WO2022176823A1 - Heat conductive sheet - Google Patents

Heat conductive sheet Download PDF

Info

Publication number
WO2022176823A1
WO2022176823A1 PCT/JP2022/005790 JP2022005790W WO2022176823A1 WO 2022176823 A1 WO2022176823 A1 WO 2022176823A1 JP 2022005790 W JP2022005790 W JP 2022005790W WO 2022176823 A1 WO2022176823 A1 WO 2022176823A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
sheet
conductive sheet
heat
silicone
Prior art date
Application number
PCT/JP2022/005790
Other languages
French (fr)
Japanese (ja)
Inventor
慶輔 荒巻
佑介 久保
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2022176823A1 publication Critical patent/WO2022176823A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat conductive sheet.
  • heat dissipation members such as heat sinks (for example, heat dissipation fans, heat dissipation plates, etc.) is attached to the electronic component via a heat conductive sheet.
  • thermally conductive sheet a silicone resin containing thermally conductive fillers such as inorganic fillers is widely used. Such thermally conductive sheets are required to further improve their thermal conductivity. Yes.
  • examples of inorganic fillers include alumina, aluminum nitride, and aluminum hydroxide.
  • the filling rate of the inorganic filler is increased, the flexibility may be impaired, and powder may fall off due to the high filling rate of the inorganic filler, so there is a limit to increasing the filling rate of the inorganic filler.
  • scale-like particles such as boron nitride and graphite, carbon fibers, etc. may be filled in the polymer matrix. This is due to the anisotropy of the thermal conductivity of the scaly particles and the like.
  • carbon fibers have a thermal conductivity of about 600-1200 W/mK in the fiber direction.
  • Boron nitride has a thermal conductivity of about 110 W/mK in the plane direction and about 2 W/mK in the direction perpendicular to the plane direction, and is known to have anisotropy. .
  • the surface direction of the carbon fibers and scale-like particles is made the same as the thickness direction of the sheet, which is the direction of heat transfer. That is, by orienting the carbon fibers and the scale-like particles in the thickness direction of the sheet, it is possible to dramatically improve the heat conduction.
  • thermally conductive resin compositions filled with carbon fibers include resin compositions disclosed in Patent Documents 1 and 2.
  • the resin compositions disclosed in Patent Documents 1 and 2 contain a thermoplastic resin, carbon fibers, and a filler, and weight reduction is achieved by distributing the filler in a mesh shape in the thermoplastic resin.
  • Thermally conductive sheets used in electronic devices are produced by molding a thermally conductive resin composition containing a fibrous thermally conductive filler in a polymer matrix into a predetermined shape and curing the composition to form a thermally conductive molded body. It is formed by forming and slicing the thermally conductive molded body into sheets.
  • a heat-conducting sheet filled with carbon fibers is highly flexible due to the low specific gravity of the carbon fibers. Therefore, a thin sheet has a problem that it is not stiff after slicing and is not easy to handle.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a heat conductive sheet with improved handleability.
  • a thermally conductive sheet according to the present invention comprises a polymer matrix, an anisotropic filler, and one or more non-anisotropic materials, wherein the anisotropic a thermally conductive sheet in which an elastic filler is oriented in the thickness direction, the surface is a sliced surface, the specific gravity of at least one non-anisotropic material is 5 or more, and the specific gravity of the thermally conductive sheet is 2.7 or more, and the thermal conductivity is 4 W/mK or more.
  • FIG. 1 is a diagram showing an example of a heat conductive sheet to which the present technology is applied.
  • FIG. 2 is a perspective view showing an example of a process of slicing a thermally conductive compact.
  • FIG. 3 is a diagram illustrating an example of a semiconductor device;
  • FIG. 1 shows a configuration example of a thermally conductive sheet to which this technology is applied.
  • a heat conductive sheet 1 shown in FIG. 1 has a sheet body 2 and a resin coating layer 5 .
  • the sheet body 2 is obtained by curing a binder resin containing at least a polymer matrix component and a fibrous thermally conductive filler.
  • the resin coating layer 5 is formed of an uncured component of the polymer matrix component exuded from the sheet body 2 .
  • a first release film 3 is attached to one surface 2 a of the sheet body 2
  • a second release film 4 is attached to the other surface 2 b of the sheet body 2 .
  • the heat conductive sheet 1 has tackiness (adhesiveness) due to the resin coating layer 5 formed on one surface 2a and the other surface 2b, and when used, the first release film 3 and the second release film 3 are separated from each other. By peeling off the film 4, the sheet body 2 can be attached to a predetermined position. Thereby, the heat conductive sheet 1 is excellent in workability and handleability. In addition, the heat conductive sheet 1 is excellent in reworkability such as correcting the positional misalignment between the electronic component and the heat radiating member during assembly, dismantling for some reason after once assembled, and reassembling.
  • the polymer matrix component that constitutes the sheet body 2 is a polymer component that serves as the base material of the heat conductive sheet 1 .
  • the type is not particularly limited, and a known polymer matrix component can be appropriately selected.
  • one polymeric matrix component is a thermosetting polymer.
  • thermosetting polymer examples include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting type Polyphenylene ether, thermosetting modified polyphenylene ether, and the like can be mentioned. These may be used individually by 1 type, and may use 2 or more types together.
  • crosslinked rubber examples include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine rubber, urethane rubber, acrylic rubber, polyisobutylene rubber, silicone rubber and the like. These may be used individually by 1 type, and may use 2 or more types together.
  • thermosetting polymers it is preferable to use a silicone resin from the viewpoint of excellent moldability and weather resistance, as well as adhesion and conformability to electronic parts.
  • the silicone resin is not particularly limited, and the type of silicone resin can be appropriately selected depending on the purpose.
  • the silicone resin is preferably a silicone resin composed of a liquid silicone gel main agent and a curing agent.
  • silicone resins include addition reaction type liquid silicone resins, heat vulcanization type millable type silicone resins using peroxide for vulcanization, and the like.
  • the addition reaction type liquid silicone resin is particularly preferable as a heat dissipation member for electronic equipment, since adhesion between the heat generating surface of the electronic component and the heat sink surface is required.
  • addition reaction type liquid silicone resin it is preferable to use a two-liquid addition reaction type silicone resin or the like in which polyorganosiloxane having a vinyl group is used as a main component and polyorganosiloxane having an Si—H group is used as a curing agent. .
  • the liquid silicone component has a silicone A liquid component as a main agent and a silicone B liquid component containing a curing agent, and the silicone A liquid component and the silicone B liquid component are blended in a predetermined ratio.
  • the mixing ratio of the silicone A liquid component and the silicone B liquid component can be adjusted as appropriate. It is preferable to adjust the mixing ratio so that the uncured component of the polymer matrix component can bleed between the release film 4 and the resin coating layer 5 can be formed.
  • the content of the polymer matrix component in the heat conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose. is preferably about 15% to 50% by volume, more preferably 20% to 45% by volume.
  • the fibrous thermally conductive filler contained in the thermally conductive sheet 1 is a component for improving the thermal conductivity of the sheet.
  • the type of thermally conductive filler is not particularly limited as long as it is a fibrous material with high thermal conductivity, but carbon fiber is preferably used from the viewpoint of obtaining higher thermal conductivity.
  • thermally conductive filler one kind may be used alone, or two or more kinds may be mixed and used. Further, when two or more types of thermally conductive fillers are used, both of them may be fibrous thermally conductive fillers, or the fibrous thermally conductive fillers and thermally conductive fillers having different shapes may be used. You may mix and use a filler.
  • thermally conductive fillers include metals such as silver, copper, aluminum, ceramics such as alumina, aluminum nitride, silicon carbide, graphite, and the like.
  • the type of carbon fiber is not particularly limited, and can be appropriately selected according to the purpose.
  • pitch-based, PAN-based, graphitized PBO fiber arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), etc.
  • CVD method chemical vapor deposition method
  • CCVD method catalytic chemical vapor deposition method
  • carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are more preferable because high thermal conductivity can be obtained.
  • the carbon fiber can be partially or wholly surface-treated as necessary.
  • the surface treatment for example, oxidation treatment, nitriding treatment, nitration, sulfonation, or attaching or attaching a metal, a metal compound, an organic compound, etc. to the surface of the functional group or carbon fiber introduced to the surface by these treatments, or A process of combining, etc., may be mentioned.
  • the functional group include hydroxyl group, carboxyl group, carbonyl group, nitro group, amino group and the like.
  • the average fiber length (average long axis length) of the carbon fibers is not particularly limited and can be selected as appropriate. , more preferably in the range of 75 ⁇ m to 275 ⁇ m, and particularly preferably in the range of 90 ⁇ m to 250 ⁇ m.
  • the average fiber diameter (average minor axis length) of the carbon fibers is not particularly limited and can be appropriately selected, but from the point of reliably obtaining high thermal conductivity, it is in the range of 4 ⁇ m to 20 ⁇ m. more preferably in the range of 5 ⁇ m to 14 ⁇ m.
  • the aspect ratio (average major axis length/average minor axis length) of the carbon fibers is preferably 8 or more, more preferably 9 to 30, in order to reliably obtain high thermal conductivity. . If the aspect ratio is less than 8, the fiber length (major axis length) of the carbon fibers is short, and thus the thermal conductivity may decrease. Since the dispersibility of is lowered, there is a risk that sufficient thermal conductivity cannot be obtained.
  • the average long axis length and average short axis length of the carbon fibers can be measured, for example, with a microscope, scanning electron microscope (SEM), etc., and the average can be calculated from a plurality of samples.
  • SEM scanning electron microscope
  • the content of the fibrous thermally conductive filler in the thermally conductive sheet 1 is not particularly limited and can be appropriately selected according to the purpose. It is preferably 5% to 35% by volume, more preferably 5% by volume to 35% by volume. If the content is less than 4% by volume, it may be difficult to obtain a sufficiently low thermal resistance. This may affect the orientation of the polyfiller. Moreover, the content of the thermally conductive filler including the fibrous thermally conductive filler in the thermally conductive sheet 1 is preferably 15% by volume to 75% by volume.
  • the fibrous thermally conductive filler is exposed on the surfaces 2a and 2b of the sheet body 2 and is in thermal contact with heat sources such as electronic components and heat radiation members such as heat sinks.
  • heat sources such as electronic components
  • heat radiation members such as heat sinks.
  • the fibrous thermally conductive filler exposed on the surfaces 2a and 2b of the sheet body 2 is coated with the uncured component of the polymer matrix component, the thermally conductive sheet 1 becomes fibrous when mounted on an electronic component or the like. It is possible to reduce the contact thermal resistance between the thermally conductive filler and electronic parts and the like.
  • the thermally conductive sheet 1 may further contain an inorganic filler as a thermally conductive filler.
  • an inorganic filler By containing the inorganic filler, the thermal conductivity of the thermally conductive sheet 1 can be further increased, and the strength of the sheet can be improved.
  • the shape, material, average particle size, etc. of the inorganic filler are not particularly limited, and can be appropriately selected according to the purpose. Examples of the shape include spherical, ellipsoidal, massive, granular, flat, needle-like, and the like. Among these, a spherical shape and an elliptical shape are preferable from the viewpoint of filling properties, and a spherical shape is particularly preferable.
  • Examples of materials for the inorganic filler include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, and metal particles. etc. These may be used individually by 1 type, and may use 2 or more types together. Among these, alumina, boron nitride, aluminum nitride, zinc oxide, and silica are preferred, and alumina and aluminum nitride are particularly preferred from the viewpoint of thermal conductivity.
  • the inorganic filler can be surface-treated.
  • the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved and the flexibility of the heat conductive sheet 1 is improved.
  • the average particle size of the inorganic filler can be appropriately selected according to the type of inorganic material.
  • the inorganic filler is alumina
  • its average particle size is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and particularly preferably 4 ⁇ m to 5 ⁇ m. If the average particle size is less than 1 ⁇ m, the viscosity increases and mixing may become difficult. On the other hand, if the average particle size exceeds 10 ⁇ m, the thermal resistance of the heat conductive sheet 1 may increase.
  • the inorganic filler is aluminum nitride
  • its average particle size is preferably 0.3 ⁇ m to 6.0 ⁇ m, more preferably 0.3 ⁇ m to 2.0 ⁇ m, and more preferably 0.5 ⁇ m to 1.0 ⁇ m. 5 ⁇ m is particularly preferred. If the average particle diameter is less than 0.3 ⁇ m, the viscosity may increase and mixing may become difficult.
  • the average particle diameter of the inorganic filler can be measured, for example, with a particle size distribution meter or scanning electron microscope (SEM).
  • the thermally conductive sheet 1 can also contain other components as appropriate, depending on the purpose.
  • Other components include, for example, magnetic powders, thixotropic agents, dispersants, curing accelerators, retarders, slight tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants, and the like.
  • electromagnetic wave absorption performance may be imparted to the heat conductive sheet 1 by adjusting the content of the magnetic powder.
  • the heat conductive sheet 1 may be provided with electromagnetic wave absorption performance by adjusting the content of the magnetic powder.
  • the type of the magnetic powder is not particularly limited as long as it has magnetic properties, and known magnetic powders can be appropriately selected.
  • amorphous metal powder or crystalline metal powder can be used.
  • amorphous metal powder include Fe--Si--Cr--B, Fe--Si--B, Co--Si--B, Co--Zr, Co--Nb and Co--Ta.
  • the crystalline metal powder for example, pure iron, Fe-based, Co-based, Ni-based, Fe--Ni-based, Fe--Co-based, Fe--Al-based, Fe--Si-based, Fe--Si--Al-based , and Fe--Ni--Si--Al systems.
  • the magnetic metal powder a mixture of two or more kinds of different materials or different average particle diameters may be used.
  • the shape of the magnetic metal powder is spherical, flat, or the like.
  • spherical magnetic metal powder having a particle size of several ⁇ m to several tens of ⁇ m.
  • Such magnetic metal powder can be produced, for example, by an atomizing method or a method of thermally decomposing metal carbonyl.
  • the atomization method has the advantage that it is easy to make spherical powder. Molten metal is flown out from a nozzle, and a jet stream of air, water, inert gas, etc. is blown onto the flown out molten metal to solidify it as droplets. It is a method of making powder.
  • the cooling rate is preferably about 1 ⁇ 10 6 (K/s) in order to prevent the molten metal from crystallizing.
  • the surface of the amorphous alloy powder can be made smooth.
  • the filling property can be further improved by performing a coupling treatment.
  • the manufacturing process of the thermally conductive sheet 1 to which the present technology is applied includes molding a thermally conductive resin composition containing a fibrous thermally conductive filler and the like in a polymer matrix component into a predetermined shape and curing the composition. a step of forming a thermally conductive compact (step A); a step of slicing the thermally conductive compact into sheets to form a compact sheet (step B); 3 and a second release film 4, and a step (step C) of smoothing the surface of the molded body sheet and forming a resin coating layer 5 by pressing.
  • Step A the above-described polymer matrix component, fibrous thermally conductive filler, appropriately contained inorganic filler, and other components are blended to prepare a thermally conductive resin composition.
  • the procedure for blending and preparing each component is not particularly limited.
  • a fibrous thermally conductive filler, as appropriate, inorganic filler, magnetic powder, and other components are added to the polymer matrix component and mixed.
  • the thermally conductive resin composition is prepared.
  • a fibrous thermally conductive filler such as carbon fiber is oriented in one direction.
  • the method for orienting the filler is not particularly limited as long as it can be oriented in one direction.
  • the fibrous thermally conductive filler can be unidirectionally oriented relatively easily by extruding or press-fitting the thermally conductive resin composition into a hollow mold under high shearing force.
  • the orientation of the fibrous thermally conductive filler is the same (within ⁇ 10°).
  • Specific examples of the above-described method of extruding or press-fitting the thermally conductive resin composition into a hollow mold under a high shear force include an extrusion molding method and a mold molding method.
  • the extrusion molding method when the thermally conductive resin composition is extruded from a die, or in the mold molding method, when the thermally conductive resin composition is pressed into a mold, the thermally conductive resin composition
  • the fibrous thermally conductive filler is oriented along the flow direction. At this time, if a slit is attached to the tip of the die, the fibrous thermally conductive filler is more likely to be oriented.
  • thermally conductive resin composition extruded or press-fitted into the hollow mold was molded into a block shape corresponding to the shape and size of the mold, and the orientation of the fibrous thermally conductive filler was maintained.
  • a thermally conductive compact is formed by curing the polymeric matrix component as it is.
  • a thermally conductive molded body refers to a base material (molded body) for sheet cutting, which is the basis of the thermally conductive sheet 1 obtained by cutting into a predetermined size.
  • the size and shape of the hollow mold and the heat conductive molded body can be determined according to the required size and shape of the heat conductive sheet 1.
  • the vertical size of the cross section is 0.5 cm to 15 cm. and a rectangular parallelepiped with a horizontal size of 0.5 cm to 15 cm.
  • the length of the rectangular parallelepiped may be determined as required.
  • the method and conditions for curing the polymer matrix component can be changed according to the type of the polymer matrix component.
  • the curing temperature in thermosetting can be adjusted.
  • the thermosetting resin contains a base liquid silicone gel and a curing agent, it is preferable to cure at a curing temperature of 80°C to 120°C.
  • the curing time in thermosetting is not particularly limited, but it can be 1 hour to 10 hours.
  • Step B As shown in FIG. 2, in the step B of slicing the thermally conductive compact 6 into sheets to form a compact sheet 7, the longitudinal direction of the oriented fibrous thermally conductive filler is 0
  • the thermally conductive molding 6 is cut into sheets at an angle of .degree. to 90.degree., preferably 45.degree. Thereby, the fibrous thermally conductive filler is oriented in the thickness direction of the sheet body 2 .
  • the cutting of the thermally conductive compact 6 is performed using a slicing device.
  • the slicing device is not particularly limited as long as it can cut the thermally conductive compact 6, and a known slicing device can be used as appropriate.
  • a known slicing device can be used as appropriate.
  • an ultrasonic cutter, a planer, or the like can be used.
  • the slice thickness of the thermally conductive molded body 6 is the thickness of the sheet body 2 of the thermally conductive sheet 1, and can be appropriately set according to the application of the thermally conductive sheet 1. For example, it is 0.5 to 3.0 mm.
  • step B the molded body sheet 7 cut out from the thermally conductive molded body 6 may be cut into a plurality of molded body sheets 7 into small pieces.
  • step C the first release film 3 is attached to one surface of the molded sheet 7, and the second release film 4 is attached to the other surface of the molded sheet 7 and pressed.
  • the surface of the molded body sheet 7 is smoothed and the uncured component of the polymer matrix component is bled out, and between one surface of the molded body sheet 7 and the first release film 3 and between the molded body sheet 7 and the first release film 3
  • a resin coating layer 5 is formed between the other surface of 7 and the second release film 4 .
  • the surface 2a and the surface 2b of the heat conductive sheet 1 are sliced surfaces and pressed after being sliced.
  • the heat conductive sheet 1 is formed, and the unevenness of the sheet surface is reduced, and the exposed fibrous heat conductive filler is coated to improve the adhesion with the heat source and the heat dissipating member. Interfacial contact resistance can be reduced, and heat transfer efficiency can be improved.
  • the pressing can be performed, for example, by using a pair of pressing devices consisting of a flat plate and a press head with a flat surface. Moreover, you may press using a pinch roll.
  • the pressure at the time of pressing is not particularly limited and can be appropriately selected according to the purpose. Therefore, the pressure range is preferably 0.1 MPa to 100 MPa, more preferably 0.5 MPa to 95 MPa.
  • first release film 3 and the second release film 4 attached to both sides of the molded sheet 7 for example, plastic films such as PET films and polyethylene films can be used.
  • first release film 3 and the second release film 4 may be subjected to release treatment such as wax treatment or fluorine treatment on the surface to be attached to the surface of the molded body sheet 7 .
  • first release film 3 and the second release film 4 may be embossed.
  • the first release film 3 and the second release film 4 are formed to have different peel strengths (N) from the sheet body 2 by making the thickness and/or material different.
  • N peel strengths
  • the thermal conductive sheet 1 of 30 mm ⁇ 30 mm a wax-treated PET film with a thickness of 25 ⁇ m is used as the first release film 3
  • an embossed PET film with a thickness of 80 ⁇ m is used as the second release film 4.
  • the peel strength (N) from the sheet body 2 is
  • the first release film 3 is 0.03 (N) (bending radius of 3 mm)
  • the second release film 4 is 0.05 (N) (bending radius of 0.5 mm or less).
  • the thermal conductive sheet 1 is mounted on, for example, electronic components such as semiconductor devices and various heat radiation members such as heat sinks. At this time, the heat conductive sheet 1 is peeled off from the release film having a lower peel strength from the sheet body 2, for example, the first release film 3 in the above example. As a result, the entire sheet body 2 does not adhere to the first release film 3 and peel off from the second release film 4 , and one side of the sheet body 2 is supported by the second release film 4 . Surface 2a can be exposed.
  • one surface 2a of the sheet body 2 where the resin coating layer 5 is exposed is attached to an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the second release film 4 is attached to the sheet body 2. is peeled off from the other surface 2b.
  • the heat conductive sheet 1 is mounted on a semiconductor device 50 built in various electronic devices, and sandwiched between a heat source and a heat radiating member.
  • a semiconductor device 50 shown in FIG. 3 has at least an electronic component 51 , a heat spreader 52 and a heat conductive sheet 1 , and the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the electronic component 51 . Further, the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the heat sink 53 , thereby forming a heat dissipation member for dissipating the heat of the electronic component 51 together with the heat spreader 52 .
  • the electronic component 51 is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include CPU, MPU, graphic processing elements, various semiconductor elements such as image sensors, antenna elements, and batteries.
  • the heat spreader 52 is not particularly limited as long as it is a member that dissipates the heat generated by the electronic component 51, and can be appropriately selected according to the purpose.
  • the semiconductor device 50 By using the heat-conducting sheet 1 , the semiconductor device 50 has a high heat dissipation property and, depending on the content of the magnetic powder in the sheet body 2 , an excellent electromagnetic wave suppressing effect.
  • the mounting location of the heat conductive sheet 1 is not limited to between the heat spreader 52 and the electronic component 51 or between the heat spreader 52 and the heat sink 53, but can be appropriately selected according to the configuration of the electronic device or semiconductor device. is.
  • any other heat dissipating member may be used as long as it conducts the heat generated from the heat source and dissipates it to the outside. , Peltier elements, heat pipes, metal covers, housings, and the like.
  • Example 1 Next, a first embodiment of the present technology will be described.
  • 18% by volume of pitch-based carbon fiber and 0.4% by volume of a coupling agent were mixed to prepare a silicone composition.
  • the average particle size means the particle size (D50) at 50% integrated value in the particle size distribution determined by the laser diffraction/scattering method.
  • the two-liquid addition reaction type liquid silicone resin was blended so that the compounding ratio of the silicone component A as the main component and the component B containing the curing agent was 55:45.
  • the obtained silicone composition is extruded into a hollow square prism-shaped mold (50 mm x 50 mm), to which a release-treated film is pasted along the inner wall, to form a silicone molded body. was heated in an oven at 60° C. for 4 hours to obtain a cured silicone product. After removing the cured silicone product (thermally conductive molded product) from the hollow square prism-shaped mold, peel off the release-treated film and cut it into sheets with a slicer so that the thickness is 0.5 mm. A directionally oriented compact sheet 7 was obtained.
  • the molded sheet 7 obtained by cutting was sandwiched between the first release film 3 and the second release film 4 and pressed under the conditions of a pressure of 0.5 MPa, a temperature of 87° C., and a time of 3 minutes.
  • a formed thermal conductive sheet 1 was obtained.
  • Fe--Si--Cr--B amorphous magnetic particles with a specific gravity of about 7 are an example of a non-anisotropic material with a specific gravity of 5 or greater.
  • the blending amount of the silicone composition of the first example was changed.
  • 31.4% by volume of two-liquid addition reaction type liquid silicone 62.1% by volume of Fe--Si--Cr--B amorphous magnetic particles having an average particle size of 5 ⁇ m, and an average fiber as a fibrous filler.
  • a silicone composition was prepared by mixing 6% by volume of pitch-based carbon fiber with a length of 200 ⁇ m and 0.5% by volume of a coupling agent.
  • the two-liquid addition reaction type liquid silicone resin was blended so that the compounding ratio of the silicone component A as the main component and the component B containing the curing agent was 55:45.
  • the blending amount of the silicone composition of the first example was changed.
  • 28.8% by volume of two-liquid addition reaction type liquid silicone 66.5% by volume of Fe--Si--Cr--B amorphous magnetic particles having an average particle diameter of 5 ⁇ m, and an average fiber as a fibrous filler.
  • a silicone composition was prepared by mixing 4.2% by volume of pitch-based carbon fiber with a length of 200 ⁇ m and 0.5% by volume of a coupling agent.
  • the two-liquid addition reaction type liquid silicone resin was blended so that the compounding ratio of the silicone component A as the main component and the component B containing the curing agent was 55:45.
  • the obtained silicone composition is extruded into a hollow square prism-shaped mold (50 mm x 50 mm), to which a release-treated film is pasted along the inner wall, to form a silicone molded body. was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product. After removing the cured silicone product (thermally conductive molded product) from the hollow square prism-shaped mold, peel off the release-treated film and cut it into sheets with a slicer so that the thickness is 0.5 mm. A directionally oriented compact sheet 7 was obtained.
  • Zinc oxide with a specific gravity of 5.6 is an example of a non-anisotropic material with a specific gravity of 5 or greater.
  • a comparative example contains 36% by volume of a two-liquid addition reaction type liquid silicone, 20% by volume of spherical alumina particles having an average particle size of 15 ⁇ m, and scaly boron nitride having an average particle size of 15 ⁇ m and a hexagonal crystal shape.
  • a silicone composition was prepared by mixing 23% by volume, 20% by volume of granular aluminum nitride having an average particle size of 1.5 ⁇ m, and 1% by volume of a coupling agent.
  • the two-liquid addition reaction type liquid silicone resin was blended so that the compounding ratio of the silicone component A as the main component and the component B containing the curing agent was 55:45.
  • the obtained silicone composition is extruded into a hollow square prism-shaped mold (50 mm x 50 mm), to which a release-treated film is pasted along the inner wall, to form a silicone molded body. was heated in an oven at 60° C. for 4 hours to obtain a cured silicone product. After removing the cured silicone product (thermally conductive molded product) from the hollow square prism-shaped mold, peel off the release-treated film and cut it into sheets with a slicer so that the thickness is 0.5 mm, and nitrate the scales. A compact sheet in which boron was oriented in the thickness direction was obtained.
  • the thermal conductivity, the specific gravity of the thermal conductive sheet 1, and the handling were evaluated for Examples 1 to 4 and the comparative example described above. Table 1 shows the evaluation results.
  • the thermal conductivity was measured using a thermal resistance measuring device conforming to ASTM-D5470, and a load of 1 kgf/cm2 was applied to the effective thermal conductivity (W/m ⁇ K ) were measured respectively.
  • W/m ⁇ K effective thermal conductivity
  • handling when the formed body sheet 7 is formed by cutting the thermally conductive molded body 6 into a sheet with a slicing device, the formed body sheet 7 falls down on the spot without bending or distortion. (O), and when the molded sheet 7 formed by slicing was folded or distorted when it fell, it was judged as defective (x).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heat conductive sheet (1) has a sheet body (2) and a resin coating layer (5) formed on one surface (2a) and the other surface (2b) of the sheet body (2), contains a polymer matrix, an anisotropic filler, and one or more non-anisotropic materials, and has the anisotropic filler oriented in the thickness direction, wherein the surface of the heat conductive sheet is a sliced surface, the specific gravity of at least one non-anisotropic material is 5 or more, the specific gravity of the heat conductive sheet is 2.7 or more, and the heat conductivity of the heat conductive sheet is 4 W/mK or more.

Description

熱伝導シートthermal conductive sheet
 本発明は、熱伝導シートに関する。 The present invention relates to a heat conductive sheet.
 電子機器の更なる高性能化に伴って、半導体素子等の電子部品の高密度化、高実装化が進んでいる。これに伴って、半導体素子が発する熱をさらに効率よく放熱することが重要になっている。電子機器においては、半導体素子等の電子部品(例えばLSI、CPU、トランジスタ、LED等の各種デバイス)が発する熱を効率良く放熱するために、ヒートシンク(例えば放熱ファン、放熱板等)等の放熱部材が熱伝導シートを介して電子部品に取り付けられている。 As the performance of electronic devices continues to improve, electronic components such as semiconductor elements are becoming more dense and highly mounted. Along with this, it has become important to dissipate the heat generated by the semiconductor elements more efficiently. In electronic equipment, in order to efficiently dissipate the heat generated by electronic parts such as semiconductor elements (for example, various devices such as LSIs, CPUs, transistors, LEDs, etc.), heat dissipation members such as heat sinks (for example, heat dissipation fans, heat dissipation plates, etc.) is attached to the electronic component via a heat conductive sheet.
 熱伝導シートとしては、シリコーン樹脂に無機物フィラー等の熱伝導性充填材を分散含有させたものが広く使用されている。このような熱伝導シートとしては、更なる熱伝導率の向上が要求されており、一般には、高熱伝導性を目的として、高分子マトリックス内に配合されている無機物フィラーの充填率を高めることにより対応している。無機物フィラーとしては、例えば、アルミナ、窒化アルミニウム、水酸化アルミニウム等が挙げられる。しかし、無機物フィラーの充填率を高めると、柔軟性が損なわれたり、無機物フィラーの充填率が高いことから粉落ちが発生したりするため、無機物フィラーの充填率を高めることには限界がある。 As a thermally conductive sheet, a silicone resin containing thermally conductive fillers such as inorganic fillers is widely used. Such thermally conductive sheets are required to further improve their thermal conductivity. Yes. Examples of inorganic fillers include alumina, aluminum nitride, and aluminum hydroxide. However, if the filling rate of the inorganic filler is increased, the flexibility may be impaired, and powder may fall off due to the high filling rate of the inorganic filler, so there is a limit to increasing the filling rate of the inorganic filler.
 また、高熱伝導率を目的として、窒化ホウ素、黒鉛等の鱗片状粒子、炭素繊維等を高分子マトリックス内に充填させることがある。これは、鱗片状粒子等の有する熱伝導率の異方性によるものである。例えば、炭素繊維の場合には、繊維方向に約600~1200W/mKの熱伝導率を有する。窒化ホウ素の場合には、面方向に約110W/mK、面方向に対して垂直な方向に約2W/mK程度の熱伝導率を有しており、異方性を有することが知られている。このように炭素繊維、鱗片状粒子の面方向を熱の伝達方向であるシートの厚み方向と同じにする。即ち、炭素繊維、鱗片状粒子をシートの厚み方向に配向させることによって、熱伝導を飛躍的に向上させることができる。 In addition, for the purpose of high thermal conductivity, scale-like particles such as boron nitride and graphite, carbon fibers, etc. may be filled in the polymer matrix. This is due to the anisotropy of the thermal conductivity of the scaly particles and the like. For example, carbon fibers have a thermal conductivity of about 600-1200 W/mK in the fiber direction. Boron nitride has a thermal conductivity of about 110 W/mK in the plane direction and about 2 W/mK in the direction perpendicular to the plane direction, and is known to have anisotropy. . In this manner, the surface direction of the carbon fibers and scale-like particles is made the same as the thickness direction of the sheet, which is the direction of heat transfer. That is, by orienting the carbon fibers and the scale-like particles in the thickness direction of the sheet, it is possible to dramatically improve the heat conduction.
 炭素繊維が充填された熱伝導性を有する樹脂組成物としては、例えば特許文献1、2に開示された樹脂組成物がある。特許文献1、2に開示された樹脂組成物は、熱可塑性樹脂、炭素繊維及びフィラーを含むものであり、フィラーを熱可塑性樹脂中において網目状に分布させることにより軽量化を実現している。 Examples of thermally conductive resin compositions filled with carbon fibers include resin compositions disclosed in Patent Documents 1 and 2. The resin compositions disclosed in Patent Documents 1 and 2 contain a thermoplastic resin, carbon fibers, and a filler, and weight reduction is achieved by distributing the filler in a mesh shape in the thermoplastic resin.
特開2020-97684号公報JP 2020-97684 A 特開2020-97685号公報JP 2020-97685 A
 電子機器に用いられる熱伝導シートは、高分子マトリックスに繊維状の熱伝導性充填剤等が含有された熱伝導性樹脂組成物を所定の形状に成型して硬化させて熱伝導性成形体を形成し、熱伝導性成形体をシート状にスライスすることにより形成される。炭素繊維を充填した熱伝導シートは、炭素繊維の比重が小さいことから柔軟性が高いため、厚みが薄いシートはスライス後にこしがなく、ハンドリングが良くないという問題がある。 Thermally conductive sheets used in electronic devices are produced by molding a thermally conductive resin composition containing a fibrous thermally conductive filler in a polymer matrix into a predetermined shape and curing the composition to form a thermally conductive molded body. It is formed by forming and slicing the thermally conductive molded body into sheets. A heat-conducting sheet filled with carbon fibers is highly flexible due to the low specific gravity of the carbon fibers. Therefore, a thin sheet has a problem that it is not stiff after slicing and is not easy to handle.
 本発明は、上記に鑑みてなされたものであって、ハンドリング性が向上された熱伝導シートを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a heat conductive sheet with improved handleability.
 上述した課題を解決し、目的を達成するために、本発明に係る熱伝導シートは、高分子マトリックスと、異方性充填材と、1種以上の非異方性材料を含み、前記異方性充填材が厚さ方向に配向している熱伝導シートであって、表面がスライス面であり、少なくとも1種の前記非異方性材料の比重が5以上であり、前記熱伝導シートの比重が2.7以上であり、熱伝導率が4W/mK以上であるものである。 In order to solve the above-described problems and achieve the object, a thermally conductive sheet according to the present invention comprises a polymer matrix, an anisotropic filler, and one or more non-anisotropic materials, wherein the anisotropic a thermally conductive sheet in which an elastic filler is oriented in the thickness direction, the surface is a sliced surface, the specific gravity of at least one non-anisotropic material is 5 or more, and the specific gravity of the thermally conductive sheet is 2.7 or more, and the thermal conductivity is 4 W/mK or more.
 本発明によれば、熱伝導シートのハンドリングを向上させることができる。 According to the present invention, it is possible to improve the handling of the heat conductive sheet.
図1は、本技術が適用された熱伝導シートの一例を示す図である。FIG. 1 is a diagram showing an example of a heat conductive sheet to which the present technology is applied. 図2は、熱伝導性成形体をスライスする工程の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a process of slicing a thermally conductive compact. 図3は、半導体装置の一例を示す図である。FIG. 3 is a diagram illustrating an example of a semiconductor device;
 以下、添付図面を参照しながら、本発明の実施形態を詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。また、図面の記載において、同一又は対応する要素には適宜同一の符号を付している。さらに、図面は模式的なものであり、各要素の寸法の関係などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by embodiment described below. Moreover, in the description of the drawings, the same or corresponding elements are given the same reference numerals as appropriate. Furthermore, it should be noted that the drawings are schematic, and the dimensional relationship of each element may differ from the actual one. Even between the drawings, there are cases where portions with different dimensional relationships and ratios are included.
 [熱伝導シートの構成例]
 図1に本技術が適用された熱伝導シートの構成例を示す。図1に示す熱伝導シート1は、シート本体2と、樹脂被覆層5を有する。シート本体2は、少なくとも高分子マトリックス成分と繊維状の熱伝導性充填剤とを含むバインダ樹脂が硬化されたものである。樹脂被覆層5は、シート本体2から滲み出た高分子マトリックス成分の未硬化成分によって形成されている。シート本体2の一方の面2aには、第1の剥離フィルム3が貼り付けられ、シート本体2の他方の面2bは、第2の剥離フィルム4が貼り付けられている。
[Configuration example of thermally conductive sheet]
FIG. 1 shows a configuration example of a thermally conductive sheet to which this technology is applied. A heat conductive sheet 1 shown in FIG. 1 has a sheet body 2 and a resin coating layer 5 . The sheet body 2 is obtained by curing a binder resin containing at least a polymer matrix component and a fibrous thermally conductive filler. The resin coating layer 5 is formed of an uncured component of the polymer matrix component exuded from the sheet body 2 . A first release film 3 is attached to one surface 2 a of the sheet body 2 , and a second release film 4 is attached to the other surface 2 b of the sheet body 2 .
 熱伝導シート1は、一方の面2a及び他方の面2bに樹脂被覆層5が形成されることによりタック(粘着性)を有し、使用の際に第1の剥離フィルム3と第2の剥離フィルム4を剥離することにより、シート本体2を所定の位置に貼付可能とされている。これにより、熱伝導シート1は、作業性、取り扱い性に優れる。また、熱伝導シート1は、電子部品と放熱部材との組み立て時の位置ズレを修正したり、一旦組み立てた後に何らかの事情で解体し、再度組み立てることを可能としたりするなどのリワーク性に優れる。 The heat conductive sheet 1 has tackiness (adhesiveness) due to the resin coating layer 5 formed on one surface 2a and the other surface 2b, and when used, the first release film 3 and the second release film 3 are separated from each other. By peeling off the film 4, the sheet body 2 can be attached to a predetermined position. Thereby, the heat conductive sheet 1 is excellent in workability and handleability. In addition, the heat conductive sheet 1 is excellent in reworkability such as correcting the positional misalignment between the electronic component and the heat radiating member during assembly, dismantling for some reason after once assembled, and reassembling.
 [高分子マトリックス成分]
 シート本体2を構成する高分子マトリックス成分は、熱伝導シート1の基材となる高分子成分のことである。その種類については、特に限定されず、公知の高分子マトリックス成分を適宜選択することができる。例えば、高分子マトリックス成分の一つとして、熱硬化性ポリマーが挙げられる。
[Polymer matrix component]
The polymer matrix component that constitutes the sheet body 2 is a polymer component that serves as the base material of the heat conductive sheet 1 . The type is not particularly limited, and a known polymer matrix component can be appropriately selected. For example, one polymeric matrix component is a thermosetting polymer.
 前記熱硬化性ポリマーとしては、例えば、架橋ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテル等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the thermosetting polymer include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting type Polyphenylene ether, thermosetting modified polyphenylene ether, and the like can be mentioned. These may be used individually by 1 type, and may use 2 or more types together.
 なお、前記架橋ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴム等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the crosslinked rubber include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine rubber, urethane rubber, acrylic rubber, polyisobutylene rubber, silicone rubber and the like. These may be used individually by 1 type, and may use 2 or more types together.
 また、これら熱硬化性ポリマーの中でも、成形加工性及び耐候性に優れるとともに、電子部品に対する密着性及び追従性の点から、シリコーン樹脂を用いることが好ましい。前記シリコーン樹脂としては、特に制限はなく、目的に応じてシリコーン樹脂の種類を適宜選択することができる。 In addition, among these thermosetting polymers, it is preferable to use a silicone resin from the viewpoint of excellent moldability and weather resistance, as well as adhesion and conformability to electronic parts. The silicone resin is not particularly limited, and the type of silicone resin can be appropriately selected depending on the purpose.
 上述した成形加工性、耐候性、密着性等を得る観点からは、前記シリコーン樹脂として、液状シリコーンゲルの主剤と、硬化剤とから構成されるシリコーン樹脂であることが好ましい。そのようなシリコーン樹脂としては、例えば、付加反応型液状シリコーン樹脂、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン樹脂等が挙げられる。これらの中でも、電子機器の放熱部材としては、電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型液状シリコーン樹脂が特に好ましい。 From the viewpoint of obtaining the moldability, weather resistance, adhesion, etc. described above, the silicone resin is preferably a silicone resin composed of a liquid silicone gel main agent and a curing agent. Examples of such silicone resins include addition reaction type liquid silicone resins, heat vulcanization type millable type silicone resins using peroxide for vulcanization, and the like. Among these, the addition reaction type liquid silicone resin is particularly preferable as a heat dissipation member for electronic equipment, since adhesion between the heat generating surface of the electronic component and the heat sink surface is required.
 前記付加反応型液状シリコーン樹脂としては、ビニル基を有するポリオルガノシロキサンを主剤、Si-H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーン樹脂等を用いることが好ましい。 As the addition reaction type liquid silicone resin, it is preferable to use a two-liquid addition reaction type silicone resin or the like in which polyorganosiloxane having a vinyl group is used as a main component and polyorganosiloxane having an Si—H group is used as a curing agent. .
 ここで、液状シリコーン成分は、主剤となるシリコーンA液成分と硬化剤が含まれるシリコーンB液成分を有し、シリコーンA液成分とシリコーンB液成分とが所定の割合で配合されている。シリコーンA液成分とシリコーンB液成分との配合割合は適宜調整できるが、シート本体2に柔軟性を付与するとともに、面2aと第1の剥離フィルム3との間と、面2bと第2の剥離フィルム4との間に高分子マトリックス成分の未硬化成分をブリードさせ、樹脂被覆層5を形成できる配合割合とすることが好ましい。 Here, the liquid silicone component has a silicone A liquid component as a main agent and a silicone B liquid component containing a curing agent, and the silicone A liquid component and the silicone B liquid component are blended in a predetermined ratio. The mixing ratio of the silicone A liquid component and the silicone B liquid component can be adjusted as appropriate. It is preferable to adjust the mixing ratio so that the uncured component of the polymer matrix component can bleed between the release film 4 and the resin coating layer 5 can be formed.
 また、熱伝導シート1における前記高分子マトリックス成分の含有量は、特に制限されず、目的に応じて適宜選択することができるが、シートの成形加工性や、シートの密着性等を確保する観点からは、15体積%~50体積%程度であることが好ましく、20体積%~45体積%であることがより好ましい。 In addition, the content of the polymer matrix component in the heat conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose. is preferably about 15% to 50% by volume, more preferably 20% to 45% by volume.
 [繊維状熱伝導性充填剤]
 熱伝導シート1に含まれる繊維状の熱伝導性充填剤は、シートの熱伝導性を向上させるための成分である。熱伝導性充填剤の種類については、熱伝導性の高い繊維状の材料であれば特に限定はされないが、より高い熱伝導性を得られる点からは、炭素繊維を用いることが好ましい。
[Fibrous Thermally Conductive Filler]
The fibrous thermally conductive filler contained in the thermally conductive sheet 1 is a component for improving the thermal conductivity of the sheet. The type of thermally conductive filler is not particularly limited as long as it is a fibrous material with high thermal conductivity, but carbon fiber is preferably used from the viewpoint of obtaining higher thermal conductivity.
 なお、熱伝導性充填剤については、一種単独でもよいし、二種以上を混合して用いてもよい。また、二種以上の熱伝導性充填剤を用いる場合には、いずれも繊維状の熱伝導性充填剤であってもよいし、繊維状の熱伝導性充填剤と別の形状の熱伝導性充填剤とを混合して用いてもよい。別の形状の熱伝導性充填剤としては、銀、銅、アルミニウム等の金属、アルミナ、窒化アルミニウム、炭化ケイ素、グラファイト等のセラミックス等が挙げられる。 As for the thermally conductive filler, one kind may be used alone, or two or more kinds may be mixed and used. Further, when two or more types of thermally conductive fillers are used, both of them may be fibrous thermally conductive fillers, or the fibrous thermally conductive fillers and thermally conductive fillers having different shapes may be used. You may mix and use a filler. Alternative forms of thermally conductive fillers include metals such as silver, copper, aluminum, ceramics such as alumina, aluminum nitride, silicon carbide, graphite, and the like.
 前記炭素繊維の種類について特に制限はなく、目的に応じて適宜選択することができる。例えば、ピッチ系、PAN系、PBO繊維を黒鉛化したもの、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成されたものを用いることができる。これらの中でも、高い熱伝導性が得られる点から、PBO繊維を黒鉛化した炭素繊維、ピッチ系炭素繊維がより好ましい。 The type of carbon fiber is not particularly limited, and can be appropriately selected according to the purpose. For example, pitch-based, PAN-based, graphitized PBO fiber, arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), etc. can be used. Among these, carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are more preferable because high thermal conductivity can be obtained.
 また、前記炭素繊維は、必要に応じて、その一部又は全部を表面処理して用いることができる。前記表面処理としては、例えば、酸化処理、窒化処理、ニトロ化、スルホン化、あるいはこれらの処理によって表面に導入された官能基若しくは炭素繊維の表面に、金属、金属化合物、有機化合物等を付着あるいは結合させる処理等が挙げられる。前記官能基としては、例えば、水酸基、カルボキシル基、カルボニル基、ニトロ基、アミノ基等が挙げられる。 In addition, the carbon fiber can be partially or wholly surface-treated as necessary. As the surface treatment, for example, oxidation treatment, nitriding treatment, nitration, sulfonation, or attaching or attaching a metal, a metal compound, an organic compound, etc. to the surface of the functional group or carbon fiber introduced to the surface by these treatments, or A process of combining, etc., may be mentioned. Examples of the functional group include hydroxyl group, carboxyl group, carbonyl group, nitro group, amino group and the like.
 さらに、前記炭素繊維の平均繊維長(平均長軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、50μm~300μmの範囲であることが好ましく、75μm~275μmの範囲であることがより好ましく、90μm~250μmの範囲であることが特に好ましい。 Furthermore, the average fiber length (average long axis length) of the carbon fibers is not particularly limited and can be selected as appropriate. , more preferably in the range of 75 μm to 275 μm, and particularly preferably in the range of 90 μm to 250 μm.
 さらにまた、前記炭素繊維の平均繊維径(平均短軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、4μm~20μmの範囲であることが好ましく、5μm~14μmの範囲であることがより好ましい。 Furthermore, the average fiber diameter (average minor axis length) of the carbon fibers is not particularly limited and can be appropriately selected, but from the point of reliably obtaining high thermal conductivity, it is in the range of 4 μm to 20 μm. more preferably in the range of 5 μm to 14 μm.
 前記炭素繊維のアスペクト比(平均長軸長さ/平均短軸長さ)については、確実に高い熱伝導性を得る点から、8以上であることが好ましく、9~30であることがより好ましい。前記アスペクト比が8未満であると、炭素繊維の繊維長(長軸長さ)が短いため、熱伝導率が低下してしまうおそれがあり、一方、30を超えると、熱伝導シート1中での分散性が低下するため、十分な熱伝導率を得られないおそれがある。 The aspect ratio (average major axis length/average minor axis length) of the carbon fibers is preferably 8 or more, more preferably 9 to 30, in order to reliably obtain high thermal conductivity. . If the aspect ratio is less than 8, the fiber length (major axis length) of the carbon fibers is short, and thus the thermal conductivity may decrease. Since the dispersibility of is lowered, there is a risk that sufficient thermal conductivity cannot be obtained.
 ここで、前記炭素繊維の平均長軸長さ、及び平均短軸長さは、例えばマイクロスコープ、走査型電子顕微鏡(SEM)等によって測定し、複数のサンプルから平均を算出することができる。 Here, the average long axis length and average short axis length of the carbon fibers can be measured, for example, with a microscope, scanning electron microscope (SEM), etc., and the average can be calculated from a plurality of samples.
 また、熱伝導シート1における前記繊維状の熱伝導性充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、4体積%~40体積%であることが好ましく、5体積%~35体積%であることがより好ましい。前記含有量が、4体積%未満であると、十分に低い熱抵抗を得ることが困難になるおそれがあり、40体積%を超えると、熱伝導シート1の成型性及び前記繊維状の熱伝導性充填剤の配向性に影響を与えてしまうおそれがある。また、熱伝導シート1における繊維状の熱伝導性充填剤を含む熱伝導性充填剤の含有量は、15体積%~75体積%であることが好ましい。 In addition, the content of the fibrous thermally conductive filler in the thermally conductive sheet 1 is not particularly limited and can be appropriately selected according to the purpose. It is preferably 5% to 35% by volume, more preferably 5% by volume to 35% by volume. If the content is less than 4% by volume, it may be difficult to obtain a sufficiently low thermal resistance. This may affect the orientation of the polyfiller. Moreover, the content of the thermally conductive filler including the fibrous thermally conductive filler in the thermally conductive sheet 1 is preferably 15% by volume to 75% by volume.
 なお、繊維状の熱伝導性充填剤は、シート本体2の面2aと面2bに露出し、電子部品等の熱源やヒートシンク等の放熱部材と熱的に接触する。熱伝導シート1は、シート本体2の面2aと面2bに露出する繊維状熱伝導性充填剤が高分子マトリックス成分の未硬化成分で被覆される場合、電子部品等に搭載した際に繊維状熱伝導性充填剤と電子部品等との接触熱抵抗を下げることができる。 The fibrous thermally conductive filler is exposed on the surfaces 2a and 2b of the sheet body 2 and is in thermal contact with heat sources such as electronic components and heat radiation members such as heat sinks. When the fibrous thermally conductive filler exposed on the surfaces 2a and 2b of the sheet body 2 is coated with the uncured component of the polymer matrix component, the thermally conductive sheet 1 becomes fibrous when mounted on an electronic component or the like. It is possible to reduce the contact thermal resistance between the thermally conductive filler and electronic parts and the like.
 [無機物フィラー]
 熱伝導シート1は、熱伝導性充填剤として、無機物フィラーをさらに含有させてもよい。無機物フィラーを含有させることにより、熱伝導シート1の熱伝導性をより高め、シートの強度を向上できる。前記無機物フィラーとしては、形状、材質、平均粒径等については特に制限がされず、目的に応じて適宜選択することができる。前記形状としては、例えば、球状、楕円球状、塊状、粒状、扁平状、針状等が挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。
[Inorganic filler]
The thermally conductive sheet 1 may further contain an inorganic filler as a thermally conductive filler. By containing the inorganic filler, the thermal conductivity of the thermally conductive sheet 1 can be further increased, and the strength of the sheet can be improved. The shape, material, average particle size, etc. of the inorganic filler are not particularly limited, and can be appropriately selected according to the purpose. Examples of the shape include spherical, ellipsoidal, massive, granular, flat, needle-like, and the like. Among these, a spherical shape and an elliptical shape are preferable from the viewpoint of filling properties, and a spherical shape is particularly preferable.
 前記無機物フィラーの材料としては、例えば、窒化アルミニウム(窒化アルミ:AlN)、シリカ、アルミナ(酸化アルミニウム)、窒化ホウ素、チタニア、ガラス、酸化亜鉛、炭化ケイ素、ケイ素(シリコン)、酸化珪素、金属粒子等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。これらの中でも、アルミナ、窒化ホウ素、窒化アルミニウム、酸化亜鉛、シリカが好ましく、熱伝導率の点から、アルミナ、窒化アルミニウムが特に好ましい。 Examples of materials for the inorganic filler include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, and metal particles. etc. These may be used individually by 1 type, and may use 2 or more types together. Among these, alumina, boron nitride, aluminum nitride, zinc oxide, and silica are preferred, and alumina and aluminum nitride are particularly preferred from the viewpoint of thermal conductivity.
 また、前記無機物フィラーは、表面処理が施されたものを用いることができる。前記表面処理としてカップリング剤で前記無機物フィラーを処理すると、前記無機物フィラーの分散性が向上し、熱伝導シート1の柔軟性が向上する。 In addition, the inorganic filler can be surface-treated. When the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved and the flexibility of the heat conductive sheet 1 is improved.
 前記無機物フィラーの平均粒径については、無機物の種類等に応じて適宜選択することができる。前記無機物フィラーがアルミナの場合、その平均粒径は、1μm~10μmであることが好ましく、1μm~5μmであることがより好ましく、4μm~5μmであることが特に好ましい。前記平均粒径が1μm未満であると、粘度が大きくなり、混合しにくくなるおそれがある。一方、前記平均粒径が10μmを超えると、熱伝導シート1の熱抵抗が大きくなるおそれがある。 The average particle size of the inorganic filler can be appropriately selected according to the type of inorganic material. When the inorganic filler is alumina, its average particle size is preferably 1 μm to 10 μm, more preferably 1 μm to 5 μm, and particularly preferably 4 μm to 5 μm. If the average particle size is less than 1 μm, the viscosity increases and mixing may become difficult. On the other hand, if the average particle size exceeds 10 μm, the thermal resistance of the heat conductive sheet 1 may increase.
 さらに、前記無機物フィラーが窒化アルミニウムの場合、その平均粒径は、0.3μm~6.0μmであることが好ましく、0.3μm~2.0μmであることがより好ましく、0.5μm~1.5μmであることが特に好ましい。前記平均粒径が、0.3μm未満であると、粘度が大きくなり、混合しにくくなるおそれがあり、6.0μmを超えると、熱伝導シート1の熱抵抗が大きくなるおそれがある。 Furthermore, when the inorganic filler is aluminum nitride, its average particle size is preferably 0.3 μm to 6.0 μm, more preferably 0.3 μm to 2.0 μm, and more preferably 0.5 μm to 1.0 μm. 5 μm is particularly preferred. If the average particle diameter is less than 0.3 μm, the viscosity may increase and mixing may become difficult.
 なお、前記無機物フィラーの平均粒径は、例えば、粒度分布計、走査型電子顕微鏡(SEM)により測定することができる。 The average particle diameter of the inorganic filler can be measured, for example, with a particle size distribution meter or scanning electron microscope (SEM).
 [その他の成分]
 熱伝導シート1は、上述した、高分子マトリックス成分及び繊維状熱伝導性充填剤、適宜含有される無機物フィラーに加えて、目的に応じてその他の成分を適宜含むこともできる。その他の成分としては、例えば、磁性粉、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。また、磁性粉の含有量を調整することにより、熱伝導シート1に電磁波吸収性能を付与してもよい。
[Other ingredients]
In addition to the polymer matrix component, the fibrous thermally conductive filler, and the inorganic filler that is appropriately contained, the thermally conductive sheet 1 can also contain other components as appropriate, depending on the purpose. Other components include, for example, magnetic powders, thixotropic agents, dispersants, curing accelerators, retarders, slight tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants, and the like. . Moreover, electromagnetic wave absorption performance may be imparted to the heat conductive sheet 1 by adjusting the content of the magnetic powder.
 [磁性粉]
 熱伝導シート1は、磁性粉の含有量を調整することにより、熱伝導シート1に電磁波吸収性能を付与してもよい。
[Magnetic powder]
The heat conductive sheet 1 may be provided with electromagnetic wave absorption performance by adjusting the content of the magnetic powder.
 前記磁性粉の種類については、磁性性を有すること以外は、特に限定されず、公知の磁性粉を適宜選択することができる。例えば、アモルファス金属粉や、結晶質の金属粉末を用いることができる。アモルファス金属粉としては、例えば、Fe-Si-Cr-B系、Fe-Si-B系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系のもの等が挙げられ、結晶質の金属粉としては、例えば、純鉄、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系のもの等が挙げられる。さらに、前記結晶質の金属粉としては、結晶質の金属粉に、N(窒素)、C(炭素)、O(酸素)、B(ホウ素)等を微量加えて微細化させた微結晶質金属粉を用いてもよい。 The type of the magnetic powder is not particularly limited as long as it has magnetic properties, and known magnetic powders can be appropriately selected. For example, amorphous metal powder or crystalline metal powder can be used. Examples of amorphous metal powder include Fe--Si--Cr--B, Fe--Si--B, Co--Si--B, Co--Zr, Co--Nb and Co--Ta. As the crystalline metal powder, for example, pure iron, Fe-based, Co-based, Ni-based, Fe--Ni-based, Fe--Co-based, Fe--Al-based, Fe--Si-based, Fe--Si--Al-based , and Fe--Ni--Si--Al systems. Furthermore, as the crystalline metal powder, a microcrystalline metal finely divided by adding a small amount of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. to the crystalline metal powder. Powder may be used.
 なお、前記磁性金属粉については、材料が異なるものや、平均粒径が異なるものを二種以上混合したものを用いてもよい。 As for the magnetic metal powder, a mixture of two or more kinds of different materials or different average particle diameters may be used.
 また、前記磁性金属粉については、球状、扁平状等の形状を調整することが好ましい。例えば、充填性を高くする場合には、粒径が数μm~数十μmであって、球状である磁性金属粉を用いることが好ましい。このような磁性金属粉末は、例えばアトマイズ法や、金属カルボニルを熱分解する方法により製造することができる。アトマイズ法とは、球状の粉末が作りやすい利点を有し、溶融金属をノズルから流出させ、流出させた溶融金属に空気、水、不活性ガス等のジェット流を吹き付けて液滴として凝固させて粉末を作る方法である。アトマイズ法によりアモルファス磁性金属粉末を製造する際には、溶融金属が結晶化しないようにするために、冷却速度を1×106(K/s)程度にすることが好ましい。 In addition, it is preferable to adjust the shape of the magnetic metal powder to be spherical, flat, or the like. For example, in order to increase the filling property, it is preferable to use spherical magnetic metal powder having a particle size of several μm to several tens of μm. Such magnetic metal powder can be produced, for example, by an atomizing method or a method of thermally decomposing metal carbonyl. The atomization method has the advantage that it is easy to make spherical powder. Molten metal is flown out from a nozzle, and a jet stream of air, water, inert gas, etc. is blown onto the flown out molten metal to solidify it as droplets. It is a method of making powder. When the amorphous magnetic metal powder is produced by the atomization method, the cooling rate is preferably about 1×10 6 (K/s) in order to prevent the molten metal from crystallizing.
 上述したアトマイズ法により、アモルファス合金粉を製造した場合には、アモルファス合金粉の表面を滑らかな状態とすることができる。このように表面凹凸が少なく、比表面積が小さいアモルファス合金粉を磁性金属粉として用いると、高分子マトリックス成分に対して充填性を高めることができる。さらに、カップリング処理を行うことで充填性をより向上できる。 When the amorphous alloy powder is produced by the atomization method described above, the surface of the amorphous alloy powder can be made smooth. By using such an amorphous alloy powder with less surface irregularities and a small specific surface area as the magnetic metal powder, it is possible to enhance the filling properties with respect to the polymer matrix component. Furthermore, the filling property can be further improved by performing a coupling treatment.
 [熱伝導シートの製造方法]
 次いで、熱伝導シート1の製造工程について説明する。本技術が適用された熱伝導シート1の製造工程は、高分子マトリックス成分に繊維状の熱伝導性充填剤等が含有された熱伝導性樹脂組成物を所定の形状に成型して硬化させ、熱伝導性成形体を形成する工程(工程A)と、前記熱伝導性成形体をシート状にスライスし、成形体シートを形成する工程(工程B)と、成形体シートを第1の剥離フィルム3と第2の剥離フィルム4とで挟持しプレスすることにより、成形体シート表面を平滑化するとともに樹脂被覆層5を形成する工程(工程C)とを有する。
[Method for producing thermally conductive sheet]
Next, the manufacturing process of the thermally conductive sheet 1 will be described. The manufacturing process of the thermally conductive sheet 1 to which the present technology is applied includes molding a thermally conductive resin composition containing a fibrous thermally conductive filler and the like in a polymer matrix component into a predetermined shape and curing the composition. a step of forming a thermally conductive compact (step A); a step of slicing the thermally conductive compact into sheets to form a compact sheet (step B); 3 and a second release film 4, and a step (step C) of smoothing the surface of the molded body sheet and forming a resin coating layer 5 by pressing.
 [工程A]
 この工程Aでは、上述した高分子マトリックス成分及び繊維状熱伝導性充填剤、適宜含有される無機物フィラー、その他の成分を配合し、熱伝導性樹脂組成物を調製する。なお、各成分を配合、調製する手順については特に限定はされず、例えば、高分子マトリックス成分に、繊維状熱伝導性充填剤、適宜、無機物フィラー、磁性粉、その他成分を添加し、混合することにより、熱伝導性樹脂組成物の調製が行われる。
[Step A]
In this step A, the above-described polymer matrix component, fibrous thermally conductive filler, appropriately contained inorganic filler, and other components are blended to prepare a thermally conductive resin composition. The procedure for blending and preparing each component is not particularly limited. For example, a fibrous thermally conductive filler, as appropriate, inorganic filler, magnetic powder, and other components are added to the polymer matrix component and mixed. Thus, the thermally conductive resin composition is prepared.
 次いで、炭素繊維等の繊維状の熱伝導性充填剤を一方向に配向させる。この充填剤の配向方法は、一方向に配向させることができる手段であれば特に限定はされない。例えば、中空状の型内に前記熱伝導性樹脂組成物を高剪断力下で押し出すこと又は圧入することによって、比較的容易に繊維状の熱伝導性充填剤を一方向に配向させることができ、前記繊維状の熱伝導性充填剤の配向は同一(±10°以内)となる。 Next, a fibrous thermally conductive filler such as carbon fiber is oriented in one direction. The method for orienting the filler is not particularly limited as long as it can be oriented in one direction. For example, the fibrous thermally conductive filler can be unidirectionally oriented relatively easily by extruding or press-fitting the thermally conductive resin composition into a hollow mold under high shearing force. , the orientation of the fibrous thermally conductive filler is the same (within ±10°).
 上述した、中空状の型内に前記熱伝導性樹脂組成物を高剪断力下で押し出すこと又は圧入する方法として、具体的には、押出し成型法又は金型成型法が挙げられる。前記押出し成型法において、前記熱伝導性樹脂組成物をダイより押し出す際、あるいは前記金型成型法において、前記熱伝導性樹脂組成物を金型へ圧入する際、前記熱伝導性樹脂組成物が流動し、その流動方向に沿って繊維状熱伝導性充填剤が配向する。この際、ダイの先端にスリットを取り付けると繊維状熱伝導性充填剤がより配向されやすくなる。 Specific examples of the above-described method of extruding or press-fitting the thermally conductive resin composition into a hollow mold under a high shear force include an extrusion molding method and a mold molding method. In the extrusion molding method, when the thermally conductive resin composition is extruded from a die, or in the mold molding method, when the thermally conductive resin composition is pressed into a mold, the thermally conductive resin composition The fibrous thermally conductive filler is oriented along the flow direction. At this time, if a slit is attached to the tip of the die, the fibrous thermally conductive filler is more likely to be oriented.
 中空状の型内に押出し又は圧入された前記熱伝導性樹脂組成物は、当該型の形状、大きさに応じたブロック形状に成型され、繊維状の熱伝導性充填剤の配向状態を維持したまま前記高分子マトリックス成分を硬化させることによって、熱伝導性成形体が形成される。熱伝導性成形体とは、所定のサイズに切断して得られる熱伝導シート1の元となるシート切り出し用の母材(成形体)のことをいう。 The thermally conductive resin composition extruded or press-fitted into the hollow mold was molded into a block shape corresponding to the shape and size of the mold, and the orientation of the fibrous thermally conductive filler was maintained. A thermally conductive compact is formed by curing the polymeric matrix component as it is. A thermally conductive molded body refers to a base material (molded body) for sheet cutting, which is the basis of the thermally conductive sheet 1 obtained by cutting into a predetermined size.
 中空状の型及び熱伝導性成形体の大きさ及び形状は、求められる熱伝導シート1の大きさ、形状に応じて決めることができ、例えば、断面の縦の大きさが0.5cm~15cmで横の大きさが0.5cm~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。 The size and shape of the hollow mold and the heat conductive molded body can be determined according to the required size and shape of the heat conductive sheet 1. For example, the vertical size of the cross section is 0.5 cm to 15 cm. and a rectangular parallelepiped with a horizontal size of 0.5 cm to 15 cm. The length of the rectangular parallelepiped may be determined as required.
 前記高分子マトリックス成分を硬化させる方法や条件については、高分子マトリックス成分の種類に応じて変えることができる。例えば、前記高分子マトリックス成分が熱硬化樹脂の場合、熱硬化における硬化温度を調整することができる。さらに、該熱硬化性樹脂が、液状シリコーンゲルの主剤と、硬化剤とを含有するものである場合、80℃~120℃の硬化温度で硬化を行うことが好ましい。また、熱硬化における硬化時間としては、特に制限はないが、1時間~10時間とすることができる。 The method and conditions for curing the polymer matrix component can be changed according to the type of the polymer matrix component. For example, when the polymer matrix component is a thermosetting resin, the curing temperature in thermosetting can be adjusted. Furthermore, when the thermosetting resin contains a base liquid silicone gel and a curing agent, it is preferable to cure at a curing temperature of 80°C to 120°C. The curing time in thermosetting is not particularly limited, but it can be 1 hour to 10 hours.
 [工程B]
 図2に示すように、熱伝導性成形体6をシート状にスライスし、成形体シート7を形成する工程Bでは、配向した繊維状の熱伝導性充填剤の長軸方向に対して、0°~90°の角度、好ましくは45°~90°の角度となるように、熱伝導性成形体6をシート状に切断する。これにより、繊維状熱伝導性充填剤は、シート本体2の厚み方向に配向される。
[Step B]
As shown in FIG. 2, in the step B of slicing the thermally conductive compact 6 into sheets to form a compact sheet 7, the longitudinal direction of the oriented fibrous thermally conductive filler is 0 The thermally conductive molding 6 is cut into sheets at an angle of .degree. to 90.degree., preferably 45.degree. Thereby, the fibrous thermally conductive filler is oriented in the thickness direction of the sheet body 2 .
 また、熱伝導性成形体6の切断については、スライス装置を用いて行われる。スライス装置については、前記熱伝導性成形体6を切断できる手段であれば特に限定はされず、公知のスライス装置を適宜用いることができる。例えば、超音波カッター、かんな(鉋)等を用いることができる。 Also, the cutting of the thermally conductive compact 6 is performed using a slicing device. The slicing device is not particularly limited as long as it can cut the thermally conductive compact 6, and a known slicing device can be used as appropriate. For example, an ultrasonic cutter, a planer, or the like can be used.
 熱伝導性成形体6のスライス厚みは、熱伝導シート1のシート本体2の厚みとなり、熱伝導シート1の用途に応じて適宜設定することができ、例えば0.5~3.0mmである。 The slice thickness of the thermally conductive molded body 6 is the thickness of the sheet body 2 of the thermally conductive sheet 1, and can be appropriately set according to the application of the thermally conductive sheet 1. For example, it is 0.5 to 3.0 mm.
 なお、工程Bでは、熱伝導性成形体6から切り出された成形体シート7に切れ込みを入れることにより、複数の成形体シート7に小片化してもよい。 It should be noted that, in step B, the molded body sheet 7 cut out from the thermally conductive molded body 6 may be cut into a plurality of molded body sheets 7 into small pieces.
 [工程C]
 工程Cでは、成形体シート7の一方の面に第1の剥離フィルム3を貼り付け、成形体シート7の他方の面に第2の剥離フィルム4を貼り付けてプレスする。このプレスにより、成形体シート7の表面を平滑化するとともに高分子マトリックス成分の未硬化成分をブリードさせ、成形体シート7の一方の面と第1の剥離フィルム3との間と、成形体シート7の他方の面と第2の剥離フィルム4との間に樹脂被覆層5を形成する。ここで、熱伝導シート1の面2aと面2bは、スライスされた面であり、スライスされた後にプレスされた面である。これにより、熱伝導シート1が形成され、シート表面の凹凸を低減させるとともに、露出する繊維状の熱伝導性充填剤を被覆させ、熱源や放熱部材との密着性を向上し、軽荷重時の界面接触抵抗を軽減させ、熱伝導効率を向上させることができる。
[Step C]
In step C, the first release film 3 is attached to one surface of the molded sheet 7, and the second release film 4 is attached to the other surface of the molded sheet 7 and pressed. By this pressing, the surface of the molded body sheet 7 is smoothed and the uncured component of the polymer matrix component is bled out, and between one surface of the molded body sheet 7 and the first release film 3 and between the molded body sheet 7 and the first release film 3 A resin coating layer 5 is formed between the other surface of 7 and the second release film 4 . Here, the surface 2a and the surface 2b of the heat conductive sheet 1 are sliced surfaces and pressed after being sliced. As a result, the heat conductive sheet 1 is formed, and the unevenness of the sheet surface is reduced, and the exposed fibrous heat conductive filler is coated to improve the adhesion with the heat source and the heat dissipating member. Interfacial contact resistance can be reduced, and heat transfer efficiency can be improved.
 なお、前記プレスについては、例えば、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用して行うことができる。また、ピンチロールを使用してプレスを行ってもよい。 The pressing can be performed, for example, by using a pair of pressing devices consisting of a flat plate and a press head with a flat surface. Moreover, you may press using a pinch roll.
 前記プレスの際の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、低すぎるとプレスをしない場合と熱抵抗が変わらない傾向があり、高すぎるとシートが延伸する傾向があるため、0.1MPa~100MPaの圧力範囲とすることが好ましく、0.5MPa~95MPaの圧力範囲とすることがより好ましい。 The pressure at the time of pressing is not particularly limited and can be appropriately selected according to the purpose. Therefore, the pressure range is preferably 0.1 MPa to 100 MPa, more preferably 0.5 MPa to 95 MPa.
 成形体シート7の両面に貼付される第1の剥離フィルム3及び第2の剥離フィルム4としては、例えばPETフィルムやポリエチレンフィルム等のプラスチックフィルムを用いることができる。この場合、第1の剥離フィルム3及び第2の剥離フィルム4は、成形体シート7の表面への貼付面にワックス処理やフッ素処理等の剥離処理を施してもよい。また、第1の剥離フィルム3及び第2の剥離フィルム4は、エンボス加工が施されていてもよい。 As the first release film 3 and the second release film 4 attached to both sides of the molded sheet 7, for example, plastic films such as PET films and polyethylene films can be used. In this case, the first release film 3 and the second release film 4 may be subjected to release treatment such as wax treatment or fluorine treatment on the surface to be attached to the surface of the molded body sheet 7 . Also, the first release film 3 and the second release film 4 may be embossed.
 また、第1の剥離フィルム3及び第2の剥離フィルム4は、厚さ及び/又は材質を異ならせることにより、シート本体2からの剥離強度(N)が異なるように形成される。例えば、30mm×30mmの熱伝導シート1において、第1の剥離フィルム3としてワックス処理が施された厚さ25μmのPETフィルムを使用し、第2の剥離フィルム4としてエンボス処理された厚さ80μmのポリエチレンフィルムを使用した場合、引張・圧縮試験機において、ロードセルが50(N)、速度が300mm/minの条件で180度剥離試験を行うと、シート本体2からの剥離強度(N)は、第1の剥離フィルム3が0.03(N)(屈曲半径3mm)、第2の剥離フィルム4が0.05(N)(屈曲半径0.5mm以下)となる。 Also, the first release film 3 and the second release film 4 are formed to have different peel strengths (N) from the sheet body 2 by making the thickness and/or material different. For example, in the thermal conductive sheet 1 of 30 mm × 30 mm, a wax-treated PET film with a thickness of 25 µm is used as the first release film 3, and an embossed PET film with a thickness of 80 µm is used as the second release film 4. When a polyethylene film is used, when a 180-degree peel test is performed in a tension/compression tester under the conditions of a load cell of 50 (N) and a speed of 300 mm/min, the peel strength (N) from the sheet body 2 is The first release film 3 is 0.03 (N) (bending radius of 3 mm), and the second release film 4 is 0.05 (N) (bending radius of 0.5 mm or less).
 [熱伝導シートの実装工程]
 実使用時においては、熱伝導シート1は、例えば、半導体装置等の電子部品や、ヒートシンク等の各種放熱部材に実装される。このとき、熱伝導シート1は、シート本体2からの剥離強度が小さい方の剥離フィルム、例えば上述した例で言えば、第1の剥離フィルム3から剥離する。これにより、第1の剥離フィルム3に付着してシート本体2の全部が第2の剥離フィルム4から剥離することがなく、第2の剥離フィルム4に支持された状態でシート本体2の一方の面2aを露出させることができる。熱伝導シート1は、樹脂被覆層5が露出したシート本体2の一方の面2aを半導体装置等の電子部品又はヒートシンク等の放熱部材に貼り付け、その後、第2の剥離フィルム4をシート本体2の他方の面2bから剥離する。
[Mounting process of thermally conductive sheet]
In actual use, the thermal conductive sheet 1 is mounted on, for example, electronic components such as semiconductor devices and various heat radiation members such as heat sinks. At this time, the heat conductive sheet 1 is peeled off from the release film having a lower peel strength from the sheet body 2, for example, the first release film 3 in the above example. As a result, the entire sheet body 2 does not adhere to the first release film 3 and peel off from the second release film 4 , and one side of the sheet body 2 is supported by the second release film 4 . Surface 2a can be exposed. In the heat conductive sheet 1, one surface 2a of the sheet body 2 where the resin coating layer 5 is exposed is attached to an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the second release film 4 is attached to the sheet body 2. is peeled off from the other surface 2b.
 熱伝導シート1は、例えば、図3に示すように、各種電子機器に内蔵される半導体装置50に実装され、熱源と放熱部材との間に挟持される。図3に示す半導体装置50は、電子部品51と、ヒートスプレッダ52と、熱伝導シート1とを少なくとも有し、熱伝導シート1がヒートスプレッダ52と電子部品51との間に挟持される。また熱伝導シート1は、ヒートスプレッダ52とヒートシンク53との間に挟持されることにより、ヒートスプレッダ52とともに、電子部品51の熱を放熱する放熱部材を構成する。 For example, as shown in FIG. 3, the heat conductive sheet 1 is mounted on a semiconductor device 50 built in various electronic devices, and sandwiched between a heat source and a heat radiating member. A semiconductor device 50 shown in FIG. 3 has at least an electronic component 51 , a heat spreader 52 and a heat conductive sheet 1 , and the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the electronic component 51 . Further, the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the heat sink 53 , thereby forming a heat dissipation member for dissipating the heat of the electronic component 51 together with the heat spreader 52 .
 電子部品51としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CPU、MPU、グラフィック演算素子、イメージセンサ等の各種半導体素子、アンテナ素子、バッテリーなどが挙げられる。ヒートスプレッダ52は、電子部品51の発する熱を放熱する部材であれば、特に制限はなく、目的に応じて適宜選択することができる。熱伝導シート1を用いることによって、半導体装置50は、高い放熱性を有し、またシート本体2中の磁性粉の含有量に応じて電磁波抑制効果にも優れる。 The electronic component 51 is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include CPU, MPU, graphic processing elements, various semiconductor elements such as image sensors, antenna elements, and batteries. The heat spreader 52 is not particularly limited as long as it is a member that dissipates the heat generated by the electronic component 51, and can be appropriately selected according to the purpose. By using the heat-conducting sheet 1 , the semiconductor device 50 has a high heat dissipation property and, depending on the content of the magnetic powder in the sheet body 2 , an excellent electromagnetic wave suppressing effect.
 なお、熱伝導シート1の実装場所は、ヒートスプレッダ52と電子部品51との間や、ヒートスプレッダ52とヒートシンク53との間に限らず、電子機器や半導体装置の構成に応じて、適宜選択できることは勿論である。また、放熱部材としては、ヒートスプレッダ52やヒートシンク53以外にも、熱源から発生する熱を伝導して外部に放散させるものであればよく、例えば、放熱器、冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、金属カバー、筐体等が挙げられる。 Note that the mounting location of the heat conductive sheet 1 is not limited to between the heat spreader 52 and the electronic component 51 or between the heat spreader 52 and the heat sink 53, but can be appropriately selected according to the configuration of the electronic device or semiconductor device. is. In addition to the heat spreader 52 and the heat sink 53, any other heat dissipating member may be used as long as it conducts the heat generated from the heat source and dissipates it to the outside. , Peltier elements, heat pipes, metal covers, housings, and the like.
[第1実施例]
 次いで、本技術の第1実施例について説明する。第1実施例では、2液性の付加反応型液状シリコーンを36体積%、平均粒径5μmのFe-Si-Cr-Bアモルファス磁性粒子を45.6体積%、繊維状フィラーとして平均繊維長200μmのピッチ系炭素繊維を18体積%、カップリング剤を0.4体積%混合し、シリコーン組成物を調製した。なお、本明細書において、平均粒径とは、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径(D50)を意味する。2液性の付加反応型液状シリコーン樹脂は、主剤となるシリコーンA剤と硬化剤が含まれるB剤との配合比が、55:45となるように配合した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の内壁に沿うように剥離処理されたフィルムを貼った中に押出成形してシリコーン成型体を成型した後、シリコーン成型体をオーブンにて60℃で4時間加熱してシリコーン硬化物とした。中空四角柱状の金型からシリコーン硬化物(熱伝導性成形体)を取り出した後に剥離処理されたフィルムを剥がして厚みが0.5mmとなるようにスライサーでシート状に切断し、炭素繊維が厚み方向に配向した成形体シート7を得た。切断して得られた成形体シート7を第1の剥離フィルム3と第2の剥離フィルム4に挟んで圧力0.5MPa、温度87℃、時間3分の条件でプレスし、樹脂被覆層5が形成された熱伝導シート1を得た。比重が約7であるFe-Si-Cr-Bアモルファス磁性粒子は、比重が5以上である非異方性材料の一例である。
[First embodiment]
Next, a first embodiment of the present technology will be described. In Example 1, 36% by volume of two-liquid addition reaction type liquid silicone, 45.6% by volume of Fe—Si—Cr—B amorphous magnetic particles with an average particle size of 5 μm, and an average fiber length of 200 μm as a fibrous filler. 18% by volume of pitch-based carbon fiber and 0.4% by volume of a coupling agent were mixed to prepare a silicone composition. In this specification, the average particle size means the particle size (D50) at 50% integrated value in the particle size distribution determined by the laser diffraction/scattering method. The two-liquid addition reaction type liquid silicone resin was blended so that the compounding ratio of the silicone component A as the main component and the component B containing the curing agent was 55:45. The obtained silicone composition is extruded into a hollow square prism-shaped mold (50 mm x 50 mm), to which a release-treated film is pasted along the inner wall, to form a silicone molded body. was heated in an oven at 60° C. for 4 hours to obtain a cured silicone product. After removing the cured silicone product (thermally conductive molded product) from the hollow square prism-shaped mold, peel off the release-treated film and cut it into sheets with a slicer so that the thickness is 0.5 mm. A directionally oriented compact sheet 7 was obtained. The molded sheet 7 obtained by cutting was sandwiched between the first release film 3 and the second release film 4 and pressed under the conditions of a pressure of 0.5 MPa, a temperature of 87° C., and a time of 3 minutes. A formed thermal conductive sheet 1 was obtained. Fe--Si--Cr--B amorphous magnetic particles with a specific gravity of about 7 are an example of a non-anisotropic material with a specific gravity of 5 or greater.
[第2実施例]
 第2実施例は、第1実施例のシリコーン組成物の配合量を変えたものである。第2実施例では、2液性の付加反応型液状シリコーンを31.4体積%、平均粒径5μmのFe-Si-Cr-Bアモルファス磁性粒子を62.1体積%、繊維状フィラーとして平均繊維長200μmのピッチ系炭素繊維を6体積%、カップリング剤を0.5体積%混合し、シリコーン組成物を調製した。2液性の付加反応型液状シリコーン樹脂は、主剤となるシリコーンA剤と硬化剤が含まれるB剤との配合比が、55:45となるように配合した。
[Second embodiment]
In the second example, the blending amount of the silicone composition of the first example was changed. In the second embodiment, 31.4% by volume of two-liquid addition reaction type liquid silicone, 62.1% by volume of Fe--Si--Cr--B amorphous magnetic particles having an average particle size of 5 μm, and an average fiber as a fibrous filler. A silicone composition was prepared by mixing 6% by volume of pitch-based carbon fiber with a length of 200 μm and 0.5% by volume of a coupling agent. The two-liquid addition reaction type liquid silicone resin was blended so that the compounding ratio of the silicone component A as the main component and the component B containing the curing agent was 55:45.
[第3実施例]
 第3実施例は、第1実施例のシリコーン組成物の配合量を変えたものである。第3実施例では、2液性の付加反応型液状シリコーンを28.8体積%、平均粒径5μmのFe-Si-Cr-Bアモルファス磁性粒子を66.5体積%、繊維状フィラーとして平均繊維長200μmのピッチ系炭素繊維を4.2体積%、カップリング剤を0.5体積%混合し、シリコーン組成物を調製した。2液性の付加反応型液状シリコーン樹脂は、主剤となるシリコーンA剤と硬化剤が含まれるB剤との配合比が、55:45となるように配合した。
[Third embodiment]
In the third example, the blending amount of the silicone composition of the first example was changed. In the third embodiment, 28.8% by volume of two-liquid addition reaction type liquid silicone, 66.5% by volume of Fe--Si--Cr--B amorphous magnetic particles having an average particle diameter of 5 μm, and an average fiber as a fibrous filler. A silicone composition was prepared by mixing 4.2% by volume of pitch-based carbon fiber with a length of 200 μm and 0.5% by volume of a coupling agent. The two-liquid addition reaction type liquid silicone resin was blended so that the compounding ratio of the silicone component A as the main component and the component B containing the curing agent was 55:45.
[第4実施例]
 第4実施例は、2液性の付加反応型液状シリコーンを28.6体積%、平均粒径15μmの球状アルミナ粒子を48体積%、平均粒径1.5μmの粒状窒化アルミニウムを15.8体積%、繊維状フィラーとして平均繊維長110μmのピッチ系炭素繊維を5.6体積%、酸化亜鉛を1体積%、カップリング剤を1体積%混合し、シリコーン組成物を調製した。2液性の付加反応型液状シリコーン樹脂は、主剤となるシリコーンA剤と硬化剤が含まれるB剤との配合比が、55:45となるように配合した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の内壁に沿うように剥離処理されたフィルムを貼った中に押出成形してシリコーン成型体を成型した後、シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。中空四角柱状の金型からシリコーン硬化物(熱伝導性成形体)を取り出した後に剥離処理されたフィルムを剥がして厚みが0.5mmとなるようにスライサーでシート状に切断し、炭素繊維が厚み方向に配向した成形体シート7を得た。比重が5.6である酸化亜鉛は、比重が5以上である非異方性材料の一例である。
[Fourth embodiment]
In the fourth example, 28.6% by volume of two-liquid addition reaction type liquid silicone, 48% by volume of spherical alumina particles with an average particle size of 15 μm, and 15.8% by volume of granular aluminum nitride with an average particle size of 1.5 μm. 5.6% by volume of pitch-based carbon fiber having an average fiber length of 110 μm as a fibrous filler, 1% by volume of zinc oxide, and 1% by volume of a coupling agent were mixed to prepare a silicone composition. The two-liquid addition reaction type liquid silicone resin was blended so that the compounding ratio of the silicone component A as the main component and the component B containing the curing agent was 55:45. The obtained silicone composition is extruded into a hollow square prism-shaped mold (50 mm x 50 mm), to which a release-treated film is pasted along the inner wall, to form a silicone molded body. was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product. After removing the cured silicone product (thermally conductive molded product) from the hollow square prism-shaped mold, peel off the release-treated film and cut it into sheets with a slicer so that the thickness is 0.5 mm. A directionally oriented compact sheet 7 was obtained. Zinc oxide with a specific gravity of 5.6 is an example of a non-anisotropic material with a specific gravity of 5 or greater.
[比較例]
 比較例は、2液性の付加反応型液状シリコーンを36体積%、平均粒径15μmの球状アルミナ粒子を20体積%、平均粒径15μmで結晶形状が六方晶型である鱗片状の窒化ホウ素を23体積%、平均粒径1.5μmの粒状窒化アルミニウムを20体積%、カップリング剤を1体積%混合し、シリコーン組成物を調製した。2液性の付加反応型液状シリコーン樹脂は、主剤となるシリコーンA剤と硬化剤が含まれるB剤との配合比が、55:45となるように配合した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の内壁に沿うように剥離処理されたフィルムを貼った中に押出成形してシリコーン成型体を成型した後、シリコーン成型体をオーブンにて60℃で4時間加熱してシリコーン硬化物とした。中空四角柱状の金型からシリコーン硬化物(熱伝導性成形体)を取り出した後に剥離処理されたフィルムを剥がして厚みが0.5mmとなるようにスライサーでシート状に切断し、鱗片状の窒化ホウ素が厚み方向に配向した成形体シートを得た。
[Comparative example]
A comparative example contains 36% by volume of a two-liquid addition reaction type liquid silicone, 20% by volume of spherical alumina particles having an average particle size of 15 μm, and scaly boron nitride having an average particle size of 15 μm and a hexagonal crystal shape. A silicone composition was prepared by mixing 23% by volume, 20% by volume of granular aluminum nitride having an average particle size of 1.5 μm, and 1% by volume of a coupling agent. The two-liquid addition reaction type liquid silicone resin was blended so that the compounding ratio of the silicone component A as the main component and the component B containing the curing agent was 55:45. The obtained silicone composition is extruded into a hollow square prism-shaped mold (50 mm x 50 mm), to which a release-treated film is pasted along the inner wall, to form a silicone molded body. was heated in an oven at 60° C. for 4 hours to obtain a cured silicone product. After removing the cured silicone product (thermally conductive molded product) from the hollow square prism-shaped mold, peel off the release-treated film and cut it into sheets with a slicer so that the thickness is 0.5 mm, and nitrate the scales. A compact sheet in which boron was oriented in the thickness direction was obtained.
 上述した実施例1~4及び比較例について、熱伝導率、熱伝導シート1の比重及びハンドリングを評価した。評価結果を表1に示す。なお、熱伝導率については、ASTM-D5470に準拠した熱抵抗測定装置を用いて、荷重1kgf/cm2をかけて熱伝導シート1の厚み方向及び面方向の実効熱伝導率(W/m・K)をそれぞれ測定した。ハンドリングについては、スライス装置で熱伝導性成形体6をシート状に切断して成形体シート7を形成するときに、形成された成形体シート7がその場で折れやゆがみがなく倒れる場合を良好(〇)、スライスされて形成された成形体シート7について、倒れるときに折れやゆがみがあって倒れる場合や位置ずれがある場合を不良(×)とした。 The thermal conductivity, the specific gravity of the thermal conductive sheet 1, and the handling were evaluated for Examples 1 to 4 and the comparative example described above. Table 1 shows the evaluation results. The thermal conductivity was measured using a thermal resistance measuring device conforming to ASTM-D5470, and a load of 1 kgf/cm2 was applied to the effective thermal conductivity (W/m·K ) were measured respectively. As for handling, when the formed body sheet 7 is formed by cutting the thermally conductive molded body 6 into a sheet with a slicing device, the formed body sheet 7 falls down on the spot without bending or distortion. (O), and when the molded sheet 7 formed by slicing was folded or distorted when it fell, it was judged as defective (x).
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、熱伝導性充填剤として炭素繊維が充填されていない比較例に対し、熱伝導性充填剤として、炭素繊維と比重が大きい無機物フィラーとが充填されている実施例1~4は、比較例より比重が大きくこしがあるため、ハンドリングの評価結果が「○」となり、良好な作業性を実現できた。 As shown in Table 1, in contrast to Comparative Examples in which carbon fiber is not filled as a thermally conductive filler, Examples 1 to 1 in which carbon fiber and an inorganic filler having a large specific gravity are filled as a thermally conductive filler. Since No. 4 has a higher specific gravity and is stiffer than the comparative example, the handling evaluation result was "Good", and good workability was realized.
 1 熱伝導シート、2 シート本体、2a 面、2b 面、3 第1の剥離フィルム、4 第2の剥離フィルム、5 樹脂被覆層、6 熱伝導性成形体、7 成形体シート、50 半導体装置、51 電子部品、52 ヒートスプレッダ、53 ヒートシンク 1 Thermal conductive sheet 2 Sheet main body 2a Surface 2b Surface 3 First release film 4 Second release film 5 Resin coating layer 6 Thermally conductive molded body 7 Molded body sheet 50 Semiconductor device 51 electronic component, 52 heat spreader, 53 heat sink

Claims (3)

  1.  高分子マトリックスと、異方性充填材と、1種以上の非異方性材料を含み、前記異方性充填材が厚さ方向に配向している熱伝導シートであって、
     表面がスライス面であり、少なくとも1種の前記非異方性材料の比重が5以上であり、前記熱伝導シートの比重が2.7以上であり、熱伝導率が4W/mK以上である
     熱伝導シート。
    A thermally conductive sheet comprising a polymer matrix, an anisotropic filler, and one or more non-anisotropic materials, wherein the anisotropic filler is oriented in the thickness direction,
    The surface is a sliced surface, the specific gravity of at least one non-anisotropic material is 5 or more, the specific gravity of the thermal conductive sheet is 2.7 or more, and the thermal conductivity is 4 W/mK or more. conductive sheet.
  2.  前記高分子マトリックスの未硬化成分からなる樹脂被覆層が前記熱伝導シートの表面に形成されている
     請求項1に記載の熱伝導シート。
    2. The thermally conductive sheet according to claim 1, wherein a resin coating layer comprising an uncured component of the polymer matrix is formed on the surface of the thermally conductive sheet.
  3.  前記異方性充填材の充填量が5.6体積%以上である請求項1又は請求項2に記載の熱伝導シート。 The thermally conductive sheet according to claim 1 or 2, wherein the anisotropic filler has a filling amount of 5.6% by volume or more.
PCT/JP2022/005790 2021-02-16 2022-02-15 Heat conductive sheet WO2022176823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021022348A JP2022124615A (en) 2021-02-16 2021-02-16 Heat conductive sheet
JP2021-022348 2021-02-16

Publications (1)

Publication Number Publication Date
WO2022176823A1 true WO2022176823A1 (en) 2022-08-25

Family

ID=82931724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005790 WO2022176823A1 (en) 2021-02-16 2022-02-15 Heat conductive sheet

Country Status (2)

Country Link
JP (1) JP2022124615A (en)
WO (1) WO2022176823A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175080A (en) * 2016-03-25 2017-09-28 デクセリアルズ株式会社 Electromagnetic wave absorbing heat conductive sheet, method of producing electromagnetic wave absorbing heat conductive sheet, and semiconductor device
JP2020004805A (en) * 2018-06-26 2020-01-09 デクセリアルズ株式会社 Electronic apparatus
JP2020017723A (en) * 2018-07-12 2020-01-30 デクセリアルズ株式会社 Pickup device, mounting device, pickup method, and mounting method
JP2020129628A (en) * 2019-02-09 2020-08-27 デクセリアルズ株式会社 Heat conductive sheet, packaging method of heat conductive sheet, and manufacturing method for electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175080A (en) * 2016-03-25 2017-09-28 デクセリアルズ株式会社 Electromagnetic wave absorbing heat conductive sheet, method of producing electromagnetic wave absorbing heat conductive sheet, and semiconductor device
JP2020004805A (en) * 2018-06-26 2020-01-09 デクセリアルズ株式会社 Electronic apparatus
JP2020017723A (en) * 2018-07-12 2020-01-30 デクセリアルズ株式会社 Pickup device, mounting device, pickup method, and mounting method
JP2020129628A (en) * 2019-02-09 2020-08-27 デクセリアルズ株式会社 Heat conductive sheet, packaging method of heat conductive sheet, and manufacturing method for electronic apparatus

Also Published As

Publication number Publication date
JP2022124615A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
JP6366627B2 (en) Electromagnetic wave absorbing heat conducting sheet, method for producing electromagnetic wave absorbing heat conducting sheet, and semiconductor device
WO2014208408A1 (en) Thermally conductive sheet, method for producing same, and semiconductor device
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
JP6739478B2 (en) Method for manufacturing heat conductive sheet
WO2010047278A1 (en) Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same
WO2020153346A1 (en) Method for producing thermally conductive sheet
JP7096723B2 (en) Method for manufacturing a heat conductive sheet
JP6807355B2 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
TWI714804B (en) Thermally conductive sheet and semiconductor device
JP6999019B2 (en) Thermally conductive sheet and its manufacturing method, mounting method of thermally conductive sheet
US20240120254A1 (en) Thermally-conductive sheet and electronic device
WO2022176823A1 (en) Heat conductive sheet
JP6862601B1 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
WO2020153348A1 (en) Thermally conductive sheet and method for producing thermally conductive sheet
JP2021050350A (en) Thermally conductive sheet, method for producing the same, and method for mounting thermally conductive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756141

Country of ref document: EP

Kind code of ref document: A1