WO2022174365A1 - Radio frequency arrangement for aip/aob - Google Patents

Radio frequency arrangement for aip/aob Download PDF

Info

Publication number
WO2022174365A1
WO2022174365A1 PCT/CN2021/076674 CN2021076674W WO2022174365A1 WO 2022174365 A1 WO2022174365 A1 WO 2022174365A1 CN 2021076674 W CN2021076674 W CN 2021076674W WO 2022174365 A1 WO2022174365 A1 WO 2022174365A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
antenna
frequency arrangement
layer
mold layer
Prior art date
Application number
PCT/CN2021/076674
Other languages
French (fr)
Inventor
Alexander Dyck
Dominic Maurath
Ezio Perrone
Timo KORDASS
Jie Peng
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to CN202180039718.XA priority Critical patent/CN115699274A/en
Priority to PCT/CN2021/076674 priority patent/WO2022174365A1/en
Publication of WO2022174365A1 publication Critical patent/WO2022174365A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device

Definitions

  • the present disclosure relates to the field of integration of RF-IC (radio frequency integrated circuit) and antenna feeds and antennas in AiP/AoB (Antenna in Package /Antenna on board) systems.
  • RF-IC radio frequency integrated circuit
  • AiP/AoB Antenna in Package /Antenna on board
  • the present disclosure relates to a radio frequency arrangement and a radio frequency arrangement array and a method for producing such devices. More particularly, the disclosure relates to selective metallized 3D feed for antenna and encapsulation.
  • AiP/AoB technology can reduce the size of a wireless system significantly. Since the antenna in an AiP/AoB solution is closer to the RFIC, the transmission losses are lower, which helps to improve the transmitter efficiency and the receiver noise figure. In addition, the AiP/AoB solution reduces system and assembly cost and time to market. The development of AiP/AoB technology has been driven by the great demand for better antenna solutions to single-chip radios and radars. By using different packaging approaches on wafer and panel level (Pillars or BGAs) , antenna and/or antenna feed can be separated from IC-package.
  • PCBs printed circuit boards
  • a basic idea of this disclosure is to combine the encapsulation of the IC with the antenna and antenna feed through selective metallization.
  • the idea is to use the encapsulation, i.e. molding, also for feed antenna structures and to use the encapsulation, i.e. molding, also for the signal connection.
  • This novel approach results in a low cost implementation of the antenna with a low cost lid over frame, where the frame can be part of the mold.
  • This novel solution is usable for both mounting approaches: face-up and face-down (flip-chip) IC and is scalable for antenna arrays.
  • the novel solution described in this disclosure allows a high level of integration between RF-IC (integrated circuit) and antenna feeds and antennas in the AiP/AoB systems.
  • the key novelty of this approach is that it has modular scalable antenna array size together with a selective 3D metallization.
  • This novel approach also enables the integration of both, face-up and face-down/flip-chip RF-ICs. It extends the encapsulation with signal forwarding.
  • the basic concept of this disclosure is a novel combination of 3D-molded-interconnect device (MID) antenna-and feed-structures which enable a modular scalable build-up of antenna arrays.
  • MID 3D-molded-interconnect device
  • AoB/AiP can be implemented.
  • the flip-chip or face-up RF IC can be mounted on a carrier, and embedded in an encapsulation (mold material) with through-mold vias (TMVs) which can be placed to support an upper single-side-closed frame which serves as an antenna feed as well as carrier antenna elements on top.
  • TMVs through-mold vias
  • a single-side closed frame allows for implementing air cavities which enable higher gain and efficiency.
  • the disclosure relates to a radio frequency arrangement, comprising: a carrier board; a radio frequency integrated circuit (RF IC) arranged on the carrier board; and a mold layer encapsulating the RF IC, wherein the mold layer comprises an additive material, wherein the additive material is locally convertible into catalytically sensitive seeds by a laser beam, the catalytically sensitive seeds being configured for catalytic reception of conductive material, wherein the additive material comprises a catalytically sensitive seed carrying a metallization layer, the metallization layer forming an antenna feeding structure.
  • RF IC radio frequency integrated circuit
  • Such a radio frequency arrangement allows a high level of integration between RF IC and antenna feeds and antennas in AiP/AoB systems.
  • the radio frequency arrangement provides the advantage of a modular scalable antenna array size together with the selective 3D metallization. This radio frequency arrangement advantageously extends the encapsulation of RF IC with signal forwarding.
  • the catalytically sensitive seeds comprise a micro-rough surface interacting with the metallization layer to ensure an adhesion of the metallization layer.
  • the metallization layer can be flexible arranged in all dimensions providing a 3-dimensional molded interconnect device (3D-MID) with antenna- and feed-structures to enable a modular scalable build-up of antenna structures and antenna arrays.
  • 3D-MID 3-dimensional molded interconnect device
  • the radio frequency integrated circuit comprises a main surface on which at least one connection terminal of the RF IC is mounted, wherein the main surface of the RF IC faces the carrier board.
  • This arrangement correspond to flipped-chip mounting or face-down mounting of the RF IC.
  • This radio frequency arrangement hence enables the integration of face-down/flip-chip RF-ICs. It extends the encapsulation with signal forwarding.
  • the RF IC comprises a main surface on which at least one connection terminal of the RF IC is mounted, wherein the main surface of the RF IC faces opposite to the carrier board.
  • This arrangement corresponds to face-up mounting of the RF IC.
  • This approach can be applied to RF ICs that cannot be flipped.
  • This radio frequency arrangement hence enables the integration of face-up mounted RF-ICs. It extends the encapsulation with signal forwarding.
  • the metallization layer is vertically or diagonally or step wise traversing the mold layer.
  • the vertical direction is related to the carrier board surface which carries the RF IC and the mold layer.
  • Such a radio frequency arrangement provides the advantage that complex three-dimensional metallization structures and antenna feed structures can be easily formed by the laser beam.
  • the radio frequency arrangement comprises an antenna structure arranged over the mold layer.
  • Such a radio frequency arrangement provides the advantage of enabling a modular scalable build-up of antenna structures combined with 3D-MID antenna feed structures.
  • the metallization layer forms a through-mold via electrically connecting the RF IC with the antenna structure.
  • the metallization layer forms a top surface metallization on a top surface of the mold layer for electrically connecting the RF IC with the antenna structure.
  • the top surface of the mold layer is opposite to the carrier board.
  • Such a radio frequency arrangement provides a modular scalable build-up of antenna structures and antenna arrays.
  • the antenna structure is capacitively coupled with the antenna feeding structure of the mold layer.
  • Such a capacitive coupling provides higher antenna gain and efficiency.
  • the radio frequency arrangement comprises an air cavity between the antenna structure and the mold layer.
  • the air cavity enables higher gain and efficiency.
  • the radio frequency arrangement comprises: a frame layer disposed on the mold layer to form a lateral boundary of the air cavity.
  • the frame layer can be a second mold layer, e.g. a second mold layer that is different from the mold layer, e.g. without the locally convertible additive material.
  • the single-side-closed frame layer allows air cavities which enables higher gain and efficiency.
  • the radio frequency arrangement comprises: a second carrier board, mounted on the frame layer over the air cavity to form a top boundary of the air cavity, wherein the antenna structure is disposed on the second carrier board.
  • the second carrier board can be a PCB, e.g. a PCB that is thinner than the carrier board.
  • the carrier board can also be a PCB or a substrate.
  • the radio frequency arrangement can be produced with a low cost lid over frame, where the frame layer can be part of the mold layer.
  • the disclosure relates to a radio frequency arrangement array, comprising: a plurality of radio frequency arrangements according to the first aspect as described above, arranged as an array.
  • Such a radio frequency arrangement array can be efficiently scaled.
  • the radio frequency arrangement array can have a scalable antenna array size.
  • the RF arrangements can be arranged as array with a scalable array size.
  • the array of RF arrangements can form a larger antenna structure of scalable size.
  • the RF arrangement array can be separated into single RF arrangements (RF packages) after production.
  • the radio frequency arrangement array comprises: a system board carrying the plurality of radio frequency arrangements; at least one heat sink mounted on a bottom surface of the system board which bottom surface is opposite to the plurality of radio frequency arrangements; and a plurality of vias formed through the carrier board of the plurality of radio frequency arrangements and the system board, the plurality of vias thermally connecting the RF ICs of the plurality of radio frequency arrangements with the at least one heat sink.
  • Such a radio frequency arrangement array provides a modular design with an efficient cooling of the RF ICs.
  • the disclosure relates to a method for producing a radio frequency arrangement, the method comprising: arranging a RF IC on a carrier board; encapsulating the RF IC by a mold layer, wherein the mold layer comprises an additive material, wherein the additive material is locally convertible into catalytically sensitive seeds by a laser beam, the catalytically sensitive seeds being configured for catalytic reception of conductive material; locally converting the additive material into catalytically sensitive seeds by a laser beam; and catalytically receiving a metallization layer by the catalytically sensitive seeds, the metallization layer forming an antenna feeding structure.
  • Such a method allows for a production of AiP/AoB system based on radio frequency arrangements with high level of integration between RF IC and antenna feeds and antennas.
  • the method can produce radio frequency arrangements providing the advantage of a modular scalable antenna array size together with the selective 3D metallization.
  • the method allows for production of radio frequency arrangements advantageously extending the encapsulation of RF IC with signal forwarding.
  • the method comprises: arranging an antenna structure over the mold layer; and capacitively coupling the antenna feeding structure with the antenna structure.
  • Such a capacitive coupling implemented by arranging the antenna structure over the mold layer, provides higher antenna gain and efficiency.
  • Fig. 1 shows a schematic diagram illustrating an exemplary radio frequency arrangement 100 according to a first example
  • Fig. 2 shows a schematic diagram illustrating an exemplary radio frequency arrangement 200 according to a second example
  • Fig. 3 shows a schematic diagram illustrating an exemplary radio frequency arrangement array 300 according to a first example
  • Fig. 4 shows a schematic diagram illustrating a method 400 for producing a radio frequency arrangement according to the disclosure.
  • the semiconductor devices and systems described herein may, for example, be implemented in wireless communication schemes, e.g. communication schemes according to 5G or WiFi.
  • the semiconductor devices and systems may also be implemented in automotive or industrial systems, e.g. Internet of Things, etc.
  • the described semiconductor devices may be used to produce integrated circuits and/or power semiconductors and may be manufactured according to various technologies.
  • the semiconductor devices may be utilized in logic integrated circuits, analog integrated circuits, mixed signal integrated circuits, optical circuits, memory circuits and/or integrated passives.
  • antenna feed can refer to any one or all of the components involved conveying the RF electrical current into the radiating part of the antenna, where the current is converted to radiation; in a receiving part of the antenna structure or antenna system, the term ” antenna feed “refers to the parts of the system that convert the electric currents already collected from incoming radio waves into a specific voltage to current ratio (impedance) needed at the receiver.
  • antenna-in-package (AIP) and antenna-on-board (AoB) solutions are described.
  • the antenna is integrated into a package or onto a board, e.g. PCB, along with the RFIC.
  • antennas are no longer a separate component placed within the wireless device, but they are directly integrated into the package or onto a board along with other ICs.
  • an antenna is placed on a board, separate from the RF IC chipset. This approach is known as a discrete antenna approach.
  • the RF IC and the antenna are integrated into a single package or onto a board, e.g. a PCB.
  • Fig. 1 shows a schematic diagram illustrating an exemplary radio frequency arrangement 100 according to a first example.
  • the radio frequency arrangement 100 comprises: a carrier board 101; a radio frequency integrated circuit (RF IC) 102, arranged on the carrier board 101; and a mold layer 103 encapsulating the RF IC 102.
  • the mold layer 103 comprises an additive material which is locally convertible into catalytically sensitive seeds by a laser beam.
  • the catalytically sensitive seeds is configured for catalytic reception of conductive material.
  • the additive material comprises a catalytically sensitive seed carrying a metallization layer 104 which forms an antenna feeding structure 105.
  • the metallization layer 104 may not only form the antenna feeding structure 105.
  • the metallization layer 104 may also form an antenna. In general, the metallization layer 104 may form an antenna and/or an antenna feeding structure 105.
  • the radio frequency arrangement 100 provides a novel combination of 3D-molded-interconnect device (MID) antenna-and feed-structures which enable a modular scalable build-up of antenna structures and antenna arrays.
  • MID 3D-molded-interconnect device
  • 3D-MID antenna-and feed-structures combine the electrical and mechanical functions in one component.
  • the conductive structure is integrated in the housing and thus substitutes the conventional circuit board, thereby reducing weight, installation space and assembly costs.
  • substrate materials are molded, e.g. as preformed parts in single component molding with special additive plastics granulate.
  • any molding techniques may be applied, e.g. like injection molding, transfer molding, etc.
  • the additives can be converted selectively into catalytically active seeds by means of a laser beam, also referred to as laser activation.
  • a laser beam also referred to as laser activation.
  • a metallization layer 104 forming the antenna feeding structure 105 can be deposited in a subsequent chemical metallizing bath at the sites thus treated.
  • the laser beam is also responsible for producing a micro-rough surface in order to ensure adequate adhesion of the metallization layer 104 on the additive material. Since the region that is exposed to laser beam may be controlled by computer software, circuit designs and layouts can be adapted or modified in the laser activation process in shortest time and without modifying tools.
  • the catalytically sensitive seeds may comprise a micro-rough surface interacting with the metallization layer 104 to ensure an adhesion of the metallization layer 104.
  • the RF IC 102 comprises a main surface 106 on which at least one connection terminal 107 of the RF IC 102 may be mounted.
  • the main surface 106 of the RF IC 102 faces the carrier board 101. I. e. the RF IC may be flip-chip or face-down mounted on the carrier board 101.
  • the metallization layer 104 may vertically or diagonally or step wise traverse the mold layer 103.
  • MID 3D-molded-interconnect device
  • the radio frequency arrangement 100 may comprise an antenna structure 110 arranged over the mold layer 103.
  • Antenna structure 110 is the general term for any structure that forms an antenna.
  • the antenna structure 110 may for example be an antenna array, a directive antenna or an omnidirectional antenna or any other type of antenna.
  • the metallization layer 104 may forms a through-mold via 111 electrically connecting the RF IC 102 with the antenna structure 110.
  • the metallization layer 104 may form a top surface metallization on a top surface 113 of the mold layer 103 for electrically connecting the RF IC 102 with the antenna structure 110.
  • the antenna structure 110 may be capacitively coupled with the antenna feeding structure 105 of the mold layer 103.
  • Alternative couplings can be realized as well, for example impedance coupling or coupling by an impedance network, etc.
  • the radio frequency arrangement 100 may comprise an air cavity 120 between the antenna structure 110 and the mold layer 103.
  • the air cavity 120 may form the insulating layer of the capacitance for the capacitive coupling of the antenna feeding structure 105 with the antenna structure 110.
  • the radio frequency arrangement 100 may comprise a frame layer 121 disposed on the mold layer 103 to form a lateral boundary of the air cavity 120.
  • the radio frequency arrangement 100 may comprise a second carrier board 122, also referred to as a lid 122, mounted on the frame layer 121 over the air cavity 120 to form a top boundary of the air cavity 120.
  • the antenna structure 110 may be disposed on the second carrier board 122 or lid 122.
  • the thin lid 122 may be a printed-circuit board (PCB) or may be made of glass, for example.
  • the radio frequency arrangement 100 may form a molded RF IC, where the RF IC 102 may be assembled as usual and overmolded.
  • the mold 103 may be structured with through-mold vias (TMV) 111 and a top surface metallization 105 for the proximity feed of the antenna structure 110, e.g. antenna array on the top 122, which can be realized in a thin PCB and acting as a lid for the package 100.
  • TMV through-mold vias
  • the frame may be formed as a framed mold, e.g. a mold that is different from the mold layer 103 or a mold that is part of the mold layer 103.
  • the framed mold may be formed in a different production step than the mold layer 103 or in the same production step.
  • Fig. 2 shows a schematic diagram illustrating an exemplary radio frequency arrangement 200 according to a second example.
  • the radio frequency arrangement 200 comprises: a carrier board 101; a radio frequency integrated circuit (RF IC) 102, arranged on the carrier board 101; and a mold layer 103 encapsulating the RF IC 102.
  • the mold layer 103 comprises an additive material which is locally convertible into catalytically sensitive seeds by a laser beam.
  • the catalytically sensitive seeds is configured for catalytic reception of conductive material.
  • the additive material comprises a catalytically sensitive seed carrying a metallization layer 104 which forms an antenna feeding structure 105.
  • the metallization layer 104 may not only form the antenna feeding structure 105.
  • the metallization layer 104 may also form an antenna. In general, the metallization layer 104 may form an antenna and/or an antenna feeding structure 105.
  • the radio frequency arrangement 200 corresponds to the radio frequency arrangement 100 described above with respect to Figure 1 but is different in that the RF IC is not flip-chip mounted on the carrier board 101 but is face-up mounted on the carrier board 101. That means, the RF IC 102 comprises a main surface 106 on which at least one connection terminal 107 of the RF IC 102 may be mounted, wherein the main surface 106 of the RF IC 102 faces opposite to the carrier board 101.
  • the radio frequency arrangement 200 may form a molded RF IC, e.g. from an RFIC 102 which cannot be flipped.
  • the RFIC 102 may be assembled as usual face up and overmolded.
  • the mold 103 may be structured with through-mold vias (TMV) 111 as signal connection and a top surface metallization 105, 104 for the proximity feed of an antenna structure 110, e.g. antenna array on the top 122, which can be realized in a thin PCB and acting as a lid for the package 200.
  • TMV through-mold vias
  • a composite material e.g. “Duroplast”
  • Fig. 3 shows a schematic diagram illustrating an exemplary radio frequency arrangement array 300 according to a first example.
  • the radio frequency arrangement array 300 comprises a plurality of radio frequency arrangements, e.g. radio frequency arrangements 100 according to the first example described above with respect to Figure 1 and/or radio frequency arrangements 200 according to the second example described above with respect to Figure 2. These radio frequency arrangements 100 or 200 are arranged as an array.
  • the radio frequency arrangement array 300 may comprise only RF arrangements 100 according to the first example or only RF arrangements 200 according to the second example or a mixture of both RF arrangements 100, 200.
  • the radio frequency arrangement array 300 may comprise: a system board 301 carrying the plurality of radio frequency arrangements 100, 200; at least one heat sink 302 mounted on a bottom surface 301a of the system board 301 which bottom surface 301a is opposite to the plurality of radio frequency arrangements 100, 200; and a plurality of vias 303 formed through the carrier board 101 of the plurality of radio frequency arrangements 100, 200 and the system board 301.
  • the plurality of vias 303 thermally connect the RF ICs 102 of the plurality of radio frequency arrangements 100, 200 with the at least one heat sink 302.
  • the radio frequency arrangement array 300 may form an array of molded RF ICs 102 which can be scaled according to design requirements.
  • the antenna-in-package (AiP) submodules 100, 200 can be arranged as array with scalable array size.
  • Fig. 4 shows a schematic diagram illustrating a method 400 for producing a radio frequency arrangement according to the disclosure.
  • the method 400 comprises: arranging 401 a radio frequency integrated circuit, RF IC, 102 on a carrier board 101, e.g. as shown in Figure 1 or 2; encapsulating 402 the RF IC 102 by a mold layer 103, wherein the mold layer 103 comprises an additive material, wherein the additive material is locally convertible into catalytically sensitive seeds by a laser beam, the catalytically sensitive seeds being configured for catalytic reception of conductive material, e.g. as described above with respect to Figures 1 and 2; locally converting 403 the additive material into catalytically sensitive seeds by a laser beam, e.g.
  • the method 400 may further comprise: arranging an antenna structure 110 over the mold layer 103, e.g. as described above with respect to Figures 1 and 2; and capacitively coupling the antenna feeding structure 105 with the antenna structure 110, e.g. as described above with respect to Figures 1 and 2.
  • the method 400 may comprise further production steps to produce the radio frequency arrangements 100, 200 in accordance with the functionalities described above with respect to Figures 1 and 2.
  • the method 400 may be used not only to produce the radio frequency arrangements 100, 200 described above with respect to Figures 1 and 2 but also to produce the radio frequency arrangement array 300 as described above with respect to Figure 3.

Abstract

The present disclosure relates to a radio frequency arrangement (100, 200), comprising: a carrier board (101); a radio frequency integrated circuit, RF IC (102), arranged on the carrier board (101); and a mold layer (103) encapsulating the RF IC (102), wherein the mold layer (103) comprises an additive material, wherein the additive material is locally convertible into catalytically sensitive seeds by a laser beam, the catalytically sensitive seeds being configured for catalytic reception of conductive material, wherein the additive material comprises a catalytically sensitive seed carrying a metallization layer (104), the metallization layer (104) forming an antenna feeding structure (105).

Description

Radio frequency arrangement for AiP/AoB TECHNICAL FIELD
The present disclosure relates to the field of integration of RF-IC (radio frequency integrated circuit) and antenna feeds and antennas in AiP/AoB (Antenna in Package /Antenna on board) systems. In particular the present disclosure relates to a radio frequency arrangement and a radio frequency arrangement array and a method for producing such devices. More particularly, the disclosure relates to selective metallized 3D feed for antenna and encapsulation.
BACKGROUND
AiP/AoB technology can reduce the size of a wireless system significantly. Since the antenna in an AiP/AoB solution is closer to the RFIC, the transmission losses are lower, which helps to improve the transmitter efficiency and the receiver noise figure. In addition, the AiP/AoB solution reduces system and assembly cost and time to market. The development of AiP/AoB technology has been driven by the great demand for better antenna solutions to single-chip radios and radars. By using different packaging approaches on wafer and panel level (Pillars or BGAs) , antenna and/or antenna feed can be separated from IC-package.
Current AiP/AoB systems have the disadvantage, that the signal has a comparatively long way from IC to antenna and/or antenna feed. The antenna is often implemented by using printed circuit boards (PCBs) , where performance is impacted by limitation of available layers, separation of the layers, as well as material losses at high frequency.
SUMMARY
It is the object of this disclosure to provide a solution for an AiP/AoB system without the above described disadvantages. Thus, it is an object of the disclosure to provide a solution for an AiP/AoB system with reduced path size between RF IC and antenna and/or antenna feed resulting in lower transmission losses, improved transmitter efficiency as well as improved receiver noise figure.
This object is achieved by the features of the independent claims. Further implementation forms are apparent from the dependent claims, the description and the figures.
A basic idea of this disclosure is to combine the encapsulation of the IC with the antenna and antenna feed through selective metallization. The idea is to use the encapsulation, i.e. molding, also for feed antenna structures and to use the encapsulation, i.e. molding, also for the signal connection. This novel approach results in a low cost implementation of the antenna with a low cost lid over frame, where the frame can be part of the mold. This novel solution is usable for both mounting approaches: face-up and face-down (flip-chip) IC and is scalable for antenna arrays.
The novel solution described in this disclosure allows a high level of integration between RF-IC (integrated circuit) and antenna feeds and antennas in the AiP/AoB systems. The key novelty of this approach is that it has modular scalable antenna array size together with a selective 3D metallization. This novel approach also enables the integration of both, face-up and face-down/flip-chip RF-ICs. It extends the encapsulation with signal forwarding.
The basic concept of this disclosure is a novel combination of 3D-molded-interconnect device (MID) antenna-and feed-structures which enable a modular scalable build-up of antenna arrays. Through combination of selective 3D-metallized chip-encapsulation, and an antenna frame with vertical feeds, a modular scalable and efficient AoB/AiP can be implemented. The flip-chip or face-up RF IC can be mounted on a carrier, and embedded in an encapsulation (mold material) with through-mold vias (TMVs) which can be placed to support an upper single-side-closed frame which serves as an antenna feed as well as carrier antenna elements on top. A single-side closed frame allows for implementing air cavities which enable higher gain and efficiency.
In order to describe the invention in detail, the following terms, abbreviations and notations will be used:
AiP           Antenna in Package
AoB           Antenna on board
RF            radio frequency
IC            integrated circuit
PCB           printed circuit board
TMV           through-mold via
MID           molded interconnect device
BGA           ball grid array
According to a first aspect, the disclosure relates to a radio frequency arrangement, comprising: a carrier board; a radio frequency integrated circuit (RF IC) arranged on the carrier board; and a mold layer encapsulating the RF IC, wherein the mold layer comprises an additive material, wherein the additive material is locally convertible into catalytically sensitive seeds by a laser beam, the catalytically sensitive seeds being configured for catalytic reception of conductive material, wherein the additive material comprises a catalytically sensitive seed carrying a metallization layer, the metallization layer forming an antenna feeding structure.
Such a radio frequency arrangement allows a high level of integration between RF IC and antenna feeds and antennas in AiP/AoB systems. The radio frequency arrangement provides the advantage of a modular scalable antenna array size together with the selective 3D metallization. This radio frequency arrangement advantageously extends the encapsulation of RF IC with signal forwarding.
In an exemplary implementation of the radio frequency arrangement, the catalytically sensitive seeds comprise a micro-rough surface interacting with the metallization layer to ensure an adhesion of the metallization layer.
This provides the advantage that the metallization layer can be flexible arranged in all dimensions providing a 3-dimensional molded interconnect device (3D-MID) with antenna- and feed-structures to enable a modular scalable build-up of antenna structures and antenna arrays.
In an exemplary implementation of the radio frequency arrangement, the radio frequency integrated circuit comprises a main surface on which at least one connection terminal of the RF IC is mounted, wherein the main surface of the RF IC faces the carrier board.
This arrangement correspond to flipped-chip mounting or face-down mounting of the RF IC. This radio frequency arrangement hence enables the integration of face-down/flip-chip RF-ICs. It extends the encapsulation with signal forwarding.
In an exemplary implementation of the radio frequency arrangement, the RF IC comprises a main surface on which at least one connection terminal of the RF IC is mounted, wherein the main surface of the RF IC faces opposite to the carrier board.
This arrangement corresponds to face-up mounting of the RF IC. This approach can be applied to RF ICs that cannot be flipped. This radio frequency arrangement hence enables the integration of face-up mounted RF-ICs. It extends the encapsulation with signal forwarding.
In an exemplary implementation of the radio frequency arrangement, the metallization layer is vertically or diagonally or step wise traversing the mold layer.
These are the structures that can be formed by the laser beam in contrast to structures fully enclosed within the mold layer. The vertical direction is related to the carrier board surface which carries the RF IC and the mold layer.
Such a radio frequency arrangement provides the advantage that complex three-dimensional metallization structures and antenna feed structures can be easily formed by the laser beam.
In an exemplary implementation, the radio frequency arrangement comprises an antenna structure arranged over the mold layer.
Such a radio frequency arrangement provides the advantage of enabling a modular scalable build-up of antenna structures combined with 3D-MID antenna feed structures.
In an exemplary implementation of the radio frequency arrangement, the metallization layer forms a through-mold via electrically connecting the RF IC with the antenna structure.
This provides the advantage that the through-mold vias can be placed to support an upper single-side-closed frame which serves as an antenna feed as well as carriers antenna elements on top. Through combination of selective 3D-metallized chip-encapsulation, and an antenna frame with vertical feeds, a modular scalable and efficient AoB/AiP can be implemented.
In an exemplary implementation of the radio frequency arrangement, the metallization layer forms a top surface metallization on a top surface of the mold layer for electrically  connecting the RF IC with the antenna structure. The top surface of the mold layer is opposite to the carrier board.
Such a radio frequency arrangement provides a modular scalable build-up of antenna structures and antenna arrays.
In an exemplary implementation of the radio frequency arrangement, the antenna structure is capacitively coupled with the antenna feeding structure of the mold layer.
Such a capacitive coupling provides higher antenna gain and efficiency.
In an exemplary implementation, the radio frequency arrangement comprises an air cavity between the antenna structure and the mold layer.
The air cavity enables higher gain and efficiency.
In an exemplary implementation, the radio frequency arrangement comprises: a frame layer disposed on the mold layer to form a lateral boundary of the air cavity.
The frame layer can be a second mold layer, e.g. a second mold layer that is different from the mold layer, e.g. without the locally convertible additive material.
The single-side-closed frame layer allows air cavities which enables higher gain and efficiency.
In an exemplary implementation, the radio frequency arrangement comprises: a second carrier board, mounted on the frame layer over the air cavity to form a top boundary of the air cavity, wherein the antenna structure is disposed on the second carrier board.
The second carrier board can be a PCB, e.g. a PCB that is thinner than the carrier board. The carrier board can also be a PCB or a substrate.
This provides the advantage, that the antenna feed structures are protected by the second carrier board that may function as a lid. The radio frequency arrangement can be produced with a low cost lid over frame, where the frame layer can be part of the mold layer.
According to a second aspect, the disclosure relates to a radio frequency arrangement array, comprising: a plurality of radio frequency arrangements according to the first aspect as described above, arranged as an array.
Such a radio frequency arrangement array can be efficiently scaled. The radio frequency arrangement array can have a scalable antenna array size.
The RF arrangements can be arranged as array with a scalable array size. The array of RF arrangements can form a larger antenna structure of scalable size. Alternatively, the RF arrangement array can be separated into single RF arrangements (RF packages) after production.
In an exemplary implementation, the radio frequency arrangement array comprises: a system board carrying the plurality of radio frequency arrangements; at least one heat sink mounted on a bottom surface of the system board which bottom surface is opposite to the plurality of radio frequency arrangements; and a plurality of vias formed through the carrier board of the plurality of radio frequency arrangements and the system board, the plurality of vias thermally connecting the RF ICs of the plurality of radio frequency arrangements with the at least one heat sink.
Such a radio frequency arrangement array provides a modular design with an efficient cooling of the RF ICs.
According to a third aspect, the disclosure relates to a method for producing a radio frequency arrangement, the method comprising: arranging a RF IC on a carrier board; encapsulating the RF IC by a mold layer, wherein the mold layer comprises an additive material, wherein the additive material is locally convertible into catalytically sensitive seeds by a laser beam, the catalytically sensitive seeds being configured for catalytic reception of conductive material; locally converting the additive material into catalytically sensitive seeds by a laser beam; and catalytically receiving a metallization layer by the catalytically sensitive seeds, the metallization layer forming an antenna feeding structure.
Such a method allows for a production of AiP/AoB system based on radio frequency arrangements with high level of integration between RF IC and antenna feeds and antennas. The method can produce radio frequency arrangements providing the advantage of a modular scalable antenna array size together with the selective 3D  metallization. The method allows for production of radio frequency arrangements advantageously extending the encapsulation of RF IC with signal forwarding.
In an exemplary implementation, the method comprises: arranging an antenna structure over the mold layer; and capacitively coupling the antenna feeding structure with the antenna structure.
Such a capacitive coupling, implemented by arranging the antenna structure over the mold layer, provides higher antenna gain and efficiency.
BRIEF DESCRIPTION OF THE DRAWINGS
Further embodiments of the invention will be described with respect to the following figures, in which:
Fig. 1 shows a schematic diagram illustrating an exemplary radio frequency arrangement 100 according to a first example;
Fig. 2 shows a schematic diagram illustrating an exemplary radio frequency arrangement 200 according to a second example;
Fig. 3 shows a schematic diagram illustrating an exemplary radio frequency arrangement array 300 according to a first example; and
Fig. 4 shows a schematic diagram illustrating a method 400 for producing a radio frequency arrangement according to the disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
In the following detailed description, reference is made to the accompanying drawings, which form a part thereof, and in which is shown by way of illustration specific aspects in which the disclosure may be practiced. It is understood that other aspects may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims.
It is understood that comments made in connection with a described method may also hold true for a corresponding device or system configured to perform the method and vice versa. For example, if a specific method step is described, a corresponding device may include a unit to perform the described method step, even if such unit is not explicitly described or illustrated in the figures. Further, it is understood that the features of the various exemplary aspects described herein may be combined with each other, unless specifically noted otherwise.
The semiconductor devices and systems described herein may, for example, be implemented in wireless communication schemes, e.g. communication schemes according to 5G or WiFi. The semiconductor devices and systems may also be implemented in automotive or industrial systems, e.g. Internet of Things, etc. The  described semiconductor devices may be used to produce integrated circuits and/or power semiconductors and may be manufactured according to various technologies. For example, the semiconductor devices may be utilized in logic integrated circuits, analog integrated circuits, mixed signal integrated circuits, optical circuits, memory circuits and/or integrated passives.
In the following sections, antennas and antenna feeding structures are described. In a transmitting part of an antenna structure of antenna system the term ” antenna feed “can refer to any one or all of the components involved conveying the RF electrical current into the radiating part of the antenna, where the current is converted to radiation; in a receiving part of the antenna structure or antenna system, the term ” antenna feed “refers to the parts of the system that convert the electric currents already collected from incoming radio waves into a specific voltage to current ratio (impedance) needed at the receiver.
In this disclosure antenna-in-package (AIP) and antenna-on-board (AoB) solutions are described. In such solutions the antenna is integrated into a package or onto a board, e.g. PCB, along with the RFIC. In this case, antennas are no longer a separate component placed within the wireless device, but they are directly integrated into the package or onto a board along with other ICs. Traditionally, an antenna is placed on a board, separate from the RF IC chipset. This approach is known as a discrete antenna approach. In the AiP or AoB solution the RF IC and the antenna are integrated into a single package or onto a board, e.g. a PCB.
Fig. 1 shows a schematic diagram illustrating an exemplary radio frequency arrangement 100 according to a first example.
The radio frequency arrangement 100 comprises: a carrier board 101; a radio frequency integrated circuit (RF IC) 102, arranged on the carrier board 101; and a mold layer 103 encapsulating the RF IC 102. The mold layer 103 comprises an additive material which is locally convertible into catalytically sensitive seeds by a laser beam. The catalytically sensitive seeds is configured for catalytic reception of conductive material. The additive material comprises a catalytically sensitive seed carrying a metallization layer 104 which forms an antenna feeding structure 105. The metallization layer 104 may not only form the antenna feeding structure 105. The metallization layer 104 may also form an antenna. In general, the metallization layer 104 may form an antenna and/or an antenna feeding structure 105.
The radio frequency arrangement 100 provides a novel combination of 3D-molded-interconnect device (MID) antenna-and feed-structures which enable a modular scalable build-up of antenna structures and antenna arrays. Through combination of selective 3D-metallized chip-encapsulation, and an antenna frame with vertical feeds, a modular scalable and efficient AoB/AiP can be implemented.
3D-MID antenna-and feed-structures combine the electrical and mechanical functions in one component. The conductive structure is integrated in the housing and thus substitutes the conventional circuit board, thereby reducing weight, installation space and assembly costs.
In the selective metallization by laser beam or laser activation, substrate materials are molded, e.g. as preformed parts in single component molding with special additive plastics  granulate. For the molding process any molding techniques may be applied, e.g. like injection molding, transfer molding, etc. The additives can be converted selectively into catalytically active seeds by means of a laser beam, also referred to as laser activation. In a physical-chemical reaction, a metallization layer 104 forming the antenna feeding structure 105 can be deposited in a subsequent chemical metallizing bath at the sites thus treated. In addition to activation, the laser beam is also responsible for producing a micro-rough surface in order to ensure adequate adhesion of the metallization layer 104 on the additive material. Since the region that is exposed to laser beam may be controlled by computer software, circuit designs and layouts can be adapted or modified in the laser activation process in shortest time and without modifying tools.
As described above, the catalytically sensitive seeds may comprise a micro-rough surface interacting with the metallization layer 104 to ensure an adhesion of the metallization layer 104.
The RF IC 102 comprises a main surface 106 on which at least one connection terminal 107 of the RF IC 102 may be mounted. The main surface 106 of the RF IC 102 faces the carrier board 101. I. e. the RF IC may be flip-chip or face-down mounted on the carrier board 101.
The metallization layer 104 may vertically or diagonally or step wise traverse the mold layer 103. By such a design of the metallization layer 104 a novel combination of 3D-molded-interconnect device (MID) antenna-and feed-structures can be provided which enable a modular scalable build-up of antenna structures and antenna arrays.
The radio frequency arrangement 100 may comprise an antenna structure 110 arranged over the mold layer 103. Antenna structure 110 is the general term for any structure that forms an antenna. The antenna structure 110 may for example be an antenna array, a directive antenna or an omnidirectional antenna or any other type of antenna.
The metallization layer 104 may forms a through-mold via 111 electrically connecting the RF IC 102 with the antenna structure 110.
The metallization layer 104 may form a top surface metallization on a top surface 113 of the mold layer 103 for electrically connecting the RF IC 102 with the antenna structure 110.
The antenna structure 110 may be capacitively coupled with the antenna feeding structure 105 of the mold layer 103. Alternative couplings can be realized as well, for example impedance coupling or coupling by an impedance network, etc.
The radio frequency arrangement 100 may comprise an air cavity 120 between the antenna structure 110 and the mold layer 103. The air cavity 120 may form the insulating layer of the capacitance for the capacitive coupling of the antenna feeding structure 105 with the antenna structure 110.
The radio frequency arrangement 100 may comprise a frame layer 121 disposed on the mold layer 103 to form a lateral boundary of the air cavity 120.
The radio frequency arrangement 100 may comprise a second carrier board 122, also referred to as a lid 122, mounted on the frame layer 121 over the air cavity 120 to form a top boundary of the air cavity 120. The antenna structure 110 may be disposed on the second carrier board 122 or lid 122. The thin lid 122 may be a printed-circuit board (PCB) or may be made of glass, for example.
The radio frequency arrangement 100 may form a molded RF IC, where the RF IC 102 may be assembled as usual and overmolded. The mold 103 may be structured with through-mold vias (TMV) 111 and a top surface metallization 105 for the proximity feed of the antenna structure 110, e.g. antenna array on the top 122, which can be realized in a thin PCB and acting as a lid for the package 100.
The frame may be formed as a framed mold, e.g. a mold that is different from the mold layer 103 or a mold that is part of the mold layer 103. The framed mold may be formed in a different production step than the mold layer 103 or in the same production step.
Fig. 2 shows a schematic diagram illustrating an exemplary radio frequency arrangement 200 according to a second example.
The radio frequency arrangement 200 comprises: a carrier board 101; a radio frequency integrated circuit (RF IC) 102, arranged on the carrier board 101; and a mold layer 103 encapsulating the RF IC 102. The mold layer 103 comprises an additive material which is locally convertible into catalytically sensitive seeds by a laser beam. The catalytically sensitive seeds is configured for catalytic reception of conductive material. The additive material comprises a catalytically sensitive seed carrying a metallization layer 104 which  forms an antenna feeding structure 105. As described above with respect to Figure 1, the metallization layer 104 may not only form the antenna feeding structure 105. The metallization layer 104 may also form an antenna. In general, the metallization layer 104 may form an antenna and/or an antenna feeding structure 105.
The radio frequency arrangement 200 corresponds to the radio frequency arrangement 100 described above with respect to Figure 1 but is different in that the RF IC is not flip-chip mounted on the carrier board 101 but is face-up mounted on the carrier board 101. That means, the RF IC 102 comprises a main surface 106 on which at least one connection terminal 107 of the RF IC 102 may be mounted, wherein the main surface 106 of the RF IC 102 faces opposite to the carrier board 101.
The radio frequency arrangement 200 may form a molded RF IC, e.g. from an RFIC 102 which cannot be flipped. The RFIC 102 may be assembled as usual face up and overmolded. The mold 103 may be structured with through-mold vias (TMV) 111 as signal connection and a  top surface metallization  105, 104 for the proximity feed of an antenna structure 110, e.g. antenna array on the top 122, which can be realized in a thin PCB and acting as a lid for the package 200. A composite material, e.g. “Duroplast” , may be used as mold layer 103.
Fig. 3 shows a schematic diagram illustrating an exemplary radio frequency arrangement array 300 according to a first example.
The radio frequency arrangement array 300, comprises a plurality of radio frequency arrangements, e.g. radio frequency arrangements 100 according to the first example  described above with respect to Figure 1 and/or radio frequency arrangements 200 according to the second example described above with respect to Figure 2. These  radio frequency arrangements  100 or 200 are arranged as an array. The radio frequency arrangement array 300 may comprise only RF arrangements 100 according to the first example or only RF arrangements 200 according to the second example or a mixture of both  RF arrangements  100, 200.
The radio frequency arrangement array 300 may comprise: a system board 301 carrying the plurality of  radio frequency arrangements  100, 200; at least one heat sink 302 mounted on a bottom surface 301a of the system board 301 which bottom surface 301a is opposite to the plurality of  radio frequency arrangements  100, 200; and a plurality of vias 303 formed through the carrier board 101 of the plurality of  radio frequency arrangements  100, 200 and the system board 301. The plurality of vias 303 thermally connect the RF ICs 102 of the plurality of  radio frequency arrangements  100, 200 with the at least one heat sink 302.
The radio frequency arrangement array 300 may form an array of molded RF ICs 102 which can be scaled according to design requirements. The antenna-in-package (AiP) submodules 100, 200 can be arranged as array with scalable array size.
Fig. 4 shows a schematic diagram illustrating a method 400 for producing a radio frequency arrangement according to the disclosure.
The method 400 comprises: arranging 401 a radio frequency integrated circuit, RF IC, 102 on a carrier board 101, e.g. as shown in Figure 1 or 2; encapsulating 402 the RF IC 102  by a mold layer 103, wherein the mold layer 103 comprises an additive material, wherein the additive material is locally convertible into catalytically sensitive seeds by a laser beam, the catalytically sensitive seeds being configured for catalytic reception of conductive material, e.g. as described above with respect to Figures 1 and 2; locally converting 403 the additive material into catalytically sensitive seeds by a laser beam, e.g. as described above with respect to Figures 1 and 2; and catalytically receiving 404 a metallization layer 104 by the catalytically sensitive seeds, the metallization layer 104 forming an antenna and/or antenna feeding structure 105, e.g. as described above with respect to Figures 1 and 2.
The method 400 may further comprise: arranging an antenna structure 110 over the mold layer 103, e.g. as described above with respect to Figures 1 and 2; and capacitively coupling the antenna feeding structure 105 with the antenna structure 110, e.g. as described above with respect to Figures 1 and 2.
The method 400 may comprise further production steps to produce the  radio frequency arrangements  100, 200 in accordance with the functionalities described above with respect to Figures 1 and 2.
The method 400 may be used not only to produce the  radio frequency arrangements  100, 200 described above with respect to Figures 1 and 2 but also to produce the radio frequency arrangement array 300 as described above with respect to Figure 3.
While a particular feature or aspect of the disclosure may have been disclosed with respect to only one of several implementations, such feature or aspect may be combined  with one or more other features or aspects of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms "include" , "have" , "with" , or other variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term "comprise" . Also, the terms "exemplary" , "for example" and "e.g. " are merely meant as an example, rather than the best or optimal. The terms “coupled” and “connected” , along with derivatives may have been used. It should be understood that these terms may have been used to indicate that two elements cooperate or interact with each other regardless whether they are in direct physical or electrical contact, or they are not in direct contact with each other.
Although specific aspects have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific aspects shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific aspects discussed herein.
Although the elements in the following claims are recited in a particular sequence with corresponding labeling, unless the claim recitations otherwise imply a particular sequence for implementing some or all of those elements, those elements are not necessarily intended to be limited to being implemented in that particular sequence.
Many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the above teachings. Of course, those skilled in the art readily recognize that there are numerous applications of the invention beyond those described herein. While  the present invention has been described with reference to one or more particular embodiments, those skilled in the art recognize that many changes may be made thereto without departing from the scope of the present invention. It is therefore to be understood that within the scope of the appended claims and their equivalents, the invention may be practiced otherwise than as specifically described herein.

Claims (16)

  1. A radio frequency arrangement (100, 200) , comprising:
    a carrier board (101) ;
    a radio frequency integrated circuit, RF IC (102) , arranged on the carrier board (101) ; and
    a mold layer (103) encapsulating the RF IC (102) , wherein the mold layer (103) comprises an additive material, wherein the additive material is locally convertible into catalytically sensitive seeds by a laser beam, the catalytically sensitive seeds being configured for catalytic reception of conductive material,
    wherein the additive material comprises a catalytically sensitive seed carrying a metallization layer (104) , the metallization layer (104) forming an antenna feeding structure (105) .
  2. The radio frequency arrangement (100, 200) of claim 1,
    wherein the catalytically sensitive seeds comprise a microrough surface interacting with the metallization layer (104) to ensure an adhesion of the metallization layer (104) .
  3. The radio frequency arrangement (100) of claim 1 or 2,
    wherein the RF IC (102) comprises a main surface (106) on which at least one connection terminal (107) of the RF IC (102) is mounted,
    wherein the main surface (106) of the RF IC (102) faces the carrier board (101) .
  4. The radio frequency arrangement (200) of claim 1 or 2,
    wherein the RF IC (102) comprises a main surface (106) on which at least one connection terminal (107) of the RF IC (102) is mounted,
    wherein the main surface (106) of the RF IC (102) faces opposite to the carrier board (101) .
  5. The radio frequency arrangement (100, 200) of any of the preceding claims,
    wherein the metallization layer (104) is vertically or diagonally or step wise traversing the mold layer (103) .
  6. The radio frequency arrangement (100, 200) of any of the preceding claims, comprising:
    an antenna structure (110) arranged over the mold layer (103) .
  7. The radio frequency arrangement (100, 200) of claim 6,
    wherein the metallization layer (104) forms a through-mold via (111) electrically connecting the RF IC (102) with the antenna structure (110) .
  8. The radio frequency arrangement (100, 200) of claim 7,
    wherein the metallization layer (104) forms a top surface metallization on a top surface (113) of the mold layer (103) for electrically connecting the RF IC (102) with the antenna structure (110) .
  9. The radio frequency arrangement (100, 200) of any of claims 6 to 8,
    wherein the antenna structure (110) is capacitively coupled with the antenna feeding structure (105) of the mold layer (103) .
  10. The radio frequency arrangement (100, 200) of any of claims 6 to 9,
    comprising an air cavity (120) between the antenna structure (110) and the mold layer (103) .
  11. The radio frequency arrangement (100, 200) of claim 10, comprising:
    a frame layer (121) disposed on the mold layer (103) to form a lateral boundary of the air cavity (120) .
  12. The radio frequency arrangement (100, 200) of claim 11, comprising:
    a second carrier board (122) , mounted on the frame layer (121) over the air cavity (120) to form a top boundary of the air cavity (120) ,
    wherein the antenna structure (110) is disposed on the second carrier board (122) .
  13. A radio frequency arrangement array (300) , comprising:
    a plurality of radio frequency arrangements (100, 200) according to any of the preceding claims, arranged as an array.
  14. The radio frequency arrangement array (300) of claim 13, comprising:
    a system board (301) carrying the plurality of radio frequency arrangements (100, 200) ;
    at least one heat sink (302) mounted on a bottom surface (301a) of the system board (301) which bottom surface (301a) is opposite to the plurality of radio frequency arrangements (100, 200) ; and
    a plurality of vias (303) formed through the carrier board (101) of the plurality of radio frequency arrangements (100, 200) and the system board (301) , the plurality of vias (303) thermally connecting the RF ICs (102) of the plurality of radio frequency arrangements (100, 200) with the at least one heat sink (302) .
  15. A method (400) for producing a radio frequency arrangement (100, 200) , the method comprising:
    arranging (401) a radio frequency integrated circuit, RF IC, (102) on a carrier board (101) ;
    encapsulating (402) the RF IC (102) by a mold layer (103) , wherein the mold layer (103) comprises an additive material, wherein the additive material is locally convertible into catalytically sensitive seeds by a laser beam, the catalytically sensitive seeds being configured for catalytic reception of conductive material;
    locally converting (403) the additive material into catalytically sensitive seeds by a laser beam; and
    catalytically receiving (404) a metallization layer (104) by the catalytically sensitive seeds, the metallization layer (104) forming an antenna feeding structure (105) .
  16. The method (400) of claim 15, comprising:
    arranging an antenna structure (110) over the mold layer (103) ; and
    capacitively coupling the antenna feeding structure (105) with the antenna structure (110) .
PCT/CN2021/076674 2021-02-18 2021-02-18 Radio frequency arrangement for aip/aob WO2022174365A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180039718.XA CN115699274A (en) 2021-02-18 2021-02-18 Radio frequency arrangement for AiP/AoB
PCT/CN2021/076674 WO2022174365A1 (en) 2021-02-18 2021-02-18 Radio frequency arrangement for aip/aob

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076674 WO2022174365A1 (en) 2021-02-18 2021-02-18 Radio frequency arrangement for aip/aob

Publications (1)

Publication Number Publication Date
WO2022174365A1 true WO2022174365A1 (en) 2022-08-25

Family

ID=82932215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076674 WO2022174365A1 (en) 2021-02-18 2021-02-18 Radio frequency arrangement for aip/aob

Country Status (2)

Country Link
CN (1) CN115699274A (en)
WO (1) WO2022174365A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393873A (en) * 2007-09-21 2009-03-25 英飞凌科技股份有限公司 Stacked semiconductor chips
CN102751568A (en) * 2011-04-22 2012-10-24 深圳富泰宏精密工业有限公司 Antenna and manufacture method of antenna
US20170256472A1 (en) * 2016-03-03 2017-09-07 Infineon Technologies Ag Manufacturing a package using plateable encapsulant
US9912062B1 (en) * 2013-06-27 2018-03-06 Amazon Technologies, Inc. Support for circuit traces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393873A (en) * 2007-09-21 2009-03-25 英飞凌科技股份有限公司 Stacked semiconductor chips
CN102751568A (en) * 2011-04-22 2012-10-24 深圳富泰宏精密工业有限公司 Antenna and manufacture method of antenna
US9912062B1 (en) * 2013-06-27 2018-03-06 Amazon Technologies, Inc. Support for circuit traces
US20170256472A1 (en) * 2016-03-03 2017-09-07 Infineon Technologies Ag Manufacturing a package using plateable encapsulant

Also Published As

Publication number Publication date
CN115699274A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
US20190067223A1 (en) Radar module with wafer level package and underfill
US9064787B2 (en) Integrated antennas in wafer level package
US8058714B2 (en) Overmolded semiconductor package with an integrated antenna
US7615863B2 (en) Multi-dimensional wafer-level integrated antenna sensor micro packaging
EP1764834B1 (en) Electromagnetic shielding of packages with a laminate substrate
TW201903994A (en) Semiconductor package
US20200251430A1 (en) Semiconductor devices comprising a radar semiconductor chip and associated production methods
US11908814B2 (en) Fabricated two-sided millimeter wave antenna using through-silicon-vias
TWI723885B (en) Semiconductor package
US11600932B2 (en) Antenna-on-package including multiple types of antenna
KR20080015031A (en) Packaging logic and memory integrated circuits
US11855013B2 (en) Semiconductor device
US20180197829A1 (en) Three-dimensional integrated circuit assembly with active interposer
CN108962878B (en) Electronic package and manufacturing method thereof
EP2178119B1 (en) Surface mountable integrated circuit package
WO2022174365A1 (en) Radio frequency arrangement for aip/aob
KR20230038146A (en) A package containing a passive device configured as an electromagnetic interference shield
US6933603B2 (en) Multi-substrate layer semiconductor packages and method for making same
CN116742316A (en) Antenna package
US11973017B2 (en) Package substrate having porous dielectric layer
WO2023279245A1 (en) Surface-mountable antenna device
WO2008093957A1 (en) High frequency module and manufacturing method thereof
WO2020200475A1 (en) Flat antenna device and method of its fabrication
WO2020200444A1 (en) Partitioning of antenna device
CN219998479U (en) Electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926087

Country of ref document: EP

Kind code of ref document: A1