d) the silane coupling agent with respect to 100 parts by weight of the (b) silica, [1] or [2] The rubber composition according to any one of [2].
 〔4〕前記(b)シリカ100重量部に対し、(c)アルキルアリールスルホン酸金属塩と(d)シランカップリング剤とを合計で5重量部~12重量部含む、〔3〕に記載のゴム組成物。 [4] The composition according to [3], wherein the total amount of (c) alkylarylsulfonic acid metal salt and (d) silane coupling agent is 5 to 12 parts by weight with respect to 100 parts by weight of silica (b). rubber composition.
 〔5〕前記(c)アルキルアリールスルホン酸金属塩は、Na、Ca、及びBaからなる群から選択される少なくとも1種の金属塩である、〔1〕~〔4〕のいずれかに記載のゴム組成物。 [5] The above-mentioned (c) alkylarylsulfonic acid metal salt is at least one metal salt selected from the group consisting of Na, Ca, and Ba, according to any one of [1] to [4]. rubber composition.
 〔6〕前記(c)アルキルアリールスルホン酸金属塩は油溶性である、〔1〕~〔5〕のいずれかに記載のゴム組成物。 [6] The rubber composition according to any one of [1] to [5], wherein (c) the alkylarylsulfonic acid metal salt is oil-soluble.
 〔7〕〔1〕~〔6〕のいずれかに記載のゴム組成物を含む、タイヤ。 [7] A tire comprising the rubber composition according to any one of [1] to [6].
 〔8〕アルキルアリールスルホン酸金属塩を含む、タイヤ用添加剤。 [8] A tire additive containing an alkylarylsulfonic acid metal salt.
 〔9〕〔8〕に記載のタイヤ用添加剤を含む、タイヤ。 [9] A tire containing the tire additive according to [8].
 以下、実施例および比較例によって本発明の一実施形態をより詳細に説明する。本発明は以下の実施例に限定されるものではない。 Hereinafter, one embodiment of the present invention will be described in more detail with examples and comparative examples. The invention is not limited to the following examples.
 [ゴム組成物の測定方法、及び評価方法]
<転がり抵抗>
 実施例1~5並びに比較例1及び2のゴム組成物について、粘弾性測定機(株式会社上島製作所製、「VR7120」)を用いて、JIS K6394に記載の方法に準じてtanδ(損失正接)を測定した。以下、tanδをtanDと表記する。実施例1~5並びに比較例1及び2のゴム組成物として、後述のようにして得られたゴムシートを幅4mm、長さ40mmの板状のテストピースに打ち抜き、60℃tanDを測定して、転がり抵抗の評価を行った。60℃tanDは、粘弾性測定機(株式会社上島製作所製、「VR7120」)を用いて、JIS K6394に記載の方法に準じて測定した。測定条件及び評価は、以下の通りである。各テストピースの60℃tanDは、各実施例の比較例1との比較を容易にするため、比較例1の60℃tanDを100として指数化して表している。60℃tanDは、転がり抵抗の指標であり、60℃tanDの数値が小さいほど、転がり抵抗が小さい。
測定条件
・加振周波数:10Hz
・加振歪振幅:10±2%
・チャック間距離:20mm
評価
 ◎:90未満
 ○:90以上100未満
 △:100以上110未満
 ×:110以上
<ウエットグリップ性>
 前述のテストピースに対し、0℃tanDを測定し、ウエットグリップ性を評価した。0℃tanDは、粘弾性測定機(株式会社上島製作所製、「VR7120」)を用いて、JIS K6394に記載の方法に準じて測定した。測定条件及び評価は、以下の通りである。各テストピースの0℃tanDは、比較例1の0℃tanDを100として指数化して表す。0℃tanDは、ウエットグリップ性の指標であり、0℃tanDの数値が大きいほど、ウエットグリップ性が高い、すなわち、制動停止距離が短い。
測定条件
・加振周波数:10Hz
・加振歪振幅:10±2%
・チャック間距離:20mm
評価
 ◎:90超
 ○:90以下80超
 △:80以下60超
 ×:60以下
<強度>
 実施例1~5並びに比較例1及び2のゴム組成物として、後述のようにして得られたゴムシートをJIS3号ダンベル状のテストピースに打ち抜き、引張応力及び伸び率をJISK6272に従って測定した。引張応力及び伸び率の評価は、以下の通りである。各テストピースの引張応力及び伸び率は、比較例1の引張応力及び伸び率を100としてそれぞれ指数化して表す。引張応力及び伸び率は、ゴム組成物の強度の指標である。
引張応力の評価
 ◎:100超
 ○:100以下80超
 △:80以下60超
 ×:60以下
伸び率の評価
 ◎:100超
 ○:100以下80超
 △:80以下60超
 ×:60以下
<分散性>
 前述の粘弾性測定用のテストピースに対し、動的貯蔵弾性率E1を測定し、シリカの分散性を評価した。動的貯蔵弾性率E1は、粘弾性測定機(株式会社上島製作所製、「VR7120」)を用いて、JIS K6394に記載の方法に準じて測定した。測定条件は、以下の通りである。ΔE1はシリカの分散性の指標であり、ΔE1の数値が小さいほどシリカの分散性が良い。
測定条件
・加振周波数:10Hz
・加振歪振幅:10±5%
・チャック間距離:20mm
 評価は、下記式によりΔE1を求めて行った。
 ΔE1=E1max-E1min
 ここで、E1max:E1の最大値
     E1min:E1の最小値
[Measurement method and evaluation method of rubber composition]
<Rolling resistance>
For the rubber compositions of Examples 1 to 5 and Comparative Examples 1 and 2, tan δ (loss tangent) was measured according to the method described in JIS K6394 using a viscoelasticity measuring machine (manufactured by Ueshima Seisakusho Co., Ltd., "VR7120"). was measured. Hereinafter, tan δ is written as tanD. As the rubber compositions of Examples 1 to 5 and Comparative Examples 1 and 2, rubber sheets obtained as described below were punched into plate-shaped test pieces having a width of 4 mm and a length of 40 mm, and 60° C. tanD was measured. , rolling resistance was evaluated. 60°C tanD was measured according to the method described in JIS K6394 using a viscoelasticity measuring machine (manufactured by Ueshima Seisakusho Co., Ltd., "VR7120"). Measurement conditions and evaluation are as follows. The 60° C. tanD of each test piece is indexed with the 60° C. tanD of Comparative Example 1 as 100 for easy comparison with Comparative Example 1 of each example. 60°C tanD is an index of rolling resistance, and the smaller the value of 60°C tanD, the smaller the rolling resistance.
Measurement conditions ・Vibration frequency: 10Hz
・Vibration strain amplitude: 10±2%
・Distance between chucks: 20 mm
Evaluation ◎: Less than 90 ○: 90 or more and less than 100 △: 100 or more and less than 110 ×: 110 or more <wet grip>
The 0° C. tanD was measured on the test piece described above to evaluate the wet grip properties. 0°C tanD was measured according to the method described in JIS K6394 using a viscoelasticity measuring machine (manufactured by Ueshima Seisakusho Co., Ltd., "VR7120"). Measurement conditions and evaluation are as follows. The 0°C tanD of each test piece is represented by indexing the 0°C tanD of Comparative Example 1 as 100. 0°C tanD is an index of wet grip performance, and the larger the numerical value of 0°C tanD, the higher the wet grip performance, that is, the shorter the braking stopping distance.
Measurement conditions ・Vibration frequency: 10Hz
・Excitation strain amplitude: 10±2%
・Distance between chucks: 20 mm
Evaluation ◎: More than 90 ○: 90 or less and more than 80 △: 80 or less and more than 60 ×: 60 or less <strength>
As the rubber compositions of Examples 1 to 5 and Comparative Examples 1 and 2, rubber sheets obtained as described below were punched into JIS No. 3 dumbbell-shaped test pieces, and tensile stress and elongation were measured according to JIS K6272. Evaluation of tensile stress and elongation is as follows. The tensile stress and elongation of each test piece are indexed with the tensile stress and elongation of Comparative Example 1 set to 100, respectively. Tensile stress and elongation are indicators of the strength of a rubber composition.
Evaluation of tensile stress ◎: More than 100 ○: 100 or less 80 △: 80 or less 60 ×: 60 or less Elongation rate evaluation ◎: 100 or less ○: 100 or less 80 △: 80 or less 60 ×: 60 or less <dispersion gender>
The dynamic storage elastic modulus E1 was measured on the test piece for viscoelasticity measurement described above to evaluate the dispersibility of silica. The dynamic storage modulus E1 was measured according to the method described in JIS K6394 using a viscoelasticity measuring machine (manufactured by Ueshima Seisakusho Co., Ltd., "VR7120"). The measurement conditions are as follows. ΔE1 is an index of dispersibility of silica, and the smaller the numerical value of ΔE1, the better the dispersibility of silica.
Measurement conditions ・Vibration frequency: 10Hz
・Excitation strain amplitude: 10±5%
・Distance between chucks: 20mm
Evaluation was performed by obtaining ΔE1 from the following formula.
ΔE1=E1max-E1min
Here, E1max: maximum value of E1 E1min: minimum value of E1
 [実施例1]
 下記表1に示すように、SBR(JSR株式会社製、HPR355):80重量部、BR(JSR株式会社製、BR01):20重量部、シリカ(東ソーシリカ株式会社製、ニプシルAQ):80重量部、オゾン劣化防止剤(精工化学株式会社製、オゾノン(登録商標)6C):2重量部、亜鉛華(正同化学工業株式会社製、亜鉛華2種):2重量部、ステアリン酸:2重量部、可塑剤(ENEOS社製、アロマックス(登録商標)3)TDAE(Treated Distillate Aromatic Extracts:処理留出芳香族抽出物):22.2重量部、アルキルアリールスルホン酸金属塩(株式会社MORESCO製、スルホール600):0.8重量部(アルキルアリールスルホン酸金属塩として)、及びシランカップリング剤(エボニック社製、Si69):7.2重量部をバンバリーミキサーに投入して混合し、所定の温度(160℃)に到達後、回転数を調整して所定温度を維持しながら、所定の時間(4分)の混合を行い、混合物を得た。
[Example 1]
As shown in Table 1 below, SBR (manufactured by JSR Corporation, HPR355): 80 parts by weight, BR (manufactured by JSR Corporation, BR01): 20 parts by weight, silica (manufactured by Tosoh Silica Corporation, Nipsil AQ): 80 parts by weight Part, antiozonant (manufactured by Seiko Chemical Co., Ltd., Ozonon (registered trademark) 6C): 2 parts by weight, zinc white (manufactured by Seido Chemical Industry Co., Ltd., zinc white 2 types): 2 parts by weight, stearic acid: 2 Parts by weight, plasticizer (manufactured by ENEOS, Aromax (registered trademark) 3) TDAE (Treated Distillate Aromatic Extracts): 22.2 parts by weight, metal salt of alkylarylsulfonic acid (MORESCO Corporation Thruhole 600 (manufactured by Evonik): 0.8 parts by weight (as an alkylarylsulfonic acid metal salt) and 7.2 parts by weight of a silane coupling agent (manufactured by Evonik, Si69) were put into a Banbury mixer and mixed to obtain a predetermined amount. After reaching the temperature (160° C.) of (160° C.), mixing was performed for a predetermined time (4 minutes) while maintaining the predetermined temperature by adjusting the number of revolutions to obtain a mixture.
 得られた混合物に対し、表1に示すように、分散性粉末硫黄:2.2重量部、加硫促進剤(三新化学株式会社製、「サンセラー(登録商標)CM-G」):1.8重量部、加硫促進剤(三新化学株式会社製、「サンセラーD」):0.5重量部を配合し、2mm厚のモールドにセットし、温度170℃で16分間、プレス加硫を行い、ゴムシート(ゴム組成物)を得た。 For the resulting mixture, as shown in Table 1, dispersible powdered sulfur: 2.2 parts by weight, vulcanization accelerator (manufactured by Sanshin Chemical Co., Ltd., "Sancellar (registered trademark) CM-G"): 1 .8 parts by weight, vulcanization accelerator (manufactured by Sanshin Chemical Co., Ltd., "Suncellar D"): 0.5 parts by weight, set in a 2 mm thick mold, and press vulcanized at a temperature of 170 ° C. for 16 minutes. was performed to obtain a rubber sheet (rubber composition).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例2~5]
 表1に示す組成に従って各成分を配合し、実施例1と同様にして実施例2~5のゴム組成物を得た。実施例2~5は、実施例1からアルキルアリールスルホン酸金属塩とシランカップリング剤の配合比率を変化させたものである。
[Examples 2 to 5]
Each component was blended according to the composition shown in Table 1, and rubber compositions of Examples 2 to 5 were obtained in the same manner as in Example 1. In Examples 2 to 5, the compounding ratio of the alkylarylsulfonic acid metal salt and the silane coupling agent was changed from Example 1.
 [比較例1]
 アルキルアリールスルホン酸金属塩を配合せず、シランカップリング剤(エボニック社製、Si69):8重量部を配合したこと以外は、実施例1と同様にして比較例1のゴム組成物を得た。
[Comparative Example 1]
A rubber composition of Comparative Example 1 was obtained in the same manner as in Example 1, except that 8 parts by weight of a silane coupling agent (Si69, manufactured by Evonik) was added without blending an alkylarylsulfonic acid metal salt. .
 [比較例2]
 シランカップリング剤を配合せず、アルキルアリールスルホン酸金属塩(株式会社MORESCO製、スルホール600):8重量部(アルキルアリールスルホン酸金属塩として)を配合したこと以外は、実施例1と同様にして比較例2のゴム組成物を得た。
[Comparative Example 2]
The procedure was the same as in Example 1, except that a silane coupling agent was not blended, and 8 parts by weight of an alkylarylsulfonic acid metal salt (Suruhol 600, manufactured by MORESCO Co., Ltd.) (as an alkylarylsulfonic acid metal salt) was blended. Thus, a rubber composition of Comparative Example 2 was obtained.
 [ゴム組成物の評価]
 実施例1~5並びに比較例1及び2のゴム組成物を用いた粘弾性測定用及び強度測定用のテストピースに対し、前述の測定方法により、60℃tanD、0℃tanD、引張応力、伸び率を測定し、ΔE1を求め、評価した結果を表1に示す。
[Evaluation of rubber composition]
For the test pieces for viscoelasticity measurement and strength measurement using the rubber compositions of Examples 1 to 5 and Comparative Examples 1 and 2, 60 ° C. tanD, 0 ° C. tanD, tensile stress, elongation Table 1 shows the evaluation results obtained by measuring the ratio and obtaining ΔE1.
 表1より、アルキルアリールスルホン酸金属塩とシランカップリング剤との両方を含む実施例1~5のゴム組成物は、転がり抵抗が低減し、且つ、ウエットグリップ性に優れていることが分かる。これに対し、アルキルアリールスルホン酸金属塩を含まず、シランカップリング剤を含む比較例1のゴム組成物は、転がり抵抗の低減が十分ではない。また、シランカップリング剤を含まず、アルキルアリールスルホン酸金属塩を含む比較例2のゴム組成物は、ウエットグリップ性に劣る。このように、アルキルアリールスルホン酸金属塩及びシランカップリング剤のいずれかのみを含むゴム組成物は、転がり抵抗の低減と、ウエットグリップ性の維持とを両立できていない。 Table 1 shows that the rubber compositions of Examples 1 to 5 containing both the alkylarylsulfonic acid metal salt and the silane coupling agent have reduced rolling resistance and excellent wet grip properties. In contrast, the rubber composition of Comparative Example 1, which does not contain an alkylarylsulfonic acid metal salt and contains a silane coupling agent, does not sufficiently reduce the rolling resistance. Moreover, the rubber composition of Comparative Example 2, which does not contain a silane coupling agent and contains an alkylarylsulfonic acid metal salt, is inferior in wet grip properties. As described above, a rubber composition containing only one of an alkylarylsulfonic acid metal salt and a silane coupling agent cannot achieve both reduction in rolling resistance and maintenance of wet grip properties.
 また、実施例1~5のゴム組成物は、引張応力及び伸び率も優れていることから、高い強度を維持していることがわかる。 In addition, the rubber compositions of Examples 1 to 5 are excellent in tensile stress and elongation, indicating that they maintain high strength.
 アルキルアリールスルホン酸金属塩とシランカップリング剤との重量比率が1:9~7:3である実施例1~4のゴム組成物のΔE1は比較例1より小さく、シリカの分散性が向上していることがわかる。これにより、実施例1~4のゴム組成物は60℃tanDが低下したと考えられる。なお、前記重量比率が9:1である実施例5の場合、ΔE1は比較例1より大きくなっているが、60℃tanDは前記重量比率が7:3である実施例4より小さい。これは、シリカの分散性以外の要因によりΔE1が大きくなったためと考えられる。 The ΔE1 of the rubber compositions of Examples 1 to 4, in which the weight ratio of the alkylarylsulfonic acid metal salt and the silane coupling agent was 1:9 to 7:3, was smaller than that of Comparative Example 1, and the silica dispersibility was improved. It can be seen that As a result, the 60°C tanD of the rubber compositions of Examples 1 to 4 is considered to have decreased. In Example 5, in which the weight ratio is 9:1, ΔE1 is larger than that in Comparative Example 1, but 60° C. tanD is smaller than Example 4, in which the weight ratio is 7:3. This is probably because ΔE1 increased due to factors other than the dispersibility of silica.
 また、アルキルアリールスルホン酸金属塩とシランカップリング剤との重量比率が1:9~7:3である場合、当該重量比率が9:1の場合よりも、ウエットグリップ性及び引張応力により優れるため、当該重量比率は9:1のよりも小さいことが好ましく、前記重量比率が1:9~7:3であることがより好ましい。 In addition, when the weight ratio of the alkylarylsulfonic acid metal salt and the silane coupling agent is 1:9 to 7:3, the wet grip property and tensile stress are superior to when the weight ratio is 9:1. , said weight ratio is preferably less than 9:1, more preferably said weight ratio is between 1:9 and 7:3.
 [タイヤの評価]
 実施例3及び比較例1の加硫剤及び加硫促進剤を含み、未加硫のゴム組成物を用いて作製したゴムシートをトレッドの形状に作製し、他の部材と貼り合わせて生タイヤを作製した。次に、生タイヤを加硫機中で、170℃で20分間プレス成形し、サイズ195/65R15のタイヤを作製した。
[Evaluation of tires]
A rubber sheet produced using an unvulcanized rubber composition containing the vulcanizing agent and vulcanization accelerator of Example 3 and Comparative Example 1 was produced in the shape of a tread, and laminated with other members to produce a green tire. was made. Next, the raw tire was press-molded in a vulcanizer at 170° C. for 20 minutes to produce a tire of size 195/65R15.
 作製したタイヤにつき、自動車技術ハンドブック「試験・評価(車両)編」に基づいてウエットブレーキ性能(制動停止距離)の評価を行った。テストタイヤ4本をトヨタプリウスに装着し、水膜を張った路面を時速100kmでフルブレーキをかけて停止するまでの距離(m)を測定した。また、JATMA(日本自動車タイヤ協会)が定める試験法に基づいて、タイヤ単体について、転がり抵抗係数(RRC)を求めた。数値は比較例1のゴム組成物を用いて作製したタイヤを100として指数化して表示した。その結果を表2に示す。 Wet braking performance (braking stopping distance) was evaluated based on the Automobile Technology Handbook "Testing and Evaluation (Vehicle) Edition" for the manufactured tires. Four test tires were mounted on a Toyota Prius, and the distance (m) was measured until the road surface covered with a water film was fully braked at a speed of 100 km/h and stopped. Also, the rolling resistance coefficient (RRC) of each tire alone was obtained based on the test method specified by JATMA (Japan Automobile Tire Manufacturers Association). Numerical values are indicated by indexing the tire produced using the rubber composition of Comparative Example 1 to 100. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2より、実施例3のタイヤは比較例1のタイヤと同等のウエットブレーキ性能を有し、転がり抵抗係数は8%低下したことが分かる。 From Table 2, it can be seen that the tire of Example 3 had wet braking performance equivalent to that of the tire of Comparative Example 1, and the rolling resistance coefficient was reduced by 8%.
 以上より、アルキルアリールスルホン酸金属塩とシランカップリング剤との両方を含むゴム組成物を用いて作製したタイヤは、ウエットグリップ性を維持しつつ、転がり抵抗を低減することができることが確認された。これにより、エネルギーロスが低下して低燃費性が向上し、二酸化炭素の排出量の削減に繋げることができる。 From the above, it was confirmed that a tire produced using a rubber composition containing both an alkylarylsulfonic acid metal salt and a silane coupling agent can maintain wet grip performance and reduce rolling resistance. . As a result, energy loss is reduced, fuel efficiency is improved, and carbon dioxide emissions are reduced.
 本発明に係るゴム組成物は、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部分等の空気入りタイヤのタイヤ部材、コンベアベルト等のベルト,防振ゴム等のゴム製品に好適に用いることができる。

 
The rubber composition according to the present invention can be suitably used for tire members of pneumatic tires such as tire treads, undertreads, carcasses, sidewalls and bead portions, belts such as conveyor belts, and rubber products such as anti-vibration rubbers. can.

Claims (9)

  1.  (a)ジエン系合成ゴム及び天然ゴムから選択される少なくとも1種を含むゴム成分と、(b)シリカと、(c)アルキルアリールスルホン酸金属塩と、(d)シランカップリング剤とを含み、
     前記(b)シリカの含有量は、前記(a)ゴム成分100重量部に対し、20重量部~120重量部である、ゴム組成物。
    (a) a rubber component containing at least one selected from diene-based synthetic rubber and natural rubber, (b) silica, (c) a metal salt of alkylarylsulfonate, and (d) a silane coupling agent ,
    The rubber composition, wherein the content of the (b) silica is 20 to 120 parts by weight per 100 parts by weight of the (a) rubber component.
  2.  前記(c)アルキルアリールスルホン酸金属塩と前記(d)シランカップリング剤との重量比率は、1:9~9:1である、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the (c) metal salt of alkylarylsulfonate and the (d) silane coupling agent have a weight ratio of 1:9 to 9:1.
  3.  前記(b)シリカ100重量部に対し、前記(c)アルキルアリールスルホン酸金属塩と(d)シランカップリング剤とを、合計で1重量部~20重量部含む、請求項1又は2に記載のゴム組成物。 3. The method according to claim 1, wherein the (c) alkylarylsulfonic acid metal salt and (d) the silane coupling agent are contained in a total of 1 to 20 parts by weight with respect to 100 parts by weight of the (b) silica. rubber composition.
  4.  前記(b)シリカ100重量部に対し、(c)アルキルアリールスルホン酸金属塩と(d)シランカップリング剤とを合計で5重量部~12重量部含む、請求項3に記載のゴム組成物。 4. The rubber composition according to claim 3, comprising 5 to 12 parts by weight in total of (c) an alkylarylsulfonic acid metal salt and (d) a silane coupling agent with respect to 100 parts by weight of the (b) silica. .
  5.  前記(c)アルキルアリールスルホン酸金属塩は、Na、Ca、及びBaからなる群から選択される少なくとも1種の金属塩である、請求項1~4のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, wherein the (c) alkylarylsulfonic acid metal salt is at least one metal salt selected from the group consisting of Na, Ca, and Ba. .
  6.  前記(c)アルキルアリールスルホン酸金属塩は油溶性である、請求項1~5のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 5, wherein (c) the alkylarylsulfonic acid metal salt is oil-soluble.
  7.  請求項1~6のいずれか1項に記載のゴム組成物を含む、タイヤ。 A tire comprising the rubber composition according to any one of claims 1 to 6.
  8.  アルキルアリールスルホン酸金属塩を含む、タイヤ用添加剤。 A tire additive containing an alkylarylsulfonic acid metal salt.
  9.  請求項8に記載のタイヤ用添加剤を含む、タイヤ。

     
    A tire comprising the tire additive according to claim 8 .

PCT/JP2022/007065 2021-02-22 2022-02-22 Rubber composition, tire, and additive for tire WO2022177017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-026669 2021-02-22
JP2021026669 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022177017A1 true WO2022177017A1 (en) 2022-08-25

Family

ID=82932253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007065 WO2022177017A1 (en) 2021-02-22 2022-02-22 Rubber composition, tire, and additive for tire

Country Status (1)

Country Link
WO (1) WO2022177017A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238740A (en) * 2002-02-15 2003-08-27 Bridgestone Corp Rubber composition and pneumatic tire produced by using the same
JP2005263956A (en) * 2004-03-18 2005-09-29 Sumitomo Rubber Ind Ltd Rubber composition for tire tread and pneumatic tire using the same
JP2009215338A (en) * 2008-03-07 2009-09-24 Daiso Co Ltd Silica-blended rubber composition, crosslinked product thereof, and method for producing it
JP2012036312A (en) * 2010-08-09 2012-02-23 Sumitomo Rubber Ind Ltd Modified natural rubber, method for manufacturing the same, rubber composition, and pneumatic tire
JP2014145061A (en) * 2013-01-30 2014-08-14 Sumitomo Rubber Ind Ltd Tire rubber composition and pneumatic tire
JP2015151520A (en) * 2014-02-18 2015-08-24 住友ゴム工業株式会社 tire
WO2016204012A1 (en) * 2015-06-18 2016-12-22 株式会社ブリヂストン Vibration-damping rubber composition and vibration-damping rubber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238740A (en) * 2002-02-15 2003-08-27 Bridgestone Corp Rubber composition and pneumatic tire produced by using the same
JP2005263956A (en) * 2004-03-18 2005-09-29 Sumitomo Rubber Ind Ltd Rubber composition for tire tread and pneumatic tire using the same
JP2009215338A (en) * 2008-03-07 2009-09-24 Daiso Co Ltd Silica-blended rubber composition, crosslinked product thereof, and method for producing it
JP2012036312A (en) * 2010-08-09 2012-02-23 Sumitomo Rubber Ind Ltd Modified natural rubber, method for manufacturing the same, rubber composition, and pneumatic tire
JP2014145061A (en) * 2013-01-30 2014-08-14 Sumitomo Rubber Ind Ltd Tire rubber composition and pneumatic tire
JP2015151520A (en) * 2014-02-18 2015-08-24 住友ゴム工業株式会社 tire
WO2016204012A1 (en) * 2015-06-18 2016-12-22 株式会社ブリヂストン Vibration-damping rubber composition and vibration-damping rubber

Similar Documents

Publication Publication Date Title
JP4603615B2 (en) Rubber composition and tire for covering tread or carcass cord
JP4663687B2 (en) Rubber composition and tire having tread and / or sidewall using the same
EP2985311A1 (en) Tire rubber composition and pneumatic tire
JP5159190B2 (en) Rubber composition for inner liner and tire having inner liner using the same
KR100775886B1 (en) Rubber composition and process for preparing the same
RU2614121C1 (en) Tire
EP1988120B1 (en) Tire with tire tread structure including cap tread and base tread
US20130281610A1 (en) Rubber composition for tread and pneumatic tire using the same for tread
JP7172165B2 (en) Rubber composition and tire
CN107108910B (en) Method for producing vulcanized rubber composition, and studless tire using same
JP6947161B2 (en) Rubber composition for tires and pneumatic tires
JP7009768B2 (en) Rubber composition and tires
US9132698B2 (en) Rubber composition for studless tire and studless tire using the same
JP2019001898A (en) Tire rubber composition, tread and tire
JP6208428B2 (en) Rubber composition for tire and pneumatic tire
JP2006188571A (en) Rubber composition and tire formed out of the same
JP7172061B2 (en) Rubber composition and tire
JP5038040B2 (en) Rubber composition for tire tread and tire
JP3384793B2 (en) Rubber composition for tire tread and pneumatic tire using the same
WO2012070625A1 (en) Rubber composition and tire using the same
JP5463734B2 (en) Rubber composition for tire
JP2010059252A (en) Studless tire for truck-bus or for light truck
WO2022177017A1 (en) Rubber composition, tire, and additive for tire
JP6158039B2 (en) Rubber composition and tire using the same
JP6158038B2 (en) Rubber composition and tire using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP