WO2022176830A1 - 光硬化性緑色樹脂組成物、表示装置、及び有機発光素子と外光反射防止膜の積層体の製造方法 - Google Patents

光硬化性緑色樹脂組成物、表示装置、及び有機発光素子と外光反射防止膜の積層体の製造方法 Download PDF

Info

Publication number
WO2022176830A1
WO2022176830A1 PCT/JP2022/005834 JP2022005834W WO2022176830A1 WO 2022176830 A1 WO2022176830 A1 WO 2022176830A1 JP 2022005834 W JP2022005834 W JP 2022005834W WO 2022176830 A1 WO2022176830 A1 WO 2022176830A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
carbon atoms
resin composition
pigment
Prior art date
Application number
PCT/JP2022/005834
Other languages
English (en)
French (fr)
Inventor
星児 石原
麻希 藤田
充史 小野
Original Assignee
株式会社Dnpファインケミカル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Dnpファインケミカル filed Critical 株式会社Dnpファインケミカル
Priority to JP2023500840A priority Critical patent/JPWO2022176830A1/ja
Priority to KR1020237030248A priority patent/KR20230146037A/ko
Priority to CN202280013293.XA priority patent/CN116802528A/zh
Publication of WO2022176830A1 publication Critical patent/WO2022176830A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • C08F22/1006Esters of polyhydric alcohols or polyhydric phenols, e.g. ethylene glycol dimethacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention provides a photocurable green resin composition, a display device containing a cured product of the photocurable green resin composition, and an organic light emitting device using the photocurable green resin composition and antireflection of external light
  • the present invention relates to a method for manufacturing a laminate of membranes.
  • organic light-emitting elements which are advantageous in terms of thinness and flexibility compared to conventional liquid crystal display elements, and which, in principle, have high light utilization efficiency, have attracted attention.
  • Such an organic light-emitting element is equipped with a circularly polarizing plate as an antireflection film in order to prevent deterioration of visibility due to reflection of external light, especially in mobile devices that are expected to be used outdoors.
  • this circularly polarizing plate cuts not only the external light but also the light emitted by the organic light-emitting element, so that the light utilization efficiency is greatly reduced.
  • the circularly polarizing plate has a hard property, it is disadvantageous in terms of flexibility in terms of reduced flexibility. Therefore, it has been desired to develop a display device using an organic light-emitting element that has good outdoor visibility without using a circularly polarizing plate.
  • the green photosensitive resin composition for pixel formation includes a pigment dispersion composition, an alkali-soluble resin, a photopolymerizable compound, a photopolymerization initiator, and a solvent, and the pigment dispersion composition contains a green pigment, a yellow pigment and a black
  • a green photosensitive resin composition containing a pigment wherein the green photosensitive resin composition has a spectral transmittance at a wavelength of 380 nm to 480 nm and a spectral transmittance at a wavelength of 580 nm to 780 nm when formed into a cured film having a thickness of 2.2 ⁇ m.
  • a green photosensitive resin composition is disclosed which has a spectral transmittance of 25% or less at a wavelength and a spectral transmittance of 30% or more and less than 70% at
  • Patent Document 2 discloses a green colorant composition for a color filter composed of a blue pigment and a yellow pigment so as to be halogen-free. It is a technology for the purpose of providing a color filter substrate with high adhesion strength, and there is no mention of its use as a substitute for a polarizing plate, nor is there any problem that arises when using it as a substitute for a polarizing plate. Not mentioned at all. Further, in Patent Document 3, the colorant contains at least one selected from Color Index Pigment Blue 15:3 and Color Index Pigment Blue 15:4, and Color Index Pigment Yellow 150.
  • Color Index Pigment Blue 15:3 and Color Index Pigment Blue 15:4 are contained in a total of 35 to 55 parts by weight with respect to 100 parts by weight, and the coloring composition has an absorbance for light with a wavelength of 400 to 700 nm.
  • the absorbance for light with a wavelength of 450 nm is 1, the wavelength at which the absorbance is 0.14 is the range of 474 to 494 nm and the range of 530 to 570 nm.
  • Patent Document 3 does not describe use as a cured film formed on an organic light-emitting element or use as a substitute for a polarizing plate, and there are also problems that arise when using it as a substitute for a polarizing plate. Not mentioned at all.
  • a color filter as a substitute for a polarizing plate in Patent Document 1 is formed on a glass substrate. Therefore, there is a further problem in manufacturing a display device with improved thinness and flexibility. Further, conventionally, halogenated metal phthalocyanine pigments such as Pigment Green (PG) 7, 36, 58, and 59 are often used as green pigments in green resin compositions for color filters. Also in the color filter as a substitute for the polarizing plate of Patent Document 1, a green color is realized by a halogenated metal phthalocyanine pigment.
  • a display device using an organic light-emitting element is usually used by bonding glass or a film as a cover material to the surface with a transparent adhesive.
  • the green colored layer formed on the organic light-emitting element has a problem that the transmittance decreases when a weather resistance test is performed in a state in which the glass is bonded with the sealing film interposed therebetween.
  • the green colored layer specifically disclosed in Patent Documents 2 and 3 as shown in a comparative example to be described later, it is necessary to use it as a color filter instead of a polarizing plate for suppressing external light reflection.
  • the properties are unsatisfactory and solvent resistance is also a problem.
  • the present invention has been made in view of the above circumstances, and a photocurable green resin composition capable of producing an organic light-emitting display device with excellent weather resistance, suppression of external light reflection, and improved flexibility in a thin film.
  • the purpose is to provide goods.
  • the present invention includes a display device containing a cured product of the photocurable green resin composition, excellent in weather resistance, capable of suppressing external light reflection, and having improved flexibility with a thin film, and the photocuring
  • An object of the present invention is to provide a method for producing a laminate of an organic light emitting device and an external light antireflection film using a green resin composition.
  • the photocurable green resin composition according to the present invention is a photocurable green resin composition used for a cured film formed on an organic light emitting device,
  • the photocurable green resin composition contains a colorant, a photopolymerizable compound, and a photoinitiator,
  • the coloring material contains a blue pigment and a yellow pigment, and the halogenated metal phthalocyanine pigment is 10% by mass or less with respect to the total amount of the coloring material,
  • the spectral transmittance in the wavelength range of 380 nm to 480 nm is 20% or less
  • the spectral transmittance in the wavelength range of 580 nm to 700 nm is 30% or less
  • 510 nm to 550 nm 40% or more and 80% or less of the spectral transmittance in the wavelength range.
  • a display device has a cured film of the photocurable green resin composition according to the present invention on an organic light-emitting element.
  • the method for producing a laminate of an organic light-emitting element and an external light antireflection film according to the present invention includes: A step of forming a coating film by applying the photocurable green resin composition according to the present invention on the organic light emitting device; a step of irradiating the coating film with light; A post-baking step of heating the film after the light irradiation, and By including the step of developing the film after the light irradiation, A step of forming a cured film of the photocurable green resin composition according to the present invention on the organic light emitting device.
  • the present invention it is possible to provide a photocurable green resin composition capable of suppressing external light reflection while being excellent in weather resistance, and capable of producing an organic light-emitting display device with a thin film and improved flexibility. Further, the present invention includes a display device containing a cured product of the photocurable green resin composition, excellent in weather resistance, capable of suppressing external light reflection, and having improved flexibility with a thin film, and the photocuring It is possible to provide a method for producing a laminate of an organic light-emitting device and an external light antireflection film using a green resin composition.
  • FIG. 1 is a schematic cross-sectional view showing an example of a display device provided with an organic light emitting device according to the present invention.
  • light includes electromagnetic waves with wavelengths in the visible and non-visible regions, and radiation, and radiation includes, for example, microwaves and electron beams. Specifically, it refers to electromagnetic waves with a wavelength of 5 ⁇ m or less and electron beams.
  • (meth)acryloyl represents acryloyl and methacryloyl
  • (meth)acryl represents acrylic and methacrylic
  • (meth)acrylate represents acrylate and methacrylate.
  • the term "to" indicating a numerical range is used to include the numerical values before and after it as lower and upper limits.
  • the spectral transmittance of Z% or less in the wavelength range of X nm to Y nm means that the spectral transmittance is Z % or less over the entire wavelength range of X nm to Y nm.
  • the photocurable green resin composition according to the present invention is a photocurable green resin composition used for a cured film formed on an organic light emitting device,
  • the photocurable green resin composition contains a colorant, a photopolymerizable compound, and a photoinitiator,
  • the coloring material contains a blue pigment and a yellow pigment, and the halogenated metal phthalocyanine pigment is 10% by mass or less with respect to the total amount of the coloring material,
  • the spectral transmittance in the wavelength range of 380 nm to 480 nm is 20% or less
  • the spectral transmittance in the wavelength range of 580 nm to 700 nm is 30% or less
  • 510 nm to 550 nm 40% or more and 80% or less of the spectral transmittance in the wavelength range.
  • the colorant contains a blue pigment and a yellow pigment
  • the halogenated metal phthalocyanine pigment is 10% by mass or less with respect to the total amount of the colorant
  • the predetermined By satisfying a predetermined spectral transmittance in the wavelength range, the cured film of the photocurable green resin composition can effectively reduce the transmittance of the film, and can suppress external light reflection as an alternative to a polarizing plate.
  • the photocurable green resin composition according to the present invention is characterized by being used for a cured film formed on an organic light emitting device.
  • the photocurable green resin composition according to the present invention is used for a cured film directly formed on a device substrate having an organic light-emitting device.
  • the photocurable green resin composition according to the present invention is a photocurable green resin composition used for the cured film formed adjacent to or through at least one layer on the organic light emitting element, so that the substrate such as a glass substrate Compared with a display device in which an external color filter formed above is attached to an organic light-emitting element, a display device with improved thickness reduction and flexibility can be manufactured.
  • the cured film formed on the organic light-emitting element formed from the photocurable green resin composition according to the present invention has a content of the halogenated metal phthalocyanine pigment of 10% by mass or less with respect to the total amount of the coloring material, and has a green color. Therefore, the decrease in transmittance is suppressed even when a weather resistance test is performed in a state where the glass is bonded with a transparent adhesive, and a display device with excellent weather resistance can be realized.
  • the photocurable green resin composition according to the present invention contains at least a colorant, a photopolymerizable compound, and a photoinitiator, and further contains other components within a range that does not impair the effects of the present invention. may be contained.
  • a colorant a photopolymerizable compound, and a photoinitiator
  • other components within a range that does not impair the effects of the present invention. may be contained.
  • the coloring material is not particularly limited as long as it can develop a desired color when the colored layer of the color filter is formed, and various organic pigments, inorganic pigments, dispersible dyes, and dyes Two or more kinds of salt-forming compounds can be mixed and used. do.
  • organic pigments are preferably used as coloring materials because they have high coloring properties and high heat resistance.
  • organic pigments include compounds classified as pigments in the Color Index (published by The Society of Dyers and Colorists). .) numbered ones can be mentioned.
  • blue pigment for example, C.I. I. Pigment Blue 1, 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 60, 61, 79, 80 and the like.
  • C. I. Pigment Blue 15:3, C.I. I. Pigment Blue 15:4, and C.I. I. Pigment Blue 16 has different rising wavelengths of the transmission spectrum from the long wavelength side to the short wavelength side. , are preferably selected as appropriate and used singly or in combination of two or more. From the viewpoint of weather resistance, C.I. I. Pigment Blue 15:4 is preferred.
  • C.I. I. Pigment Yellow 1 1:1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17, 20, 24, 31, 32, 34, 35, 35:1, 36, 36:1, 37, 37:1, 40, 41, 42, 43, 48, 53, 55, 60, 61, 62, 62:1, 63, 65, 71, 73, 74, 75, 81, 83, 87, 93, 94, 95, 97, 98, 100, 101, 104, 105, 106, 108, 109, 110, 111, 113, 114, 116, 117, 119, 120, 126, 127, 127: 1, 128, 129, 133, 134, 136, 138, 139, 142, 147, 148, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 173,
  • a yellow pigment when combined with a blue pigment, it is easy to satisfy a predetermined spectral transmittance in the predetermined wavelength range, the half width of the peak indicating the maximum transmittance of the transmission spectrum is easily reduced, and the maximum transmission of the transmission spectrum from the group consisting of Pigment Yellow 139, Pigment Yellow 138, Pigment Yellow 150, and Pigment Yellow 185 because the wavelength indicating the index is easily within the range of 525 nm to 545 nm and the effect of suppressing external light reflection is easily improved. At least one selected may be included, and Pigment Yellow 139 is included, and Pigment Yellow 150 is more preferably included.
  • coloring materials may be used for the coloring materials from the viewpoint of adjusting the effect of suppressing reflection of external light.
  • Other coloring materials include, for example, green pigments, purple pigments, orange pigments, and the like.
  • green pigments include C.I. I. Pigment Green 7, 36, 58, 59, 62, 63 and the like.
  • the content of the halogenated metal phthalocyanine pigment is set to 10% by mass or less based on the total amount of the coloring material in order to improve the weather resistance.
  • purple pigment for example, C.I. I. Pigment Violet 1, 19, 23, 29, 32, 36, 38 and the like.
  • orange pigments include C.I. I. Pigment Orange 1, 5, 13, 14, 16, 17, 24, 34, 36, 38, 40, 43, 46, 49, 51, 61, 63, 64, 71, 73 and the like.
  • the spectral transmittance in the wavelength range of 380 nm to 480 nm is 20% or less
  • the spectral transmittance in the wavelength range of 580 nm to 700 nm is 30% or less
  • the spectral transmittance in the wavelength range of 510 nm to 550 nm is 40. % or more and 80% or less.
  • the spectral transmittance at a wavelength of 380 nm to 480 nm is 20% or less, the deterioration of the color purity of green is suppressed, and the deterioration of the color purity from the light emitting element is also suppressed. It is easy to apply, and the anti-reflection performance is excellent.
  • the spectral transmittance at a wavelength of 380 nm to 480 nm may be 18% or less, and may be 13% or less.
  • the spectral transmittance at a wavelength of 510 nm to 550 nm is 40% or more and 80% or less, it is easy to suppress deterioration in brightness and poor visibility of the display device.
  • the spectral transmittance at a wavelength of 510 nm to 550 nm may be 45% or more, 75% or less, and further 70% or less.
  • the spectral transmittance when a cured film having a thickness of 3.0 ⁇ m is formed if the spectral transmittance at a wavelength of 580 nm to 700 nm is 30% or less, the antireflection performance tends to be excellent.
  • the spectral transmittance at a wavelength of 580 nm to 700 nm may be 25% or less, 20% or less, or 18% or less.
  • the spectral transmittance when a cured film having a thickness of 3.0 ⁇ m is formed can be specifically measured by the method described in Examples.
  • the half width of the peak showing the maximum transmittance in the wavelength range of 380 nm to 700 nm in the transmission spectrum is 70 nm or less, which improves the antireflection performance.
  • the half width of the peak indicating the maximum transmittance of the transmission spectrum may be 65 nm or less, 63 nm or less, or 60 nm or less.
  • the peak wavelength showing the maximum transmittance in the wavelength range of 380 nm to 700 nm is 510 nm to 550 nm. It is preferably in the range of 525 nm to 545 nm, more preferably in the range of 526 nm to 540 nm, and may be in the range of 527 nm to 535 nm.
  • the content of the coloring material used in the present invention is not particularly limited as long as it is used so as to satisfy the predetermined spectral transmittance in the predetermined wavelength range.
  • the content of the blue pigment may be, for example, 1% by mass or more and 60% by mass or less, preferably 5% by mass or more, relative to the total amount of the colorant. It may be preferably 10% by mass or more, more preferably 15% by mass or more, preferably 50% by mass or less, and more preferably 40% by mass or less.
  • the content of the yellow pigment may be, for example, 20% by mass or more and 90% by mass or less, preferably 30% by mass or more, relative to the total amount of the colorant. It may be preferably 40% by mass or more, more preferably 50% by mass or more, even more preferably 60% by mass or more, preferably 85% by mass or less, more preferably It may be 80% by mass or less.
  • Pigment Yellow 139 When Pigment Yellow 139 is contained as a yellow pigment, the content of Pigment Yellow 139 may be 1% by mass or more, more preferably 5% by mass or more, more preferably 10% by mass or more with respect to the total amount of yellow pigment. It may be at least 50% by mass, preferably at most 30% by mass. As the yellow pigment, when Pigment Yellow 139 and Pigment Yellow 150 are included, the total content of Pigment Yellow 139 and Pigment Yellow 150 may be 40% by mass or more with respect to the total amount of yellow pigment, more preferably 60% by mass. % or more, more preferably 80% by mass or more, 100% by mass or less, or 40% by mass or less.
  • the content ratio of the blue pigment to the total of the blue pigment and the yellow pigment is not particularly limited as long as it satisfies a predetermined spectral transmittance in the predetermined wavelength range, but is, for example, 1% by mass or more. It may be 60% by mass or less, preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, preferably 50% by mass or less. and more preferably 40% by mass or less.
  • the total content of the blue pigment and the yellow pigment is usually 80% by mass or more, preferably 90% by mass or more, relative to the total amount of the colorant. Preferably, it may be 95% by mass or more, and may be 100% by mass, but when it contains other coloring material different from the halogenated metal phthalocyanine pigment, it may be 90% by mass or less.
  • the total content of the other coloring materials may be 0% by mass, may be 1% by mass or more, or may be 5% by mass or more with respect to the total amount of the coloring material. On the other hand, it is usually 20% by mass or less, preferably 10% by mass or less.
  • the total content is 10% by mass or less with respect to the total amount of the coloring material, and is usually 0.1% by mass or more and 10% by mass or less. It may be preferably 1% by mass or more, more preferably 3% by mass or more, and preferably 9.5% by mass or less.
  • the halogenated metal phthalocyanine pigment may be 0% by mass with respect to the total amount of the coloring material.
  • the average primary particle size of the colorant used in the present invention is such that when it is formed into a cured film, it can suppress external light reflection and transmit desired light from the light emitting element to suppress the decrease in luminance of the display device. It is not particularly limited as long as it is possible, and although it varies depending on the type of coloring material used, it is preferably in the range of 10 nm to 200 nm, more preferably 15 nm to 100 nm. When the average primary particle diameter of the colorant is in the above range, the display device provided with the cured film produced using the photocurable green resin composition according to the present invention can suppress external light reflection and color Excellent separability and high quality can be obtained.
  • the average dispersed particle size of the colorant in the photocurable green resin composition varies depending on the type of colorant used, but is preferably in the range of 10 nm to 200 nm, and is in the range of 15 nm to 100 nm. is more preferable.
  • the average dispersed particle size of the colorant in the photocurable green resin composition is the dispersed particle size of the colorant particles dispersed in the dispersion medium containing at least a solvent, and is measured by a laser light scattering particle size distribution meter. It is what is done.
  • the solvent used in the photocurable green resin composition is appropriately adjusted to a concentration that can be measured with a laser light scattering particle size distribution meter. It can be diluted (eg, 1000 times) and measured at 23 ° C. by dynamic light scattering using a laser light scattering particle size distribution analyzer (eg, Nanotrack particle size distribution analyzer UPA-EX150 manufactured by Nikkiso Co., Ltd.). .
  • the average distribution particle size here is the volume average particle size.
  • the coloring material used in the present invention can be produced by known methods such as recrystallization and solvent salt milling. Alternatively, a commercially available coloring material may be used after undergoing fine processing.
  • the content of the coloring material in the photocurable green resin composition according to the present invention is not particularly limited.
  • the content of the coloring material, from the viewpoint of dispersibility and dispersion stability, relative to the total solid content of the photocurable green resin composition for example preferably 3% to 65% by mass, more preferably 4% by mass to 60% by mass, more preferably 5% to 55% by mass, even more preferably 6% to 50% by mass.
  • the content of the colorant, from the viewpoint of dispersibility and dispersion stability, relative to the total solid content of the photocurable green resin composition may be 10 wt% to 45 wt%, 10 wt% to 35 % by mass.
  • the photocurable green resin composition has a sufficient color density when the cured film is applied to a predetermined film thickness (usually 1.0 ⁇ m to 5.0 ⁇ m, for example, 3.0 ⁇ m). and the effect of suppressing reflection of external light tends to be good. Moreover, if it is below the said upper limit, while being excellent in storage stability, the cured film which has sufficient hardness and adhesiveness with a board
  • the solid content refers to all substances other than the solvent, which will be described later, and includes monomers and the like dissolved in the solvent.
  • photopolymerizable compound used in the photocurable green resin composition examples include compounds having a photopolymerizable group in the molecule.
  • the photopolymerizable group is not particularly limited as long as it can be polymerized by a photoinitiator, but includes ethylenically unsaturated double bonds, such as vinyl group, allyl group, acryloyl group or methacryloyl group. are mentioned.
  • an acryloyl group or a methacryloyl group is preferably used from the viewpoint of ultraviolet curability.
  • the photopolymerizable compound from the viewpoint of curability, it is preferable to contain a compound having two or more photopolymerizable groups in one molecule, and a compound having three or more photopolymerizable groups in one molecule is contained. is more preferable.
  • a compound having two or more ethylenically unsaturated double bonds is preferably used, and a polyfunctional (meth)acrylate having two or more acryloyl groups or methacryloyl groups is particularly preferable.
  • a polyfunctional (meth)acrylate it may be appropriately selected and used from conventionally known ones. Specific examples include those described in JP-A-2013-029832.
  • polyfunctional (meth)acrylates may be used singly or in combination of two or more. Further, when excellent photocurability (high sensitivity) is required for the photocurable green resin composition of the present invention, the polyfunctional (meth)acrylate has three polymerizable double bonds (trifunctional ) or more, and poly (meth) acrylates of trihydric or higher polyhydric alcohols and their dicarboxylic acid-modified products are preferable.
  • trimethylolpropane tri (meth) acrylate, pentaerythritol Tri(meth)acrylate, succinic acid-modified pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol penta( A succinic acid-modified meth)acrylate, dipentaerythritol hexa(meth)acrylate, and the like are preferred.
  • the content of the photopolymerizable compound used in the photocurable green resin composition is not particularly limited, but with respect to the total solid content of the photocurable green resin composition, for example preferably 5 mass% to 60 mass %, more preferably in the range of 10% to 40% by mass. If the content of the photopolymerizable compound is at least the above lower limit, photocuring will proceed sufficiently, and the exposed portion will be able to suppress elution during development. Adequate alkali developability.
  • photoinitiator used in the photocurable green resin composition of the present invention one or a combination of two or more of various conventionally known photoinitiators can be used.
  • photoinitiators include aromatic ketones, benzoin ethers, halomethyloxadiazole compounds, ⁇ -aminoketones, biimidazoles, N,N-dimethylaminobenzophenone, halomethyl-S-triazine compounds, and thioxanthone. , oxime esters, and the like.
  • a conventionally known photoinitiator can be used, and examples thereof include the photoinitiator described in WO 2018/062105.
  • Examples of the oxime ester photoinitiator used in the present invention include 1,2-octadione-1-[4-(phenylthio)phenyl]-,2-(o-benzoyloxime), ethanone, 1-[ 9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(o-acetyloxime), JP-A-2000-80068, JP-A-2001-233842, special table 2010-527339, JP 2010-527338, JP 2013-041153, WO 2015/152153, JP 2010-256891, among the oxime ester photoinitiators described in It can be selected as appropriate.
  • the heating in the manufacturing process is preferably at a low temperature such as 130° C. or less, more preferably 100° C. or less. It is said that In a normal color filter manufacturing process, a cured film is hardened by heat treatment at about 230° C. on a glass substrate. That is, a cured film produced by low-temperature heat treatment tends to have insufficient substrate adhesion and solvent resistance. In order to solve such problems, the substrate adhesion and solvent resistance of the cured film are improved even by low-temperature heat treatment. It preferably contains seeds.
  • R 1 and R 2 each independently represent R 11 , OR 11 , COR 11 , SR 11 , CONR 12 R 13 or CN;
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or an arylalkyl group having 7 to 30 carbon atoms or 2 to 20 carbon atoms.
  • R 21 , R 22 and R 23 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or an arylalkyl group having 7 to 30 carbon atoms or 2 to 20 carbon atoms.
  • R 21 , R 22 and R 23 represents a heterocyclic group of hydrogen atoms in the groups represented by R 21 , R 22 and R 23 may be further substituted with a hydroxyl group, a nitro group, CN, a halogen atom, or a carboxy group;
  • the alkylene portions of the groups represented by R 11 , R 12 , R 13 , R 21 , R 22 and R 23 are -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO- may contain 1 to 5 oxygen atoms not adjacent to each other,
  • R 24 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a
  • R 3 may be The hydrogen atoms of the group represented by R 3 may further be R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , —NR 22 —OR 23 , —NCOR 22 —OCOR 23 , NR 22 COR 21 , OCOR 21 , COOR 21 , SCOR 21 , OCSR 21 , COSR 21 , CSOR 21 , a hydroxyl group, a nitro group, CN, or optionally substituted with a halogen atom
  • R 4 , R 5 , R 6 and R 7 are each independently R 11 , OR 11 , SR 11 , COR 14 , CONR 15 R 16 , NR 12 COR 11 , OCOR 11 , COOR 14 , SCOR 11 , OCSR 11 , COSR 14 , CSOR 11 , a hydroxyl group, CN or a halogen atom, R 4 and R 5 , R 6
  • R 8 is R 11 , OR 11 , SR 11 , COR 11 , CONR 12 R 13 , NR 12 COR 11 , OCOR 11 , COOR 11 , SCOR 11 , OCSR 11 , COSR 11 , CSOR 11 represents a hydroxyl group, CN or a halogen atom, k represents 0 or 1; )
  • the oxime ester compound represented by the general formula (A) includes geometric isomers due to the double bond of the oxime, but these are not distinguished. That is, in the present specification, the compound represented by the general formula (A), and the compound represented by the following general formula (A′), which is a preferred form of the compound described later, and the exemplary compounds thereof are a mixture of both or either It represents one or the other, and is not limited to the structure showing the isomer.
  • alkyl group 1 to 20 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 21 , R 22 , R 23 and R 24 in the above general formula (A)
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, amyl, isoamyl, t-amyl, hexyl, heptyl, octyl, isooctyl, 2-ethylhexyl, t- octyl, nonyl, isononyl, decyl, isodecyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, icosyl, cyclopentyl, cyclopenty
  • Examples of the aryl group having 6 to 30 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the general formula (A) include phenyl , tolyl, xylyl, ethylphenyl, naphthyl, anthryl, phenanthrenyl, phenyl substituted with one or more of the above alkyl groups, biphenylyl, naphthyl, anthryl, and the like.
  • Examples of arylalkyl groups having 7 to 30 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in general formula (A) include: benzyl, ⁇ -methylbenzyl, ⁇ , ⁇ -dimethylbenzyl, phenylethyl and the like.
  • heterocyclic groups having 2 to 20 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the general formula (A) include , pyridyl, pyrimidyl, furyl, thienyl, tetrahydrofuryl, dioxolanyl, benzoxazol-2-yl, tetrahydropyranyl, pyrrolidyl, imidazolidyl, pyrazolidyl, thiazolidyl, isothiazolidyl, oxazolidyl, isoxazolidyl, piperidyl, piperazyl, morpholinyl, etc.
  • the rings that can be formed by R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 3 and R 7 and R 3 and R 8 together include: Preferred examples include 5- to 7-membered rings such as cyclopentane ring, cyclohexane ring, cyclopentene ring, benzene ring, piperidine ring, morpholine ring, lactone ring and lactam ring.
  • Halogen atoms represented by R 4 , R 5 , R 6 , R 7 and R 8 in general formula (A), and R 3 , R 11 and R 12 in general formula (A) , R 13 , R 21 , R 22 and R 23 may be substituted with fluorine, chlorine, bromine and iodine.
  • the alkylene moieties of the groups represented by R 11 , R 12 , R 13 , R 21 , R 22 and R 23 in the above general formula (A) are -O-, -S-, -COO-, -OCO -, -NR 24 -, -NR 24 CO-, -NR 24 COO- , -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO- from 1 to 1 under the condition that oxygen atoms are not adjacent to each other; It may contain 5 divalent groups, and the divalent groups contained at this time may be one or more groups, and in the case of groups that can be contained consecutively, two or more may be consecutively contained. .
  • alkyl (alkylene) moieties of the groups represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the general formula (A) have branched side chains. may be a cyclic alkyl.
  • R 3 is an optionally condensed aromatic ring or compounds represented by the following general formula (A') have high sensitivity and can be manufactured is preferred because it is easy to
  • R 31 , R 32 , R 33 , R 34 and R 35 are each independently R 11 , OR 11 , SR 11 , COR 11 , CONR 15 R 16 , NR 12 COR 11 , OCOR 11 , COOR 14 , SCOR 11 , OCSR 11 , COSR 14 , CSOR 11 , hydroxyl group , a nitro group, CN or a halogen atom, and R 31 and R 32 , R 32 and R 33 , R 33 and R 34 and R 34 and R 35 may each form a ring together.
  • rings formed by R 31 and R 32 , R 32 and R 33 , R 33 and R 34 and R 34 and R 35 together include R 4 and R 5 , R 5 and R 6 and R 6 and R 7 and R 3 and R 7 and R 3 and R 8 together may be formed by the same rings as those mentioned above.
  • R 1 is an alkyl group having 1 to 12 carbon atoms or an arylalkyl group having 7 to 15 carbon atoms
  • R 11 is an aryl group having 6 to 12 carbon atoms
  • 1 carbon atom alkyl groups of 1 to 8 are preferred because they are highly soluble in solvents
  • R 2 is preferably a methyl group, ethyl group or phenyl group because of their high reactivity
  • R 4 to R 7 are hydrogen atoms or cyano A group, particularly a hydrogen atom, is preferred for ease of synthesis.
  • a hydrogen atom as R 8 is preferred for ease of synthesis.
  • k is preferably 1 for high sensitivity.
  • R 31 to R 35 is a nitro group, CN, a halogen atom, or COR 11
  • R 11 is an aryl group having 6 to 12 carbon atoms or an alkyl group having 1 to 8 carbon atoms.
  • R 31 to R 35 is a nitro group, CN or a halogen atom
  • R 33 is a nitro group, CN or a halogen atom.
  • Preferred specific examples of the compound represented by the general formula (A) include the following compounds.
  • the total content of the photoinitiator used in the photocurable green resin composition of the present invention is not particularly limited as long as the effect of the present invention is not impaired, relative to the total solid content of the photocurable green resin composition , preferably 0.1 mass % to 15.0 mass %, more preferably 1.0 mass % to 10.0 mass %. If the content is at least the above lower limit, photocuring will proceed sufficiently, and the solvent resistance and substrate adhesion will tend to be good. easy to form patterns.
  • the total content of at least one of the compounds represented by the general formula (A) is the total amount of the photoinitiator from the viewpoint that a cured film having good substrate adhesion and solvent resistance can be formed even in low-temperature heat treatment. is preferably 30.0% by mass or more, more preferably 50.0% by mass or more, still more preferably 70.0% by mass or more, and may be 100% by mass.
  • the photocurable green resin composition according to the present invention contains a colorant, a photopolymerizable compound, and a photoinitiator, and does not contain a solvent by using a liquid photopolymerizable compound. It is possible to form a coating film by using a method such as an ink-jet method, for example, to form a patterned colored layer.
  • the photocurable green resin composition according to the present invention may be a photocurable green resin composition that further contains an alkali-soluble resin and a solvent and has alkali developability.
  • the alkali-soluble resin used in the present invention has an acidic group, and can be appropriately selected and used from those that act as a binder resin and are soluble in an alkali developer used for pattern formation. can.
  • the alkali-soluble resin can be defined as having an acid value of 40 mgKOH/g or more.
  • alkali-soluble resin a conventionally known alkali-soluble resin can be appropriately selected and used.
  • an alkali-soluble resin described in International Publication No. 2016/104493 can be appropriately selected and used.
  • a preferable alkali-soluble resin in the present invention is a resin having an acidic group, usually a carboxy group. acrylic resins, epoxy (meth)acrylate resins having a carboxy group, and the like, and acrylic resins such as acrylic copolymers having a carboxy group and styrene-acrylic copolymers having a carboxy group are preferably used.
  • Two or more of these acrylic copolymers, acrylic resins such as styrene-acrylic copolymers, and epoxy acrylate resins may be used in combination.
  • the alkali-soluble resins used in the photocurable green resin composition may be used singly or in combination of two or more.
  • the content of the alkali-soluble resin is not particularly limited, but is preferably 5% to 60% by mass, more preferably 10% to 40% by mass, based on the total solid content of the photocurable green resin composition. is within the range of When the content of the alkali-soluble resin is at least the above lower limit, sufficient alkali developability is obtained, and when the content of the alkali-soluble resin is at most the above upper limit, film roughness and pattern chipping during development are prevented. can be suppressed.
  • the solvent used in the present invention is not particularly limited as long as it does not react with each component in the photocurable green resin composition and is capable of dissolving or dispersing them.
  • a solvent can be used individually or in combination of 2 or more types.
  • Specific examples of solvents include alcohol solvents such as methyl alcohol, ethyl alcohol, N-propyl alcohol, i-propyl alcohol, methoxy alcohol and ethoxy alcohol; carbitol solvents such as methoxyethoxyethanol and ethoxyethoxyethanol; ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl methoxypropionate, ethyl ethoxypropionate, ethyl lactate, methyl hydroxypropionate, ethyl hydroxypropionate, n-butyl acetate, isobutyl acetate, isobutyl butyrate, n-butyl butyrate, ester solvents
  • glycol ether acetate-based solvents examples include propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, butyl carbitol acetate (BCA), 3-methoxy-3-methyl-1-butyl acetate, ethyl ethoxypropionate, ethyl lactate, and one or more selected from the group consisting of 3-methoxybutyl acetate, from the viewpoint of solubility of other components and applicability.
  • BCA butyl carbitol acetate
  • 3-methoxy-3-methyl-1-butyl acetate ethyl ethoxypropionate
  • ethyl lactate examples include one or more selected from the group consisting of 3-methoxybutyl acetate, from the viewpoint of solubility of other components and applicability.
  • the content of the solvent may be appropriately set within a range in which the colored layer can be formed with high accuracy.
  • the content of the solvent is usually preferably 55% by mass to 95% by mass, more preferably 65% by mass to 88% by mass, based on the total amount of the photocurable green resin composition containing the solvent. .
  • excellent applicability can be obtained.
  • a dispersant when the colorant is dispersed, a dispersant may be further included from the viewpoint of colorant dispersibility and colorant dispersion stability.
  • the dispersant can be appropriately selected and used from conventionally known dispersants.
  • the dispersing agent for example, a cationic, anionic, nonionic, amphoteric, silicone or fluorine surfactant can be used.
  • surfactants polymer dispersants are preferred because they can be uniformly and finely dispersed.
  • polymer dispersants include (meth)acrylate copolymer dispersants; polyurethanes; unsaturated polyamides; polysiloxanes; long-chain polyaminoamide phosphates; amides obtained by reaction with free carboxyl group-containing polyesters and their bases); polyallylamine derivatives (polyallylamine and polyesters having free carboxyl groups, polyamides, or cocondensates of esters and amides (polyesteramides) (a reaction product obtained by reacting with one or more compounds selected from the compounds of ), and the like.
  • polymer dispersants include (meth)acrylate copolymer dispersants; polyurethanes; unsaturated polyamides; polysiloxanes; long-chain polyaminoamide phosphates; amides obtained by reaction with free carboxyl group-containing polyesters and their bases); polyallylamine derivatives (polyallylamine and polyesters having free carboxyl groups, polyamides, or cocondensates of esters and
  • (Meth) acrylate copolymer-based dispersant has good compatibility with the photoinitiator containing the compound represented by the photopolymerizable compound and the general formula (A), so that the initiator is in the colored layer It is presumed that the colored layer is likely to exist uniformly, and the uniform curing of the colored layer reduces the amount of unreacted components and reduces the internal stress of the colored layer, so that the colored layer changes less when immersed in a solvent.
  • the (meth)acrylate copolymer-based dispersant refers to a dispersant that is a copolymer and contains at least a (meth)acrylate-derived structural unit.
  • the (meth)acrylate copolymer-based dispersant is preferably a copolymer containing a structural unit that functions as a coloring material adsorption site and a structural unit that functions as a solvent affinity site, and functions as a solvent affinity site. It is preferable that at least a (meth)acrylate-derived structural unit is included in the structural units to be used.
  • Examples of structural units that function as colorant adsorption sites include structural units derived from ethylenically unsaturated monomers copolymerizable with structural units derived from (meth)acrylate.
  • the coloring material adsorption site may be a structural unit derived from an ethylenically unsaturated monomer containing an acidic group, or a structural unit derived from an ethylenically unsaturated monomer containing a basic group.
  • a structural unit represented by the following general formula (I) is preferable from the viewpoint of excellent dispersibility.
  • R 71 is a hydrogen atom or a methyl group
  • a 1 is a divalent linking group
  • R 72 and R 73 are each independently a hydrogen atom, or a hydrocarbon optionally containing a hetero atom. group, and R 72 and R 73 may combine with each other to form a ring structure.
  • a 1 is a divalent linking group.
  • the divalent linking group includes, for example, a linear, branched or cyclic alkylene group, a linear, branched or cyclic alkylene group having a hydroxyl group, an arylene group, -CONH- group, -COO- group, -NHCOO- groups, ether groups (--O--groups), thioether groups (--S--groups), and combinations thereof.
  • the bonding direction of the divalent linking group is arbitrary.
  • a 1 in the general formula (I) is preferably a divalent linking group containing a -CONH- group or a -COO- group, and a -CONH- group or a -COO- group.
  • an alkylene group having 1 to 10 carbon atoms are more preferable.
  • Examples of the hydrocarbon group in the hydrocarbon group optionally containing a heteroatom for R 72 and R 73 include an alkyl group, an aralkyl group and an aryl group.
  • Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, isopropyl group, tert-butyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group and the like, and the number of carbon atoms in the alkyl group is 1. to 18 are preferable, and among them, a methyl group or an ethyl group is more preferable.
  • the aralkyl group includes, for example, a benzyl group, a phenethyl group, a naphthylmethyl group, a biphenylmethyl group and the like.
  • the number of carbon atoms in the aralkyl group is preferably 7-20, more preferably 7-14.
  • Aryl groups include phenyl, biphenyl, naphthyl, tolyl, and xylyl groups.
  • the number of carbon atoms in the aryl group is preferably 6-24, more preferably 6-12.
  • the number of carbon atoms of the substituent is not included in the preferable number of carbon atoms.
  • a hydrocarbon group containing a heteroatom has a structure in which a carbon atom in the hydrocarbon group is replaced with a heteroatom, or a structure in which a hydrogen atom in the hydrocarbon group is replaced by a substituent containing a heteroatom.
  • the heteroatom that the hydrocarbon group may contain include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom and the like.
  • hydrogen atoms in the hydrocarbon group may be substituted with halogen atoms such as fluorine, chlorine and bromine atoms.
  • R 72 and R 73 are bonded to each other to form a ring structure means that R 72 and R 73 form a ring structure via a nitrogen atom.
  • the ring structure formed by R72 and R73 may contain a heteroatom.
  • the ring structure is not particularly limited, examples thereof include pyrrolidine ring, piperidine ring, morpholine ring and the like.
  • R 72 and R 73 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, or R 72 and R 73 are bonded to form a pyrrolidine ring, piperidine It preferably forms a ring or a morpholine ring.
  • Examples of monomers that derive structural units represented by the general formula (I) include dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, diethylaminoethyl (meth)acrylate, diethylaminopropyl (meth)acrylate, and the like.
  • Alkyl group-substituted amino group-containing (meth)acrylates, alkyl group-substituted amino group-containing (meth)acrylamides such as dimethylaminoethyl (meth)acrylamide, dimethylaminopropyl (meth)acrylamide, and the like can be mentioned.
  • dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, and dimethylaminopropyl (meth)acrylamide can be preferably used in terms of improving dispersibility and dispersion stability.
  • the structural unit represented by general formula (I) may consist of one type, or may contain two or more types of structural units.
  • the structural unit functioning as the coloring material adsorption site is selected from the group consisting of at least part of the nitrogen site possessed by the structural unit represented by the general formula (I), an organic acid compound, and a halogenated hydrocarbon. At least one of them may form a salt (hereinafter, such a copolymer may be referred to as a salt-type copolymer).
  • a compound represented by the following general formula (1) and a compound represented by the following general formula (3) are preferable.
  • at least one compound selected from the group consisting of the organic acid compound and the halogenated hydrocarbon is preferably one or more compounds selected from the group consisting of the following general formulas (1) to (3). can.
  • R a is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a vinyl group, a phenyl group which may have a substituent or a benzyl group, or -O- Represents R e
  • R e is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a vinyl group, a phenyl group which may have a substituent or a benzyl group, or a C 1 to 4 represents a (meth)acryloyl group via an alkylene group.
  • R b , R b′ , and R b′′ each independently represent a hydrogen atom, an acidic group or an ester group thereof, or a substituent.
  • a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms a vinyl group which may have a substituent, a phenyl group which may have a substituent or a benzyl group, or -O- R f represents an optionally substituted linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a vinyl group optionally having a substituent, a substituted may be a phenyl group or a benzyl group, or a (meth)acryloyl group via an alkylene group having 1 to 4 carbon atoms, and X represents a chlorine atom, a bromine atom, or an iodine atom.
  • R c and R d are each independently a hydrogen atom, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a vinyl group, an optionally substituted phenyl group or a benzyl group, Alternatively, —O—R e , where R e is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a vinyl group, an optionally substituted phenyl group or a benzyl group, or a carbon number represents a (meth)acryloyl group via 1 to 4 alkylene groups, provided that at least one of R c and R d contains a carbon atom.
  • the organic acid compound is an acidic organic phosphorus compound such as phenylphosphonic acid or phenylphosphinic acid from the viewpoint of excellent dispersibility and dispersion stability of the coloring material.
  • the organic acid compound used in such a dispersant include, for example, organic acid compounds described in JP-A-2012-236882 and the like as suitable ones.
  • the halogenated hydrocarbon is preferably at least one selected from allyl halides such as allyl bromide and benzyl chloride, and aralkyl halides, from the viewpoint of excellent dispersibility and dispersion stability of the coloring material.
  • the content of at least one selected from the group consisting of organic acid compounds and halogenated hydrocarbons forms a salt with the terminal nitrogen moiety of the structural unit represented by general formula (I). Therefore, the total of at least one selected from the group consisting of organic acid compounds and halogenated hydrocarbons is 0 for the terminal nitrogen portion of the structural unit represented by general formula (I) It is preferably 0.01 mol or more, more preferably 0.05 mol or more, still more preferably 0.1 mol or more, and particularly preferably 0.2 mol or more. When it is at least the above lower limit, the effect of improving the dispersibility of the coloring material by salt formation is likely to be obtained.
  • At least one selected from the group consisting of organic acid compounds and halogenated hydrocarbons may be used singly or in combination of two or more. When two or more are combined, the total content is preferably within the above range.
  • the salt-type copolymer As a method for preparing the salt-type copolymer, at least one selected from the group consisting of the organic acid compound and the halogenated hydrocarbon is added to the solvent in which the copolymer before salt formation is dissolved or dispersed, and the mixture is stirred. and a method of heating if necessary.
  • the terminal nitrogen portion of the structural unit represented by the general formula (I) of the copolymer and at least one selected from the group consisting of the organic acid compound and the halogenated hydrocarbon form a salt. and the ratio thereof can be confirmed by a known technique such as NMR.
  • the copolymer having the structural unit represented by the general formula (I) has the structural unit represented by the general formula (I), and the graft polymer chain ( A graft copolymer having a meth)acrylate-derived structural unit, and a block having an A block containing a structural unit represented by the general formula (I) and a B block containing a (meth)acrylate-derived structural unit is more preferably at least one of copolymers.
  • the graft copolymer and the block copolymer will be described in order.
  • a graft copolymer having a structural unit represented by the general formula (I) and having a (meth)acrylate-derived structural unit in the graft polymer chain the structural unit represented by the general formula (I) and A graft copolymer having a structural unit represented by the following general formula (II), and at least part of the nitrogen site of the structural unit represented by the general formula (I) of the graft copolymer and an organic At least one salt-type graft copolymer formed by forming a salt with at least one selected from the group consisting of acid compounds and halogenated hydrocarbons may be mentioned.
  • R 71′ is a hydrogen atom or a methyl group
  • a 2 is a direct bond or a divalent linking group
  • Polymer represents a polymer chain
  • the constituent units of the polymer chain include (meth)acrylate (Contains structural units derived from
  • A2 is a direct bond or a divalent linking group.
  • the divalent linking group for A2 is not particularly limited as long as it can link the carbon atom derived from the ethylenically unsaturated double bond and the polymer chain.
  • Examples of the divalent linking group for A 2 include those similar to the divalent linking group for A 1 .
  • a 2 in general formula (II) is preferably a divalent linking group containing a -CONH- group or a -COO- group, and a -CONH- group or a -COO- group. , and an alkylene group having 1 to 10 carbon atoms are more preferable.
  • Polymer represents a polymer chain, and structural units of the polymer chain include structural units derived from (meth)acrylate.
  • the graft copolymer has a structural unit represented by the general formula (II) having a specific polymer chain, so that the solvent affinity is improved, and the dispersibility and dispersion stability of the coloring material are improved. and compatibility with the photoinitiator described above is improved.
  • Examples of structural units of the polymer chain include structural units represented by the following general formula (III).
  • R 74′′ is a hydrogen atom or a methyl group
  • a 4 is a divalent linking group
  • R 80 is a hydrogen atom or a hydrocarbon group which may contain a hetero atom.
  • Examples of the divalent linking group for A 4 include those similar to the divalent linking group for A 1 .
  • a structural unit derived from (meth)acrylate a structural unit represented by general formula (III) in which A 4 in general formula (III) is a divalent linking group containing a —COO— group is , at least included.
  • a 4 in general formula (III) may contain a divalent linking group containing a -CONH- group.
  • hydrocarbon groups in the hydrocarbon group optionally containing a heteroatom in R 80 include alkyl groups, alkenyl groups, aryl groups, and combinations thereof such as aralkyl groups and alkyl-substituted aryl groups.
  • the hydrocarbon group in the hydrocarbon group optionally containing a heteroatom for R 80 includes, for example, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an aryl group, an aralkyl group, and an alkyl-substituted Combinations of these, such as aryl groups, are included.
  • the alkyl group having 1 to 18 carbon atoms may be linear, branched or cyclic, and examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl and n- nonyl group, n-lauryl group, n-stearyl group, cyclopentyl group, cyclohexyl group, bornyl group, isobornyl group, dicyclopentanyl group, adamantyl group, lower alkyl group-substituted adamantyl group and the like.
  • the number of carbon atoms in the alkyl group is preferably 1-12, more preferably 1-6.
  • the alkenyl group having 2 to 18 carbon atoms may be linear, branched or cyclic. Examples of such alkenyl groups include vinyl groups, allyl groups, and propenyl groups. Although the position of the double bond of the alkenyl group is not limited, it is preferable that the alkenyl group has a double bond at the terminal from the viewpoint of the reactivity of the resulting polymer.
  • the alkenyl group preferably has 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms.
  • Aryl groups include phenyl, biphenyl, naphthyl, tolyl, and xylyl groups. The number of carbon atoms in the aryl group is preferably 6-24, more preferably 6-12.
  • the aralkyl group includes a benzyl group, a phenethyl group, a naphthylmethyl group, a biphenylmethyl group, and the like, and may further have a substituent.
  • the number of carbon atoms in the aralkyl group is preferably 7-20, more preferably 7-14.
  • a linear or branched alkyl group having 1 to 30 carbon atoms may be bonded as a substituent to the aromatic ring such as the aryl group or the aralkyl group.
  • hydrocarbon group for R 80 from the viewpoint of dispersion stability, among them, an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 12 carbon atoms which may be substituted with an alkyl group, and an alkyl group.
  • aralkyl groups having 7 to 14 carbon atoms, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n It is preferably one or more selected from the group consisting of -nonyl group, n-lauryl group, n-stearyl group, phenyl group optionally substituted with alkyl group, and benzyl group.
  • heteroatom examples include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom and the like.
  • the hydrocarbon group which may contain a heteroatom includes, for example, -CO-, -COO-, -OCO-, -O-, -S-, -CO-S-, - S-CO-, -O-CO-O-, -CO-NH-, -NH-CO-, -OCO-NH-, -NH-COO-, -NH-CO-NH-, -NH-O- , —O—NH— and other connecting groups.
  • the hydrocarbon group may have a substituent as long as it does not interfere with the dispersion performance of the graft copolymer. Nitro group, cyano group, epoxy group, isocyanate group, thiol group and the like.
  • the hydrocarbon group optionally containing a heteroatom in R 80 may have a structure in which a polymerizable group such as an alkenyl group is added to the end of the hydrocarbon group via a linking group containing a heteroatom.
  • Examples of monomers that induce structural units represented by general formula (III) include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) Acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, phenyl (meth)acrylate, isobornyl (meth)acrylate , dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, (meth) acrylic acid, 2-methacryloyloxyethyl succinate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2- Hydroxybut
  • the R 80 it is preferable to use one having excellent solubility in the organic solvent described later, and it may be appropriately selected according to the organic solvent used in the colorant dispersion.
  • the organic solvent is an ether-alcohol acetate-based, ether-based, ester-based, or alcohol-based organic solvent generally used as an organic solvent for a colorant dispersion
  • a structural unit represented by the following general formula (IV) and a structural unit represented by the following general formula (IV') are added to the structural unit of the polymer chain in the structural unit represented by the general formula (II).
  • the structural unit represented by the following general formula (IV) and the structural unit represented by the following general formula (IV') are structural units included in the structural unit represented by the general formula (III).
  • R 74 is a hydrogen atom or a methyl group
  • a 3 is a divalent linking group
  • R 75 is an ethylene group or a propylene group
  • R 76 is a hydrogen atom or a hydrocarbon group
  • m represents a number of 3 or more and 80 or less.
  • R 74' is a hydrogen atom or a methyl group
  • a 3' is a divalent linking group
  • R 77 is an alkylene group having 1 to 10 carbon atoms
  • R 78 has 3 to 7 carbon atoms.
  • the alkylene group of R 79 is a hydrogen atom or a hydrocarbon group
  • n represents a number of 1 or more and 40 or less.
  • Examples of the divalent linking group for A 3 include those similar to the divalent linking group for A 1 . Among them, from the viewpoint of solubility in organic solvents used for color filters, A 3 in general formula (IV) is preferably a divalent linking group containing a -CONH- group or a -COO- group. , -CONH- or -COO- group, and even more preferably -COO- group.
  • m represents the number of repeating units of an ethylene oxide chain or a propylene oxide chain, and represents a number of 3 or more. It is more preferable to have
  • the graft copolymer contains a main chain portion having a structural unit represented by general formula (I) and a structural unit represented by general formula (II),
  • the structural unit represented by the general formula (II) includes a structural unit represented by the general formula (IV) containing a polyethylene oxide chain or a polypropylene oxide chain having a specific repeating number in the polymer chain.
  • the constituent units of the polymer chain thus grafted include a constituent unit having a polyethylene oxide chain or polypropylene oxide chain having a specific repeating number,
  • the polymer chain itself has a branched structure. It is presumed that the multiple grafted polymer chains spread three-dimensionally in the film and the specific surface area increases, so that the penetration of the solvent into the coating film and the arrival of the coloring material can be further suppressed.
  • the upper limit of m is 80 or less, but preferably 50 or less from the viewpoint of solubility in organic solvents used for color filters.
  • the hydrocarbon group for R 76 may be the same as the hydrocarbon group for R 80 .
  • an alkyl group having 1 to 18 carbon atoms an aryl group having 6 to 12 carbon atoms which may be substituted with an alkyl group
  • the alkyl group is preferably one or more selected from the group consisting of optionally substituted aralkyl groups having 7 to 14 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. It is preferably one or more selected from the group consisting of groups, n-nonyl groups, n-lauryl groups, n-stearyl groups, phenyl groups optionally substituted with alkyl groups, and benzyl groups.
  • examples of the divalent linking group for A3 ' include the same divalent linking groups as the divalent linking groups for A1.
  • a 3' in general formula (IV') is a divalent linking group containing a -CONH- or -COO- group. is preferred, a -CONH- group or a -COO- group is more preferred, and a -COO- group is even more preferred.
  • R 77 is an alkylene group having 1 to 10 carbon atoms, preferably an alkylene group having 2 to 8 carbon atoms from the viewpoint of solvent resolubility.
  • R 78 is an alkylene group having 3 to 7 carbon atoms. Among them, an alkylene group having 3 to 5 carbon atoms, and more preferably an alkylene group having 5 carbon atoms are preferable from the standpoint of substrate adhesion.
  • R 79 is a hydrogen atom or a hydrocarbon group, and the hydrocarbon group for R 79 may be the same as the hydrocarbon group for R 76 above.
  • n in the general formula (IV′) represents the number of repeating units of the ester chain, and represents a number of 1 or more. There is preferably one, and more preferably 3 or more. On the other hand, the upper limit of n is 40 or less, but preferably 20 or less from the viewpoint of solubility in organic solvents used for color filters.
  • At least one structural unit selected from the group consisting of structural units represented by the general formula (IV) and structural units represented by the following general formula (IV') may be used alone. Although it is good, two or more kinds may be mixed.
  • the inclusion of the structural unit represented by the general formula (IV) makes the action of the solvent affinity portion due to the oxygen atom more pronounced, and shortens the development time of the photocurable green resin composition. It is preferable from the viewpoint of improvement in conversion and solvent resistance.
  • the structural unit of the polymer chain in the structural unit represented by the general formula (II) has m At least one selected from the group consisting of structural units represented by the general formula (IV) in which m is 19 or more and 80 or less, and a structural unit represented by the general formula (IV) in which m is 3 or more and 10 or less It is more preferable to contain in combination with at least one selected from the group consisting of at least one selected from the group consisting of structural units represented by the general formula (IV) in which m is 19 or more and 50 or less , m is 3 or more and m is 3 or more and 8 or less, and at least one selected from the group consisting of the structural units represented by the above general formula (IV) is further preferably combined.
  • the total proportion of the structural units represented by the general formula (IV) in which m is 19 or more and 80 or less is, when the total structural units of the polymer chain is 100% by mass, the effect of suppressing water staining Therefore, it is preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 4% by mass or more, while solvent re-solubility and water stain suppression effect Therefore, it is preferably 75% by mass or less, more preferably 65% by mass or less, and even more preferably 50% by mass or less.
  • the total proportion of the constituent units represented by IV) is preferably 20% by mass or more when the total constituent units of the polymer chain are taken as 100% by mass.
  • the total proportion of the structural units represented by the general formula (IV) in which m is 3 or more and 10 or less is 100 mass of all the structural units of the polymer chain. %, it is preferably 80% by mass or less, more preferably 60% by mass or less. Further, in the polymer chain, a structural unit represented by the general formula (IV) in which m is 19 or more and 80 or less and a structural unit represented by the general formula (IV) in which m is 3 or more and 10 or less are mixed.
  • the ratio is represented by the structural unit represented by the general formula (IV) in which m is 19 or more and 80 or less and the general formula (IV) in which m is 3 or more and 10 or less from the viewpoint of improving the effect of suppressing development residue.
  • the total of the structural units is 100 parts by mass
  • the total of the structural units represented by the general formula (IV) in which m is 19 or more and 80 or less is preferably 3 parts by mass or more, and 6 parts by mass or more. more preferably 80 parts by mass or less, and more preferably 60 parts by mass or less.
  • the total structural units of the polymer chain is 100% by mass, it is represented by the general formula (IV). and at least one structural unit selected from the group consisting of structural units represented by the general formula (IV′) is preferably 1% by mass or more, and 2% by mass or more. It is more preferable that the content is 4% by mass or more.
  • the total proportion of at least one structural unit selected from the group consisting of the structural units represented by the general formula (IV) and the structural units represented by the general formula (IV') is the point of solvent re-solubility. Therefore, it is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less when the total constituent units of the polymer chain are 100% by mass.
  • the structural unit represented by the general formula (III) including the structural unit represented by the general formula (IV) and the structural unit represented by the general formula (IV') is one type. It may be used alone or in combination of two or more. From the viewpoint of the dispersibility and dispersion stability of the coloring material, the total proportion of the structural units represented by the general formula (III) is 70% by mass or more when the total structural units of the polymer chain are 100% by mass. It is preferably 90% by mass or more, more preferably 90% by mass or more. On the other hand, from the viewpoint of satisfying dispersion stability and excellent solvent resistance at the same time, the total proportion of the structural units represented by the general formula (III) in the polymer chain is 100 of the total structural units of the polymer chain.
  • the total proportion of (meth)acrylate-derived structural units is 60% by mass when the total structural units of the polymer chain is 100% by mass, from the viewpoint of dispersion stability, solvent resistance, and compatibility with the initiator. It is preferably 80% by mass or more, and more preferably 80% by mass or more.
  • the total proportion of structural units derived from (meth)acrylate in the polymer chain is 100% by mass of all structural units of the polymer chain. Sometimes it may be 100% by weight.
  • the structural units of the polymer chain in the structural units represented by the general formula (II) of the graft copolymer include other structural units in addition to the structural units represented by the general formula (III). You can stay Examples of other structural units include structural units derived from monomers having unsaturated double bonds copolymerizable with the monomers from which the structural units represented by general formula (III) are derived. Examples of monomers from which other structural units are derived include styrene, styrenes such as ⁇ -methylstyrene, vinyl ethers such as phenyl vinyl ether, and the like.
  • the total proportion of other structural units is 100% of the total structural units of the polymer chain, from the viewpoint of the effect of the present invention.
  • % by mass it is preferably 30% by mass or less, more preferably 10% by mass or less.
  • the weight average molecular weight Mw of the polymer chain in the polymer is preferably 2000 or more, more preferably 3000 or more, and even more preferably 4000 or more, from the viewpoint of the dispersibility and dispersion stability of the colorant. , is more preferably 15,000 or less, and even more preferably 12,000 or less. Within the above range, a sufficient steric repulsion effect as a dispersant can be maintained, and the specific surface area of the solvent affinity part of the dispersant increases, allowing the solvent to penetrate the coating film and reach the coloring material. becomes easier to suppress.
  • the polymer chain in Polymer preferably has a solubility of 20 (g/100 g solvent) or more at 23° C. in the organic solvent used in combination.
  • the solubility of the polymer chain can be determined based on the solubility of the raw material into which the polymer chain is introduced when preparing the graft copolymer. For example, when using a polymerizable oligomer (macromonomer) containing a group having an ethylenically unsaturated double bond at the polymer chain and its terminal in order to introduce a polymer chain into the graft copolymer, the polymerizable oligomer is the above So long as it has solubility.
  • a copolymer is formed from a monomer containing a group having an ethylenically unsaturated double bond
  • a polymer chain containing a reactive group capable of reacting with the reactive group contained in the copolymer When a polymer chain is introduced, it is sufficient that the polymer chain containing the reactive group has the aforementioned solubility.
  • the structural unit represented by the general formula (I) is preferably contained in a proportion of 3% by mass to 60% by mass, more preferably 6% by mass to 45% by mass, 9% by mass to 30% by mass is more preferable. If the structural unit represented by the general formula (I) in the graft copolymer is within the above range, the ratio of the affinity portion with the coloring material in the graft copolymer will be appropriate, and the solubility in the organic solvent will be good. Since the deterioration of the properties can be suppressed, the adsorptivity to the coloring material is improved, and excellent dispersibility and dispersion stability can be easily obtained.
  • the structural unit represented by the general formula (II) is preferably contained in a proportion of 40% by mass to 97% by mass, more preferably 55% by mass to 94% by mass. Preferably, 70% by mass to 91% by mass is more preferable. If the structural unit represented by the general formula (II) in the graft copolymer is within the above range, the ratio of the solvent-affinity portion in the graft copolymer will be appropriate, resulting in sufficient stericity as a dispersant. Since the repulsion effect can be maintained and the specific surface area of the solvent affinity part of the dispersant is increased, it is easy to suppress penetration of the solvent into the coating film and arrival of the coloring material.
  • the graft copolymer used in the present invention other than the structural unit represented by the general formula (I) and the structural unit represented by the general formula (II), within a range that does not impair the effects of the present invention
  • it may have other structural units.
  • an ethylenically unsaturated double bond-containing monomer that can be copolymerized with the ethylenically unsaturated double bond-containing monomer from which the structural unit represented by the general formula (I) is derived is appropriately selected. can be copolymerized to introduce other structural units.
  • Examples of other structural units copolymerized with the structural units represented by the general formula (I) include structural units represented by the general formula (III).
  • the content ratio of the structural units is, at the time of production, the structural unit represented by the general formula (I), the structural unit represented by the general formula (II), and the structural unit represented by the general formula (II) when synthesizing the graft copolymer. It is calculated from the charged amount of the monomer that induces the structural unit represented by the general formula (III).
  • the weight average molecular weight Mw of the graft copolymer is preferably 4000 or more, more preferably 6000 or more, and even more preferably 8000 or more, from the viewpoint of dispersibility and dispersion stability. . On the other hand, it is preferably 50,000 or less, more preferably 30,000 or less, from the viewpoint of solvent resolubility.
  • the mass average molecular weight Mw in the present invention is a value measured by GPC (gel permeation chromatography).
  • the measurement was carried out using Tosoh's HLC-8120GPC, the elution solvent was N-methylpyrrolidone added with 0.01 mol/liter of lithium bromide, and the polystyrene standards for the calibration curve were Mw 377400, 210500, 96000, 50400, 20650, 10850, 5460, 2930, 1300, 580 (Easi PS-2 series manufactured by Polymer Laboratories) and Mw 1090000 (manufactured by Tosoh), and the measurement column was TSK-GEL ALPHA-M ⁇ 2 (manufactured by Tosoh). is.
  • graft copolymer (Method for producing graft copolymer)
  • a graft copolymer having a structural unit represented by the general formula (I) and a structural unit represented by the general formula (II) is produced. It is not particularly limited as long as it can be done.
  • a graft copolymer having a structural unit represented by the general formula (I) and a structural unit represented by the general formula (II) for example, a monomer represented by the following general formula (Ia) and a polymerizable oligomer (macromonomer) comprising a group having an ethylenically unsaturated double bond at the end of the polymer chain as a copolymerization component, and copolymerizing to produce a graft copolymer. mentioned. If necessary, other monomers may also be used, and the graft copolymer can be produced using known polymerization means.
  • R 71 , A 1 , R 72 and R 73 are the same as in general formula (I).
  • the monomer represented by the general formula (Ia) and other monomers containing groups having ethylenically unsaturated double bonds are added to form a copolymer, after which the reactive groups contained in the copolymer and reactive groups capable of reacting Polymer chains may be used to introduce polymer chains.
  • a functional group that reacts with the substituent is added.
  • a polymer chain may be introduced by reacting with a polymer chain contained therein.
  • a copolymer having a glycidyl group in the side chain is reacted with a polymer chain having a terminal carboxyl group, or a copolymer having an isocyanate group in the side chain is reacted with a polymer chain having a hydroxyl group at the terminal.
  • additives commonly used in polymerization such as polymerization initiators, dispersion stabilizers, and chain transfer agents, may be used.
  • each block in the block copolymer is not particularly limited, and examples thereof include AB block copolymers, ABA block copolymers, and BAB block copolymers. Among them, an AB block copolymer or an ABA block copolymer is preferable because of its excellent dispersibility.
  • the A block is a block that functions as a coloring material adsorption site and contains at least the structural unit represented by the general formula (I). At least part of the nitrogen sites of the structural units represented by the general formula (I) of the block copolymer and at least one selected from the group consisting of organic acid compounds and halogenated hydrocarbons form a salt. It may be a salt-type block copolymer.
  • the A block may have a structural unit other than the structural unit represented by general formula (I) within the scope of achieving the object of the present invention, and the structural unit represented by general formula (I) and Any structural unit that can be copolymerized can be contained. Specific examples thereof include structural units represented by the general formula (III).
  • the content of the structural unit represented by general formula (I) in the A block in the block copolymer before salt formation is 50% by mass to 100% by mass with respect to the total mass of all structural units in the A block. preferably 80% by mass to 100% by mass, most preferably 100% by mass. This is because the higher the ratio of the structural unit represented by the general formula (I), the better the adsorptive power to the coloring material, and the better the dispersibility and dispersion stability of the block copolymer. In addition, the content ratio of the structural unit is calculated from the charged mass when synthesizing the A block having the structural unit represented by the general formula (I).
  • the total content of all structural units of the A block including the structural unit represented by the general formula (I) is from the viewpoint of good dispersibility and dispersion stability. It is preferably 5% by mass to 60% by mass, more preferably 10% by mass to 50% by mass, based on the total mass of all structural units of the copolymer.
  • the content ratio of the structural unit represented by the general formula (I) in the block copolymer before salt formation is the total structural units of the block copolymer from the viewpoint of good dispersibility and dispersion stability. It is preferably 5% by mass to 60% by mass, more preferably 10% by mass to 50% by mass, based on the total mass of.
  • the content ratio of each structural unit in the block copolymer is calculated from the charged mass when synthesizing the block copolymer before salt formation.
  • the structural unit represented by the general formula (I) only needs to have an affinity with the colorant, and may consist of one type or may contain two or more types of structural units. good.
  • the B block is a block that functions as a solvent affinity site and contains at least a (meth)acrylate-derived structural unit.
  • (Meth)acrylate-derived structural units may be the same as those described above.
  • As the B block a monomer having an unsaturated double bond, which is copolymerizable with the monomer from which the structural unit represented by the general formula (I) is derived, is appropriately selected depending on the solvent so as to have solvent affinity. It is preferably used selectively. As a guideline, it is preferable to introduce the B block so that the solubility of the copolymer at 23° C. in the solvent used in combination is 20 (g/100 g solvent) or more.
  • the structural unit constituting the B block part may consist of one type, or may contain two or more types of structural units. Examples of structural units contained in the B block include structural units represented by the general formula (III).
  • the unit number m of the structural unit represented by the general formula (I) and the unit number n of other structural units constituting the solvent-affinity block portion is preferably in the range of 0.01 or more and 1 or less, and is preferably in the range of 0.05 or more and 0.7 or less from the viewpoint of dispersibility and dispersion stability of the coloring material. more preferred.
  • the B block in this case contains a (meth)acrylate-derived structural unit as an essential component, and may be the same as the B block of WO 2016/104493.
  • the carboxy group-containing monomer a monomer that can be copolymerized with a monomer having a structural unit represented by general formula (I) and that contains an unsaturated double bond and a carboxy group can be used.
  • monomers include (meth)acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl esters, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and acrylic acid dimers.
  • addition reaction products of monomers having a hydroxyl group such as 2-hydroxyethyl (meth)acrylate and cyclic anhydrides such as maleic anhydride, phthalic anhydride and cyclohexanedicarboxylic anhydride, ⁇ -carboxy-polycaprolactone Mono (meth) acrylate and the like can also be used.
  • Acid anhydride group-containing monomers such as maleic anhydride, itaconic anhydride, and citraconic anhydride may also be used as a precursor of the carboxy group.
  • (meth)acrylic acid is particularly preferable from the viewpoint of copolymerizability, cost, solubility, glass transition temperature, and the like.
  • the content ratio of the structural unit derived from the carboxy group-containing monomer may be appropriately set so that the acid value of the block copolymer is within the specific acid value range. Although not limited, it is preferably 0.05% by mass to 4.5% by mass, and 0.07% by mass to 3.7% by mass, based on the total mass of all structural units of the block copolymer. is more preferred.
  • the content ratio of the structural unit derived from the carboxy group-containing monomer is at least the lower limit value, the effect of suppressing development residue is exhibited, and when it is at most the upper limit value, development adhesion is deteriorated and solvent resolubility is reduced. It can prevent deterioration.
  • the structural unit derived from the carboxy group-containing monomer may have the specific acid value, and may consist of one type or may contain two or more types of structural units.
  • the B block of the block copolymer contains a structural unit derived from a hydroxyl group-containing monomer from the viewpoint of improving development adhesion.
  • the B block contains a structural unit derived from a hydroxyl group-containing monomer, the development speed is further improved.
  • the hydroxyl group here refers to an alcoholic hydroxyl group bonded to an aliphatic hydrocarbon.
  • a monomer containing an unsaturated double bond and a hydroxyl group that is copolymerizable with the monomer that derives the structural unit represented by general formula (I) can be used.
  • Such monomers include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycerin mono (meth) Acrylate, polyethylene glycol mono(meth)acrylate, ⁇ -caprolactone 1 mol adduct of 2-hydroxyethyl(meth)acrylate, 2-hydroxy-3-phenoxypropyl(meth)acrylate and the like.
  • one or more selected from the group consisting of 2-hydroxyethyl methacrylate and 2-hydroxy-3-phenoxypropyl (meth)acrylate is preferable from the viewpoint of improving development adhesion.
  • the content of structural units derived from hydroxyl group-containing monomers in the block copolymer before salt formation is preferably 1% by mass or more, preferably 2% by mass, based on the total mass of all structural units of the block copolymer. It is more preferably at least 3% by mass, even more preferably at least 3% by mass, and particularly preferably at least 4% by mass. When it is at least the above lower limit value, the development adhesion can be made preferable. Similarly, it is preferably 70% by mass or less, more preferably 60% by mass or less, even more preferably 50% by mass or less, and particularly preferably 40% by mass or less.
  • the content ratio of the structural unit is calculated from the charged mass when synthesizing the block copolymer before salt formation.
  • the acid value of at least one of the block copolymer and the salt-type block copolymer is preferably 1 mgKOH/g or more, and preferably 2 mgKOH/g or more, as a lower limit from the viewpoint of the effect of suppressing development residue. is more preferable.
  • the upper limit of the acid value of at least one of the block copolymer and the salt-type block copolymer is 18 mgKOH/g or less from the viewpoint of preventing deterioration of development adhesion and solvent re-solubility. preferably 16 mgKOH/g or less, and even more preferably 14 mgKOH/g or less.
  • the acid value of at least one of the block copolymer and the salt-type block copolymer can be determined by the method described in WO2016/104493.
  • the glass transition temperature of at least one of the block copolymer and the salt-type block copolymer is preferably 30° C. or higher, more preferably 32° C. or higher, more preferably 35° C. or higher, from the viewpoint of development adhesion. . On the other hand, the temperature is preferably 200° C. or less from the viewpoint of operability during use, such as facilitating accurate weighing.
  • the glass transition temperature of at least one of the block copolymer and the salt-type block copolymer is determined by differential scanning calorimetry (DSC) according to JIS K7121. When two or more peaks indicating the glass transition temperature are observed, the peak area, that is, the peak having the largest area of the portion projecting from the base line of the obtained chart is taken as the representative value of the glass transition temperature.
  • the mass-average molecular weight Mw of the block copolymer is not particularly limited, but is preferably from 1000 to 20000, more preferably from 2000 to 15000, from the viewpoint of improving colorant dispersibility and dispersion stability. It is more preferably 3,000 to 12,000.
  • the weight average molecular weight (Mw) can be measured in the same manner as described above.
  • the total proportion of structural units derived from (meth)acrylate is 100% by mass of all structural units in the B block in the block copolymer from the viewpoint of dispersion stability, solvent resistance, and compatibility with the photoinitiator.
  • the content is preferably 60% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • the total proportion of structural units derived from (meth)acrylate is 100 mass% when all the structural units in the B block are 100 mass%. %.
  • the B block contains structural units derived from the carboxy group-containing monomer
  • the total proportion of the structural units derived from (meth)acrylate is different from the structural units derived from the carboxy group-containing monomer in the B block.
  • the unit is 100% by mass, it may be 100% by mass.
  • the total content of all structural units of the B block is, from the viewpoint of good dispersibility and dispersion stability, relative to the total mass of all structural units of the block copolymer. , preferably 5% to 60% by mass, more preferably 10% to 50% by mass.
  • the content ratio of the structural unit represented by the general formula (III) is the total mass of all structural units of the block copolymer from the viewpoint of improving the dispersibility of the coloring material. It is preferably 40% by mass to 95% by mass, more preferably 50% by mass to 90% by mass. The content ratio of the structural unit is calculated from the charged mass when synthesizing the block copolymer before salt formation.
  • the (meth)acrylate copolymer containing the structural unit represented by the general formula (I) is a copolymer having an amine value of 40 mgKOH/g to 120 mgKOH/g. It is preferable from the viewpoint of improving brightness and contrast without depositing foreign substances. When the amine value is within the above range, the viscosity stability over time and heat resistance are excellent, and alkali developability and solvent re-solubility are also excellent.
  • the amine value of the (meth)acrylate copolymer containing the structural unit represented by the general formula (I) is preferably 80 mgKOH/g or more, especially 90 mgKOH/g or more. is more preferable.
  • the amine value of the (meth)acrylate copolymer containing the structural unit represented by the general formula (I) is preferably 110 mgKOH/g or less, and 105 mgKOH/g.
  • the following are more preferable.
  • the amine value refers to the number of mg of potassium hydroxide equivalent to perchloric acid required to neutralize the amine component contained in 1 g of sample, and can be measured by the method defined in JIS-K7237. When measured by this method, even if the amino group forms a salt with the organic acid compound in the dispersant, the organic acid compound usually dissociates, so the block copolymer itself used as the dispersant can be measured.
  • the content ratio (mol%) of each structural unit in the copolymer in the dispersant can be obtained from the amount of raw materials charged at the time of production, and can be measured using an analyzer such as NMR. Also, the structure of the dispersant can be measured using NMR, various mass spectrometry, and the like. In addition, if necessary, the dispersant is decomposed by thermal decomposition or the like, and the obtained decomposition product is subjected to high performance liquid chromatography, gas chromatograph mass spectrometer, NMR, elemental analysis, XPS / ESCA, TOF-SIMS, etc. can ask.
  • the content of the dispersant is not particularly limited as long as it is selected so as to be excellent in the dispersibility and dispersion stability of the colorant, but the photocurable green resin composition
  • the photocurable green resin composition For example, it is preferably in the range of 2% to 30% by mass, more preferably 3% to 25% by mass, based on the total solid content in the product.
  • the dispersibility and dispersion stability of the coloring material are excellent, and the storage stability of the photocurable green resin composition is excellent.
  • developability will become favorable.
  • the content of the dispersant is, for example, preferably 2% by mass to 25% by mass, more preferably with respect to the total solid content of the photocurable green resin composition. is in the range of 3% by mass to 20% by mass.
  • the photocurable green resin composition of the present invention preferably further contains a thiol compound from the viewpoint of improving solvent resistance after low-temperature heat treatment and substrate adhesion.
  • thiol compounds include monofunctional thiol compounds having one thiol group and polyfunctional thiol compounds having two or more thiol groups. From the viewpoint of suppressing line width shift and improving substrate adhesion, it is more preferable to use a monofunctional thiol compound having one thiol group.
  • Examples of monofunctional thiol compounds include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2-mercapto-5-methoxybenzothiazole, 2-mercapto-5-methoxybenzimidazole, 3-mercapto propionic acid, methyl 3-mercaptopropionate, ethyl 3-mercaptopropionate, octyl 3-mercaptopropionate and the like.
  • polyfunctional thiol compounds include 1,4-bis(3-mercaptobutyryloxy)butane, 1,3,5-tris(3-mercaptobutyloxyethyl)-1,3,5-triazine-2, 4,6(1H,3H,5H)-trione, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), di pentaerythritol hexakis(3-mercaptopropionate), tetraethylene glycol bis(3-mercaptopropionate) and the like.
  • the thiol compound may be used alone or in combination of two or more. Among them, 2-mercaptobenzoxazole or 2-mercaptobenzothiazole improves solvent resistance and substrate adhesion after low-temperature heat treatment. It is preferable from the point of view.
  • the content of the thiol compound is usually in the range of 0.5% by mass to 10% by mass, preferably 1% by mass to 5% by mass, based on the total solid content of the photocurable green resin composition. When it is at least the above lower limit, the solvent resistance after low-temperature heat treatment and substrate adhesion are likely to be improved. On the other hand, when it is the above upper limit or less, the photocurable green resin composition of the present invention tends to have good developability and suppressed line width shift.
  • the photocurable green resin composition of the present invention may further contain various additives.
  • additives include antioxidants, polymerization terminators, chain transfer agents, leveling agents, plasticizers, surfactants, antifoaming agents, silane coupling agents, ultraviolet absorbers, adhesion promoters, and the like.
  • specific examples of surfactants and plasticizers include those described in JP-A-2013-029832.
  • the photocurable green resin composition of the present invention preferably further contains an antioxidant from the viewpoint of suppressing the amount of line width shift in the cured film.
  • the photocurable green resin composition of the present invention for example, by containing an antioxidant in combination with the compound represented by the general formula (A), excessively without impairing the curability when forming a cured film Since such a radical chain reaction can be controlled, the linearity in forming a fine line pattern is further improved, and the ability to form a fine line pattern according to the design of the mask line width is improved.
  • the heat resistance can be improved, and the decrease in luminance after exposure and post-baking can be suppressed, so the luminance can be improved.
  • the antioxidant used in the present invention is not particularly limited, and may be appropriately selected from those conventionally known.
  • Specific examples of antioxidants include hindered phenol-based antioxidants, amine-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, hydrazine-based antioxidants, and the like. It is preferable to use a hindered phenol-based antioxidant from the viewpoint of improving the ability to form a fine line pattern according to the design of the line width and from the viewpoint of heat resistance. It may also be a latent antioxidant as described in WO 2014/021023.
  • Hindered phenol-based antioxidants include, for example, pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (trade name: trade name: IRGANOX1010, manufactured by BASF), 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate (trade name: Irganox 3114, manufactured by BASF), 2,4,6-tris(4-hydroxy-3 ,5-di-tert-butylbenzyl)mesitylene (trade name: Irganox 1330, manufactured by BASF), 2,2′-methylenebis(6-tert-butyl-4-methylphenol) (trade name: Sumilizer MDP-S, Sumitomo Chemical), 6,6′-thiobis(2-tert-butyl-4-methylphenol) (trade name: Irganox 1081, manufactured by BASF), 3,5-di-
  • pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (trade name: IRGANOX1010, manufactured by BASF) is preferable from the viewpoint of heat resistance and light resistance. .
  • the content of the antioxidant is usually 0.1% by mass to 10.0% by mass, preferably 0.5% by mass to 5.0% by mass, based on the total solid content of the photocurable green resin composition. is within the range of If it is at least the above lower limit, the ability to form a fine line pattern as designed with a mask line width is improved, and the heat resistance is excellent. On the other hand, if it is below the said upper limit, it will be easy to make the photocurable green resin composition of this invention into a highly sensitive photocurable green resin composition.
  • silane coupling agents examples include KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-903, KBE-903, KBM573, KBM-403, KBE-402, KBE-403 , KBM-303, KBM-802, KBM-803, KBE-9007, X-12-967C (manufactured by Shin-Etsu Silicone Co., Ltd.) and the like.
  • KBM-502, KBM-503, KBE-502, KBE-503 and KBM-5103 having a methacrylic group or an acrylic group are preferable from the viewpoint of adhesion to SiN substrates.
  • the content of the silane coupling agent is usually 0.05% by mass to 10.0% by mass, preferably 0.1% by mass to 5.0% by mass, based on the total solid content in the photocurable green resin composition. It is within the range of % by mass. If it is more than the said lower limit and below the said upper limit, the board
  • the method for producing a photocurable green resin composition of the present invention, a colorant, a photopolymerizable compound, a photoinitiator, and optionally various additive components are mixed using a known mixing means.
  • the photocurable green resin composition of the present invention contains a colorant, a dispersant, an alkali-soluble resin, a photopolymerizable compound, a photoinitiator, a solvent, and optionally various additive components.
  • a coloring material and a dispersing agent are added to a solvent to prepare a coloring material dispersion, and an alkali-soluble resin and an alkali-soluble resin are added to the dispersion.
  • a method of mixing a photopolymerizable compound, a photoinitiator, and optionally various additive components (2) a colorant, a dispersant, an alkali-soluble resin, and a photopolymerizable compound in a solvent; A method of simultaneously adding and mixing a photoinitiator and optionally various additive components; (3) dispersing agent, alkali-soluble resin, photopolymerizable compound, photoinitiator, and optionally (4) adding a coloring material, a dispersant, and an alkali-soluble resin to a solvent to prepare a coloring material dispersion; is prepared, and an alkali-soluble resin, a solvent, a photopolymerizable compound, a photoinitiator, and optionally various additive components are added to the dispersion and mixed. .
  • the above methods (1) and (4) are preferable because they can effectively prevent the aggregation of the colorant and uniformly disperse the colorant.
  • the method for preparing the colorant dispersion can be appropriately selected from conventionally known dispersion methods. For example, (1) a dispersant is mixed with a solvent in advance and stirred to prepare a dispersant solution, and then an organic acid compound is mixed as necessary to form a salt between the amino group of the dispersant and the organic acid compound.
  • a method of mixing this with a coloring material and, if necessary, other components and dispersing using a known stirrer or disperser (2) mixing and stirring a dispersant in a solvent to prepare a dispersant solution; , a coloring material and, if necessary, an organic acid compound, and if necessary, other components are mixed and dispersed using a known stirrer or disperser; (3) a dispersant is mixed with a solvent and stirred; , Prepare a dispersant solution, then mix the coloring material and other components as necessary, make a dispersion using a known stirrer or disperser, and then add an organic acid compound as necessary. methods and the like.
  • dispersing machines for dispersing include roll mills such as two-roll and three-roll roll mills, ball mills such as ball mills and vibrating ball mills, bead mills such as paint conditioners, continuous disk-type bead mills, and continuous annular-type bead mills.
  • the diameter of the beads used is preferably 0.03 mm to 2.00 mm, more preferably 0.10 mm to 1.0 mm.
  • the photocurable green resin composition according to the present invention is suitably used for forming a colored cured film as a substitute for a circularly polarizing plate because the cured film has an effect of suppressing reflection of external light.
  • the cured film of the photocurable green resin composition according to the present invention is used in place of the circularly polarizing plate, since it can be a display device that does not contain a polarizing plate, the photocurable green resin composition according to the present invention
  • the article is preferably used in display applications that do not include polarizers.
  • the photocurable green resin composition according to the present invention is a photocurable green resin composition used for a cured film formed on an organic light emitting device, it is used for a display device that does not include an external color filter substrate. It is suitable for use in organic light-emitting display devices that are thin and have improved flexibility.
  • the photocurable green resin composition according to the present invention can form a cured film having good solvent resistance and excellent substrate adhesion even in low-temperature heat treatment by appropriately selecting the components as described above. Therefore, it can be suitably used for forming a cured film on a substrate on which an element having low heat resistance is formed by a low-temperature heat treatment of 130°C or less, further 100°C or less or 90°C or less.
  • a display device is characterized by having a cured film of the photocurable green resin composition according to the present invention on an organic light-emitting element.
  • the cured film of the photocurable green resin composition used for the cured film formed on the organic light emitting device according to the present invention is formed on the organic light emitting device.
  • an external circularly polarizing plate and an external color filter substrate are not required, and the device may not have them.
  • the cured film is formed on the organic light emitting element using the photocurable green resin composition used for the cured film formed on the organic light emitting element according to the present invention. Since there is no substrate used for an external color filter substrate between the light emitting element and the cured film, the thinness and flexibility are improved.
  • FIG. 1 is a schematic cross-sectional view showing an example of a display device provided with an organic light emitting device according to the present invention.
  • a display device 100 according to the present invention includes an element substrate 30 having an organic light-emitting element, and an external light reflection prevention device including a colored cured film (9R, 9G, 9B) on the element substrate 30.
  • a membrane 20 is provided and a sealing membrane 11 is provided thereon.
  • a device substrate 30 having the organic light-emitting device includes a substrate 1 on which thin film transistors (TFTs) 2, which are driving devices, are arranged so as to correspond to respective sub-pixels, a sealing film 3 is provided thereon, and a sealing film is further provided. Electrode 4 (anode) corresponding to each sub-pixel and partition wall 5 for partitioning each sub-pixel are provided on 3, and organic light-emitting elements (6R, 6G , 6B) are arranged, and an electrode 7 (cathode) is further provided on the organic light-emitting elements (6R, 6G, 6B).
  • the element substrate 30 having the organic light-emitting elements further includes a sealing layer 8 covering the organic light-emitting elements from above.
  • a display device 100 according to the present invention shown in FIG. 1 further includes a cover material 13 on a sealing film 11 with a transparent adhesive layer 12 interposed therebetween.
  • the display device 100 according to the present invention has a known structure such as a touch sensor layer including an insulating film and a transparent electrode layer on the sealing film 11 and a hard coat layer on the touch sensor layer. may be further provided as appropriate.
  • the layer of the colored cured film (9R, 9G, 9B) and the light shielding part 10 provided on the element substrate 30 having the organic light emitting element is used as the external light antireflection film 20.
  • the external light antireflection film used in the present invention does not include a separate substrate such as an external circularly polarizing plate or an external color filter substrate, and can improve thinness and flexibility.
  • the colored cured film provided on the organic light-emitting element blocks external light except for the color originally emitted by the organic light-emitting element, and does not block the light emitted by the organic light-emitting element, thereby improving the light utilization efficiency. It is possible to suppress the external light reflection without lowering it.
  • the cured film of the photocurable green resin composition according to the present invention may be the green cured film (9G) among the three colored cured films (9R, 9G, 9B).
  • TFT thin film transistor
  • the electrode 7 (cathode), etc. can be used by appropriately selecting known structures.
  • the organic light-emitting device may have known structures such as a hole injection layer, a hole transport layer, an electron injection layer, etc., in addition to the light-emitting layer.
  • the sealing layer 8 on the organic EL element used in the display device according to the present invention is composed of an inorganic film, an organic film, and a multilayer film in which these films are laminated. It is preferable to use a multilayer film because it is highly effective in suppressing penetration of moisture and oxygen. Specific examples thereof include a multilayer film in which an inorganic film such as a metal film, a metal oxide film, SiOx, SiNx, and an organic film are laminated.
  • At least one of the colored cured films used in the display device according to the present invention is a cured film of the photocurable green resin composition according to the present invention.
  • the colored cured film is usually formed in an opening of a light shielding part, which will be described later, on the sealing layer 8 on the organic light emitting element, and is usually composed of colored patterns of three or more colors. These may be colored patterns similar to (6R, 6G, 6B) of the sub-pixels of the organic light emitting device.
  • the arrangement of the colored cured films (9R, 9G, 9B) may be, for example, a general arrangement such as a stripe type, a mosaic type, a triangle type, or a 4-pixel arrangement type. Also, the width, area, etc.
  • the thickness of the colored cured film is appropriately controlled by adjusting the coating method, solid content concentration and viscosity of the photocurable green resin composition, and is usually in the range of 1 ⁇ m to 5 ⁇ m.
  • the light-shielding portion 10 used in the display device according to the present invention is usually formed in a pattern on the sealing layer 8 on the organic light-emitting element, and is used as a light-shielding portion in a general color filter.
  • the pattern shape of the light shielding portion may be appropriately selected in accordance with the shape of the colored cured film, and examples thereof include a stripe shape and a matrix shape.
  • the light shielding portion may be a metal thin film of chromium or the like formed by a sputtering method, a vacuum deposition method, or the like.
  • the light-shielding portion may be a resin layer containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, or organic pigments in a resin binder.
  • a resin layer containing light-shielding particles a method of patterning by development using a photosensitive resist, a method of patterning using an inkjet ink containing light-shielding particles, a method of thermally transferring a photosensitive resist, and the like can be used. be.
  • the film thickness of the light-shielding portion is set to about 0.2 ⁇ m to 0.4 ⁇ m in the case of a metal thin film, and is set to about 0.5 ⁇ m to 2 ⁇ m in the case of a black pigment dispersed or dissolved in a binder resin. be done.
  • the colored cured films (9R, 9G, 9B) and the sealing film 11 provided on the light shielding portion 10 known materials can be appropriately selected and used. Also, for the transparent adhesive layer 12 provided on the sealing film 11 and the cover material 13, well-known materials can be appropriately selected and used. In the present invention, even when glass is used as the cover material, glass can be used as the cover material because the green cured film has good weather resistance and the reduction in transmittance is suppressed.
  • the display device according to the present invention is not limited to the configuration shown in FIG. .
  • Method for producing a laminate of an organic light-emitting element and an anti-reflection film for external light comprises: A step of forming a coating film by applying the photocurable green resin composition according to the present invention on an organic light emitting device; a step of irradiating the coating film with light; A post-baking step of heating the film after the light irradiation, and By including the step of developing the film after the light irradiation, A step of forming a cured film of the photocurable green resin composition according to the present invention on the organic light-emitting device. Each step will be described below.
  • the organic light-emitting element does not have to be applied adjacent to the organic light-emitting element, and at least one layer is interposed therebetween. You can apply it.
  • an electrode 7 is usually further provided on the sub-pixels (6R, 6G, 6B) of the organic light emitting element to prevent moisture and oxygen from entering. Since the sealing layer 8 is provided for the purpose, it may be applied onto the organic light-emitting element via these electrodes and the sealing layer.
  • the light shielding portion 10 is provided in advance on the sealing layer 8 by a known method as exemplified above, and the colored cured films (9R, 9G, 9B) are formed in the openings of the light shielding portion 10. It may be applied as follows.
  • a spray coating method, a dip coating method, a bar coating method, a roll coating method, a spin coating method, a die coating method, or the like is used to apply the photocurable green resin composition of the present invention to the organic light emitting device. Apply on top.
  • a spin coating method and a die coating method can be preferably used. Then, the wet coating film is dried using a hot plate, an oven, or the like to form a coating film.
  • the obtained coating film is irradiated with light (exposure) through a mask of a predetermined pattern, and the photopolymerizable compound and, if necessary, the alkali-soluble resin, etc. are photopolymerized.
  • Light sources used for exposure include, for example, ultraviolet light from low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, electron beams, and the like. The amount of exposure is appropriately adjusted depending on the light source used, the thickness of the coating film, and the like.
  • a post-baking step of heating the film after the light irradiation may be performed.
  • the heating conditions may be appropriately selected according to the mixing ratio of each component in the photocurable green resin composition to be used, the thickness of the coating film, and the like.
  • the post-baking process may be performed on the film after the light irradiation before the development process described later, after the development process, or before and after the development process.
  • the heating temperature in the post-baking step is preferably 130° C. or less because the colored cured film is directly formed on the element substrate having the organic light-emitting element.
  • the heating temperature is more preferably 100° C. or lower, still more preferably 90° C. or lower.
  • the heating temperature may be 30° C. or higher, 35° C. or higher, or 40° C. or higher.
  • the film after the light irradiation to be developed may be a film after post-baking.
  • a coating film is formed in a desired pattern by developing with a developer to dissolve and remove the unexposed portions.
  • a developer a solution obtained by dissolving an alkali in water or a water-soluble solvent is usually used. An appropriate amount of a surfactant or the like may be added to this alkaline solution.
  • a general method can be adopted as the developing method.
  • the heating temperature in this post-baking step is preferably 130° C. or less, more preferably 100° C. or less, and even more preferably 90° C. or less. . Also, the heating temperature may be 30° C. or higher, 35° C. or higher, or 40° C. or higher.
  • light irradiation may be additionally performed after development processing or in order to further harden the film after post-baking.
  • the mass average molecular weight (Mw) of the copolymer before salt formation was determined as a standard polystyrene equivalent value by GPC (gel permeation chromatography) according to the measurement method described in the specification of the present invention.
  • EEMA 1-ethoxyethyl methacrylate
  • TMSMA 2-(trimethylsilyloxy)ethyl methacrylate
  • EHMA 2-ethylhexyl methacrylate
  • BMA n-butyl methacrylate
  • BzMA benzyl methacrylate
  • MMA methyl methacrylate
  • DMMA dimethylaminoethyl methacrylate
  • block copolymer PGMEA solution was reprecipitated in hexane, filtered, and purified by vacuum drying to obtain block copolymer 1 (amine value: 95 mg KOH/ g, acid value 8 mgKOH/g, Tg 38°C).
  • the weight average molecular weight Mw was 7,730.
  • Example 1 Production of photocurable green resin composition G-1)
  • Production of Colorant Dispersion B (1) In a 225 mL mayonnaise bottle, 64.9 parts by mass of PGMEA, 13.5 parts by mass of the alkali-soluble resin A solution of Preparation Example 1 (solid content: 40% by mass), Synthesis Example 1 9.2 parts by mass of a PGMEA solution (solid content: 35% by mass) of block copolymer 1 was added and stirred. 0.39 parts by mass of phenylphosphonic acid (trade name: PPA, manufactured by Nissan Chemical Industries, Ltd.) was added thereto, and the mixture was stirred at room temperature for 30 minutes.
  • PPA phenylphosphonic acid
  • the block copolymer 1 is salt-formed with phenylphosphonic acid to form a salt-type block copolymer 1 .
  • Example 2 to 5 Production of photocurable green resin compositions G-2 to G-5)
  • Example 1 as shown in Table 1, by changing the type and / or mass ratio of the blue pigment, the yellow pigment and the green pigment, the alkali-soluble resin A solution, the polyfunctional monomer, and the formula (A-2) Same as the photocurable green resin composition G-1 except that the ratio of the oxime ester photoinitiator represented by is the same as in Example 1 and the pigment concentration is changed to the value shown in Table 1. Then, photocurable green resin compositions G-2 to G-5 were obtained.
  • Pigment Green 7 (G7) colorant dispersion respectively, in the production of colorant dispersion B(1), C.I. I. Pigment Blue 15:4 (B15:4) was added to C.I. I. Pigment Blue 15:6 (B15:6), C.I. I. Pigment Green 59 (G59) or C.I. I. Colorant dispersion B(2), colorant dispersion G(1), or colorant dispersion G was prepared in the same manner as the colorant dispersion B(1), except that Pigment Green 7 (G7) was used. (2).
  • Comparative Examples 3 to 4 Production of comparative photocurable green resin compositions CG-3 to CG-4)
  • Example 1 As shown in Table 1, in the same manner as in Examples 1 and 2 of Patent Document 2 (JP 2011-242568 A), the type and / or mass ratio of the blue pigment and the yellow pigment And, by changing the type of initiator (Irgacure 907 (907, manufactured by BASF) and Kayacure DETX-S (DETX, manufactured by Nippon Kayaku) at a mass ratio of 2: 1), the amounts of components other than pigments are shown in Table 1. Comparative photocurable green resin compositions CG-3 to CG-4 were obtained in the same manner as the photocurable green resin composition G-1, except that the pigment concentration was changed to be the same.
  • C.I. I. Pigment Blue 16 (B16), or C.I. I. Pigment Blue 15:3 (B15:3) colorant dispersion was prepared by C.I. I. Pigment Blue 15:4 (B15:4) was added to C.I. I. Pigment Blue 16 (B16), or C.I. I. Pigment Blue 15:3 (B15:3) was changed to Colorant Dispersion B(1) in the same manner as Colorant Dispersion B(3) or Colorant Dispersion B(4). rice field.
  • Example 5 Production of comparative photocurable green resin compositions CG-5 to CG-7)
  • Example 1 As shown in Table 1, the types of blue pigment and yellow pigment and / Alternatively, the mass ratio and the type of initiator (Irgacure OXE02 (OXE02, manufactured by BASF)) were changed, and the amount of components other than the pigment was changed to the pigment concentration shown in Table 1.
  • Photocurable green resin Comparative photocurable green resin compositions CG-5 to CG-7 were obtained in the same manner as composition G-1.
  • Example 8 Production of comparative photocurable green resin composition CG-8
  • Table 1 the type and / or mass ratio of the same yellow pigment, green pigment and black pigment as in Example 1 of Patent Document 1 (Japanese Patent Application Laid-Open No. 2017-182067), and the start The type of agent (Irgacure 907 (907, manufactured by BASF) and Irgacure OXE01 (OXE01, manufactured by BASF)) were changed, and the amounts of components other than pigments were changed so that the pigment concentrations shown in Table 1 were obtained.
  • a comparative photocurable green resin composition CG-8 was obtained in the same manner as the curable green resin composition G-1.
  • the colorant dispersion of black pigment was prepared by C.I. I. Pigment Blue 15:4 (B15:4) was changed to carbon black (manufactured by Mitsubishi Chemical Co., Ltd., MA77) in the same manner as in the production of colorant dispersion B(1) to prepare colorant dispersion BK(1). Obtained.
  • the photocurable green resin composition obtained in each example and each comparative example is finally obtained on a glass substrate (manufactured by NH Techno Glass Co., Ltd., "NA35") using a spin coater. After coating so that the cured film had a thickness of 3.0 ⁇ m, it was dried at 80° C. for 3 minutes using a hot plate to form a coating film on the substrate. This coating film is exposed to ultraviolet rays of 70 mJ/cm 2 using an ultra-high pressure mercury lamp through a photomask (chromium mask) having a pattern with an opening size of 2 ⁇ m to 100 ⁇ m for forming independent fine lines. A postcoat was formed.
  • a photomask chromium mask
  • ⁇ Transmittance> The transmission spectrum of 380 nm to 780 nm of the cured film is measured using a microspectrometer (OSP-SP200, manufactured by Olympus), and the maximum transmittance of 380 nm to 480 nm, the maximum transmittance and minimum transmittance of 510 nm to 550 nm, and 580 nm.
  • a maximum transmittance of ⁇ 700 nm and a half-value width were obtained by calculating the difference between two wavelengths at which the maximum transmittance was obtained at the peak indicating the maximum transmittance in the wavelength range of 380 nm to 700 nm.
  • a weather resistance tester (Ci4000 manufactured by ATLAS) was used to test a sample obtained by attaching a glass substrate to a cured film prepared on a glass substrate via a transparent adhesive layer, and a light intensity of 340 nm was measured to be 0.00.
  • a weather resistance test was performed for 48 hours under the conditions of 63 W/m 2 , a temperature inside the tank of 60° C., and a humidity of 50% RH.
  • the chromaticity (L 0 , a 0 , b 0 ) before the weather resistance test and the chromaticity (L 1 , a 1 , b 1 ) after the weather resistance test are It was measured using an Olympus microscopic spectrometer OSP-SP200.
  • the smaller the value of ⁇ Eab the more excellent the heat resistance is evaluated.
  • evaluation criteria for weather resistance evaluation A: The value of ⁇ Eab is less than 3 B: The value of ⁇ Eab is 3 or more and less than 5 C: The value of ⁇ Eab is 5 or more If the evaluation result is B, the weather resistance is good, and if the evaluation result is A, the weather resistance is excellent.
  • Comparative Examples 1 and 2 were also inferior in weather resistance.
  • Comparative Examples 3 and 4 which are the same blue pigment and yellow pigment types and / or mass ratios as in Examples 1 and 2 of Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-24258), respectively, are predetermined in the predetermined wavelength range , the reflectance is low but the transmittance is also low, or the reflectance is high but the transmittance is low, indicating that the effect of suppressing external light reflection is inferior.
  • the cured films of Comparative Examples 3 and 4 were also inferior in solvent resistance.
  • Examples 1 to 5 which are the photocurable green resin composition according to the present invention, a cured film was formed by post-baking at a low temperature (90 ° C.), which is preferable when forming on an organic light emitting device.
  • the spectral transmittance in the wavelength range of 380 nm to 480 nm is 20% or less
  • the spectral transmittance in the wavelength range of 580 nm to 700 nm is 30% or less
  • 510 nm It has been clarified that the spectral transmittance in the wavelength range of ⁇ 550 nm is 40% or more and 80% or less, the transmittance is high, the reflectance is low, and the external light reflection suppressing effect is good, and the transparent adhesive It was shown that even in a state in which glass is laminated via an agent layer, weather resistance is excellent, and a cured film with good solvent resistance can be formed even by low-temperature heat treatment.
  • the photocurable green resin composition according to the present invention is suitable for use in a cured film formed on an organic light emitting device, and the cured film is a thin film capable of suppressing external light reflection, It was shown that it is possible to manufacture an organic light-emitting display device with a thin film and improved flexibility.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polymerisation Methods In General (AREA)
  • Laminated Bodies (AREA)

Abstract

有機発光素子上に形成する硬化膜に用いる光硬化性緑色樹脂組成物であって、 前記光硬化性緑色樹脂組成物が、色材と、光重合性化合物と、光開始剤とを含有し、 前記色材が、青色顔料と黄色顔料を含み、ハロゲン化金属フタロシアニン顔料が色材全量に対して10質量%以下であり、 膜厚3.0μmで硬化膜を形成した時に、380nm~480nmの範囲の波長におけるスペクトル透過率が20%以下、580nm~700nmの範囲の波長におけるスペクトル透過率が30%以下、及び、510nm~550nmの範囲の波長におけるスペクトル透過率が40%以上80%以下となる、光硬化性緑色樹脂組成物。

Description

光硬化性緑色樹脂組成物、表示装置、及び有機発光素子と外光反射防止膜の積層体の製造方法
 本発明は、光硬化性緑色樹脂組成物、当該光硬化性緑色樹脂組成物の硬化物を含有する表示装置、及び、当該光硬化性緑色樹脂組成物を用いた有機発光素子と外光反射防止膜の積層体の製造方法に関する。
 近年、モバイル機器やテレビの表示素子として、従来の液晶表示素子に対し、薄型化、フレキシブル化に有利で、原理的に光利用効率の高い有機発光素子が注目されている 。
 このような有機発光素子は、特に屋外での使用が想定されるモバイル機器において、外光の反射による視認性の低下を防ぐため、反射防止膜として円偏光板を備えている。しかしこの円偏光板は外光のみならず有機発光素子が発光する光もカットしてしまうため、光の利用効率が大きく低下する。さらに、円偏光板は硬い特性を有することから、柔軟性が減少する点で、フレキシブル化には不利になる。そのため、円偏光板を用いなくても、屋外での視認性が良好な有機発光素子を用いた表示装置の開発が望まれていた。
 それに対して、特許文献1では、偏光板の代替が可能なカラーフィルタにより、外光の反射を抑制すること、及び、偏光板の代替が可能でありながらも、高色再現性を実現することができる画素形成用緑色感光性樹脂組成物として、顔料分散組成物、アルカリ可溶性樹脂、光重合性化合物、光重合開始剤、および溶剤を含み、前記顔料分散組成物は緑色顔料と黄色顔料と黒色顔料を含む、緑色感光性樹脂組成物であって、前記緑色感光性樹脂組成物は2.2μmの厚さを有する硬化膜に形成時に、380nm~480nmの波長におけるスペクトル透過率と580nm~780nmの波長におけるスペクトル透過率が25%以下であり、500nm~560nmの波長におけるスペクトル透過率が30%以上70%未満であることを特徴とする緑色感光性樹脂組成物が開示されている。
 一方で、特許文献2には、ハロゲンフリーとなるように、青色顔料と黄色顔料からなるカラーフィルター用緑色着色剤組成物が開示されているが、当該特許文献2は、ハロゲンフリー、高コントラスト比、かつ高密着力となるカラーフィルター基板を提供することを目的とする技術であり、偏光板の代替としての利用については一切記載されておらず、偏光板の代替として利用する際に生じる課題についても一切記載されていない。
 また、特許文献3には、着色剤は、カラーインデックスピグメントブルー15:3およびカラーインデックスピグメントブルー15:4から選ばれる少なくとも1種と、カラーインデックスピグメントイエロー150とを含み、カラーインデックスピグメントイエロー150の100質量部に対して、カラーインデックスピグメントブルー15:3とカラーインデックスピグメントブルー15:4とを合計で35~55質量部含有し、上記着色組成物は、波長400~700nmの波長の光に対する吸光度のうち、波長495~525nmの範囲に吸光度の最小値を有し、波長450nmの光に対する吸光度を1としたとき、吸光度が0.14となる波長が474~494nmの範囲と、530~570nmの範囲のそれぞれに存在し、波長450nmの光に対する吸光度A450と、波長620nmの光に対する吸光度A620との比であるA450/A620が1.08~2.05である、着色組成物が開示されている。しかしながら特許文献3には、有機発光素子上に形成する硬化膜に用いることや、偏光板の代替としての利用については一切記載されておらず、偏光板の代替として利用する際に生じる課題についても一切記載されていない。
特開2017-182067号公報 特開2011-242568号公報 国際公開2020-196393号公報
 特許文献1の偏光板代替のカラーフィルタは、ガラス基板上に形成されている。そのため、薄型化やフレキシブル化が向上した表示装置の製造には、更に問題があった。
 また、カラーフィルタ用緑色樹脂組成物には、従来、緑顔料として、ピグメントグリーン(PG)7、36、58、及び59などのハロゲン化金属フタロシアニン顔料が多く使用されている。特許文献1の偏光板代替のカラーフィルタにおいても、ハロゲン化金属フタロシアニン顔料により緑色を実現している。しかしながら、有機発光素子を用いた表示装置は通常、表面にカバー材としてガラスやフィルムを透明粘着剤で貼り合せて使用されるところ、ハロゲン化金属フタロシアニン顔料が多く含まれる光硬化性緑色樹脂組成物により有機発光素子上に形成された緑色着色層は、封止膜を介してもガラスを貼り合せた状態で耐候性試験を行うと透過率が低下するという問題があった。
 一方、特許文献2及び3に具体的に開示されている緑色着色層では、後述する比較例に示したように、外光反射を抑制するための偏光板代替のカラーフィルタとして用いるためには分光特性が不十分であり、耐溶剤性にも問題がある。
 本発明は、上記実情に鑑みてなされたものであり、耐候性に優れながら、外光反射を抑制可能で、薄膜でフレキシブル性が向上した有機発光表示装置を製造可能な光硬化性緑色樹脂組成物を提供することを目的とする。また、本発明は、当該光硬化性緑色樹脂組成物の硬化物を含有する、耐候性に優れながら、外光反射を抑制可能で、薄膜でフレキシブル性が向上した表示装置、及び、当該光硬化性緑色樹脂組成物を用いた有機発光素子と外光反射防止膜の積層体の製造方法を提供することを目的とする。
 本発明に係る光硬化性緑色樹脂組成物は、有機発光素子上に形成する硬化膜に用いる光硬化性緑色樹脂組成物であって、
 前記光硬化性緑色樹脂組成物が、色材と、光重合性化合物と、光開始剤とを含有し、
 前記色材が、青色顔料と黄色顔料を含み、ハロゲン化金属フタロシアニン顔料が色材全量に対して10質量%以下であり、
 膜厚3.0μmで硬化膜を形成した時に、380nm~480nmの範囲の波長におけるスペクトル透過率が20%以下、580nm~700nmの範囲の波長におけるスペクトル透過率が30%以下、及び、510nm~550nmの範囲の波長におけるスペクトル透過率が40%以上80%以下となるものである。
 本発明に係る表示装置は、有機発光素子上に、前記本発明に係る光硬化性緑色樹脂組成物の硬化膜を有する。
 本発明に係る有機発光素子と外光反射防止膜の積層体の製造方法は、
有機発光素子上に、前記本発明に係る光硬化性緑色樹脂組成物を塗布することにより塗膜を形成する工程、
 前記塗膜に光照射する工程、
 前記光照射後の膜を、加熱するポストベイク工程、及び、
 前記光照射後の膜を、現像する工程を含有することにより、
有機発光素子上に前記本発明に係る光硬化性緑色樹脂組成物の硬化膜を形成する工程を有する。
 本発明によれば、耐候性に優れながら、外光反射を抑制可能で、薄膜でフレキシブル性が向上した有機発光表示装置を製造可能な光硬化性緑色樹脂組成物を提供することができる。また、本発明は、当該光硬化性緑色樹脂組成物の硬化物を含有する、耐候性に優れながら、外光反射を抑制可能で、薄膜でフレキシブル性が向上した表示装置、及び、当該光硬化性緑色樹脂組成物を用いた有機発光素子と外光反射防止膜の積層体の製造方法を提供することができる。
図1は、本発明に係る有機発光素子を備えた表示装置の一例を示す概略断面図である。
 以下、本発明の実施の形態や実施例などを、図面等を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態や実施例等の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。また、説明の便宜上、上方又は下方という語句を用いて説明する場合があるが、上下方向が逆転してもよい。
 本明細書において、ある部材又はある領域等のある構成が、他の部材又は他の領域等の他の構成の「上に(又は下に)」あるとする場合、特段の限定がない限り、これは他の構成の直上(又は直下)にある場合のみでなく、他の構成の上方(又は下方)にある場合を含み、すなわち、他の構成の上方(又は下方)において間に別の構成要素が含まれている場合も含む。
 なお、本発明において光には、可視及び非可視領域の波長の電磁波、さらには放射線が含まれ、放射線には、例えばマイクロ波、電子線が含まれる。具体的には、波長5μm以下の電磁波、及び電子線のことをいう。
 本発明において(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリルとは、アクリル及びメタクリルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
 また、本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 また、本発明において、Xnm~Ynmの範囲の波長におけるスペクトル透過率がZ%以下とは、Xnm~Ynmの範囲の波長域全体において、スペクトル透過率がZ%以下であることを表す。
 以下、本発明に係る光硬化性緑色樹脂組成物、表示装置、及び、有機発光素子と外光反射防止膜の積層体の製造方法について、順に詳細に説明する。
I.光硬化性緑色樹脂組成物 
 本発明に係る光硬化性緑色樹脂組成物は、有機発光素子上に形成する硬化膜に用いる光硬化性緑色樹脂組成物であって、
 前記光硬化性緑色樹脂組成物が、色材と、光重合性化合物と、光開始剤とを含有し、
 前記色材が、青色顔料と黄色顔料を含み、ハロゲン化金属フタロシアニン顔料が色材全量に対して10質量%以下であり、
 膜厚3.0μmで硬化膜を形成した時に、380nm~480nmの範囲の波長におけるスペクトル透過率が20%以下、580nm~700nmの範囲の波長におけるスペクトル透過率が30%以下、及び、510nm~550nmの範囲の波長におけるスペクトル透過率が40%以上80%以下となるものである。
 本発明に係る光硬化性緑色樹脂組成物は、前記色材が、青色顔料と黄色顔料を含み、ハロゲン化金属フタロシアニン顔料が色材全量に対して10質量%以下であり、且つ、上記所定の波長域において所定のスペクトル透過率を満たすことにより、当該光硬化性緑色樹脂組成物の硬化膜は、膜の透過率を有効に低減することができ、偏光板の代替として外光反射を抑制可能である。
 また、本発明に係る光硬化性緑色樹脂組成物は、有機発光素子上に形成する硬化膜に用いることを特徴とする。すなわち、本発明に係る光硬化性緑色樹脂組成物は、有機発光素子を備えた素子基板上に直接形成する硬化膜に用いられるものである。本発明に係る光硬化性緑色樹脂組成物は、有機発光素子上に隣接して又は少なくとも1層介して形成する硬化膜に用いる光硬化性緑色樹脂組成物であることから、ガラス基板等の基板上に形成された外付けのカラーフィルタを有機発光素子に貼り合わせた表示装置に比べて、薄型化やフレキシブル化が向上した表示装置を製造可能である。
 さらに、本発明に係る光硬化性緑色樹脂組成物により形成された有機発光素子上に形成する硬化膜は、ハロゲン化金属フタロシアニン顔料の含有量が色材全量に対して10質量%以下で、緑色を実現することから、ガラスを透明粘着剤で貼り合せた状態で耐候性試験を行っても透過率の低下が抑制されたものであり、耐候性に優れた表示装置を実現することができる。
 本発明に係る光硬化性緑色樹脂組成物は、少なくとも色材と、光重合性化合物と、光開始剤とを含有するものであり、本発明の効果を損なわない範囲で、更に他の成分を含有してもよいものである。
 以下、このような本発明に係る光硬化性緑色樹脂組成物の各成分について、順に詳細に説明する。
<色材>
 本発明において、色材は、カラーフィルタの着色層を形成した際に所望の発色が可能なものであればよく、特に限定されず、種々の有機顔料、無機顔料、分散可能な染料、染料の造塩化合物等を、2種以上混合して用いることができるが、青色顔料と黄色顔料とを少なくとも含み、ハロゲン化金属フタロシアニン顔料が色材全量に対して10質量%以下であることを特徴とする。
 色材としては、中でも有機顔料は、発色性が高く、耐熱性も高いので、好ましく用いられる。有機顔料としては、例えばカラーインデックス(C.I.;The Society of Dyers and Colourists 社発行)においてピグメント(Pigment)に分類されている化合物、具体的には、下記のようなカラーインデックス(C.I.)番号が付されているものを挙げることができる。
 青色顔料としては、例えば、C.I.ピグメントブルー1、15、15:1、15:2、15:3、15:4、15:6、16、60、61、79、80等が挙げられる。
 青色顔料としては、前記所定の波長域において所定のスペクトル透過率を満たしやすく、外光反射の抑制効果を向上させやすい点から、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、及びC.I.ピグメントブルー16からなる群から選択される少なくとも1種が好ましい。
 C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、及びC.I.ピグメントブルー16は、それぞれ、透過スペクトルの立ち上がり波長が長波長側から短波長側に少しずつずれて異なることから、外光反射を行うために組み合わせる有機発光素子の緑色発光層のスペクトルを考慮して、適宜選択して1種単独で又は2種以上組み合わせて用いることが好ましい。耐候性の点からは、中でもC.I.ピグメントブルー15:4が好ましい。
 黄色顔料としては、例えば、C.I.ピグメントイエロー1、1:1、2、3、4、5、6、9、10、12、13、14、15、16、17、20、24、31、32、34、35、35:1、36、36:1、37、37:1、40、41、42、43、48、53、55、60、61、62、62:1、63、65、71、73、74、75、81、83、87、93、94、95、97、98、100、101、104、105、106、108、109、110、111、113、114、116、117、119、120、126、127、127:1、128、129、133、134、136、138、139、142、147、148、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、173、175、185、194、211、214、215、231、及びC.I.ピグメントイエロー150の誘導体顔料等が挙げられる。
 黄色顔料としては、青色顔料と組み合わせた場合に、前記所定の波長域において所定のスペクトル透過率を満たしやすく、透過スペクトルの最大透過率を示すピークの半値幅を小さくしやすく、透過スペクトルの最大透過率を示す波長が525nm~545nmの範囲内としやすく、外光反射の抑制効果を向上させやすい点から、C.I.ピグメントイエロー139を含むことが好ましい。
 黄色顔料としては、青色顔料と組み合わせた場合に、前記所定の波長域において所定のスペクトル透過率を満たしやすく、透過スペクトルの最大透過率を示すピークの半値幅を小さくしやすく、透過スペクトルの最大透過率を示す波長が525nm~545nmの範囲内としやすく、外光反射の抑制効果を向上させやすい点から、ピグメントイエロー139を含み、更にピグメントイエロー138、ピグメントイエロー150、及びピグメントイエロー185からなる群から選択される少なくとも1種を含んでもよく、ピグメントイエロー139を含み、更にピグメントイエロー150を含むことがより好ましい。
 色材には、外光反射の抑制効果を調整する点から、更にその他の色材を用いてもよい。その他の色材としては、例えば、緑色顔料、紫色顔料、オレンジ色顔料等が挙げられる。
 緑色顔料としては、例えば、C.I.ピグメントグリーン7、36、58、59、62、63等が挙げられる。但し、緑色顔料を用いる場合であっても、耐候性を良好にする点から、ハロゲン化金属フタロシアニン顔料が色材全量に対して10質量%以下とする。
 また、紫色顔料としては、例えば、C.I.ピグメントバイオレット1、19、23、29、32、36、38等が挙げられる。
 オレンジ色顔料としては、例えば、C.I.ピグメントオレンジ1、5、13、14、16、17、24、34、36、38、40、43、46、49、51、61、63、64、71、73等が挙げられる。
 本発明で用いられる青色顔料と黄色顔料、及び必要に応じて含まれていてもよい他の色材の含有割合は、当該光硬化性緑色樹脂組成物により膜厚3.0μmで硬化膜を形成した時に、380nm~480nmの範囲の波長におけるスペクトル透過率が20%以下、580nm~700nmの範囲の波長におけるスペクトル透過率が30%以下、及び、510nm~550nmの範囲の波長におけるスペクトル透過率が40%以上80%以下となるように、調整される。
 膜厚3.0μmで硬化膜を形成した時に、380nm~480nmの波長におけるスペクトル透過率が20%以下であれば、緑色の色純度の低下が抑制され、発光素子からの色純度の低下も抑制しやすく、反射防止性能が優れやすい。膜厚3.0μmで硬化膜を形成した時に、380nm~480nmの波長におけるスペクトル透過率は、18%以下であってよく、13%以下であってよい。
 一方、膜厚3.0μmで硬化膜を形成した時に、510nm~550nmの波長におけるスペクトル透過率が40%以上80%以下であれば、表示装置の輝度低下や視認性の不良を抑制しやすい。膜厚3.0μmで硬化膜を形成した時に、510nm~550nmの波長におけるスペクトル透過率は、45%以上であってよく、また、75%以下、さらに70%以下であってよい。
 また、膜厚3.0μmで硬化膜を形成した時に、580nm~700nmの波長におけるスペクトル透過率が30%以下であれば、反射防止性能が優れやすい。膜厚3.0μmで硬化膜を形成した時に、580nm~700nmの波長におけるスペクトル透過率は、25%以下であってよく、20%以下であってよく、18%以下であってよい。
 なお、本発明において、膜厚3.0μmで硬化膜を形成した時のスペクトル透過率は、具体的には実施例に記載した方法により測定することができる。
 また、膜厚3.0μmで硬化膜を形成した時に、透過スペクトルの380nm~700nmの範囲の波長において最大透過率を示すピークの半値幅が70nm以下となることが、反射防止性能が向上する点から好ましい。膜厚3.0μmで硬化膜を形成した時に、透過スペクトルの最大透過率を示すピークの半値幅は65nm以下であってよく、63nm以下であってよく、60nm以下であってよい。
 また、青色、赤色との色分離性に優れる点から、膜厚3.0μmで硬化膜を形成した時に、380nm~700nmの範囲の波長において最大透過率を示すピークの波長は、510nm~550nmの範囲にあることが好ましく、525nm~545nmの範囲にあることがより好ましく、526nm~540nmの範囲にあることがさらに好ましく、527nm~535nmの範囲にあってもよい。
 本発明に用いられる色材の含有量は、前記所定の波長域において所定のスペクトル透過率を満たすように用いられれば特に限定されるものではない。
 本発明に用いられる色材において、青色顔料の含有量は、色材全量に対して、例えば、1質量%以上60質量%以下であってよく、好ましくは5質量%以上であってよく、より好ましくは10質量%以上であってよく、さらに好ましくは15質量%以上であってよく、好ましくは50質量%以下であってよく、より好ましくは40質量%以下であってよい。
 本発明に用いられる色材において、黄色顔料の含有量は、色材全量に対して、例えば、20質量%以上90質量%以下であってよく、好ましくは30質量%以上であってよく、より好ましくは40質量%以上であってよく、さらに好ましくは50質量%以上であってよく、よりさらに好ましくは60質量%以上であってよく、好ましくは85質量%以下であってよく、より好ましくは80質量%以下であってよい。
 黄色顔料としてピグメントイエロー139を含有する場合、ピグメントイエロー139の含有量は、黄色顔料全量に対して1質量%以上であってよく、より好ましくは5質量%以上であってよく、さらに好ましくは10質量%以上であってよく、50質量%以下であってよく、好ましくは30質量%以下であってよい。
 黄色顔料としては、ピグメントイエロー139とピグメントイエロー150とを含む場合、ピグメントイエロー139とピグメントイエロー150の合計含有量は、黄色顔料全量に対して40質量%以上であってよく、より好ましくは60質量%以上であってよく、さらに好ましくは80質量%以上であってよく、100質量%であってもよく、40質量%以下であってよい。
 本発明に用いられる色材において、青色顔料と黄色顔料の合計に対する青色顔料の含有割合は、前記所定の波長域において所定のスペクトル透過率を満たせばよく特に限定されないが、例えば、1質量%以上60質量%以下であってよく、好ましくは5質量%以上であってよく、より好ましくは10質量%以上であってよく、さらに好ましくは15質量%以上であってよく、好ましくは50質量%以下であってよく、より好ましくは40質量%以下であってよい。
 本発明に用いられる色材において、青色顔料と黄色顔料の合計含有量は、色材全量に対して、通常、80質量%以上であってよく、好ましくは90質量%以上であってよく、より好ましくは95質量%以上であってよく、100質量%であってよいが、ハロゲン化金属フタロシアニン顔料とは異なるその他色材を含有する場合には、90質量%以下であってよい。
 本発明に用いられる色材において、その他の色材の合計含有量は、色材全量に対して、0質量%であってよいが、1質量%以上であってよく、5質量%以上であってよく、一方で、通常、20質量%以下であり、好ましくは10質量%以下であってよい。
 但し、その他の色材としてハロゲン化金属フタロシアニン顔料が用いられる場合の合計含有量は、色材全量に対して10質量%以下であり、通常、0.1質量%以上10質量%以下であってよく、好ましくは1質量%以上であってよく、より好ましくは3質量%以上であってよく、好ましくは9.5質量%以下であってよい。ハロゲン化金属フタロシアニン顔料は色材全量に対して0質量%であってもよい。
 本発明に用いられる色材の平均一次粒径としては、硬化膜とした場合に、外光反射を抑制可能で、且つ、発光素子からの所望の光を透過させて表示装置の輝度低下を抑制可能なものであればよく、特に限定されず、用いる色材の種類によっても異なるが、10nm~200nmの範囲内であることが好ましく、15nm~100nmであることがより好ましい。色材の平均一次粒径が上記範囲であることにより、本発明に係る光硬化性緑色樹脂組成物を用いて製造された硬化膜を備えた表示装置を、外光反射を抑制可能で、色分離性に優れ、かつ高品質なものとすることができる。
 また、光硬化性緑色樹脂組成物中の色材の平均分散粒径は、用いる色材の種類によっても異なるが、10nm~200nmの範囲内であることが好ましく、15nm~100nmの範囲内であることがより好ましい。
 光硬化性緑色樹脂組成物中の色材の平均分散粒径は、少なくとも溶剤を含有する分散媒体中に分散している色材粒子の分散粒径であって、レーザー光散乱粒度分布計により測定されるものである。レーザー光散乱粒度分布計による粒径の測定としては、光硬化性緑色樹脂組成物に用いられている溶剤で、光硬化性緑色樹脂組成物をレーザー光散乱粒度分布計で測定可能な濃度に適宜希釈(例えば、1000倍など)し、レーザー光散乱粒度分布計(例えば、日機装社製ナノトラック粒度分布測定装置UPA-EX150)を用いて動的光散乱法により23℃にて測定することができる。ここでの平均分布粒径は、体積平均粒径である。
 本発明に用いられる、色材は、再結晶法、ソルベントソルトミリング法等の公知の方法にて製造することができる。また、市販の色材を微細化処理して用いても良い。
 本発明に係る光硬化性緑色樹脂組成物において、色材の含有量は、特に限定されない。色材の含有量は、分散性及び分散安定性の点から、光硬化性緑色樹脂組成物の固形分全量に対して、例えば好ましくは3質量%~65質量%、より好ましくは4質量%~60質量%、更に好ましくは5質量%~55質量%、より更に好ましくは6質量%~50質量%の範囲内である。色材の含有量は、分散性及び分散安定性の点から、光硬化性緑色樹脂組成物の固形分全量に対して、10質量%~45質量%であってもよく、10質量%~35質量%であってもよい。上記下限値以上であれば、光硬化性緑色樹脂組成物を所定の膜厚(通常は1.0μm~5.0μm、例えば、3.0μm)に塗布した際の硬化膜が充分な色濃度を有し、外光反射抑制効果が良好になりやすい。また、上記上限値以下であれば、保存安定性に優れると共に、充分な硬度や、基板との密着性を有する硬化膜を得ることができる。
 尚、本発明において固形分は、後述する溶剤以外のもの全てであり、溶剤中に溶解しているモノマー等も含まれる。
<光重合性化合物>
 光硬化性緑色樹脂組成物において用いられる光重合性化合物としては、光重合性基を分子中に有する化合物が挙げられる。光重合性基としては、光開始剤によって重合可能なものであればよく、特に限定されないが、エチレン性不飽和二重結合が挙げられ、例えば、ビニル基、アリル基、アクリロイル基又はメタクリロイル基等が挙げられる。光重合性基としては、中でも紫外線硬化性の点から、アクリロイル基又はメタクリロイル基が好適に用いられる。
 光重合性化合物としては、硬化性の点から、1分子中に光重合性基を2個以上有する化合物を含有することが好ましく、1分子中に光重合性基を3個以上有する化合物を含有することがより好ましい。
 光重合性化合物としては、エチレン性不飽和二重結合を2つ以上有する化合物が好適に用いられ、特にアクリロイル基又はメタクリロイル基を2つ以上有する、多官能(メタ)アクリレートであることが好ましい。
 このような多官能(メタ)アクリレートとしては、従来公知のものの中から適宜選択して用いればよい。具体例としては、例えば、特開2013-029832号公報に記載のもの等が挙げられる。
 これらの多官能(メタ)アクリレートは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、本発明の光硬化性緑色樹脂組成物に優れた光硬化性(高感度)が要求される場合には、多官能(メタ)アクリレートが、重合可能な二重結合を3つ(三官能)以上有するものであるものが好ましく、3価以上の多価アルコールのポリ(メタ)アクリレート類やそれらのジカルボン酸変性物が好ましく、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートのコハク酸変性物、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートのコハク酸変性物、ジペンタエリスリトールヘキサ(メタ)アクリレート等が好ましい。
 光硬化性緑色樹脂組成物において用いられる上記光重合性化合物の含有量は、特に制限はないが、光硬化性緑色樹脂組成物の固形分全量に対して、例えば好ましくは5質量%~60質量%、さらに好ましくは10質量%~40質量%の範囲内である。光重合性化合物の含有量が上記下限値以上であると十分に光硬化が進み、露光部分が現像時の溶出を抑制でき、また、光重合性化合物の含有量が上記上限値以下であるとアルカリ現像性が十分である。
<光開始剤>
 本発明の光硬化性緑色樹脂組成物において用いられる光開始剤としては、従来知られている各種光開始剤の中から、1種又は2種以上を組み合わせて用いることができる。
 光開始剤としては、例えば、芳香族ケトン類、ベンゾインエーテル類、ハロメチルオキサジアゾール化合物、α-アミノケトン類、ビイミダゾール類、N,N-ジメチルアミノベンゾフェノン、ハロメチル-S-トリアジン系化合物、チオキサントン、オキシムエステル類等を挙げることができる。このような光開始剤としては、従来公知の光開始剤を用いることができ、例えば、国際公開2018/062105号公報に記載されている光開始剤が挙げられる。
 また、本発明に用いられるオキシムエステル系光開始剤としては、例えば、1,2-オクタジオン-1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)、特開2000-80068号公報、特開2001-233842号公報、特表2010-527339号公報、特表2010-527338号公報、特開2013-041153号公報、国際公開2015/152153号公報、特開2010-256891号公報等に記載のオキシムエステル系光開始剤の中から適宜選択できる。
 本発明のように素子基板上に硬化膜を形成する場合には、有機発光素子の耐熱性が低いため、製造工程における加熱は、130℃以下、更に100℃以下のような低温加熱処理が好ましいとされている。通常のカラーフィルタ製造工程ではガラス基板上で230℃程度の加熱処理を行って硬化膜を硬化させるのに対して、130℃以下の加熱処理では、熱による硬化膜の硬化は進行しにくい。すなわち、低温加熱処理で製造された硬化膜は、基板密着性及び耐溶剤性が不十分になりやすいという課題がある。
 このような課題に対して、低温加熱処理でも硬化膜の基板密着性及び耐溶剤性が良好になる点から、中でも、光開始剤が、下記一般式(A)で表される化合物の少なくとも1種を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、それぞれ独立に、R11、OR11、COR11、SR11、CONR1213又はCNを表し、
 R11、R12及びR13は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
 R11、R12及びR13で表される基の水素原子は、更にR21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-NCOR22-OCOR23、NR22COR21、OCOR21、COOR21、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、又はハロゲン原子で置換されていてもよく、
 R21、R22及びR23は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
 R21、R22及びR23で表される基の水素原子は、更に水酸基、ニトロ基、CN、ハロゲン原子、又はカルボキシ基で置換されていてもよく、
 R11、R12、R13、R21、R22及びR23で表される基のアルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-を酸素原子が隣り合わない条件で1~5個含んでいてもよく、
 R24は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
 R11、R12、R13、R21、R22、R23及びR24で表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよく、
 Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、Rで表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよく、また、RとR、及びRとRはそれぞれ一緒になって環を形成していてもよく、
 Rで表される基の水素原子は、更にR21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-NCOR22-OCOR23、NR22COR21、OCOR21、COOR21、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、又はハロゲン原子で置換されていてもよく、
 R、R、R及びRは、それぞれ独立に、R11、OR11、SR11、COR14、CONR1516、NR12COR11、OCOR11、COOR14、SCOR11、OCSR11、COSR14、CSOR11、水酸基、CN又はハロゲン原子を表し、RとR、RとR、及びRとRはそれぞれ一緒になって環を形成していてもよく、
 R14、R15及びR16は、水素原子又は炭素数1~20のアルキル基を表し、R14、R15及びR16で表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよく、Rは、R11、OR11、SR11、COR11、CONR1213、NR12COR11、OCOR11、COOR11、SCOR11、OCSR11、COSR11、CSOR11、水酸基、CN又はハロゲン原子を表し、
 kは、0又は1を表す。)
 前記一般式(A)で表されるオキシムエステル化合物には、オキシムの二重結合による幾何異性体が存在するが、これらを区別するものではない。即ち、本明細書において、前記一般式(A)で表わされる化合物、並びに後述する該化合物の好ましい形態である下記一般式(A’)で表わされる化合物及びその例示化合物は、両方の混合物又はどちらか一方を表すものであり、異性体を示した構造に限定するものではない。
 上記一般式(A)中の、R、R11、R12、R13、R14、R15、R16、R21、R22、R23及びR24で表される炭素数1~20のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、アミル、イソアミル、t-アミル、ヘキシル、ヘプチル、オクチル、イソオクチル、2-エチルヘキシル、t-オクチル、ノニル、イソノニル、デシル、イソデシル、ウンデシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、イコシル、シクロペンチル、シクロペンチルメチル、シクロペンチルエチル、シクロヘキシル、シクロヘキシルメチル、シクロヘキシルエチル等が挙げられる。
 上記一般式(A)中の、R、R11、R12、R13、R21、R22、R23及びR24で表される炭素数6~30のアリール基としては、例えば、フェニル、トリル、キシリル、エチルフェニル、ナフチル、アンスリル、フェナンスレニル、上記アルキル基で1つ以上置換されたフェニル、ビフェニリル、ナフチル、アンスリル等が挙げられる。
 上記一般式(A)中の、R、R11、R12、R13、R21、R22、R23及びR24で表される炭素数7~30のアリールアルキル基としては、例えば、ベンジル、α-メチルベンジル、α、α-ジメチルベンジル、フェニルエチル等が挙げられる。
 上記一般式(A)中の、R、R11、R12、R13、R21、R22、R23、及びR24で表される炭素数2~20の複素環基としては、例えば、ピリジル、ピリミジル、フリル、チエニル、テトラヒドロフリル、ジオキソラニル、ベンゾオキサゾール-2-イル、テトラヒドロピラニル、ピロリジル、イミダゾリジル、ピラゾリジル、チアゾリジル、イソチアゾリジル、オキサゾリジル、イソオキサゾリジル、ピペリジル、ピペラジル、モルホリニル等の5~7員複素環が挙げられる。
上記一般式(A)中の、RとR、RとR及びRとR並びにRとR及びRとRが一緒になって形成し得る環としては、例えば、シクロペンタン環、シクロヘキサン環、シクロペンテン環、ベンゼン環、ピペリジン環、モルホリン環、ラクトン環、ラクタム環等の5~7員環が好ましく挙げられる。
 また、上記一般式(A)中の、R、R、R、R及びRで表されるハロゲン原子、並びに上記一般式(A)中の、R、R11、R12、R13、R21、R22及びR23を置換してもよいハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
 上記一般式(A)中の、R11、R12、R13、R21、R22及びR23で表される基のアルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により酸素原子が隣合わない条件で1~5個含んでいてもよく、この時含まれる2価の基は1種又は2種以上の基でもよく、連続して含まれ得る基の場合は2個以上連続して含まれていてもよい。
 また、上記一般式(A)中の、R11、R12、R13、R21、R22、R23及びR24で表される基のアルキル(アルキレン)部分は、分岐側鎖があってもよく、環状アルキルであってもよい。
 上記一般式(A)で表される化合物の中でも、Rが縮合していてもよい芳香族環であるもの、あるいは下記一般式(A’)で表される化合物は、感度が高く、製造が容易であるため好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、R、R、R、R、R、R、R及びkは、上記一般式(A)と同じであり、R31、R32、R33、R34及びR35は、それぞれ独立に、R11、OR11、SR11、COR11、CONR1516、NR12COR11、OCOR11、COOR14、SCOR11、OCSR11、COSR14、CSOR11、水酸基、ニトロ基、CN又はハロゲン原子を表し、R31とR32、R32とR33、R33とR34及びR34とR35はそれぞれ一緒になって環を形成していてもよい。)
 R31とR32、R32とR33、R33とR34及びR34とR35が一緒になって形成する環の例としては、RとR、RとR及びRとR並びにRとR及びRとRが一緒になって形成し得る環の例として上記で挙げたものと同様の環が挙げられる。
 上記一般式(A)及び(A’)において、Rとして炭素数1~12のアルキル基又は炭素数7~15のアリールアルキル基、R11が炭素数6~12のアリール基、炭素数1~8のアルキル基であるものが、溶媒溶解性が高いので好ましく、Rとしてメチル基、エチル基又はフェニル基であるものが反応性が高いので好ましく、R~Rとして水素原子又はシアノ基、特に水素原子であるものが合成が容易なので好ましく、Rとして水素原子であるものが合成が容易なので好ましく、kは1であるのが、感度が高いので好ましく、上記一般式(A’)において、R31~R35のうち少なくとも1つがニトロ基、CN、ハロゲン原子、COR11であり、R11が炭素数6~12のアリール基、炭素数1~8のアルキル基であるものが感度が高いので好ましく、R31~R35のうち少なくとも1つがニトロ基、CN又はハロゲン原子であるものがより好ましく、R33がニトロ基、CN又はハロゲン原子であるものが特に好ましい。
 上記一般式(A)で表される化合物の好ましい具体例としては、例えば、以下の化合物が挙げられる。また、国際公開2015/152153号公報に記載されている、化合物No.1~No.212が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(A)で表される化合物は、例えば、国際公開2015/152153号公報を参照し、使用する材料に応じて溶剤、反応温度、反応時間、精製方法等を適宜選択することにより、合成できる。また、市販品を適宜入手して用いても良い。
 本発明の光硬化性緑色樹脂組成物において用いられる光開始剤の合計含有量は、本発明の効果が損なわれない限り特に制限はないが、光硬化性緑色樹脂組成物の固形分全量に対して、好ましくは0.1質量%~15.0質量%、さらに好ましくは1.0質量%~10.0質量%の範囲内である。この含有量が上記下限値以上であると十分に光硬化が進みやすく、耐溶剤性や基板密着性が良好になりやすく、一方上記上限値以下であると、線幅シフトが抑制され、高精細なパターンを形成しやすい。
 前記一般式(A)で表される化合物の少なくとも1種の合計含有量は、低温加熱処理でも基板密着性、及び耐溶剤性が良好な硬化膜を形成可能な点から、光開始剤の全量に対して、好ましくは30.0質量%以上、より好ましくは50.0質量%以上、更に好ましくは70.0質量%以上であり、100質量%であってよい。
 本発明に係る光硬化性緑色樹脂組成物は、色材と、光重合性化合物と、光開始剤とを含有するものであり、液状の光重合性化合物を用いることにより、溶剤を含有しなくても塗膜を形成可能であり、例えばインクジェット法等のパターン状に塗布する手段を用いることにより、パターン状の着色層を形成することが可能である。
 本発明に係る光硬化性緑色樹脂組成物は、更にアルカリ可溶性樹脂、溶剤を含有し、アルカリ現像性を有する光硬化性緑色樹脂組成物であってもよい。
<アルカリ可溶性樹脂>
 本発明に用いられるアルカリ可溶性樹脂は酸性基を有するものであり、バインダー樹脂として作用し、かつパターン形成する際に用いられるアルカリ現像液に可溶性であるものの中から、適宜選択して使用することができる。
 本発明において、アルカリ可溶性樹脂とは、酸価が40mgKOH/g以上であることを目安にすることができる。
 アルカリ可溶性樹脂としては、従来公知のアルカリ可溶性樹脂を適宜選択して用いることができ、例えば、国際公開2016/104493号公報に記載のアルカリ可溶性樹脂を適宜選択して用いることができる。
 本発明における好ましいアルカリ可溶性樹脂は、酸性基、通常カルボキシ基を有する樹脂であり、具体的には、カルボキシ基を有するアクリル系共重合体及びカルボキシ基を有するスチレン-アクリル系共重合体等のアクリル系樹脂、カルボキシ基を有するエポキシ(メタ)アクリレート樹脂等が挙げられ、カルボキシ基を有するアクリル系共重合体及びカルボキシ基を有するスチレン-アクリル系共重合体等のアクリル系樹脂が好適に用いられる。これらの中で特に好ましいものは、側鎖にカルボキシ基を有するとともに、さらに側鎖にエチレン性不飽和基等の光重合性官能基を有するものである。光重合性官能基を含有することにより形成される硬化膜の膜強度が向上するからである。また、これらアクリル系共重合体及びスチレン-アクリル系共重合体等のアクリル系樹脂、並びにエポキシアクリレート樹脂は、2種以上混合して使用してもよい。
 光硬化性緑色樹脂組成物において用いられるアルカリ可溶性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。アルカリ可溶性樹脂の含有量としては特に制限はないが、光硬化性緑色樹脂組成物の固形分全量に対して、例えば好ましくは5質量%~60質量%、さらに好ましくは10質量%~40質量%の範囲内である。アルカリ可溶性樹脂の含有量が上記下限値以上であると、充分なアルカリ現像性が得られ、また、アルカリ可溶性樹脂の含有量が上記上限値以下であると、現像時に膜荒れやパターンの欠けを抑制できる。
<溶剤>
 本発明に用いられる溶剤としては、光硬化性緑色樹脂組成物中の各成分とは反応せず、これらを溶解もしくは分散可能な有機溶剤であればよく、特に限定されない。溶剤は単独もしくは2種以上組み合わせて使用することができる。
 溶剤の具体例としては、例えば、メチルアルコール、エチルアルコール、N-プロピルアルコール、i-プロピルアルコール、メトキシアルコール、エトキシアルコールなどのアルコール系溶剤;メトキシエトキシエタノール、エトキシエトキシエタノールなどのカルビトール系溶剤;酢酸エチル、酢酸ブチル、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸エチル、乳酸エチル、ヒドロキシプロピオン酸メチル、ヒドロキシプロピオン酸エチル、n-ブチルアセテート、イソブチルアセテート、酪酸イソブチル、酪酸n-ブチル、乳酸エチル、シクロヘキサノールアセテートなどのエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノンなどのケトン系溶剤;メトキシエチルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-3-メチル-1-ブチルアセテート、3-メトキシブチルアセテート、エトキシエチルアセテートなどのグリコールエーテルアセテート系溶剤;メトキシエトキシエチルアセテート、エトキシエトキシエチルアセテート、ブチルカルビトールアセテート(BCA)などのカルビトールアセテート系溶剤;プロピレングリコールジアセテート、1,3-ブチレングリコールジアセテート等のジアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテルなどのグリコールエーテル系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどの非プロトン性アミド溶剤;γ-ブチロラクトンなどのラクトン系溶剤;テトラヒドロフランなどの環状エーテル系溶剤;ベンゼン、トルエン、キシレン、ナフタレンなどの不飽和炭化水素系溶剤;N-ヘプタン、N-ヘキサン、N-オクタンなどの飽和炭化水素系溶剤;トルエン、キシレン等の芳香族炭化水素類などの有機溶剤が挙げられる。これらの溶剤の中ではグリコールエーテルアセテート系溶剤、カルビトールアセテート系溶剤、グリコールエーテル系溶剤、エステル系溶剤が他の成分の溶解性の点で好適に用いられる。中でも、本発明に用いる溶剤としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ブチルカルビトールアセテート(BCA)、3-メトキシ-3-メチル-1-ブチルアセテート、エトキシプロピオン酸エチル、乳酸エチル、及び、3-メトキシブチルアセテートよりなる群から選択される1種以上であることが、他の成分の溶解性や塗布適性の点から好ましい。
 本発明に係る光硬化性緑色樹脂組成物において、溶剤の含有量は、着色層を精度良く形成することができる範囲で適宜設定すればよい。溶剤の含有量は、該溶剤を含む光硬化性緑色樹脂組成物の全量に対して、通常、好ましくは55質量%~95質量%、より好ましくは65質量%~88質量%の範囲内である。上記溶剤の含有量が、上記範囲内であることにより、塗布性に優れたものとすることができる。
<分散剤>
 本発明の光硬化性緑色樹脂組成物において、色材を分散させる場合には、色材分散性と色材分散安定性の点から、分散剤を更に含んでいても良い。
 本発明において分散剤は、従来公知の分散剤の中から適宜選択して用いることができる。分散剤としては、例えば、カチオン系、アニオン系、ノニオン系、両性、シリコーン系、フッ素系等の界面活性剤を使用できる。界面活性剤の中でも、均一に、微細に分散し得る点から、高分子分散剤が好ましい。
 高分子分散剤としては、例えば、(メタ)アクリレート共重合体系分散剤;ポリウレタン類;不飽和ポリアミド類;ポリシロキサン類;長鎖ポリアミノアミドリン酸塩類;ポリエチレンイミン誘導体(ポリ(低級アルキレンイミン)と遊離カルボキシ基含有ポリエステルとの反応により得られるアミドやそれらの塩基);ポリアリルアミン誘導体(ポリアリルアミンと、遊離のカルボキシ基を有するポリエステル、ポリアミド又はエステルとアミドの共縮合物(ポリエステルアミド)の3種の化合物の中から選ばれる1種以上の化合物とを反応させて得られる反応生成物)等が挙げられる。
 本発明においては、分散剤として、(メタ)アクリレート共重合体系分散剤を用いることが低温加熱処理でも耐溶剤性が良好になりやすい点から好ましい。(メタ)アクリレート共重合体系分散剤は、前記光重合性化合物と前記一般式(A)で表される化合物を含む光開始剤との相溶性が良好になるため、開始剤が着色層中に均一に存在し易くなり、着色層が均一に硬化することで未反応成分が減少し、着色層の内部応力も小さくなるため、溶剤に浸漬した時の着色層の変化が小さくなると推定される。
 本発明において、(メタ)アクリレート共重合体系分散剤とは、共重合体であって、少なくとも(メタ)アクリレート由来の構成単位を含む分散剤をいう。
 (メタ)アクリレート共重合体系分散剤は、色材吸着部位として機能する構成単位と、溶剤親和性部位として機能する構成単位とを含有する共重合体であることが好ましく、溶剤親和性部位として機能する構成単位に少なくとも(メタ)アクリレート由来の構成単位を含むことが好ましい。
 色材吸着部位として機能する構成単位は、(メタ)アクリレート由来の構成単位と共重合可能なエチレン性不飽和モノマー由来の構成単位を挙げることができる。色材吸着部位としては、酸性基含有エチレン性不飽和モノマー由来の構成単位であってもよいし、塩基性基含有エチレン性不飽和モノマー由来の構成単位であってもよい。
 塩基性基含有エチレン性不飽和モノマー由来の構成単位としては、下記一般式(I)で表される構成単位が、分散性に優れている点から好ましい。
Figure JPOXMLDOC01-appb-C000005
(一般式(I)中、R71は水素原子又はメチル基、Aは2価の連結基、R72及びR73は、それぞれ独立して、水素原子、又はヘテロ原子を含んでもよい炭化水素基を表し、R72及びR73が互いに結合して環構造を形成してもよい。)
 一般式(I)において、Aは、2価の連結基である。2価の連結基としては、例えば、直鎖、分岐又は環状のアルキレン基、水酸基を有する、直鎖、分岐又は環状のアルキレン基、アリーレン基、-CONH-基、-COO-基、-NHCOO-基、エーテル基(-O-基)、チオエーテル基(-S-基)、及びこれらの組み合わせ等が挙げられる。なお、本発明において、2価の連結基の結合の向きは任意である。すなわち、2価の連結基に-CONH-が含まれる場合、-COが主鎖の炭素原子側で-NHが側鎖の窒素原子側であっても良いし、反対に、-NHが主鎖の炭素原子側で-COが側鎖の窒素原子側であっても良い。
 中でも、分散性の点から、一般式(I)におけるAは、-CONH-基又は-COO-基を含む2価の連結基であることが好ましく、-CONH-基又は-COO-基と、炭素数1~10のアルキレン基とを含む2価の連結基であることがより好ましい。
 R72及びR73における、ヘテロ原子を含んでもよい炭化水素基における炭化水素基は、例えば、アルキル基、アラルキル基、アリール基などが挙げられる。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、tert-ブチル基、2-エチルヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられ、アルキル基の炭素数は、1~18が好ましく、中でも、メチル基又はエチル基であることがより好ましい。
 アラルキル基としては、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ビフェニルメチル基等が挙げられる。アラルキル基の炭素数は、7~20が好ましく、更に7~14が好ましい。
 また、アリール基としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基等が挙げられる。アリール基の炭素数は、6~24が好ましく、更に6~12が好ましい。なお、上記好ましい炭素数には、置換基の炭素数は含まれない。
 ヘテロ原子を含む炭化水素基とは、上記炭化水素基中の炭素原子がヘテロ原子で置き換えられた構造を有するか、上記炭化水素基中の水素原子がヘテロ原子を含む置換基で置き換えられた構造を有する。炭化水素基が含んでいてもよいヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子等が挙げられる。
 また、炭化水素基中の水素原子は、フッ素原子、塩素原子、臭素原子等のハロゲン原子により置換されていてもよい。
 R72及びR73が互いに結合して環構造を形成しているとは、R72及びR73が窒素原子を介して環構造を形成していることをいう。R72及びR73が形成する環構造にヘテロ原子が含まれていても良い。環構造は特に限定されないが、例えば、ピロリジン環、ピペリジン環、モルフォリン環等が挙げられる。
 本発明においては、中でも、R72及びR73が各々独立に、水素原子、炭素数1~5のアルキル基、フェニル基であるか、又は、R72及びR73が結合してピロリジン環、ピペリジン環、モルフォリン環を形成していることが好ましい。
 上記一般式(I)で表される構成単位を誘導するモノマーとしては、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート等のアルキル基置換アミノ基含有(メタ)アクリレート等、ジメチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミドなどのアルキル基置換アミノ基含有(メタ)アクリルアミド等が挙げられる。中でも分散性、及び分散安定性が向上する点でジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミドを好ましく用いることができる。
 重合体において、一般式(I)で表される構成単位は、1種類からなるものであってもよく、2種以上の構成単位を含むものであってもよい。
 また、色材吸着部位として機能する構成単位としては、前記一般式(I)で表される構成単位が有する窒素部位の少なくとも一部と、有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種とが塩を形成してもよい(以下、このような共重合体を、塩型共重合体と称することがある)。
  前記有機酸化合物としては、中でも、下記一般式(1)で表される化合物及び下記一般式(3)で表される化合物が好ましく、前記ハロゲン化炭化水素としては、中でも、下記一般式(2)で表される化合物が好ましい。すなわち、前記有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種としては、下記一般式(1)~(3)よりなる群から選択される1種以上の化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000006
(一般式(1)において、Rは、炭素数1~20の直鎖、分岐鎖又は環状のアルキル基、ビニル基、置換基を有してもよいフェニル基又はベンジル基、或いは-O-Rを表し、Rは、炭素数1~20の直鎖、分岐鎖又は環状のアルキル基、ビニル基、置換基を有してもよいフェニル基又はベンジル基、或いは炭素数1~4のアルキレン基を介した(メタ)アクリロイル基を表す。一般式(2)において、R、Rb’、及びRb”はそれぞれ独立に、水素原子、酸性基又はそのエステル基、置換基を有してもよい炭素数1~20の直鎖、分岐鎖又は環状のアルキル基、置換基を有してもよいビニル基、置換基を有してもよいフェニル基又はベンジル基、或いは-O-Rを表し、Rは、置換基を有してもよい炭素数1~20の直鎖、分岐鎖又は環状のアルキル基、置換基を有してもよいビニル基、置換基を有してもよいフェニル基又はベンジル基、或いは炭素数1~4のアルキレン基を介した(メタ)アクリロイル基を表し、Xは、塩素原子、臭素原子、又はヨウ素原子を表す。一般式(3)において、R及びRはそれぞれ独立に、水素原子、水酸基、炭素数1~20の直鎖、分岐鎖又は環状のアルキル基、ビニル基、置換基を有してもよいフェニル基又はベンジル基、或いは-O-Rを表し、Rは、炭素数1~20の直鎖、分岐鎖又は環状のアルキル基、ビニル基、置換基を有してもよいフェニル基又はベンジル基、或いは炭素数1~4のアルキレン基を介した(メタ)アクリロイル基を表す。但し、R及びRの少なくとも一つは炭素原子を含む。)
 前記一般式(1)~(3)の各符号については、国際公開第2016/104493号の記載と同様であってよい。
 前記有機酸化合物がフェニルホスホン酸やフェニルホスフィン酸等の酸性有機リン化合物であることが、色材の分散性及び分散安定性に優れる点から好ましい。このような分散剤に用いられる有機酸化合物の具体例としては、例えば、特開2012-236882号公報等に記載の有機酸化合物が好適なものとして挙げられる。
 また、前記ハロゲン化炭化水素としては、臭化アリル、塩化ベンジル等のハロゲン化アリル及びハロゲン化アラルキルの少なくとも1種であることが、色材の分散性及び分散安定性に優れる点から好ましい。
 塩型共重合体において、有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種の含有量は、一般式(I)で表される構成単位が有する末端の窒素部位と塩形成しているものであることから、一般式(I)で表される構成単位が有する末端の窒素部位に対して、有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種の合計を0.01モル以上とすることが好ましく、0.05モル以上とすることがより好ましく、0.1モル以上とすることがさらに好ましく、0.2モル以上とすることが特に好ましい。上記下限値以上であると、塩形成による色材分散性向上の効果が得られやすい。同様に、1モル以下とすることが好ましく、0.8モル以下とすることがより好ましく、0.7モル以下とすることがさらに好ましく、0.6モル以下とすることが特に好ましい。上記上限値以下であると現像密着性や溶剤再溶解性に優れたものとすることができる。
 なお、有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種は、1種単独で用いてもよく、2種以上を組み合わせてもよい。2種以上を組み合わせる場合は、その合計の含有量が上記範囲内であることが好ましい。
 塩型共重合体の調製方法としては、塩形成前の共重合体を溶解乃至分散した溶剤中に、前記有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種を添加し、攪拌、更に必要により加熱する方法などが挙げられる。
 なお、共重合体の当該一般式(I)で表される構成単位が有する末端の窒素部位と、前記有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種とが塩を形成していること、及びその割合は、例えばNMR等、公知の手法により確認することができる。
 前記一般式(I)で表される構成単位を有する共重合体は、分散性及び分散安定性の点から、前記一般式(I)で表される構成単位を有し、グラフトポリマー鎖に(メタ)アクリレート由来の構成単位を有するグラフト共重合体、及び、前記一般式(I)で表される構成単位を含むAブロックと、(メタ)アクリレート由来の構成単位を含むBブロックとを有するブロック共重合体、の少なくとも1種であることがより好ましい。
 以下、前記グラフト共重合体、及び、前記ブロック共重合体について、順に説明する。
 前記一般式(I)で表される構成単位を有し、グラフトポリマー鎖に(メタ)アクリレート由来の構成単位を有するグラフト共重合体としては、前記一般式(I)で表される構成単位と下記一般式(II)で表される構成単位とを有するグラフト共重合体、並びに、当該グラフト共重合体の当該一般式(I)で表される構成単位が有する窒素部位の少なくとも一部と有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種とが塩を形成した塩型グラフト共重合体の少なくとも1種が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(一般式(II)中、R71’は水素原子又はメチル基、Aは直接結合又は2価の連結基、Polymerはポリマー鎖を表し、当該ポリマー鎖の構成単位には、(メタ)アクリレート由来の構成単位が含まれる。)
 前記一般式(II)において、Aは、直接結合又は2価の連結基である。Aにおける2価の連結基としては、エチレン性不飽和二重結合由来の炭素原子とポリマー鎖を連結可能であれば、特に制限はない。Aにおける2価の連結基としては、例えば、前記Aにおける2価の連結基と同様のものが挙げられる。
 中でも、分散性の点から、一般式(II)におけるAは、-CONH-基又は-COO-基を含む2価の連結基であることが好ましく、-CONH-基又は-COO-基と、炭素数1~10のアルキレン基とを含む2価の連結基であることがより好ましい。
 前記一般式(II)において、Polymerは、ポリマー鎖を表し、当該ポリマー鎖の構成単位には、(メタ)アクリレート由来の構成単位が含まれる。グラフト共重合体は、特定のポリマー鎖を有する前記一般式(II)で表される構成単位を有することにより、溶剤親和性が良好になり、色材の分散性及び分散安定性が良好なものとなり、且つ、前述の光開始剤との相溶性も良好になる。
 当該ポリマー鎖の構成単位としては、下記一般式(III)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(一般式(III)中、R74”は水素原子又はメチル基、Aは2価の連結基、R80は、水素原子、又はヘテロ原子を含んでもよい炭化水素基である。)
 Aの2価の連結基としては、例えば、前記Aにおける2価の連結基と同様のものが挙げられる。本発明においては、(メタ)アクリレート由来の構成単位として、一般式(III)中のAが-COO-基を含む2価の連結基である一般式(III)で表される構成単位が、少なくとも含まれる。カラーフィルタ用途に使用される有機溶剤への溶解性の点から、一般式(III)におけるAは、-CONH-基を含む2価の連結基を含んでいてもよい。
 R80における、ヘテロ原子を含んでもよい炭化水素基における炭化水素基は、例えば、アルキル基、アルケニル基、アリール基、及びアラルキル基やアルキル置換アリール基等のこれらの組み合わせが挙げられる。R80における、ヘテロ原子を含んでもよい炭化水素基における炭化水素基としては、例えば、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、アリール基、及び、アラルキル基やアルキル置換アリール基等のこれらの組み合わせが挙げられる。
 前記炭素数1~18のアルキル基は、直鎖状、分岐状、環状のいずれであってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ノニル基、n-ラウリル基、n-ステアリル基、シクロペンチル基、シクロヘキシル基、ボルニル基、イソボルニル基、ジシクロペンタニル基、アダマンチル基、低級アルキル基置換アダマンチル基などを挙げることができる。アルキル基の炭素数は、1~12が好ましく、更に1~6が好ましい。
 前記炭素数2~18のアルケニル基は、直鎖状、分岐状、環状のいずれであってもよい。このようなアルケニル基としては、例えばビニル基、アリル基、プロペニル基などを挙げることができる。アルケニル基の二重結合の位置には限定はないが、得られたポリマーの反応性の点からは、アルケニル基の末端に二重結合があることが好ましい。アルケニル基の炭素数は、2~12が好ましく、更に2~8が好ましい。
 アリール基としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基等が挙げられる。アリール基の炭素数は、6~24が好ましく、更に6~12が好ましい。
 また、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基、ビフェニルメチル基等が挙げられ、更に置換基を有していてもよい。アラルキル基の炭素数は、7~20が好ましく、更に7~14が好ましい。
 また、前記アリール基やアラルキル基等の芳香環には、置換基として炭素数1~30の直鎖状、分岐状のアルキル基が結合していても良い。
 R80における炭化水素基としては、中でも、分散安定性の点から、炭素数1~18のアルキル基、アルキル基が置換されていても良い炭素数6~12のアリール基、及び、アルキル基が置換されていても良い炭素数7~14のアラルキル基からなる群から選択される1種以上であることが好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ノニル基、n-ラウリル基、n-ステアリル基、アルキル基が置換されていても良いフェニル基及びベンジル基からなる群から選択される1種以上であることが好ましい。
 炭化水素基が含んでいてもよいヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子等が挙げられる。ヘテロ原子を含んでもよい炭化水素基としては、例えば、炭化水素基の炭素鎖中に、-CO-、-COO-、-OCO-、-O-、-S-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-等の連結基が含まれる構造が挙げられる。
 また、当該炭化水素基は、前記グラフト共重合体の分散性能等を妨げない範囲で、置換基を有しても良く、置換基としては、例えば、ハロゲン原子、水酸基、カルボキシ基、アルコキシ基、ニトロ基、シアノ基、エポキシ基、イソシアネート基、チオール基等が挙げられる。
 また、R80におけるヘテロ原子を含んでもよい炭化水素基としては、炭化水素基においてヘテロ原子を含む連結基を介して末端にアルケニル基等の重合性基が付加された構造であっても良い。例えば、一般式(III)で表される構成単位が(メタ)アクリル酸由来の構成単位にグリシジル(メタ)アクリレートを反応させたような構造であっても良い。すなわち、一般式(III)における-A-R80の構造が、-COO-CHCH(OH)CH-OCO-CR=CH(ここで、Rは水素原子又はメチル基)で示される構造であっても良い。また、一般式(III)で表される構成単位がヒドロキシアルキル(メタ)アクリレート由来の構成単位に2-イソシアナトアルキル(メタ)アクリレートを反応させたような構造であっても良い。すなわち、一般式(III)におけるR80が、-R’-OCONH-R”-OCO-CR=CH(ここで、R’及びR”はそれぞれ独立にアルキレン基、Rは水素原子又はメチル基)で示される構造であっても良い。
 一般式(III)で表される構成単位を誘導するモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、(メタ)アクリル酸、2-メタクリロイルオキシエチルサクシネート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート及びポリエチレングリコール(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート等由来の構成単位を有するものが好ましい。しかしながら、これらに限定されるものではない。
 本発明において、前記R80としては、中でも、後述する有機溶剤との溶解性に優れたものを用いることが好ましく、色材分散液に使用する有機溶剤に合わせて適宜選択されれば良い。具体的には、例えば前記有機溶剤が、色材分散液の有機溶剤として一般的に使用されているエーテルアルコールアセテート系、エーテル系、エステル系、アルコール系などの有機溶剤を用いる場合には、メチル基、エチル基、イソブチル基、n-ブチル基、2-エチルヘキシル基、ベンジル基、シクロヘキシル基、ジシクロペンタニル基、ヒドロキシエチル基、フェノキシエチル基、アダマンチル基、メトキシポリエチレングリコール基、メトキシポリプロピレングリコール基、ポリエチレングリコール基等が好ましい。
 前記グラフト共重合体は、前記一般式(II)で表される構成単位中のポリマー鎖の構成単位に、下記一般式(IV)で表される構成単位及び下記一般式(IV’)で表される構成単位からなる群から選択される少なくとも1種の構成単位が含まれることが、光硬化性緑色樹脂組成物の硬化物の耐溶剤性が更に良好になり、且つ光硬化性緑色樹脂組成物の現像時間の短縮化の点から好ましい。
 下記一般式(IV)で表される構成単位及び下記一般式(IV’)で表される構成単位は、前記一般式(III)で表される構成単位に包含される構成単位である。
Figure JPOXMLDOC01-appb-C000009
(一般式(IV)中、R74は水素原子又はメチル基、Aは2価の連結基、R75はエチレン基又はプロピレン基、R76は、水素原子、又は炭化水素基であり、mは3以上80以下の数を表す。
一般式(IV’)中、R74’は水素原子又はメチル基、A3’は2価の連結基、R77は炭素数が1~10のアルキレン基、R78は炭素数が3~7のアルキレン基、R79は、水素原子、又は炭化水素基であり、nは1以上40以下の数を表す。)
 Aの2価の連結基としては、例えば、前記Aにおける2価の連結基と同様のものが挙げられる。中でも、カラーフィルタ用途に使用される有機溶剤への溶解性の点から、一般式(IV)におけるAは、-CONH-基又は-COO-基を含む2価の連結基であることが好ましく、-CONH-基又は-COO-基であることがより好ましく、-COO-基であることがより更に好ましい。
 前記mは、エチレンオキシド鎖又はプロピレンオキシド鎖の繰り返し単位数を表し、3以上の数を表すが、中でも水染み発生抑制、及び耐溶剤性の点から、19以上であることが好ましく、21以上であることがより好ましい。
 前記mが19以上の場合には、前記グラフト共重合体は、一般式(I)で表される構成単位と一般式(II)で表される構成単位とを有する主鎖部分を含有し、前記一般式(II)で表される構成単位はポリマー鎖において、特定の繰り返し数を有するポリエチレンオキシド鎖又はポリプロピレンオキシド鎖を含む一般式(IV)で表される構成単位が含まれる。本発明に用いられる特定のグラフト共重合体においては、このようにグラフトしているポリマー鎖の構成単位に、特定の繰り返し数を有するポリエチレンオキシド鎖又はポリプロピレンオキシド鎖を有する構成単位が含まれ、グラフトしているポリマー鎖自体が枝分かれ構造を有する。グラフトしている複数のポリマー鎖が膜中で立体的に広がり、比表面積が大きくなることから、溶剤の塗膜への侵入や色材への到達をより抑制することができると推定される。
 一方、mの上限値は80以下であるが、カラーフィルタ用途に使用される有機溶剤への溶解性の点から、50以下であることが好ましい。
 R76における炭化水素基としては、前記R80における炭化水素基と同様であって良い。
 R76における炭化水素基としては、中でも、分散安定性や相溶性の点から、炭素数1~18のアルキル基、アルキル基が置換されていても良い炭素数6~12のアリール基、及び、アルキル基が置換されていても良い炭素数7~14のアラルキル基からなる群から選択される1種以上であることが好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ノニル基、n-ラウリル基、n-ステアリル基、アルキル基が置換されていても良いフェニル基及びベンジル基からなる群から選択される1種以上であることが好ましい。
 また、前記一般式(IV’)中、A3’の2価の連結基としては、例えば、前記Aにおける2価の連結基と同様のものが挙げられる。中でも、カラーフィルタ用途に使用される有機溶剤への溶解性の点から、一般式(IV’)におけるA3’は、-CONH-基又は-COO-基を含む2価の連結基であることが好ましく、-CONH-基又は-COO-基であることがより好ましく、-COO-基であることがより更に好ましい。
 前記一般式(IV’)において、R77は炭素数が1~10のアルキレン基であるが、中でも炭素数が2~8のアルキレン基であることが、溶剤再溶解性の点から好ましい。
 R78は炭素数が3~7のアルキレン基であるが、中でも炭素数が3~5のアルキレン基、更に炭素数が5のアルキレン基であることが基材密着性の点から好ましい。
 R79は、水素原子、又は炭化水素基であり、前記R79における炭化水素基としては、前記R76における炭化水素基と同様であって良い。
 前記一般式(IV’)における前記nはエステル鎖の繰り返し単位数を表し、1以上の数を表すが、中でも現像時間の短縮化、及び優れた耐溶剤性を同時に満たす点から、2以上であることが好ましく、更に3以上であることが好ましい。
 一方、nの上限値は40以下であるが、カラーフィルタ用途に使用される有機溶剤への溶解性の点から、20以下であることが好ましい。
 前記ポリマー鎖において、前記一般式(IV)で表される構成単位及び下記一般式(IV’)で表される構成単位からなる群から選択される少なくとも1種の構成単位は、1種単独でも良いが、2種以上混合されていても良い。
 前記ポリマー鎖において、前記一般式(IV)で表される構成単位が含まれることが、酸素原子による溶剤親和性部の作用がより顕著になり、光硬化性緑色樹脂組成物の現像時間の短縮化、及び耐溶剤性が向上する点から好ましい。
 中でも、耐溶剤性が向上し、水染み抑制効果が向上し、且つ現像残渣抑制効果が向上する点から、前記一般式(II)で表される構成単位中のポリマー鎖の構成単位に、mが19以上80以下の前記一般式(IV)で表される構成単位からなる群から選択される少なくとも1種と、mが3以上10以下の前記一般式(IV)で表される構成単位からなる群から選択される少なくとも1種とを組み合わせて含有することがより好ましく、mが19以上50以下の前記一般式(IV)で表される構成単位からなる群から選択される少なくとも1種と、mが3以上8以下の前記一般式(IV)で表される構成単位からなる群から選択される少なくとも1種とを組み合わせて含有することがよりさらに好ましい。
 前記一般式(II)で表される構成単位中のポリマー鎖の構成単位に、mが19以上80以下の前記一般式(IV)で表される構成単位からなる群から選択される少なくとも1種を含有する場合、mが19以上80以下の前記一般式(IV)で表される構成単位の合計割合は、前記ポリマー鎖の全構成単位を100質量%とした時に、水染み抑制効果の点から、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、4質量%以上であることがより更に好ましく、一方で、溶剤再溶解性、及び水染み抑制効果の点から、75質量%以下であることが好ましく、65質量%以下であることがより好ましく、50質量%以下であることがより更に好ましい。
 前記一般式(II)で表される構成単位中のポリマー鎖の構成単位に、mが19以上80以下の前記一般式(IV)で表される構成単位からなる群から選択される少なくとも1種と、mが3以上10以下の前記一般式(IV)で表される構成単位からなる群から選択される少なくとも1種とを組み合わせて含有する場合、mが3以上10以下の前記一般式(IV)で表される構成単位の合計割合は、前記ポリマー鎖の全構成単位を100質量%とした時に、20質量%以上であることが好ましい。一方で、溶剤再溶解性の点から、前記ポリマー鎖において、mが3以上10以下の前記一般式(IV)で表される構成単位の合計割合は、当該ポリマー鎖の全構成単位を100質量%とした時に、80質量%以下であることが好ましく、60質量%以下であることがより好ましい。
 また、前記ポリマー鎖において、mが19以上80以下の前記一般式(IV)で表される構成単位と、mが3以上10以下の前記一般式(IV)で表される構成単位との混合割合は、現像残渣抑制効果向上の点から、mが19以上80以下の前記一般式(IV)で表される構成単位と、mが3以上10以下の前記一般式(IV)で表される構成単位との合計を100質量部とした時に、mが19以上80以下の前記一般式(IV)で表される構成単位の合計が3質量部以上であることが好ましく、6質量部以上であることがより好ましく、80質量部以下であることが好ましく、60質量部以下であることがより好ましい。
 分散安定性、高コントラスト化、現像時間の短縮化、及び優れた耐溶剤性を同時に満たす点から、前記ポリマー鎖の全構成単位を100質量%とした時に、前記一般式(IV)で表される構成単位及び前記一般式(IV’)で表される構成単位からなる群から選択される少なくとも1種の構成単位の合計割合は、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、4質量%以上であることがより更に好ましい。前記一般式(IV)で表される構成単位及び前記一般式(IV’)で表される構成単位からなる群から選択される少なくとも1種の構成単位の合計割合は、溶剤再溶解性の点から、前記ポリマー鎖の全構成単位を100質量%とした時に、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがより更に好ましい。
 前記ポリマー鎖において、前記一般式(IV)で表される構成単位及び前記一般式(IV’)で表される構成単位を包含する前記一般式(III)で表される構成単位は、1種単独でも良いが、2種以上混合されていても良い。
 色材の分散性及び分散安定性の点から、前記一般式(III)で表される構成単位の合計割合は、当該ポリマー鎖の全構成単位を100質量%とした時に、70質量%以上であることが好ましく、90質量%以上であることがより好ましい。一方で、分散安定性、及び優れた耐溶剤性を同時に満たす点から、前記ポリマー鎖において、前記一般式(III)で表される構成単位の合計割合は、当該ポリマー鎖の全構成単位を100質量%とした時に、100質量%であってもよい。
 中でも(メタ)アクリレート由来の構成単位の合計割合は、分散安定性及び耐溶剤性、開始剤との相溶性の点から、当該ポリマー鎖の全構成単位を100質量%とした時に、60質量%以上であることが好ましく、80質量%以上であることがより好ましい。一方で、分散安定性、及び優れた耐溶剤性を同時に満たす点から、前記ポリマー鎖において、(メタ)アクリレート由来の構成単位の合計割合は、当該ポリマー鎖の全構成単位を100質量%とした時に、100質量%であってもよい。
 前記グラフト共重合体の前記一般式(II)で表される構成単位中のポリマー鎖の構成単位には、前記一般式(III)で表される構成単位の他に、その他の構成単位を含んでいても良い。
 その他の構成単位としては、前記一般式(III)で表される構成単位を誘導するモノマーと共重合可能な不飽和二重結合を有する単量体由来の構成単位を挙げることができる。
 その他の構成単位を誘導するモノマーとしては、例えば、スチレン、α-メチルスチレン等のスチレン類、フェニルビニルエーテル等のビニルエーテル類等が挙げられる。
 前記グラフト共重合体の前記一般式(II)で表される構成単位中のポリマー鎖において、その他の構成単位の合計割合は、本発明の効果の点から、当該ポリマー鎖の全構成単位を100質量%とした時に、30質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 Polymerにおけるポリマー鎖の質量平均分子量Mwは、色材の分散性及び分散安定性の点から、2000以上であることが好ましく、3000以上であることがより好ましく、4000以上であることがより更に好ましく、15000以下であることがより好ましく、12000以下であることがより更に好ましい。
 前記範囲であることにより、分散剤としての十分な立体反発効果を保持できるとともに、分散剤の溶剤親和性部の比表面積が大きくなることにより、溶剤の塗膜への侵入や色材への到達を抑制しやすくなる。
 また、Polymerにおけるポリマー鎖は、目安として、組み合わせて用いられる有機溶剤に対して、23℃における溶解度が20(g/100g溶剤)以上であることが好ましい。
 当該ポリマー鎖の溶解性は、グラフト共重合体を調製する際のポリマー鎖を導入する原料が前記溶解度を有することを目安にすることができる。例えば、グラフト共重合体にポリマー鎖を導入するために、ポリマー鎖及びその末端にエチレン性不飽和二重結合を有する基を含む重合性オリゴマー(マクロモノマー)を用いる場合、当該重合性オリゴマーが前記溶解度を有すれば良い。また、エチレン性不飽和二重結合を有する基を含むモノマーにより共重合体が形成された後に、共重合体中に含まれる反応性基と反応可能な反応性基を含むポリマー鎖を用いて、ポリマー鎖を導入する場合、当該反応性基を含むポリマー鎖が前記溶解度を有すれば良い。
 前記グラフト共重合体において、前記一般式(I)で表される構成単位は、3質量%~60質量%の割合で含まれていることが好ましく、6質量%~45質量%がより好ましく、9質量%~30質量%がさらに好ましい。グラフト共重合体中の一般式(I)で表される構成単位が前記範囲内にあれば、グラフト共重合体中の色材との親和性部の割合が適切になり、かつ有機溶剤に対する溶解性の低下を抑制できるので、色材に対する吸着性が良好となり、優れた分散性、及び分散安定性が得られやすい。
 一方、前記グラフト共重合体において、前記一般式(II)で表される構成単位は、40質量%~97質量%の割合で含まれていることが好ましく、55質量%~94質量%がより好ましく、70質量%~91質量%がさらに好ましい。グラフト共重合体中の一般式(II)で表される構成単位が前記範囲内にあれば、グラフト共重合体中の溶剤親和性部の割合が適切になって、分散剤としての十分な立体反発効果を保持できるとともに、分散剤の溶剤親和性部の比表面積が大きくなることにより、溶剤の塗膜への侵入や色材への到達を抑制しやすい。
 本発明に用いられる前記グラフト共重合体は、本発明の効果が損なわれない範囲内で、前記一般式(I)で表される構成単位及び前記一般式(II)で表される構成単位以外に、更に他の構成単位を有していても良い。他の構成単位としては、前記一般式(I)で表される構成単位を誘導するエチレン性不飽和二重結合含有モノマー等と共重合可能な、エチレン性不飽和二重結合含有モノマーを適宜選択して共重合し、他の構成単位を導入することができる。
 前記一般式(I)で表される構成単位と共重合されている他の構成単位としては、例えば、前記一般式(III)で表される構成単位等が挙げられる。
 なお、前記構成単位の含有割合は、製造時には、グラフト共重合体を合成する際の、前記一般式(I)で表される構成単位、前記一般式(II)で表される構成単位、及び前記一般式(III)で表される構成単位等を誘導するモノマーの仕込み量から算出される。
 また、前記グラフト共重合体の質量平均分子量Mwは、分散性及び分散安定性の点から、4000以上であることが好ましく、6000以上であることがより好ましく、8000以上であることがより更に好ましい。一方、溶剤再溶解性の点から、50000以下であることが好ましく、30000以下であることがより好ましい。
 なお、本発明において質量平均分子量Mwは、GPC(ゲルパーミエーションクロマトグラフィー)により測定された値である。測定は、東ソー製のHLC-8120GPCを用い、溶出溶剤を0.01モル/リットルの臭化リチウムを添加したN-メチルピロリドンとし、校正曲線用ポリスチレンスタンダードをMw377400、210500、96000、50400、20650、10850、5460、2930、1300、580(以上、Polymer Laboratories製 Easi PS-2シリーズ)及びMw1090000(東ソー製)とし、測定カラムをTSK-GEL ALPHA-M×2本(東ソー製)として行われたものである。
(グラフト共重合体の製造方法)
 本発明において、前記グラフト共重合体の製造方法としては、前記一般式(I)で表される構成単位と、前記一般式(II)で表される構成単位とを有するグラフト共重合体を製造することができる方法であればよく、特に限定されない。前記一般式(I)で表される構成単位と前記一般式(II)で表される構成単位とを有するグラフト共重合体を製造する場合、例えば、下記一般式(Ia)で表されるモノマーと、前記ポリマー鎖及びその末端にエチレン性不飽和二重結合を有する基からなる重合性オリゴマー(マクロモノマー)とを共重合成分として含有して共重合し、グラフト共重合体を製造する方法が挙げられる。
 必要に応じて更にその他のモノマーも用い、公知の重合手段を用いてグラフト共重合体を製造することができる。
Figure JPOXMLDOC01-appb-C000010
(一般式(Ia)中、R71、A、R72及びR73は、一般式(I)と同様である。)
 また、前記一般式(I)で表される構成単位と前記一般式(II)で表される構成単位とを有するグラフト共重合体を製造する場合、前記一般式(Ia)で表されるモノマーとその他のエチレン性不飽和二重結合を有する基を含むモノマーとを付加重合して共重合体が形成された後に、共重合体中に含まれる反応性基と反応可能な反応性基を含むポリマー鎖を用いて、ポリマー鎖を導入しても良い。具体的には例えば、アルコキシ基、水酸基、カルボキシル基、アミノ基、エポキシ基、イソシアネート基、水素結合形成基等の置換基を有する共重合体を合成した後に、当該置換基と反応する官能基を含むポリマー鎖とを反応させて、ポリマー鎖を導入したものであっても良い。
 例えば、側鎖にグリシジル基を有する共重合体に、末端にカルボキシル基を有するポリマー鎖を反応させたり、側鎖にイソシアネート基を有する共重合体に、末端にヒドロキシ基を有するポリマー鎖を反応させたりして、ポリマー鎖を導入することができる。
 なお、前記重合においては、重合に一般的に用いられる添加剤、例えば重合開始剤、分散安定剤、連鎖移動剤などを用いてもよい。
 次に、前記一般式(I)で表される構成単位を含むAブロックと、(メタ)アクリレート由来の構成単位を含むBブロックとを有するブロック共重合体を説明する。
 本発明においてブロック共重合体の各ブロックの配置は特に限定されず、例えば、ABブロック共重合体、ABAブロック共重合体、BABブロック共重合体等とすることができる。中でも、分散性に優れる点で、ABブロック共重合体、又はABAブロック共重合体が好ましい。
 Aブロックは色材吸着部位として機能するブロックであり、少なくとも前記一般式(I)で表される構成単位を含む。当該ブロック共重合体の当該一般式(I)で表される構成単位が有する窒素部位の少なくとも一部と有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種とが塩を形成した塩型ブロック共重合体であってもよい。
 Aブロックは、本発明の目的を達成する範囲で、一般式(I)で表される構成単位以外の構成単位を有するものであってもよく、一般式(I)で表される構成単位と共重合可能な構成単位であれば含有することができる。具体的には例えば、前記一般式(III)で表される構成単位等が挙げられる。
 塩形成前のブロック共重合体におけるAブロック中、一般式(I)で表される構成単位の含有割合は、Aブロックの全構成単位の合計質量に対して、50質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましく、100質量%であることが最も好ましい。一般式(I)で表される構成単位の割合が高いほど、色材への吸着力が向上し、ブロック共重合体の分散性、及び分散安定性が良好となるからである。なお、上記構成単位の含有割合は、一般式(I)で表される構成単位を有するAブロックを合成する際の仕込み質量から算出される。
 塩形成前のブロック共重合体中、一般式(I)で表される構成単位を含むAブロックの全構成単位の合計含有割合は、分散性、及び分散安定性が良好となる点から、ブロック共重合体の全構成単位の合計質量に対して、5質量%~60質量%であることが好ましく、10質量%~50質量%であることがより好ましい。
 また、塩形成前のブロック共重合体中、一般式(I)で表される構成単位の含有割合は、分散性、及び分散安定性が良好となる点から、ブロック共重合体の全構成単位の合計質量に対して、5質量%~60質量%であることが好ましく、10質量%~50質量%であることがより好ましい。なお、上記ブロック共重合体における各構成単位の含有割合は、塩形成前のブロック共重合体を合成する際の仕込み質量から算出される。
 なお、一般式(I)で表される構成単位は、色材との親和性を有すればよく、1種からなるものであっても良いし、2種以上の構成単位を含んでいてもよい。
 Bブロックは溶剤親和性部位として機能するブロックであり、少なくとも(メタ)アクリレート由来の構成単位を含む。
 (メタ)アクリレート由来の構成単位としては、前記と同様であってよい。
 Bブロックとしては、一般式(I)で表される構成単位を誘導するモノマーと共重合可能な、不飽和二重結合を有するモノマーの中から、溶剤親和性を有するように溶剤に応じて適宜選択して用いられることが好ましい。目安として、組み合わせて用いられる溶剤に対して、共重合体の23℃における溶解度が20(g/100g溶剤)以上となるように、Bブロックを導入することが好ましい。Bブロック部を構成する構成単位は1種からなるものであっても良いし、2種以上の構成単位を含んでいてもよい。
 Bブロックに含まれる構成単位としては、例えば、前記一般式(III)で表される構成単位等が挙げられる。
 本発明の分散剤として用いられるブロック共重合体において、前記一般式(I)で表される構成単位のユニット数mと、溶剤親和性のブロック部を構成する他の構成単位のユニット数nの比率m/nとしては、0.01以上1以下の範囲内であることが好ましく、0.05以上0.7以下の範囲内であることが、色材の分散性、分散安定性の点からより好ましい。
 本発明の分散剤として用いられるブロック共重合体の中でも、前記一般式(I)で表される構成単位を含むAブロックとカルボキシ基含有モノマー由来の構成単位及び(メタ)アクリレート由来の構成単位を含むBブロックとを含有するブロック共重合体、並びに、当該ブロック共重合体の前記一般式(I)で表される構成単位が有する窒素部位の少なくとも一部と有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種とが塩を形成した塩型ブロック共重合体の少なくとも1種を含有し、前記ブロック共重合体並びに塩型ブロック共重合体の少なくとも1種の酸価が1mgKOH/g~18mgKOH/gで、ガラス転移温度が30℃以上であることが、低温加熱処理でも硬化膜の基板密着性及び耐溶剤性が良好になる点、及び現像残渣の発生が抑制される点から好ましい。また当該特定の分散剤は、前記一般式(A)で表される化合物を含む光開始剤と組み合わせると、耐溶剤性がより向上する点から好ましい。
 この場合のBブロックは、(メタ)アクリレート由来の構成単位を必須成分として含むが、国際公開第2016/104493号のBブロックと同様であってよい。
 前記カルボキシ基含有モノマーとしては、一般式(I)で表される構成単位を有するモノマーと共重合可能で、不飽和二重結合とカルボキシ基を含有するモノマーを用いることができる。このようなモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマーなどが挙げられる。また、2-ヒドロキシエチル(メタ)アクリレートなどの水酸基を有する単量体と無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物のような環状無水物との付加反応物、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレートなども利用できる。また、カルボキシ基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸などの酸無水物基含有モノマーを用いてもよい。中でも、共重合性やコスト、溶解性、ガラス転移温度などの点から(メタ)アクリル酸が特に好ましい。
 塩形成前のブロック共重合体中、カルボキシ基含有モノマー由来の構成単位の含有割合は、ブロック共重合体の酸価が前記特定の酸価の範囲内になるように適宜設定すればよく、特に限定されないが、ブロック共重合体の全構成単位の合計質量に対して、0.05質量%~4.5質量%であることが好ましく、0.07質量%~3.7質量%であることがより好ましい。
 カルボキシ基含有モノマー由来の構成単位の含有割合が、前記下限値以上であることより、現像残渣の抑制効果が発現され、前記上限値以下であることより現像密着性の悪化や溶剤再溶解性の悪化を防止できる。
 なお、カルボキシ基含有モノマー由来の構成単位は、上記特定の酸価となればよく、1種からなるものであっても良いし、2種以上の構成単位を含んでいてもよい。
 また、ブロック共重合体のBブロック中に、水酸基含有モノマー由来の構成単位が含まれることが、現像密着性を向上する点から好ましい。Bブロック中に、水酸基含有モノマー由来の構成単位が含まれる場合には、更に現像速度も向上する。なお、ここでの水酸基は、脂肪族炭化水素に結合したアルコール性水酸基をいう。
 水酸基含有モノマー由来の構成単位としては、一般式(I)で表される構成単位を誘導するモノマーと共重合可能な不飽和二重結合と水酸基を含有するモノマーを用いることができる。このようなモノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートのε-カプロラクトン1モル付加物、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。
 現像密着性が向上する点から、中でも、2-ヒドロキシエチルメタクリレート、及び2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートよりなる群から選択される1種以上であることが好ましい。
 塩形成前のブロック共重合体中、水酸基含有モノマー由来の構成単位の含有割合は、ブロック共重合体の全構成単位の合計質量に対して、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることがより更に好ましく、4質量%以上であることが特に好ましい。上記下限値以上であると現像密着性が好ましいものとすることができる。同様に、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがより更に好ましく、40質量%以下であることが特に好ましい。上記上限値以下であると他の有用なモノマーの導入比率を上げられる点から好ましいものとすることができる。なお、上記構成単位の含有割合は、塩形成前のブロック共重合体を合成する際の仕込み質量から算出される。
 前記ブロック共重合体並びに塩型ブロック共重合体の少なくとも1種の酸価は、現像残渣の抑制効果の点から、下限としては、1mgKOH/g以上であることが好ましく、2mgKOH/g以上であることがより好ましい。また、前記ブロック共重合体並びに塩型ブロック共重合体の少なくとも1種の酸価は、現像密着性の悪化や溶剤再溶解性の悪化を防止できる点から、上限としては、18mgKOH/g以下であることが好ましく、16mgKOH/g以下であることがより好ましく、14mgKOH/g以下であることがさらにより好ましい。
 前記ブロック共重合体並びに塩型ブロック共重合体の少なくとも1種の酸価は、国際公開第2016/104493号に記載の方法で求めることができる。
 前記ブロック共重合体並びに塩型ブロック共重合体の少なくとも1種のガラス転移温度は、現像密着性の点から30℃以上であることが好ましく、中でも32℃以上が好ましく、35℃以上がより好ましい。一方、精秤が容易など、使用時の操作性の観点から、200℃以下であることが好ましい。
 前記ブロック共重合体並びに塩型ブロック共重合体の少なくとも1種のガラス転移温度は、JIS K7121に準拠し、示差走査熱量測定(DSC)により測定することにより求める。ガラス転移温度を示すピークが2つ以上見られる場合には、ピーク面積、すなわち、得られたチャートのベースラインから突出した部分の面積が最も大きいピークをガラス転移温度の代表値とする。
 前記ブロック共重合体の質量平均分子量Mwは、特に限定されないが、色材分散性及び分散安定性を良好なものとする点から、1000~20000であることが好ましく、2000~15000であることがより好ましく、更に3000~12000であることがより好ましい。
 ここで、質量平均分子量は(Mw)、前記と同様に測定することができる。
 また、(メタ)アクリレート由来の構成単位の合計割合は、分散安定性及び耐溶剤性、光開始剤との相溶性の点から、ブロック共重合体におけるBブロック中の全構成単位を100質量%とした時に、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。一方で、分散安定性、及び優れた耐溶剤性を同時に満たす点から、(メタ)アクリレート由来の構成単位の合計割合は、当該Bブロック中の全構成単位を100質量%とした時に、100質量%であってもよい。Bブロック中に前記カルボキシ基含有モノマー由来の構成単位を含む場合には、(メタ)アクリレート由来の構成単位の合計割合は、Bブロック中の前記カルボキシ基含有モノマー由来の構成単位とは異なる全構成単位を100質量%とした時に、100質量%であってもよい。
 塩形成前のブロック共重合体中、Bブロックの全構成単位の合計含有割合は、分散性、及び分散安定性が良好となる点から、ブロック共重合体の全構成単位の合計質量に対して、5質量%~60質量%であることが好ましく、10質量%~50質量%であることがより好ましい。
 また、塩形成前のブロック共重合体中、上記一般式(III)で表される構成単位の含有割合は、色材分散性を向上する点から、ブロック共重合体の全構成単位の合計質量に対して、40質量%~95質量%であることが好ましく、50質量%~90質量%であることがより好ましい。なお、上記構成単位の含有割合は、塩形成前のブロック共重合体を合成する際の仕込み質量から算出される。 
 前記一般式(I)で表される構成単位を含む(メタ)アクリレート系共重合体は、アミン価が40mgKOH/g~120mgKOH/gである共重合体が、分散性が良好で塗膜形成時に異物を析出せず、輝度及びコントラストを向上する点から好ましい。
 アミン価が上記範囲内であることにより、粘度の経時安定性や耐熱性に優れると共に、アルカリ現像性や、溶剤再溶解性にも優れている。本発明において、前記一般式(I)で表される構成単位を含む(メタ)アクリレート系共重合体のアミン価は、中でも、アミン価が80mgKOH/g以上であることが好ましく、90mgKOH/g以上であることがより好ましい。一方、溶剤再溶解性の点から、前記一般式(I)で表される構成単位を含む(メタ)アクリレート系共重合体のアミン価は、110mgKOH/g以下であることが好ましく、105mgKOH/g以下であることがより好ましい。
 アミン価は、試料1g中に含まれるアミン成分を中和するのに要する過塩素酸と当量の水酸化カリウムのmg数をいい、JIS-K7237に定義された方法により測定することができる。当該方法により測定した場合には、分散剤中の有機酸化合物と塩形成しているアミノ基であっても、通常、当該有機酸化合物が解離するため、分散剤として用いられるブロック共重合体そのもののアミン価を測定することができる。
 分散剤における共重合体中の各構成単位の含有割合(モル%)は、製造時には原料の仕込み量から求めることができ、また、NMR等の分析装置を用いて測定することができる。また、分散剤の構造は、NMR、各種質量分析等を用いて測定することができる。また、分散剤を必要に応じて熱分解等により分解し、得られた分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMS等を用いて求めることができる。
 本発明に係る光硬化性緑色樹脂組成物において、分散剤の含有量は、色材の分散性及び分散安定性に優れるように選択されればよく、特に限定されないが、光硬化性緑色樹脂組成物中の固形分全量に対して、例えば好ましくは2質量%~30質量%、より好ましくは3質量%~25質量%の範囲内である。上記下限値以上であれば、色材の分散性及び分散安定性に優れ、光硬化性緑色樹脂組成物の保存安定性により優れている。また、上記上限値以下であれば、現像性が良好なものとなる。特に色材濃度が高い硬化膜を形成する場合には、分散剤の含有量は、光硬化性緑色樹脂組成物の固形分全量に対して、例えば好ましくは2質量%~25質量%、より好ましくは3質量%~20質量%の範囲内である。
<チオール化合物>
 本発明の光硬化性緑色樹脂組成物は、低温加熱処理後の耐溶剤性、及び基板密着性を向上する点から、更に、チオール化合物を含有することが好ましい。
 チオール化合物としては、チオール基が1つの単官能チオール化合物、チオール基が2つ以上の多官能チオール化合物が挙げられる。線幅シフトの抑制と基板密着性の向上の点からは、チオール基が1つの単官能チオール化合物を用いることがより好ましい。
 単官能チオール化合物としては、例えば、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、2-メルカプト-5-メトキシベンゾチアゾール、2-メルカプト-5-メトキシベンゾイミダゾール、3-メルカプトプロピオン酸、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸エチル、3-メルカプトプロピオン酸オクチル等が挙げられる。
 多官能チオール化合物としては、例えば、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、およびテトラエチレングリコールビス(3-メルカプトプロピオネート)等が挙げられる。
 チオール化合物としては、単独で又は2種以上組み合わせて用いても良く、中でも、2-メルカプトベンゾオキサゾール、又は2-メルカプトベンゾチアゾールが、低温加熱処理後の耐溶剤性、及び基板密着性を向上する点から好ましい。
 チオール化合物の含有量としては、光硬化性緑色樹脂組成物の固形分全量に対して、通常0.5質量%~10質量%、好ましくは1質量%~5質量%の範囲内である。上記下限値以上であれば、低温加熱処理後の耐溶剤性、及び基板密着性を向上しやすい。一方、上記上限値以下であれば、本発明の光硬化性緑色樹脂組成物を、現像性が良好で線幅シフトが抑制されたものとしやすい。
<その他の成分>
 本発明の光硬化性緑色樹脂組成物には、必要に応じて、更に各種添加剤を含むものであってもよい。添加剤としては、例えば、酸化防止剤、重合停止剤、連鎖移動剤、レベリング剤、可塑剤、界面活性剤、消泡剤、シランカップリング剤、紫外線吸収剤、密着促進剤等などが挙げられる。
 界面活性剤及び可塑剤の具体例としては、例えば、特開2013-029832号公報に記載のものが挙げられる。
 本発明の光硬化性緑色樹脂組成物は、更に酸化防止剤を含むものであることが、硬化膜の線幅シフト量の抑制の点から好ましい。本発明の光硬化性緑色樹脂組成物は、例えば、前記一般式(A)で表される化合物と組み合わせて酸化防止剤を含むことにより、硬化膜を形成する際に硬化性を損なうことなく過度なラジカル連鎖反応を制御できるため、細線パターンを形成する際に、直線性がより向上したり、マスク線幅の設計通りに細線パターンを形成する能力が向上する。また、耐熱性を向上することができ、露光及びポストベイク後の輝度低下を抑制できるため輝度を向上することができる。
 本発明に用いられる酸化防止剤としては、特に限定されず、従来公知のものの中から適宜選択すればよい。酸化防止剤の具体例としては、例えば、ヒンダードフェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ヒドラジン系酸化防止剤等が挙げられ、線幅マスク線幅の設計通りに細線パターンを形成する能力が向上する点、及び耐熱性の点から、ヒンダードフェノール系酸化防止剤を用いることが好ましい。国際公開第2014/021023号に記載されているような潜在性酸化防止剤であっても良い。
 ヒンダードフェノール系酸化防止剤としては、例えば、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](商品名:商品名:IRGANOX1010、BASF社製)、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート(商品名:イルガノックス3114、BASF製)、2,4,6-トリス(4-ヒドロキシ-3,5-ジ-tert-ブチルベンジル)メシチレン(商品名:イルガノックス1330、BASF製)、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)(商品名:スミライザーMDP-S、住友化学製)、6,6’-チオビス(2-tert-ブチル-4-メチルフェノール)(商品名:イルガノックス1081、BASF製)、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチル(商品名:イルガモド195、BASF製)等が挙げられる。中でも、耐熱性及び耐光性の点から、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](商品名:商品名:IRGANOX1010、BASF社製)が好ましい。
 酸化防止剤の含有量としては、光硬化性緑色樹脂組成物の固形分全量に対して、通常0.1質量%~10.0質量%、好ましくは0.5質量%~5.0質量%の範囲内である。上記下限値以上であれば、マスク線幅の設計通りに細線パターンを形成する能力が向上する点、及び耐熱性に優れている。一方、上記上限値以下であれば、本発明の光硬化性緑色樹脂組成物を高感度の光硬化性緑色樹脂組成物としやすい。
 またシランカップリング剤としては、例えばKBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-903、KBE-903、KBM573、KBM-403、KBE-402、KBE-403、KBM-303、KBM-802、KBM-803、KBE-9007、X-12-967C(信越シリコーン社製)などが挙げられる。中でもSiN基板の密着性の点からメタクリル基、アクリル基を有するKBM-502、KBM-503、KBE-502、KBE-503、KBM-5103が好ましい。
 シランカップリング剤の含有量としては、光硬化性緑色樹脂組成物中の固形分全量に対して、通常0.05質量%~10.0質量%、好ましくは0.1質量%~5.0質量%の範囲内である。上記下限値以上、上記上限値以下であれば、基板密着性向上効果が良好になりやすい。
<光硬化性緑色樹脂組成物の製造方法>
 本発明の光硬化性緑色樹脂組成物の製造方法は、色材と、光重合性化合物と、光開始剤と、所望により用いられる各種添加成分とを、公知の混合手段を用いて混合することにより、調製することができる。
 本発明の光硬化性緑色樹脂組成物が、色材と、分散剤と、アルカリ可溶性樹脂と、光重合性化合物と、光開始剤と、溶剤と、所望により用いられる各種添加成分とを含有する場合、当該樹脂組成物の調製方法としては、例えば、(1)まず溶剤中に、色材と、分散剤とを添加して色材分散液を調製し、当該分散液に、アルカリ可溶性樹脂と、光重合性化合物と、光開始剤と、所望により用いられる各種添加成分を混合する方法;(2)溶剤中に、色材と、分散剤と、アルカリ可溶性樹脂と、光重合性化合物と、光開始剤と、所望により用いられる各種添加成分とを同時に投入し混合する方法;(3)溶剤中に、分散剤と、アルカリ可溶性樹脂と、光重合性化合物と、光開始剤と、所望により用いられる各種添加成分とを添加し、混合したのち、色材を加えて分散する方法;(4)溶剤中に、色材と、分散剤と、アルカリ可溶性樹脂とを添加して色材分散液を調製し、当該分散液に、更にアルカリ可溶性樹脂と、溶剤と、光重合性化合物と、光開始剤と、所望により用いられる各種添加成分を添加し、混合する方法;などを挙げることができる。
 これらの方法の中で、上記(1)及び(4)の方法が、色材の凝集を効果的に防ぎ、均一に分散させ得る点から好ましい。
 色材分散液を調製する方法は、従来公知の分散方法の中から適宜選択して用いることができる。例えば、(1)予め、分散剤を溶剤に混合、撹拌し、分散剤溶液を調製し、次いで必要に応じて有機酸化合物を混合して分散剤が有するアミノ基と有機酸化合物との塩形成させる。これを色材と必要に応じてその他の成分を混合し、公知の攪拌機または分散機を用いて分散させる方法;(2)分散剤を溶剤に混合、撹拌し、分散剤溶液を調製し、次いで、色材及び必要に応じて有機酸化合物と、更に必要に応じてその他の成分を混合し、公知の攪拌機または分散機を用いて分散させる方法;(3)分散剤を溶剤に混合、攪拌し、分散剤溶液を調整し、次いで、色材及び必要に応じてその他の成分を混合し、公知の攪拌機または分散機を用いて分散液としたのちに、必要に応じて有機酸化合物を添加する方法などが挙げられる。
 分散処理を行うための分散機としては、2本ロール、3本ロール等のロールミル、ボールミル、振動ボールミル等のボールミル、ペイントコンディショナー、連続ディスク型ビーズミル、連続アニュラー型ビーズミル等のビーズミルが挙げられる。ビーズミルの好ましい分散条件として、使用するビーズ径は0.03mm~2.00mmが好ましく、より好ましくは0.10mm~1.0mmである。
<用途>
 本発明に係る光硬化性緑色樹脂組成物は、硬化膜が外光反射抑制効果を有することから、円偏光板代替の着色硬化膜の形成に好適に用いられる。本発明に係る光硬化性緑色樹脂組成物の硬化膜を円偏光板の代替に用いる場合には、偏光板を含まない表示装置とすることができるため、本発明に係る光硬化性緑色樹脂組成物は、偏光板を含まない表示装置用途に好適に用いられる。
 また、本発明に係る光硬化性緑色樹脂組成物は、有機発光素子上に形成する硬化膜に用いる光硬化性緑色樹脂組成物であることから、外付けのカラーフィルタ基板を含まない表示装置用途、薄膜でフレキシブル性が向上した有機発光表示装置用途に好適に用いられる。
 また、本発明に係る光硬化性緑色樹脂組成物は、前述のように成分を適宜選択することにより、低温加熱処理でも耐溶剤性が良好で、基板密着性に優れた硬化膜を形成可能であることから、耐熱性が低い素子が形成された基板上に、130℃以下、更に100℃以下や90℃以下の低温加熱処理で硬化膜を形成する用途に好適に用いることができる。
II.表示装置
 本発明に係る表示装置は、有機発光素子上に、前記本発明に係る光硬化性緑色樹脂組成物の硬化膜を有することを特徴とする。
 本発明に係る表示装置は、前記本発明に係る有機発光素子上に形成する硬化膜に用いる光硬化性緑色樹脂組成物の硬化膜が、有機発光素子上に形成されているものであることから、外付けの円偏光板や、外付けのカラーフィルタ基板が不要であり、これらを有しないものであってよい。
 本発明に係る表示装置は、前記本発明に係る有機発光素子上に形成する硬化膜に用いる光硬化性緑色樹脂組成物を用いて、有機発光素子上に硬化膜が形成されることから、有機発光素子と硬化膜の間に外付けのカラーフィルタ基板に用いられるような基板を有しないため、薄膜化とフレキシブル性が向上したものである。
 このような本発明に係る有機発光素子を含む有機発光表示装置について、図を参照しながら説明する。図1は、本発明に係る有機発光素子を備えた表示装置の一例を示す概略断面図である。図1に例示するように本発明に係る表示装置100は、有機発光素子を備えた素子基板30と、当該素子基板30上に、着色硬化膜(9R、9G、9B)を含む外光反射防止膜20を備え、更にその上に封止膜11を備える。
 前記有機発光素子を備えた素子基板30は、基板1上に駆動素子である薄膜トランジスタ(TFT)2が各サブピクセルに対応するよう配置され、その上に封止膜3を備え、さらに封止膜3上には各サブピクセルに対応する電極4(陽極)、各サブピクセルを区画する隔壁5を備え、その区画内にR、G,B3色のサブピクセルを構成する有機発光素子(6R、6G、6B)が配置され、当該有機発光素子(6R、6G、6B)上に、更に電極7(陰極)を備えている。前記有機発光素子を備えた素子基板30は、さらにその上から有機発光素子を覆う封止層8を備える。
 素子基板30における有機EL素子(6R、6G、6B)上の封止層8上に、光硬化性着色樹脂組成物を用いて形成される各有機EL素子に対応した3色の着色硬化膜(9R、9G、9B)及び遮光部10を含む外光反射防止膜20を備え、更にその上に封止膜11を備える。
 図1の本発明に係る表示装置100は、封止膜11の上に、更に、透明粘着剤層12を介してカバー材13を備えている。
 本発明に係る表示装置100は、図示しないが、例えば、さらに封止膜11上に絶縁膜および透明電極層からなるタッチセンサー層を備え、さらにタッチセンサー層上にハードコート層等、公知の構成をさらに適宜備えていてよいものである。
 上記のように、前記有機発光素子を備えた素子基板30上に設けられた、着色硬化膜(9R、9G、9B)及び遮光部10の層が、外光反射防止膜20として用いられることから、本発明に用いられる外光反射防止膜は、外付けの円偏光板や外付けのカラーフィルタ基板のように別途基板が含まれず、薄膜化及びフレキシブル性を向上できる。
 本発明に係る表示装置においては、有機発光素子のサブピクセルの(6R、6G、6B)の色と、例えば封止層8等の少なくとも1層を介して直上の着色硬化膜(9R、9G、9B)の色が同種の色であるように調整することが好ましい。この有機発光素子上に設けられた着色硬化膜により、外光は、本来有機発光素子が発光する色を除いて遮蔽されるとともに、有機発光素子が発光する光はカットされないため、光利用効率を低下させることなく、外光反射を抑制することが可能となる。
 前記本発明に係る光硬化性緑色樹脂組成物の硬化膜は、前記3色の着色硬化膜(9R、9G、9B)のうち、緑色硬化膜(9G)であってよい。
 本発明に係る表示装置に用いられる基板1、駆動素子である薄膜トランジスタ(TFT)2、封止膜3、電極4(陽極)、各サブピクセルを区画する隔壁5、サブピクセルを構成する有機発光素子(6R、6G、6B)、電極7(陰極)等は、公知の構成を適宜選択して用いることができる。
 有機発光素子には、発光層の他に、正孔注入層、正孔輸送層、電子注入層等、公知の構成を備えていてもよい。
 本発明に係る表示装置に用いられる有機EL素子上の封止層8としては、無機膜、または有機膜、及びそれらを積層した多層膜からなる。水分や酸素の浸入を抑制する効果が高い点から、多層膜を用いることが好ましい。
 具体的には例えば、金属膜、金属酸化物膜、SiOx、SiNx等の無機膜と有機膜を積層した多層膜等が挙げられる。
 本発明に係る表示装置に用いられる着色硬化膜は、少なくとも1つが、前記本発明に係る光硬化性緑色樹脂組成物の硬化膜である。
 着色硬化膜は、通常、有機発光素子上の封止層8上の後述する遮光部の開口部に形成され、通常3色以上の着色パターンから構成される。これらは有機発光素子のサブピクセルの(6R、6G、6B)と同様の着色パターンであってよい。
 着色硬化膜(9R、9G、9B)の配列としては、例えば、ストライプ型、モザイク型、トライアングル型、4画素配置型等の一般的な配列とすることができる。また、着色層の幅、面積等は有機発光素子のサブピクセルの(6R、6G、6B)に適合するように適宜設定することができる。
 当該着色硬化膜の厚みは、塗布方法、光硬化性緑色樹脂組成物の固形分濃度や粘度等を調整することにより、適宜制御されるが、通常、1μm~5μmの範囲である。
 本発明に係る表示装置に用いられる遮光部10は、通常、有機発光素子上の封止層8上にパターン状に形成されるものであって、一般的なカラーフィルタに遮光部として用いられるものと同様とすることができる。
 当該遮光部のパターン形状としては、前記着色硬化膜の形状に合わせて適宜選択されればよく、例えば、ストライプ状、マトリクス状等の形状が挙げられる。遮光部は、スパッタリング法、真空蒸着法等によるクロム等の金属薄膜であっても良い。或いは、遮光部は、樹脂バインダー中にカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂層であってもよい。遮光性粒子を含有させた樹脂層の場合には、感光性レジストを用いて現像によりパターニングする方法、遮光性粒子を含有するインクジェットインクを用いてパターニングする方法、感光性レジストを熱転写する方法等がある。
 遮光部の膜厚としては、金属薄膜の場合は0.2μm~0.4μm程度で設定され、黒色顔料をバインダー樹脂中に分散又は溶解させたものである場合は0.5μm~2μm程度で設定される。
 着色硬化膜(9R、9G、9B)及び遮光部10の上に設けられる封止膜11としては、公知の材料を適宜選択して用いることができる。
 また、封止膜11上に設けられる透明粘着剤層12や、カバー材13としても、公知の材料を適宜選択して用いることができる。本発明においてはカバー材にガラスを用いた場合であっても、緑色硬化膜の耐候性が良好で、透過率の低下が抑制される点から、カバー材としてガラスを用いることができる。
 なお、本発明に係る表示装置は、前記図1に示される構成に限定されるものではなく、その他にも、公知の有機発光素子を備えた表示装置の構成をさらに備えていて良いものである。
III.有機発光素子と外光反射防止膜の積層体の製造方法
 本発明に係る有機発光素子と外光反射防止膜の積層体の製造方法は、
有機発光素子上に、前記本発明に係る光硬化性緑色樹脂組成物を塗布することにより塗膜を形成する工程、
 前記塗膜に光照射する工程、
 前記光照射後の膜を、加熱するポストベイク工程、及び、
 前記光照射後の膜を、現像する工程を含有することにより、
有機発光素子上に前記本発明に係る光硬化性緑色樹脂組成物の硬化膜を形成する工程を有する。
 以下各工程について、説明する。
 有機発光素子上に、前記本発明に係る光硬化性緑色樹脂組成物を塗布する工程において、有機発光素子上とは、有機発光素子に隣接して塗布しなくてもよく、少なくとも1層介して塗布してよい。図1のように、有機発光素子を備える素子基板30においては、有機発光素子のサブピクセルの(6R、6G、6B)の上に、通常、更に電極7や、水分や酸素の浸入を抑制するための封止層8が設けられることから、これらの電極及び封止層等を介して、有機発光素子上に塗布してよい。
 例えば、封止層8上に、前述に例示したような公知の方法によって、遮光部10を予め設け、当該遮光部10の開口部に、着色硬化膜(9R、9G、9B)が形成されるように塗布してよい。
 例えば、スプレーコート法、ディップコート法、バーコート法、ロールコート法、スピンコート法、ダイコート法などの塗布手段を用いて、前述した本発明の光硬化性緑色樹脂組成物を、前記有機発光素子上に、塗布する。塗布手段としては、なかでもスピンコート法、ダイコート法を好ましく用いることができる。
 次いで、ホットプレートやオーブンなどを用いて、該ウェット塗膜を乾燥させ、塗膜を形成する。
 得られた塗膜に、所定のパターンのマスクを介して光照射(露光)し、光重合性化合物、及び必要に応じてアルカリ可溶性樹脂等を光重合反応させる。露光に使用される光源としては、例えば低圧水銀灯、高圧水銀灯、メタルハライドランプなどの紫外線、電子線等が挙げられる。露光量は、使用する光源や塗膜の厚みなどによって適宜調整される。
 次いで、露光後に重合反応を促進させるために、前記光照射後の膜を、加熱するポストベイク工程を行ってもよい。加熱条件は、使用する光硬化性緑色樹脂組成物中の各成分の配合割合や、塗膜の厚み等によって適宜選択されればよい。
 ポストベイク工程は、前記光照射後の膜に対して、後述する現像工程前に行ってもよいし、現像工程後に行ってもよいし、現像工程前後に行ってもよい。
 本発明においては、有機発光素子を備えた素子基板上に直接着色硬化膜を形成することから、前記ポストベイク工程における加熱温度が、130℃以下であることが好ましい。加熱温度は、100℃以下がより好ましく、90℃以下が更に好ましい。また、加熱温度は、30℃以上であってよく、35℃以上であってよく、40℃以上であってよい。
 次に、前記光照射後の膜を、現像する。現像する前記光照射後の膜は、ポストベイク後の膜であってもよい。
 現像工程においては、現像液を用いて現像処理し、未露光部分を溶解、除去することにより、所望のパターンで塗膜が形成される。現像液としては、通常、水や水溶性溶剤にアルカリを溶解させた溶液が用いられる。このアルカリ溶液には、界面活性剤などを適量添加してもよい。また、現像方法は一般的な方法を採用することができる。
 現像処理後は、通常、現像液の洗浄、光硬化性緑色樹脂組成物の硬化膜の乾燥が行われ、着色硬化膜が形成される。なお、現像処理後に、塗膜を十分に硬化させるために加熱処理を行ってもよい。
 本発明では有機発光素子を備えた素子基板上に直接着色硬化膜を形成することから、このポストベイク工程における加熱温度も、130℃以下が好ましく、100℃以下がより好ましく、90℃以下が更に好ましい。また、加熱温度は、30℃以上であってよく、35℃以上であってよく、40℃以上であってよい。
 また、現像処理後や、ポストベイク後の膜を更に硬化するために、追加で光照射(露光)してもよい。
 以下、本発明について実施例を示して具体的に説明する。これらの記載により本発明を制限するものではない。
 塩形成前の共重合体の質量平均分子量(Mw)は、前述の本発明の明細書に記載した測定方法に従って、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算値として求めた。
(合成例1:ブロック共重合体1の合成)
 冷却管、添加用ロート、窒素用インレット、機械的攪拌機、デジタル温度計を備えた500mL丸底4口セパラブルフラスコにTHF250質量部、塩化リチウム0.6質量部を加え、充分に窒素置換を行った。反応フラスコを-60℃まで冷却した後、ブチルリチウム4.9質量部(15質量%ヘキサン溶液)、ジイソプロピルアミン1.1質量部、イソ酪酸メチル1.0質量部をシリンジを用いて注入した。Bブロック用モノマーのメタクリル酸1-エトキシエチル(EEMA)2.2質量部、メタクリル酸2-(トリメチルシリルオキシ)エチル(TMSMA) 29.1質量部、メタクリル酸2-エチルヘキシル(EHMA)12.8質量部、メタクリル酸n-ブチル(BMA)13.7質量部、メタクリル酸ベンジル(BzMA)9.5質量部、メタクリル酸メチル(MMA)17.5質量部を、添加用ロートを用いて60分かけて滴下した。30分後、Aブロック用モノマーであるメタクリル酸ジメチルアミノエチル(DMMA)26.7質量部を20分かけて滴下した。30分間反応させた後、メタノール1.5質量部を加えて反応を停止させた。得られた前駆体ブロック共重合体THF溶液はヘキサン中で再沈殿させ、濾過、真空乾燥により精製を行い、PGMEAで希釈し固形分30質量%溶液とした。水を32.5質量部加え、100℃に昇温し7時間反応させ、EEMA由来の構成単位を脱保護しメタクリル酸(MAA)由来の構成単位とし、TMSMA由来の構成単位を脱保護してメタクリル酸2-ヒドロキシエチル(HEMA)由来の構成単位とした。得られたブロック共重合体PGMEA溶液はヘキサン中で再沈殿させ、濾過、真空乾燥により精製を行い、前記一般式(I)で表される構成単位を含むブロック共重合体1(アミン価 95mgKOH/g、酸価 8mgKOH/g、Tg38℃)を得た。重量平均分子量Mwは7730であった。
(合成例2:式(A-2)で表されるオキシムエステル系光開始剤の合成)
 国際公開2015/152153号公報の段落0114~0117の化合物No.73の製造と同様にして、前記式(A-2)で表されるオキシムエステル系光開始剤を合成した。
(調製例1:アルカリ可溶性樹脂Aの調製)
 重合槽に、PGMEAを300質量部仕込み、窒素雰囲気下で100℃に昇温した後、メタクリル酸2-フェノキシエチル(PhEMA)90質量部、MMA54質量部、メタクリル酸(MAA)36質量部及びパーブチルO(日油株式会社製)6質量部、連鎖移動剤(n-ドデシルメルカプタン)2質量部を1.5時間かけて連続的に滴下した。その後、100℃を保持して反応を続け、上記主鎖形成用混合物の滴下終了から2時間後に重合禁止剤として、p-メトキシフェノール0.1質量部を添加して重合を停止した。
 次に、空気を吹き込みながら、エポキシ基含有化合物としてメタクリル酸グリシジル(GMA)20質量部を添加して、110℃に昇温した後、トリエチルアミン0.8質量部を添加して110℃で15時間付加反応させ、アルカリ可溶性樹脂A溶液(重量平均分子量(Mw)8500、酸価75mgKOH/g、固形分40質量%)を得た。
 なお、上記重量平均分子量の測定方法は、ポリスチレンを標準物質とし、THFを溶離液としてショウデックスGPCシステム-21H(Shodex GPC System-21H)により重量平均分子量を測定した。また酸価の測定方法は、JIS K 0070に基づいて測定した。
(実施例1:光硬化性緑色樹脂組成物G-1の製造)
(1)色材分散液B(1)の製造
 225mLマヨネーズ瓶中に、PGMEA64.9質量部、調製例1のアルカリ可溶性樹脂A溶液(固形分40質量%)13.5質量部、合成例1のブロック共重合体1のPGMEA溶液(固形分35質量%)9.2質量部を入れ攪拌した。そこへフェニルホスホン酸(商品名:PPA、日産化学社製)0.39質量部を加え、室温で30分攪拌した。
 そこへ、青色顔料としてC.I.ピグメントブルー15:4(B15:4)を12.0質量部、粒径2.0mmジルコニアビーズ100質量部を入れ、予備解砕としてペイントシェーカー(浅田鉄工社製)で1時間振とうし、次いで粒径0.1mmのジルコニアビーズ200部に変更し本解砕としてペイントシェーカーで4時間分散を行い、色材分散液B(1)を得た。なお、ブロック共重合体1は、フェニルホスホン酸によって塩形成され、塩型ブロック共重合体1となっている。
(2)色材分散液Y(1)の製造
 色材分散液B(1)の製造において、C.I.ピグメントブルー15:4(B15:4)を、C.I.ピグメントイエロー139(Y139)に変更した以外は色材分散液B(1)の製造と同様にして、色材分散液Y(1)を得た。
(3)色材分散液Y(2)の製造
 色材分散液B(1)の製造において、C.I.ピグメントブルー15:4(B15:4)を、C.I.ピグメントイエロー150(Y150)に変更した以外は色材分散液B(1)の製造と同様にして、色材分散液Y(2)を得た。
(4)色材分散液Y(3)の製造
 色材分散液B(1)の製造において、C.I.ピグメントブルー15:4(B15:4)を、C.I.ピグメントイエロー138(Y138)に変更した以外は色材分散液B(1)の製造と同様にして、色材分散液Y(3)を得た。
(5)光硬化性緑色樹脂組成物G-1の製造
 上記で得られた色材分散液B(1)を6.4質量部、色材分散液Y(1)を5.2質量部、色材分散液Y(2)を9.0質量部、色材分散液Y(3)を15.0質量部、調製例1で得られたアルカリ可溶性樹脂A溶液を3.5質量部、多官能モノマー(商品名アロニックスM-305、東亞合成(株)社製)を5.6質量部、前記式(A-2)で表されるオキシムエステル系光開始剤を0.5質量部、フッ素系界面活性剤(商品名メガファックR-08MH、DIC(株)製)を0.03質量部、PGMEAを54.6質量部加え、光硬化性緑色樹脂組成物G-1を得た。
(実施例2~5:光硬化性緑色樹脂組成物G-2~G-5の製造)
 実施例1において、表1に示したように、青色顔料と黄色顔料と緑色顔料の種類及び/又は質量比を変更し、アルカリ可溶性樹脂A溶液、多官能モノマー、及び前記式(A-2)で表されるオキシムエステル系光開始剤の比率は実施例1と同じまま、顔料濃度が表1に示した値になるように変更する以外は、光硬化性緑色樹脂組成物G-1と同様にして、光硬化性緑色樹脂組成物G-2~G-5を得た。
 なお、C.I.ピグメントブルー15:6(B15:6)、C.I.ピグメントグリーン59(G59)又はC.I.ピグメントグリーン7(G7)の色材分散液はそれぞれ、色材分散液B(1)の製造において、C.I.ピグメントブルー15:4(B15:4)を、C.I.ピグメントブルー15:6(B15:6)、C.I.ピグメントグリーン59(G59)又はC.I.ピグメントグリーン7(G7)に変更した以外は色材分散液B(1)の製造と同様にして、色材分散液B(2)、色材分散液G(1)、又は色材分散液G(2)として得た。
(比較例1~2:比較光硬化性緑色樹脂組成物CG-1~CG-2の製造)
 実施例4、5において、表1に示したように、緑色顔料(ハロゲン化フタロシアニン顔料)を色材全量中に10質量%を超える量で用いるように変更した以外は、光硬化性緑色樹脂組成物G-4又はG-5と同様にして、比較光硬化性緑色樹脂組成物CG-1~CG-2を得た。
(比較例3~4:比較光硬化性緑色樹脂組成物CG-3~CG-4の製造)
 実施例1において、表1に示したように、特許文献2(特開2011-242568号公報)の実施例1及び2と同様になるように、青色顔料と黄色顔料の種類及び/又は質量比と、開始剤の種類(イルガキュア907(907、BASF社製)及びカヤキュアDETX-S(DETX、日本化薬製)を質量比2:1)を変更し、顔料以外の成分量を表1に示した顔料濃度になるよう変更した以外は、光硬化性緑色樹脂組成物G-1と同様にして、比較光硬化性緑色樹脂組成物CG-3~CG-4を得た。
 なお、C.I.ピグメントブルー16(B16)、又はC.I.ピグメントブルー15:3(B15:3)の色材分散液は、色材分散液B(1)の製造において、C.I.ピグメントブルー15:4(B15:4)を、C.I.ピグメントブルー16(B16)、又はC.I.ピグメントブルー15:3(B15:3)に変更した以外は色材分散液B(1)の製造と同様にして、色材分散液B(3)、又は色材分散液B(4)として得た。
(比較例5~7:比較光硬化性緑色樹脂組成物CG-5~CG-7の製造)
 実施例1において、表1に示したように、特許文献3(国際公開2020/196393号公報)の実施例2、5、及び1と同様になるように、青色顔料と黄色顔料の種類及び/又は質量比と、開始剤の種類(イルガキュアOXE02(OXE02、BASF社製))を変更し、顔料以外の成分量を表1に示した顔料濃度になるよう変更した以外は、光硬化性緑色樹脂組成物G-1と同様にして、比較光硬化性緑色樹脂組成物CG-5~CG-7を得た。
(比較例8:比較光硬化性緑色樹脂組成物CG-8の製造)
 実施例1において、表1に示したように、特許文献1(特開2017-182067号公報)の実施例1と同様の黄色顔料と緑色顔料と黒色顔料の種類及び/又は質量比と、開始剤の種類(イルガキュア907(907、BASF社製)とイルガキュアOXE01(OXE01、BASF社製))に変更し、顔料以外の成分量を表1に示した顔料濃度になるよう変更した以外は、光硬化性緑色樹脂組成物G-1と同様にして、比較光硬化性緑色樹脂組成物CG-8を得た。
 なお、黒色顔料(カーボンブラック)の色材分散液は、色材分散液B(1)の製造において、C.I.ピグメントブルー15:4(B15:4)を、カーボンブラック(三菱ケミカル製、MA77)に変更した以外は色材分散液B(1)の製造と同様にして、色材分散液BK(1)として得た。
[評価方法]
 各実施例及び各比較例で得られた光硬化性緑色樹脂組成物を、ガラス基板(NHテクノグラス(株)社製、「NA35」)上にそれぞれ、スピンコーターを用いて最終的に得られる硬化膜が厚さ3.0μmとなるように塗布した後、ホットプレートを用いて80℃で3分間乾燥し基板上に塗膜を形成した。この塗膜に、独立細線を形成するための開口寸法2μmから100μmのパターンを有するフォトマスク(クロムマスク)を介して、超高圧水銀灯を用いて70mJ/cmの紫外線で露光することにより、露光後塗膜を形成した。次いで、0.05wt%水酸化カリウム水溶液を現像液としてスピン現像し、現像液に60秒間接液させた後に純水で洗浄することで現像処理し、独立細線パターン状の塗膜を得た。その後、90℃のクリーンオーブンで30分間ポストベイクすることにより、独立細線パターン状の硬化膜(緑色硬化膜)を形成した。
 このようにして得られた硬化膜を用いて、透過率測定、耐候性評価、耐溶剤性評価、外光反射抑制評価を行った。
<透過率>
 顕微分光測定装置(オリンパス製、OSP-SP200)を用いて硬化膜の380nm~780nmの透過スペクトルを測定し、380nm~480nmの最大透過率、510nm~550nmの最大透過率と最小透過率、及び580nm~700nmの最大透過率、及び、380nm~700nmの範囲の波長において最大透過率を示すピークにおいて最大透過率の半分の透過率となる2点の波長の差を計算して半値幅を求めた。
<耐候性評価>
 ガラス基板上に作製した硬化膜上に透明な粘着層を介してガラス基板を貼り付けたサンプルに対して、耐候性試験機(ATLAS社製Ci4000)を使用して、340nmの光強度が0.63W/m、槽内温度が60℃、湿度が50%RHの条件で、48時間、耐候性試験を行った。
 耐候性試験前後の各耐候性評価用硬化膜について、耐候性試験前の色度(L、a、b)、耐候性試験後の色度(L、a、b)をオリンパス製顕微分光測定装置OSP-SP200を用いて測定した。
 下記式により、耐候性試験前後の硬化膜の色度変化を評価した。結果を表に示す。
   ΔEab={(L-L)2+(a-a)2+(b-b1/2
ΔEabの値が小さいほど、耐熱性に優れると評価される。
(耐候性評価の評価基準)
A:ΔEabの値が3未満
B:ΔEabの値が3以上5未満
C:ΔEabの値が5以上 
 評価結果がBであれば耐候性は良好であり、評価結果がAであれば耐候性に優れている。
<耐溶剤性(耐PGME)評価>
 得られた硬化膜の膜厚を測定した後、プロピレングリコールモノメチルエーテル(PGME)に10分間浸漬した後、風乾し、再び膜厚を測定した。なお、膜厚測定には、触針式段差膜厚計「P-15Tencor」(Instruments製)を用いた。溶剤浸漬後膜厚/溶剤浸漬前膜厚を×100を、残膜率として算出した。
(耐溶剤性の評価基準)
A:溶剤浸漬後の残膜率が98%以上
B:溶剤浸漬後の残膜率が96%以上98%未満
C:溶剤浸漬後の残膜率が94%以上96%未満
D:溶剤浸漬後の残膜率が94%未満
 評価結果がBであれば耐溶剤性は良好であり、評価結果がAであれば耐溶剤性に優れている。
<緑色硬化膜の外光反射抑制評価>
(輝度Y)
 顕微分光測定装置(オリンパス製、OSP-SP200)を用いて、得られた硬化膜の380nm~780nmの透過スペクトルを測定し、輝度Yを測定し、緑色硬化膜の透過率を評価した。
(反射率)
 380nm~780nmの各波長における、得られた硬化膜の透過率をT(CF)、ガラス基板の反射率を50%、視覚等色関数をyとした場合、各波長での反射率RnをRn=T(CF)×0.5×T(CF)×yにより算出し、各波長でのRnを積分した値を、380nm~780nmの緑色硬化膜の反射率とした。
 輝度Yが32以上で、且つ、反射率が9%未満であれば、緑色硬化膜は、透過率が高く、一方で反射率は低く、外光反射抑制効果が良好と判断される。
Figure JPOXMLDOC01-appb-T000011
[結果のまとめ]
 緑色顔料(ハロゲン化フタロシアニン顔料)を色材全量中に10質量%を超える量で用いるように変更した比較例1及び2においては、380nm~480nmの範囲の波長におけるスペクトル透過率が20%以下、580nm~700nmの範囲の波長におけるスペクトル透過率が30%以下、及び、510nm~550nmの範囲の波長におけるスペクトル透過率が40%以上80%以下としたが、反射率が低いが透過率も低くなるか、透過率が高いが反射率も高くなり、外光反射抑制効果に劣ることが示された。また比較例1及び2の硬化膜は耐候性にも劣っていた。
 特許文献2(特開2011-242568号公報)の実施例1及び2と同様の青色顔料と黄色顔料の種類及び/又は質量比とした比較例3及び4はそれぞれ、前記所定の波長域において所定のスペクトル透過率を満たさず、反射率が低いが透過率も低くなるか、反射率が高めなのに透過率が低くなり、外光反射抑制効果に劣ることが示された。また比較例3及び4の硬化膜は耐溶剤性にも劣っていた。
 また、特許文献3(国際公開2020/196393号公報)の実施例2、5及び1と同様の青色顔料と黄色顔料の種類及び/又は質量比とした比較例5、6及び7もそれぞれ、前記所定の波長域において所定のスペクトル透過率を満たさず、反射率が低いが透過率も低くなり、外光反射抑制効果に劣ることが示された。また比較例5~7の硬化膜は耐溶剤性にも劣っていた。
 また、特許文献1(特開2017-182067号公報)の実施例1と同様の黄色顔料と緑色顔料と黒色顔料の種類及び/又は質量比と、開始剤の種類に変更した比較例8の硬化膜は透過率が高いが反射率も高くなり、外光反射抑制効果に劣ることが示された。また比較例8の硬化膜は耐候性及び耐溶剤性に劣っていた。
 それに対して、本発明に係る光硬化性緑色樹脂組成物である実施例1~5では、有機発光素子上に形成する際に好ましい低温(90℃)でポストベイクを行って硬化膜が形成されたが、膜厚3.0μmで硬化膜を形成した時に、380nm~480nmの範囲の波長におけるスペクトル透過率が20%以下、580nm~700nmの範囲の波長におけるスペクトル透過率が30%以下、及び、510nm~550nmの範囲の波長におけるスペクトル透過率が40%以上80%以下となり、透過率が高く、一方で反射率は低く、外光反射抑制効果が良好になることが明らかにされ、且つ、透明粘着剤層を介してガラスが張り合わされた状態であっても耐候性に優れ、低温加熱処理でも耐溶剤性が良好な硬化膜を形成可能であることが示された。従って、本発明に係る光硬化性緑色樹脂組成物は、有機発光素子上に形成する硬化膜に用いるのに適しており、且つ、硬化膜は、薄膜で外光反射を抑制可能であって、薄膜でフレキシブル性が向上した有機発光表示装置を製造可能であることが示された。
 1 基板
 2 薄膜トランジスタ(TFT)
 3 封止膜
 4 電極
 5 隔壁
 6R、6G、6B 有機発光素子
 7 電極
 8 封止層
 9R、9G、9B 着色硬化膜
 10 遮光部
 11 封止膜
 12 透明粘着剤層
 13 カバー材
 20 外光反射防止膜
 30 有機発光素子を備えた素子基板
100 表示装置

Claims (8)

  1.  有機発光素子上に形成する硬化膜に用いる光硬化性緑色樹脂組成物であって、
     前記光硬化性緑色樹脂組成物が、色材と、光重合性化合物と、光開始剤とを含有し、
     前記色材が、青色顔料と黄色顔料を含み、ハロゲン化金属フタロシアニン顔料が色材全量に対して10質量%以下であり、
     膜厚3.0μmで硬化膜を形成した時に、380nm~480nmの範囲の波長におけるスペクトル透過率が20%以下、580nm~700nmの範囲の波長におけるスペクトル透過率が30%以下、及び、510nm~550nmの範囲の波長におけるスペクトル透過率が40%以上80%以下となる、光硬化性緑色樹脂組成物。
  2.  前記青色顔料が、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、及びC.I.ピグメントブルー16からなる群から選択される少なくとも1種を含み、黄色顔料がC.I.ピグメントイエロー139を含み、更にC.I.ピグメントイエロー138、C.I.ピグメントイエロー150、及びC.I.ピグメントイエロー185からなる群から選択される少なくとも1種を含んでもよい、請求項1に記載の光硬化性緑色樹脂組成物。
  3.  前記光開始剤が、下記一般式(A)で表される化合物の少なくとも1種を含む、請求項1又は2に記載の光硬化性緑色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、それぞれ独立に、R11、OR11、COR11、SR11、CONR1213又はCNを表し、
     R11、R12及びR13は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
     R11、R12及びR13で表される基の水素原子は、更にR21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-NCOR22-OCOR23、NR22COR21、OCOR21、COOR21、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、又はハロゲン原子で置換されていてもよく、
     R21、R22及びR23は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
     R21、R22及びR23で表される基の水素原子は、更に水酸基、ニトロ基、CN、ハロゲン原子、又はカルボキシ基で置換されていてもよく、
     R11、R12、R13、R21、R22及びR23で表される基のアルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-を酸素原子が隣り合わない条件で1~5個含んでいてもよく、
     R24は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
     R11、R12、R13、R21、R22、R23及びR24で表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよく、
     Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、Rで表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよく、また、RとR、及びRとRはそれぞれ一緒になって環を形成していてもよく、
     Rで表される基の水素原子は、更にR21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-NCOR22-OCOR23、NR22COR21、OCOR21、COOR21、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、又はハロゲン原子で置換されていてもよく、
     R、R、R及びRは、それぞれ独立に、R11、OR11、SR11、COR14、CONR1516、NR12COR11、OCOR11、COOR14、SCOR11、OCSR11、COSR14、CSOR11、水酸基、CN又はハロゲン原子を表し、RとR、RとR、及びRとRはそれぞれ一緒になって環を形成していてもよく、
     R14、R15及びR16は、水素原子又は炭素数1~20のアルキル基を表し、R14、R15及びR16で表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよく、Rは、R11、OR11、SR11、COR11、CONR1213、NR12COR11、OCOR11、COOR11、SCOR11、OCSR11、COSR11、CSOR11、水酸基、CN又はハロゲン原子を表し、
     kは、0又は1を表す。)
  4.  膜厚3.0μmで硬化膜を形成した時に、透過スペクトルの380nm~700nmの範囲の波長において最大透過率を示すピークの半値幅が70nm以下となる、請求項1~3のいずれか1項に記載の光硬化性緑色樹脂組成物。
  5.  膜厚3.0μmで硬化膜を形成した時に、透過スペクトルの380nm~700nmの範囲の波長において最大透過率を示す波長が525nm~545nmの範囲内にある、請求項1~4のいずれか1項に記載の光硬化性緑色樹脂組成物。
  6.  有機発光素子上に、請求項1~5のいずれか1項に記載の光硬化性緑色樹脂組成物の硬化膜を有する、表示装置。
  7.  有機発光素子上に、請求項1~5のいずれか1項に記載の光硬化性緑色樹脂組成物を塗布することにより塗膜を形成する工程、
    前記塗膜に光照射する工程、
    前記光照射後の膜を、加熱するポストベイク工程、及び、
    前記光照射後の膜を、現像する工程を含有することにより、
    有機発光素子上に請求項1~4のいずれか1項に記載の光硬化性緑色樹脂組成物の硬化膜を形成する工程を有する、有機発光素子と外光反射防止膜の積層体の製造方法。
  8.  前記ポストベイク工程における加熱温度が、130℃以下である、請求項7に記載の有機発光素子と外光反射防止膜の積層体の製造方法。
PCT/JP2022/005834 2021-02-19 2022-02-15 光硬化性緑色樹脂組成物、表示装置、及び有機発光素子と外光反射防止膜の積層体の製造方法 WO2022176830A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023500840A JPWO2022176830A1 (ja) 2021-02-19 2022-02-15
KR1020237030248A KR20230146037A (ko) 2021-02-19 2022-02-15 광경화성 녹색 수지 조성물, 표시 장치, 및 유기 발광 소자와 외광 반사 방지막의 적층체의 제조 방법
CN202280013293.XA CN116802528A (zh) 2021-02-19 2022-02-15 光固化性绿色树脂组合物、显示装置、及有机发光元件与外光反射防止膜的层叠体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-024844 2021-02-19
JP2021024844 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176830A1 true WO2022176830A1 (ja) 2022-08-25

Family

ID=82931750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005834 WO2022176830A1 (ja) 2021-02-19 2022-02-15 光硬化性緑色樹脂組成物、表示装置、及び有機発光素子と外光反射防止膜の積層体の製造方法

Country Status (5)

Country Link
JP (1) JPWO2022176830A1 (ja)
KR (1) KR20230146037A (ja)
CN (1) CN116802528A (ja)
TW (1) TW202244193A (ja)
WO (1) WO2022176830A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123302A (ja) * 2010-12-10 2012-06-28 Dainippon Printing Co Ltd 緑色着色組成物および有機エレクトロルミネッセンス表示装置用カラーフィルタ
WO2015152153A1 (ja) * 2014-04-04 2015-10-08 株式会社Adeka オキシムエステル化合物及び該化合物を含有する光重合開始剤
JP2016080966A (ja) * 2014-10-21 2016-05-16 凸版印刷株式会社 カラーフィルタおよび液晶表示装置
JP2017182067A (ja) * 2016-03-30 2017-10-05 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 緑色感光性樹脂組成物、これを用いて製造されたカラーフィルタおよび前記カラーフィルタを含むディスプレイ素子
JP2018185370A (ja) * 2017-04-24 2018-11-22 凸版印刷株式会社 反射型表示パネル及びその製造方法
WO2020196393A1 (ja) * 2019-03-28 2020-10-01 富士フイルム株式会社 着色組成物、硬化膜、構造体、カラーフィルタおよび表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242568A (ja) 2010-05-18 2011-12-01 Toray Ind Inc カラーフィルター用緑色着色剤組成物およびカラーフィルター基板
JP7126476B2 (ja) 2019-06-05 2022-08-26 株式会社ホンダロック 車両用ドアミラー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123302A (ja) * 2010-12-10 2012-06-28 Dainippon Printing Co Ltd 緑色着色組成物および有機エレクトロルミネッセンス表示装置用カラーフィルタ
WO2015152153A1 (ja) * 2014-04-04 2015-10-08 株式会社Adeka オキシムエステル化合物及び該化合物を含有する光重合開始剤
JP2016080966A (ja) * 2014-10-21 2016-05-16 凸版印刷株式会社 カラーフィルタおよび液晶表示装置
JP2017182067A (ja) * 2016-03-30 2017-10-05 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 緑色感光性樹脂組成物、これを用いて製造されたカラーフィルタおよび前記カラーフィルタを含むディスプレイ素子
JP2018185370A (ja) * 2017-04-24 2018-11-22 凸版印刷株式会社 反射型表示パネル及びその製造方法
WO2020196393A1 (ja) * 2019-03-28 2020-10-01 富士フイルム株式会社 着色組成物、硬化膜、構造体、カラーフィルタおよび表示装置

Also Published As

Publication number Publication date
JPWO2022176830A1 (ja) 2022-08-25
CN116802528A (zh) 2023-09-22
TW202244193A (zh) 2022-11-16
KR20230146037A (ko) 2023-10-18

Similar Documents

Publication Publication Date Title
JP7011644B2 (ja) カラーフィルタ用色材分散液、分散剤、カラーフィルタ用感光性着色樹脂組成物、カラーフィルタ、表示装置
JP2018112736A (ja) 着色感光性樹脂組成物、これを利用して製造されたカラーフィルターおよび画像表示装置
CN108073040B (zh) 着色感光性树脂组合物、利用其制造的滤色器和图像显示装置
KR102279562B1 (ko) 착색 감광성 수지 조성물, 이로부터 제조된 컬러필터 및 이를 구비한 액정표시장치
WO2022176830A1 (ja) 光硬化性緑色樹脂組成物、表示装置、及び有機発光素子と外光反射防止膜の積層体の製造方法
KR20160115094A (ko) 착색 감광성 수지 조성물, 컬러 필터 및 이를 구비한 화상 표시 장치
WO2022176831A1 (ja) 感光性緑色樹脂組成物、硬化物、カラーフィルタ、表示装置、及び有機発光素子と外光反射防止膜の積層体の製造方法
WO2022138027A1 (ja) 光硬化性赤色樹脂組成物、表示装置、及び有機発光素子と外光反射防止膜の積層体の製造方法
WO2022070977A1 (ja) 光硬化性着色樹脂組成物、硬化物、カラーフィルタ、表示装置
WO2021205761A1 (ja) 感光性着色樹脂組成物、硬化物、カラーフィルタ、表示装置
WO2021090762A1 (ja) 色材分散液、分散剤、感光性着色樹脂組成物、硬化物、カラーフィルタ、表示装置
WO2021199786A1 (ja) 色材分散液、分散剤、着色硬化性組成物、カラーフィルタ、表示装置
WO2022270349A1 (ja) 感光性赤色樹脂組成物、硬化物、カラーフィルタ、表示装置
CN114051519B (zh) 色材分散液、分散剂、感光性着色树脂组合物、固化物、滤色器、显示设备
JP7317605B2 (ja) 色材分散液、分散剤、感光性着色樹脂組成物、硬化物、カラーフィルタ、表示装置
WO2022202208A1 (ja) 色材分散液、修飾色材、着色硬化性組成物、カラーフィルタ、表示装置
KR20220001962A (ko) 격벽 형성용 감광성 수지 조성물, 색변환층용 격벽, 상기 격벽을 포함하는 색변환층 및 이를 포함하는 화상표시장치
JP2021119368A (ja) 感光性着色樹脂組成物、硬化物、カラーフィルタ、表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023500840

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280013293.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237030248

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030248

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756148

Country of ref document: EP

Kind code of ref document: A1