WO2022176661A1 - Impact-absorbing member - Google Patents

Impact-absorbing member Download PDF

Info

Publication number
WO2022176661A1
WO2022176661A1 PCT/JP2022/004561 JP2022004561W WO2022176661A1 WO 2022176661 A1 WO2022176661 A1 WO 2022176661A1 JP 2022004561 W JP2022004561 W JP 2022004561W WO 2022176661 A1 WO2022176661 A1 WO 2022176661A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing member
inner beam
outer beam
impact
member according
Prior art date
Application number
PCT/JP2022/004561
Other languages
French (fr)
Japanese (ja)
Inventor
佳晴 淺田
穣 八木
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to DE112022001112.2T priority Critical patent/DE112022001112T5/en
Publication of WO2022176661A1 publication Critical patent/WO2022176661A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/124Vibration-dampers; Shock-absorbers using plastic deformation of members characterised by their special construction from fibre-reinforced plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/042Reinforcement elements
    • B60J5/0422Elongated type elements, e.g. beams, cables, belts or wires
    • B60J5/0438Elongated type elements, e.g. beams, cables, belts or wires characterised by the type of elongated elements
    • B60J5/0443Beams
    • B60J5/0444Beams characterised by a special cross section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/042Reinforcement elements
    • B60J5/0422Elongated type elements, e.g. beams, cables, belts or wires
    • B60J5/0438Elongated type elements, e.g. beams, cables, belts or wires characterised by the type of elongated elements
    • B60J5/0443Beams
    • B60J5/0447Beams formed of several elements arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns

Definitions

  • the present invention relates to a shock absorbing member having an outer beam and an inner beam.
  • Patent Literature 1 discloses a part in which a thermoplastic reinforcing member having a lower Young's modulus than the plastic material part and a high elongation at break is attached to the plastic material part. With this structure, the plastic material parts retain their rigidity during normal use, and when subjected to an impact, although the plastic material parts break, the reinforcing member does not break and maintains continuity between the parts.
  • Patent Document 2 describes a fiber-reinforced resin for protecting passengers from side collisions of automobiles. Since fiber-reinforced resin, which is difficult to deform plastically, is rapidly broken when deformed, by attaching a flexible tension-resistant member to the fiber-reinforced resin, the energy is dispersed via the tension-resistant member.
  • Patent Document 3 in order to improve the fuel efficiency and collision safety of automobiles, by filling the space between the outer panel and the reinforcement with a foam material, the impact load is applied from the load input point to the surrounding closed cross section. It is being considered to disperse it among members.
  • Patent Literature 4 describes a closed cross-section structural portion formed by an outer panel member and an inner panel member in order to improve the rigidity of the beltline portion of a vehicle door.
  • Patent Document 4 Because the invention described in Patent Document 4 uses metal, it is difficult to reduce the weight of the vehicle body. Furthermore, when fiber reinforced plastic is used for the inner beam, the height (length) is too high compared to the outer beam, so the rigidity is too high, the stress is increased, and the inner beam is likely to break.
  • an object of the present invention is to provide a shock absorbing member that achieves both a high reaction force and a high work load by using a ductile material that does not break when receiving an impact and by ensuring the shape rigidity of the ductile material. be.
  • a shock absorbing member comprising an outer beam and an inner beam,
  • the inner beam is fiber reinforced plastic
  • Ba ⁇ Bb (1) R1 ⁇ 0.1 ⁇ R2 (2) however, Ba: Breaking deflection of inner beam in 3-point bending deflection test
  • Bb Breaking deflection of outer beam in 3-point bending deflection test
  • R1 Peak value of reaction force in 3-point bending deflection test of shock absorbing member
  • R2 Impact absorbing member In the three-point bending deflection test, the reaction force when the deflection value is Ba ⁇ 2
  • 10. 10 The impact absorbing member according to any one of 1 to 9, wherein the inner beam and the outer beam each include a pair of side walls and a connecting wall connecting the side walls. 11.
  • the relationship between the angle ⁇ between the side wall of the inner beam and the connecting wall and the angle ⁇ between the side wall of the outer beam and the connecting wall is ⁇ .
  • continuous fibers contained in the inner beam are oriented at least in the longitudinal direction of the inner beam; 12, wherein the outer beam is a fiber-reinforced plastic B reinforced with continuous fibers, and the orientation angle of the continuous fibers contained in the outer beam is +10 degrees or more and +80 degrees or less with respect to the longitudinal direction of the outer beam.
  • the impact absorbing member according to 13 above, wherein the outer beam and the inner beam are compression-molded bodies.
  • 15. 12 The impact absorbing member according to any one of 1 to 11 above, wherein the inner beam is fiber-reinforced plastic A reinforced with discontinuous fibers. 16.
  • the impact absorbing member according to 15 above, wherein the outer beam is metal. 17. 17. The impact absorbing member according to any one of 1 to 16, wherein the impact absorbing member is a vehicle impact absorbing member that extends in the vehicle front-rear direction.
  • the relationship between the length L1 of the outer beam and the length L2 of the inner beam in the vehicle width direction is L1 ⁇ 0.5 ⁇ L2 ⁇ L1 ⁇ 2 18.
  • the impact absorbing member according to 17 above wherein 19.
  • a shock absorbing member comprising an outer beam and an inner beam,
  • the inner beam is fiber reinforced plastic A, the inner beam and the outer beam have an open cross-sectional shape, the outer beam covering at least a portion of the inner beam; Shock absorbing member.
  • 20. 20. The impact absorbing member according to 19 above, having a gap between the inner beam and the outer beam.
  • the impact-absorbing member of the present invention is lightweight, and (i) secures rigidity by increasing the initial reaction force when receiving an impact by destroying the inner beam, and (ii) has an outer beam having shape rigidity. By not breaking, it is possible to ensure ductility and rigidity when the deflection after impact is increased.
  • the schematic diagram which shows an example of the impact-absorbing member of this invention.
  • the graph which shows an example of displacement (Displacement) and reaction force (Reactionforce) at the time of carrying out the three-point bending deflection test of the impact-absorbing member.
  • the schematic diagram which shows an example of the conventional shock-absorbing member.
  • the continuous fibers are oriented in the longitudinal direction of the beam and in the direction of 90 degrees (0/90 deg) with respect to the longitudinal direction.
  • the graph which shows an example of a displacement (Displacement) and a reaction force (Reactionforce) at the time of carrying out the three-point bending deflection test of the conventional impact-absorbing member drawn in FIG.
  • FIG. 1 A schematic diagram showing the orientation direction of fibers contained in an outer beam (fiber-reinforced plastic B) reinforced with continuous fibers.
  • FIG. 1 A schematic diagram showing the orientation direction of continuous fibers contained in an inner beam (fiber-reinforced plastic A) reinforced with continuous fibers.
  • FIG. 1 A schematic diagram showing the length L1 of the outer beam when observed in the longitudinal direction of the outer beam.
  • the schematic diagram which shows the three-point bending deflection test of an outer beam. Drawing of the three-point bending deflection test of an inner beam. Drawing of the three-point bending deflection test of a shock-absorbing member.
  • FIG. 4 is a schematic diagram showing a gap between the inner beam and the outer beam
  • FIG. 5 is a schematic diagram showing the direction in which the open cross-sections of the inner beam and the outer beam open when an impact is applied to the impact absorbing member
  • FIG. 4 is a schematic diagram showing that the outer beam partially covers the inner beam.
  • the outer beam is preferably made of metal.
  • the inner beam is fiber-reinforced, and the fiber-reinforced plastic A contains resin and reinforcing fibers.
  • the fiber-reinforced plastic A is a molded body.
  • Resin The type of resin contained in the fiber-reinforced plastic A is not particularly limited, and thermosetting resins and thermoplastic resins are used.
  • 1.1 Thermoplastic resin As the resin contained in the fiber-reinforced plastic A, in the case of a thermoplastic resin, the type is not particularly limited, and a resin having a desired softening point or melting point can be appropriately selected and used. can.
  • the thermoplastic resin one having a softening point within the range of 180° C. to 350° C. is usually used, but it is not limited to this.
  • thermosetting resin When a thermosetting resin is used as the resin contained in the fiber-reinforced plastic A, it is preferably an unsaturated polyester-based resin, a vinyl ester-based resin, an epoxy-based resin, or a phenol-based resin. As the resin, one type may be used alone, or two or more types may be used in combination.
  • the continuous fibers contained in the fiber-reinforced plastic A are reinforcing fibers.
  • the reinforcing fibers are not particularly limited, but are preferably one or more reinforcing fibers selected from the group consisting of carbon fibers, glass fibers, aramid fibers, boron fibers, and basalt fibers. More preferably, the reinforcing fibers are glass fibers.
  • the average fiber diameter of the glass fibers is preferably 1 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m. When the average fiber diameter is large, the impregnation of the resin into the fibers becomes easy, and when the average fiber diameter is below the upper limit, moldability and workability become good.
  • the inner beam may be fiber-reinforced plastic A reinforced with continuous fibers. It is also preferable that the continuous fibers are contained in the matrix resin in the form of a sheet such as a woven or knitted fabric, a unidirectionally arranged sheet of strands, or a multiaxial fabric, or in the form of a non-woven fabric.
  • the multiaxial fabric generally refers to a sheet of fiber reinforcement bundles aligned in one direction and laminated at different angles (multiaxial fabric base material), polyamide yarn, polyester yarn, glass fiber It refers to a woven fabric in which a stitch thread such as a thread penetrates the laminate in the thickness direction and stitches back and forth between the front and back surfaces of the laminate along the surface direction.
  • the orientation direction of the continuous fibers contained in the fiber-reinforced plastic A is not particularly limited and may be oriented in multiple directions, but it is more preferable that the continuous fibers are uniaxially oriented or biaxially oriented. Oriented continuous fibers are more preferred. Uniaxially oriented continuous fibers mean that the fibers are oriented in only one direction and are not oriented in other directions. Biaxial orientation means that the fibers are oriented in two different directions within the plane of the fiber-reinforced plastic A.
  • the continuous fibers contained in the inner beam of the present invention are preferably oriented at least in the longitudinal direction of the inner beam, and are oriented in at least the two axial directions of the longitudinal direction of the inner beam and the lateral direction of the inner beam. and more preferred.
  • the longitudinal direction of the inner beam is, for example, the X-axis direction in FIG.
  • the center line of the beam is taken as the longitudinal direction when the plan view of the inner beam is drawn.
  • the plan view is drawn by observing the inner beam from the direction of impact.
  • the lateral direction of the inner beam is, for example, the Y-axis direction in FIG. 5, and is the direction in which the open cross-sectional shape (for example, a hat shape or a substantially U-shaped cross section) opens. If the inner beam is curved instead of straight as shown in Figure 5, when drawing a plan view of the inner beam, at the midpoint of the center line of the beam, the vertical Let the direction be the lateral direction.
  • the inner beam may be fiber reinforced plastic A reinforced with discontinuous fibers.
  • the weight average fiber length of the reinforcing fibers is preferably 1 mm or more and 100 mm or less.
  • the weight average fiber length is more preferably 1 mm to 70 mm, more preferably 1 mm to 50 mm.
  • discontinuous reinforcing fibers having different fiber lengths may be used together.
  • the discontinuous reinforcing fibers used in the present invention may have a single peak or multiple peaks in the weight-average fiber length distribution.
  • a sheet molding compound (sometimes called SMC) may be used. Due to its high formability, the sheet molding compound can be easily molded even into complex shapes. Sheet molding compounds have higher fluidity and formability than continuous fibers, and can easily form ribs and bosses.
  • the fiber-reinforced plastic B can be obtained based on random mats, fiber-reinforced composite materials, and the like.
  • the fiber volume ratio Vf of the continuous fibers contained in the fiber-reinforced plastic A is not particularly limited, but is preferably 10 to 60%, more preferably 30 to 60%, and even more preferably 40 to 60%.
  • the fiber volume ratio (Vf unit: volume %) is the ratio of the volume of the reinforcing fiber to the total volume including not only the reinforcing fiber and the matrix resin but also other additives.
  • the fiber-reinforced plastic A contains various fibrous or non-fibrous organic or inorganic fiber fillers, inorganic fillers, flame retardants, UV-resistant agents, stabilizers, Additives such as release agents, pigments, softeners, plasticizers and surfactants may be included. Moreover, when using a thermosetting resin, a thickener, a curing agent, a polymerization initiator, a polymerization inhibitor, etc. may be used. As the additive, one type may be used alone, or two or more types may be used in combination. In addition, for example, damping rubber, elastomer, or similar material may be added as a role of absorbing impact.
  • the outer beam may be metal.
  • the metal may be, for example, aluminum, aluminum alloys, iron, iron alloys, titanium, titanium alloys, magnesium, magnesium alloys, stainless steel, or combinations thereof.
  • the outer beam is made of fiber-reinforced plastic B reinforced with reinforcing fibers, and the fiber-reinforced plastic B contains resin and reinforcing fibers.
  • the fiber-reinforced plastic B is a molded body.
  • Resin The type of resin contained in the fiber-reinforced plastic B is not particularly limited, and thermosetting resins and thermoplastic resins are used.
  • 1.1 Thermoplastic resin When a thermoplastic resin is used as the resin contained in the fiber-reinforced plastic B, the type thereof is not particularly limited, and one having a desired softening point or melting point can be appropriately selected and used. can be done.
  • the thermoplastic resin one having a softening point within the range of 180° C. to 350° C. is usually used, but it is not limited to this.
  • thermosetting resin When a thermosetting resin is used as the resin contained in the fiber-reinforced plastic B, it is preferably an unsaturated polyester-based resin, a vinyl ester-based resin, an epoxy-based resin, or a phenol-based resin. As the resin, one type may be used alone, or two or more types may be used in combination.
  • the fiber-reinforced plastic B contains continuous fibers, they are reinforcing fibers.
  • the reinforcing fibers are not particularly limited, but are preferably one or more reinforcing fibers selected from the group consisting of carbon fibers, glass fibers, aramid fibers, boron fibers, and basalt fibers. More preferably, the reinforcing fibers are glass fibers.
  • the average fiber diameter of the glass fibers is preferably 1 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m. When the average fiber diameter is large, the impregnation of the resin into the fibers becomes easy, and when the average fiber diameter is below the upper limit, moldability and workability become good.
  • the continuous fibers are contained in the matrix resin in the form of sheets such as woven or knitted fabrics, unidirectionally arranged sheets of strands and multiaxial fabrics, or in the form of non-woven fabrics.
  • the multiaxial fabric generally refers to a sheet of fiber reinforcement bundles aligned in one direction and laminated at different angles (multiaxial fabric base material), polyamide yarn, polyester yarn, glass fiber It refers to a woven fabric in which a stitch thread such as a thread penetrates the laminate in the thickness direction and stitches back and forth between the front and back surfaces of the laminate along the surface direction.
  • the orientation direction of the continuous fibers contained in the fiber-reinforced plastic B is not particularly limited and may be oriented in multiple directions, but it is more preferable that the continuous fibers are uniaxially oriented or biaxially oriented, and biaxially oriented. Oriented continuous fibers are more preferred. Uniaxially oriented continuous fibers mean that the fibers are oriented in only one direction and are not oriented in other directions. Biaxial orientation means that the fibers are oriented in two different directions within the plane of the fiber-reinforced plastic A.
  • the orientation angle of the continuous fibers of the outer beam is +10 with respect to the longitudinal direction of the outer beam. degree or more and +80 degree or less.
  • the orientation angle of the continuous fibers of the outer beam is indicated by ⁇ in FIG. 5, for example.
  • the orientation angle is preferably +10 degrees or more and +45 degrees or less, more preferably +15 degrees or more and +45 degrees or less, and still more preferably +20 degrees or more and +45 degrees or less.
  • the continuous fibers are oriented in two axial directions, and when the plan view of the outer beam is drawn, the continuous fibers are plane-symmetrical with respect to the center line of the outer beam. is preferably biaxially oriented (for example, FIG. 5(a)). At this time, each fiber is preferably oriented at +10 degrees or more and +80 degrees or less with respect to the longitudinal direction of the outer beam.
  • the longitudinal direction of the outer beam is, for example, the X-axis direction in FIG.
  • the center line of the beam is taken as the longitudinal direction when the plan view of the outer beam is drawn.
  • the plan view is drawn by observing the outer beam from the direction of impact.
  • the lateral direction of the outer beam is, for example, the Y-axis direction in FIG. 5, and is the direction in which the open cross-sectional shape (for example, a hat shape or a substantially U-shaped cross section) opens. If the outer beam is not a straight line but a curved line as shown in Fig. 5, when drawing a plan view of the outer beam, at the midpoint of the center line of the beam, Let the vertical direction be the short direction.
  • the reinforcing fibers contained in the fiber-reinforced plastic B may contain discontinuous fibers.
  • the weight average fiber length of the reinforcing fibers is preferably 1 mm or more and 100 mm or less.
  • the weight average fiber length is more preferably 1 mm to 70 mm, more preferably 1 mm to 50 mm.
  • discontinuous reinforcing fibers having different fiber lengths may be used together.
  • the discontinuous reinforcing fibers used in the present invention may have a single peak or multiple peaks in the weight-average fiber length distribution.
  • a sheet molding compound (sometimes called SMC) may be used. Due to its high formability, the sheet molding compound can be easily molded even into complex shapes. Sheet molding compounds have higher fluidity and formability than continuous fibers, and can easily form ribs and bosses.
  • the resin is a thermoplastic resin, for example, a papermaking sheet made of discontinuous fibers described in US WO2007/097436 pamphlet, US Pat. No. 8829103, US Pat.
  • Fiber-reinforced plastic B can be obtained based on random mats, fiber-reinforced composite materials, etc. described in WO2012/105080 pamphlet and WO2013/031860 pamphlet.
  • the fiber volume ratio Vf of the continuous fibers contained in the fiber-reinforced plastic B is not particularly limited, but is preferably 10 to 60%, more preferably 30 to 60%, and even more preferably 40 to 60%.
  • the fiber volume ratio (Vf unit: volume %) is the ratio of the volume of the reinforcing fiber to the total volume including not only the reinforcing fiber and the matrix resin but also other additives.
  • the fiber-reinforced plastic B contains various fibrous or non-fibrous fillers of organic fibers or inorganic fibers, inorganic fillers, flame retardants, UV-resistant agents, stabilizers, Additives such as release agents, pigments, softeners, plasticizers and surfactants may be included.
  • a thermosetting resin it may contain a thickener, a curing agent, a polymerization initiator, a polymerization inhibitor, and the like.
  • the additive one type may be used alone, or two or more types may be used in combination.
  • damping rubber, elastomer, or similar material may be added as a role of absorbing impact.
  • Fiber-reinforced plastic A and fiber-reinforced plastic B may be used. Others may be fibers, composites, steel, aluminum, and combinations thereof.
  • the outer beam and the inner beam of the present invention serve as impact absorbing members by satisfying the following formulas (1) and (2).
  • Ba ⁇ Bb (1) R1 ⁇ 0.1 ⁇ R2 (2) however, Ba: Breaking deflection of inner beam in 3-point bending deflection test
  • Bb Breaking deflection of outer beam in 3-point bending deflection test
  • R1 Peak value of reaction force in 3-point bending deflection test of shock absorbing member
  • R2 Impact absorbing member It is the reaction force when the deflection value is Ba ⁇ 2 in the three-point bending deflection test.
  • Ba ⁇ Bb Ba represents the breaking deflection of the inner beam in the three-point bending deflection test
  • Bb represents the breaking deflection of the outer beam in the three-point bending deflection test.
  • Breaking deflection is the amount of deflection at break.
  • a deflection value means a value of the amount of deflection.
  • a deflection test means a test for measuring the amount of deflection.
  • the inner beam develops a high initial reaction force (for example, 201 in FIG. 2) and has the function of absorbing the impact at the initial stage of collision. If Ba ⁇ Bb, the inner beam breaks before the outer beam.
  • the inner beam breaks due to energy absorption at the initial stage of collision, but the outer beam absorbs the impact after the breaking of the inner beam while being accompanied by deformation (203 in FIG. 2).
  • the safety space for passengers can be secured without breaking the outer beam.
  • the breaking point of the inner beam is indicated at 202 in FIG. 2, for example.
  • the horizontal axis indicates the displacement in the bending deflection test, and the deflection value is preferably in mm as shown in FIG.
  • the inner beam absorbs impact and is destroyed, but the outer beam prioritizes securing a safe space for passengers, and unlike the inner beam, it is designed so that it does not deform greatly in the event of a collision.
  • the impact-absorbing member can also be called a cushioning member that mitigates impact. Ba ⁇ 1.1 ⁇ Bb is more preferable, Ba ⁇ 1.3 ⁇ Bb is still more preferable, and Ba ⁇ 1.4 ⁇ Bb is even more preferable.
  • R1 ⁇ 0.1 ⁇ R2 By satisfying R1 ⁇ 0.1 ⁇ R2, it means that the outer beam is not broken even if the deflection value reaches Ba ⁇ 2 after the inner beam is broken in the three-point bending deflection test of the shock absorbing member. This means that the member maintains a high reaction force.
  • the value of Ba is 40 mm
  • the value of the reaction force R2 of the impact absorbing member is measured when the deflection value is 80 mm (Ba ⁇ 2) in the three-point bending deflection test of the impact absorbing member.
  • R1 ⁇ 0.2 ⁇ R2 is more preferable
  • R1 ⁇ 0.3 ⁇ R2 is even more preferable
  • R1 ⁇ 0.4 ⁇ R2 is even more preferable.
  • the units of the reaction forces R1 and R2 are preferably [N].
  • the breaking deflection Ba in the three-point bending deflection test of the inner beam is preferably less than 100 mm. With an inner beam having a breaking deflection of 100 mm or less, it becomes easy to obtain a high initial reaction force. There is a trade-off relationship between "height of initial reaction force" and "breaking deflection of 100 mm or more". Parts with increased initial reaction force become rigid and unable to extend, and tend to generate local stress and break.
  • the breaking deflection Ba in the three-point bending deflection test of the inner beam is more preferably less than 100 mm, still more preferably less than 50 mm, and even more preferably 40 mm or less. If there is a space (for example, 1101 in FIG. 11) between the inner beam and the outer beam, when receiving an impact, the deflection of the shock absorbing member reaches 100 mm and the deflection of the inner beam reaches 100 mm. , a spatial deviation occurs.
  • JP-A-2019-178525 can be referred to.
  • Breaking deflection Ba means the deflection amount Ba at the time of breaking.
  • Breaking deflection Bb means the deflection amount Bb at the time of breaking.
  • a test piece having a longitudinal length of 600 mm or more, a width of 10 mm or more, and a thickness of 0.1 mm or more is prepared for the evaluation test. Next, while the test piece is supported from below at a distance of 500 mm in the longitudinal direction, a load is applied from above at the center of both support points until the test piece breaks. Then, the downward deflection and the reaction force are measured with reference to the state before the load is applied. Specifically, the deflection and reaction force of the test piece are measured as shown in FIGS.
  • test pieces (7, 8, 9) are supported from below by a pair of supports (702 and 703, 802 and 803, 902 and 903).
  • a pair of supports are horizontally spaced apart with an interval (701, 801, 901) of 500 mm, and the test piece is mounted so as to span between the upper ends of the pair of supports.
  • the longitudinal direction of the supported specimen and the direction in which the pair of supports are separated are the same.
  • a load is applied to the test piece from above with an indenter (704, 804, 904) at the center between the support points of the test piece by the pair of supports.
  • the direction in which the load F is applied is downward (the direction of the arrows shown in FIGS. 7 to 9).
  • the displacement gradually increases from 0 mm until the test piece breaks, for example, the displacement is increased at a rate of 2 mm/min.
  • the test piece to which the displacement is applied in this way bends so as to be convex downward.
  • the reaction force at the time of breaking becomes the breaking strength of the test piece.
  • the displacement at that time is the deflection (Ba or Bb).
  • the inner beam preferably has an open cross-sectional shape, and more preferably has an open cross-sectional shape that opens on the side opposite to the side receiving the impact.
  • the open cross-sectional shape is a shape in which the cross section is open, and includes a hat shape, a U shape, a V shape, and the like. .
  • the open cross-sectional shape of the inner beam is preferably a substantially U-shaped cross section.
  • the impact side is the outer side of the outer beam (Z side in FIG. 1). It is preferable that the open cross-section of the inner beam is harder to open than the outer beam. In other words, it is preferable that the speed at which the open cross-section of the outer beam opens is higher than the speed at which the open cross-section of the inner beam opens when receiving an impact.
  • the outer beam preferably has an open cross-sectional shape, and more preferably has an open cross-sectional shape that opens on the side opposite to the impact side.
  • the open cross-sectional shape is a shape in which the cross section is open, and includes a hat shape, a U shape, a V shape, and the like. . It is preferable that the open step surface shape of the outer beam is a hat shape.
  • the impact side is the outer side of the outer beam (Z side in FIG. 1). If the outer beam has a hat-shaped cross-section and the inner beam has a substantially U-shaped cross-section, the open cross-section (hat) of the outer beam will open when receiving an impact, and it will easily work as a ductile material.
  • FIG. 13 is a longitudinal cross-sectional view of the impact absorbing member, in which the outer beam partially covers the inner beam. More preferably, the inner beam is completely covered by the outer beam, as depicted in FIG. Complete coverage improves the efficiency of space utilization in vehicle design, for example, when the shock absorbing member is mounted on a vehicle.
  • a part of the outer beam is only required to be outside the inner beam, and may even be inside the inner beam.
  • the inner beam may be enclosed as shown in FIG. 14, and when the impact absorbing member is arranged on the door, the outer beam may extend to the passenger side.
  • the outer beam does not surround the inner beam.
  • the inner beam and the outer beam preferably have a pair of side walls and a connecting wall connecting the side walls.
  • Side walls of the inner beam are exemplified by 1004 in FIG. 10
  • connecting walls are exemplified by 1005 in FIG.
  • Side walls of the outer beam are exemplified by 1001 in FIG. 10
  • connecting walls are exemplified by 1002 in FIG.
  • the connection walls drawn at 1002 and 1005 in FIG. 10 are sometimes called the top surface.
  • Reference numerals 1003 and 1006 in FIG. 10 may be called an outer beam flange and an inner beam flange, respectively.
  • the relationship between the angle ⁇ formed between the side wall of the inner beam and the connecting wall and the angle ⁇ formed between the side wall of the outer beam and the connecting wall satisfies ⁇ . is preferred.
  • the outer beams tend to open in the direction of the arrow in FIG. 12 when receiving an impact.
  • it is easy to design the breaking deflection Bb in the three-point bending deflection test of the outer beam to be larger than the breaking deflection Ba in the three-point bending deflection test of the inner beam.
  • the inner beam can be easily destroyed, and the initial reaction force of the impact absorbing member can be easily increased.
  • the speed at which the open cross-section of the outer beam opens is higher than the speed at which the open cross-section of the inner beam opens when receiving an impact.
  • the top surface of the inner beam and the outer beam In order to increase the speed at which the open cross-section of the outer beam opens faster than the speed at which the open cross-section of the inner beam opens, the top surface of the inner beam and the outer It is preferable that the top surface of the beam is not joined. Similarly, it is preferable that the flange portion of the inner beam and the flange portion of the outer beam are not joined. Since the flange portion of the inner beam and the flange portion of the outer beam are not joined together, each can independently open the open cross-section when receiving an impact. In other words, the outer beam can open the cleft when impacted without interference from the inner beam.
  • the open cross section means that the inner beam and the outer beam are opened in the direction of the arrow in FIG. 12 .
  • the number of assembly man-hours can be reduced.
  • is preferably over 90 degrees, more preferably 91 degrees or more.
  • the fiber-reinforced plastic A can be produced by compression molding, which facilitates the production of the inner beam.
  • the angle ⁇ is preferably 110 degrees or more, more preferably 120 degrees or more, and even more preferably 130 degrees or more. If the angle ⁇ is 120 degrees or more, the open cross section (hat) opens when receiving an impact, and the material easily works as a ductile material.
  • the connecting wall of the inner beam and the connecting wall of the outer beam may or may not be in contact, and may have a gap as indicated by 1101 in FIG. When there is a gap as indicated by 1101 in FIG. 11, the connecting wall of the inner beam and the connecting wall of the outer beam are not in contact. Furthermore, it is preferable that the outer beam is not fitted to the inner beam. Since the outer beam is not fitted to the inner beam, the outer beam is easily deformed, resulting in an effect of improving ductility.
  • having a gap between the inner beam and the outer beam as shown in 1101 in FIG. 11 makes it easier for the outer beam to open in the direction of the arrow in FIG.
  • the ends of the outer beam and the inner beam should be joined to the door.
  • the fastening holes indicated by 1501 in FIGS. 15(a) and 15(b) may be superimposed and fastened using the fastening holes as illustrated in FIG. 15(e).
  • the fiber-reinforced plastic A is preferably a compression-molded body.
  • the outer beam is fiber-reinforced plastic B, it is preferably a compression-molded body.
  • a compression molded body refers to a molded body manufactured by compression molding (also called press molding). Each compression-molded body is preferably integrally molded. Integral molding means that it is continuously molded without joints and is not molded by joining separate members. . By such integral molding, an outer beam or an inner beam is produced by one-time molding.
  • thermoplastic resin When using compression molding (press molding), molding methods such as hot press molding and cold press molding can be used.
  • press molding using a cold press is particularly preferred.
  • a composite material heated to a first predetermined temperature is put into a mold set to a second predetermined temperature, and then pressurized and cooled.
  • the thermoplastic resin is crystalline, the first predetermined temperature is above the melting point and the second predetermined temperature is below the melting point.
  • the thermoplastic resin is amorphous, the first predetermined temperature is above the glass transition temperature and the second predetermined temperature is below the glass transition temperature.
  • composite material refers to a material that is molded to produce a molded body such as fiber-reinforced plastic A or fiber-reinforced plastic B.
  • a press molding method is used. That is, a mold that can be separated from the top and bottom having the desired molded product shape is prepared, a predetermined amount of SMC containing reinforcing fibers and resin is put into the mold, heated and pressurized, and then the mold is opened to obtain the desired molded product. is a method of extracting
  • the molding temperature and molding pressure can be selected according to the type of resin contained in the SMC, the shape of the desired molded product, and the like.
  • the impact absorbing member is preferably a vehicle impact absorbing member that extends in the longitudinal direction of the vehicle, and is more preferably attached to the door of the vehicle.
  • the side that receives the shock is the outside of the door.
  • the side opposite to the side receiving the impact means toward the interior of the vehicle. More specifically, the impact is applied from the z-axis direction in FIG.
  • the shock absorbing member of the present invention When the shock absorbing member of the present invention is used in a vehicle, the relationship between the length L1 of the outer beam and the length L2 of the inner beam in the vehicle width direction is L1 ⁇ 0.5 ⁇ L2 ⁇ L1 ⁇ 2. Preferably.
  • a more preferable lower limit is L1 ⁇ 0.7 ⁇ L2, a still more preferable lower limit is L1 ⁇ 0.9 ⁇ L2, and an even more preferable lower limit is L1 ⁇ 1.0 ⁇ L2.
  • a more preferable upper limit is L2 ⁇ L1 ⁇ 1.8, a still more preferable upper limit is L2 ⁇ L1 ⁇ 1.6, and an even more preferable upper limit is L2 ⁇ L1 ⁇ 1.5.
  • Inner Beam and Outer Beam 2.1 Inner Beam
  • the composite material (unidirectional tape) of EcoPaXX (registered trademark) UDea PA410 CF60 manufactured by DSM was cut, laminated with nine sheets, and press-molded to form an inner beam ( A fiber-reinforced plastic A) was created.
  • the fiber orientation angles of the unidirectional tapes were laminated as shown in Table 1.
  • the orientation angle in Table 1 is the orientation angle of the continuous fibers with respect to the longitudinal direction when the inner beam is formed.
  • the continuous fibers of the outer beam are oriented in two axial directions, and are symmetrically oriented in the two axial directions with respect to the center line of the outer beam drawn in the longitudinal direction of the outer beam.
  • FIG. 16 shows the dimensions of the outer beam and inner beam used in the impact absorption test.
  • the longitudinal length 1605 of the inner beam was 1000 mm, the top width 1606 was 30 mm, the flange width 1607 was 10 mm, and the standing surface height 1608 was 25 mm.
  • the thickness was uniform at 1.8 mm.
  • the thickness of the composite material (unidirectional tape) is 0.25 mm, but when molded, the resin flows and becomes thinner.
  • the longitudinal length 1601 is 1000 mm
  • the top width 1602 is 50 mm
  • the flange width 1603 is 10 mm
  • the standing surface height 1604 is 25 mm
  • the length in the short direction top width + two flange widths + The opening of the hat
  • the thickness was set to 100 mm.
  • the thickness was set to a uniform thickness of 4.4 mm.
  • the thickness of the composite material (unidirectional tape) is 0.25 mm, but when molded, the resin flows and becomes thinner.
  • the impact absorbing member has the shape illustrated in FIG. 1, in which an outer beam 101 with a hat-shaped cross section covers an inner beam 102 with a substantially U-shaped cross section. It is the top surface of the outer beam in FIG. 1 that receives the impact, and the open cross-sections of the inner beam and the outer beam are open on the side opposite to the side that receives the impact.
  • Three-Point Bending Deflection Test of Inner Beam The breaking deflection Ba in the three-point bending deflection test of the inner beam was 40 mm.
  • Three-Point Bending Deflection Test of Outer Beam The breaking deflection Bb in the three-point bending deflection test of the outer beam was 155 mm.
  • 3-point bending deflection test of shock absorbing member In the 3-point bending deflection test of the shock absorbing member, the peak value R1 of the reaction force is 21 kN. ), the reaction force R2 at a deflection of 80 mm was 8.5 kN. Results are shown in FIG.
  • the deflection value at which the inner beam of the shock absorbing member of FIG. 2 is destroyed is 35 mm, which is smaller than the value of Ba (40 mm). This is because the inner beam was covered with the outer beam, and stress was concentrated in the central portion of the inner beam.
  • the impact absorbing member of the present invention can be used, for example, as a vehicle impact absorbing member extending in the longitudinal direction of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vibration Dampers (AREA)
  • Vibration Prevention Devices (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Provided is an impact-absorbing member provided with an outer beam and an inner beam, wherein the inner beam is a fiber-reinforced plastic A and the impact-absorbing member achieves both high reaction force and work load by an impact-absorbing member that satisfies formulas (1) and (2) by using a ductile material that is not destroyed when impacted and ensuring the shape rigidity of the ductile material. Ba < Bb (1) R1 × 0.1 < R2 (2) Where, Ba: fracture deflection in a three-point bending deflection test of the inner beam, Bb: fracture deflection in a three-point bending deflection test of the outer beam, R1: peak value of reaction force in a three-point bending deflection test of the impact-absorbing member, R2: reaction force when the deflection value reaches Ba × 2 in a three-point bending deflection test of the impact-absorbing member

Description

衝撃吸収部材shock absorbing material
 本発明は、アウタービームとインナービームとを備えた衝撃吸収部材に関する。 The present invention relates to a shock absorbing member having an outer beam and an inner beam.
 自動車、輸送、航空宇宙、および物流ベースの産業における軽量化は、地上および航空輸送の両方でより燃料効率の高い車両を作るためにより重要となっている。特に、強化繊維と樹脂を含んだ材料は、機械物性に優れており、自動車等の構造部材として注目されている。 Weight reduction in automotive, transportation, aerospace, and logistics-based industries is becoming more important to create more fuel-efficient vehicles for both ground and air transportation. In particular, materials containing reinforcing fibers and resins have excellent mechanical properties and are attracting attention as structural members for automobiles and the like.
 特許文献1には、プラスチック材料部品に、該プラスチック材料部品のヤング率よりも低く、かつ破断時の伸び率が高い熱可塑性プラスチックの補強部材を取り付けた部品が開示されている。この構造により、通常使用時にはプラスチック材料部品が剛性を保持し、衝撃を受けた場合には、プラスチック材料部品は破断するものの補強部材は破断せずに部品間の連続性を保持している。 Patent Literature 1 discloses a part in which a thermoplastic reinforcing member having a lower Young's modulus than the plastic material part and a high elongation at break is attached to the plastic material part. With this structure, the plastic material parts retain their rigidity during normal use, and when subjected to an impact, although the plastic material parts break, the reinforcing member does not break and maintains continuity between the parts.
 特許文献2には、自動車の側面衝突から乗員を保護するための繊維強化樹脂が記載されている。塑性変形しにくい繊維強化樹脂は、変形すると急激に破断するため、可撓性を有する耐引張部材を繊維強化樹脂に取り付けることで、該耐引張部材を介してエネルギーの分散が図っている。 Patent Document 2 describes a fiber-reinforced resin for protecting passengers from side collisions of automobiles. Since fiber-reinforced resin, which is difficult to deform plastically, is rapidly broken when deformed, by attaching a flexible tension-resistant member to the fiber-reinforced resin, the energy is dispersed via the tension-resistant member.
 特許文献3には、自動車の燃費性能と衝突安全性を向上させるために、アウタパネルとレインフォースメントとの間を、発泡材で充填させることによって、衝撃荷重を荷重入力点からその周囲の閉断面部材に分散させることが検討されている。 In Patent Document 3, in order to improve the fuel efficiency and collision safety of automobiles, by filling the space between the outer panel and the reinforcement with a foam material, the impact load is applied from the load input point to the surrounding closed cross section. It is being considered to disperse it among members.
 特許文献4には、車両用ドアのベルトライン部の剛性を向上させるために、アウタパネル部材とインナパネル部材とで形成された閉断面構造部が記載されている。 Patent Literature 4 describes a closed cross-section structural portion formed by an outer panel member and an inner panel member in order to improve the rigidity of the beltline portion of a vehicle door.
日本国特表2019-518657号公報Japanese special table 2019-518657 日本国実公平6-32415号公報Japanese Patent Publication No. 6-32415 日本国特開2001-088740号公報Japanese Patent Application Laid-Open No. 2001-088740 日本国特開2015-147473号公報Japanese Patent Application Laid-Open No. 2015-147473
 しかしながら特許文献1、2に記載の構造では、プラスチック材料部品や繊維強化樹脂が破断した後に、一定の反力を得ることが困難である。これは、破断後に延性を担保する材料が平板形状であるため、破壊後の形状剛性が低いことが原因である。 However, with the structures described in Patent Documents 1 and 2, it is difficult to obtain a constant reaction force after the plastic material part or the fiber reinforced resin breaks. This is because the material that ensures ductility after fracture has a flat plate shape, so the shape rigidity after fracture is low.
 特許文献3に記載の構造では、衝撃を受けたときに延性を確保するのが困難である。発泡材を混ぜ合わせて反力は向上するが、延性が不足しているため、曲げ撓み距離が短すぎる。 With the structure described in Patent Document 3, it is difficult to ensure ductility when receiving an impact. Mixing foam material improves the reaction force, but the flexural deflection distance is too short due to lack of ductility.
 特許文献4に記載の発明は、金属を用いているため、車体の軽量化が困難である。更に、インナービームに繊維強化プラスチックを用いた場合には、アウタービームに比べて高さ(長さ)が高すぎるため、剛性が高すぎて応力が大きくなり、破断しやすい。 Because the invention described in Patent Document 4 uses metal, it is difficult to reduce the weight of the vehicle body. Furthermore, when fiber reinforced plastic is used for the inner beam, the height (length) is too high compared to the outer beam, so the rigidity is too high, the stress is increased, and the inner beam is likely to break.
 そこで本発明の目的は、衝撃を受けた場合に破壊されない延性材料を用いるとともに、該延性材料の形状剛性を確保することで、高い反力と仕事量を両立する衝撃吸収部材を提供することにある。 Accordingly, an object of the present invention is to provide a shock absorbing member that achieves both a high reaction force and a high work load by using a ductile material that does not break when receiving an impact and by ensuring the shape rigidity of the ductile material. be.
 上記課題を解決するために、本発明は以下の手段を提供する。
1.アウタービームとインナービームとを備えた衝撃吸収部材であって、
 前記インナービームは繊維強化プラスチックAであり、
 下記式(1)及び(2)を満たす衝撃吸収部材。
 Ba<Bb        (1)
 R1×0.1<R2    (2)
ただし、
 Ba:インナービームの3点曲げ撓み試験における破壊撓み
 Bb:アウタービームの3点曲げ撓み試験における破壊撓み
 R1:衝撃吸収部材の3点曲げ撓み試験における、反力のピーク値
 R2:衝撃吸収部材の3点曲げ撓み試験において、撓み値がBa×2となるときの反力
In order to solve the above problems, the present invention provides the following means.
1. A shock absorbing member comprising an outer beam and an inner beam,
The inner beam is fiber reinforced plastic A,
A shock absorbing member that satisfies the following formulas (1) and (2).
Ba<Bb (1)
R1×0.1<R2 (2)
however,
Ba: Breaking deflection of inner beam in 3-point bending deflection test Bb: Breaking deflection of outer beam in 3-point bending deflection test R1: Peak value of reaction force in 3-point bending deflection test of shock absorbing member R2: Impact absorbing member In the three-point bending deflection test, the reaction force when the deflection value is Ba × 2
2.前記Baは100mm未満である、前記1に記載の衝撃吸収部材。
3.前記インナービームは開断面形状を備える、前記1又は2のいずれかに記載の衝撃吸収部材。
4.前記インナービームは衝撃を受ける側とは反対側に開口する開断面形状を備える、前記3に記載の衝撃吸収部材。
5.前記アウタービームは開断面形状を備え、前記アウタービームは前記インナービームの少なくとも一部を覆っている前記3又は4のいずれかに記載の衝撃吸収部材。
6.前記アウタービームは衝撃を受ける側とは反対側に開口する開断面形状を備える、前記5に記載の衝撃吸収部材。
7.衝撃を受けたとき、前記インナービームの開断面が開く速度よりも、前記アウタービームの開断面が開く速度の方が大きい、前記6に記載の衝撃吸収部材。
8.前記インナービームと前記アウタービームとの間に、隙間を有する、前記1乃至7のいずれかに記載の衝撃吸収部材。
9.前記アウタービームは断面ハット形状であって、及び前記インナービームは断面略コ字状である、前記5乃至8のいずれかに記載の衝撃吸収部材。
10.前記インナービーム、及び前記アウタービームは、一対の側壁と、当該側壁を連結する連結壁を備えた、前記1乃至9のいずれかに記載の衝撃吸収部材。
11.衝撃吸収部材を長手方向に向けて断面観察したとき、前記インナービームの側壁と連結壁とのなす角αと、前記アウタービームの側壁と連結壁とのなす角βとの関係が、α<βを満たす、前記10に記載の衝撃吸収部材。
12.前記インナービームは連続繊維で強化された繊維強化プラスチックAである、前記1乃至11のいずれかに記載の衝撃吸収部材。
2. 2. The shock absorbing member according to 1 above, wherein the Ba is less than 100 mm.
3. 3. The impact absorbing member according to any one of 1 and 2 above, wherein the inner beam has an open cross-sectional shape.
4. 4. The impact absorbing member according to 3 above, wherein the inner beam has an open cross-sectional shape that opens on the side opposite to the side receiving the impact.
5. 5. The impact absorbing member according to any one of 3 and 4 above, wherein the outer beam has an open cross-sectional shape, and the outer beam covers at least part of the inner beam.
6. 6. The impact absorbing member according to 5 above, wherein the outer beam has an open cross-sectional shape that opens on the side opposite to the side receiving the impact.
7. 7. The shock-absorbing member according to 6 above, wherein the speed at which the open cross section of the outer beam opens is higher than the speed at which the open cross section of the inner beam opens when receiving an impact.
8. 8. The impact absorbing member according to any one of 1 to 7, wherein a gap is provided between the inner beam and the outer beam.
9. 9. The impact absorbing member according to any one of 5 to 8, wherein the outer beam has a hat-shaped cross section, and the inner beam has a substantially U-shaped cross section.
10. 10. The impact absorbing member according to any one of 1 to 9, wherein the inner beam and the outer beam each include a pair of side walls and a connecting wall connecting the side walls.
11. When observing the cross-section of the shock absorbing member in the longitudinal direction, the relationship between the angle α between the side wall of the inner beam and the connecting wall and the angle β between the side wall of the outer beam and the connecting wall is α<β. 11. The shock absorbing member according to 10 above, which satisfies
12. 12. The impact absorbing member according to any one of 1 to 11 above, wherein the inner beam is fiber-reinforced plastic A reinforced with continuous fibers.
13.前記インナービームに含まれる連続繊維は少なくともインナービームの長手方向に配向し、
 前記アウタービームは連続繊維で補強された繊維強化プラスチックBであって、アウタービームの長手方向に対して、アウタービームに含まれる連続繊維の配向角度が+10度以上+80度以下である、前記12に記載の衝撃吸収部材。
14.前記アウタービーム及び前記インナービームは圧縮成形体である、前記13に記載の衝撃吸収部材。
15.前記インナービームは不連続繊維で強化された繊維強化プラスチックAである、前記1乃至11のいずれかに記載の衝撃吸収部材。
16.前記アウタービームは金属である、前記15に記載の衝撃吸収部材。
17.前記衝撃吸収部材は、車両前後方向に延在する車両用の衝撃吸収部材である、前記1乃至16のいずれかに記載の衝撃吸収部材。
13. continuous fibers contained in the inner beam are oriented at least in the longitudinal direction of the inner beam;
12, wherein the outer beam is a fiber-reinforced plastic B reinforced with continuous fibers, and the orientation angle of the continuous fibers contained in the outer beam is +10 degrees or more and +80 degrees or less with respect to the longitudinal direction of the outer beam. A shock absorbing member as described.
14. 14. The impact absorbing member according to 13 above, wherein the outer beam and the inner beam are compression-molded bodies.
15. 12. The impact absorbing member according to any one of 1 to 11 above, wherein the inner beam is fiber-reinforced plastic A reinforced with discontinuous fibers.
16. 16. The impact absorbing member according to 15 above, wherein the outer beam is metal.
17. 17. The impact absorbing member according to any one of 1 to 16, wherein the impact absorbing member is a vehicle impact absorbing member that extends in the vehicle front-rear direction.
18.車幅方向における、前記アウタービームの長さL1と、前記インナービームの長さL2との関係が、
 L1×0.5<L2<L1×2
である、前記17に記載の衝撃吸収部材。
19.アウタービームとインナービームとを備えた衝撃吸収部材であって、
 前記インナービームは繊維強化プラスチックAであり、
 前記インナービーム、及び前記アウタービームは開断面形状を備え、前記アウタービームは前記インナービームの少なくとも一部を覆う、
 衝撃吸収部材。
20.前記インナービームと前記アウタービームとの間に、隙間を有する、前記19に記載の衝撃吸収部材。
18. The relationship between the length L1 of the outer beam and the length L2 of the inner beam in the vehicle width direction is
L1×0.5<L2<L1×2
18. The impact absorbing member according to 17 above, wherein
19. A shock absorbing member comprising an outer beam and an inner beam,
The inner beam is fiber reinforced plastic A,
the inner beam and the outer beam have an open cross-sectional shape, the outer beam covering at least a portion of the inner beam;
Shock absorbing member.
20. 20. The impact absorbing member according to 19 above, having a gap between the inner beam and the outer beam.
 本発明の衝撃吸収部材は軽量であり、(i)インナービームを破壊させることで衝撃を受けた際の初期反力を高くして剛性を確保し、かつ(ii)形状剛性を有するアウタービームを破壊させないことで、衝撃後の撓みが拡大したときの延性と剛性を確保できる。 The impact-absorbing member of the present invention is lightweight, and (i) secures rigidity by increasing the initial reaction force when receiving an impact by destroying the inner beam, and (ii) has an outer beam having shape rigidity. By not breaking, it is possible to ensure ductility and rigidity when the deflection after impact is increased.
本発明の衝撃吸収部材の一例を示す模式図。The schematic diagram which shows an example of the impact-absorbing member of this invention. 衝撃吸収部材を3点曲げ撓み試験した際の、変位(Displacement)と反力(Reactionforce)の一例を示すグラフ。The graph which shows an example of displacement (Displacement) and reaction force (Reactionforce) at the time of carrying out the three-point bending deflection test of the impact-absorbing member. 従来の衝撃吸収部材の一例を示す模式図。連続繊維は、ビームの長手方向及び長手方向に対して90度方向(0/90deg)に配向している。The schematic diagram which shows an example of the conventional shock-absorbing member. The continuous fibers are oriented in the longitudinal direction of the beam and in the direction of 90 degrees (0/90 deg) with respect to the longitudinal direction. 図3に描かれた従来の衝撃吸収部材を、3点曲げ撓み試験した際の、変位(Displacement)と反力(Reactionforce)の一例を示すグラフ。The graph which shows an example of a displacement (Displacement) and a reaction force (Reactionforce) at the time of carrying out the three-point bending deflection test of the conventional impact-absorbing member drawn in FIG. (a)連続繊維で補強されたアウタービーム(繊維強化プラスチックB)に含まれる繊維の配向方向を示す模式図。(b)連続繊維で補強されたインナービーム(繊維強化プラスチックA)に含まれる連続繊維の配向方向を示す模式図。(a) A schematic diagram showing the orientation direction of fibers contained in an outer beam (fiber-reinforced plastic B) reinforced with continuous fibers. (b) A schematic diagram showing the orientation direction of continuous fibers contained in an inner beam (fiber-reinforced plastic A) reinforced with continuous fibers. (a)アウタービームの長手方向へ観察し、アウタービームの長さL1を示した模式図。(b)インナービームの長手方向へ観察し、インナービームの長さL2を示した模式図。(a) A schematic diagram showing the length L1 of the outer beam when observed in the longitudinal direction of the outer beam. (b) A schematic diagram showing the length L2 of the inner beam when observed in the longitudinal direction of the inner beam. アウタービームの3点曲げ撓み試験を示す模式図。The schematic diagram which shows the three-point bending deflection test of an outer beam. インナービームの3点曲げ撓み試験の図面。Drawing of the three-point bending deflection test of an inner beam. 衝撃吸収部材の3点曲げ撓み試験の図面。Drawing of the three-point bending deflection test of a shock-absorbing member. (a)アウタービームの長手方向へ観察し、アウタービームの側壁と連結壁とのなす角βを示す模式図。(b)インナービームの長手方向へ観察し、インナービームの側壁と連結壁とのなす角αを示す模式図。(a) A schematic diagram showing an angle β formed between the side wall of the outer beam and the connecting wall when observed in the longitudinal direction of the outer beam. (b) A schematic diagram showing an angle α formed by the side wall of the inner beam and the connecting wall, observed in the longitudinal direction of the inner beam. インナービームとアウタービームの間にある隙間を示した模式図。FIG. 4 is a schematic diagram showing a gap between the inner beam and the outer beam; 衝撃吸収部材へ衝撃を受けた時に、インナービーム及びアウタービームの開断面が開く方向を示した模式図。FIG. 5 is a schematic diagram showing the direction in which the open cross-sections of the inner beam and the outer beam open when an impact is applied to the impact absorbing member; アウタービームが、インナービームの一部を覆っていることを示した模式図。FIG. 4 is a schematic diagram showing that the outer beam partially covers the inner beam. (a)アウタービームがインナービームを囲っていることを示した模式図。インナービームよりも内側まで、アウタービームが存在する。このとき、アウタービームが金属であることが好ましい。(b)(a)の部品を衝撃吸収部材の3点曲げ撓み試験するときの模式図。(a) A schematic diagram showing that the outer beam surrounds the inner beam. The outer beam exists to the inner side of the inner beam. At this time, the outer beam is preferably made of metal. (b) Schematic diagram when the part of (a) is subjected to a three-point bending deflection test of the shock absorbing member. (a)アウタービームの締結孔を描いた模式図。(b)インナービームの締結孔を描いた模式図。(c)アウタービームの締結孔を描いた模式図(拡大図)。(d)インナービームの締結孔を描いた模式図。(e)アウタービームの内側にインナービームを配置し、締結孔を重ねた模式図。(a) A schematic diagram showing the fastening holes of the outer beam. (b) A schematic diagram showing the fastening holes of the inner beam. (c) A schematic diagram (enlarged view) depicting fastening holes of the outer beam. (d) A schematic drawing of fastening holes of the inner beam. (e) A schematic diagram in which the inner beam is arranged inside the outer beam and the fastening holes are overlapped. (a)アウタービームの具体的な寸法を説明するための模式図。(b)インナービームの具体的な寸法を説明するための模式図。(a) A schematic diagram for explaining specific dimensions of the outer beam. (b) A schematic diagram for explaining specific dimensions of the inner beam.
[インナービーム:繊維強化プラスチックA]
 インナービームは繊維強化されており、繊維強化プラスチックAは樹脂と強化繊維を含む。繊維強化プラスチックAは、成形された成形体である。
[Inner beam: fiber reinforced plastic A]
The inner beam is fiber-reinforced, and the fiber-reinforced plastic A contains resin and reinforcing fibers. The fiber-reinforced plastic A is a molded body.
1.樹脂
 繊維強化プラスチックAに含まれる樹脂の種類に特に限定は無く、熱硬化性樹脂や熱可塑性樹脂が用いられる。
 1.1熱可塑性樹脂
 繊維強化プラスチックAに含まれる樹脂として、熱可塑性樹脂の場合、その種類は特に限定されるものではなく、所望の軟化点又は融点を有するものを適宜選択して用いることができる。上記熱可塑性樹脂としては、通常、軟化点が180℃~350℃の範囲内のものが用いられるが、これに限定されるものではない。
1. Resin The type of resin contained in the fiber-reinforced plastic A is not particularly limited, and thermosetting resins and thermoplastic resins are used.
1.1 Thermoplastic resin As the resin contained in the fiber-reinforced plastic A, in the case of a thermoplastic resin, the type is not particularly limited, and a resin having a desired softening point or melting point can be appropriately selected and used. can. As the thermoplastic resin, one having a softening point within the range of 180° C. to 350° C. is usually used, but it is not limited to this.
 1.2熱硬化性樹脂
 繊維強化プラスチックAに含まれる樹脂として、熱硬化性樹脂を用いる場合、不飽和ポリエステル系樹脂、ビニルエステル系樹脂、エポキシ系樹脂、フェノール系の樹脂であることが好ましい。樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
1.2 Thermosetting Resin When a thermosetting resin is used as the resin contained in the fiber-reinforced plastic A, it is preferably an unsaturated polyester-based resin, a vinyl ester-based resin, an epoxy-based resin, or a phenol-based resin. As the resin, one type may be used alone, or two or more types may be used in combination.
2.強化繊維
 2.1強化繊維の種類
 繊維強化プラスチックAに含まれる連続繊維は強化繊維である。強化繊維に特に限定は無いが、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、玄武岩繊維からなる群より選ばれる1つ以上の強化繊維であることが好ましい。強化繊維はガラス繊維であることがより好ましい。強化繊維としてガラス繊維を用いる場合、ガラス繊維の平均繊維直径は、1μm~50μmが好ましく、5μm~20μmがより好ましい。平均繊維径が大きいと樹脂の繊維への含浸性が容易となり、上限以下であれば成形性や加工性が良好となる。
2. 2. Reinforcing Fibers 2.1 Types of Reinforcing Fibers The continuous fibers contained in the fiber-reinforced plastic A are reinforcing fibers. The reinforcing fibers are not particularly limited, but are preferably one or more reinforcing fibers selected from the group consisting of carbon fibers, glass fibers, aramid fibers, boron fibers, and basalt fibers. More preferably, the reinforcing fibers are glass fibers. When glass fibers are used as reinforcing fibers, the average fiber diameter of the glass fibers is preferably 1 μm to 50 μm, more preferably 5 μm to 20 μm. When the average fiber diameter is large, the impregnation of the resin into the fibers becomes easy, and when the average fiber diameter is below the upper limit, moldability and workability become good.
 2.2連続繊維
 インナービームは連続繊維で強化された繊維強化プラスチックAであっても良い。連続繊維は、織編物、ストランドの一方向配列シート状物及び多軸織物等のシート状、または不織布状でマトリクス樹脂中に含有されていることも好ましい。なお、多軸織物とは、一般に、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層したもの(多軸織物基材)を、ポリアミド糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチした織物をいう。
2.2 Continuous Fiber The inner beam may be fiber-reinforced plastic A reinforced with continuous fibers. It is also preferable that the continuous fibers are contained in the matrix resin in the form of a sheet such as a woven or knitted fabric, a unidirectionally arranged sheet of strands, or a multiaxial fabric, or in the form of a non-woven fabric. In addition, the multiaxial fabric generally refers to a sheet of fiber reinforcement bundles aligned in one direction and laminated at different angles (multiaxial fabric base material), polyamide yarn, polyester yarn, glass fiber It refers to a woven fabric in which a stitch thread such as a thread penetrates the laminate in the thickness direction and stitches back and forth between the front and back surfaces of the laminate along the surface direction.
 繊維強化プラスチックAに含まれる連続繊維の配向方向に特に限定は無く、複数方向へ配向していても良いが、一軸配向、又は二軸配向した連続繊維であることがより好ましく、二軸方向へ配向した連続繊維であることが更に好ましい。一軸配向した連続繊維とは、配向方向が一つのみであり、他の方向には配向していないことを意味する。二軸配向とは、繊維が繊維強化プラスチックAの面内で異なる二方向に配向していることをいう。 The orientation direction of the continuous fibers contained in the fiber-reinforced plastic A is not particularly limited and may be oriented in multiple directions, but it is more preferable that the continuous fibers are uniaxially oriented or biaxially oriented. Oriented continuous fibers are more preferred. Uniaxially oriented continuous fibers mean that the fibers are oriented in only one direction and are not oriented in other directions. Biaxial orientation means that the fibers are oriented in two different directions within the plane of the fiber-reinforced plastic A.
 本発明のインナービームに含まれる連続繊維は、少なくともインナービームの長手方向に配向していることが好ましく、インナービームの長手方向、及びインナービームの短手方向の2軸方向へ少なくとも配向しているとより好ましい。 The continuous fibers contained in the inner beam of the present invention are preferably oriented at least in the longitudinal direction of the inner beam, and are oriented in at least the two axial directions of the longitudinal direction of the inner beam and the lateral direction of the inner beam. and more preferred.
 2.3インナービームの長手方向と短手方向
 インナービームの長手方向とは例えば図5のX軸方向である。インナービームが図5のように直線ではなく、曲線になっている場合は、インナービームの平面図を描いたとき、ビームの中央線を長手方向とする。平面図は、衝撃を受ける方向からインナービームを観察して描く。
2.3 Longitudinal Direction and Width Direction of the Inner Beam The longitudinal direction of the inner beam is, for example, the X-axis direction in FIG. When the inner beam is not straight but curved as shown in FIG. 5, the center line of the beam is taken as the longitudinal direction when the plan view of the inner beam is drawn. The plan view is drawn by observing the inner beam from the direction of impact.
 インナービームの短手方向とは、例えば図5のY軸方向であり、開断面形状(例えばハット形状又は断面略コ字形状)が開く方向である。インナービームが図5のように直線ではなく曲線になっている場合は、インナービームの平面図を描いたとき、ビームの中央線の中点において、中央線の接線に対して平面図面内の垂直方向を短手方向とする。 The lateral direction of the inner beam is, for example, the Y-axis direction in FIG. 5, and is the direction in which the open cross-sectional shape (for example, a hat shape or a substantially U-shaped cross section) opens. If the inner beam is curved instead of straight as shown in Figure 5, when drawing a plan view of the inner beam, at the midpoint of the center line of the beam, the vertical Let the direction be the lateral direction.
 インナービームの長手方向と、短手方向に連続繊維を配向することで、衝撃を受けた時の開断面の開き(ハットの開き、図12の矢印方向)を抑制できる。 By orienting the continuous fibers in the longitudinal direction and the lateral direction of the inner beam, it is possible to suppress the opening of the open cross section (hat opening, arrow direction in FIG. 12) when receiving an impact.
 2.4不連続繊維
 インナービームは不連続繊維で強化された繊維強化プラスチックAであっても良い。不連続繊維を用いた場合、連続繊維のみを用いた場合に比べて賦形性が向上し、複雑な成形体を作成することが容易となる。この場合、強化繊維の重量平均繊維長は、1mm以上100mm以下であることが好ましい。重量平均繊維長は1mm~70mmがより好ましく、1mm~50mmがさらに好ましい。また、繊維長が互いに異なる不連続強化繊維を併用してもよい。換言すると、本発明に用いられる不連続強化繊維は、重量平均繊維長の分布において単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。
2.4 Discontinuous fibers The inner beam may be fiber reinforced plastic A reinforced with discontinuous fibers. When discontinuous fibers are used, shapeability is improved compared to when only continuous fibers are used, making it easier to produce a complicated molded article. In this case, the weight average fiber length of the reinforcing fibers is preferably 1 mm or more and 100 mm or less. The weight average fiber length is more preferably 1 mm to 70 mm, more preferably 1 mm to 50 mm. In addition, discontinuous reinforcing fibers having different fiber lengths may be used together. In other words, the discontinuous reinforcing fibers used in the present invention may have a single peak or multiple peaks in the weight-average fiber length distribution.
 樹脂が熱硬化性樹脂であり、強化繊維が不連続繊維の場合、シートモールディングコンパウンド(SMCと呼ぶ場合がある)を用いても良い。シートモールディングコンパウンドはその成形性の高さから、複雑形状であっても、容易に成形することができる。シートモールディングコンパウンドは、流動性や賦形性が連続繊維に比べて高く、容易にリブやボスの作成ができる。 When the resin is a thermosetting resin and the reinforcing fibers are discontinuous fibers, a sheet molding compound (sometimes called SMC) may be used. Due to its high formability, the sheet molding compound can be easily molded even into complex shapes. Sheet molding compounds have higher fluidity and formability than continuous fibers, and can easily form ribs and bosses.
 樹脂が熱可塑性樹脂である場合、例えばWO2007/097436パンフレットに記載の不連続繊維からなる抄造シート、米国特許第8829103号公報、米国特許第9193840号公報、米国特許公開公報第2015/292145号、WO2012/105080パンフレット、およびWO2013/031860パンフレットに記載のランダムマットや繊維強化複合材料など等に基づいて、繊維強化プラスチックBを得ることができる。 When the resin is a thermoplastic resin, for example, a paper sheet made of discontinuous fibers described in WO2007/097436 pamphlet, US Pat. No. 8829103, US Pat. No. 9193840, US Pat. /105080 pamphlet and WO2013/031860 pamphlet, the fiber-reinforced plastic B can be obtained based on random mats, fiber-reinforced composite materials, and the like.
3.繊維体積割合
 繊維強化プラスチックAに含まれる連続繊維の繊維体積割合Vfに特に限定は無いが、10~60%が好ましく、30~60%がより好ましく、40~60%が更に好ましい。なお、繊維体積割合(Vf単位:体積%)とは、強化繊維とマトリクス樹脂だけではなく、その他の添加剤等も含めた全体の体積に対する強化繊維の体積の割合である。
3. Fiber Volume Ratio The fiber volume ratio Vf of the continuous fibers contained in the fiber-reinforced plastic A is not particularly limited, but is preferably 10 to 60%, more preferably 30 to 60%, and even more preferably 40 to 60%. The fiber volume ratio (Vf unit: volume %) is the ratio of the volume of the reinforcing fiber to the total volume including not only the reinforcing fiber and the matrix resin but also other additives.
4.その他の剤
 繊維強化プラスチックAには、本発明の目的を損なわない範囲で、有機繊維または無機繊維の各種繊維状または非繊維状のフィラー、無機充填剤、難燃剤、耐UV剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の添加剤を含んでいてもよい。また、熱硬化性樹脂を用いる場合には、増粘剤、硬化剤、重合開始剤、重合禁止剤などを用いてもよい。添加剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 また、衝撃を吸収する役割として例えば、制振ゴム、エラストマー、或いはこれに類する素材のものを添加しても良い。
4. Other Agents The fiber-reinforced plastic A contains various fibrous or non-fibrous organic or inorganic fiber fillers, inorganic fillers, flame retardants, UV-resistant agents, stabilizers, Additives such as release agents, pigments, softeners, plasticizers and surfactants may be included. Moreover, when using a thermosetting resin, a thickener, a curing agent, a polymerization initiator, a polymerization inhibitor, etc. may be used. As the additive, one type may be used alone, or two or more types may be used in combination.
In addition, for example, damping rubber, elastomer, or similar material may be added as a role of absorbing impact.
[アウタービーム:金属]
 アウタービームは金属であっても良い。金属とは、例えばアルミニウム、アルミニウム合金、鉄、鉄合金、チタン、チタン合金、マグネシウム、マグネシウム合金、ステンレス、又はこれらの組み合わせ等あれば良い。
[Outer beam: metal]
The outer beam may be metal. The metal may be, for example, aluminum, aluminum alloys, iron, iron alloys, titanium, titanium alloys, magnesium, magnesium alloys, stainless steel, or combinations thereof.
[アウタービーム:繊維強化プラスチックB]
 アウタービームは強化繊維で補強された繊維強化プラスチックBであって、繊維強化プラスチックBは樹脂と強化繊維を含むことが好ましい。繊維強化プラスチックBは、成形された成形体である。
[Outer beam: fiber reinforced plastic B]
Preferably, the outer beam is made of fiber-reinforced plastic B reinforced with reinforcing fibers, and the fiber-reinforced plastic B contains resin and reinforcing fibers. The fiber-reinforced plastic B is a molded body.
1.樹脂
 繊維強化プラスチックBに含まれる樹脂の種類に特に限定は無く、熱硬化性樹脂や熱可塑性樹脂が用いられる。
 1.1熱可塑性樹脂
 繊維強化プラスチックBに含まれる樹脂として、熱可塑性樹脂を用いる場合、その種類は特に限定されるものではなく、所望の軟化点又は融点を有するものを適宜選択して用いることができる。上記熱可塑性樹脂としては、通常、軟化点が180℃~350℃の範囲内のものが用いられるが、これに限定されるものではない。
1. Resin The type of resin contained in the fiber-reinforced plastic B is not particularly limited, and thermosetting resins and thermoplastic resins are used.
1.1 Thermoplastic resin When a thermoplastic resin is used as the resin contained in the fiber-reinforced plastic B, the type thereof is not particularly limited, and one having a desired softening point or melting point can be appropriately selected and used. can be done. As the thermoplastic resin, one having a softening point within the range of 180° C. to 350° C. is usually used, but it is not limited to this.
 1.2熱硬化性樹脂
 繊維強化プラスチックBに含まれる樹脂として、熱硬化性樹脂を用いる場合、不飽和ポリエステル系樹脂、ビニルエステル系樹脂、エポキシ系樹脂、フェノール系の樹脂であることが好ましい。樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
1.2 Thermosetting Resin When a thermosetting resin is used as the resin contained in the fiber-reinforced plastic B, it is preferably an unsaturated polyester-based resin, a vinyl ester-based resin, an epoxy-based resin, or a phenol-based resin. As the resin, one type may be used alone, or two or more types may be used in combination.
2.強化繊維
 2.1強化繊維の種類
 繊維強化プラスチックBに連続繊維が含まれる場合、これは強化繊維である。強化繊維に特に限定は無いが、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、玄武岩繊維からなる群より選ばれる1つ以上の強化繊維であることが好ましい。強化繊維はガラス繊維であることがより好ましい。強化繊維としてガラス繊維を用いる場合、ガラス繊維の平均繊維直径は、1μm~50μmが好ましく、5μm~20μmがより好ましい。平均繊維径が大きいと樹脂の繊維への含浸性が容易となり、上限以下であれば成形性や加工性が良好となる。
2. 2. Reinforcing Fibers 2.1 Types of Reinforcing Fibers If the fiber-reinforced plastic B contains continuous fibers, they are reinforcing fibers. The reinforcing fibers are not particularly limited, but are preferably one or more reinforcing fibers selected from the group consisting of carbon fibers, glass fibers, aramid fibers, boron fibers, and basalt fibers. More preferably, the reinforcing fibers are glass fibers. When glass fibers are used as reinforcing fibers, the average fiber diameter of the glass fibers is preferably 1 μm to 50 μm, more preferably 5 μm to 20 μm. When the average fiber diameter is large, the impregnation of the resin into the fibers becomes easy, and when the average fiber diameter is below the upper limit, moldability and workability become good.
 2.2連続繊維
 繊維強化プラスチックBに連続繊維が含まれる場合、連続繊維は織編物、ストランドの一方向配列シート状物及び多軸織物等のシート状、または不織布状でマトリクス樹脂中に含有されていることも好ましい。なお、多軸織物とは、一般に、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層したもの(多軸織物基材)を、ポリアミド糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチした織物をいう。
2.2 Continuous fibers When the fiber-reinforced plastic B contains continuous fibers, the continuous fibers are contained in the matrix resin in the form of sheets such as woven or knitted fabrics, unidirectionally arranged sheets of strands and multiaxial fabrics, or in the form of non-woven fabrics. It is also preferred that In addition, the multiaxial fabric generally refers to a sheet of fiber reinforcement bundles aligned in one direction and laminated at different angles (multiaxial fabric base material), polyamide yarn, polyester yarn, glass fiber It refers to a woven fabric in which a stitch thread such as a thread penetrates the laminate in the thickness direction and stitches back and forth between the front and back surfaces of the laminate along the surface direction.
 繊維強化プラスチックBに含まれる連続繊維の配向方向に特に限定は無く、複数方向へ配向していても良いが、一軸配向、又は二軸配向した連続繊維であることがより好ましく、二軸方向へ配向した連続繊維であることが更に好ましい。一軸配向した連続繊維とは、配向方向が一つのみであり、他の方向には配向していないことを意味する。二軸配向とは、繊維が繊維強化プラスチックAの面内で異なる二方向に配向していることをいう。 The orientation direction of the continuous fibers contained in the fiber-reinforced plastic B is not particularly limited and may be oriented in multiple directions, but it is more preferable that the continuous fibers are uniaxially oriented or biaxially oriented, and biaxially oriented. Oriented continuous fibers are more preferred. Uniaxially oriented continuous fibers mean that the fibers are oriented in only one direction and are not oriented in other directions. Biaxial orientation means that the fibers are oriented in two different directions within the plane of the fiber-reinforced plastic A.
 2.3インナービームに含まれる連続繊維との配向関係
 アウタービームが連続繊維で補強された繊維強化プラスチックBである場合、アウタービームの長手方向に対して、アウタービームの連続繊維の配向角度が+10度以上+80度以下であることが好ましい。アウタービームの連続繊維の配向角度は、例えば図5のθで示される。好ましい配向角度は+10度以上+45度以下であり、より好ましくは+15度以上45度以下であり、更に好ましくは+20度以上+45度以下である。アウタービームの長手方向に対して、アウタービームの連続繊維の配向角度が+10度以上+80度以下であれば、衝撃の応力を分散しやすい。分散することで局所応力を発生させにくい。
2.3 Orientation relationship with continuous fibers contained in inner beam When the outer beam is made of fiber-reinforced plastic B reinforced with continuous fibers, the orientation angle of the continuous fibers of the outer beam is +10 with respect to the longitudinal direction of the outer beam. degree or more and +80 degree or less. The orientation angle of the continuous fibers of the outer beam is indicated by θ in FIG. 5, for example. The orientation angle is preferably +10 degrees or more and +45 degrees or less, more preferably +15 degrees or more and +45 degrees or less, and still more preferably +20 degrees or more and +45 degrees or less. When the orientation angle of the continuous fibers of the outer beam is +10 degrees or more and +80 degrees or less with respect to the longitudinal direction of the outer beam, the impact stress is easily dispersed. By dispersing, it is difficult to generate local stress.
 アウタービームが連続繊維で補強された繊維強化プラスチックBである場合、連続繊維が2軸方向へ配向し、アウタービームの平面図を描いたとき、アウタービームの中央線に対して面対称に連続繊維が二軸方向へ配向していると好ましい(例えば図5(a))。このとき、それぞれの繊維が、アウタービームの長手方向に対して+10度以上+80度以下で配向していると良い。 When the outer beam is made of fiber-reinforced plastic B reinforced with continuous fibers, the continuous fibers are oriented in two axial directions, and when the plan view of the outer beam is drawn, the continuous fibers are plane-symmetrical with respect to the center line of the outer beam. is preferably biaxially oriented (for example, FIG. 5(a)). At this time, each fiber is preferably oriented at +10 degrees or more and +80 degrees or less with respect to the longitudinal direction of the outer beam.
 2.4アウタービームの長手方向と短手方向
 アウタービームの長手方向とは例えば図5のX軸方向である。アウタービームが図5のように直線ではなく、曲線になっている場合は、アウタービームの平面図を描いたとき、ビームの中央線を長手方向とする。平面図は、衝撃を受ける方向からアウタービームを観察して描く。
2.4 Longitudinal Direction and Width Direction of Outer Beam The longitudinal direction of the outer beam is, for example, the X-axis direction in FIG. When the outer beam is not straight but curved as shown in FIG. 5, the center line of the beam is taken as the longitudinal direction when the plan view of the outer beam is drawn. The plan view is drawn by observing the outer beam from the direction of impact.
 アウタービームの短手方向とは、例えば図5のY軸方向であり、開断面形状(例えばハット形状又は断面略コ字形状)が開く方向である。アウタービームが図5のように直線ではなく、曲線になっている場合は、アウタービームの平面図を描いたとき、ビームの中央線の中点において、中央線の接線に対して平面図面内の垂直方向を短手方向とする。 The lateral direction of the outer beam is, for example, the Y-axis direction in FIG. 5, and is the direction in which the open cross-sectional shape (for example, a hat shape or a substantially U-shaped cross section) opens. If the outer beam is not a straight line but a curved line as shown in Fig. 5, when drawing a plan view of the outer beam, at the midpoint of the center line of the beam, Let the vertical direction be the short direction.
 2.5不連続繊維
 繊維強化プラスチックBに含まれる強化繊維は不連続繊維を含でも良い。不連続繊維を用いた場合、連続繊維のみを用いた場合に比べて賦形性が向上し、複雑な成形体を作成することが容易となる。この場合、強化繊維の重量平均繊維長は、1mm以上100mm以下であることが好ましい。重量平均繊維長は1mm~70mmがより好ましく、1mm~50mmがさらに好ましい。また、繊維長が互いに異なる不連続強化繊維を併用してもよい。換言すると、本発明に用いられる不連続強化繊維は、重量平均繊維長の分布において単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。
2.5 Discontinuous Fiber The reinforcing fibers contained in the fiber-reinforced plastic B may contain discontinuous fibers. When discontinuous fibers are used, shapeability is improved compared to when only continuous fibers are used, making it easier to produce a complicated molded article. In this case, the weight average fiber length of the reinforcing fibers is preferably 1 mm or more and 100 mm or less. The weight average fiber length is more preferably 1 mm to 70 mm, more preferably 1 mm to 50 mm. In addition, discontinuous reinforcing fibers having different fiber lengths may be used together. In other words, the discontinuous reinforcing fibers used in the present invention may have a single peak or multiple peaks in the weight-average fiber length distribution.
 樹脂が熱硬化性樹脂であり、強化繊維が不連続繊維の場合、シートモールディングコンパウンド(SMCと呼ぶ場合がある)を用いても良い。シートモールディングコンパウンドはその成形性の高さから、複雑形状であっても、容易に成形することができる。シートモールディングコンパウンドは、流動性や賦形性が連続繊維に比べて高く、容易にリブやボスの作成ができる。 When the resin is a thermosetting resin and the reinforcing fibers are discontinuous fibers, a sheet molding compound (sometimes called SMC) may be used. Due to its high formability, the sheet molding compound can be easily molded even into complex shapes. Sheet molding compounds have higher fluidity and formability than continuous fibers, and can easily form ribs and bosses.
 樹脂が熱可塑性樹脂である場合、例えば米国WO2007/097436パンフレットに記載の不連続繊維からなる抄造シート、米国特許第8829103号公報、米国特許第9193840号公報、米国特許公開公報第2015/292145号、WO2012/105080パンフレット、およびWO2013/031860パンフレットに記載のランダムマットや繊維強化複合材料など等に基づいて、繊維強化プラスチックBを得ることができる。 When the resin is a thermoplastic resin, for example, a papermaking sheet made of discontinuous fibers described in US WO2007/097436 pamphlet, US Pat. No. 8829103, US Pat. Fiber-reinforced plastic B can be obtained based on random mats, fiber-reinforced composite materials, etc. described in WO2012/105080 pamphlet and WO2013/031860 pamphlet.
3.繊維体積割合
 繊維強化プラスチックBに含まれる連続繊維の繊維体積割合Vfに特に限定は無いが、10~60%が好ましく、30~60%がより好ましく、40~60%が更に好ましい。なお、繊維体積割合(Vf単位:体積%)とは、強化繊維とマトリクス樹脂だけではなく、その他の添加剤等も含めた全体の体積に対する強化繊維の体積の割合である。
3. Fiber Volume Ratio The fiber volume ratio Vf of the continuous fibers contained in the fiber-reinforced plastic B is not particularly limited, but is preferably 10 to 60%, more preferably 30 to 60%, and even more preferably 40 to 60%. The fiber volume ratio (Vf unit: volume %) is the ratio of the volume of the reinforcing fiber to the total volume including not only the reinforcing fiber and the matrix resin but also other additives.
4.その他の剤
 繊維強化プラスチックBには、本発明の目的を損なわない範囲で、有機繊維または無機繊維の各種繊維状または非繊維状のフィラー、無機充填剤、難燃剤、耐UV剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の添加剤を含んでいてもよい。また、熱硬化性樹脂を用いる場合には、増粘剤、硬化剤、重合開始剤、重合禁止剤などを含有してもよい。添加剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 また、衝撃を吸収する役割として例えば、制振ゴム、エラストマー、或いはこれに類する素材のものを添加しても良い。
4. Other Agents The fiber-reinforced plastic B contains various fibrous or non-fibrous fillers of organic fibers or inorganic fibers, inorganic fillers, flame retardants, UV-resistant agents, stabilizers, Additives such as release agents, pigments, softeners, plasticizers and surfactants may be included. Moreover, when using a thermosetting resin, it may contain a thickener, a curing agent, a polymerization initiator, a polymerization inhibitor, and the like. As the additive, one type may be used alone, or two or more types may be used in combination.
In addition, for example, damping rubber, elastomer, or similar material may be added as a role of absorbing impact.
[その他の材料]
 繊維強化プラスチックA、及び繊維強化プラスチックB以外に、その他の材料を用いていても良い。その他のは繊維、コンポジット、スチール、アルミニウム、並びにこれらの組み合わせであっても良い。
[Other materials]
Materials other than fiber-reinforced plastic A and fiber-reinforced plastic B may be used. Others may be fibers, composites, steel, aluminum, and combinations thereof.
[衝撃吸収部材の形状]
 本発明のアウタービームと、インナービームは下記式(1)及び(2)を満たすことにより、衝撃吸収部材となる。
 Ba<Bb        (1)
 R1×0.1<R2    (2)
ただし、
 Ba:インナービームの3点曲げ撓み試験における破壊撓み
 Bb:アウタービームの3点曲げ撓み試験における破壊撓み
 R1:衝撃吸収部材の3点曲げ撓み試験における、反力のピーク値
 R2:衝撃吸収部材の3点曲げ撓み試験において、撓み値がBa×2となるときの反力である。
[Shape of shock absorbing member]
The outer beam and the inner beam of the present invention serve as impact absorbing members by satisfying the following formulas (1) and (2).
Ba<Bb (1)
R1×0.1<R2 (2)
however,
Ba: Breaking deflection of inner beam in 3-point bending deflection test Bb: Breaking deflection of outer beam in 3-point bending deflection test R1: Peak value of reaction force in 3-point bending deflection test of shock absorbing member R2: Impact absorbing member It is the reaction force when the deflection value is Ba×2 in the three-point bending deflection test.
1.Ba<Bb
 Baは、インナービームの3点曲げ撓み試験における破壊撓みを表し、Bbは、アウタービームの3点曲げ撓み試験における破壊撓みを表す。
 破壊撓みとは、破壊時の撓み量である。
 撓み値とは、撓み量の値を意味する。
 撓み試験とは、撓み量を測定する試験を意味する。
 インナービームは高い初期反力を発現し(例えば図2の201)、衝突初期の衝撃を吸収する機能を保有する。Ba<Bbであれば、インナービームはアウタービームよりも先に破断する。すなわち、インナービームは衝突初期のエネルギー吸収により破断するが、アウタービームは変形を伴いながら、インナービームの破断以降の衝撃を吸収する(図2の203)。アウタービームは破断することなく、搭乗者の安全空間を確保できる。インナービームの破断点は、例えば図2の202で示される。横軸は曲げ撓み試験における変位を示し、撓み値の単位は、図2に示すようにmmであることが好ましい。
1. Ba<Bb
Ba represents the breaking deflection of the inner beam in the three-point bending deflection test, and Bb represents the breaking deflection of the outer beam in the three-point bending deflection test.
Breaking deflection is the amount of deflection at break.
A deflection value means a value of the amount of deflection.
A deflection test means a test for measuring the amount of deflection.
The inner beam develops a high initial reaction force (for example, 201 in FIG. 2) and has the function of absorbing the impact at the initial stage of collision. If Ba<Bb, the inner beam breaks before the outer beam. That is, the inner beam breaks due to energy absorption at the initial stage of collision, but the outer beam absorbs the impact after the breaking of the inner beam while being accompanied by deformation (203 in FIG. 2). The safety space for passengers can be secured without breaking the outer beam. The breaking point of the inner beam is indicated at 202 in FIG. 2, for example. The horizontal axis indicates the displacement in the bending deflection test, and the deflection value is preferably in mm as shown in FIG.
 インナービームは、衝撃を吸収して破壊されるが、アウタービームは搭乗者の安全空間の確保を優先し、インナービームとはとは逆に、衝突時に大変形しない設計となっている。
 衝撃吸収部材とは、衝撃を緩和させる緩衝部材とも呼べる。
 Ba×1.1<Bbであればより好ましく、Ba×1.3<Bbであれば更に好ましく、Ba×1.4<Bbであるとより一層好ましい。
The inner beam absorbs impact and is destroyed, but the outer beam prioritizes securing a safe space for passengers, and unlike the inner beam, it is designed so that it does not deform greatly in the event of a collision.
The impact-absorbing member can also be called a cushioning member that mitigates impact.
Ba×1.1<Bb is more preferable, Ba×1.3<Bb is still more preferable, and Ba×1.4<Bb is even more preferable.
2.R1×0.1<R2
 R1×0.1<R2を満たすことにより、衝撃吸収部材の3点曲げ撓み試験において、インナービーム破壊後に撓み値がBa×2に達しても、アウタービームが破壊されないことを意味し、衝撃吸収部材が高い反力を維持していることを意味する。例えばBaの値が40mmの場合、衝撃吸収部材の反力R2の値は、衝撃吸収部材の3点曲げ撓み試験において、撓み値80mm(Ba×2)のときに測定する。
 R1×0.2<R2であればより好ましく、R1×0.3<R2であれば更に好ましく、R1×0.4<R2であるとより一層好ましい。
 反力R1、R2の単位は[N]であることが好ましい。
2. R1×0.1<R2
By satisfying R1×0.1<R2, it means that the outer beam is not broken even if the deflection value reaches Ba×2 after the inner beam is broken in the three-point bending deflection test of the shock absorbing member. This means that the member maintains a high reaction force. For example, when the value of Ba is 40 mm, the value of the reaction force R2 of the impact absorbing member is measured when the deflection value is 80 mm (Ba×2) in the three-point bending deflection test of the impact absorbing member.
R1×0.2<R2 is more preferable, R1×0.3<R2 is even more preferable, and R1×0.4<R2 is even more preferable.
The units of the reaction forces R1 and R2 are preferably [N].
[Ba:インナービームの3点曲げ撓み試験における破壊撓み]
 インナービームの3点曲げ撓み試験における破壊撓みBaは、100mm未満であることが好ましい。100mm以下の破壊撓みであるインナービームであれば、高い初期反力を得ることが容易になる。「初期反力の高さ」と「100mm以上の破壊撓み」はトレードオフの関係にある。初期反力を高めた部品は、剛直になり延びることができず、局所応力が発生しやすくなって破断する。
[Ba: Destruction deflection in three-point bending deflection test of inner beam]
The breaking deflection Ba in the three-point bending deflection test of the inner beam is preferably less than 100 mm. With an inner beam having a breaking deflection of 100 mm or less, it becomes easy to obtain a high initial reaction force. There is a trade-off relationship between "height of initial reaction force" and "breaking deflection of 100 mm or more". Parts with increased initial reaction force become rigid and unable to extend, and tend to generate local stress and break.
 インナービームの3点曲げ撓み試験における破壊撓みBaは、100mm未満がより好ましく、50mm未満が更に好ましく、40mm以下がより一層好ましい。
 なお、インナービームとアウタービームの間に空間(例えば図11の1101)がある場合、衝撃を受けた時、衝撃吸収部材の撓みが100mmに達するときと、インナービームの撓みが100mmに達するときとは、空間分のズレは生じる。
 インナービームの3点曲げ撓み試験における破壊撓みBa、及びアウタービームの3点曲げ撓み試験における破壊撓みBbの測定方法としては、例えば特開2019-178525号公報を参考にできる。破壊撓みBaとは、破壊した際の撓み量Baを意味する。破壊撓みBbとは、破壊した際の撓み量Bbを意味する。
 評価試験の長手方向長さを600mm以上、幅10mm以上、厚み0.1mm以上の試験片を作製する。次に、試験片の長手方向に500mm離間して下方から支持した状態で、両支持箇所の中央において上方から、前記試験片が破壊するまで荷重を負荷する。そして、荷重を負荷する前の状態を基準として下方への撓みと反力とを測定する。
 具体的には、試験片は図7、図8、図9のようにして撓みと反力が測定される。まず、試験片(7、8、9)を一対の支持体(702及び703、802及び803、902及び903)で下方から支持する。一対の支持体は間隔(701、801、901)を500mmにして水平に離間して配置されており、試験片は一対の支持体の上端間に架け渡すようにして載置される。支持された試験片の長さ方向と一対の支持体の離間する方向は同じである。次に、一対の支持体による試験片の両支持箇所の間の中央において、試験片に上方から圧子(704、804、904)で荷重を負荷する。荷重Fを負荷する方向は下方(図7~9に示す矢印の方向)である。変位は0mmから試験片が破壊するまで徐々に増加していくものであり、例えば、2mm/分の割合で変位を増加させる。このように変位が負荷されている試験片は下方に凸曲するように撓んでいく。そして、変位により試験片が破壊すると、その破壊時での反力が試験片の破壊強度となる。また、その時の変位が撓み(BaやBb)である。
The breaking deflection Ba in the three-point bending deflection test of the inner beam is more preferably less than 100 mm, still more preferably less than 50 mm, and even more preferably 40 mm or less.
If there is a space (for example, 1101 in FIG. 11) between the inner beam and the outer beam, when receiving an impact, the deflection of the shock absorbing member reaches 100 mm and the deflection of the inner beam reaches 100 mm. , a spatial deviation occurs.
As a method for measuring the breaking deflection Ba in the three-point bending deflection test of the inner beam and the breaking deflection Bb in the three-point bending deflection test of the outer beam, for example, JP-A-2019-178525 can be referred to. Breaking deflection Ba means the deflection amount Ba at the time of breaking. Breaking deflection Bb means the deflection amount Bb at the time of breaking.
A test piece having a longitudinal length of 600 mm or more, a width of 10 mm or more, and a thickness of 0.1 mm or more is prepared for the evaluation test. Next, while the test piece is supported from below at a distance of 500 mm in the longitudinal direction, a load is applied from above at the center of both support points until the test piece breaks. Then, the downward deflection and the reaction force are measured with reference to the state before the load is applied.
Specifically, the deflection and reaction force of the test piece are measured as shown in FIGS. First, the test pieces (7, 8, 9) are supported from below by a pair of supports (702 and 703, 802 and 803, 902 and 903). A pair of supports are horizontally spaced apart with an interval (701, 801, 901) of 500 mm, and the test piece is mounted so as to span between the upper ends of the pair of supports. The longitudinal direction of the supported specimen and the direction in which the pair of supports are separated are the same. Next, a load is applied to the test piece from above with an indenter (704, 804, 904) at the center between the support points of the test piece by the pair of supports. The direction in which the load F is applied is downward (the direction of the arrows shown in FIGS. 7 to 9). The displacement gradually increases from 0 mm until the test piece breaks, for example, the displacement is increased at a rate of 2 mm/min. The test piece to which the displacement is applied in this way bends so as to be convex downward. When the test piece breaks due to displacement, the reaction force at the time of breaking becomes the breaking strength of the test piece. Moreover, the displacement at that time is the deflection (Ba or Bb).
[インナービーム:開断面形状]
 インナービームは開断面形状を備えているのが好ましく、衝撃を受ける側とは反対側に開口する開断面形状を備えるとより好ましい。
 開断面形状とは断面が開いた形状のものであり、ハット形状、U字形状、V字形状などが挙げられ、例えば図1の長手方向(X方向)に観察したときの断面図で示される。インナービームの開断面形状は、断面略コ字状であることが好ましい。衝撃を受ける側はアウタービームの外側である(図1のZ側)。アウタービームと比べて、インナービームの開断面は開きにくいことが好ましい。言い換えると、衝撃を受けたとき、インナービームの開断面が開く速度よりも、アウタービームの開断面が開く速度の方が大きいことが好ましい。
[Inner beam: open cross-sectional shape]
The inner beam preferably has an open cross-sectional shape, and more preferably has an open cross-sectional shape that opens on the side opposite to the side receiving the impact.
The open cross-sectional shape is a shape in which the cross section is open, and includes a hat shape, a U shape, a V shape, and the like. . The open cross-sectional shape of the inner beam is preferably a substantially U-shaped cross section. The impact side is the outer side of the outer beam (Z side in FIG. 1). It is preferable that the open cross-section of the inner beam is harder to open than the outer beam. In other words, it is preferable that the speed at which the open cross-section of the outer beam opens is higher than the speed at which the open cross-section of the inner beam opens when receiving an impact.
[アウタービーム:開断面形状]
 アウタービームは開断面形状を備えているのが好ましく、衝撃を受ける側とは反対側に開口する開断面形状を備えているとより好ましい。
 開断面形状とは断面が開いた形状のものであり、ハット形状、U字形状、V字形状などが挙げられ、例えば図1の長手方向(X方向)に観察したときの断面図で示される。アウタービームの開段面形状は、ハット形状であることが好ましい。衝撃を受ける側はアウタービームの外側である(図1のZ側)。
 アウタービームが断面ハット形状であり、インナービームが断面略コ字状であれば、衝撃を受けたときにアウタービーム開断面(ハット)が開き、延性材料として働きやすくなる。
[Outer beam: open cross-sectional shape]
The outer beam preferably has an open cross-sectional shape, and more preferably has an open cross-sectional shape that opens on the side opposite to the impact side.
The open cross-sectional shape is a shape in which the cross section is open, and includes a hat shape, a U shape, a V shape, and the like. . It is preferable that the open step surface shape of the outer beam is a hat shape. The impact side is the outer side of the outer beam (Z side in FIG. 1).
If the outer beam has a hat-shaped cross-section and the inner beam has a substantially U-shaped cross-section, the open cross-section (hat) of the outer beam will open when receiving an impact, and it will easily work as a ductile material.
[アウタービームはインナービームの少なくとも一部を覆う]
 アウタービームは開断面形状を備え、アウタービームはインナービームの少なくとも一部を覆っていることが好ましい。例えば、図13は衝撃吸収部材を長手方向へ見た断面図であるが、アウタービームはインナービームの一部を覆っている。
 また、図1に描かれているように、インナービームは完全にアウタービームに覆われていると、より好ましい。完全に覆われていれば、例えば衝撃吸収部材を自動車に搭載した場合、自動車設計の空間の利用効率が向上する。
[Outer beam covers at least part of inner beam]
Preferably, the outer beam has an open cross-sectional shape and the outer beam covers at least a portion of the inner beam. For example, FIG. 13 is a longitudinal cross-sectional view of the impact absorbing member, in which the outer beam partially covers the inner beam.
More preferably, the inner beam is completely covered by the outer beam, as depicted in FIG. Complete coverage improves the efficiency of space utilization in vehicle design, for example, when the shock absorbing member is mounted on a vehicle.
 アウタービームは、その一部がインナービームよりも外側にあればよく、インナービームよりも内側にまで存在していても良い。特に、アウタービームが金属である場合、図14のようにインナービームを囲ってしまっても良く、衝撃吸収部材をドアに配置したときは、乗客側までアウタービームが存在しても良い。
 なお、図1の衝撃吸収部材では、アウタービームはインナービームを囲っていない。
A part of the outer beam is only required to be outside the inner beam, and may even be inside the inner beam. In particular, when the outer beam is made of metal, the inner beam may be enclosed as shown in FIG. 14, and when the impact absorbing member is arranged on the door, the outer beam may extend to the passenger side.
In addition, in the impact absorbing member of FIG. 1, the outer beam does not surround the inner beam.
[角αと角β]
 インナービーム、及びアウタービームは、一対の側壁と、当該側壁を連結する連結壁を備えていることが好ましい。インナービームの側壁は図10の1004、連結壁は図10の1005で例示される。アウタービームの側壁は図10の1001、連結壁は図10の1002で例示される。図10の1002、1005で描かれる連結壁は、天面と呼ぶ場合もある。図10の1003、1006は、それぞれアウタービームのフランジ、インナービームのフランジと呼ぶ場合がある。
[Angle α and Angle β]
The inner beam and the outer beam preferably have a pair of side walls and a connecting wall connecting the side walls. Side walls of the inner beam are exemplified by 1004 in FIG. 10, and connecting walls are exemplified by 1005 in FIG. Side walls of the outer beam are exemplified by 1001 in FIG. 10, and connecting walls are exemplified by 1002 in FIG. The connection walls drawn at 1002 and 1005 in FIG. 10 are sometimes called the top surface. Reference numerals 1003 and 1006 in FIG. 10 may be called an outer beam flange and an inner beam flange, respectively.
 衝撃吸収部材を長手方向に向けて断面観察したとき、インナービームの側壁と連結壁とのなす角αと、アウタービームの側壁と連結壁とのなす角βとの関係が、α<βを満たすことが好ましい。 When observing the cross section of the shock absorbing member in the longitudinal direction, the relationship between the angle α formed between the side wall of the inner beam and the connecting wall and the angle β formed between the side wall of the outer beam and the connecting wall satisfies α<β. is preferred.
 衝撃吸収部材を長手方向に向けて断面観察したとき、全ての断面でα<βを満たす必要はなく、α<βを満たす断面が1か所あれば良い。衝撃吸収部材を長手方向に向けて断面観察したとき、α<βを満たす断面が全体の50%以上であるとより好ましい。
 α×1.01<βがより好ましく、α×1.1<βが更に好ましく、α×1.2<βがより一層好ましい。
When observing the cross section of the shock absorbing member in the longitudinal direction, it is not necessary to satisfy α<β in all cross sections, and it is sufficient if there is only one cross section satisfying α<β. More preferably, 50% or more of the entire cross section satisfies α<β when observing the cross section of the shock absorbing member in the longitudinal direction.
α×1.01<β is more preferable, α×1.1<β is still more preferable, and α×1.2<β is even more preferable.
 α<βであると、衝撃を受けたときに、アウタービームが図12の矢印方向に開きやすくなる。α<βとすることで、アウタービームの3点曲げ撓み試験における破壊撓みBbを、インナービームの3点曲げ撓み試験における破壊撓みBaよりも大きく設計できやすい。更には、インナービームを破壊させやすくし、衝撃吸収部材の初期反力を高めやすい。 When α<β, the outer beams tend to open in the direction of the arrow in FIG. 12 when receiving an impact. By setting α<β, it is easy to design the breaking deflection Bb in the three-point bending deflection test of the outer beam to be larger than the breaking deflection Ba in the three-point bending deflection test of the inner beam. Furthermore, the inner beam can be easily destroyed, and the initial reaction force of the impact absorbing member can be easily increased.
 言い換えると、衝撃を受けたとき、インナービームの開断面が開く速度よりも、アウタービームの開断面が開く速度の方が大きいことが好ましい。 In other words, it is preferable that the speed at which the open cross-section of the outer beam opens is higher than the speed at which the open cross-section of the inner beam opens when receiving an impact.
 インナービーム、及びアウタービームが開断面形状を備えている場合、インナービームの開断面が開く速度よりも、アウタービームの開断面が開く速度を大きくするためには、インナービームの天面部と、アウタービームの天面部は接合されていないことが好ましい。同様に、インナービームのフランジ部と、アウタービームのフランジ部は接合されていないことが好ましい。インナービームのフランジ部と、アウタービームのフランジ部が接合されないことにより、衝撃を受けたときに各々が独立して開断面を開くことができる。言い換えると、アウタービームはインナービームからの干渉を受けずに、衝撃を受けたときに開断面を開くことができる。開断面が開くとは、図12の矢印方向にインナービームとアウタービームが開くことを意味する。 When the inner beam and the outer beam have open cross-sections, in order to increase the speed at which the open cross-section of the outer beam opens faster than the speed at which the open cross-section of the inner beam opens, the top surface of the inner beam and the outer It is preferable that the top surface of the beam is not joined. Similarly, it is preferable that the flange portion of the inner beam and the flange portion of the outer beam are not joined. Since the flange portion of the inner beam and the flange portion of the outer beam are not joined together, each can independently open the open cross-section when receiving an impact. In other words, the outer beam can open the cleft when impacted without interference from the inner beam. The open cross section means that the inner beam and the outer beam are opened in the direction of the arrow in FIG. 12 .
 更に、インナービームとアウタービームの天面やフランジ部の接合を省略することで、組み立て工数を削減できる。 Furthermore, by omitting the joining of the top surface and flange of the inner beam and outer beam, the number of assembly man-hours can be reduced.
 より具体的には、αは90度超えとすることが好ましく、91度以上であるとより好ましい。90度を超えることで、繊維強化プラスチックAを圧縮成形によって作成できるため、インナービームを作成しやすくなる。角度βは110度以上であることが好ましく、120度以上であることがより好ましく、130度以上であると更に好ましい。角度βが120度以上であれば、衝撃を受けたときに開断面(ハット)が開き、延性材料として働きやすくなる。 More specifically, α is preferably over 90 degrees, more preferably 91 degrees or more. When the angle exceeds 90 degrees, the fiber-reinforced plastic A can be produced by compression molding, which facilitates the production of the inner beam. The angle β is preferably 110 degrees or more, more preferably 120 degrees or more, and even more preferably 130 degrees or more. If the angle β is 120 degrees or more, the open cross section (hat) opens when receiving an impact, and the material easily works as a ductile material.
[インナービームとアウタービームの接合]
 インナービームの連結壁と、アウタービームの連結壁は、接触していても、接触していなくても良く、図11の1101のように隙間があっても良い。図11の1101のように隙間がある場合、インナービームの連結壁と、アウタービームの連結壁は接触していない。更に、アウタービームがインナービームに嵌合していないことが好ましい。アウタービームがインナービームに嵌合していないことによって、アウタービームが変形しやすくなり、延性向上という効果を生じる。
[Joining of inner beam and outer beam]
The connecting wall of the inner beam and the connecting wall of the outer beam may or may not be in contact, and may have a gap as indicated by 1101 in FIG. When there is a gap as indicated by 1101 in FIG. 11, the connecting wall of the inner beam and the connecting wall of the outer beam are not in contact. Furthermore, it is preferable that the outer beam is not fitted to the inner beam. Since the outer beam is not fitted to the inner beam, the outer beam is easily deformed, resulting in an effect of improving ductility.
 言い換えると、図11の1101のように、インナービームとアウタービームの間に隙間を有することで、アウタービームは図12の矢印方向に開きやすくなる。 In other words, having a gap between the inner beam and the outer beam as shown in 1101 in FIG. 11 makes it easier for the outer beam to open in the direction of the arrow in FIG.
 衝撃吸収部材をドアに固定する際には、アウタービームとインナービームの末端を、それぞれドアに接合すれば良い。例えば図15の(a)(b)の1501で示される締結孔を重ね、図15(e)に描かれているように重ね合わせて、締結孔を用いて締結すると良い。  When fixing the shock absorbing member to the door, the ends of the outer beam and the inner beam should be joined to the door. For example, the fastening holes indicated by 1501 in FIGS. 15(a) and 15(b) may be superimposed and fastened using the fastening holes as illustrated in FIG. 15(e).
[圧縮成形体]
 繊維強化プラスチックAは圧縮成形体であることが好ましい。同様に、アウタービームが繊維強化プラスチックBである場合、圧縮成形体であることが好ましい。圧縮成形体は圧縮成形(プレス成形とも呼ぶ)によって製造された成形体を指す。それぞれの圧縮成形体は一体成形されたものが好ましく、一体成形とは、継ぎ目を有さずに連続的に成形されており、別体の部材同士を接合して成形したものではないことをいう。このような一体成形によって、一度の成形でアウタービーム又はインナービームが作成される。
[Compression molding]
The fiber-reinforced plastic A is preferably a compression-molded body. Similarly, when the outer beam is fiber-reinforced plastic B, it is preferably a compression-molded body. A compression molded body refers to a molded body manufactured by compression molding (also called press molding). Each compression-molded body is preferably integrally molded. Integral molding means that it is continuously molded without joints and is not molded by joining separate members. . By such integral molding, an outer beam or an inner beam is produced by one-time molding.
 一体成形によって作成することで、別々の部品を1つの部品として加工することができ、部品単価を引き下げることが可能となる。また、組付け工程数が減少するし、部品数減少により在庫に係る費用の削減も可能である。 By creating it by integral molding, separate parts can be processed as one part, making it possible to reduce the unit price of parts. In addition, the number of assembling processes is reduced, and the reduction in the number of parts also enables a reduction in inventory costs.
 圧縮成形(プレス成形)を利用する場合、ホットプレス成形やコールドプレス成形などの成形方法を利用できる。繊維強化プラスチックA又は繊維強化プラスチックBに含まれる樹脂が熱可塑性樹脂である場合、とりわけコールドプレスを用いたプレス成形が好ましい。コールドプレス法は、例えば、第1の所定温度に加熱した複合材料を第2の所定温度に設定された成形型内に投入した後、加圧・冷却を行う。具体的には、熱可塑性樹脂が結晶性である場合、第1の所定温度は融点以上であり、第2の所定温度は融点未満である。熱可塑性樹脂が非晶性である場合、第1の所定温度はガラス転移温度以上であり、第2の所定温度はガラス転移温度未満である。なお、本明細書において、複合材料とは、成形して繊維強化プラスチックAや繊維強化プラスチックBなどの成形体を製造するための材料である。 When using compression molding (press molding), molding methods such as hot press molding and cold press molding can be used. When the resin contained in the fiber-reinforced plastic A or the fiber-reinforced plastic B is a thermoplastic resin, press molding using a cold press is particularly preferred. In the cold press method, for example, a composite material heated to a first predetermined temperature is put into a mold set to a second predetermined temperature, and then pressurized and cooled. Specifically, if the thermoplastic resin is crystalline, the first predetermined temperature is above the melting point and the second predetermined temperature is below the melting point. If the thermoplastic resin is amorphous, the first predetermined temperature is above the glass transition temperature and the second predetermined temperature is below the glass transition temperature. In this specification, the term "composite material" refers to a material that is molded to produce a molded body such as fiber-reinforced plastic A or fiber-reinforced plastic B.
 SMC(シートモールディングコンパウンド)を用いて繊維強化プラスチックA、又は繊維強化プラスチックBを製造する場合、プレス成形方法を用いる。すなわち、目的の成形品形状をなした上下分離可能な金型を準備し、成形型に強化繊維と樹脂とを含むSMCを所定量投入し、加熱加圧し、その後金型を開き目的の成形体を取り出す方法である。なお、成形温度、成形圧力はSMCに含まれる樹脂の種類や目的とする成形品の形状等にあわせて選択することができる。 When manufacturing fiber reinforced plastic A or fiber reinforced plastic B using SMC (sheet molding compound), a press molding method is used. That is, a mold that can be separated from the top and bottom having the desired molded product shape is prepared, a predetermined amount of SMC containing reinforcing fibers and resin is put into the mold, heated and pressurized, and then the mold is opened to obtain the desired molded product. is a method of extracting The molding temperature and molding pressure can be selected according to the type of resin contained in the SMC, the shape of the desired molded product, and the like.
[用途]
 衝撃吸収部材は、車両前後方向に延在する車両用の衝撃吸収部材であることが好ましく、自動車のドアに備え付けられていることがより好ましい。
[Use]
The impact absorbing member is preferably a vehicle impact absorbing member that extends in the longitudinal direction of the vehicle, and is more preferably attached to the door of the vehicle.
 衝撃吸収部材が自動車のドアに備えられた場合、衝撃を受ける側とは、ドアの外側である。この場合、衝撃を受ける側とは反対側とは、自動車居住空間内に向かうという意味である。より具体的には、図1のz軸方向から衝撃を受ける。 When the shock absorbing member is provided in the door of the automobile, the side that receives the shock is the outside of the door. In this case, the side opposite to the side receiving the impact means toward the interior of the vehicle. More specifically, the impact is applied from the z-axis direction in FIG.
[車幅方向におけるL1とL2]
 本発明の衝撃吸収部材を車両に用いる場合、車幅方向における、前記アウタービームの長さL1と、前記インナービームの長さL2との関係が、L1×0.5<L2<L1×2であることが好ましい。
[L1 and L2 in the vehicle width direction]
When the shock absorbing member of the present invention is used in a vehicle, the relationship between the length L1 of the outer beam and the length L2 of the inner beam in the vehicle width direction is L1×0.5<L2<L1×2. Preferably.
 より好ましい下限は、L1×0.7<L2であり、更に好ましい下限はL1×0.9<L2であり、より一層好ましい下限はL1×1.0<L2である。 A more preferable lower limit is L1×0.7<L2, a still more preferable lower limit is L1×0.9<L2, and an even more preferable lower limit is L1×1.0<L2.
 より好ましい上限は、L2<L1×1.8であり、更に好ましい上限はL2<L1×1.6であり、より一層好ましい上限はL2<L1×1.5である。 A more preferable upper limit is L2<L1×1.8, a still more preferable upper limit is L2<L1×1.6, and an even more preferable upper limit is L2<L1×1.5.
 以下に発明の実施態様を説明するが、本発明はこれに限ったものではない。
1.複合材料(一方向性テープ)
 DSM社製のEcoPaXX(登録商標)UDea PA410 CF60
  樹脂:ポリアミド610
  繊維:炭素繊維(繊維体積割合47%)
  厚み:0.25mm
Embodiments of the invention are described below, but the invention is not limited thereto.
1. Composite material (unidirectional tape)
EcoPaXX® UDea PA410 CF60 from DSM
Resin: Polyamide 610
Fiber: Carbon fiber (fiber volume ratio 47%)
Thickness: 0.25mm
2.インナービームとアウタービームの作成
 2.1 インナービーム
 上記DSM社製のEcoPaXX(登録商標)UDea PA410 CF60の複合材料(一方向性テープ)をカットして9枚積層し、プレス成形してインナービーム(繊維強化プラスチックA)を作成した。一方向性テープの繊維の配向角度は、表1に示すように積層した。表1の配向角度とは、インナービームとなったときの長手方向に対する連続繊維の配向角度である。
2. 2. Preparation of Inner Beam and Outer Beam 2.1 Inner Beam The composite material (unidirectional tape) of EcoPaXX (registered trademark) UDea PA410 CF60 manufactured by DSM was cut, laminated with nine sheets, and press-molded to form an inner beam ( A fiber-reinforced plastic A) was created. The fiber orientation angles of the unidirectional tapes were laminated as shown in Table 1. The orientation angle in Table 1 is the orientation angle of the continuous fibers with respect to the longitudinal direction when the inner beam is formed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 2.2 アウタービーム
 上記DSM社製のEcoPaXX(登録商標)UDea PA410 CF60の複合材料(一方向性テープ)をカットして22枚積層し、プレス成形してアウタービーム(繊維強化プラスチックB)を作成した。一方向性テープの繊維の配向角度は、表2に示すように積層した。表2の配向角度とは、アウタービームとなったときの長手方向に対する連続繊維の配向角度である。
2.2 Outer beam The composite material (unidirectional tape) of EcoPaXX (registered trademark) UDea PA410 CF60 manufactured by DSM was cut, laminated with 22 sheets, and press-molded to create an outer beam (fiber reinforced plastic B). did. The fiber orientation angles of the unidirectional tapes were laminated as shown in Table 2. The orientation angle in Table 2 is the orientation angle of the continuous fibers with respect to the longitudinal direction when the outer beam is formed.
 アウタービームの連続繊維は2軸方向へ配向し、アウタービームの長手方向に引いたアウタービームの中央線に対して、線対称に連続繊維が二軸方向へ配向している。 The continuous fibers of the outer beam are oriented in two axial directions, and are symmetrically oriented in the two axial directions with respect to the center line of the outer beam drawn in the longitudinal direction of the outer beam.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
3.図16に、衝撃吸収試験に利用したアウタービームとインナービームの寸法を示す。 3. FIG. 16 shows the dimensions of the outer beam and inner beam used in the impact absorption test.
 3.1 インナービーム
 インナービームの長手方向長さ1605は1000mm、天面幅1606は30mm、フランジ幅1607は10mm、立ち面高さ1608は25mmとした。
 厚みは1.8mmと均一厚みとした。複合材料(一方向性テープ)の厚みは0.25mmであるが、成形すると樹脂が流れて薄くなる。
3.1 Inner Beam The longitudinal length 1605 of the inner beam was 1000 mm, the top width 1606 was 30 mm, the flange width 1607 was 10 mm, and the standing surface height 1608 was 25 mm.
The thickness was uniform at 1.8 mm. The thickness of the composite material (unidirectional tape) is 0.25 mm, but when molded, the resin flows and becomes thinner.
 3.2 アウタービーム
 長手方向長さ1601は1000mm、天面幅1602は50mm、フランジ幅1603は10mm、立ち面高さ1604は25mmとし、短手方向の長さ(天面幅+2つのフランジ幅+ハットの開き分)は100mmとした。
 厚みは4.4mmの均一厚みとした。複合材料(一方向性テープ)の厚みは0.25mmであるが、成形すると樹脂が流れて薄くなる。
3.2 Outer beam The longitudinal length 1601 is 1000 mm, the top width 1602 is 50 mm, the flange width 1603 is 10 mm, the standing surface height 1604 is 25 mm, and the length in the short direction (top width + two flange widths + The opening of the hat) was set to 100 mm.
The thickness was set to a uniform thickness of 4.4 mm. The thickness of the composite material (unidirectional tape) is 0.25 mm, but when molded, the resin flows and becomes thinner.
 3.3 角α、角β
 インナービームの側壁と連結壁とのなす角αは90度であり、アウタービームの側壁と連結壁とのなす角βは120度である。
3.3 Angle α, Angle β
The angle α between the side wall of the inner beam and the connecting wall is 90 degrees, and the angle β between the side wall of the outer beam and the connecting wall is 120 degrees.
4.衝撃吸収部材
 アウタービームとインナービームとは、図15の1501に示す締結孔を用いて締結し、衝撃吸収部材を作成した。このとき、アウタービームとインナービームのフランジ部、天面部は接合しなかった。
4. Impact Absorbing Member The outer beam and the inner beam were fastened using the fastening holes indicated by 1501 in FIG. 15 to prepare the impact absorbing member. At this time, the flange portion and top surface portion of the outer beam and inner beam were not joined.
 衝撃吸収部材は図1に描かれた形状であり、断面ハット形状のアウタービーム101が、断面略コ字状のインナービーム102に覆い被さっている。衝撃を受けるのは図1のアウタービームの天面であり、インナービーム、及びアウタービームの開断面は、衝撃を受ける側とは反対側に開口している。 The impact absorbing member has the shape illustrated in FIG. 1, in which an outer beam 101 with a hat-shaped cross section covers an inner beam 102 with a substantially U-shaped cross section. It is the top surface of the outer beam in FIG. 1 that receives the impact, and the open cross-sections of the inner beam and the outer beam are open on the side opposite to the side that receives the impact.
[3点曲げ撓み試験における破壊撓み]
 上記得られた図1に描かれている衝撃吸収部材を3点曲げ撓み試験した。3点曲げ撓み試験における破壊撓みは、万能材料試験機(インストロン社製、インストロン5892)を使用し、3点曲げスパンが500mm(図7の701)、幅100mm(アウタービームの短手方向長さ)で試験した。試験片を室温下で速度2mm/minで3点曲げ撓み試験を行い、得られた応力-歪線図から破壊撓みを求めた。
[Breaking deflection in 3-point bending deflection test]
A three-point bending deflection test was performed on the impact absorbing member obtained above and depicted in FIG. The breaking deflection in the three-point bending deflection test was measured using a universal material testing machine (Instron 5892, manufactured by Instron) with a three-point bending span of 500 mm (701 in FIG. 7) and a width of 100 mm (the lateral direction of the outer beam). length) was tested. A test piece was subjected to a three-point bending deflection test at room temperature at a speed of 2 mm/min, and the fracture deflection was obtained from the resulting stress-strain diagram.
1.インナービームの3点曲げ撓み試験
 インナービームの3点曲げ撓み試験における破壊撓みBaは、40mmであった。
2.アウタービームの3点曲げ撓み試験
 アウタービームの3点曲げ撓み試験における破壊撓みBbは、155mmであった。
3.衝撃吸収部材の3点曲げ撓み試験
 衝撃吸収部材の3点曲げ撓み試験における、反力のピーク値R1は、21kNであり、衝撃吸収部材の3点曲げ撓み試験における、(撓み値がBa×2である)撓み80mmのときの反力R2は、8.5kNであった。結果を、図2に示す。
 なお、図2の衝撃吸収部材のインナービームが破壊された撓み値は35mmであり、Baの値(40mm)よりも小さい値である。これは、インナービームがアウタービームに覆われたため、インナービームの中央部に応力が集中したためである。
1. Three-Point Bending Deflection Test of Inner Beam The breaking deflection Ba in the three-point bending deflection test of the inner beam was 40 mm.
2. Three-Point Bending Deflection Test of Outer Beam The breaking deflection Bb in the three-point bending deflection test of the outer beam was 155 mm.
3. 3-point bending deflection test of shock absorbing member In the 3-point bending deflection test of the shock absorbing member, the peak value R1 of the reaction force is 21 kN. ), the reaction force R2 at a deflection of 80 mm was 8.5 kN. Results are shown in FIG.
The deflection value at which the inner beam of the shock absorbing member of FIG. 2 is destroyed is 35 mm, which is smaller than the value of Ba (40 mm). This is because the inner beam was covered with the outer beam, and stress was concentrated in the central portion of the inner beam.
 本発明の衝撃吸収部材は、例えば、車両前後方向に延在する車両用の衝撃吸収部材として用いることができる。 The impact absorbing member of the present invention can be used, for example, as a vehicle impact absorbing member extending in the longitudinal direction of the vehicle.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2021年2月16日出願の日本特許出願(特願2021-022629)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2021-022629) filed on February 16, 2021, the contents of which are incorporated herein by reference.
101:アウタービーム
102:インナービーム
201:初期反力
202:インナービームの破断点
203:アウタービームは破断することなく、衝撃を吸収している。
θ:アウタービームの連続繊維の配向角度
L1:車幅方向における、アウタービームの長さL1
L2:車幅方向における、インナービームの長さL2
7:試験片
8:試験片
9:試験片
701:3点曲げ撓み試験における支点間距離
801:3点曲げ撓み試験における支点間距離
901:3点曲げ撓み試験における支点間距離
702及び703:一対の支持体
802及び803:一対の支持体
902及び903:一対の支持体
704:圧子
804:圧子
904:圧子
F:荷重
1001:アウタービームの側壁
1002:アウタービームの連結壁
1003:アウタービームのフランジ
1004:インナービームの側壁
1005:インナービームの連結壁
1006:アウタービームのフランジ
α:インナービームの側壁と連結壁とのなす角
β:アウタービームの側壁と連結壁とのなす角
1101:インナービームとアウタービームの間にある隙間
1501:締結孔
1601:1000mm
1602:50mm
1603:10mm
1604:25mm
1605:1000mm
1606:30mm
1607:10mm
1608:25mm

 
101: Outer beam 102: Inner beam 201: Initial reaction force 202: Breaking point of inner beam 203: The outer beam absorbs the impact without breaking.
θ: orientation angle of continuous fibers of outer beam L1: length L1 of outer beam in vehicle width direction
L2: Inner beam length L2 in the vehicle width direction
7: Specimen 8: Specimen 9: Specimen 701: Distance 801 between fulcrums in 3-point bending test: Distance 901 between fulcrums in 3-point bending test: Distance 702 and 703 between fulcrums in 3-point bending test: One pair Supports 802 and 803: A pair of supports 902 and 903: A pair of supports 704: Indenter 804: Indenter 904: Indenter F: Load 1001: Side wall of outer beam 1002: Connecting wall of outer beam 1003: Flange of outer beam 1004: side wall of inner beam 1005: connecting wall of inner beam 1006: flange of outer beam α: angle between side wall of inner beam and connecting wall β: angle between side wall of outer beam and connecting wall 1101: with inner beam Gap 1501 between outer beams: fastening hole 1601: 1000 mm
1602: 50mm
1603: 10mm
1604: 25mm
1605: 1000mm
1606: 30mm
1607: 10mm
1608: 25mm

Claims (20)

  1.  アウタービームとインナービームとを備えた衝撃吸収部材であって、
     前記インナービームは繊維強化プラスチックAであり、
     下記式(1)及び(2)を満たす衝撃吸収部材。
     Ba<Bb        (1)
     R1×0.1<R2    (2)
    ただし、
     Ba:インナービームの3点曲げ撓み試験における破壊撓み
     Bb:アウタービームの3点曲げ撓み試験における破壊撓み
     R1:衝撃吸収部材の3点曲げ撓み試験における、反力のピーク値
     R2:衝撃吸収部材の3点曲げ撓み試験において、撓み値がBa×2となるときの反力
    A shock absorbing member comprising an outer beam and an inner beam,
    The inner beam is fiber reinforced plastic A,
    A shock absorbing member that satisfies the following formulas (1) and (2).
    Ba<Bb (1)
    R1×0.1<R2 (2)
    however,
    Ba: Breaking deflection of inner beam in 3-point bending deflection test Bb: Breaking deflection of outer beam in 3-point bending deflection test R1: Peak value of reaction force in 3-point bending deflection test of shock absorbing member R2: Impact absorbing member In the three-point bending deflection test, the reaction force when the deflection value is Ba × 2
  2.  前記Baは100mm未満である、請求項1に記載の衝撃吸収部材。 The impact absorbing member according to claim 1, wherein said Ba is less than 100 mm.
  3.  前記インナービームは開断面形状を備える、請求項1又は2のいずれか1項に記載の衝撃吸収部材。 The impact absorbing member according to claim 1 or 2, wherein the inner beam has an open cross-sectional shape.
  4.  前記インナービームは衝撃を受ける側とは反対側に開口する開断面形状を備える、請求項3に記載の衝撃吸収部材。 The impact absorbing member according to claim 3, wherein the inner beam has an open cross-sectional shape that opens on the side opposite to the side receiving the impact.
  5.  前記アウタービームは開断面形状を備え、前記アウタービームは前記インナービームの少なくとも一部を覆っている請求項3又は4のいずれか1項に記載の衝撃吸収部材。 The impact absorbing member according to any one of claims 3 and 4, wherein the outer beam has an open cross-sectional shape, and the outer beam covers at least part of the inner beam.
  6.  前記アウタービームは衝撃を受ける側とは反対側に開口する開断面形状を備える、請求項5に記載の衝撃吸収部材。 The shock absorbing member according to claim 5, wherein the outer beam has an open cross-sectional shape that opens on the side opposite to the side that receives the impact.
  7.  衝撃を受けたとき、前記インナービームの開断面が開く速度よりも、前記アウタービームの開断面が開く速度の方が大きい、請求項6に記載の衝撃吸収部材。 The impact absorbing member according to claim 6, wherein the opening speed of the open cross section of the outer beam is higher than the opening speed of the open cross section of the inner beam when receiving an impact.
  8.  前記インナービームと前記アウタービームとの間に、隙間を有する、請求項1乃至7のいずれか1項に記載の衝撃吸収部材。 The impact absorbing member according to any one of claims 1 to 7, having a gap between the inner beam and the outer beam.
  9.  前記アウタービームは断面ハット形状であって、及び前記インナービームは断面略コ字状である、請求項5乃至8のいずれか1項に記載の衝撃吸収部材。 The impact absorbing member according to any one of claims 5 to 8, wherein the outer beam has a hat-shaped cross section, and the inner beam has a substantially U-shaped cross section.
  10.  前記インナービーム、及び前記アウタービームは、一対の側壁と、当該側壁を連結する連結壁を備えた、請求項1乃至9のいずれか1項に記載の衝撃吸収部材。 The impact absorbing member according to any one of claims 1 to 9, wherein the inner beam and the outer beam each have a pair of side walls and a connecting wall connecting the side walls.
  11.  衝撃吸収部材を長手方向に向けて断面観察したとき、前記インナービームの側壁と連結壁とのなす角αと、前記アウタービームの側壁と連結壁とのなす角βとの関係が、α<βを満たす、請求項10に記載の衝撃吸収部材。 When observing the cross-section of the shock absorbing member in the longitudinal direction, the relationship between the angle α between the side wall of the inner beam and the connecting wall and the angle β between the side wall of the outer beam and the connecting wall is α<β. 11. The impact absorbing member according to claim 10, which satisfies:
  12.  前記インナービームは連続繊維で強化された繊維強化プラスチックAである、請求項1乃至11のいずれか1項に記載の衝撃吸収部材。 The impact absorbing member according to any one of claims 1 to 11, wherein the inner beam is fiber-reinforced plastic A reinforced with continuous fibers.
  13.  前記インナービームに含まれる連続繊維は少なくともインナービームの長手方向に配向し、
     前記アウタービームは連続繊維で補強された繊維強化プラスチックBであって、アウタービームの長手方向に対して、アウタービームに含まれる連続繊維の配向角度が+10度以上+80度以下である、請求項12に記載の衝撃吸収部材。
    continuous fibers contained in the inner beam are oriented at least in the longitudinal direction of the inner beam;
    12. The outer beam is made of fiber-reinforced plastic B reinforced with continuous fibers, and the orientation angle of the continuous fibers contained in the outer beam is +10 degrees or more and +80 degrees or less with respect to the longitudinal direction of the outer beams. The shock absorbing member according to .
  14.  前記アウタービーム及び前記インナービームは圧縮成形体である、請求項13に記載の衝撃吸収部材。 The impact absorbing member according to claim 13, wherein the outer beam and the inner beam are compression-molded bodies.
  15.  前記インナービームは不連続繊維で強化された繊維強化プラスチックAである、請求項1乃至11のいずれか1項に記載の衝撃吸収部材。 The impact absorbing member according to any one of claims 1 to 11, wherein the inner beam is fiber reinforced plastic A reinforced with discontinuous fibers.
  16.  前記アウタービームは金属である、請求項15に記載の衝撃吸収部材。 The impact absorbing member according to claim 15, wherein the outer beam is metal.
  17.  前記衝撃吸収部材は、車両前後方向に延在する車両用の衝撃吸収部材である、請求項1乃至16のいずれか1項に記載の衝撃吸収部材。 The impact absorbing member according to any one of claims 1 to 16, wherein the impact absorbing member is a vehicle impact absorbing member extending in the longitudinal direction of the vehicle.
  18.  車幅方向における、前記アウタービームの長さL1と、前記インナービームの長さL2との関係が、
     L1×0.5<L2<L1×2
    である、請求項17に記載の衝撃吸収部材。
    The relationship between the length L1 of the outer beam and the length L2 of the inner beam in the vehicle width direction is
    L1×0.5<L2<L1×2
    18. The impact absorbing member according to claim 17, wherein
  19.  アウタービームとインナービームとを備えた衝撃吸収部材であって、
     前記インナービームは繊維強化プラスチックAであり、
     前記インナービーム、及び前記アウタービームは開断面形状を備え、前記アウタービームは前記インナービームの少なくとも一部を覆う、
     衝撃吸収部材。
    A shock absorbing member comprising an outer beam and an inner beam,
    The inner beam is fiber reinforced plastic A,
    said inner beam and said outer beam having an open cross-sectional shape, said outer beam covering at least a portion of said inner beam;
    Shock absorbing member.
  20.  前記インナービームと前記アウタービームとの間に、隙間を有する、請求項19に記載の衝撃吸収部材。 The impact absorbing member according to claim 19, having a gap between the inner beam and the outer beam.
PCT/JP2022/004561 2021-02-16 2022-02-04 Impact-absorbing member WO2022176661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022001112.2T DE112022001112T5 (en) 2021-02-16 2022-02-04 Shock absorption element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-022629 2021-02-16
JP2021022629A JP2024075795A (en) 2021-02-16 2021-02-16 Shock absorbing materials

Publications (1)

Publication Number Publication Date
WO2022176661A1 true WO2022176661A1 (en) 2022-08-25

Family

ID=82930455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004561 WO2022176661A1 (en) 2021-02-16 2022-02-04 Impact-absorbing member

Country Status (3)

Country Link
JP (1) JP2024075795A (en)
DE (1) DE112022001112T5 (en)
WO (1) WO2022176661A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022455U (en) * 1983-07-22 1985-02-15 ダイハツ工業株式会社 resin bumper
JP2008504162A (en) * 2004-06-25 2008-02-14 シエイプ コーポレイション Vehicle bumper beam
JP2008045736A (en) * 2006-07-19 2008-02-28 Nissan Motor Co Ltd Resin member, and method for manufacturing the same
JP2010264875A (en) * 2009-05-14 2010-11-25 Kobe Steel Ltd Bumper structure
JP2013212731A (en) * 2012-03-30 2013-10-17 Fuji Heavy Ind Ltd Vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596373B2 (en) 1999-09-20 2004-12-02 マツダ株式会社 Body frame structure
TWI414543B (en) 2006-02-24 2013-11-11 Toray Industries Fiber reinforced thermoplastic resin molded body, molding material, and process for manufacturing the same
JP5436700B2 (en) 2011-02-01 2014-03-05 帝人株式会社 Random mats and fiber reinforced composite materials
CN103764729B (en) 2011-08-31 2017-04-19 帝人株式会社 Molded body having rising surface, and method for producing same
US9193840B2 (en) 2012-09-14 2015-11-24 Teijin Limited Carbon fiber composite material
US8829103B2 (en) 2012-09-14 2014-09-09 Teijin Limited Carbon fiber composite material
US9909253B2 (en) 2013-06-26 2018-03-06 Teijin Limited Random mat, shaped product of fiber reinforced composite material, and carbon fiber mat
JP2015141473A (en) 2014-01-27 2015-08-03 キヤノン株式会社 Server system, method for controlling server system, and program
BR112018076526A2 (en) 2016-06-20 2019-04-02 Compagnie Plastic Omnium subset of automotive vehicle.
JP7051540B2 (en) 2018-03-30 2022-04-11 ケイミュー株式会社 Manufacturing method of flat roofing material
JP2021022629A (en) 2019-07-26 2021-02-18 株式会社Nsc Etching device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022455U (en) * 1983-07-22 1985-02-15 ダイハツ工業株式会社 resin bumper
JP2008504162A (en) * 2004-06-25 2008-02-14 シエイプ コーポレイション Vehicle bumper beam
JP2008045736A (en) * 2006-07-19 2008-02-28 Nissan Motor Co Ltd Resin member, and method for manufacturing the same
JP2010264875A (en) * 2009-05-14 2010-11-25 Kobe Steel Ltd Bumper structure
JP2013212731A (en) * 2012-03-30 2013-10-17 Fuji Heavy Ind Ltd Vehicle

Also Published As

Publication number Publication date
DE112022001112T5 (en) 2024-02-22
JP2024075795A (en) 2024-06-05

Similar Documents

Publication Publication Date Title
EP3509882B1 (en) Composite vehicle door components formed by sheet molding compound-resin transfer molding assemblies
JP4420830B2 (en) Shock absorbing member
EP3275769B1 (en) Resin structure and vehicle components
WO2013021485A1 (en) Seat back frame for vehicle and method for manufacturing same
JP4118264B2 (en) Shock absorbing member
JP6801825B2 (en) Structural members for vehicles
JP2006200702A (en) Shock absorbing member
JP4583775B2 (en) Shock absorber for automobile
US20150021941A1 (en) Deformation element, in particular for bumpers on motor vehicles
WO2022176661A1 (en) Impact-absorbing member
JP2014024394A (en) Vehicle bumper beam
WO2022004221A1 (en) Impact absorbing structure
JP4118263B2 (en) Shock absorber for automobile
EP3636517A1 (en) Safety cabin for a residential or camper van with deformation elements
JP6693605B1 (en) Vehicle structural member
US11541933B2 (en) Automotive structural member
JP2018122780A (en) Automobile hood
JP6617859B1 (en) Structural members for vehicles
JP2006207679A (en) Shock absorbing member manufacturing method
US20220169097A1 (en) Composite vehicle components formed of sheet molding compound reinforced with continuous fibers
JP6700123B2 (en) Center pillar structure made of fiber reinforced resin
JP2006188141A (en) Shock absorbing member
JP2019182166A (en) Vehicle structure member
JP4467378B2 (en) Shock absorbing structure
JP7087768B2 (en) Structural members for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022001112

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP