WO2022172541A1 - Cable monitoring device, management device, cable monitoring system, and cable monitoring method - Google Patents

Cable monitoring device, management device, cable monitoring system, and cable monitoring method Download PDF

Info

Publication number
WO2022172541A1
WO2022172541A1 PCT/JP2021/041881 JP2021041881W WO2022172541A1 WO 2022172541 A1 WO2022172541 A1 WO 2022172541A1 JP 2021041881 W JP2021041881 W JP 2021041881W WO 2022172541 A1 WO2022172541 A1 WO 2022172541A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
cable monitoring
monitoring device
unit
partial discharge
Prior art date
Application number
PCT/JP2021/041881
Other languages
French (fr)
Japanese (ja)
Inventor
横山大
下口剛史
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022581190A priority Critical patent/JPWO2022172541A1/ja
Publication of WO2022172541A1 publication Critical patent/WO2022172541A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing

Definitions

  • the present disclosure relates to a cable monitoring device, a management device, a cable monitoring system and a cable monitoring method.
  • This application claims priority based on Japanese Patent Application No. 2021-21530 filed on February 15, 2021, and incorporates all of its disclosure herein.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-217870 discloses the following accident point locating device. That is, the accident point locating device is disposed so as to loop inside each end portion of the underground cable that constitutes the section, and one end is connected to the end portion of the underground cable and the other end is grounded. A plurality of photocurrent sensors that detect and output the current generated at the accident point through a grounding wire, and the output signal of each of the photocurrent sensors that is input via the optical fiber transmission line is used by a low-pass filter to obtain a commercial signal.
  • a commercial frequency component detector for extracting and outputting fault current in a frequency band, wherein the commercial frequency component detector is extracted from the output signal of a photocurrent sensor disposed inside both terminal portions of each section;
  • a fault zone detector for detecting fault zones based on periodic fault currents; It has a surge current component detector that extracts and outputs a surge current, and the surge current component detector is based on the surge current extracted from the output signal of a photocurrent sensor disposed inside both terminal portions of each section.
  • an accident point detection unit having an accident point locating unit for locating an accident point distance, which is accident point information, by calculating the time difference between when the surge current reaches each photocurrent sensor.
  • Patent Document 2 International Publication No. 2016/079869 discloses the following partial discharge positioning device. That is, the partial discharge position locating device is a partial discharge locating device capable of locating the position of the partial discharge generated in the gas insulated equipment to which the power cable is connected or in the power cable, and is attached to the gas insulated equipment. a first sensor capable of detecting a partial discharge signal; a second sensor attached to the power cable and capable of detecting the partial discharge signal; and a detection time of the partial discharge signal by the first sensor. a time difference detection unit for detecting a time difference between a time at which the partial discharge signal is detected by the second sensor; and the time difference detected by the time difference detection unit and the partial discharge signal in the gas-insulated equipment. and a processing unit for locating the generation position of the partial discharge based on the propagation speed of the partial discharge signal and the propagation speed of the partial discharge signal in the power cable.
  • a cable monitoring device monitors a cable having a linear conductor that transmits electric power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer.
  • a signal detection unit that outputs an output signal corresponding to a change in the current flowing through the shielding layer or a change in the potential of the shielding layer; and based on the output signal output from the signal detection unit, the an anomaly detector for detecting partial discharge and dielectric breakdown in the cable;
  • the management device of the present disclosure monitors a cable having a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer.
  • a plurality of pieces of first detection information respectively indicating times at which a plurality of installed cable monitoring devices detected partial discharge in the cable, and a plurality of pieces of information indicating times at which the plurality of cable monitoring devices detected a dielectric breakdown in the cable.
  • an acquisition unit that acquires second detection information; a first calculation unit that calculates the occurrence position of the partial discharge in the cable based on each of the first detection information acquired by the acquisition unit; and a second calculator that calculates a location where the dielectric breakdown occurs in the cable based on the obtained second detection information.
  • a cable monitoring system of the present disclosure monitors a cable having a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer.
  • a plurality of cable monitoring devices installed in the cable; a plurality of first detection information indicating times at which the plurality of cable monitoring devices detect partial discharge in the cable; and a management device that acquires a plurality of pieces of second detection information each indicating a time at which the partial discharge is detected, and the management device determines the generation position of the partial discharge in the cable based on each of the acquired first detection information. Based on each of the calculated and acquired second detection information, a position where the dielectric breakdown occurs in the cable is calculated.
  • a cable monitoring method of the present disclosure is a cable monitoring method in a cable monitoring system including a plurality of cable monitoring devices installed at mutually different positions and a management device, wherein the plurality of cable monitoring devices transmit power.
  • One aspect of the present disclosure can be implemented not only as a cable monitoring device including such a characteristic processing unit, but also as a semiconductor integrated circuit that implements part or all of the cable monitoring device, or as a cable monitoring device. It can be realized as a method having steps of processing in the device, or as a program for causing a computer to execute the steps of processing in the cable monitoring device.
  • one aspect of the present disclosure can be implemented not only as a management device including such a characteristic processing unit, but also as a semiconductor integrated circuit that implements part or all of the management device, or as a management device. or as a program for causing a computer to execute the steps of the processing in the management apparatus.
  • one aspect of the present disclosure can be implemented not only as a cable monitoring system including such a characteristic processing unit, but also as a semiconductor integrated circuit that implements part or all of the cable monitoring system, It can be implemented as a program for causing a computer to execute processing steps in the cable monitoring system.
  • FIG. 1 is a diagram showing the configuration of a power transmission system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a configuration of an underground cable used in a power transmission system according to an embodiment of the present disclosure;
  • FIG. 3 is a diagram illustrating an example of a connection method of an underground cable in a normal connection section used in the power transmission system according to the embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a connection method of an underground cable at an insulated joint used in the power transmission system according to the embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating another example of a connection method of an underground cable at an insulated joint used in the power transmission system according to the embodiment of the present disclosure.
  • FIG. 1 is a diagram showing the configuration of a power transmission system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a configuration of an underground cable used in a power transmission system according to an embodiment of the present disclosure;
  • FIG. 6 is a diagram showing the configuration of the cable monitoring system according to the embodiment of the present disclosure.
  • FIG. 7 is a diagram showing the configuration of the cable monitoring device according to the embodiment of the present disclosure.
  • FIG. 8 is a diagram showing the configuration of CT in the cable monitoring device according to the embodiment of the present disclosure.
  • FIG. 9 is a diagram showing a configuration of a cable monitoring device according to a modification of the embodiment of the present disclosure;
  • FIG. 10 is a diagram showing an example of attachment of metal foil electrodes in the cable monitoring device according to the embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of a configuration of an abnormality detection unit in the cable monitoring device according to the embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a configuration of a management device according to an embodiment of the present disclosure
  • FIG. 13 is a diagram illustrating an example of positions where partial discharges occur in the power transmission system according to the embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating a configuration of an abnormality detection unit according to a modification of the embodiment of the present disclosure
  • FIG. 15 is a diagram illustrating a configuration of an abnormality detection unit according to a modification of the embodiment of the present disclosure
  • 16 is a diagram illustrating an example of an output signal received by an ADC in the cable monitoring device according to the embodiment of the present disclosure
  • FIG. 17 is a diagram illustrating an example of an output signal received by an ADC in the cable monitoring device according to the embodiment of the present disclosure
  • FIG. 18 is a flow chart defining an example of an operation procedure when the cable monitoring device according to the embodiment of the present disclosure detects partial discharge and dielectric breakdown.
  • FIG. 19 is a diagram illustrating an example of a sequence of determination processing in the cable monitoring system according to the embodiment of the present disclosure.
  • Patent Document 1 cannot detect partial discharge in a cable.
  • Patent Document 2 cannot detect dielectric breakdown in the cable.
  • the present disclosure has been made to solve the above problems, and its object is to provide a cable monitoring device, a management device, and a cable monitoring device capable of realizing excellent functions related to detection of partial discharge and dielectric breakdown in cables. To provide a system and cable monitoring method.
  • a cable monitoring device includes a linear conductor that transmits electric power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer.
  • both partial discharge and dielectric breakdown in the cable are detected with a simple configuration, thereby detecting partial discharge and dielectric breakdown in the cable. be able to. Therefore, excellent functionality for detecting partial discharges and dielectric breakdowns in cables can be achieved.
  • the abnormality detection section may distinguish between the partial discharge and the dielectric breakdown based on a comparison result between the level of the output signal and a predetermined threshold value.
  • the abnormality detection section may distinguish between the partial discharge and the dielectric breakdown based on the waveform of the output signal.
  • the abnormality detection unit detects the partial discharge based on the output signal that has passed through a high-pass filter that attenuates components below a predetermined frequency, and detects the partial discharge based on the output signal that has not passed through the high-pass filter.
  • the dielectric breakdown may be detected.
  • the cable monitoring device may further include a notification unit that notifies another device of the time at which the abnormality detection unit detected the partial discharge.
  • the cable monitoring device may further include a notification unit that notifies another device of the time at which the abnormality detection unit detects the dielectric breakdown.
  • the cable monitoring device further includes a synchronization unit that performs processing for synchronizing time with the other cable monitoring device through communication with the other cable monitoring device that monitors the cable.
  • a management device includes a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer.
  • a plurality of first detection information indicating times when a plurality of cable monitoring devices installed at mutually different positions for monitoring a cable detect partial discharge in the cable; an acquisition unit configured to acquire a plurality of pieces of second detection information each indicating a detection time; a calculator; and a second calculator that calculates a location where the dielectric breakdown occurs in the cable based on each of the second detection information acquired by the acquirer.
  • the occurrence position of partial discharge is calculated based on the partial discharge detection time in a plurality of cable monitoring devices capable of detecting both partial discharge and insulation breakdown, and the dielectric breakdown detection time in the plurality of cable monitoring devices is calculated.
  • a cable monitoring system includes a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer.
  • a plurality of cable monitoring devices installed at different positions for monitoring the cables, a plurality of first detection information indicating times when the plurality of cable monitoring devices detected partial discharge in the cables, and the plurality of cables a management device that acquires a plurality of pieces of second detection information each indicating a time at which a monitoring device detects a dielectric breakdown in the cable; and the management device acquires the cable based on the acquired first detection information. , and based on each of the acquired second detection information, calculate the position of occurrence of the dielectric breakdown in the cable.
  • the occurrence position of partial discharge is calculated based on the partial discharge detection time in a plurality of cable monitoring devices capable of detecting both partial discharge and insulation breakdown, and the dielectric breakdown detection time in the plurality of cable monitoring devices is calculated.
  • the configuration for calculating the dielectric breakdown occurrence position based on it is possible to locate both the partial discharge occurrence position and the dielectric breakdown occurrence position with a simple configuration. Therefore, excellent functionality for detecting partial discharges and dielectric breakdowns in cables can be achieved.
  • a cable monitoring method is a cable monitoring method in a cable monitoring system including a plurality of cable monitoring devices installed at mutually different positions and a management device, wherein the plurality of cables a monitoring device monitoring a cable having a linear conductor that transmits electric power, an insulating layer surrounding the conductor, and a shielding layer that is a conductor surrounding the insulating layer; a step of acquiring a plurality of first detection information respectively indicating times when the plurality of cable monitoring devices detected partial discharge in the cable; acquiring a plurality of pieces of second detection information each indicating a detection time; and calculating, by the management device, the location where the partial discharge occurs in the cable based on the acquired pieces of the first detection information. and calculating, by the management device, the location where the dielectric breakdown occurs in the cable based on the obtained second detection information.
  • the occurrence position of partial discharge is calculated based on the partial discharge detection time in a plurality of cable monitoring devices capable of detecting both partial discharge and insulation breakdown, and the dielectric breakdown detection time in the plurality of cable monitoring devices is calculated.
  • Both the partial discharge occurrence position and the dielectric breakdown occurrence position can be located by a simple method by the method of calculating the dielectric breakdown occurrence position based on the above. Therefore, excellent functionality for detecting partial discharges and dielectric breakdowns in cables can be achieved.
  • FIG. 1 is a diagram showing the configuration of a power transmission system according to an embodiment of the present disclosure.
  • power transmission system 502 includes underground cables 10A, 10B, 10C, normal connections 41A, 41B, insulated connections 42A, 42B, 42C, and ground connections 43A, 43B.
  • each of the underground cables 10A, 10B, and 10C is also referred to as the underground cable 10
  • each of the normal connection portions 41A and 41B is also referred to as a normal connection portion 41
  • each of the insulated connection portions 42A, 42B, and 42C is referred to as an insulated connection portion.
  • 42 and each of the ground connection portions 43 A and 43 B is also referred to as a ground connection portion 43 .
  • At least a portion of transmission system 502 is provided, for example, in an underground portion of the power system.
  • the ground connection section 43 includes cable terminals 11A, 11B, and 11C.
  • the underground cable 10 is connected to the cable terminals 11A, 11B and 11C at the ground connection portion 43 . More specifically, underground cable 10A is connected to cable terminal 11A, underground cable 10B is connected to cable terminal 11B, and underground cable 10C is connected to cable terminal 11C.
  • the ground connection part 43 is provided, for example, in a substation where the underground cable 10 appears on the ground.
  • the normal connection portion 41 and the insulated connection portion 42 are provided inside the manhole 31 .
  • FIG. 2 is a diagram showing an example of the configuration of underground cables used in the power transmission system according to the embodiment of the present disclosure.
  • FIG. 2 shows a cross-sectional view of underground cable 10 .
  • underground cable 10 includes, in order from the center, a linear conductor 71 that transmits electric power, an internal semiconductive layer 72 made of semiconductive ethylene propylene (EP) rubber, and an insulating layer. It consists of an insulator 73 made of EP rubber which is a layer, an outer semiconductive layer 74 which is a semiconductive tape, a conductive shielding layer 75 and a sheath 76 made of vinyl.
  • EP semiconductive ethylene propylene
  • the inner semiconducting layer 72 surrounds the conductor 71
  • the insulator 73 surrounds the inner semiconducting layer 72
  • the outer semiconducting layer 74 surrounds the insulator 73
  • the shielding layer 75 which is a conductor Surrounding the outer semi-conducting layer 74 is a sheath 76 surrounding the shielding layer 75 .
  • a conductor 71 in the underground cable 10 is used for power transmission and is applied with a high voltage.
  • the shielding layer 75 is electrically conductive while being grounded in the middle of the underground cable 10 . Therefore, the voltage on shield layer 75 is lower than on conductor 71 .
  • a 3-phase 3-wire system is used as a power distribution system.
  • underground cables 10A, 10B, and 10C are provided as three-phase underground cables 10.
  • FIG. 10A, 10B, and 10C are provided as three-phase underground cables 10.
  • the shielding layers 75 of the underground cables 10A, 10B and 10C are exposed at the cable terminals 11A, 11B and 11C. Terminals are provided in the exposed portions of these shielding layers 75, respectively.
  • the underground cables 10A, 10B, 10C are connected to the ground node 15 at cable terminals 11A, 11B, 11C, respectively. More specifically, the shielding layer 75 of each underground cable 10 is grounded by connecting the terminal provided to each of the underground cables 10A, 10B, 10C to the ground node 15 via the grounding cable 14 or the like. be.
  • the underground cable 10 is composed of a plurality of cables whose ends are connected to each other at normal connection portions 41 and insulated connection portions 42 .
  • FIG. 3 is a diagram showing an example of a connection method of underground cables in a normal connection section used in the power transmission system according to the embodiment of the present disclosure.
  • FIG. 3 mainly shows the conductor 71 and the shielding layer 75 of the underground cable 10A for ease of explanation. The contents described below are the same for the underground cable 10B and the underground cable 10C.
  • underground cables 10A1 and 10A2 are connected at a normal connection portion 41.
  • the shielding layer 75 of the underground cables 10A1 and 10A2 is exposed at the connection portion between the conductors 71 of the underground cables 10A1 and 10A2.
  • shielding layer 75 of underground cable 10A1 and shielding layer 75 of underground cable 10A2 are connected using conductive wire 12, for example.
  • the terminal 81 is provided at the exposed portion of the shielding layer 75 of the underground cable 10A2, for example. Note that the terminal 81 may be provided at an exposed portion of the shielding layer 75 of the underground cable 10A1. By connecting the terminal 81 to the ground node 13 via a cable or the like, the shielding layer 75 of the underground cable 10A is grounded.
  • FIG. 4 is a diagram showing an example of a connection method of an underground cable at an insulated joint used in the power transmission system according to the embodiment of the present disclosure.
  • FIG. 4 mainly shows the conductor 71 and the shielding layer 75 of the construction of the underground cable 10A for ease of explanation. The contents described below are the same for the underground cable 10B and the underground cable 10C.
  • underground cables 10A1 and 10A2 are connected at the insulated connection portion 42 .
  • the shielding layers 75 of the underground cables 10A1 and 10A2 are exposed at the connecting portions between the conductors 71 of the underground cables 10A1 and 10A2, and the terminals 81 and the like are provided at the exposed portions.
  • the terminal 81 of the underground cable 10A1 and the terminal 81 of the underground cable 10A2 are connected using the wire 12.
  • the wiring connects the shielding layer 75 of the underground cable 10A1 and the shielding layer 75 of the underground cable 10A2.
  • FIG. 5 is a diagram showing another example of a connection method of underground cables in the insulated joints used in the power transmission system according to the embodiment of the present disclosure.
  • underground cables 10A1 and 10A2 are connected, underground cables 10B1 and 10B2 are connected, and underground cables 10C1 and 10C2 are connected at insulating connection portion 42 .
  • the shielding layer 75 of the underground cables 10A1 and 10A2 is exposed at the connection portion between the conductors 71 of the underground cables 10A1 and 10A2, and at the connection portion between the conductors 71 of the underground cables 10B1 and 10B2
  • the shielding layers 75 of the underground cables 10B1 and 10B2 are exposed, the shielding layers 75 of the underground cables 10C1 and 10C2 are exposed at the connecting portions between the conductors 71 of the underground cables 10C1 and 10C2, and the terminals 81 and the like are provided at the exposed portions. be provided.
  • the shielding layer 75 of the underground cable 10A1 and the shielding of the underground cable 10B2 are connected.
  • Shielding layer 75 of underground cable 10B1 and shielding layer 75 of underground cable 10C2 are connected by connecting terminal 81 of underground cable 10B1 and terminal 81 of underground cable 10C2 using wire 12. are connected, and by connecting the terminal 81 of the underground cable 10C1 and the terminal 81 of the underground cable 10A2 using the wire 12, the shielding layer 75 of the underground cable 10C1 and the shielding layer 75 of the underground cable 10A2 are Connected.
  • the underground cable 10 may be cross-bonded at the insulated connection portion 42 .
  • FIG. 6 is a diagram showing the configuration of the cable monitoring system according to the embodiment of the present disclosure.
  • FIG. 6 mainly shows an underground cable 10A of the underground cables 10 for ease of explanation. The contents described below are the same for the underground cable 10B and the underground cable 10C.
  • the cable monitoring system 501 includes cable monitoring devices 500A, 500B, 500C, and 500D and a management device 400. Each of the cable monitoring devices 500A, 500B, 500C, and 500D is also referred to as a cable monitoring device 500 hereinafter. Cable monitoring system 501 is used in transmission system 502 .
  • the cable monitoring devices 500 are installed at different positions.
  • Cable monitoring device 500 is provided, for example, corresponding to insulated connection portion 42 and ground connection portion 43 .
  • the cable monitoring device 500A is provided corresponding to the insulating connection portion 42A
  • the cable monitoring device 500B is provided corresponding to the insulating connection portion 42B
  • the cable monitoring device 500C is provided corresponding to the insulating connection portion 42B
  • the insulated connection portion 42C, and the cable monitoring device 500D is provided corresponding to the ground connection portion 43A.
  • the management device 400 is also connected to a cable monitoring device 500D.
  • the cable monitoring device 500 monitors the underground cable 10A, which is an example of a cable to be monitored. More specifically, the four cable monitoring devices 500 monitor the underground cable 10A in the vicinity of the installation position. The cable monitoring device 500 detects partial discharge and dielectric breakdown in the underground cable 10A by monitoring the underground cable 10A. Note that the monitoring target of the cable monitoring device 500 is not limited to underground cables, and may be cables provided in places other than underground.
  • the cable monitoring devices 500 can communicate with each other via the underground cable 10A by inductive coupling with the shielding layer 75 of the underground cable 10A.
  • the cable monitoring device 500 can perform communication up to a distance of several kilometers at a variable transmission rate of 20 kbps to 130 kbps using, for example, a low-frequency PLC (Power Line Communication) used for communication such as a smart meter.
  • a low-frequency PLC Power Line Communication
  • the cable monitoring device 500 can use a high frequency PLC to communicate over shorter distances at transmission speeds up to 200 Mbps.
  • the cable monitoring device 500 notifies the management device 400 of the partial discharge detection result in the underground cable 10A. Also, for example, the cable monitoring device 500 notifies the management device 400 of the detection result of dielectric breakdown in the underground cable 10A.
  • the cable monitoring device 500 can relay the notification of the detection result from the other cable monitoring device 500 to the other cable monitoring device 500 or the management device 400 .
  • cable monitoring devices 500A, 500B, and 500C notify management device 400 of detection results via other cable monitoring devices 500 including cable monitoring device 500D. Also, for example, the cable monitoring device 500D directly notifies the management device 400 of the detection result.
  • the management device 400 calculates the position of occurrence of partial discharge in the underground cable 10A, that is, locates the position of occurrence of partial discharge. In addition, the management device 400 calculates the occurrence position of the insulation breakdown in the underground cable 10A based on the detection result of the insulation breakdown notified from the cable monitoring device 500, that is, locates the occurrence position of the insulation breakdown.
  • a power coil is attached to the underground cable 10A.
  • An induced current due to the current flowing through the conductor 71 of the underground cable 10 flows through the power supply coil. This allows the power coil to draw current.
  • Cable monitoring device 500 operates by power obtained by, for example, a power supply coil.
  • FIG. 7 is a diagram showing the configuration of the cable monitoring device according to the embodiment of the present disclosure.
  • cable monitoring device 500 includes signal detection section 100 , abnormality detection section 200 , electromagnetic coupling section 300 , communication section 331 , synchronization section 332 and counter 333 .
  • Communication unit 331 is an example of a notification unit.
  • Signal detection section 100 includes a current transformer 110 and a signal output section 120 .
  • Electromagnetic coupling section 300 includes a current transformer 310 and a signal input/output section 320 .
  • the current transformer 110 is also referred to as CT110
  • the current transformer 310 is also referred to as CT310.
  • the counter 333 counts clock pulses generated by, for example, an oscillator circuit using a crystal oscillator, and holds time information indicating the counted value. This time information indicates, for example, the current time.
  • the signal detection unit 100 and the electromagnetic coupling unit 300 are electromagnetically coupled with the shielding layer 75 at the insulating connection unit 42, which is the connection portion of the underground cable 10A, for example.
  • the signal detection unit 100 outputs an output signal according to changes in current flowing through the shielding layer 75 of the underground cable 10A. More specifically, the signal detection unit 100 outputs to the abnormality detection unit 200 an output signal that is an analog signal corresponding to the induced current of the current flowing through the shielding layer 75 of the underground cable 10 .
  • the abnormality detection section 200 detects partial discharge and dielectric breakdown in the underground cable 10A based on the output signal output from the signal detection section 100. More specifically, based on the output signal received from the signal detection unit 100, the abnormality detection unit 200 performs determination processing to determine whether partial discharge and dielectric breakdown have occurred in the underground cable 10A. For example, when detecting partial discharge in the underground cable 10A, the abnormality detection unit 200 outputs detection information DA including the partial discharge detection time and the ID of the own cable monitoring device 500 to the communication unit 331 .
  • the abnormality detection section 200 when detecting a dielectric breakdown in the underground cable 10 ⁇ /b>A, the abnormality detection section 200 outputs a detection information DB including the dielectric breakdown detection time and the ID of its own cable monitoring device 500 to the communication section 331 .
  • Detection information DA is an example of first detection information.
  • the detection information DB is an example of second detection information.
  • the communication unit 331 can transmit and receive communication information between the other cable monitoring devices 500 using the induced current flowing through the shielding layer 75 due to the electromagnetic coupling of the electromagnetic coupling unit 300 .
  • the communication unit 331 in the cable monitoring device 500D is connected to the management device 400 via a communication line (not shown).
  • the communication unit 331 in the cable monitoring device 500D relays communication information received from another cable monitoring device 500 to the management device 400 via the communication line.
  • the communication unit 331 in the cable monitoring device 500D is a master station in PLC communication
  • the communication units 331 in the cable monitoring devices 500A, 500B, and 500C are slave stations in PLC communication.
  • the communication unit 331 notifies another device, such as the management device 400, of the time when the abnormality detection unit 200 detects partial discharge. Further, the communication unit 331 notifies another device, for example, the management device 400 of the time when the abnormality detection unit 200 detects insulation discharge. More specifically, the communication unit 331 receives the detection information DA from the abnormality detection unit 200 and transmits the received detection information DA via the communication line or through the other cable monitoring devices 500 including the cable monitoring device 500D and the communication device 500D. It transmits to the management device 400 via a line.
  • the communication unit 331 receives the detection information DB from the abnormality detection unit 200, and transmits the received detection information DB via the communication line, or via other cable monitoring devices 500 including the cable monitoring device 500D and the communication line. It transmits to the management device 400 .
  • the detection information DA and DB are examples of communication information.
  • FIG. 8 is a diagram showing the configuration of CT in the cable monitoring device according to the embodiment of the present disclosure.
  • CT 110 includes ring core 101 and winding 102 .
  • a winding 102 is wound around the ring core 101 .
  • Winding 102 is connected to signal output section 120 .
  • the number of turns of winding 102 in ring core 101 is, for example, 3 to 7 turns.
  • the CT 110 is attached so that the conductive cable 53 penetrates the ring core 101, for example.
  • Conductive cable 53 is, for example, wire 12 or grounding cable 14 .
  • the CTs 110 of the cable monitoring devices 500A, 500B, 500C at the insulated connections 42A, 42B, 42C are connected to the shield layer 75 of underground cable 10A1 and underground cable 10A2.
  • a wire 12 connecting the shielding layers 75 of the ring core 101 is attached so as to pass through the ring core 101 .
  • the CT 110 of the cable monitoring device 500D in the ground connection portion 43A is attached so that the grounding cable 14 penetrates the ring core 101.
  • inductive coupling causes an induced current to flow through winding 102 .
  • Signal output section 120 outputs an output signal corresponding to the induced current flowing through winding 102 to abnormality detection section 200 .
  • CT 310 also includes ring core 301 and winding 302 .
  • a winding 302 is wound around the ring core 301 .
  • Winding 302 is connected to signal input/output section 320 .
  • the number of turns of winding 302 in ring core 301 is, for example, 3 to 7 turns.
  • the CT 310 is attached so that the conductive cable 53 penetrates the ring core 301, for example. More specifically, in the CTs 310 of the cable monitoring devices 500A, 500B, and 500C in the insulated connection portions 42A, 42B, and 42C, the wire 12 connecting the shield layer 75 of the underground cable 10A1 and the shield layer 75 of the underground cable 10A2 is a ring core. It is attached so as to pass through 301 . Also, the CT 310 of the cable monitoring device 500D in the ground connection portion 43A is attached so that the grounding cable 14 penetrates the ring core 301. As shown in FIG. Note that the sizes of the CTs 110 and 310 may be the same or different.
  • the communication unit 331 generates a transmission signal including communication information to be transmitted to the other cable monitoring device 500 or the management device 400 and outputs the generated transmission signal to the electromagnetic coupling unit 300.
  • the signal input/output unit 320 receives a transmission signal from the communication unit 331 and causes a current corresponding to the received transmission signal to flow through the winding 302 .
  • inductive coupling causes an induced current to flow through conductive cable 53 and shield layer 75 .
  • the induced current that flows through the shielding layer 75 when the signal input/output unit 320 causes the current to flow through the winding 302 is also referred to as a communication induced current.
  • Signal input/output unit 320 outputs a reception signal, which is an analog signal corresponding to the induced current flowing through winding 102 , to communication unit 331 .
  • the communication unit 331 acquires communication information from another cable monitoring device 500 from the received signal received from the signal input/output unit 320 .
  • the band of the communication induced current used by the communication unit 331 to transmit and receive communication information differs from the band of the output signal used by the abnormality detection unit 200 to detect partial discharge and dielectric breakdown. Therefore, the communication unit 331 and the abnormality detection unit 200 can transmit communication information and detect partial discharge and dielectric breakdown in parallel. In addition, even when dielectric breakdown occurs in the underground cable 10A, the communication unit 331 can transmit communication information, for example, in a state in which the shielding layer 75 is not completely cut.
  • FIG. 9 is a diagram showing the configuration of a cable monitoring device according to a modification of the embodiment of the present disclosure.
  • cable monitoring device 510 includes a signal detection unit 100A, an abnormality detection unit 200, an electromagnetic coupling unit 300, a communication unit 331, a synchronization unit 332, and a counter 333.
  • Cable monitoring system 501 may be configured to include cable monitoring device 510 instead of cable monitoring device 500 .
  • the signal detection unit 100A outputs an output signal according to the change in potential of the shielding layer 75 of the underground cable 10. More specifically, signal detection section 100A includes metal foil electrodes 105 and 106 and signal output section 120A. The signal detection unit 100A is electrostatically coupled to the shield layer 75 at the insulating connection portion 42, which is the connection portion of the underground cable 10, for example.
  • FIG. 10 is a diagram showing an example of attachment of metal foil electrodes in the cable monitoring device according to the embodiment of the present disclosure. 9 and 10, metal foil electrodes 105 and 106 are connected to signal output section 120A.
  • the metal foil electrodes 105 and 106 are attached to the surface of the sheath 76 of the underground cable 10 on opposite sides of the insulating connection portion 42 via the insulating cylinder 77 . More specifically, for example, at the insulating connection portion 42 to which the underground cables 10A1 and 10A2 are connected, the metal foil electrode 105 is attached to the surface of the sheath 76 of the underground cable 10A1, and the metal foil electrode 106 is attached to the surface of the sheath 76 of the underground cable 10A1. It is attached to the surface of the sheath 76 of the cable 10A2. Note that the metal foil electrodes 105 and 106 may be attached so as to cover the outer circumference of the sheath 76 of the underground cable 10A2. Moreover, the position to which each metal foil electrode is attached and the number of metal foil electrodes are not limited, and three or more metal foil electrodes may be attached.
  • the signal output unit 120A outputs to the abnormality detection unit 200 an output signal, which is an analog signal corresponding to the change in the potential of the shielding layer 75 based on the current.
  • synchronization unit 332 performs processing for synchronizing time with another cable monitoring device 500 that monitors underground cable 10A through communication with other cable monitoring device 500. . More specifically, the synchronizing unit 332 periodically performs a synchronizing process for synchronizing the time information of the counter 333 with that of another cable monitoring device 500 .
  • the cable monitoring device 500D functions as a master device.
  • Synchronization section 332 in cable monitoring device 500 ⁇ /b>D acquires the time information of counter 333 and outputs the acquired time information to communication section 331 at synchronization processing timing according to a predetermined cycle.
  • the communication unit 331 in the cable monitoring device 500D receives the time information from the synchronization unit 332 and transmits the received time information to the cable monitoring device 500A.
  • Time information is an example of communication information.
  • the communication unit 331 receives time information from the communication unit 331 in the cable monitoring device 500D via the electromagnetic coupling unit 300, and outputs the received time information to the synchronization unit 332.
  • Synchronization unit 332 updates the time information of counter 333 to the time information received from communication unit 331 .
  • the synchronization unit 332 also acquires time information after the counter 333 is updated, and outputs the acquired time information to the communication unit 331 .
  • the communication unit 331 receives time information from the synchronization unit 332 and transmits the received time information to the cable monitoring devices 500D and 500B.
  • the communication unit 331 receives time information from the communication unit 331 in the cable monitoring device 500A via the electromagnetic coupling unit 300, and outputs the received time information to the synchronization unit 332.
  • Synchronization unit 332 updates the time information of counter 333 to the time information received from communication unit 331 .
  • the synchronization unit 332 also acquires time information after the counter 333 is updated, and outputs the acquired time information to the communication unit 331 .
  • Communication unit 331 receives the time information from synchronization unit 332 and transmits the received time information to cable monitoring devices 500A and 500C.
  • the communication unit 331 receives time information from the communication unit 331 in the cable monitoring device 500B via the electromagnetic coupling unit 300, and outputs the received time information to the synchronization unit 332.
  • Synchronization unit 332 updates the time information of counter 333 to the time information received from communication unit 331 .
  • the synchronization unit 332 also acquires time information after the counter 333 is updated, and outputs the acquired time information to the communication unit 331 .
  • the communication unit 331 receives the time information from the synchronization unit 332 and transmits the received time information to the cable monitoring device 500B.
  • the communication unit 331 in the cable monitoring device 500D receives time information from the communication unit 331 in the cable monitoring device 500A via the electromagnetic coupling unit 300, and 1/ of the difference between the received time information and the current time information of the counter 333. 2 is calculated.
  • the difference indicates the round-trip transmission delay time between the cable monitoring device 500D and the cable monitoring device 500A, and 1/2 of the difference indicates the transmission delay time between the cable monitoring device 500D and the cable monitoring device 500A.
  • the communication unit 331 in the cable monitoring device 500 ⁇ /b>D transmits delay time information D ⁇ b>1 indicating the calculated transmission delay time to the management device 400 .
  • the communication unit 331 in the cable monitoring device 500A receives the time information from the communication unit 331 in the cable monitoring device 500B via the electromagnetic coupling unit 300, and calculates the difference between the received time information and the current time information of the counter 333. Calculate 1/2.
  • the difference indicates the round-trip transmission delay time between the cable monitoring device 500A and the cable monitoring device 500B, and 1/2 of the difference indicates the transmission delay time between the cable monitoring device 500A and the cable monitoring device 500B.
  • the communication unit 331 in the cable monitoring device 500A transmits delay time information D2 indicating the calculated transmission delay time to the management device 400 via the cable monitoring device 500D.
  • the communication unit 331 in the cable monitoring device 500B receives time information from the communication unit 331 in the cable monitoring device 500C via the electromagnetic coupling unit 300, and calculates the difference between the received time information and the current time information of the counter 333. Calculate 1/2.
  • the difference indicates the round-trip transmission delay time between the cable monitoring device 500B and the cable monitoring device 500C, and 1/2 of the difference indicates the transmission delay time between the cable monitoring device 500B and the cable monitoring device 500C.
  • the communication unit 331 in the cable monitoring device 500B transmits delay time information D3 indicating the calculated transmission delay time to the management device 400 via the cable monitoring devices 500A and 500D.
  • each cable monitoring device 500 transmits time information via the electromagnetic coupling unit 300 in this way, there is no need to separately provide a signal line for transmitting time information, so the configuration is simple. Synchronous processing can be performed.
  • FIG. 11 is a diagram illustrating an example of a configuration of an abnormality detection unit in the cable monitoring device according to the embodiment of the present disclosure.
  • abnormality detection unit 200 includes HPF (High Pass Filter) 210, LNA (Low Noise Amplifier) 220, ADC (Analog Digital Converter) 230, detection unit 240, detection unit 250, A storage unit 270 and a determination unit 280 are included.
  • Detection section 240 and detection section 250 are configured by, for example, an FPGA (Field-Programmable Gate Array).
  • Determining unit 280 is implemented by a processor such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor), for example.
  • the storage unit 270 is, for example, a non-volatile memory and included in the FPGA.
  • the HPF 210 attenuates the frequency components below a predetermined frequency among the frequency components of the output signals received from the signal output units 120 and 120A.
  • the output signals received from the signal output units 120 and 120A contain much noise of 50 Hz or 60 Hz corresponding to the frequency of power transmitted through the underground cable 10.
  • FIG. HPF 210 removes noise contained in the output signals received from signal output sections 120 and 120A, for example, by attenuating frequency components below 60 Hz.
  • the LNA 220 amplifies the output signal that has passed through the HPF 210 and outputs the amplified output signal to the ADC 230.
  • the ADC 230 converts the output signal received from the LNA 220 into a digital signal and outputs the digital signal to the detectors 240 and 250 . More specifically, ADC 230 generates a digital signal by sampling the output signal received from LNA 220 at a sampling frequency of 100 MHz, for example, and outputs the generated digital signal to detection section 240 and detection section 250 .
  • the abnormality detection unit 200 distinguishes between dielectric breakdown and partial discharge based on the result of comparison between the level of the output signal and a predetermined threshold value.
  • the storage unit 270 stores a threshold value ThA and a threshold value ThB as predetermined threshold values regarding the value of the digital signal generated by the ADC 230 .
  • the threshold ThB is assumed to be greater than the threshold ThA.
  • the detection unit 240 performs comparison processing for comparing the digital signal received from the ADC 230 and the thresholds ThA and ThB in the storage unit 270 . More specifically, the detector 240 performs comparison processing for each sample of the digital signal from the ADC 230 . That is, detection section 240 performs the comparison process at the comparison timing according to the 10-nanosecond period corresponding to the sampling frequency in ADC 230 .
  • detection section 240 acquires time information from counter 333 and compares the acquired time information and the digital signal.
  • the detection information da including the value of is stored in the storage unit 270 . Further, if the value of the digital signal received from ADC 230 is greater than threshold ThA and less than threshold ThB as a result of performing comparison processing at the comparison timing, detection section 240 detects that from the comparison timing.
  • the comparison process is suspended until a predetermined time period, for example, 5 microseconds, elapses, and the comparison process is restarted at the comparison timing after the elapse of the predetermined time period.
  • detection section 240 does not generate or store detection information da.
  • the detection unit 250 performs comparison processing for comparing the digital signal received from the ADC 230 and the threshold value ThB in the storage unit 270 . More specifically, the detector 250 performs comparison processing for each sample of the digital signal from the ADC 230 . That is, the detection section 250 performs comparison processing at the comparison timing.
  • the detection section 250 acquires the time information of counter 333 and generates detection information db including the acquired time information and the value of the digital signal.
  • detection section 250 does not generate detection information db.
  • the detection unit 250 After generating the detection information db, the detection unit 250 continues the comparison process at the comparison timing, and counts the number of digital signals exceeding the threshold ThB until the value of the digital signal received from the ADC 230 becomes equal to or less than the threshold ThB. to count.
  • the detection section 250 includes the count number indicating the number of counted digital signals in the generated detection information db. Then, the detection information db is stored in the storage unit 270 .
  • the determination unit 280 performs determination processing based on the detection information da and db stored in the storage unit 270 by the detection units 240 and 250 .
  • the determination unit 280 determines that partial discharge has occurred in the underground cable 10A. Then, the determination unit 280 acquires the detection information da and the ID of its own cable monitoring device 500 from the storage unit 270, generates detection information DA including the acquired detection information da and the ID, and stores the generated detection information DA. Output to the communication unit 331 .
  • the communication unit 331 receives the detection information DA from the determination unit 280 and transmits the received detection information DA to the management device 400 via the electromagnetic coupling unit 300 .
  • the determination unit 280 determines whether or not dielectric breakdown has occurred in the underground cable 10A based on the count number included in the detection information db. judge. More specifically, when the number of counts included in the detection information db is a predetermined number, for example, 5,000,000 or more, the determination unit 280 determines that the comparison processing by the detection unit 250 is 50 milliseconds (5,000,000 times ⁇ 10 nanosecond cycle) or more. If the value of the digital signal is continuously greater than the threshold value ThB during the period, it is determined that insulation breakdown has occurred in the underground cable 10A.
  • the determination unit 280 acquires the plurality of detection information db and the ID of its own cable monitoring device 500 from the storage unit 270, generates the detection information DB including the acquired detection information db and the ID, and generates the detection information DB. It outputs the information DB to the communication unit 331 .
  • the communication unit 331 receives the detection information DB from the determination unit 280 and transmits the received detection information DB to the management device 400 via the electromagnetic coupling unit 300 .
  • the determination section 280 does not generate the detection information DB.
  • the communication unit 331 in each cable monitoring device 500 transmits the detection information DA, DB to the management device 400 via the electromagnetic coupling unit 300. Since there is no need to separately provide a signal line, the detection information DA, DB can be transmitted to the management device 400 with a simple configuration.
  • the level of the output signal output from the signal detection unit 100 when insulation breakdown occurs in the underground cable 10A is the level of the output signal output from the signal detection unit 100 when partial discharge occurs in the underground cable 10A. Greater than the signal level.
  • abnormality detection section 200 detects dielectric breakdown and partial discharge based on the result of comparison between the level of the output signal, that is, the value of the digital signal generated by ADC 230 and threshold value ThB. With the configuration for discrimination, it is possible to discriminate between dielectric breakdown and partial discharge with a simple configuration and processing.
  • determination unit 280 in abnormality detection unit 200 determines that in underground cable 10A when the count number included in detection information db stored in storage unit 270 is equal to or greater than a predetermined number. With the configuration for determining that a dielectric breakdown has occurred, the dielectric breakdown in the underground cable 10A can be detected separately from switching surges.
  • the determination unit 280 determines that insulation breakdown has occurred in the underground cable 10A. does not continue for a predetermined period of time, it is determined that a switching surge has occurred in the underground cable 10A.
  • FIG. 12 is a diagram illustrating a configuration of a management device according to an embodiment of the present disclosure.
  • management device 400 includes acquisition unit 420 , partial discharge calculation unit 430 , dielectric breakdown calculation unit 440 and storage unit 450 .
  • the partial discharge calculator 430 is an example of a first calculator.
  • the dielectric breakdown calculator 440 is an example of a second calculator.
  • Acquisition unit 420, partial discharge calculation unit 430, and dielectric breakdown calculation unit 440 are realized by a processor such as a CPU and a DSP, for example.
  • Storage unit 450 is, for example, a non-volatile memory.
  • the acquisition unit 420 obtains a plurality of pieces of detection information DA each indicating the time when the plurality of cable monitoring devices 500 detected partial discharge in the underground cable 10A, and the plurality of cable monitoring devices 500 detecting a dielectric breakdown in the underground cable 10A.
  • a plurality of detection information DBs each indicating the time are acquired.
  • the acquisition unit 420 is connected to the communication unit 331 in the cable monitoring device 500D via the communication line described above.
  • Acquisition unit 420 receives detection information DA of a plurality of cable monitoring devices 500 from cable monitoring devices 500D via communication lines.
  • the acquisition unit 420 stores the received detection information DA in the storage unit 450 .
  • the acquisition unit 420 receives detection information DBs of a plurality of cable monitoring devices 500 from the cable monitoring devices 500D via communication lines.
  • the acquisition unit 420 stores the received detection information DB in the storage unit 450 .
  • the acquisition unit 420 acquires delay time information indicating the transmission delay time between the cable monitoring devices 500 . More specifically, the acquisition unit 420 receives the delay time information D1, D2, D3 from the cable monitoring device 500D via the communication line. Upon receiving the delay time information D1, D2 and D3, the acquisition unit 420 stores the received delay time information D1, D2 and D3 in the storage unit 450 .
  • the partial discharge calculator 430 calculates the position where the partial discharge occurs in the underground cable 10A based on each piece of detection information DA received by the acquirer 420 . Further, the dielectric breakdown calculation unit 440 calculates the occurrence position of the dielectric breakdown in the underground cable 10A based on each detection information DB received by the acquisition unit 420 .
  • FIG. 13 is a diagram showing an example of positions where partial discharges occur in the power transmission system according to the embodiment of the present disclosure. Referring to FIG. 13, when partial discharge occurs in underground cable 10A, the current flowing through underground cable 10A due to the occurrence of the partial discharge propagates toward insulated connection portion 42B and insulated connection portion 42C.
  • the partial discharge calculator 430 can locate the partial discharge generation position based on the partial discharge detection times of the two cable monitoring devices 500 .
  • the dielectric breakdown calculation unit 440 can locate the occurrence position of the dielectric breakdown based on the detection time of the dielectric breakdown in the two cable monitoring devices 500 and the like.
  • storage unit 450 stores distance information indicating the distance between monitoring positions of cable monitoring devices 500 in underground cable 10A and velocity information indicating the propagation velocity of current in underground cable 10A.
  • the underground cable 10A is, for example, a CV (Cross-linked polyethylene insulated vinyl sheath) cable or an OF (Oil-Filled) cable.
  • the current propagation velocity in the CV cable is, for example, 172 m/ ⁇ s
  • the current propagation velocity in the OF cable is, for example, 158 m/ ⁇ s.
  • the partial discharge calculation unit 430 corrects the detection time indicated by the detection information DA stored in the storage unit 450 using part or all of the delay time information D1, D2, and D3 according to the transmission path of the detection information DA. do. More specifically, the partial discharge calculator 430 corrects the detection time indicated by the detection information DA including the ID of the cable monitoring device 500A using the delay time information D1, and corrects the detection time indicated by the detection information DA including the ID of the cable monitoring device 500B. is corrected using the delay time information D1 and D2, and the detection time indicated by the detection information DA including the ID of the cable monitoring device 500C is corrected using the delay time information D1, D2 and D3.
  • partial discharge calculator 430 corrects the detection time by adding the transmission delay time indicated by delay time information D1 to the detection time indicated by detection information DA including the ID of cable monitoring device 500A. Further, for example, the partial discharge calculator 430 corrects the detection time by adding each transmission delay time indicated by the delay time information D1 and D2 to the detection time indicated by the detection information DA including the ID of the cable monitoring device 500B. Further, for example, the partial discharge calculator 430 corrects the detection time by adding each transmission delay time indicated by the delay time information D1, D2, and D3 to the detection time indicated by the detection information DA including the ID of the cable monitoring device 500C. do.
  • the detection time indicated by the detection information DA means the detection time after correction.
  • the dielectric breakdown calculator 440 converts the detection time indicated by the detection information DB stored in the storage unit 450 into part or all of the delay time information D1, D2, and D3 according to the transmission path of the detection information DB. corrected using Hereinafter, the detection time indicated by the detection information DB refers to the detection time after correction.
  • the partial discharge calculation unit 430 calculates the time difference between the two earliest detection times among the detection times indicated by the plurality of pieces of detection information DA related to the same partial discharge with different IDs stored in the storage unit 450 . Based on the calculated time difference and the distance information and speed information in the storage unit 450, the partial discharge calculator 430 calculates the position where the partial discharge occurs in the underground cable 10A. As an example, the partial discharge calculator 430 calculates, as the time difference, the time difference between the detection time indicated by the detection information DA including the ID of the cable monitoring device 500A and the detection time indicated by the detection information DA including the ID of the cable monitoring device 500B. It is calculated as "0.26 ⁇ s".
  • the detection time indicated by the detection information DA including the ID of the cable monitoring device 500A is earlier than the detection time indicated by the detection information DA including the ID of the cable monitoring device 500B.
  • the distance between the monitoring position of cable monitoring device 500A and the monitoring position of cable monitoring device 500B indicated by the distance information in storage unit 450 is "300 m”.
  • the propagation velocity indicated by the velocity information in storage unit 450 is "172 m/ ⁇ s”.
  • the partial discharge calculator 430 calculates the position of occurrence of the partial discharge in the underground cable 10A by 22.22 from the intermediate point between the monitoring position of the cable monitoring device 500A and the monitoring position of the cable monitoring device 500B to the cable monitoring device 500A side.
  • the dielectric breakdown calculation unit 440 calculates the time difference between the two earliest detection times among the detection times indicated by the plurality of detection information DBs regarding the same partial discharge including different IDs stored in the storage unit 450. . Based on the calculated time difference and the distance information and speed information in the storage unit 450, the dielectric breakdown calculation unit 440 calculates the location where the dielectric breakdown occurs in the underground cable 10A.
  • the partial discharge calculation unit 430 and the dielectric breakdown calculation unit 440 perform processing for notifying the administrator of the cable monitoring system 501 of the calculated occurrence position.
  • the ground connection portion 42C and the ground connection portion 43B are separated from each other.
  • the earliest two detection times among the plurality of detection times regarding the partial discharge are , the detection time indicated by the detection information DA from the cable monitoring device 500B, and the detection time indicated by the detection information DA from the cable monitoring device 500C.
  • the partial discharge calculator 430 cannot determine at which position in the section between the insulated connection portion 42C and the ground connection portion 43B the partial discharge has occurred. The same applies to the location where dielectric breakdown occurs.
  • the cable monitoring device 500 is preferably installed throughout the cable section of the underground cable 10 .
  • the cable monitoring system 501 preferably includes a cable monitoring device 500 provided corresponding to the ground connection section 43B shown in FIG. This enables the management device 400 to calculate the positions where partial discharge and dielectric breakdown occur in all cable sections.
  • FIG. 14 is a diagram illustrating a configuration of an abnormality detection unit according to a modification of the embodiment of the present disclosure.
  • abnormality detection unit 201 further includes LNA 221 and ADC 231 as compared with abnormality detection unit 200 .
  • Cable monitoring device 500 may be configured to include abnormality detection section 201 instead of abnormality detection section 200 .
  • the ADC 230 converts the output signal received from the LNA 220 into a digital signal and outputs the digital signal to the detection section 240 . That is, ADC 230 converts the output signal that has passed through HPF 210 into a digital signal and outputs the digital signal to detection section 240 .
  • the LNA 221 amplifies the output signals received from the signal output units 120 and 120A and outputs the amplified output signals to the ADC 231.
  • the ADC 231 converts the output signal received from the LNA 221 into a digital signal and outputs it to the detection section 250 . That is, ADC 230 converts an output signal that has not passed through HPF 210 into a digital signal and outputs the digital signal to detection section 250 . More specifically, ADC 231 generates a digital signal by sampling the output signal received from LNA 221 at a sampling frequency of 100 MHz, for example, and outputs the generated digital signal to detection section 250 .
  • the abnormality detection unit 201 detects partial discharge based on the output signal that has passed through the HPF 210 and detects dielectric breakdown based on the output signal that has not yet passed through the HPF 210 .
  • the detection unit 240 performs comparison processing for comparing the digital signal received from the ADC 230 and the threshold value ThA in the storage unit 270, and stores detection information da in the storage unit 270 according to the comparison result.
  • the detection unit 250 performs comparison processing for comparing the digital signal received from the ADC 231 and the threshold value ThB in the storage unit 270, and stores detection information db in the storage unit 270 according to the comparison result.
  • the determination unit 280 determines that partial discharge has occurred in the underground cable 10A. Then, the determination unit 280 acquires the detection information da and the ID of its own cable monitoring device 500 from the storage unit 270, generates detection information DA including the acquired detection information da and the ID, and stores the generated detection information DA. Output to the communication unit 331 .
  • the determination unit 280 determines that a dielectric breakdown has occurred in the underground cable 10A when a plurality of pieces of detection information db corresponding to a plurality of consecutive comparison timings CTB are stored in the storage unit 270 by the detection unit 240. Then, the determination unit 280 acquires the plurality of detection information db and the ID of its own cable monitoring device 500 from the storage unit 270, generates the detection information DB including the acquired detection information db and the ID, and generates the detection information DB. It outputs the information DB to the communication unit 331 .
  • the output signal output from the signal detection unit 100 when dielectric breakdown occurs in the underground cable 10A is a signal containing low frequency components.
  • the configuration for detecting dielectric breakdown based on the output signal before passing through the HPF 210 can detect dielectric breakdown more accurately.
  • FIG. 15 is a diagram showing the configuration of an abnormality detection unit according to a modification of the embodiment of the present disclosure.
  • abnormality detection unit 202 includes storage processing unit 290 instead of detection units 240 and 250 , and determination unit 281 instead of determination unit 280 , as compared with abnormality detection unit 200 .
  • the cable monitoring device 500 may be configured to include an abnormality detection section 202 instead of the abnormality detection section 200 .
  • the abnormality detection unit 202 distinguishes between dielectric breakdown and partial discharge based on the waveform of the output signal.
  • FIG. 16 and 17 are diagrams showing examples of output signals received by the ADC in the cable monitoring device according to the embodiment of the present disclosure.
  • FIG. 16 shows an output signal output from LNA 220 in cable monitoring device 500 when partial discharge occurs in underground cable 10A.
  • FIG. 17 shows an output signal output from LNA 220 in cable monitoring device 500 when dielectric breakdown occurs in underground cable 10A.
  • the waveform of the output signal output from LNA 220 when partial discharge occurs in underground cable 10A is, for example, an oscillating waveform that oscillates in a period of less than 1 microsecond.
  • the output signal output from LNA 220 when insulation breakdown occurs in underground cable 10A takes a saturated value over a period of 1 microsecond or longer, for example. This is because the LNA 220 is supplied with an output signal that has been shaped to have a value equal to or less than a predetermined value by a protection circuit (not shown) arranged in the preceding stage of the LNA 220 .
  • Storage unit 270 stores digital signal SA composed of K samples for a predetermined time generated by ADC 230 when partial discharge occurs in underground cable 10A, and ADC 230 when dielectric breakdown occurs in underground cable 10A. and a digital signal SB consisting of K samples for a predetermined time period generated by .
  • K is an integer of 2 or more.
  • the digital signal SA corresponds to the waveform of the output signal output from the LNA 220 when partial discharge occurs in the underground cable 10A
  • the digital signal SB is output from the LNA 220 when dielectric breakdown occurs in the underground cable 10A. corresponds to the waveform of the output signal to be
  • the storage processing unit 290 receives the digital signal from the ADC 230 and acquires the time information of the counter 333 .
  • the storage processing unit 290 adds a time stamp indicating time information to the digital signal received from the ADC 230 and stores the time-stamped digital signal in the storage unit 270 .
  • Storage unit 270 is configured by, for example, a ring buffer, and is overwritten from the oldest digital signal.
  • Determining unit 281 detects dielectric breakdown and partial discharge based on the correlation between the value of the digital signal consisting of K samples stored in storage unit 270 by storage processing unit 290 and the digital signals SA and SB in storage unit 270. to detect
  • the determination unit 281 determines the value of the digital signal composed of K consecutive samples in time series, which is stored in the storage unit 270 by the storage processing unit 290, at the calculation timing T1 according to a predetermined calculation cycle. , a correlation value CA with the value of the digital signal SA is calculated. Specifically, every time one sample of the digital signal is stored in the storage unit 270 by the storage processing unit 290, the determination unit 281 stores the value of the digital signal composed of the K samples that are closest to the sample, A correlation value CA with the value of the digital signal SA is calculated.
  • the calculation timing T1 is the timing according to the cycle in which the storage processing unit 290 stores the digital signal in the storage unit 270 .
  • the determination unit 281 determines that partial discharge has occurred in the underground cable 10A when the calculated correlation value CA is equal to or greater than a predetermined threshold value. For example, the determination unit 281 generates correlation data indicating temporal changes in the correlation value CA at each calculation timing T1. Then, when determining that a partial discharge has occurred in the underground cable 10A, the determination unit 281 determines the time given to the digital signal composed of K samples used to calculate the correlation value CA of the peak point in the correlation data. Of the stamps, detection information DA including, for example, the earliest time is generated, and the generated detection information DA is output to communication section 331 .
  • the determination unit 281 determines the value of the digital signal, which is stored in the storage unit 270 by the storage processing unit 290 at the calculation timing T2 according to a predetermined calculation cycle, and is composed of K consecutive samples in chronological order, and the value of the digital signal A correlation value CB with the value of SB is calculated. Specifically, every time one sample of the digital signal is stored in the storage unit 270 by the storage processing unit 290, the determination unit 281 stores the value of the digital signal composed of the K samples that are closest to the sample, A correlation value CB with the value of the digital signal SB is calculated.
  • the calculation timing T2 is the timing according to the cycle in which the storage processing unit 290 stores the digital signal in the storage unit 270 .
  • the determination unit 281 determines that insulation breakdown has occurred in the underground cable 10A. For example, the determination unit 281 generates correlation data indicating temporal changes in the correlation value CB at each calculation timing T2. Then, when determining that a dielectric breakdown has occurred in the underground cable 10A, the determination unit 281 determines the time given to the digital signal composed of K samples used to calculate the correlation value CB of the peak point in the correlation data. A detection information DB including, for example, the earliest time among the stamps is generated, and the generated detection information DB is output to the communication unit 331 .
  • abnormality detection unit 202 may be configured to distinguish between dielectric breakdown and partial discharge, further based on the result of comparison between the level of the output signal and the thresholds ThA and ThB. More specifically, abnormality detection section 202 further includes detection section 240 and detection section 250 . Then, similarly to the determination section 280 in the abnormality detection section 200, the determination section 281 performs determination processing further based on the detection information da and db stored in the storage section 270 by the detection sections 240 and 250.
  • the cable monitoring device 500 may be configured to include a comprehensive detection section including at least any two of the abnormality detection section 200, the abnormality detection section 201, and the abnormality detection section 202.
  • the comprehensive detection section is an example of an anomaly detection section.
  • the comprehensive detection unit comprehensively collects at least two of the results of the determination processing by the abnormality detection unit 200, the results of the determination processing by the abnormality detection unit 201, and the results of the determination processing by the abnormality detection unit 202. , the partial discharge and dielectric breakdown in the underground cable 10A are detected.
  • the abnormality detection unit 200 detects partial discharge and insulation breakdown in the underground cable 10A during a certain period TA, and during a period TB different from the period TA, Abnormality detector 201 detects partial discharge and dielectric breakdown in underground cable 10A, and abnormality detector 202 detects partial discharge and dielectric breakdown in underground cable 10A in period TC different from periods TA and TB. That is, the abnormality detection section 200 in the general detection section determines dielectric breakdown and partial discharge based on the result of comparison between the level of the output signal and a predetermined threshold during the period TA.
  • the abnormality detection section 201 in the comprehensive detection section distinguishes between dielectric breakdown and partial discharge based on the waveform of the output signal during the period TB. Further, the abnormality detection unit 202 in the comprehensive detection unit detects partial discharge based on the output signal that has passed through the HPF 210 and detects dielectric breakdown based on the output signal that has not yet passed through the HPF 210 in the period TC.
  • Each device in the cable monitoring system includes a computer including a memory, and an arithmetic processing unit such as a CPU in the computer uses a program including part or all of each step of the following flowcharts and sequences. is read from the memory and executed. Programs for these multiple devices can each be installed from the outside. Programs for these devices are stored in recording media and distributed.
  • FIG. 18 is a flow chart defining an example of an operation procedure when the cable monitoring device according to the embodiment of the present disclosure detects partial discharge and dielectric breakdown.
  • cable monitoring device 500 first, cable monitoring device 500 generates an output signal according to a change in current flowing through shield layer 75 of underground cable 10A or a change in potential of shield layer 75 (step S102).
  • step S102 when the cable monitoring device 500 generates the detection information da, that is, when the digital signal obtained by digitally converting the output signal is greater than the threshold ThA and less than the threshold ThB (step YES in S104), it is determined that partial discharge has occurred in the underground cable 10A, and the detection information DA is transmitted to the management device 400 (step S106).
  • step S102 cable monitoring device 500 generates a new output signal (step S102).
  • step S110 when cable monitoring device 500 generates detection information db, that is, when the digital signal obtained by digitally converting the output signal is greater than threshold ThB (NO in step S104 and YES in step S108), It is determined whether or not the count number included in the detection information db is equal to or greater than a predetermined number, for example, 5000000 (step S110).
  • the cable monitoring device 500 When the count number included in the detection information db is less than 5000000 (NO in step S110), the cable monitoring device 500 generates a new output signal (step S102).
  • the cable monitoring device 500 determines that a dielectric breakdown has occurred in the underground cable 10A, and sends the detection information DB to the management device 400. (step S112). Next, cable monitoring device 500 generates a new output signal (step S102).
  • step S102 if the cable monitoring device 500 does not generate the detection information da, db, that is, if the digital signal obtained by digitally converting the output signal is equal to or smaller than the threshold value ThA (NO in step S104 and step S108 NO), a new output signal is generated (step S102).
  • FIG. 19 is a diagram showing an example of the sequence of determination processing in the cable monitoring system according to the embodiment of the present disclosure.
  • cable monitoring device 500 periodically performs synchronization processing. Specifically, the cable monitoring device 500D transmits the time information to the cable monitoring device 500A at the synchronization processing timing according to the predetermined cycle (step S202).
  • the cable monitoring device 500A updates the time information of the counter 333 to the time information received from the cable monitoring device 500D (step S204).
  • the cable monitoring device 500A transmits the updated time information of the counter 333 to the cable monitoring device 500B (step S206).
  • the cable monitoring device 500A also transmits the time information to the cable monitoring device 500D (step S208).
  • cable monitoring device 500D transfers 1/2 of the difference between the time information received from cable monitoring device 500A and the current time information of its own counter 333 between cable monitoring device 500D and cable monitoring device 500A. , and transmits delay time information D1 indicating the calculated transmission delay time to the management device 400 (step S210).
  • the cable monitoring device 500B updates the time information of the counter 333 to the time information received from the cable monitoring device 500A (step S212).
  • the cable monitoring device 500B transmits the updated time information of the counter 333 to the cable monitoring device 500C (step S214). Also, the cable monitoring device 500B transmits the time information to the cable monitoring device 500A (step S216).
  • cable monitoring device 500A transfers 1/2 of the difference between the time information received from cable monitoring device 500B and the current time information of its own counter 333 between cable monitoring device 500A and cable monitoring device 500B. , and transmits delay time information D2 indicating the calculated transmission delay time to the management device 400 via the cable monitoring device 500D (step S218).
  • the cable monitoring device 500C updates the time information of the counter 333 with the time information received from the cable monitoring device 500B (step S220).
  • the cable monitoring device 500C transmits the updated time information of the counter 333 to the cable monitoring device 500B (step S222).
  • cable monitoring device 500B transfers 1/2 of the difference between the time information received from cable monitoring device 500C and the current time information of its own counter 333 between cable monitoring device 500B and cable monitoring device 500C. , and transmits delay time information D3 indicating the calculated transmission delay time to the management device 400 via the cable monitoring devices 500A and 500D (step S224).
  • the cable monitoring devices 500B and 500C detect partial discharge in the underground cable 10A, they transmit detection information DA to the management device 400 (steps S226 and S228).
  • the management device 400 corrects the detection time indicated by the detection information DA received from the cable monitoring device 500B using the delay time information D1 and D2, and corrects the detection time indicated by the detection information DA received from the cable monitoring device 500C. Correction is performed using the delay time information D1, D2, and D3. Then, the management device 400 detects the corrected detection time indicated by each detection information DA, the distance information indicating the distance between the monitoring position of the cable monitoring device 500B and the monitoring position of the cable monitoring device 500C, and the Based on the speed information indicating the propagation speed of the current, the position where the partial discharge occurs in the underground cable 10A is calculated (step S230).
  • the cable monitoring devices 500B and 500C detect dielectric breakdown in the underground cable 10A, they transmit the detection information DB to the management device 400 (steps S232 and S234).
  • the management device 400 corrects the detection time indicated by the detection information DB received from the cable monitoring device 500B using the delay time information D1 and D2, and corrects the detection time indicated by the detection information DB received from the cable monitoring device 500C. Correction is performed using the delay time information D1, D2, and D3. Then, the management device 400 stores the corrected detection time indicated by each detection information DB, distance information indicating the distance between the monitoring position of the cable monitoring device 500B and the monitoring position of the cable monitoring device 500C, and Based on the speed information indicating the propagation speed of the current, the position where the dielectric breakdown occurred in the underground cable 10A is calculated (step S236).
  • the cable monitoring devices 500B and 500C detect partial discharge and transmit the detection information DA to the management device 400, and then detect dielectric breakdown and transmit the detection information DB to the management device 400.
  • the cable monitoring device 500 is not limited to the configuration in which the detection information DA and the detection information DB are transmitted to the management device 400 in this order. After detecting a dielectric breakdown at a certain position in the underground cable 10A and transmitting the detection information DB to the management device 400, the cable monitoring device 500 detects a dielectric breakdown at another position in the underground cable 10A. The DB is transmitted to the management device 400 again.
  • the cable monitoring device 500 detects a partial discharge at another position in the underground cable 10A after detecting a dielectric breakdown at a certain position in the underground cable 10A and transmitting the detection information DB to the management device 400, It transmits the detection information DA to the management device 400 .
  • the cable monitoring system 501 is configured to include four cable monitoring devices 500, it is not limited to this. Cable monitoring system 501 may be configured with two, three, or more than five cable monitoring devices 500 . Moreover, the cable monitoring system 501 may be configured without the cable monitoring device 500D provided corresponding to the ground connection section 43A. In addition, the cable monitoring system 501 includes a cable monitoring device 500 provided corresponding to the ground connection section 43B shown in FIG. 1 instead of or in addition to the cable monitoring device 500D. good too.
  • the management device 400 is connected to the cable monitoring device 500D, but the configuration is not limited to this.
  • the management device 400 may be connected to a cable monitoring device 500 other than the cable monitoring device 500D, or may be provided integrally with any cable monitoring device 500. FIG.
  • the acquisition unit 420 receives the detection information DA from each of the plurality of cable monitoring devices 500 via the electromagnetic coupling unit 410, and each of the plurality of cable monitoring devices 500
  • the detection information DB is received via the electromagnetic coupling unit 410 from the above, the present invention is not limited to this.
  • the acquisition unit 420 may be configured to acquire the detection information DA and DB generated in each cable monitoring device 500 off-line.
  • the abnormality detection section 200 is configured to include the detection section 240 and the detection section 250, but the configuration is not limited to this.
  • Abnormality detection section 200 may be configured to include a storage processing section instead of detection section 240 and detection section 250 .
  • the storage processing unit performs processing for storing the digital signal received from the ADC 230 in the storage unit 270 .
  • the determination unit 280 performs the above-described comparison processing and determination processing on the digital signal stored in the storage unit 270 by the storage processing unit.
  • the abnormality detection unit 201 is configured to include the detection unit 240 and the detection unit 250, but it is not limited to this.
  • the abnormality detection section 201 may be configured to include a storage processing section instead of the detection section 240 .
  • the storage processing unit performs processing for storing the digital signal received from the ADC 230 in the storage unit 270 .
  • the abnormality detection section 201 may be configured to include a storage processing section instead of the detection section 250 .
  • the storage processing unit performs processing for storing the digital signal received from the ADC 231 in the storage unit 270 .
  • the determination unit 280 performs the above-described comparison processing and determination processing on the digital signal stored in the storage unit 270 by the storage processing unit.
  • the communication unit 331 is configured to transmit the detection information DA and DB to the management device 400, but the configuration is not limited to this.
  • the communication unit 331 may be configured not to transmit at least one of the detection information DA and DB to the management device 400 .
  • the cable monitoring device 500 may be configured without the communication unit 331 .
  • the management device 400 acquires the detection information DA, DB generated in each cable monitoring device 500 off-line as described above. More specifically, the determination unit 280 stores the generated detection information DA and DB in the storage unit 270 .
  • the administrator of the cable monitoring system 501 periodically or irregularly connects a recording medium such as a USB memory to the cable monitoring device 500 and copies the detection information DA, DB in the storage unit 270 to the recording medium. Then, the administrator connects the recording medium on which the detection information DA and DB are copied to the management device 400 and saves the detection information DA and DB in the storage unit 450 of the management device 400 .
  • the partial discharge calculation unit 430 and the dielectric breakdown calculation unit 440 in the management device 400 calculate the occurrence positions of partial discharge and dielectric breakdown based on the detection information DA and DB stored in the storage unit 450 by the administrator.
  • the cable monitoring device 500 receives, for example, a GPS (Global Positioning System) signal, obtains the current time based on the received GPS signal, and updates the time information of the counter 333 .
  • GPS Global Positioning System
  • the cable monitoring device 500 is configured to include the synchronization unit 332, it is not limited to this.
  • the cable monitoring device 500 may be configured without the synchronization unit 332 .
  • the abnormality detection unit determines that the dielectric breakdown has occurred in the cable when a state in which the level of the output signal is equal to or higher than a predetermined value continues for a predetermined period of time, and the state in which the level of the output signal is equal to or higher than the predetermined value is determined.
  • a cable monitoring device that determines that an opening/closing surge has occurred in the cable if it does not continue for the predetermined period of time.
  • a plurality of cable monitors installed at different positions for monitoring a cable having a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is the conductor that surrounds the insulating layer Obtaining a plurality of first detection information each indicating a time at which a device detects partial discharge in the cable and a plurality of second detection information each indicating a time at which the plurality of cable monitoring devices detect a dielectric breakdown in the cable.
  • an acquisition unit a first calculation unit that calculates the occurrence position of the partial discharge in the cable based on each of the first detection information acquired by the acquisition unit; a second calculation unit that calculates a position where the dielectric breakdown occurs in the cable based on each of the second detection information acquired by the acquisition unit;
  • the acquisition unit further acquires a transmission delay time between the plurality of cable monitoring devices,
  • the first calculator corrects the time indicated by each of the first detection information using the transmission delay time, and calculates the occurrence position of the partial discharge based on the corrected time of each of the first detection information.
  • the second calculator corrects the time indicated by each of the second detection information using the transmission delay time, and calculates the occurrence position of the dielectric breakdown based on the corrected time of each of the second detection information.
  • a management device that calculates.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

The present invention is a cable monitoring device that monitors an underground cable having a line-shaped conductor that transmits power, an insulation layer that covers the periphery of the conductor, and a shielding layer that is a conductor that covers the periphery of the insulation layer, the cable monitoring device comprising: a signal detection unit that outputs an output signal corresponding to changes in the current flowing through the shielding layer, or to changes in the potential of the shielding layer; and an irregularity detection unit that detects partial discharge and insulation breakage in the underground cable on the basis of the output signal outputted from the signal detection unit.

Description

ケーブル監視装置、管理装置、ケーブル監視システムおよびケーブル監視方法CABLE MONITORING DEVICE, MANAGEMENT DEVICE, CABLE MONITORING SYSTEM AND CABLE MONITORING METHOD
 本開示は、ケーブル監視装置、管理装置、ケーブル監視システムおよびケーブル監視方法に関する。
 この出願は、2021年2月15日に出願された日本出願特願2021-21530号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present disclosure relates to a cable monitoring device, a management device, a cable monitoring system and a cable monitoring method.
This application claims priority based on Japanese Patent Application No. 2021-21530 filed on February 15, 2021, and incorporates all of its disclosure herein.
 特許文献1(特開2013-217870号公報)には、以下のような事故点標定装置が開示されている。すなわち、事故点標定装置は、区間を構成する地中ケーブルの各端末部よりも内側に周回するように配設され、前記地中ケーブルの端末部に一端が接続されると共に他端が接地された接地線が通され、事故点で発生する電流を検出して出力する複数の光電流センサと、光ファイバ伝送路を介して入力された前記各光電流センサの出力信号から、ローパスフィルタによって商用周波数帯域の事故電流を抽出して出力する商用周波数成分検出部を有し、前記商用周波数成分検出部が前記各区間の両端末部内側に配設された光電流センサの出力信号から抽出した複数周期の事故電流に基づいて事故区間を検出する事故区間検出部と、前記光ファイバ伝送路を介して入力された前記各光電流センサの出力信号から、ハイパスフィルタによって前記商用周波数帯域よりも高周波のサージ電流を抽出して出力するサージ電流成分検出部を有し、前記サージ電流成分検出部が前記各区間の両端末部内側に配設された光電流センサの出力信号から抽出したサージ電流に基づいて、サージ電流が当該各光電流センサに到達した時間差を算出することにより、事故点情報である事故点距離を標定する事故点標定部を有する事故点検出部とを備える。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2013-217870) discloses the following accident point locating device. That is, the accident point locating device is disposed so as to loop inside each end portion of the underground cable that constitutes the section, and one end is connected to the end portion of the underground cable and the other end is grounded. A plurality of photocurrent sensors that detect and output the current generated at the accident point through a grounding wire, and the output signal of each of the photocurrent sensors that is input via the optical fiber transmission line is used by a low-pass filter to obtain a commercial signal. a commercial frequency component detector for extracting and outputting fault current in a frequency band, wherein the commercial frequency component detector is extracted from the output signal of a photocurrent sensor disposed inside both terminal portions of each section; A fault zone detector for detecting fault zones based on periodic fault currents; It has a surge current component detector that extracts and outputs a surge current, and the surge current component detector is based on the surge current extracted from the output signal of a photocurrent sensor disposed inside both terminal portions of each section. and an accident point detection unit having an accident point locating unit for locating an accident point distance, which is accident point information, by calculating the time difference between when the surge current reaches each photocurrent sensor.
 また、特許文献2(国際公開公報第2016/079869号)には、以下のような部分放電位置標定装置が開示されている。すなわち、部分放電位置標定装置は、電力ケーブルが接続されたガス絶縁機器内または前記電力ケーブル内で発生した部分放電の位置標定が可能な部分放電位置標定装置であって、前記ガス絶縁機器に取り付けられ、部分放電信号を検出可能な第1のセンサと、前記電力ケーブルに取り付けられ、前記部分放電信号を検出可能な第2のセンサと、前記第1のセンサによる前記部分放電信号の検出時刻と前記第2のセンサによる前記部分放電信号の検出時刻との差である時間差を検出する時間差検出部と、前記時間差検出部により検出された前記時間差と、前記ガス絶縁機器内での前記部分放電信号の伝搬速度と、前記電力ケーブル内での前記部分放電信号の伝搬速度とに基づいて前記部分放電の発生位置を標定する処理部とを備える。 In addition, Patent Document 2 (International Publication No. 2016/079869) discloses the following partial discharge positioning device. That is, the partial discharge position locating device is a partial discharge locating device capable of locating the position of the partial discharge generated in the gas insulated equipment to which the power cable is connected or in the power cable, and is attached to the gas insulated equipment. a first sensor capable of detecting a partial discharge signal; a second sensor attached to the power cable and capable of detecting the partial discharge signal; and a detection time of the partial discharge signal by the first sensor. a time difference detection unit for detecting a time difference between a time at which the partial discharge signal is detected by the second sensor; and the time difference detected by the time difference detection unit and the partial discharge signal in the gas-insulated equipment. and a processing unit for locating the generation position of the partial discharge based on the propagation speed of the partial discharge signal and the propagation speed of the partial discharge signal in the power cable.
特開2013-217870号公報JP 2013-217870 A 国際公開公報第2016/079869号International Publication No. 2016/079869
 本開示のケーブル監視装置は、電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視するケーブル監視装置であって、前記遮蔽層を通して流れる電流の変化、または前記遮蔽層の電位の変化に応じた出力信号を出力する信号検出部と、前記信号検出部から出力される前記出力信号に基づいて、前記ケーブルにおける部分放電および絶縁破壊を検出する異常検出部とを備える。 A cable monitoring device according to the present disclosure monitors a cable having a linear conductor that transmits electric power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer. A signal detection unit that outputs an output signal corresponding to a change in the current flowing through the shielding layer or a change in the potential of the shielding layer; and based on the output signal output from the signal detection unit, the an anomaly detector for detecting partial discharge and dielectric breakdown in the cable;
 本開示の管理装置は、電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視する互いに異なる位置に設置された複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報、および前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報を取得する取得部と、前記取得部により取得された前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出する第1算出部と、前記取得部により取得された前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出する第2算出部とを備える。 The management device of the present disclosure monitors a cable having a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer. A plurality of pieces of first detection information respectively indicating times at which a plurality of installed cable monitoring devices detected partial discharge in the cable, and a plurality of pieces of information indicating times at which the plurality of cable monitoring devices detected a dielectric breakdown in the cable. an acquisition unit that acquires second detection information; a first calculation unit that calculates the occurrence position of the partial discharge in the cable based on each of the first detection information acquired by the acquisition unit; and a second calculator that calculates a location where the dielectric breakdown occurs in the cable based on the obtained second detection information.
 本開示のケーブル監視システムは、電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視する互いに異なる位置に設置された複数のケーブル監視装置と、前記複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報と、前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報とを取得する管理装置とを備え、前記管理装置は、取得した前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出し、取得した前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出する。 A cable monitoring system of the present disclosure monitors a cable having a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer. a plurality of cable monitoring devices installed in the cable; a plurality of first detection information indicating times at which the plurality of cable monitoring devices detect partial discharge in the cable; and a management device that acquires a plurality of pieces of second detection information each indicating a time at which the partial discharge is detected, and the management device determines the generation position of the partial discharge in the cable based on each of the acquired first detection information. Based on each of the calculated and acquired second detection information, a position where the dielectric breakdown occurs in the cable is calculated.
 本開示のケーブル監視方法は、互いに異なる位置に設置された複数のケーブル監視装置と、管理装置とを備えるケーブル監視システムにおけるケーブル監視方法であって、前記複数のケーブル監視装置が、電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視するステップと、前記管理装置が、前記複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報を取得するステップと、前記管理装置が、前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報とを取得するステップと、前記管理装置が、取得した前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出するステップと、前記管理装置が、取得した前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出するステップとを含む。 A cable monitoring method of the present disclosure is a cable monitoring method in a cable monitoring system including a plurality of cable monitoring devices installed at mutually different positions and a management device, wherein the plurality of cable monitoring devices transmit power. a step of monitoring a cable having a linear conductor, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer; obtaining a plurality of pieces of first detection information each indicating a time at which partial discharge is detected in the cable; a step of obtaining second detection information; a step of calculating, by the management device, the position where the partial discharge occurs in the cable based on each of the obtained first detection information; and calculating a position where the dielectric breakdown occurs in the cable based on each of the second detection information.
 本開示の一態様は、このような特徴的な処理部を備えるケーブル監視装置として実現され得るだけでなく、ケーブル監視装置の一部または全部を実現する半導体集積回路として実現され得たり、ケーブル監視装置における処理をステップとする方法として実現され得たり、ケーブル監視装置における処理のステップをコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、このような特徴的な処理部を備える管理装置として実現され得るだけでなく、管理装置の一部または全部を実現する半導体集積回路として実現され得たり、管理装置における処理をステップとする方法として実現され得たり、管理装置における処理のステップをコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、このような特徴的な処理部を備えるケーブル監視システムとして実現され得るだけでなく、ケーブル監視システムの一部または全部を実現する半導体集積回路として実現され得たり、ケーブル監視システムにおける処理のステップをコンピュータに実行させるためのプログラムとして実現され得る。 One aspect of the present disclosure can be implemented not only as a cable monitoring device including such a characteristic processing unit, but also as a semiconductor integrated circuit that implements part or all of the cable monitoring device, or as a cable monitoring device. It can be realized as a method having steps of processing in the device, or as a program for causing a computer to execute the steps of processing in the cable monitoring device. In addition, one aspect of the present disclosure can be implemented not only as a management device including such a characteristic processing unit, but also as a semiconductor integrated circuit that implements part or all of the management device, or as a management device. or as a program for causing a computer to execute the steps of the processing in the management apparatus. Further, one aspect of the present disclosure can be implemented not only as a cable monitoring system including such a characteristic processing unit, but also as a semiconductor integrated circuit that implements part or all of the cable monitoring system, It can be implemented as a program for causing a computer to execute processing steps in the cable monitoring system.
図1は、本開示の実施の形態に係る送電システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a power transmission system according to an embodiment of the present disclosure. 図2は、本開示の実施の形態に係る送電システムに用いられる地中ケーブルの構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a configuration of an underground cable used in a power transmission system according to an embodiment of the present disclosure; 図3は、本開示の実施の形態に係る送電システムに用いられる普通接続部における地中ケーブルの接続方法の一例を示す図である。FIG. 3 is a diagram illustrating an example of a connection method of an underground cable in a normal connection section used in the power transmission system according to the embodiment of the present disclosure. 図4は、本開示の実施の形態に係る送電システムに用いられる絶縁接続部における地中ケーブルの接続方法の一例を示す図である。FIG. 4 is a diagram illustrating an example of a connection method of an underground cable at an insulated joint used in the power transmission system according to the embodiment of the present disclosure. 図5は、本開示の実施の形態に係る送電システムに用いられる絶縁接続部における地中ケーブルの接続方法の他の例を示す図である。FIG. 5 is a diagram illustrating another example of a connection method of an underground cable at an insulated joint used in the power transmission system according to the embodiment of the present disclosure. 図6は、本開示の実施の形態に係るケーブル監視システムの構成を示す図である。FIG. 6 is a diagram showing the configuration of the cable monitoring system according to the embodiment of the present disclosure. 図7は、本開示の実施の形態に係るケーブル監視装置の構成を示す図である。FIG. 7 is a diagram showing the configuration of the cable monitoring device according to the embodiment of the present disclosure. 図8は、本開示の実施の形態に係るケーブル監視装置におけるCTの構成を示す図である。FIG. 8 is a diagram showing the configuration of CT in the cable monitoring device according to the embodiment of the present disclosure. 図9は、本開示の実施の形態の変形例に係るケーブル監視装置の構成を示す図である。FIG. 9 is a diagram showing a configuration of a cable monitoring device according to a modification of the embodiment of the present disclosure; 図10は、本開示の実施の形態に係るケーブル監視装置における金属箔電極の取り付け例を示す図である。FIG. 10 is a diagram showing an example of attachment of metal foil electrodes in the cable monitoring device according to the embodiment of the present disclosure. 図11は、本開示の実施の形態に係るケーブル監視装置における異常検出部の構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a configuration of an abnormality detection unit in the cable monitoring device according to the embodiment of the present disclosure; 図12は、本開示の実施の形態に係る管理装置の構成を示す図である。FIG. 12 is a diagram illustrating a configuration of a management device according to an embodiment of the present disclosure; 図13は、本開示の実施の形態に係る送電システムにおける部分放電の発生位置の一例を示す図である。FIG. 13 is a diagram illustrating an example of positions where partial discharges occur in the power transmission system according to the embodiment of the present disclosure. 図14は、本開示の実施の形態の変形例に係る異常検出部の構成を示す図である。FIG. 14 is a diagram illustrating a configuration of an abnormality detection unit according to a modification of the embodiment of the present disclosure; 図15は、本開示の実施の形態の変形例に係る異常検出部の構成を示す図である。FIG. 15 is a diagram illustrating a configuration of an abnormality detection unit according to a modification of the embodiment of the present disclosure; 図16は、本開示の実施の形態に係るケーブル監視装置におけるADCが受ける出力信号の一例を示す図である。16 is a diagram illustrating an example of an output signal received by an ADC in the cable monitoring device according to the embodiment of the present disclosure; FIG. 図17は、本開示の実施の形態に係るケーブル監視装置におけるADCが受ける出力信号の一例を示す図である。17 is a diagram illustrating an example of an output signal received by an ADC in the cable monitoring device according to the embodiment of the present disclosure; FIG. 図18は、本開示の実施の形態に係るケーブル監視装置が部分放電および絶縁破壊の検出を行う際の動作手順の一例を定めたフローチャートである。FIG. 18 is a flow chart defining an example of an operation procedure when the cable monitoring device according to the embodiment of the present disclosure detects partial discharge and dielectric breakdown. 図19は、本開示の実施の形態に係るケーブル監視システムにおける判定処理のシーケンスの一例を示す図である。FIG. 19 is a diagram illustrating an example of a sequence of determination processing in the cable monitoring system according to the embodiment of the present disclosure;
 従来、ケーブルを監視し、ケーブルにおける異常を検出する技術が提案されている。 Conventionally, technologies have been proposed for monitoring cables and detecting abnormalities in cables.
 [本開示が解決しようとする課題]
 特許文献1に記載の技術では、ケーブルにおける部分放電を検出することはできない。また、特許文献2に記載の技術では、ケーブルにおける絶縁破壊を検出することはできない。
[Problems to be Solved by the Present Disclosure]
The technique described in Patent Document 1 cannot detect partial discharge in a cable. In addition, the technique described in Patent Document 2 cannot detect dielectric breakdown in the cable.
 特許文献1および2に記載の技術を超えて、ケーブルにおける部分放電および絶縁破壊の検出に関する優れた機能を実現することが可能な技術が望まれる。 A technique that goes beyond the techniques described in Patent Documents 1 and 2 and is capable of realizing excellent functions related to detection of partial discharge and dielectric breakdown in cables is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、ケーブルにおける部分放電および絶縁破壊の検出に関する優れた機能を実現することが可能なケーブル監視装置、管理装置、ケーブル監視システムおよびケーブル監視方法を提供することである。 The present disclosure has been made to solve the above problems, and its object is to provide a cable monitoring device, a management device, and a cable monitoring device capable of realizing excellent functions related to detection of partial discharge and dielectric breakdown in cables. To provide a system and cable monitoring method.
 [本開示の効果]
 本開示によれば、ケーブルにおける部分放電および絶縁破壊の検出に関する優れた機能を実現することができる。
[Effect of the present disclosure]
Advantageous Effects of Invention According to the present disclosure, superior functionality regarding detection of partial discharge and dielectric breakdown in cables can be achieved.
 [本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
[Description of Embodiments of the Present Disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.
 (1)本開示の実施の形態に係るケーブル監視装置は、電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視するケーブル監視装置であって、前記遮蔽層を通して流れる電流の変化、または前記遮蔽層の電位の変化に応じた出力信号を出力する信号検出部と、前記信号検出部から出力される前記出力信号に基づいて、前記ケーブルにおける部分放電および絶縁破壊を検出する異常検出部とを備える。 (1) A cable monitoring device according to an embodiment of the present disclosure includes a linear conductor that transmits electric power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer. A cable monitoring device for monitoring a cable having and an abnormality detection unit that detects partial discharge and dielectric breakdown in the cable based on the output signal.
 このように、共通の信号検出部から出力される共通の出力信号に基づいて、ケーブルにおける部分放電および絶縁破壊の両方を検出する構成により、簡易な構成でケーブルにおける部分放電および絶縁破壊を検出することができる。したがって、ケーブルにおける部分放電および絶縁破壊の検出に関する優れた機能を実現することができる。 In this way, based on the common output signal output from the common signal detection unit, both partial discharge and dielectric breakdown in the cable are detected with a simple configuration, thereby detecting partial discharge and dielectric breakdown in the cable. be able to. Therefore, excellent functionality for detecting partial discharges and dielectric breakdowns in cables can be achieved.
 (2)前記異常検出部は、前記出力信号のレベルと所定のしきい値との比較結果に基づいて、前記部分放電と前記絶縁破壊とを判別してもよい。 (2) The abnormality detection section may distinguish between the partial discharge and the dielectric breakdown based on a comparison result between the level of the output signal and a predetermined threshold value.
 このような構成により、絶縁破壊の発生時に信号検出部から出力される出力信号と、部分放電の発生時に信号検出部から出力される出力信号とのレベルの差に着目して、絶縁破壊と部分放電とをより簡単に判別することができる。 With such a configuration, by paying attention to the level difference between the output signal output from the signal detection section when dielectric breakdown occurs and the output signal output from the signal detection section when partial discharge occurs, dielectric breakdown and partial discharge are detected. Discharge can be more easily distinguished.
 (3)前記異常検出部は、前記出力信号の波形に基づいて、前記部分放電と前記絶縁破壊とを判別してもよい。 (3) The abnormality detection section may distinguish between the partial discharge and the dielectric breakdown based on the waveform of the output signal.
 このような構成により、絶縁破壊の発生時に信号検出部から出力される出力信号と、部分放電の発生時に信号検出部から出力される出力信号との波形の相違に着目して、絶縁破壊と部分放電とをより正確に判別することができる。 With such a configuration, by paying attention to the difference in waveform between the output signal output from the signal detection unit when dielectric breakdown occurs and the output signal output from the signal detection unit when partial discharge occurs, dielectric breakdown and partial discharge are detected. Discharge can be determined more accurately.
 (4)前記異常検出部は、所定の周波数以下の成分を減衰させるハイパスフィルタを通過した前記出力信号に基づいて前記部分放電を検出し、前記ハイパスフィルタを通過する前の前記出力信号に基づいて前記絶縁破壊を検出してもよい。 (4) The abnormality detection unit detects the partial discharge based on the output signal that has passed through a high-pass filter that attenuates components below a predetermined frequency, and detects the partial discharge based on the output signal that has not passed through the high-pass filter. The dielectric breakdown may be detected.
 このような構成により、ハイパスフィルタを用いて低周波のノイズを除去して部分放電を検出することができるとともに、絶縁破壊に起因するより多くの低周波成分を抽出して絶縁破壊を検出することができる。 With such a configuration, it is possible to detect partial discharge by removing low-frequency noise using a high-pass filter, and to detect dielectric breakdown by extracting more low-frequency components caused by dielectric breakdown. can be done.
 (5)前記ケーブル監視装置は、さらに、前記異常検出部が前記部分放電を検出した時刻を他の装置へ通知する通知部を備える構成であってもよい。 (5) The cable monitoring device may further include a notification unit that notifies another device of the time at which the abnormality detection unit detected the partial discharge.
 このような構成により、他の装置において、複数のケーブル監視装置における部分放電の検出時刻を用いて、ケーブルにおける部分放電の発生位置を標定することができる。 With such a configuration, it is possible to locate the occurrence position of the partial discharge in the cable in another device using the partial discharge detection times in the plurality of cable monitoring devices.
 (6)前記ケーブル監視装置は、さらに、前記異常検出部が前記絶縁破壊を検出した時刻を他の装置へ通知する通知部を備える構成であってもよい。 (6) The cable monitoring device may further include a notification unit that notifies another device of the time at which the abnormality detection unit detects the dielectric breakdown.
 このような構成により、他の装置において、複数のケーブル監視装置における絶縁破壊の検出時刻を用いて、ケーブルにおける絶縁破壊の発生位置を標定することができる。 With such a configuration, it is possible to locate the occurrence position of dielectric breakdown in a cable in another device using the dielectric breakdown detection times in a plurality of cable monitoring devices.
 (7)前記ケーブル監視装置は、さらに、前記ケーブルを監視する他の前記ケーブル監視装置との通信により前記他のケーブル監視装置との時刻同期をとるための処理を行う同期部を備える構成であってもよい。 (7) The cable monitoring device further includes a synchronization unit that performs processing for synchronizing time with the other cable monitoring device through communication with the other cable monitoring device that monitors the cable. may
 このような構成により、簡単な構成で複数のケーブル監視装置の時刻同期をとることができるので、簡単な構成でケーブルにおける部分放電の発生位置および絶縁破壊の発生位置を標定することができる。 With such a configuration, it is possible to time-synchronize a plurality of cable monitoring devices with a simple configuration, so it is possible to locate the location of occurrence of partial discharge and the location of occurrence of dielectric breakdown in a cable with a simple configuration.
 (8)本開示の実施の形態に係る管理装置は、電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視する互いに異なる位置に設置された複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報、および前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報を取得する取得部と、前記取得部により取得された前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出する第1算出部と、前記取得部により取得された前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出する第2算出部とを備える。 (8) A management device according to an embodiment of the present disclosure includes a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer. a plurality of first detection information indicating times when a plurality of cable monitoring devices installed at mutually different positions for monitoring a cable detect partial discharge in the cable; an acquisition unit configured to acquire a plurality of pieces of second detection information each indicating a detection time; a calculator; and a second calculator that calculates a location where the dielectric breakdown occurs in the cable based on each of the second detection information acquired by the acquirer.
 このように、部分放電および絶縁破壊の両方を検出可能な複数のケーブル監視装置における部分放電の検出時刻に基づいて部分放電の発生位置を算出し、当該複数のケーブル監視装置における絶縁破壊の検出時刻に基づいて絶縁破壊の発生位置を算出する構成により、簡易なシステム構成で部分放電の発生位置および絶縁破壊の発生位置の両方を標定することができる。したがって、ケーブルにおける部分放電および絶縁破壊の検出に関する優れた機能を実現することができる。 In this way, the occurrence position of partial discharge is calculated based on the partial discharge detection time in a plurality of cable monitoring devices capable of detecting both partial discharge and insulation breakdown, and the dielectric breakdown detection time in the plurality of cable monitoring devices is calculated. With the configuration for calculating the position of occurrence of dielectric breakdown based on , it is possible to locate both the position of occurrence of partial discharge and the position of occurrence of dielectric breakdown with a simple system configuration. Therefore, excellent functionality for detecting partial discharges and dielectric breakdowns in cables can be achieved.
 (9)本開示の実施の形態に係るケーブル監視システムは、電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視する互いに異なる位置に設置された複数のケーブル監視装置と、前記複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報と、前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報とを取得する管理装置とを備え、前記管理装置は、取得した前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出し、取得した前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出する。 (9) A cable monitoring system according to an embodiment of the present disclosure includes a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer. a plurality of cable monitoring devices installed at different positions for monitoring the cables, a plurality of first detection information indicating times when the plurality of cable monitoring devices detected partial discharge in the cables, and the plurality of cables a management device that acquires a plurality of pieces of second detection information each indicating a time at which a monitoring device detects a dielectric breakdown in the cable; and the management device acquires the cable based on the acquired first detection information. , and based on each of the acquired second detection information, calculate the position of occurrence of the dielectric breakdown in the cable.
 このように、部分放電および絶縁破壊の両方を検出可能な複数のケーブル監視装置における部分放電の検出時刻に基づいて部分放電の発生位置を算出し、当該複数のケーブル監視装置における絶縁破壊の検出時刻に基づいて絶縁破壊の発生位置を算出する構成により、簡易な構成で部分放電の発生位置および絶縁破壊の発生位置の両方を標定することができる。したがって、ケーブルにおける部分放電および絶縁破壊の検出に関する優れた機能を実現することができる。 In this way, the occurrence position of partial discharge is calculated based on the partial discharge detection time in a plurality of cable monitoring devices capable of detecting both partial discharge and insulation breakdown, and the dielectric breakdown detection time in the plurality of cable monitoring devices is calculated. With the configuration for calculating the dielectric breakdown occurrence position based on , it is possible to locate both the partial discharge occurrence position and the dielectric breakdown occurrence position with a simple configuration. Therefore, excellent functionality for detecting partial discharges and dielectric breakdowns in cables can be achieved.
 (10)本開示の実施の形態に係るケーブル監視方法は、互いに異なる位置に設置された複数のケーブル監視装置と、管理装置とを備えるケーブル監視システムにおけるケーブル監視方法であって、前記複数のケーブル監視装置が、電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視するステップと、前記管理装置が、前記複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報を取得するステップと、前記管理装置が、前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報とを取得するステップと、前記管理装置が、取得した前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出するステップと、前記管理装置が、取得した前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出するステップとを含む。 (10) A cable monitoring method according to an embodiment of the present disclosure is a cable monitoring method in a cable monitoring system including a plurality of cable monitoring devices installed at mutually different positions and a management device, wherein the plurality of cables a monitoring device monitoring a cable having a linear conductor that transmits electric power, an insulating layer surrounding the conductor, and a shielding layer that is a conductor surrounding the insulating layer; a step of acquiring a plurality of first detection information respectively indicating times when the plurality of cable monitoring devices detected partial discharge in the cable; acquiring a plurality of pieces of second detection information each indicating a detection time; and calculating, by the management device, the location where the partial discharge occurs in the cable based on the acquired pieces of the first detection information. and calculating, by the management device, the location where the dielectric breakdown occurs in the cable based on the obtained second detection information.
 このように、部分放電および絶縁破壊の両方を検出可能な複数のケーブル監視装置における部分放電の検出時刻に基づいて部分放電の発生位置を算出し、当該複数のケーブル監視装置における絶縁破壊の検出時刻に基づいて絶縁破壊の発生位置を算出する方法により、簡易な方法で部分放電の発生位置および絶縁破壊の発生位置の両方を標定することができる。したがって、ケーブルにおける部分放電および絶縁破壊の検出に関する優れた機能を実現することができる。 In this way, the occurrence position of partial discharge is calculated based on the partial discharge detection time in a plurality of cable monitoring devices capable of detecting both partial discharge and insulation breakdown, and the dielectric breakdown detection time in the plurality of cable monitoring devices is calculated. Both the partial discharge occurrence position and the dielectric breakdown occurrence position can be located by a simple method by the method of calculating the dielectric breakdown occurrence position based on the above. Therefore, excellent functionality for detecting partial discharges and dielectric breakdowns in cables can be achieved.
 以下、本開示の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Embodiments of the present disclosure will be described below with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated. Moreover, at least part of the embodiments described below may be combined arbitrarily.
 [構成および基本動作]
 図1は、本開示の実施の形態に係る送電システムの構成を示す図である。図1を参照して、送電システム502は、地中ケーブル10A,10B,10Cと、普通接続部41A,41Bと、絶縁接続部42A,42B,42Cと、地上接続部43A,43Bとを備える。以下、地中ケーブル10A,10B,10Cの各々を地中ケーブル10とも称し、普通接続部41A,41Bの各々を普通接続部41とも称し、絶縁接続部42A,42B,42Cの各々を絶縁接続部42とも称し、地上接続部43A,43Bの各々を地上接続部43とも称する。送電システム502の少なくとも一部分は、たとえば電力系統における地中部分に設けられる。
[Configuration and basic operation]
FIG. 1 is a diagram showing the configuration of a power transmission system according to an embodiment of the present disclosure. Referring to FIG. 1, power transmission system 502 includes underground cables 10A, 10B, 10C, normal connections 41A, 41B, insulated connections 42A, 42B, 42C, and ground connections 43A, 43B. Hereinafter, each of the underground cables 10A, 10B, and 10C is also referred to as the underground cable 10, each of the normal connection portions 41A and 41B is also referred to as a normal connection portion 41, and each of the insulated connection portions 42A, 42B, and 42C is referred to as an insulated connection portion. 42 , and each of the ground connection portions 43 A and 43 B is also referred to as a ground connection portion 43 . At least a portion of transmission system 502 is provided, for example, in an underground portion of the power system.
 地上接続部43は、ケーブル端末11A,11B,11Cを含む。地中ケーブル10は、地上接続部43において、ケーブル端末11A,11B,11Cに接続されている。より詳細には、地中ケーブル10Aはケーブル端末11Aに接続され、地中ケーブル10Bはケーブル端末11Bに接続され、地中ケーブル10Cはケーブル端末11Cに接続されている。 The ground connection section 43 includes cable terminals 11A, 11B, and 11C. The underground cable 10 is connected to the cable terminals 11A, 11B and 11C at the ground connection portion 43 . More specifically, underground cable 10A is connected to cable terminal 11A, underground cable 10B is connected to cable terminal 11B, and underground cable 10C is connected to cable terminal 11C.
 地上接続部43は、たとえば、変電所内において、地中ケーブル10が地上に現れる部分に設けられる。普通接続部41および絶縁接続部42は、マンホール31の内部に設けられる。 The ground connection part 43 is provided, for example, in a substation where the underground cable 10 appears on the ground. The normal connection portion 41 and the insulated connection portion 42 are provided inside the manhole 31 .
 図2は、本開示の実施の形態に係る送電システムに用いられる地中ケーブルの構成の一例を示す図である。図2は、地中ケーブル10の断面図を示している。図2を参照して、地中ケーブル10は、中心部から順に、電力を伝送する線状の導体71と、半導電エチレンプロピレン(EP;Ethylene Propylene)ゴム製の内部半導電層72と、絶縁層であるEPゴム製の絶縁体73と、半導電テープである外部半導電層74と、導電性の遮蔽層75と、ビニル製のシース76とから構成される。すなわち、内部半導電層72が導体71の周囲を覆い、絶縁体73が内部半導電層72の周囲を覆い、外部半導電層74が絶縁体73の周囲を覆い、導体である遮蔽層75が外部半導電層74の周囲を覆い、シース76が遮蔽層75の周囲を覆っている。 FIG. 2 is a diagram showing an example of the configuration of underground cables used in the power transmission system according to the embodiment of the present disclosure. FIG. 2 shows a cross-sectional view of underground cable 10 . Referring to FIG. 2, underground cable 10 includes, in order from the center, a linear conductor 71 that transmits electric power, an internal semiconductive layer 72 made of semiconductive ethylene propylene (EP) rubber, and an insulating layer. It consists of an insulator 73 made of EP rubber which is a layer, an outer semiconductive layer 74 which is a semiconductive tape, a conductive shielding layer 75 and a sheath 76 made of vinyl. That is, the inner semiconducting layer 72 surrounds the conductor 71, the insulator 73 surrounds the inner semiconducting layer 72, the outer semiconducting layer 74 surrounds the insulator 73, and the shielding layer 75 which is a conductor Surrounding the outer semi-conducting layer 74 is a sheath 76 surrounding the shielding layer 75 .
 地中ケーブル10における導体71は、送電に用いられ、高圧電圧が印加されている。遮蔽層75は、導電性である一方、地中ケーブル10の途中で接地されている。このため、遮蔽層75の電圧は、導体71と比べて低い。 A conductor 71 in the underground cable 10 is used for power transmission and is applied with a high voltage. The shielding layer 75 is electrically conductive while being grounded in the middle of the underground cable 10 . Therefore, the voltage on shield layer 75 is lower than on conductor 71 .
 送電システム502では、一例として、配電方式として3相3線式が用いられる。送電システム502では、3相の地中ケーブル10として、地中ケーブル10A,10B,10Cが設けられる。 In the power transmission system 502, as an example, a 3-phase 3-wire system is used as a power distribution system. In power transmission system 502, underground cables 10A, 10B, and 10C are provided as three-phase underground cables 10. FIG.
 再び図1を参照して、ケーブル端末11A,11B,11Cにおいて、地中ケーブル10A,10B,10Cの各々の遮蔽層75が露出している。これらの遮蔽層75における露出部分に、それぞれ端子が設けられる。 Referring to FIG. 1 again, the shielding layers 75 of the underground cables 10A, 10B and 10C are exposed at the cable terminals 11A, 11B and 11C. Terminals are provided in the exposed portions of these shielding layers 75, respectively.
 地中ケーブル10A,10B,10Cは、それぞれ、ケーブル端末11A,11B,11Cにおいて接地ノード15に接続されている。より詳細には、地中ケーブル10A,10B,10Cの各々に設けられた端子が接地ノード15に接地用ケーブル14等を介して接続されることにより、各地中ケーブル10の遮蔽層75が接地される。 The underground cables 10A, 10B, 10C are connected to the ground node 15 at cable terminals 11A, 11B, 11C, respectively. More specifically, the shielding layer 75 of each underground cable 10 is grounded by connecting the terminal provided to each of the underground cables 10A, 10B, 10C to the ground node 15 via the grounding cable 14 or the like. be.
 たとえば、地中ケーブル10は、普通接続部41および絶縁接続部42において端部同士が接続された複数のケーブルにより構成される。 For example, the underground cable 10 is composed of a plurality of cables whose ends are connected to each other at normal connection portions 41 and insulated connection portions 42 .
 図3は、本開示の実施の形態に係る送電システムに用いられる普通接続部における地中ケーブルの接続方法の一例を示す図である。図3では、説明を容易にするために、地中ケーブル10Aのうちの導体71および遮蔽層75を主に示している。以下で説明する内容は、地中ケーブル10Bおよび地中ケーブル10Cについても同様である。 FIG. 3 is a diagram showing an example of a connection method of underground cables in a normal connection section used in the power transmission system according to the embodiment of the present disclosure. FIG. 3 mainly shows the conductor 71 and the shielding layer 75 of the underground cable 10A for ease of explanation. The contents described below are the same for the underground cable 10B and the underground cable 10C.
 図3を参照して、普通接続部41において、地中ケーブル10A1,10A2が接続されている。普通接続部41において、たとえば、地中ケーブル10A1,10A2の導体71同士の接続部分において地中ケーブル10A1,10A2の遮蔽層75が露出する。普通接続部41では、地中ケーブル10A1の遮蔽層75および地中ケーブル10A2の遮蔽層75をたとえば導電性のワイヤ12を用いて結線する。 With reference to FIG. 3, underground cables 10A1 and 10A2 are connected at a normal connection portion 41. In the normal connection portion 41, for example, the shielding layer 75 of the underground cables 10A1 and 10A2 is exposed at the connection portion between the conductors 71 of the underground cables 10A1 and 10A2. In ordinary connection portion 41, shielding layer 75 of underground cable 10A1 and shielding layer 75 of underground cable 10A2 are connected using conductive wire 12, for example.
 そして、地中ケーブル10A1の遮蔽層75および地中ケーブル10A2の遮蔽層75が接続される場合、たとえば地中ケーブル10A2の遮蔽層75における露出部分に端子81が設けられる。なお、端子81は、地中ケーブル10A1の遮蔽層75における露出部分に設けられてもよい。そして、端子81が接地ノード13にケーブル等を介して接続されることにより、地中ケーブル10Aの遮蔽層75が接地される。 Then, when the shielding layer 75 of the underground cable 10A1 and the shielding layer 75 of the underground cable 10A2 are connected, the terminal 81 is provided at the exposed portion of the shielding layer 75 of the underground cable 10A2, for example. Note that the terminal 81 may be provided at an exposed portion of the shielding layer 75 of the underground cable 10A1. By connecting the terminal 81 to the ground node 13 via a cable or the like, the shielding layer 75 of the underground cable 10A is grounded.
 図4は、本開示の実施の形態に係る送電システムに用いられる絶縁接続部における地中ケーブルの接続方法の一例を示す図である。図4では、説明を容易にするために、地中ケーブル10Aの構成のうちの導体71および遮蔽層75を主に示している。以下で説明する内容は、地中ケーブル10Bおよび地中ケーブル10Cについても同様である。 FIG. 4 is a diagram showing an example of a connection method of an underground cable at an insulated joint used in the power transmission system according to the embodiment of the present disclosure. FIG. 4 mainly shows the conductor 71 and the shielding layer 75 of the construction of the underground cable 10A for ease of explanation. The contents described below are the same for the underground cable 10B and the underground cable 10C.
 図4を参照して、絶縁接続部42において、地中ケーブル10A1,10A2が接続されている。絶縁接続部42において、たとえば、地中ケーブル10A1,10A2の導体71同士の接続部分において地中ケーブル10A1,10A2の遮蔽層75が露出し、露出部分に端子81等がそれぞれ設けられる。 With reference to FIG. 4 , underground cables 10A1 and 10A2 are connected at the insulated connection portion 42 . In the insulated connection portion 42, for example, the shielding layers 75 of the underground cables 10A1 and 10A2 are exposed at the connecting portions between the conductors 71 of the underground cables 10A1 and 10A2, and the terminals 81 and the like are provided at the exposed portions.
 絶縁接続部42では、地中ケーブル10A1の導体71および地中ケーブル10A2の導体71が接続される場合、たとえば地中ケーブル10A1における端子81と地中ケーブル10A2における端子81とをワイヤ12を用いて結線することにより、地中ケーブル10A1の遮蔽層75および地中ケーブル10A2の遮蔽層75が接続される。 When the conductor 71 of the underground cable 10A1 and the conductor 71 of the underground cable 10A2 are connected at the insulated connection portion 42, for example, the terminal 81 of the underground cable 10A1 and the terminal 81 of the underground cable 10A2 are connected using the wire 12. The wiring connects the shielding layer 75 of the underground cable 10A1 and the shielding layer 75 of the underground cable 10A2.
 図5は、本開示の実施の形態に係る送電システムに用いられる絶縁接続部における地中ケーブルの接続方法の他の例を示す図である。図5を参照して、絶縁接続部42において、地中ケーブル10A1,10A2が接続され、地中ケーブル10B1,10B2が接続され、地中ケーブル10C1,10C2が接続されている。絶縁接続部42において、たとえば、地中ケーブル10A1,10A2の導体71同士の接続部分において地中ケーブル10A1,10A2の遮蔽層75が露出し、地中ケーブル10B1,10B2の導体71同士の接続部分において地中ケーブル10B1,10B2の遮蔽層75が露出し、地中ケーブル10C1,10C2の導体71同士の接続部分において地中ケーブル10C1,10C2の遮蔽層75が露出し、露出部分に端子81等がそれぞれ設けられる。 FIG. 5 is a diagram showing another example of a connection method of underground cables in the insulated joints used in the power transmission system according to the embodiment of the present disclosure. Referring to FIG. 5 , underground cables 10A1 and 10A2 are connected, underground cables 10B1 and 10B2 are connected, and underground cables 10C1 and 10C2 are connected at insulating connection portion 42 . In the insulated connection portion 42, for example, the shielding layer 75 of the underground cables 10A1 and 10A2 is exposed at the connection portion between the conductors 71 of the underground cables 10A1 and 10A2, and at the connection portion between the conductors 71 of the underground cables 10B1 and 10B2 The shielding layers 75 of the underground cables 10B1 and 10B2 are exposed, the shielding layers 75 of the underground cables 10C1 and 10C2 are exposed at the connecting portions between the conductors 71 of the underground cables 10C1 and 10C2, and the terminals 81 and the like are provided at the exposed portions. be provided.
 絶縁接続部42では、たとえば、地中ケーブル10A1における端子81と地中ケーブル10B2における端子81とをワイヤ12を用いて結線することにより、地中ケーブル10A1の遮蔽層75および地中ケーブル10B2の遮蔽層75が接続され、地中ケーブル10B1における端子81と地中ケーブル10C2における端子81とをワイヤ12を用いて結線することにより、地中ケーブル10B1の遮蔽層75および地中ケーブル10C2の遮蔽層75が接続され、上記地中ケーブル10C1における端子81と地中ケーブル10A2における端子81とをワイヤ12を用いて結線することにより、地中ケーブル10C1の遮蔽層75および地中ケーブル10A2の遮蔽層75が接続される。 In the insulating connection portion 42, for example, by connecting the terminal 81 of the underground cable 10A1 and the terminal 81 of the underground cable 10B2 using the wire 12, the shielding layer 75 of the underground cable 10A1 and the shielding of the underground cable 10B2 are connected. Shielding layer 75 of underground cable 10B1 and shielding layer 75 of underground cable 10C2 are connected by connecting terminal 81 of underground cable 10B1 and terminal 81 of underground cable 10C2 using wire 12. are connected, and by connecting the terminal 81 of the underground cable 10C1 and the terminal 81 of the underground cable 10A2 using the wire 12, the shielding layer 75 of the underground cable 10C1 and the shielding layer 75 of the underground cable 10A2 are Connected.
 このように、送電システム502では、絶縁接続部42において、地中ケーブル10がクロスボンド接続されてもよい。 Thus, in the power transmission system 502 , the underground cable 10 may be cross-bonded at the insulated connection portion 42 .
 [ケーブル監視システム]
 図6は、本開示の実施の形態に係るケーブル監視システムの構成を示す図である。図6では、説明を容易にするために、地中ケーブル10のうち地中ケーブル10Aを主に示している。以下で説明する内容は、地中ケーブル10Bおよび地中ケーブル10Cについても同様である。
[Cable monitoring system]
FIG. 6 is a diagram showing the configuration of the cable monitoring system according to the embodiment of the present disclosure. FIG. 6 mainly shows an underground cable 10A of the underground cables 10 for ease of explanation. The contents described below are the same for the underground cable 10B and the underground cable 10C.
 図6を参照して、ケーブル監視システム501は、ケーブル監視装置500A,500B,500C,500Dと、管理装置400とを備える。以下、ケーブル監視装置500A,500B,500C,500Dの各々を、ケーブル監視装置500とも称する。ケーブル監視システム501は、送電システム502において用いられる。 With reference to FIG. 6, the cable monitoring system 501 includes cable monitoring devices 500A, 500B, 500C, and 500D and a management device 400. Each of the cable monitoring devices 500A, 500B, 500C, and 500D is also referred to as a cable monitoring device 500 hereinafter. Cable monitoring system 501 is used in transmission system 502 .
 ケーブル監視装置500は、互いに異なる位置に設置される。ケーブル監視装置500は、たとえば絶縁接続部42および地上接続部43に対応して設けられる。図6に示す例では、ケーブル監視装置500Aは、絶縁接続部42Aに対応して設けられており、ケーブル監視装置500Bは、絶縁接続部42Bに対応して設けられており、ケーブル監視装置500Cは、絶縁接続部42Cに対応して設けられており、ケーブル監視装置500Dは、地上接続部43Aに対応して設けられている。また、管理装置400は、ケーブル監視装置500Dに接続されている。 The cable monitoring devices 500 are installed at different positions. Cable monitoring device 500 is provided, for example, corresponding to insulated connection portion 42 and ground connection portion 43 . In the example shown in FIG. 6, the cable monitoring device 500A is provided corresponding to the insulating connection portion 42A, the cable monitoring device 500B is provided corresponding to the insulating connection portion 42B, and the cable monitoring device 500C is provided corresponding to the insulating connection portion 42B. , the insulated connection portion 42C, and the cable monitoring device 500D is provided corresponding to the ground connection portion 43A. The management device 400 is also connected to a cable monitoring device 500D.
 ケーブル監視装置500は、監視対象となるケーブルの一例である地中ケーブル10Aを監視する。より詳細には、4つのケーブル監視装置500は、設置位置の近傍において地中ケーブル10Aを監視する。ケーブル監視装置500は、地中ケーブル10Aを監視することにより地中ケーブル10Aにおける部分放電および絶縁破壊を検出する。なお、ケーブル監視装置500の監視対象は、地中ケーブルに限定されず、地中以外の場所に設けられるケーブルであってもよい。 The cable monitoring device 500 monitors the underground cable 10A, which is an example of a cable to be monitored. More specifically, the four cable monitoring devices 500 monitor the underground cable 10A in the vicinity of the installation position. The cable monitoring device 500 detects partial discharge and dielectric breakdown in the underground cable 10A by monitoring the underground cable 10A. Note that the monitoring target of the cable monitoring device 500 is not limited to underground cables, and may be cables provided in places other than underground.
 ケーブル監視装置500は、地中ケーブル10Aにおける遮蔽層75との誘導結合により地中ケーブル10Aを介して互いに通信可能である。ケーブル監視装置500は、たとえば、スマートメータ等の通信に用いられる低周波PLC(Power Line Communication)を用いて、20kbps~130kbpsの可変伝送速度で数kmの距離までの通信を行うことができる。あるいは、ケーブル監視装置500は、高周波PLCを用いて、最大200Mbpsの伝送速度でより短距離の通信を行うことができる。 The cable monitoring devices 500 can communicate with each other via the underground cable 10A by inductive coupling with the shielding layer 75 of the underground cable 10A. The cable monitoring device 500 can perform communication up to a distance of several kilometers at a variable transmission rate of 20 kbps to 130 kbps using, for example, a low-frequency PLC (Power Line Communication) used for communication such as a smart meter. Alternatively, the cable monitoring device 500 can use a high frequency PLC to communicate over shorter distances at transmission speeds up to 200 Mbps.
 たとえば、ケーブル監視装置500は、地中ケーブル10Aにおける部分放電の検出結果を管理装置400へ通知する。また、たとえば、ケーブル監視装置500は、地中ケーブル10Aにおける絶縁破壊の検出結果を管理装置400へ通知する。ケーブル監視装置500は、他のケーブル監視装置500からの検出結果の通知を他のケーブル監視装置500または管理装置400へ中継することができる。たとえば、ケーブル監視装置500A,500B,500Cは、ケーブル監視装置500Dを含む他のケーブル監視装置500経由で検出結果を管理装置400へ通知する。また、たとえば、ケーブル監視装置500Dは、検出結果を直接管理装置400へ通知する。 For example, the cable monitoring device 500 notifies the management device 400 of the partial discharge detection result in the underground cable 10A. Also, for example, the cable monitoring device 500 notifies the management device 400 of the detection result of dielectric breakdown in the underground cable 10A. The cable monitoring device 500 can relay the notification of the detection result from the other cable monitoring device 500 to the other cable monitoring device 500 or the management device 400 . For example, cable monitoring devices 500A, 500B, and 500C notify management device 400 of detection results via other cable monitoring devices 500 including cable monitoring device 500D. Also, for example, the cable monitoring device 500D directly notifies the management device 400 of the detection result.
 管理装置400は、ケーブル監視装置500から通知された部分放電の検出結果に基づいて、地中ケーブル10Aにおける部分放電の発生位置を算出する、すなわち部分放電の発生位置を標定する。また、管理装置400は、ケーブル監視装置500から通知された絶縁破壊の検出結果に基づいて、地中ケーブル10Aにおける絶縁破壊の発生位置を算出する、すなわち絶縁破壊の発生位置を標定する。 Based on the partial discharge detection result notified from the cable monitoring device 500, the management device 400 calculates the position of occurrence of partial discharge in the underground cable 10A, that is, locates the position of occurrence of partial discharge. In addition, the management device 400 calculates the occurrence position of the insulation breakdown in the underground cable 10A based on the detection result of the insulation breakdown notified from the cable monitoring device 500, that is, locates the occurrence position of the insulation breakdown.
 たとえば、地中ケーブル10Aには電源コイルが取り付けられる。電源コイルには、地中ケーブル10の導体71を通して流れる電流による誘導電流が流れる。これにより、電源コイルは、電流を取り出すことができる。ケーブル監視装置500は、たとえば電源コイルによって得られた電力により動作する。 For example, a power coil is attached to the underground cable 10A. An induced current due to the current flowing through the conductor 71 of the underground cable 10 flows through the power supply coil. This allows the power coil to draw current. Cable monitoring device 500 operates by power obtained by, for example, a power supply coil.
 [ケーブル監視装置]
 図7は、本開示の実施の形態に係るケーブル監視装置の構成を示す図である。図7を参照して、ケーブル監視装置500は、信号検出部100と、異常検出部200と、電磁結合部300と、通信部331と、同期部332と、カウンタ333とを備える。通信部331は、通知部の一例である。信号検出部100は、カレントトランス110と、信号出力部120とを含む。電磁結合部300は、カレントトランス310と、信号入出力部320とを含む。以下、カレントトランス110をCT110とも称し、カレントトランス310をCT310とも称する。
[Cable monitoring device]
FIG. 7 is a diagram showing the configuration of the cable monitoring device according to the embodiment of the present disclosure. Referring to FIG. 7 , cable monitoring device 500 includes signal detection section 100 , abnormality detection section 200 , electromagnetic coupling section 300 , communication section 331 , synchronization section 332 and counter 333 . Communication unit 331 is an example of a notification unit. Signal detection section 100 includes a current transformer 110 and a signal output section 120 . Electromagnetic coupling section 300 includes a current transformer 310 and a signal input/output section 320 . Hereinafter, the current transformer 110 is also referred to as CT110, and the current transformer 310 is also referred to as CT310.
 カウンタ333は、たとえば、水晶振動子を用いた発振回路等により生成されるクロックパルスをカウントし、カウントした値を示す時刻情報を保持する。この時刻情報は、たとえば現在時刻を示す。 The counter 333 counts clock pulses generated by, for example, an oscillator circuit using a crystal oscillator, and holds time information indicating the counted value. This time information indicates, for example, the current time.
 信号検出部100および電磁結合部300は、たとえば、地中ケーブル10Aの接続部である絶縁接続部42において遮蔽層75と電磁結合する。 The signal detection unit 100 and the electromagnetic coupling unit 300 are electromagnetically coupled with the shielding layer 75 at the insulating connection unit 42, which is the connection portion of the underground cable 10A, for example.
 信号検出部100は、地中ケーブル10Aの遮蔽層75を通して流れる電流の変化に応じた出力信号を出力する。より詳細には、信号検出部100は、地中ケーブル10の遮蔽層75を通して流れる電流の誘導電流に応じたアナログ信号である出力信号を異常検出部200へ出力する。 The signal detection unit 100 outputs an output signal according to changes in current flowing through the shielding layer 75 of the underground cable 10A. More specifically, the signal detection unit 100 outputs to the abnormality detection unit 200 an output signal that is an analog signal corresponding to the induced current of the current flowing through the shielding layer 75 of the underground cable 10 .
 異常検出部200は、信号検出部100から出力される出力信号に基づいて、地中ケーブル10Aにおける部分放電および絶縁破壊を検出する。より詳細には、異常検出部200は、信号検出部100から受けた出力信号に基づいて、地中ケーブル10Aにおける部分放電および絶縁破壊が発生したか否かを判定する判定処理を行う。たとえば、異常検出部200は、地中ケーブル10Aにおける部分放電を検出した場合、部分放電の検出時刻および自己のケーブル監視装置500のIDを含む検出情報DAを通信部331へ出力する。また、たとえば、異常検出部200は、地中ケーブル10Aにおける絶縁破壊を検出した場合、絶縁破壊の検出時刻および自己のケーブル監視装置500のIDを含む検出情報DBを通信部331へ出力する。検出情報DAは、第1検出情報の一例である。検出情報DBは、第2検出情報の一例である。 The abnormality detection section 200 detects partial discharge and dielectric breakdown in the underground cable 10A based on the output signal output from the signal detection section 100. More specifically, based on the output signal received from the signal detection unit 100, the abnormality detection unit 200 performs determination processing to determine whether partial discharge and dielectric breakdown have occurred in the underground cable 10A. For example, when detecting partial discharge in the underground cable 10A, the abnormality detection unit 200 outputs detection information DA including the partial discharge detection time and the ID of the own cable monitoring device 500 to the communication unit 331 . Further, for example, when detecting a dielectric breakdown in the underground cable 10</b>A, the abnormality detection section 200 outputs a detection information DB including the dielectric breakdown detection time and the ID of its own cable monitoring device 500 to the communication section 331 . Detection information DA is an example of first detection information. The detection information DB is an example of second detection information.
 通信部331は、電磁結合部300の電磁結合により遮蔽層75を通して流れる誘導電流を用いて、他のケーブル監視装置500の間で通信情報の送受信を行うことが可能である。また、ケーブル監視装置500Dにおける通信部331は、図示しない通信線を介して管理装置400と接続されている。ケーブル監視装置500Dにおける通信部331は、他のケーブル監視装置500から受信した通信情報を当該通信線経由で管理装置400へ中継する。たとえば、ケーブル監視装置500Dにおける通信部331は、PLC通信における親局であり、ケーブル監視装置500A,500B,500Cにおける通信部331は、PLC通信における子局である。 The communication unit 331 can transmit and receive communication information between the other cable monitoring devices 500 using the induced current flowing through the shielding layer 75 due to the electromagnetic coupling of the electromagnetic coupling unit 300 . Also, the communication unit 331 in the cable monitoring device 500D is connected to the management device 400 via a communication line (not shown). The communication unit 331 in the cable monitoring device 500D relays communication information received from another cable monitoring device 500 to the management device 400 via the communication line. For example, the communication unit 331 in the cable monitoring device 500D is a master station in PLC communication, and the communication units 331 in the cable monitoring devices 500A, 500B, and 500C are slave stations in PLC communication.
 たとえば、通信部331は、異常検出部200が部分放電を検出した時刻を他の装置たとえば管理装置400へ通知する。また、通信部331は、異常検出部200が絶縁放電を検出した時刻を他の装置たとえば管理装置400へ通知する。より詳細には、通信部331は、異常検出部200から検出情報DAを受けて、受けた検出情報DAを上記通信線経由で、またはケーブル監視装置500Dを含む他のケーブル監視装置500および上記通信線経由で管理装置400へ伝送する。また、通信部331は、異常検出部200から検出情報DBを受けて、受けた検出情報DBを上記通信線経由で、またはケーブル監視装置500Dを含む他のケーブル監視装置500および上記通信線経由で管理装置400へ伝送する。検出情報DA,DBは、通信情報の一例である。 For example, the communication unit 331 notifies another device, such as the management device 400, of the time when the abnormality detection unit 200 detects partial discharge. Further, the communication unit 331 notifies another device, for example, the management device 400 of the time when the abnormality detection unit 200 detects insulation discharge. More specifically, the communication unit 331 receives the detection information DA from the abnormality detection unit 200 and transmits the received detection information DA via the communication line or through the other cable monitoring devices 500 including the cable monitoring device 500D and the communication device 500D. It transmits to the management device 400 via a line. Further, the communication unit 331 receives the detection information DB from the abnormality detection unit 200, and transmits the received detection information DB via the communication line, or via other cable monitoring devices 500 including the cable monitoring device 500D and the communication line. It transmits to the management device 400 . The detection information DA and DB are examples of communication information.
 <信号検出部および電磁結合部>
 図8は、本開示の実施の形態に係るケーブル監視装置におけるCTの構成を示す図である。図8を参照して、CT110は、リングコア101と、巻線102とを含む。リングコア101には、巻線102が巻かれている。巻線102は、信号出力部120に接続されている。リングコア101における巻線102の巻き数は、たとえば3ターン~7ターンである。
<Signal detector and electromagnetic coupling>
FIG. 8 is a diagram showing the configuration of CT in the cable monitoring device according to the embodiment of the present disclosure. Referring to FIG. 8, CT 110 includes ring core 101 and winding 102 . A winding 102 is wound around the ring core 101 . Winding 102 is connected to signal output section 120 . The number of turns of winding 102 in ring core 101 is, for example, 3 to 7 turns.
 CT110は、たとえば、導電ケーブル53がリングコア101を貫通するように取り付けられる。導電ケーブル53は、たとえばワイヤ12または接地用ケーブル14である。より詳細には、再び図4および図6を参照して、絶縁接続部42A,42B,42Cにおけるケーブル監視装置500A,500B,500CのCT110は、地中ケーブル10A1の遮蔽層75および地中ケーブル10A2の遮蔽層75を接続するワイヤ12がリングコア101を貫通するように取り付けられる。また、地上接続部43Aにおけるケーブル監視装置500DのCT110は、接地用ケーブル14がリングコア101を貫通するように取り付けられる。遮蔽層75および導電ケーブル53を通して電流が流れると、誘導結合により、巻線102を通して誘導電流が流れる。信号出力部120は、巻線102を通して流れる当該誘導電流に応じた出力信号を異常検出部200へ出力する。 The CT 110 is attached so that the conductive cable 53 penetrates the ring core 101, for example. Conductive cable 53 is, for example, wire 12 or grounding cable 14 . More specifically, referring again to FIGS. 4 and 6, the CTs 110 of the cable monitoring devices 500A, 500B, 500C at the insulated connections 42A, 42B, 42C are connected to the shield layer 75 of underground cable 10A1 and underground cable 10A2. A wire 12 connecting the shielding layers 75 of the ring core 101 is attached so as to pass through the ring core 101 . Also, the CT 110 of the cable monitoring device 500D in the ground connection portion 43A is attached so that the grounding cable 14 penetrates the ring core 101. As shown in FIG. When current flows through shield layer 75 and conductive cable 53 , inductive coupling causes an induced current to flow through winding 102 . Signal output section 120 outputs an output signal corresponding to the induced current flowing through winding 102 to abnormality detection section 200 .
 また、CT310は、リングコア301と、巻線302とを含む。リングコア301には、巻線302が巻かれている。巻線302は、信号入出力部320に接続されている。リングコア301における巻線302の巻き数は、たとえば3ターン~7ターンである。 CT 310 also includes ring core 301 and winding 302 . A winding 302 is wound around the ring core 301 . Winding 302 is connected to signal input/output section 320 . The number of turns of winding 302 in ring core 301 is, for example, 3 to 7 turns.
 CT310は、たとえば、導電ケーブル53がリングコア301を貫通するように取り付けられる。より詳細には、絶縁接続部42A,42B,42Cにおけるケーブル監視装置500A,500B,500CのCT310は、地中ケーブル10A1の遮蔽層75および地中ケーブル10A2の遮蔽層75を接続するワイヤ12がリングコア301を貫通するように取り付けられる。また、地上接続部43Aにおけるケーブル監視装置500DのCT310は、接地用ケーブル14がリングコア301を貫通するように取り付けられる。なお、CT110,310のサイズは、同じであってもよいし、異なっていてもよい。 The CT 310 is attached so that the conductive cable 53 penetrates the ring core 301, for example. More specifically, in the CTs 310 of the cable monitoring devices 500A, 500B, and 500C in the insulated connection portions 42A, 42B, and 42C, the wire 12 connecting the shield layer 75 of the underground cable 10A1 and the shield layer 75 of the underground cable 10A2 is a ring core. It is attached so as to pass through 301 . Also, the CT 310 of the cable monitoring device 500D in the ground connection portion 43A is attached so that the grounding cable 14 penetrates the ring core 301. As shown in FIG. Note that the sizes of the CTs 110 and 310 may be the same or different.
 通信部331は、他のケーブル監視装置500または管理装置400へ伝送すべき通信情報を含む送信信号を生成し、生成した送信信号を電磁結合部300へ出力する。 The communication unit 331 generates a transmission signal including communication information to be transmitted to the other cable monitoring device 500 or the management device 400 and outputs the generated transmission signal to the electromagnetic coupling unit 300.
 信号入出力部320は、通信部331から送信信号を受けて、受けた送信信号に応じた電流を巻線302に流す。巻線302を通して電流が流れると、誘導結合により、導電ケーブル53および遮蔽層75を通して誘導電流が流れる。以下、信号入出力部320が巻線302を通して電流を流すことにより遮蔽層75を通して流れる当該誘導電流を、通信誘導電流とも称する。 The signal input/output unit 320 receives a transmission signal from the communication unit 331 and causes a current corresponding to the received transmission signal to flow through the winding 302 . When current flows through winding 302 , inductive coupling causes an induced current to flow through conductive cable 53 and shield layer 75 . Hereinafter, the induced current that flows through the shielding layer 75 when the signal input/output unit 320 causes the current to flow through the winding 302 is also referred to as a communication induced current.
 また、遮蔽層75および導電ケーブル53を通して他のケーブル監視装置500からの通信誘導電流が流れると、誘導結合により、巻線102を通して誘導電流が流れる。信号入出力部320は、巻線102を通して流れる当該誘導電流に応じたアナログ信号である受信信号を通信部331へ出力する。通信部331は、信号入出力部320から受けた受信信号から、他のケーブル監視装置500からの通信情報を取得する。 Also, when a communication induced current from another cable monitoring device 500 flows through the shield layer 75 and the conductive cable 53, an induced current flows through the winding 102 due to inductive coupling. Signal input/output unit 320 outputs a reception signal, which is an analog signal corresponding to the induced current flowing through winding 102 , to communication unit 331 . The communication unit 331 acquires communication information from another cable monitoring device 500 from the received signal received from the signal input/output unit 320 .
 たとえば、通信部331が通信情報の送受信に用いる通信誘導電流の帯域と、異常検出部200が部分放電および絶縁破壊の検出に用いる出力信号の帯域とは異なる。したがって、通信部331および異常検出部200は、通信情報の伝送ならびに部分放電および絶縁破壊の検出を並行して行うことが可能である。また、通信部331は、地中ケーブル10Aにおいて絶縁破壊が発生した場合であっても、たとえば遮蔽層75が完全に切断されない状態において、通信情報の伝送を行うことが可能である。 For example, the band of the communication induced current used by the communication unit 331 to transmit and receive communication information differs from the band of the output signal used by the abnormality detection unit 200 to detect partial discharge and dielectric breakdown. Therefore, the communication unit 331 and the abnormality detection unit 200 can transmit communication information and detect partial discharge and dielectric breakdown in parallel. In addition, even when dielectric breakdown occurs in the underground cable 10A, the communication unit 331 can transmit communication information, for example, in a state in which the shielding layer 75 is not completely cut.
 図9は、本開示の実施の形態の変形例に係るケーブル監視装置の構成を示す図である。図9を参照して、ケーブル監視装置510は、信号検出部100Aと、異常検出部200と、電磁結合部300と、通信部331と、同期部332と、カウンタ333とを備える。ケーブル監視システム501は、ケーブル監視装置500の代わりにケーブル監視装置510を備える構成であってもよい。 FIG. 9 is a diagram showing the configuration of a cable monitoring device according to a modification of the embodiment of the present disclosure. Referring to FIG. 9 , cable monitoring device 510 includes a signal detection unit 100A, an abnormality detection unit 200, an electromagnetic coupling unit 300, a communication unit 331, a synchronization unit 332, and a counter 333. Cable monitoring system 501 may be configured to include cable monitoring device 510 instead of cable monitoring device 500 .
 信号検出部100Aは、地中ケーブル10の遮蔽層75の電位の変化に応じた出力信号を出力する。より詳細には、信号検出部100Aは、金属箔電極105,106と、信号出力部120Aとを含む。信号検出部100Aは、たとえば、地中ケーブル10の接続部である絶縁接続部42において遮蔽層75と静電結合する。 The signal detection unit 100A outputs an output signal according to the change in potential of the shielding layer 75 of the underground cable 10. More specifically, signal detection section 100A includes metal foil electrodes 105 and 106 and signal output section 120A. The signal detection unit 100A is electrostatically coupled to the shield layer 75 at the insulating connection portion 42, which is the connection portion of the underground cable 10, for example.
 図10は、本開示の実施の形態に係るケーブル監視装置における金属箔電極の取り付け例を示す図である。図9および図10を参照して、金属箔電極105,106は、信号出力部120Aに接続されている。 FIG. 10 is a diagram showing an example of attachment of metal foil electrodes in the cable monitoring device according to the embodiment of the present disclosure. 9 and 10, metal foil electrodes 105 and 106 are connected to signal output section 120A.
 金属箔電極105,106は、たとえば、絶縁接続部42における絶縁筒77を介して互いに反対側において、地中ケーブル10のシース76の表面に貼り付けられる。より詳細には、たとえば地中ケーブル10A1,10A2が接続される絶縁接続部42において、金属箔電極105は、地中ケーブル10A1のシース76の表面に貼り付けられ、金属箔電極106は、地中ケーブル10A2のシース76の表面に貼り付けられる。なお、金属箔電極105,106は、地中ケーブル10A2のシース76の外周を覆うように貼り付けられてもよい。また、各金属箔電極が貼り付けられる位置および金属箔電極の個数は限定されず、3つ以上の金属箔電極が貼り付けられてもよい。 For example, the metal foil electrodes 105 and 106 are attached to the surface of the sheath 76 of the underground cable 10 on opposite sides of the insulating connection portion 42 via the insulating cylinder 77 . More specifically, for example, at the insulating connection portion 42 to which the underground cables 10A1 and 10A2 are connected, the metal foil electrode 105 is attached to the surface of the sheath 76 of the underground cable 10A1, and the metal foil electrode 106 is attached to the surface of the sheath 76 of the underground cable 10A1. It is attached to the surface of the sheath 76 of the cable 10A2. Note that the metal foil electrodes 105 and 106 may be attached so as to cover the outer circumference of the sheath 76 of the underground cable 10A2. Moreover, the position to which each metal foil electrode is attached and the number of metal foil electrodes are not limited, and three or more metal foil electrodes may be attached.
 遮蔽層75および導電ケーブル53の電位が変化すると、電界結合により、金属箔電極105,106を通して電流が流れる。信号出力部120Aは、当該電流に基づく、遮蔽層75の電位の変化に応じたアナログ信号である出力信号を異常検出部200へ出力する。 When the potential of the shield layer 75 and the conductive cable 53 changes, electric field coupling causes current to flow through the metal foil electrodes 105 and 106 . The signal output unit 120A outputs to the abnormality detection unit 200 an output signal, which is an analog signal corresponding to the change in the potential of the shielding layer 75 based on the current.
 <同期部>
 再び図7および図9を参照して、同期部332は、地中ケーブル10Aを監視する他のケーブル監視装置500との通信により他のケーブル監視装置500との時刻同期をとるための処理を行う。より詳細には、同期部332は、たとえば定期的に、カウンタ333の時刻情報を他のケーブル監視装置500と合わせるための処理である同期処理を行う。
<Synchronization section>
Referring to FIGS. 7 and 9 again, synchronization unit 332 performs processing for synchronizing time with another cable monitoring device 500 that monitors underground cable 10A through communication with other cable monitoring device 500. . More specifically, the synchronizing unit 332 periodically performs a synchronizing process for synchronizing the time information of the counter 333 with that of another cable monitoring device 500 .
 たとえば、ケーブル監視装置500Dは、マスタ装置として機能する。ケーブル監視装置500Dにおける同期部332は、所定周期に従う同期処理タイミングにおいて、カウンタ333の時刻情報を取得し、取得した時刻情報を通信部331へ出力する。ケーブル監視装置500Dにおける通信部331は、同期部332から時刻情報を受けて、受けた時刻情報をケーブル監視装置500Aへ伝送する。時刻情報は、通信情報の一例である。 For example, the cable monitoring device 500D functions as a master device. Synchronization section 332 in cable monitoring device 500</b>D acquires the time information of counter 333 and outputs the acquired time information to communication section 331 at synchronization processing timing according to a predetermined cycle. The communication unit 331 in the cable monitoring device 500D receives the time information from the synchronization unit 332 and transmits the received time information to the cable monitoring device 500A. Time information is an example of communication information.
 ケーブル監視装置500Aにおいて、通信部331は、ケーブル監視装置500Dにおける通信部331から電磁結合部300経由で時刻情報を受信し、受信した時刻情報を同期部332へ出力する。同期部332は、カウンタ333の時刻情報を、通信部331から受けた時刻情報に更新する。また、同期部332は、カウンタ333の更新後の時刻情報を取得し、取得した時刻情報を通信部331へ出力する。通信部331は、同期部332から時刻情報を受けて、受けた時刻情報をケーブル監視装置500D,500Bへ伝送する。 In the cable monitoring device 500A, the communication unit 331 receives time information from the communication unit 331 in the cable monitoring device 500D via the electromagnetic coupling unit 300, and outputs the received time information to the synchronization unit 332. Synchronization unit 332 updates the time information of counter 333 to the time information received from communication unit 331 . The synchronization unit 332 also acquires time information after the counter 333 is updated, and outputs the acquired time information to the communication unit 331 . The communication unit 331 receives time information from the synchronization unit 332 and transmits the received time information to the cable monitoring devices 500D and 500B.
 ケーブル監視装置500Bにおいて、通信部331は、ケーブル監視装置500Aにおける通信部331から電磁結合部300経由で時刻情報を受信し、受信した時刻情報を同期部332へ出力する。同期部332は、カウンタ333の時刻情報を、通信部331から受けた時刻情報に更新する。また、同期部332は、カウンタ333の更新後の時刻情報を取得し、取得した時刻情報を通信部331へ出力する。通信部331は、同期部332から時刻情報を受けて、受けた時刻情報をケーブル監視装置500A,500Cへ伝送する。 In the cable monitoring device 500B, the communication unit 331 receives time information from the communication unit 331 in the cable monitoring device 500A via the electromagnetic coupling unit 300, and outputs the received time information to the synchronization unit 332. Synchronization unit 332 updates the time information of counter 333 to the time information received from communication unit 331 . The synchronization unit 332 also acquires time information after the counter 333 is updated, and outputs the acquired time information to the communication unit 331 . Communication unit 331 receives the time information from synchronization unit 332 and transmits the received time information to cable monitoring devices 500A and 500C.
 ケーブル監視装置500Cにおいて、通信部331は、ケーブル監視装置500Bにおける通信部331から電磁結合部300経由で時刻情報を受信し、受信した時刻情報を同期部332へ出力する。同期部332は、カウンタ333の時刻情報を、通信部331から受けた時刻情報に更新する。また、同期部332は、カウンタ333の更新後の時刻情報を取得し、取得した時刻情報を通信部331へ出力する。通信部331は、同期部332から時刻情報を受けて、受けた時刻情報をケーブル監視装置500Bへ伝送する。 In the cable monitoring device 500C, the communication unit 331 receives time information from the communication unit 331 in the cable monitoring device 500B via the electromagnetic coupling unit 300, and outputs the received time information to the synchronization unit 332. Synchronization unit 332 updates the time information of counter 333 to the time information received from communication unit 331 . The synchronization unit 332 also acquires time information after the counter 333 is updated, and outputs the acquired time information to the communication unit 331 . The communication unit 331 receives the time information from the synchronization unit 332 and transmits the received time information to the cable monitoring device 500B.
 ケーブル監視装置500Dにおける通信部331は、ケーブル監視装置500Aにおける通信部331から電磁結合部300経由で時刻情報を受信し、受信した時刻情報と、カウンタ333の現在の時刻情報との差分の1/2を算出する。当該差分は、ケーブル監視装置500Dとケーブル監視装置500Aとの間の往復伝送遅延時間を示し、当該差分の1/2は、ケーブル監視装置500Dとケーブル監視装置500Aとの間の伝送遅延時間を示す。ケーブル監視装置500Dにおける通信部331は、算出した伝送遅延時間を示す遅延時間情報D1を管理装置400へ伝送する。 The communication unit 331 in the cable monitoring device 500D receives time information from the communication unit 331 in the cable monitoring device 500A via the electromagnetic coupling unit 300, and 1/ of the difference between the received time information and the current time information of the counter 333. 2 is calculated. The difference indicates the round-trip transmission delay time between the cable monitoring device 500D and the cable monitoring device 500A, and 1/2 of the difference indicates the transmission delay time between the cable monitoring device 500D and the cable monitoring device 500A. . The communication unit 331 in the cable monitoring device 500</b>D transmits delay time information D<b>1 indicating the calculated transmission delay time to the management device 400 .
 また、ケーブル監視装置500Aにおける通信部331は、ケーブル監視装置500Bにおける通信部331から電磁結合部300経由で時刻情報を受信し、受信した時刻情報と、カウンタ333の現在の時刻情報との差分の1/2を算出する。当該差分は、ケーブル監視装置500Aとケーブル監視装置500Bとの間の往復伝送遅延時間を示し、当該差分の1/2は、ケーブル監視装置500Aとケーブル監視装置500Bとの間の伝送遅延時間を示す。ケーブル監視装置500Aにおける通信部331は、算出した伝送遅延時間を示す遅延時間情報D2をケーブル監視装置500D経由で管理装置400へ伝送する。 Further, the communication unit 331 in the cable monitoring device 500A receives the time information from the communication unit 331 in the cable monitoring device 500B via the electromagnetic coupling unit 300, and calculates the difference between the received time information and the current time information of the counter 333. Calculate 1/2. The difference indicates the round-trip transmission delay time between the cable monitoring device 500A and the cable monitoring device 500B, and 1/2 of the difference indicates the transmission delay time between the cable monitoring device 500A and the cable monitoring device 500B. . The communication unit 331 in the cable monitoring device 500A transmits delay time information D2 indicating the calculated transmission delay time to the management device 400 via the cable monitoring device 500D.
 また、ケーブル監視装置500Bにおける通信部331は、ケーブル監視装置500Cにおける通信部331から電磁結合部300経由で時刻情報を受信し、受信した時刻情報と、カウンタ333の現在の時刻情報との差分の1/2を算出する。当該差分は、ケーブル監視装置500Bとケーブル監視装置500Cとの間の往復伝送遅延時間を示し、当該差分の1/2は、ケーブル監視装置500Bとケーブル監視装置500Cとの間の伝送遅延時間を示す。ケーブル監視装置500Bにおける通信部331は、算出した伝送遅延時間を示す遅延時間情報D3をケーブル監視装置500A,500D経由で管理装置400へ伝送する。 Further, the communication unit 331 in the cable monitoring device 500B receives time information from the communication unit 331 in the cable monitoring device 500C via the electromagnetic coupling unit 300, and calculates the difference between the received time information and the current time information of the counter 333. Calculate 1/2. The difference indicates the round-trip transmission delay time between the cable monitoring device 500B and the cable monitoring device 500C, and 1/2 of the difference indicates the transmission delay time between the cable monitoring device 500B and the cable monitoring device 500C. . The communication unit 331 in the cable monitoring device 500B transmits delay time information D3 indicating the calculated transmission delay time to the management device 400 via the cable monitoring devices 500A and 500D.
 このように、各ケーブル監視装置500における通信部331が、電磁結合部300経由で時刻情報を伝送する構成により、時刻情報を伝送するための信号線を別途設ける必要がないので、簡易な構成で同期処理を行うことができる。 Since the communication unit 331 in each cable monitoring device 500 transmits time information via the electromagnetic coupling unit 300 in this way, there is no need to separately provide a signal line for transmitting time information, so the configuration is simple. Synchronous processing can be performed.
 <異常検出部>
 図11は、本開示の実施の形態に係るケーブル監視装置における異常検出部の構成の一例を示す図である。図11を参照して、異常検出部200は、HPF(High Pass Filter)210と、LNA(Low Noise Amplifier)220と、ADC(Analog Digital Converer)230と、検波部240と、検波部250と、記憶部270と、判定部280とを含む。検波部240および検波部250は、たとえばFPGA(Field-Programmable Gate Array)により構成される。判定部280は、たとえば、CPU(Central Processing Unit)およびDSP(Digital Signal Processor)等のプロセッサにより実現される。記憶部270は、たとえば、不揮発性メモリであり、上記FPGAに含まれる。
<Abnormality detector>
FIG. 11 is a diagram illustrating an example of a configuration of an abnormality detection unit in the cable monitoring device according to the embodiment of the present disclosure; Referring to FIG. 11 , abnormality detection unit 200 includes HPF (High Pass Filter) 210, LNA (Low Noise Amplifier) 220, ADC (Analog Digital Converter) 230, detection unit 240, detection unit 250, A storage unit 270 and a determination unit 280 are included. Detection section 240 and detection section 250 are configured by, for example, an FPGA (Field-Programmable Gate Array). Determining unit 280 is implemented by a processor such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor), for example. The storage unit 270 is, for example, a non-volatile memory and included in the FPGA.
 HPF210は、信号出力部120,120Aから受けた出力信号の周波数成分のうち、所定の周波数以下の成分を減衰させる。信号出力部120,120Aから受けた出力信号には、地中ケーブル10により伝送される電力の周波数に対応する50Hzまたは60Hzのノイズが多く含まれている。HPF210は、たとえば60Hz未満の周波数成分を減衰させることにより、信号出力部120,120Aから受けた出力信号に含まれるノイズを除去する。 The HPF 210 attenuates the frequency components below a predetermined frequency among the frequency components of the output signals received from the signal output units 120 and 120A. The output signals received from the signal output units 120 and 120A contain much noise of 50 Hz or 60 Hz corresponding to the frequency of power transmitted through the underground cable 10. FIG. HPF 210 removes noise contained in the output signals received from signal output sections 120 and 120A, for example, by attenuating frequency components below 60 Hz.
 LNA220は、HPF210を通過した出力信号を増幅し、増幅した出力信号をADC230へ出力する。 The LNA 220 amplifies the output signal that has passed through the HPF 210 and outputs the amplified output signal to the ADC 230.
 ADC230は、LNA220から受けた出力信号をデジタル信号に変換して検波部240および検波部250へ出力する。より詳細には、ADC230は、LNA220から受けた出力信号を、たとえば100MHzのサンプリング周波数でサンプリングすることによりデジタル信号を生成し、生成したデジタル信号を検波部240および検波部250へ出力する。 The ADC 230 converts the output signal received from the LNA 220 into a digital signal and outputs the digital signal to the detectors 240 and 250 . More specifically, ADC 230 generates a digital signal by sampling the output signal received from LNA 220 at a sampling frequency of 100 MHz, for example, and outputs the generated digital signal to detection section 240 and detection section 250 .
 たとえば、異常検出部200は、出力信号のレベルと所定のしきい値との比較結果に基づいて、絶縁破壊と部分放電とを判別する。 For example, the abnormality detection unit 200 distinguishes between dielectric breakdown and partial discharge based on the result of comparison between the level of the output signal and a predetermined threshold value.
 より詳細には、記憶部270は、ADC230により生成されるデジタル信号の値に関する所定のしきい値として、しきい値ThAおよびしきい値ThBを記憶している。ここで、しきい値ThBは、しきい値ThAよりも大きいものとする。 More specifically, the storage unit 270 stores a threshold value ThA and a threshold value ThB as predetermined threshold values regarding the value of the digital signal generated by the ADC 230 . Here, the threshold ThB is assumed to be greater than the threshold ThA.
 検波部240は、ADC230から受けたデジタル信号と、記憶部270におけるしきい値ThA,ThBとを比較する比較処理を行う。より詳細には、検波部240は、ADC230からのデジタル信号について1サンプルごとに比較処理を行う。すなわち、検波部240は、ADC230におけるサンプリング周波数に対応する10ナノ秒周期に従う比較タイミングにおいて比較処理を行う。 The detection unit 240 performs comparison processing for comparing the digital signal received from the ADC 230 and the thresholds ThA and ThB in the storage unit 270 . More specifically, the detector 240 performs comparison processing for each sample of the digital signal from the ADC 230 . That is, detection section 240 performs the comparison process at the comparison timing according to the 10-nanosecond period corresponding to the sampling frequency in ADC 230 .
 検波部240は、ADC230から受けたデジタル信号の値が、しきい値ThAよりも大きく、かつしきい値ThB未満である場合、カウンタ333の時刻情報を取得し、取得した時刻情報および当該デジタル信号の値を含む検波情報daを記憶部270に保存する。また、検波部240は、比較タイミングにおいて比較処理を行った結果、ADC230から受けたデジタル信号の値が、しきい値ThAよりも大きく、かつしきい値ThB未満であった場合、当該比較タイミングから所定時間たとえば5マイクロ秒が経過するまで比較処理を一時停止し、当該所定時間経過後の比較タイミングにおいて比較処理を再開する。一方、検波部240は、ADC230から受けたデジタル信号の値が、しきい値ThA以下であるか、またはしきい値ThB以上である場合、検波情報daの生成および保存を行わない。 When the value of the digital signal received from ADC 230 is greater than threshold ThA and less than threshold ThB, detection section 240 acquires time information from counter 333 and compares the acquired time information and the digital signal. The detection information da including the value of is stored in the storage unit 270 . Further, if the value of the digital signal received from ADC 230 is greater than threshold ThA and less than threshold ThB as a result of performing comparison processing at the comparison timing, detection section 240 detects that from the comparison timing. The comparison process is suspended until a predetermined time period, for example, 5 microseconds, elapses, and the comparison process is restarted at the comparison timing after the elapse of the predetermined time period. On the other hand, when the value of the digital signal received from ADC 230 is equal to or less than threshold ThA or equal to or greater than threshold ThB, detection section 240 does not generate or store detection information da.
 検波部250は、ADC230から受けたデジタル信号と、記憶部270におけるしきい値ThBとを比較する比較処理を行う。より詳細には、検波部250は、ADC230からのデジタル信号について1サンプルごとに比較処理を行う。すなわち、検波部250は、上記比較タイミングにおいて比較処理を行う。検波部250は、ADC230から受けたデジタル信号の値がしきい値ThBよりも大きい場合、カウンタ333の時刻情報を取得し、取得した時刻情報および当該デジタル信号の値を含む検波情報dbを生成する。一方、検波部250は、ADC230から受けたデジタル信号の値がしきい値ThB以下である場合、検波情報dbの生成を行わない。検波部250は、検波情報dbの生成後、比較タイミングにおける比較処理を継続し、ADC230から受けたデジタル信号の値がしきい値ThB以下となるまで、しきい値ThBを超えたデジタル信号の数をカウントする。検波部250は、検波情報dbの生成後、ADC230から受けたデジタル信号の値がしきい値ThB以下となった場合、生成した検波情報dbに、カウントしたデジタル信号の数を示すカウント数を含めて当該検波情報dbを記憶部270に保存する。 The detection unit 250 performs comparison processing for comparing the digital signal received from the ADC 230 and the threshold value ThB in the storage unit 270 . More specifically, the detector 250 performs comparison processing for each sample of the digital signal from the ADC 230 . That is, the detection section 250 performs comparison processing at the comparison timing. When the value of the digital signal received from ADC 230 is greater than threshold value ThB, detector 250 acquires the time information of counter 333 and generates detection information db including the acquired time information and the value of the digital signal. . On the other hand, when the value of the digital signal received from ADC 230 is equal to or less than threshold ThB, detection section 250 does not generate detection information db. After generating the detection information db, the detection unit 250 continues the comparison process at the comparison timing, and counts the number of digital signals exceeding the threshold ThB until the value of the digital signal received from the ADC 230 becomes equal to or less than the threshold ThB. to count. When the value of the digital signal received from the ADC 230 becomes equal to or less than the threshold value ThB after generation of the detection information db, the detection section 250 includes the count number indicating the number of counted digital signals in the generated detection information db. Then, the detection information db is stored in the storage unit 270 .
 判定部280は、検波部240,250により記憶部270に保存された検波情報da,dbに基づいて判定処理を行う。 The determination unit 280 performs determination processing based on the detection information da and db stored in the storage unit 270 by the detection units 240 and 250 .
 より詳細には、判定部280は、検波情報daが検波部240により記憶部270に保存された場合、地中ケーブル10Aにおいて部分放電が発生したと判定する。そして、判定部280は、記憶部270から当該検波情報daおよび自己のケーブル監視装置500のIDを取得し、取得した検波情報daおよびIDを含む検出情報DAを生成し、生成した検出情報DAを通信部331へ出力する。通信部331は、判定部280から検出情報DAを受けて、受けた検出情報DAを電磁結合部300経由で管理装置400へ伝送する。 More specifically, when the detection information da is stored in the storage unit 270 by the detection unit 240, the determination unit 280 determines that partial discharge has occurred in the underground cable 10A. Then, the determination unit 280 acquires the detection information da and the ID of its own cable monitoring device 500 from the storage unit 270, generates detection information DA including the acquired detection information da and the ID, and stores the generated detection information DA. Output to the communication unit 331 . The communication unit 331 receives the detection information DA from the determination unit 280 and transmits the received detection information DA to the management device 400 via the electromagnetic coupling unit 300 .
 また、判定部280は、検波情報dbが検波部240により記憶部270に保存された場合、当該検波情報dbに含まれるカウント数に基づいて、地中ケーブル10Aにおいて絶縁破壊が発生したか否かを判定する。より詳細には、判定部280は、検波情報dbに含まれるカウント数が所定数たとえば5000000以上である場合、すなわち検波部250による比較処理において50ミリ秒(5000000回×10ナノ秒周期)以上の期間において連続してデジタル信号の値がしきい値ThBよりも大きい場合、地中ケーブル10Aにおいて絶縁破壊が発生したと判定する。そして、判定部280は、記憶部270から当該複数の検波情報dbおよび自己のケーブル監視装置500のIDを取得し、取得した各検波情報dbおよびIDを含む検出情報DBを生成し、生成した検出情報DBを通信部331へ出力する。通信部331は、判定部280から検出情報DBを受けて、受けた検出情報DBを電磁結合部300経由で管理装置400へ伝送する。一方、判定部280は、検波情報dbに含まれるカウント数が上記所定数未満である場合、検出情報DBの生成を行わない。 Further, when the detection information db is stored in the storage unit 270 by the detection unit 240, the determination unit 280 determines whether or not dielectric breakdown has occurred in the underground cable 10A based on the count number included in the detection information db. judge. More specifically, when the number of counts included in the detection information db is a predetermined number, for example, 5,000,000 or more, the determination unit 280 determines that the comparison processing by the detection unit 250 is 50 milliseconds (5,000,000 times×10 nanosecond cycle) or more. If the value of the digital signal is continuously greater than the threshold value ThB during the period, it is determined that insulation breakdown has occurred in the underground cable 10A. Then, the determination unit 280 acquires the plurality of detection information db and the ID of its own cable monitoring device 500 from the storage unit 270, generates the detection information DB including the acquired detection information db and the ID, and generates the detection information DB. It outputs the information DB to the communication unit 331 . The communication unit 331 receives the detection information DB from the determination unit 280 and transmits the received detection information DB to the management device 400 via the electromagnetic coupling unit 300 . On the other hand, when the count number included in the detection information db is less than the predetermined number, the determination section 280 does not generate the detection information DB.
 このように、各ケーブル監視装置500における通信部331が、電磁結合部300経由で検出情報DA,DBを管理装置400へ伝送する構成により、検出情報DA,DBを管理装置400へ伝送するための信号線を別途設ける必要がないので、簡易な構成で検出情報DA,DBを管理装置400へ伝送することができる。 In this manner, the communication unit 331 in each cable monitoring device 500 transmits the detection information DA, DB to the management device 400 via the electromagnetic coupling unit 300. Since there is no need to separately provide a signal line, the detection information DA, DB can be transmitted to the management device 400 with a simple configuration.
 ここで、地中ケーブル10Aにおいて絶縁破壊が発生したときに信号検出部100から出力される出力信号のレベルは、地中ケーブル10Aにおいて部分放電が発生したときに信号検出部100から出力される出力信号のレベルよりも大きい。本実施の形態に係るケーブル監視装置500では、異常検出部200が、出力信号のレベルすなわちADC230により生成されたデジタル信号の値としきい値ThBとの比較結果に基づいて絶縁破壊と部分放電とを判別する構成により、簡易な構成および処理により絶縁破壊と部分放電とを判別することができる。 Here, the level of the output signal output from the signal detection unit 100 when insulation breakdown occurs in the underground cable 10A is the level of the output signal output from the signal detection unit 100 when partial discharge occurs in the underground cable 10A. Greater than the signal level. In cable monitoring apparatus 500 according to the present embodiment, abnormality detection section 200 detects dielectric breakdown and partial discharge based on the result of comparison between the level of the output signal, that is, the value of the digital signal generated by ADC 230 and threshold value ThB. With the configuration for discrimination, it is possible to discriminate between dielectric breakdown and partial discharge with a simple configuration and processing.
 また、地中ケーブル10Aにおいて絶縁破壊が発生したときに信号検出部100から出力される出力信号において当該絶縁破壊に起因する変化が継続する期間は、地中ケーブル10Aにおいて当該部分放電が発生したときに信号検出部100から出力される出力信号において部分放電に起因する変化が継続する期間よりも長い。本実施の形態に係るケーブル監視装置500では、異常検出部200における判定部280が、記憶部270に保存された検波情報dbに含まれるカウント数が所定数以上である場合に地中ケーブル10Aにおいて絶縁破壊が発生したと判定する構成により、地中ケーブル10Aにおける絶縁破壊を開閉サージと区別して検出することができる。すなわち、判定部280は、出力信号のレベルが所定値以上の状態が所定期間継続した場合、地中ケーブル10Aにおいて絶縁破壊が発生したと判定する一方で、出力信号のレベルが所定値以上の状態が所定期間継続しない場合、地中ケーブル10Aにおいて開閉サージが発生したと判定する。 Further, the period during which the change due to the dielectric breakdown continues in the output signal output from the signal detection unit 100 when the dielectric breakdown occurs in the underground cable 10A is is longer than the period during which the change caused by the partial discharge continues in the output signal output from the signal detection unit 100 . In cable monitoring device 500 according to the present embodiment, determination unit 280 in abnormality detection unit 200 determines that in underground cable 10A when the count number included in detection information db stored in storage unit 270 is equal to or greater than a predetermined number. With the configuration for determining that a dielectric breakdown has occurred, the dielectric breakdown in the underground cable 10A can be detected separately from switching surges. That is, when the level of the output signal is equal to or higher than the predetermined value for a predetermined period of time, the determination unit 280 determines that insulation breakdown has occurred in the underground cable 10A. does not continue for a predetermined period of time, it is determined that a switching surge has occurred in the underground cable 10A.
 [管理装置]
 図12は、本開示の実施の形態に係る管理装置の構成を示す図である。図12を参照して、管理装置400は、取得部420と、部分放電算出部430と、絶縁破壊算出部440と、記憶部450とを備える。部分放電算出部430は、第1算出部の一例である。絶縁破壊算出部440は、第2算出部の一例である。取得部420、部分放電算出部430および絶縁破壊算出部440は、たとえば、CPUおよびDSP等のプロセッサにより実現される。記憶部450は、たとえば不揮発性メモリである。
[Management device]
FIG. 12 is a diagram illustrating a configuration of a management device according to an embodiment of the present disclosure; Referring to FIG. 12 , management device 400 includes acquisition unit 420 , partial discharge calculation unit 430 , dielectric breakdown calculation unit 440 and storage unit 450 . The partial discharge calculator 430 is an example of a first calculator. The dielectric breakdown calculator 440 is an example of a second calculator. Acquisition unit 420, partial discharge calculation unit 430, and dielectric breakdown calculation unit 440 are realized by a processor such as a CPU and a DSP, for example. Storage unit 450 is, for example, a non-volatile memory.
 取得部420は、複数のケーブル監視装置500が地中ケーブル10Aにおける部分放電を検出した時刻をそれぞれ示す複数の検出情報DAと、複数のケーブル監視装置500が地中ケーブル10Aにおける絶縁破壊を検出した時刻をそれぞれ示す複数の検出情報DBとを取得する。 The acquisition unit 420 obtains a plurality of pieces of detection information DA each indicating the time when the plurality of cable monitoring devices 500 detected partial discharge in the underground cable 10A, and the plurality of cable monitoring devices 500 detecting a dielectric breakdown in the underground cable 10A. A plurality of detection information DBs each indicating the time are acquired.
 より詳細には、取得部420は、上述の通信線を介してケーブル監視装置500Dにおける通信部331と接続されている。取得部420は、複数のケーブル監視装置500の検出情報DAを通信線経由でケーブル監視装置500Dからそれぞれ受信する。取得部420は、検出情報DAを受信すると、受信した検出情報DAを記憶部450に保存する。また、取得部420は、複数のケーブル監視装置500の検出情報DBを通信線経由でケーブル監視装置500Dからそれぞれ受信する。取得部420は、検出情報DBを受信すると、受信した検出情報DBを記憶部450に保存する。 More specifically, the acquisition unit 420 is connected to the communication unit 331 in the cable monitoring device 500D via the communication line described above. Acquisition unit 420 receives detection information DA of a plurality of cable monitoring devices 500 from cable monitoring devices 500D via communication lines. Upon receiving the detection information DA, the acquisition unit 420 stores the received detection information DA in the storage unit 450 . In addition, the acquisition unit 420 receives detection information DBs of a plurality of cable monitoring devices 500 from the cable monitoring devices 500D via communication lines. Upon receiving the detection information DB, the acquisition unit 420 stores the received detection information DB in the storage unit 450 .
 また、取得部420は、ケーブル監視装置500間の伝送遅延時間を示す遅延時間情報を取得する。より詳細には、取得部420は、遅延時間情報D1,D2,D3を通信線経由でケーブル監視装置500Dから受信する。取得部420は、遅延時間情報D1,D2,D3を受信すると、受信した遅延時間情報D1,D2,D3を記憶部450に保存する。 In addition, the acquisition unit 420 acquires delay time information indicating the transmission delay time between the cable monitoring devices 500 . More specifically, the acquisition unit 420 receives the delay time information D1, D2, D3 from the cable monitoring device 500D via the communication line. Upon receiving the delay time information D1, D2 and D3, the acquisition unit 420 stores the received delay time information D1, D2 and D3 in the storage unit 450 .
 部分放電算出部430は、取得部420により受信された各検出情報DAに基づいて、地中ケーブル10Aにおける部分放電の発生位置を算出する。また、絶縁破壊算出部440は、取得部420により受信された各検出情報DBに基づいて、地中ケーブル10Aにおける絶縁破壊の発生位置を算出する。 The partial discharge calculator 430 calculates the position where the partial discharge occurs in the underground cable 10A based on each piece of detection information DA received by the acquirer 420 . Further, the dielectric breakdown calculation unit 440 calculates the occurrence position of the dielectric breakdown in the underground cable 10A based on each detection information DB received by the acquisition unit 420 .
 図13は、本開示の実施の形態に係る送電システムにおける部分放電の発生位置の一例を示す図である。図13を参照して、地中ケーブル10Aにおいて部分放電が発生した場合、当該部分放電の発生により地中ケーブル10Aを通して流れる電流は、絶縁接続部42Bおよび絶縁接続部42Cの方向へそれぞれ伝搬する。 FIG. 13 is a diagram showing an example of positions where partial discharges occur in the power transmission system according to the embodiment of the present disclosure. Referring to FIG. 13, when partial discharge occurs in underground cable 10A, the current flowing through underground cable 10A due to the occurrence of the partial discharge propagates toward insulated connection portion 42B and insulated connection portion 42C.
 たとえば、地中ケーブル10Aにおける、ケーブル監視装置500Bの監視位置である絶縁接続部42Bと、ケーブル監視装置500Cの監視位置である絶縁接続部42Cとの中間地点P1において部分放電が発生した場合、当該部分放電は、ケーブル監視装置500B,500Cにおいて同時刻に検出される。一方、たとえば、地中ケーブル10Aにおける中間地点P1よりも絶縁接続部42B側の地点P2において部分放電が発生した場合、当該部分放電は、ケーブル監視装置500Cよりも先にケーブル監視装置500Bにおいて検出される。したがって、部分放電算出部430は、2つのケーブル監視装置500における部分放電の検出時刻等に基づいて、部分放電の発生位置を標定することができる。絶縁破壊算出部440も同様に、2つのケーブル監視装置500における絶縁破壊の検出時刻等に基づいて、絶縁破壊の発生位置を標定することができる。 For example, in the underground cable 10A, when a partial discharge occurs at an intermediate point P1 between the insulated connection portion 42B, which is the monitoring position of the cable monitoring device 500B, and the insulated connection portion 42C, which is the monitoring position of the cable monitoring device 500C, Partial discharge is detected at the same time by cable monitoring devices 500B and 500C. On the other hand, for example, when a partial discharge occurs at a point P2 closer to the insulating connection portion 42B than the intermediate point P1 in the underground cable 10A, the partial discharge is detected by the cable monitoring device 500B before the cable monitoring device 500C. be. Therefore, the partial discharge calculator 430 can locate the partial discharge generation position based on the partial discharge detection times of the two cable monitoring devices 500 . Similarly, the dielectric breakdown calculation unit 440 can locate the occurrence position of the dielectric breakdown based on the detection time of the dielectric breakdown in the two cable monitoring devices 500 and the like.
 より詳細には、記憶部450は、地中ケーブル10Aにおける各ケーブル監視装置500の監視位置の間の距離を示す距離情報、および地中ケーブル10Aにおける電流の伝搬速度を示す速度情報を記憶している。地中ケーブル10Aは、たとえば、CV(Cross-linked polyethylene insulated Vinyl sheath)ケーブルまたはOF(Oil-Filled)ケーブルである。CVケーブルにおける電流の伝搬速度は、たとえば172m/μsであり、OFケーブルにおける電流の伝搬速度は、たとえば158m/μsである。 More specifically, storage unit 450 stores distance information indicating the distance between monitoring positions of cable monitoring devices 500 in underground cable 10A and velocity information indicating the propagation velocity of current in underground cable 10A. there is The underground cable 10A is, for example, a CV (Cross-linked polyethylene insulated vinyl sheath) cable or an OF (Oil-Filled) cable. The current propagation velocity in the CV cable is, for example, 172 m/μs, and the current propagation velocity in the OF cable is, for example, 158 m/μs.
 部分放電算出部430は、記憶部450に保存された検出情報DAが示す検出時刻を、当該検出情報DAの伝送経路に応じて遅延時間情報D1,D2,D3の一部または全部を用いて補正する。より詳細には、部分放電算出部430は、ケーブル監視装置500AのIDを含む検出情報DAが示す検出時刻を、遅延時間情報D1を用いて補正し、ケーブル監視装置500BのIDを含む検出情報DAが示す検出時刻を、遅延時間情報D1,D2を用いて補正し、ケーブル監視装置500CのIDを含む検出情報DAが示す検出時刻を、遅延時間情報D1,D2,D3を用いて補正する。たとえば、部分放電算出部430は、ケーブル監視装置500AのIDを含む検出情報DAが示す検出時刻に遅延時間情報D1が示す伝送遅延時間を加えることにより当該検出時刻を補正する。また、たとえば、部分放電算出部430は、ケーブル監視装置500BのIDを含む検出情報DAが示す検出時刻に遅延時間情報D1,D2が示す各伝送遅延時間を加えることにより当該検出時刻を補正する。また、たとえば、部分放電算出部430は、ケーブル監視装置500CのIDを含む検出情報DAが示す検出時刻に遅延時間情報D1,D2,D3が示す各伝送遅延時間を加えることにより当該検出時刻を補正する。以下、検出情報DAが示す検出時刻とは、補正後の検出時刻を言うものとする。同様に、絶縁破壊算出部440は、記憶部450に保存された検出情報DBが示す検出時刻を、当該検出情報DBの伝送経路に応じて遅延時間情報D1,D2,D3の一部または全部を用いて補正する。以下、検出情報DBが示す検出時刻とは、補正後の検出時刻を言うものとする。 The partial discharge calculation unit 430 corrects the detection time indicated by the detection information DA stored in the storage unit 450 using part or all of the delay time information D1, D2, and D3 according to the transmission path of the detection information DA. do. More specifically, the partial discharge calculator 430 corrects the detection time indicated by the detection information DA including the ID of the cable monitoring device 500A using the delay time information D1, and corrects the detection time indicated by the detection information DA including the ID of the cable monitoring device 500B. is corrected using the delay time information D1 and D2, and the detection time indicated by the detection information DA including the ID of the cable monitoring device 500C is corrected using the delay time information D1, D2 and D3. For example, partial discharge calculator 430 corrects the detection time by adding the transmission delay time indicated by delay time information D1 to the detection time indicated by detection information DA including the ID of cable monitoring device 500A. Further, for example, the partial discharge calculator 430 corrects the detection time by adding each transmission delay time indicated by the delay time information D1 and D2 to the detection time indicated by the detection information DA including the ID of the cable monitoring device 500B. Further, for example, the partial discharge calculator 430 corrects the detection time by adding each transmission delay time indicated by the delay time information D1, D2, and D3 to the detection time indicated by the detection information DA including the ID of the cable monitoring device 500C. do. Hereinafter, the detection time indicated by the detection information DA means the detection time after correction. Similarly, the dielectric breakdown calculator 440 converts the detection time indicated by the detection information DB stored in the storage unit 450 into part or all of the delay time information D1, D2, and D3 according to the transmission path of the detection information DB. corrected using Hereinafter, the detection time indicated by the detection information DB refers to the detection time after correction.
 部分放電算出部430は、記憶部450に保存された、異なるIDを含む同一の部分放電に関する複数の検出情報DAが示す検出時刻のうちの、最も早い2つの検出時刻の時間差を算出する。そして、部分放電算出部430は、算出した時間差と、記憶部450における距離情報および速度情報とに基づいて、地中ケーブル10Aにおける部分放電の発生位置を算出する。一例として、部分放電算出部430は、上記時間差として、ケーブル監視装置500AのIDを含む検出情報DAが示す検出時刻と、ケーブル監視装置500BのIDを含む検出情報DAが示す検出時刻との時間差を「0.26μs」と算出する。ここで、ケーブル監視装置500AのIDを含む検出情報DAが示す検出時刻は、ケーブル監視装置500BのIDを含む検出情報DAが示す検出時刻よりも早い時刻であるものとする。また、記憶部450における距離情報が示す、ケーブル監視装置500Aの監視位置とケーブル監視装置500Bの監視位置との間の距離は「300m」であるとする。また、記憶部450における速度情報が示す伝搬速度は「172m/μs」であるとする。この場合、部分放電算出部430は、地中ケーブル10Aにおける部分放電の発生位置を、ケーブル監視装置500Aの監視位置とケーブル監視装置500Bの監視位置との中間地点からケーブル監視装置500A側に22.36m((0.26μs)×(172m/μs)/2)寄った地点、すなわちケーブル監視装置500Aの監視位置からケーブル監視装置500B側に127.64m(150m-22.36m)寄った地点であると算出する。 The partial discharge calculation unit 430 calculates the time difference between the two earliest detection times among the detection times indicated by the plurality of pieces of detection information DA related to the same partial discharge with different IDs stored in the storage unit 450 . Based on the calculated time difference and the distance information and speed information in the storage unit 450, the partial discharge calculator 430 calculates the position where the partial discharge occurs in the underground cable 10A. As an example, the partial discharge calculator 430 calculates, as the time difference, the time difference between the detection time indicated by the detection information DA including the ID of the cable monitoring device 500A and the detection time indicated by the detection information DA including the ID of the cable monitoring device 500B. It is calculated as "0.26 μs". Here, it is assumed that the detection time indicated by the detection information DA including the ID of the cable monitoring device 500A is earlier than the detection time indicated by the detection information DA including the ID of the cable monitoring device 500B. It is also assumed that the distance between the monitoring position of cable monitoring device 500A and the monitoring position of cable monitoring device 500B indicated by the distance information in storage unit 450 is "300 m". It is also assumed that the propagation velocity indicated by the velocity information in storage unit 450 is "172 m/μs". In this case, the partial discharge calculator 430 calculates the position of occurrence of the partial discharge in the underground cable 10A by 22.22 from the intermediate point between the monitoring position of the cable monitoring device 500A and the monitoring position of the cable monitoring device 500B to the cable monitoring device 500A side. 36 m ((0.26 μs)×(172 m/μs)/2), that is, a point 127.64 m (150 m−22.36 m) closer to the cable monitoring device 500B side from the monitoring position of the cable monitoring device 500A. to calculate.
 また、絶縁破壊算出部440は、記憶部450に保存された、異なるIDを含む同一の部分放電に関する複数の検出情報DBが示す検出時刻のうちの、最も早い2つの検出時刻の時間差を算出する。そして、絶縁破壊算出部440は、算出した時間差と、記憶部450における距離情報および速度情報とに基づいて、地中ケーブル10Aにおける絶縁破壊の発生位置を算出する。 Further, the dielectric breakdown calculation unit 440 calculates the time difference between the two earliest detection times among the detection times indicated by the plurality of detection information DBs regarding the same partial discharge including different IDs stored in the storage unit 450. . Based on the calculated time difference and the distance information and speed information in the storage unit 450, the dielectric breakdown calculation unit 440 calculates the location where the dielectric breakdown occurs in the underground cable 10A.
 たとえば、部分放電算出部430および絶縁破壊算出部440は、算出した発生位置をケーブル監視システム501の管理者へ通知する処理を行う。 For example, the partial discharge calculation unit 430 and the dielectric breakdown calculation unit 440 perform processing for notifying the administrator of the cable monitoring system 501 of the calculated occurrence position.
 ここで、再び図1および図6を参照して、たとえば、地上接続部43Bに対応するケーブル監視装置500が設けられていない場合、絶縁接続部42Cと地上接続部43Bとの間の区間において地中ケーブル10Aにおける部分放電が発生した場合、部分放電の正確な発生位置を算出することは困難である。具体的には、絶縁接続部42Cと地上接続部43Bとの間の区間において地中ケーブル10Aにおける部分放電が発生した場合、当該部分放電に関する複数の検出時刻のうちの最も早い2つの検出時刻は、ケーブル監視装置500Bからの検出情報DAが示す検出時刻、およびケーブル監視装置500Cからの検出情報DAが示す検出時刻である。しかしながら、部分放電算出部430は、当該2つの検出時刻の時間差からは、絶縁接続部42Cと地上接続部43Bとの間の区間のどの位置において部分放電が発生したのかを判断することができない。絶縁破壊の発生位置についても同様である。このような問題を解決するために、ケーブル監視装置500は、地中ケーブル10のケーブル区間にくまなく設置されることが好ましい。具体的には、ケーブル監視システム501は、図1に示す地上接続部43Bに対応して設けられたケーブル監視装置500を備えることが好ましい。これにより、管理装置400において、すべてのケーブル区間において部分放電および絶縁破壊の発生位置の算出が可能となる。 Here, referring to FIGS. 1 and 6 again, for example, if the cable monitoring device 500 corresponding to the ground connection portion 43B is not provided, the ground connection portion 42C and the ground connection portion 43B are separated from each other. When partial discharge occurs in the medium cable 10A, it is difficult to calculate the exact position of occurrence of the partial discharge. Specifically, when a partial discharge occurs in the underground cable 10A in the section between the insulated connection portion 42C and the ground connection portion 43B, the earliest two detection times among the plurality of detection times regarding the partial discharge are , the detection time indicated by the detection information DA from the cable monitoring device 500B, and the detection time indicated by the detection information DA from the cable monitoring device 500C. However, from the time difference between the two detection times, the partial discharge calculator 430 cannot determine at which position in the section between the insulated connection portion 42C and the ground connection portion 43B the partial discharge has occurred. The same applies to the location where dielectric breakdown occurs. In order to solve such problems, the cable monitoring device 500 is preferably installed throughout the cable section of the underground cable 10 . Specifically, the cable monitoring system 501 preferably includes a cable monitoring device 500 provided corresponding to the ground connection section 43B shown in FIG. This enables the management device 400 to calculate the positions where partial discharge and dielectric breakdown occur in all cable sections.
 [変形例]
 図14は、本開示の実施の形態の変形例に係る異常検出部の構成を示す図である。図14を参照して、異常検出部201は、異常検出部200と比べて、LNA221と、ADC231とをさらに含む。ケーブル監視装置500は、異常検出部200の代わりに異常検出部201を備える構成であってもよい。
[Modification]
FIG. 14 is a diagram illustrating a configuration of an abnormality detection unit according to a modification of the embodiment of the present disclosure; Referring to FIG. 14 , abnormality detection unit 201 further includes LNA 221 and ADC 231 as compared with abnormality detection unit 200 . Cable monitoring device 500 may be configured to include abnormality detection section 201 instead of abnormality detection section 200 .
 ADC230は、LNA220から受けた出力信号をデジタル信号に変換して検波部240へ出力する。すなわち、ADC230は、HPF210を通過した出力信号をデジタル信号に変換して検波部240へ出力する。 The ADC 230 converts the output signal received from the LNA 220 into a digital signal and outputs the digital signal to the detection section 240 . That is, ADC 230 converts the output signal that has passed through HPF 210 into a digital signal and outputs the digital signal to detection section 240 .
 LNA221は、信号出力部120,120Aから受けた出力信号を増幅し、増幅した出力信号をADC231へ出力する。 The LNA 221 amplifies the output signals received from the signal output units 120 and 120A and outputs the amplified output signals to the ADC 231.
 ADC231は、LNA221から受けた出力信号をデジタル信号に変換して検波部250へ出力する。すなわち、ADC230は、HPF210を通過していない出力信号をデジタル信号に変換して検波部250へ出力する。より詳細には、ADC231は、LNA221から受けた出力信号を、たとえば100MHzのサンプリング周波数でサンプリングすることによりデジタル信号を生成し、生成したデジタル信号を検波部250へ出力する。 The ADC 231 converts the output signal received from the LNA 221 into a digital signal and outputs it to the detection section 250 . That is, ADC 230 converts an output signal that has not passed through HPF 210 into a digital signal and outputs the digital signal to detection section 250 . More specifically, ADC 231 generates a digital signal by sampling the output signal received from LNA 221 at a sampling frequency of 100 MHz, for example, and outputs the generated digital signal to detection section 250 .
 たとえば、異常検出部201は、HPF210を通過した出力信号に基づいて部分放電を検出し、HPF210を通過する前の出力信号に基づいて絶縁破壊を検出する。 For example, the abnormality detection unit 201 detects partial discharge based on the output signal that has passed through the HPF 210 and detects dielectric breakdown based on the output signal that has not yet passed through the HPF 210 .
 検波部240は、ADC230から受けたデジタル信号と、記憶部270におけるしきい値ThAとを比較する比較処理を行い、比較結果に応じて検波情報daを記憶部270に保存する。 The detection unit 240 performs comparison processing for comparing the digital signal received from the ADC 230 and the threshold value ThA in the storage unit 270, and stores detection information da in the storage unit 270 according to the comparison result.
 検波部250は、ADC231から受けたデジタル信号と、記憶部270におけるしきい値ThBとを比較する比較処理を行い、比較結果に応じて検波情報dbを記憶部270に保存する。 The detection unit 250 performs comparison processing for comparing the digital signal received from the ADC 231 and the threshold value ThB in the storage unit 270, and stores detection information db in the storage unit 270 according to the comparison result.
 判定部280は、検波情報daが検波部240により記憶部270に保存された場合、地中ケーブル10Aにおいて部分放電が発生したと判定する。そして、判定部280は、記憶部270から当該検波情報daおよび自己のケーブル監視装置500のIDを取得し、取得した検波情報daおよびIDを含む検出情報DAを生成し、生成した検出情報DAを通信部331へ出力する。 When the detection information da is stored in the storage unit 270 by the detection unit 240, the determination unit 280 determines that partial discharge has occurred in the underground cable 10A. Then, the determination unit 280 acquires the detection information da and the ID of its own cable monitoring device 500 from the storage unit 270, generates detection information DA including the acquired detection information da and the ID, and stores the generated detection information DA. Output to the communication unit 331 .
 また、判定部280は、連続する複数の比較タイミングCTBに対応する複数の検波情報dbが検波部240により記憶部270に保存された場合、地中ケーブル10Aにおいて絶縁破壊が発生したと判定する。そして、判定部280は、記憶部270から当該複数の検波情報dbおよび自己のケーブル監視装置500のIDを取得し、取得した各検波情報dbおよびIDを含む検出情報DBを生成し、生成した検出情報DBを通信部331へ出力する。 Further, the determination unit 280 determines that a dielectric breakdown has occurred in the underground cable 10A when a plurality of pieces of detection information db corresponding to a plurality of consecutive comparison timings CTB are stored in the storage unit 270 by the detection unit 240. Then, the determination unit 280 acquires the plurality of detection information db and the ID of its own cable monitoring device 500 from the storage unit 270, generates the detection information DB including the acquired detection information db and the ID, and generates the detection information DB. It outputs the information DB to the communication unit 331 .
 ここで、地中ケーブル10Aにおいて絶縁破壊が発生したときに信号検出部100から出力される出力信号は、低い周波数成分を含む信号である。本変形例に係る異常検出部201のように、HPF210を通過する前の出力信号に基づいて絶縁破壊を検出する構成により、より正確に絶縁破壊を検出することができる。 Here, the output signal output from the signal detection unit 100 when dielectric breakdown occurs in the underground cable 10A is a signal containing low frequency components. Like the abnormality detection unit 201 according to the present modification, the configuration for detecting dielectric breakdown based on the output signal before passing through the HPF 210 can detect dielectric breakdown more accurately.
 図15は、本開示の実施の形態の変形例に係る異常検出部の構成を示す図である。図15を参照して、異常検出部202は、異常検出部200と比べて、検波部240および検波部250の代わりに保存処理部290を含み、判定部280の代わりに判定部281を含む。ケーブル監視装置500は、異常検出部200の代わりに異常検出部202を備える構成であってもよい。 FIG. 15 is a diagram showing the configuration of an abnormality detection unit according to a modification of the embodiment of the present disclosure. Referring to FIG. 15 , abnormality detection unit 202 includes storage processing unit 290 instead of detection units 240 and 250 , and determination unit 281 instead of determination unit 280 , as compared with abnormality detection unit 200 . The cable monitoring device 500 may be configured to include an abnormality detection section 202 instead of the abnormality detection section 200 .
 たとえば、異常検出部202は、出力信号の波形に基づいて、絶縁破壊と部分放電とを判別する。 For example, the abnormality detection unit 202 distinguishes between dielectric breakdown and partial discharge based on the waveform of the output signal.
 図16および図17は、本開示の実施の形態に係るケーブル監視装置におけるADCが受ける出力信号の一例を示す図である。図16は、地中ケーブル10Aにおいて部分放電が発生したときにケーブル監視装置500におけるLNA220から出力される出力信号を示す。図17は、地中ケーブル10Aにおいて絶縁破壊が発生したときにケーブル監視装置500におけるLNA220から出力される出力信号を示す。 16 and 17 are diagrams showing examples of output signals received by the ADC in the cable monitoring device according to the embodiment of the present disclosure. FIG. 16 shows an output signal output from LNA 220 in cable monitoring device 500 when partial discharge occurs in underground cable 10A. FIG. 17 shows an output signal output from LNA 220 in cable monitoring device 500 when dielectric breakdown occurs in underground cable 10A.
 図16を参照して、地中ケーブル10Aにおいて部分放電が発生したときにLNA220から出力される出力信号の波形は、たとえば1マイクロ秒未満の期間において振動する振動波形である。図17を参照して、地中ケーブル10Aにおいて絶縁破壊が発生したときにLNA220から出力される出力信号は、たとえば1マイクロ秒以上の期間にわたって飽和した値をとる。これは、LNA220の前段に配置された図示しない保護回路により、所定値以下の値となるように整形された出力信号がLNA220に入力されるからである。 Referring to FIG. 16, the waveform of the output signal output from LNA 220 when partial discharge occurs in underground cable 10A is, for example, an oscillating waveform that oscillates in a period of less than 1 microsecond. Referring to FIG. 17, the output signal output from LNA 220 when insulation breakdown occurs in underground cable 10A takes a saturated value over a period of 1 microsecond or longer, for example. This is because the LNA 220 is supplied with an output signal that has been shaped to have a value equal to or less than a predetermined value by a protection circuit (not shown) arranged in the preceding stage of the LNA 220 .
 記憶部270は、地中ケーブル10Aにおいて部分放電が発生したときにADC230により生成される所定時間分のK個のサンプルからなるデジタル信号SAと、地中ケーブル10Aにおいて絶縁破壊が発生したときにADC230により生成される所定時間分のK個のサンプルからなるデジタル信号SBとを記憶している。ここで、Kは2以上の整数である。デジタル信号SAは、地中ケーブル10Aにおいて部分放電が発生したときにLNA220から出力される出力信号の波形に対応し、デジタル信号SBは、地中ケーブル10Aにおいて絶縁破壊が発生したときにLNA220から出力される出力信号の波形に対応する。 Storage unit 270 stores digital signal SA composed of K samples for a predetermined time generated by ADC 230 when partial discharge occurs in underground cable 10A, and ADC 230 when dielectric breakdown occurs in underground cable 10A. and a digital signal SB consisting of K samples for a predetermined time period generated by . Here, K is an integer of 2 or more. The digital signal SA corresponds to the waveform of the output signal output from the LNA 220 when partial discharge occurs in the underground cable 10A, and the digital signal SB is output from the LNA 220 when dielectric breakdown occurs in the underground cable 10A. corresponds to the waveform of the output signal to be
 保存処理部290は、ADC230からデジタル信号を受けて、カウンタ333の時刻情報を取得する。保存処理部290は、ADC230から受けたデジタル信号に時刻情報を示すタイムスタンプを付与し、タイムスタンプが付与されたデジタル信号を記憶部270に保存する処理を行う。記憶部270は、たとえばリングバッファにより構成され、古いデジタル信号から上書きされる。 The storage processing unit 290 receives the digital signal from the ADC 230 and acquires the time information of the counter 333 . The storage processing unit 290 adds a time stamp indicating time information to the digital signal received from the ADC 230 and stores the time-stamped digital signal in the storage unit 270 . Storage unit 270 is configured by, for example, a ring buffer, and is overwritten from the oldest digital signal.
 判定部281は、保存処理部290により記憶部270に保存されたK個のサンプルからなるデジタル信号の値と、記憶部270におけるデジタル信号SA,SBとの相関に基づいて、絶縁破壊および部分放電を検出する。 Determining unit 281 detects dielectric breakdown and partial discharge based on the correlation between the value of the digital signal consisting of K samples stored in storage unit 270 by storage processing unit 290 and the digital signals SA and SB in storage unit 270. to detect
 より詳細には、判定部281は、所定の算出周期に従う算出タイミングT1において、保存処理部290により記憶部270に保存された、時系列的に連続するK個のサンプルからなるデジタル信号の値と、デジタル信号SAの値との相関値CAを算出する。具体的には、判定部281は、保存処理部290によりデジタル信号の1つのサンプルが記憶部270に保存されるたびに、当該サンプルを含む直近のK個のサンプルからなるデジタル信号の値と、デジタル信号SAの値との相関値CAを算出する。すなわち、算出タイミングT1とは、保存処理部290がデジタル信号を記憶部270に保存する周期に従うタイミングである。判定部281は、算出した相関値CAが所定のしきい値以上である場合、地中ケーブル10Aにおいて部分放電が発生したと判定する。たとえば、判定部281は、算出タイミングT1ごとの相関値CAの時間変化を示す相関データを生成する。そして、判定部281は、地中ケーブル10Aにおいて部分放電が発生したと判定した場合、当該相関データにおけるピーク点の相関値CAの算出に用いたK個のサンプルからなるデジタル信号に付与されたタイムスタンプのうちの、たとえば最も早い時刻を含む検出情報DAを生成し、生成した検出情報DAを通信部331へ出力する。また、判定部281は、所定の算出周期に従う算出タイミングT2において、保存処理部290により記憶部270に保存された、時系列的に連続するK個のサンプルからなるデジタル信号の値と、デジタル信号SBの値との相関値CBを算出する。具体的には、判定部281は、保存処理部290によりデジタル信号の1つのサンプルが記憶部270に保存されるたびに、当該サンプルを含む直近のK個のサンプルからなるデジタル信号の値と、デジタル信号SBの値との相関値CBを算出する。すなわち、算出タイミングT2とは、保存処理部290がデジタル信号を記憶部270に保存する周期に従うタイミングである。判定部281は、算出した相関値CBが所定のしきい値以上である場合、地中ケーブル10Aにおいて絶縁破壊が発生したと判定する。たとえば、判定部281は、算出タイミングT2ごとの相関値CBの時間変化を示す相関データを生成する。そして、判定部281は、地中ケーブル10Aにおいて絶縁破壊が発生したと判定した場合、当該相関データにおけるピーク点の相関値CBの算出に用いたK個のサンプルからなるデジタル信号に付与されたタイムスタンプのうちの、たとえば最も早い時刻を含む検出情報DBを生成し、生成した検出情報DBを通信部331へ出力する。 More specifically, the determination unit 281 determines the value of the digital signal composed of K consecutive samples in time series, which is stored in the storage unit 270 by the storage processing unit 290, at the calculation timing T1 according to a predetermined calculation cycle. , a correlation value CA with the value of the digital signal SA is calculated. Specifically, every time one sample of the digital signal is stored in the storage unit 270 by the storage processing unit 290, the determination unit 281 stores the value of the digital signal composed of the K samples that are closest to the sample, A correlation value CA with the value of the digital signal SA is calculated. In other words, the calculation timing T1 is the timing according to the cycle in which the storage processing unit 290 stores the digital signal in the storage unit 270 . The determination unit 281 determines that partial discharge has occurred in the underground cable 10A when the calculated correlation value CA is equal to or greater than a predetermined threshold value. For example, the determination unit 281 generates correlation data indicating temporal changes in the correlation value CA at each calculation timing T1. Then, when determining that a partial discharge has occurred in the underground cable 10A, the determination unit 281 determines the time given to the digital signal composed of K samples used to calculate the correlation value CA of the peak point in the correlation data. Of the stamps, detection information DA including, for example, the earliest time is generated, and the generated detection information DA is output to communication section 331 . Further, the determination unit 281 determines the value of the digital signal, which is stored in the storage unit 270 by the storage processing unit 290 at the calculation timing T2 according to a predetermined calculation cycle, and is composed of K consecutive samples in chronological order, and the value of the digital signal A correlation value CB with the value of SB is calculated. Specifically, every time one sample of the digital signal is stored in the storage unit 270 by the storage processing unit 290, the determination unit 281 stores the value of the digital signal composed of the K samples that are closest to the sample, A correlation value CB with the value of the digital signal SB is calculated. In other words, the calculation timing T2 is the timing according to the cycle in which the storage processing unit 290 stores the digital signal in the storage unit 270 . If the calculated correlation value CB is equal to or greater than a predetermined threshold value, the determination unit 281 determines that insulation breakdown has occurred in the underground cable 10A. For example, the determination unit 281 generates correlation data indicating temporal changes in the correlation value CB at each calculation timing T2. Then, when determining that a dielectric breakdown has occurred in the underground cable 10A, the determination unit 281 determines the time given to the digital signal composed of K samples used to calculate the correlation value CB of the peak point in the correlation data. A detection information DB including, for example, the earliest time among the stamps is generated, and the generated detection information DB is output to the communication unit 331 .
 なお、異常検出部202は、出力信号のレベルとしきい値ThA,ThBとの比較結果にさらに基づいて、絶縁破壊と部分放電とを判別する構成であってもよい。より詳細には、異常検出部202は、検波部240および検波部250をさらに含む。そして、判定部281は、異常検出部200における判定部280と同様に、検波部240,250により記憶部270に保存された検波情報da,dbにさらに基づいて判定処理を行う。 It should be noted that the abnormality detection unit 202 may be configured to distinguish between dielectric breakdown and partial discharge, further based on the result of comparison between the level of the output signal and the thresholds ThA and ThB. More specifically, abnormality detection section 202 further includes detection section 240 and detection section 250 . Then, similarly to the determination section 280 in the abnormality detection section 200, the determination section 281 performs determination processing further based on the detection information da and db stored in the storage section 270 by the detection sections 240 and 250. FIG.
 また、ケーブル監視装置500は、異常検出部200、異常検出部201、および異常検出部202のうちの少なくともいずれか2つを含む総合検出部を備える構成であってもよい。総合検出部は、異常検出部の一例である。 Further, the cable monitoring device 500 may be configured to include a comprehensive detection section including at least any two of the abnormality detection section 200, the abnormality detection section 201, and the abnormality detection section 202. The comprehensive detection section is an example of an anomaly detection section.
 この場合、当該総合検出部は、異常検出部200による判定処理の結果、異常検出部201による判定処理の結果、および異常検出部202による判定処理の結果のうちの少なくともいずれか2つを総合的に考慮することにより、地中ケーブル10Aにおける部分放電および絶縁破壊を検出する。 In this case, the comprehensive detection unit comprehensively collects at least two of the results of the determination processing by the abnormality detection unit 200, the results of the determination processing by the abnormality detection unit 201, and the results of the determination processing by the abnormality detection unit 202. , the partial discharge and dielectric breakdown in the underground cable 10A are detected.
 あるいは、異常検出部200,201,202を含む総合検出部では、ある期間TAにおいて、異常検出部200が地中ケーブル10Aにおける部分放電および絶縁破壊を検出し、期間TAとは異なる期間TBにおいて、異常検出部201が地中ケーブル10Aにおける部分放電および絶縁破壊を検出し、期間TA,TBとは異なる期間TCにおいて、異常検出部202が地中ケーブル10Aにおける部分放電および絶縁破壊を検出する。すなわち、総合検出部における異常検出部200は、期間TAにおいて、出力信号のレベルと所定のしきい値との比較結果に基づいて、絶縁破壊と部分放電とを判別する。また、総合検出部における異常検出部201は、期間TBにおいて、出力信号の波形に基づいて、絶縁破壊と部分放電とを判別する。また、総合検出部における異常検出部202は、期間TCにおいて、HPF210を通過した出力信号に基づいて部分放電を検出し、HPF210を通過する前の出力信号に基づいて絶縁破壊を検出する。 Alternatively, in the comprehensive detection unit including the abnormality detection units 200, 201, and 202, the abnormality detection unit 200 detects partial discharge and insulation breakdown in the underground cable 10A during a certain period TA, and during a period TB different from the period TA, Abnormality detector 201 detects partial discharge and dielectric breakdown in underground cable 10A, and abnormality detector 202 detects partial discharge and dielectric breakdown in underground cable 10A in period TC different from periods TA and TB. That is, the abnormality detection section 200 in the general detection section determines dielectric breakdown and partial discharge based on the result of comparison between the level of the output signal and a predetermined threshold during the period TA. Further, the abnormality detection section 201 in the comprehensive detection section distinguishes between dielectric breakdown and partial discharge based on the waveform of the output signal during the period TB. Further, the abnormality detection unit 202 in the comprehensive detection unit detects partial discharge based on the output signal that has passed through the HPF 210 and detects dielectric breakdown based on the output signal that has not yet passed through the HPF 210 in the period TC.
 [動作の流れ]
 本開示の実施の形態に係るケーブル監視システムにおける各装置は、メモリを含むコンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートおよびシーケンスの各ステップの一部または全部を含むプログラムを当該メモリから読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態で流通する。
[Flow of operation]
Each device in the cable monitoring system according to the embodiment of the present disclosure includes a computer including a memory, and an arithmetic processing unit such as a CPU in the computer uses a program including part or all of each step of the following flowcharts and sequences. is read from the memory and executed. Programs for these multiple devices can each be installed from the outside. Programs for these devices are stored in recording media and distributed.
 図18は、本開示の実施の形態に係るケーブル監視装置が部分放電および絶縁破壊の検出を行う際の動作手順の一例を定めたフローチャートである。図18を参照して、まず、ケーブル監視装置500は、地中ケーブル10Aの遮蔽層75を通して流れる電流の変化、または遮蔽層75の電位の変化に応じた出力信号を生成する(ステップS102)。 FIG. 18 is a flow chart defining an example of an operation procedure when the cable monitoring device according to the embodiment of the present disclosure detects partial discharge and dielectric breakdown. Referring to FIG. 18, first, cable monitoring device 500 generates an output signal according to a change in current flowing through shield layer 75 of underground cable 10A or a change in potential of shield layer 75 (step S102).
 次に、ケーブル監視装置500は、検波情報daを生成した場合、すなわち出力信号をデジタル変換することにより得られるデジタル信号がしきい値ThAよりも大きく、かつしきい値ThB未満である場合(ステップS104でYES)、地中ケーブル10Aにおいて部分放電が発生したと判定し、検出情報DAを管理装置400へ伝送する(ステップS106)。次に、ケーブル監視装置500は、新たな出力信号を生成する(ステップS102)。 Next, when the cable monitoring device 500 generates the detection information da, that is, when the digital signal obtained by digitally converting the output signal is greater than the threshold ThA and less than the threshold ThB (step YES in S104), it is determined that partial discharge has occurred in the underground cable 10A, and the detection information DA is transmitted to the management device 400 (step S106). Next, cable monitoring device 500 generates a new output signal (step S102).
 一方、ケーブル監視装置500は、検波情報dbを生成した場合、すなわち出力信号をデジタル変換することにより得られるデジタル信号がしきい値ThBよりも大きい場合(ステップS104でNOかつステップS108でYES)、検波情報dbに含まれるカウント数が所定数たとえば5000000以上であるか否かを判断する(ステップS110)。 On the other hand, when cable monitoring device 500 generates detection information db, that is, when the digital signal obtained by digitally converting the output signal is greater than threshold ThB (NO in step S104 and YES in step S108), It is determined whether or not the count number included in the detection information db is equal to or greater than a predetermined number, for example, 5000000 (step S110).
 ケーブル監視装置500は、検波情報dbに含まれるカウント数が5000000未満である場合(ステップS110でNO)、新たな出力信号を生成する(ステップS102)。 When the count number included in the detection information db is less than 5000000 (NO in step S110), the cable monitoring device 500 generates a new output signal (step S102).
 一方、ケーブル監視装置500は、検波情報dbに含まれるカウント数が5000000以上である場合(ステップS110でYES)、地中ケーブル10Aにおいて絶縁破壊が発生したと判定し、検出情報DBを管理装置400へ伝送する(ステップS112)。次に、ケーブル監視装置500は、新たな出力信号を生成する(ステップS102) On the other hand, when the count number included in the detection information db is 5000000 or more (YES in step S110), the cable monitoring device 500 determines that a dielectric breakdown has occurred in the underground cable 10A, and sends the detection information DB to the management device 400. (step S112). Next, cable monitoring device 500 generates a new output signal (step S102).
 一方、ケーブル監視装置500は、検波情報da,dbを生成しなかった場合、すなわち出力信号をデジタル変換することにより得られるデジタル信号がしきい値ThA以下である場合(ステップS104でNOかつステップS108でNO)、新たな出力信号を生成する(ステップS102)。 On the other hand, if the cable monitoring device 500 does not generate the detection information da, db, that is, if the digital signal obtained by digitally converting the output signal is equal to or smaller than the threshold value ThA (NO in step S104 and step S108 NO), a new output signal is generated (step S102).
 図19は、本開示の実施の形態に係るケーブル監視システムにおける判定処理のシーケンスの一例を示す図である。図19を参照して、ケーブル監視装置500は、定期的に同期処理を行う。具体的には、ケーブル監視装置500Dは、所定周期に従う同期処理タイミングにおいて、時刻情報をケーブル監視装置500Aへ伝送する(ステップS202)。 FIG. 19 is a diagram showing an example of the sequence of determination processing in the cable monitoring system according to the embodiment of the present disclosure. Referring to FIG. 19, cable monitoring device 500 periodically performs synchronization processing. Specifically, the cable monitoring device 500D transmits the time information to the cable monitoring device 500A at the synchronization processing timing according to the predetermined cycle (step S202).
 次に、ケーブル監視装置500Aは、カウンタ333の時刻情報を、ケーブル監視装置500Dから受信した時刻情報に更新する(ステップS204)。 Next, the cable monitoring device 500A updates the time information of the counter 333 to the time information received from the cable monitoring device 500D (step S204).
 次に、ケーブル監視装置500Aは、カウンタ333の更新後の時刻情報をケーブル監視装置500Bへ伝送する(ステップS206)。また、ケーブル監視装置500Aは、時刻情報をケーブル監視装置500Dへ伝送する(ステップS208)。 Next, the cable monitoring device 500A transmits the updated time information of the counter 333 to the cable monitoring device 500B (step S206). The cable monitoring device 500A also transmits the time information to the cable monitoring device 500D (step S208).
 次に、ケーブル監視装置500Dは、ケーブル監視装置500Aから受信した時刻情報と、自己のカウンタ333の現在の時刻情報との差分の1/2を、ケーブル監視装置500Dとケーブル監視装置500Aとの間の伝送遅延時間として算出し、算出した伝送遅延時間を示す遅延時間情報D1を管理装置400へ伝送する(ステップS210)。 Next, cable monitoring device 500D transfers 1/2 of the difference between the time information received from cable monitoring device 500A and the current time information of its own counter 333 between cable monitoring device 500D and cable monitoring device 500A. , and transmits delay time information D1 indicating the calculated transmission delay time to the management device 400 (step S210).
 次に、ケーブル監視装置500Bは、カウンタ333の時刻情報を、ケーブル監視装置500Aから受信した時刻情報に更新する(ステップS212)。 Next, the cable monitoring device 500B updates the time information of the counter 333 to the time information received from the cable monitoring device 500A (step S212).
 次に、ケーブル監視装置500Bは、カウンタ333の更新後の時刻情報をケーブル監視装置500Cへ伝送する(ステップS214)。また、ケーブル監視装置500Bは、時刻情報をケーブル監視装置500Aへ伝送する(ステップS216)。 Next, the cable monitoring device 500B transmits the updated time information of the counter 333 to the cable monitoring device 500C (step S214). Also, the cable monitoring device 500B transmits the time information to the cable monitoring device 500A (step S216).
 次に、ケーブル監視装置500Aは、ケーブル監視装置500Bから受信した時刻情報と、自己のカウンタ333の現在の時刻情報との差分の1/2を、ケーブル監視装置500Aとケーブル監視装置500Bとの間の伝送遅延時間として算出し、算出した伝送遅延時間を示す遅延時間情報D2をケーブル監視装置500D経由で管理装置400へ伝送する(ステップS218)。 Next, cable monitoring device 500A transfers 1/2 of the difference between the time information received from cable monitoring device 500B and the current time information of its own counter 333 between cable monitoring device 500A and cable monitoring device 500B. , and transmits delay time information D2 indicating the calculated transmission delay time to the management device 400 via the cable monitoring device 500D (step S218).
 次に、ケーブル監視装置500Cは、カウンタ333の時刻情報を、ケーブル監視装置500Bから受信した時刻情報に更新する(ステップS220)。 Next, the cable monitoring device 500C updates the time information of the counter 333 with the time information received from the cable monitoring device 500B (step S220).
 次に、ケーブル監視装置500Cは、カウンタ333の更新後の時刻情報をケーブル監視装置500Bへ伝送する(ステップS222)。 Next, the cable monitoring device 500C transmits the updated time information of the counter 333 to the cable monitoring device 500B (step S222).
 次に、ケーブル監視装置500Bは、ケーブル監視装置500Cから受信した時刻情報と、自己のカウンタ333の現在の時刻情報との差分の1/2を、ケーブル監視装置500Bとケーブル監視装置500Cとの間の伝送遅延時間として算出し、算出した伝送遅延時間を示す遅延時間情報D3をケーブル監視装置500A,500D経由で管理装置400へ伝送する(ステップS224)。 Next, cable monitoring device 500B transfers 1/2 of the difference between the time information received from cable monitoring device 500C and the current time information of its own counter 333 between cable monitoring device 500B and cable monitoring device 500C. , and transmits delay time information D3 indicating the calculated transmission delay time to the management device 400 via the cable monitoring devices 500A and 500D (step S224).
 たとえば、ケーブル監視装置500B,500Cは、地中ケーブル10Aにおける部分放電を検出した場合、検出情報DAを管理装置400へ伝送する(ステップS226,S228)。 For example, when the cable monitoring devices 500B and 500C detect partial discharge in the underground cable 10A, they transmit detection information DA to the management device 400 (steps S226 and S228).
 次に、管理装置400は、ケーブル監視装置500Bから受信した検出情報DAが示す検出時刻を遅延時間情報D1,D2を用いて補正し、ケーブル監視装置500Cから受信した検出情報DAが示す検出時刻を遅延時間情報D1,D2,D3を用いて補正する。そして、管理装置400は、各検出情報DAが示す補正後の検出時刻、ケーブル監視装置500Bの監視位置とケーブル監視装置500Cの監視位置との間の距離を示す距離情報、および地中ケーブル10Aにおける電流の伝搬速度を示す速度情報に基づいて、地中ケーブル10Aにおける部分放電の発生位置を算出する(ステップS230)。 Next, the management device 400 corrects the detection time indicated by the detection information DA received from the cable monitoring device 500B using the delay time information D1 and D2, and corrects the detection time indicated by the detection information DA received from the cable monitoring device 500C. Correction is performed using the delay time information D1, D2, and D3. Then, the management device 400 detects the corrected detection time indicated by each detection information DA, the distance information indicating the distance between the monitoring position of the cable monitoring device 500B and the monitoring position of the cable monitoring device 500C, and the Based on the speed information indicating the propagation speed of the current, the position where the partial discharge occurs in the underground cable 10A is calculated (step S230).
 次に、たとえば、ケーブル監視装置500B,500Cは、地中ケーブル10Aにおける絶縁破壊を検出した場合、検出情報DBを管理装置400へ伝送する(ステップS232,S234)。 Next, for example, when the cable monitoring devices 500B and 500C detect dielectric breakdown in the underground cable 10A, they transmit the detection information DB to the management device 400 (steps S232 and S234).
 次に、管理装置400は、ケーブル監視装置500Bから受信した検出情報DBが示す検出時刻を遅延時間情報D1,D2を用いて補正し、ケーブル監視装置500Cから受信した検出情報DBが示す検出時刻を遅延時間情報D1,D2,D3を用いて補正する。そして、管理装置400は、各検出情報DBが示す補正後の検出時刻、ケーブル監視装置500Bの監視位置とケーブル監視装置500Cの監視位置との間の距離を示す距離情報、および地中ケーブル10Aにおける電流の伝搬速度を示す速度情報に基づいて、地中ケーブル10Aにおける絶縁破壊の発生位置を算出する(ステップS236)。 Next, the management device 400 corrects the detection time indicated by the detection information DB received from the cable monitoring device 500B using the delay time information D1 and D2, and corrects the detection time indicated by the detection information DB received from the cable monitoring device 500C. Correction is performed using the delay time information D1, D2, and D3. Then, the management device 400 stores the corrected detection time indicated by each detection information DB, distance information indicating the distance between the monitoring position of the cable monitoring device 500B and the monitoring position of the cable monitoring device 500C, and Based on the speed information indicating the propagation speed of the current, the position where the dielectric breakdown occurred in the underground cable 10A is calculated (step S236).
 なお、ケーブル監視装置500B,500Cが部分放電を検出して検出情報DAを管理装置400へ伝送した後、絶縁破壊を検出して検出情報DBを管理装置400へ伝送する例を挙げて説明したが、ケーブル監視装置500は、検出情報DAおよび検出情報DBをこの順に管理装置400へ伝送する構成に限定されない。ケーブル監視装置500は、地中ケーブル10Aにおけるある位置の絶縁破壊を検出して検出情報DBを管理装置400へ伝送した後に、地中ケーブル10Aにおける他の位置の絶縁破壊を検出した場合、検出情報DBを管理装置400へ再び伝送する。また、ケーブル監視装置500は、地中ケーブル10Aにおけるある位置の絶縁破壊を検出して検出情報DBを管理装置400へ伝送した後に、地中ケーブル10Aにおける他の位置の部分放電を検出した場合、検出情報DAを管理装置400へ伝送する。 The cable monitoring devices 500B and 500C detect partial discharge and transmit the detection information DA to the management device 400, and then detect dielectric breakdown and transmit the detection information DB to the management device 400. , the cable monitoring device 500 is not limited to the configuration in which the detection information DA and the detection information DB are transmitted to the management device 400 in this order. After detecting a dielectric breakdown at a certain position in the underground cable 10A and transmitting the detection information DB to the management device 400, the cable monitoring device 500 detects a dielectric breakdown at another position in the underground cable 10A. The DB is transmitted to the management device 400 again. Further, when the cable monitoring device 500 detects a partial discharge at another position in the underground cable 10A after detecting a dielectric breakdown at a certain position in the underground cable 10A and transmitting the detection information DB to the management device 400, It transmits the detection information DA to the management device 400 .
 なお、本開示の実施の形態に係るケーブル監視システム501は、4つのケーブル監視装置500を備える構成であるとしたが、これに限定するものではない。ケーブル監視システム501は、2つ、3つまたは5つ以上のケーブル監視装置500を備える構成であってもよい。また、ケーブル監視システム501は、地上接続部43Aに対応して設けられたケーブル監視装置500Dを備えない構成であってもよい。また、ケーブル監視システム501は、ケーブル監視装置500Dの代わりに、またはケーブル監視装置500Dに加えて、図1に示す地上接続部43Bに対応して設けられたケーブル監視装置500を備える構成であってもよい。 Although the cable monitoring system 501 according to the embodiment of the present disclosure is configured to include four cable monitoring devices 500, it is not limited to this. Cable monitoring system 501 may be configured with two, three, or more than five cable monitoring devices 500 . Moreover, the cable monitoring system 501 may be configured without the cable monitoring device 500D provided corresponding to the ground connection section 43A. In addition, the cable monitoring system 501 includes a cable monitoring device 500 provided corresponding to the ground connection section 43B shown in FIG. 1 instead of or in addition to the cable monitoring device 500D. good too.
 また、本開示の実施の形態に係るケーブル監視システム501では、管理装置400は、ケーブル監視装置500Dに接続されている構成であるとしたが、これに限定するものではない。管理装置400は、ケーブル監視装置500D以外のケーブル監視装置500に接続されてもよいし、いずれかのケーブル監視装置500と一体に設けられてもよい。 Also, in the cable monitoring system 501 according to the embodiment of the present disclosure, the management device 400 is connected to the cable monitoring device 500D, but the configuration is not limited to this. The management device 400 may be connected to a cable monitoring device 500 other than the cable monitoring device 500D, or may be provided integrally with any cable monitoring device 500. FIG.
 また、本開示の実施の形態に係る管理装置400では、取得部420は、複数のケーブル監視装置500の各々から電磁結合部410経由で検出情報DAを受信し、複数のケーブル監視装置500の各々から電磁結合部410経由で検出情報DBを受信する構成であるとしたが、これに限定するものではない。取得部420は、各ケーブル監視装置500において生成された検出情報DA,DBを、オフラインで取得する構成であってもよい。 Further, in the management device 400 according to the embodiment of the present disclosure, the acquisition unit 420 receives the detection information DA from each of the plurality of cable monitoring devices 500 via the electromagnetic coupling unit 410, and each of the plurality of cable monitoring devices 500 Although the detection information DB is received via the electromagnetic coupling unit 410 from the above, the present invention is not limited to this. The acquisition unit 420 may be configured to acquire the detection information DA and DB generated in each cable monitoring device 500 off-line.
 また、本開示の実施の形態に係るケーブル監視装置500では、異常検出部200は、検波部240および検波部250を含む構成であるとしたが、これに限定するものではない。異常検出部200は、検波部240および検波部250の代わりに、保存処理部を含む構成であってもよい。この場合、当該保存処理部は、ADC230から受けたデジタル信号を記憶部270に保存する処理を行う。判定部280は、当該保存処理部により記憶部270に保存されたデジタル信号について上述した比較処理および判定処理を行う。 Also, in the cable monitoring device 500 according to the embodiment of the present disclosure, the abnormality detection section 200 is configured to include the detection section 240 and the detection section 250, but the configuration is not limited to this. Abnormality detection section 200 may be configured to include a storage processing section instead of detection section 240 and detection section 250 . In this case, the storage processing unit performs processing for storing the digital signal received from the ADC 230 in the storage unit 270 . The determination unit 280 performs the above-described comparison processing and determination processing on the digital signal stored in the storage unit 270 by the storage processing unit.
 また、本開示の実施の形態の変形例に係るケーブル監視装置500では、異常検出部201は、検波部240および検波部250を含む構成であるとしたが、これに限定するものではない。異常検出部201は、検波部240の代わりに、保存処理部を含む構成であってもよい。この場合、当該保存処理部は、ADC230から受けたデジタル信号を記憶部270に保存する処理を行う。また、異常検出部201は、検波部250の代わりに、保存処理部を含む構成であってもよい。この場合、当該保存処理部は、ADC231から受けたデジタル信号を記憶部270に保存する処理を行う。判定部280は、当該保存処理部により記憶部270に保存されたデジタル信号について上述した比較処理および判定処理を行う。 Also, in the cable monitoring device 500 according to the modification of the embodiment of the present disclosure, the abnormality detection unit 201 is configured to include the detection unit 240 and the detection unit 250, but it is not limited to this. The abnormality detection section 201 may be configured to include a storage processing section instead of the detection section 240 . In this case, the storage processing unit performs processing for storing the digital signal received from the ADC 230 in the storage unit 270 . Further, the abnormality detection section 201 may be configured to include a storage processing section instead of the detection section 250 . In this case, the storage processing unit performs processing for storing the digital signal received from the ADC 231 in the storage unit 270 . The determination unit 280 performs the above-described comparison processing and determination processing on the digital signal stored in the storage unit 270 by the storage processing unit.
 また、本開示の実施の形態に係るケーブル監視装置500では、通信部331は、検出情報DA,DBを管理装置400へ伝送する構成であるとしたが、これに限定するものではない。通信部331は、検出情報DA,DBの少なくともいずれか一方を管理装置400へ伝送しない構成であってもよい。また、ケーブル監視装置500は、通信部331を備えない構成であってもよい。この場合、管理装置400は、上述のように、各ケーブル監視装置500において生成された検出情報DA,DBをオフラインで取得する。より詳細には、判定部280は、生成した検出情報DA,DBを記憶部270に保存する。ケーブル監視システム501の管理者は、定期的または不定期に、ケーブル監視装置500にUSBメモリ等の記録媒体を接続し、記憶部270における検出情報DA,DBを当該記録媒体にコピーする。そして、当該管理者は、検出情報DA,DBがコピーされた当該記録媒体を管理装置400に接続し、管理装置400における記憶部450に検出情報DA,DBを保存する。管理装置400における部分放電算出部430および絶縁破壊算出部440は、管理者により記憶部450に保存された検出情報DA,DBに基づいて、部分放電および絶縁破壊の発生位置を算出する。また、この場合、ケーブル監視装置500は、たとえば、GPS(Global Positioning System)信号を受信し、受信したGPS信号に基づいて現在時刻を取得してカウンタ333の時刻情報を更新する。 Also, in the cable monitoring device 500 according to the embodiment of the present disclosure, the communication unit 331 is configured to transmit the detection information DA and DB to the management device 400, but the configuration is not limited to this. The communication unit 331 may be configured not to transmit at least one of the detection information DA and DB to the management device 400 . Moreover, the cable monitoring device 500 may be configured without the communication unit 331 . In this case, the management device 400 acquires the detection information DA, DB generated in each cable monitoring device 500 off-line as described above. More specifically, the determination unit 280 stores the generated detection information DA and DB in the storage unit 270 . The administrator of the cable monitoring system 501 periodically or irregularly connects a recording medium such as a USB memory to the cable monitoring device 500 and copies the detection information DA, DB in the storage unit 270 to the recording medium. Then, the administrator connects the recording medium on which the detection information DA and DB are copied to the management device 400 and saves the detection information DA and DB in the storage unit 450 of the management device 400 . The partial discharge calculation unit 430 and the dielectric breakdown calculation unit 440 in the management device 400 calculate the occurrence positions of partial discharge and dielectric breakdown based on the detection information DA and DB stored in the storage unit 450 by the administrator. Also, in this case, the cable monitoring device 500 receives, for example, a GPS (Global Positioning System) signal, obtains the current time based on the received GPS signal, and updates the time information of the counter 333 .
 また、本開示の実施の形態に係るケーブル監視装置500は、同期部332を備える構成であるとしたが、これに限定するものではない。ケーブル監視装置500は、同期部332を備えない構成であってもよい。 Also, although the cable monitoring device 500 according to the embodiment of the present disclosure is configured to include the synchronization unit 332, it is not limited to this. The cable monitoring device 500 may be configured without the synchronization unit 332 .
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The above embodiments should be considered as examples in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視するケーブル監視装置であって、
 前記遮蔽層を通して流れる電流の変化、または前記遮蔽層の電位の変化に応じた出力信号を出力する信号検出部と、
 前記信号検出部から出力される前記出力信号に基づいて、前記ケーブルにおける部分放電および絶縁破壊を検出する異常検出部とを備え、
 前記異常検出部は、所定の周波数以下の成分を減衰させるハイパスフィルタを通過した前記出力信号に基づいて前記部分放電を検出し、前記ハイパスフィルタを通過する前の前記出力信号に基づいて前記絶縁破壊を検出し、
 前記異常検出部は、前記出力信号のレベルが所定値以上の状態が所定期間継続した場合、前記ケーブルにおいて前記絶縁破壊が発生したと判定し、前記出力信号のレベルが前記所定値以上の状態が前記所定期間継続しない場合、前記ケーブルにおいて開閉サージが発生したと判定する、ケーブル監視装置。
The above description includes features appended below.
[Appendix 1]
A cable monitoring device for monitoring a cable having a linear conductor that transmits electric power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer,
a signal detection unit that outputs an output signal according to a change in current flowing through the shielding layer or a change in potential of the shielding layer;
an abnormality detection unit that detects partial discharge and dielectric breakdown in the cable based on the output signal output from the signal detection unit;
The abnormality detection unit detects the partial discharge based on the output signal that has passed through a high-pass filter that attenuates components below a predetermined frequency, and detects the dielectric breakdown based on the output signal that has not passed through the high-pass filter. to detect
The abnormality detection unit determines that the dielectric breakdown has occurred in the cable when a state in which the level of the output signal is equal to or higher than a predetermined value continues for a predetermined period of time, and the state in which the level of the output signal is equal to or higher than the predetermined value is determined. A cable monitoring device that determines that an opening/closing surge has occurred in the cable if it does not continue for the predetermined period of time.
 [付記2]
 電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視する互いに異なる位置に設置された複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報、および前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報を取得する取得部と、
 前記取得部により取得された前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出する第1算出部と、
 前記取得部により取得された前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出する第2算出部とを備え、
 前記取得部は、前記複数のケーブル監視装置の間の伝送遅延時間をさらに取得し、
 前記第1算出部は、前記各第1検出情報が示す時刻を、前記伝送遅延時間を用いて補正し、前記各第1検出情報の補正後の時刻に基づいて、前記部分放電の発生位置を算出し、
 前記第2算出部は、前記各第2検出情報が示す時刻を、前記伝送遅延時間を用いて補正し、前記各第2検出情報の補正後の時刻に基づいて、前記絶縁破壊の発生位置を算出する、管理装置。
[Appendix 2]
A plurality of cable monitors installed at different positions for monitoring a cable having a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is the conductor that surrounds the insulating layer Obtaining a plurality of first detection information each indicating a time at which a device detects partial discharge in the cable and a plurality of second detection information each indicating a time at which the plurality of cable monitoring devices detect a dielectric breakdown in the cable. an acquisition unit;
a first calculation unit that calculates the occurrence position of the partial discharge in the cable based on each of the first detection information acquired by the acquisition unit;
a second calculation unit that calculates a position where the dielectric breakdown occurs in the cable based on each of the second detection information acquired by the acquisition unit;
The acquisition unit further acquires a transmission delay time between the plurality of cable monitoring devices,
The first calculator corrects the time indicated by each of the first detection information using the transmission delay time, and calculates the occurrence position of the partial discharge based on the corrected time of each of the first detection information. calculate,
The second calculator corrects the time indicated by each of the second detection information using the transmission delay time, and calculates the occurrence position of the dielectric breakdown based on the corrected time of each of the second detection information. A management device that calculates.
 10,10A,10A1,10A2,10B,10B1,10B2,10C,10C1,10C2  地中ケーブル
 11,11A,11B,11C  ケーブル端末
 12  ワイヤ
 13,15  接地ノード
 31  マンホール
 41,41A,41B  普通接続部
 42,42A,42B,42C  絶縁接続部
 43,43A,43B  地上接続部
 53  導電ケーブル
 71  導体
 72  内部半導電層
 73  絶縁体
 74  外部半導電層
 75  遮蔽層
 76  シース
 77  絶縁筒
 81  端子
 100,100A  信号検出部
 110,310,411  CT
 120,120A,412  信号出力部
 101,301  リングコア
 102,302  巻線
 105,106  金属箔電極
 200,201,202  異常検出部
 210  HPF
 220,221  LNA
 230,231  ADC
 240,250  検波部
 270,450  記憶部
 280,281  判定部
 290  保存処理部
 300,410  電磁結合部
 320      信号入出力部
 331  通信部
 332  同期部
 333  カウンタ
 400  管理装置
 420  取得部
 430  部分放電算出部
 440  絶縁破壊算出部
 500,500A,500B,500C  ケーブル監視装置
 501  ケーブル監視システム
 502  送電システム
 
10, 10A, 10A1, 10A2, 10B, 10B1, 10B2, 10C, 10C1, 10C2 underground cable 11, 11A, 11B, 11C cable terminal 12 wire 13, 15 ground node 31 manhole 41, 41A, 41B common connection 42, 42A, 42B, 42C Insulation connection part 43, 43A, 43B Ground connection part 53 Conductive cable 71 Conductor 72 Internal semiconducting layer 73 Insulator 74 External semiconducting layer 75 Shielding layer 76 Sheath 77 Insulating tube 81 Terminal 100, 100A Signal detector 110, 310, 411 CT
120, 120A, 412 Signal output section 101, 301 Ring core 102, 302 Winding 105, 106 Metal foil electrode 200, 201, 202 Abnormality detection section 210 HPF
220, 221 LNAs
230, 231 ADCs
240, 250 detection unit 270, 450 storage unit 280, 281 determination unit 290 storage processing unit 300, 410 electromagnetic coupling unit 320 signal input/output unit 331 communication unit 332 synchronization unit 333 counter 400 management device 420 acquisition unit 430 partial discharge calculation unit 440 Dielectric breakdown calculator 500, 500A, 500B, 500C Cable monitoring device 501 Cable monitoring system 502 Power transmission system

Claims (10)

  1.  電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視するケーブル監視装置であって、
     前記遮蔽層を通して流れる電流の変化、または前記遮蔽層の電位の変化に応じた出力信号を出力する信号検出部と、
     前記信号検出部から出力される前記出力信号に基づいて、前記ケーブルにおける部分放電および絶縁破壊を検出する異常検出部とを備える、ケーブル監視装置。
    A cable monitoring device for monitoring a cable having a linear conductor that transmits electric power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer,
    a signal detection unit that outputs an output signal according to a change in current flowing through the shielding layer or a change in potential of the shielding layer;
    A cable monitoring device, comprising: an abnormality detection section that detects partial discharge and dielectric breakdown in the cable based on the output signal output from the signal detection section.
  2.  前記異常検出部は、前記出力信号のレベルと所定のしきい値との比較結果に基づいて、前記部分放電と前記絶縁破壊とを判別する、請求項1に記載のケーブル監視装置。 The cable monitoring device according to claim 1, wherein the abnormality detection section distinguishes between the partial discharge and the insulation breakdown based on a comparison result between the level of the output signal and a predetermined threshold value.
  3.  前記異常検出部は、前記出力信号の波形に基づいて、前記部分放電と前記絶縁破壊とを判別する、請求項1または請求項2に記載のケーブル監視装置。 The cable monitoring device according to claim 1 or 2, wherein the abnormality detection section distinguishes between the partial discharge and the dielectric breakdown based on the waveform of the output signal.
  4.  前記異常検出部は、所定の周波数以下の成分を減衰させるハイパスフィルタを通過した前記出力信号に基づいて前記部分放電を検出し、前記ハイパスフィルタを通過する前の前記出力信号に基づいて前記絶縁破壊を検出する、請求項1から請求項3のいずれか1項に記載のケーブル監視装置。 The abnormality detection unit detects the partial discharge based on the output signal that has passed through a high-pass filter that attenuates components of a frequency lower than a predetermined frequency, and detects the dielectric breakdown based on the output signal that has not passed through the high-pass filter. 4. The cable monitoring device according to any one of claims 1 to 3, which detects
  5.  前記ケーブル監視装置は、さらに、
     前記異常検出部が前記部分放電を検出した時刻を他の装置へ通知する通知部を備える、請求項1から請求項4のいずれか1項に記載のケーブル監視装置。
    The cable monitoring device further comprises:
    The cable monitoring device according to any one of claims 1 to 4, further comprising a notification unit that notifies another device of the time when the abnormality detection unit detected the partial discharge.
  6.  前記ケーブル監視装置は、さらに、
     前記異常検出部が前記絶縁破壊を検出した時刻を他の装置へ通知する通知部を備える、請求項1から請求項5のいずれか1項に記載のケーブル監視装置。
    The cable monitoring device further comprises:
    The cable monitoring device according to any one of claims 1 to 5, further comprising a notification unit that notifies another device of the time when the abnormality detection unit detects the dielectric breakdown.
  7.  前記ケーブル監視装置は、さらに、
     前記ケーブルを監視する他の前記ケーブル監視装置との通信により前記他のケーブル監視装置との時刻同期をとるための処理を行う同期部を備える、請求項1から請求項6のいずれか1項に記載のケーブル監視装置。
    The cable monitoring device further comprises:
    7. The apparatus according to any one of claims 1 to 6, further comprising a synchronization unit that performs processing for synchronizing time with said other cable monitoring device through communication with said other cable monitoring device that monitors said cable. A cable monitoring device as described.
  8.  電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視する互いに異なる位置に設置された複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報、および前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報を取得する取得部と、
     前記取得部により取得された前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出する第1算出部と、
     前記取得部により取得された前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出する第2算出部とを備える、管理装置。
    A plurality of cable monitors installed at different positions for monitoring a cable having a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is the conductor that surrounds the insulating layer Obtaining a plurality of first detection information each indicating a time at which a device detects partial discharge in the cable and a plurality of second detection information each indicating a time at which the plurality of cable monitoring devices detect a dielectric breakdown in the cable. an acquisition unit;
    a first calculation unit that calculates the occurrence position of the partial discharge in the cable based on each of the first detection information acquired by the acquisition unit;
    A management device, comprising: a second calculation unit that calculates a position where the dielectric breakdown occurs in the cable based on each of the second detection information acquired by the acquisition unit.
  9.  電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視する互いに異なる位置に設置された複数のケーブル監視装置と、
     前記複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報と、前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報とを取得する管理装置とを備え、
     前記管理装置は、取得した前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出し、取得した前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出する、ケーブル監視システム。
    A plurality of cable monitors installed at different positions for monitoring a cable having a linear conductor that transmits power, an insulating layer that surrounds the conductor, and a shielding layer that is the conductor that surrounds the insulating layer a device;
    A plurality of first detection information indicating times when the plurality of cable monitoring devices detect partial discharge in the cable, and a plurality of second detection information indicating times when the plurality of cable monitoring devices detect dielectric breakdown in the cable. and a management device for acquiring detection information,
    The management device calculates the occurrence position of the partial discharge in the cable based on the acquired first detection information, and based on the acquired second detection information, the occurrence of the dielectric breakdown in the cable. Cable monitoring system that calculates position.
  10.  互いに異なる位置に設置された複数のケーブル監視装置と、管理装置とを備えるケーブル監視システムにおけるケーブル監視方法であって、
     前記複数のケーブル監視装置が、電力を伝送する線状の導体と、前記導体の周囲を覆う絶縁層と、前記絶縁層の周囲を覆う導体である遮蔽層とを有するケーブルを監視するステップと、
     前記管理装置が、前記複数のケーブル監視装置が前記ケーブルにおける部分放電を検出した時刻をそれぞれ示す複数の第1検出情報を取得するステップと、
     前記管理装置が、前記複数のケーブル監視装置が前記ケーブルにおける絶縁破壊を検出した時刻をそれぞれ示す複数の第2検出情報とを取得するステップと、
     前記管理装置が、取得した前記各第1検出情報に基づいて、前記ケーブルにおける前記部分放電の発生位置を算出するステップと、
     前記管理装置が、取得した前記各第2検出情報に基づいて、前記ケーブルにおける前記絶縁破壊の発生位置を算出するステップとを含む、ケーブル監視方法。
     
     
     
     
    A cable monitoring method in a cable monitoring system comprising a plurality of cable monitoring devices installed at mutually different positions and a management device, comprising:
    a step in which the plurality of cable monitoring devices monitor a cable having a linear conductor that transmits electric power, an insulating layer that surrounds the conductor, and a shielding layer that is a conductor that surrounds the insulating layer;
    obtaining, by the management device, a plurality of pieces of first detection information each indicating times at which the plurality of cable monitoring devices detected partial discharge in the cable;
    a step in which the management device acquires a plurality of pieces of second detection information each indicating a time at which the plurality of cable monitoring devices detected a dielectric breakdown in the cable;
    a step in which the management device calculates a position where the partial discharge occurs in the cable based on the acquired first detection information;
    A cable monitoring method, wherein the management device calculates a location where the dielectric breakdown occurs in the cable based on the obtained second detection information.



PCT/JP2021/041881 2021-02-15 2021-11-15 Cable monitoring device, management device, cable monitoring system, and cable monitoring method WO2022172541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022581190A JPWO2022172541A1 (en) 2021-02-15 2021-11-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021530 2021-02-15
JP2021021530 2021-02-15

Publications (1)

Publication Number Publication Date
WO2022172541A1 true WO2022172541A1 (en) 2022-08-18

Family

ID=82838577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041881 WO2022172541A1 (en) 2021-02-15 2021-11-15 Cable monitoring device, management device, cable monitoring system, and cable monitoring method

Country Status (2)

Country Link
JP (1) JPWO2022172541A1 (en)
WO (1) WO2022172541A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181177A (en) * 1990-11-15 1992-06-29 Fujikura Ltd Partial discharge detector
JPH0591639A (en) * 1991-09-27 1993-04-09 Showa Electric Wire & Cable Co Ltd Detecting method for malfunction of cable connector
JPH06331686A (en) * 1993-05-24 1994-12-02 Furukawa Electric Co Ltd:The Insulation deterioration monitoring system
JPH09159720A (en) * 1995-12-05 1997-06-20 Fuji Electric Co Ltd Apparatus for monitoring stain of outdoor insulator
JPH10104304A (en) * 1996-06-14 1998-04-24 Electricite De France Device and method for detecting defective insulation of device connected to power transmission or distribution network
KR101320433B1 (en) * 2012-05-30 2013-10-23 주식회사 와이즈오토모티브 Apparatus for detecting insulation partial discharge signal
JP2016206035A (en) * 2015-04-23 2016-12-08 一般財団法人 関西電気保安協会 High-voltage insulation monitoring device
JP2019011956A (en) * 2017-06-29 2019-01-24 株式会社サムス Cable breakage detector and cable breakage detection method
JP2019027785A (en) * 2017-07-25 2019-02-21 矢崎エナジーシステム株式会社 Insulation deterioration diagnostic method and diagnostic apparatus for high-voltage aerial cable connector
WO2020161967A1 (en) * 2019-02-04 2020-08-13 住友電気工業株式会社 Partial discharge detection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181177A (en) * 1990-11-15 1992-06-29 Fujikura Ltd Partial discharge detector
JPH0591639A (en) * 1991-09-27 1993-04-09 Showa Electric Wire & Cable Co Ltd Detecting method for malfunction of cable connector
JPH06331686A (en) * 1993-05-24 1994-12-02 Furukawa Electric Co Ltd:The Insulation deterioration monitoring system
JPH09159720A (en) * 1995-12-05 1997-06-20 Fuji Electric Co Ltd Apparatus for monitoring stain of outdoor insulator
JPH10104304A (en) * 1996-06-14 1998-04-24 Electricite De France Device and method for detecting defective insulation of device connected to power transmission or distribution network
KR101320433B1 (en) * 2012-05-30 2013-10-23 주식회사 와이즈오토모티브 Apparatus for detecting insulation partial discharge signal
JP2016206035A (en) * 2015-04-23 2016-12-08 一般財団法人 関西電気保安協会 High-voltage insulation monitoring device
JP2019011956A (en) * 2017-06-29 2019-01-24 株式会社サムス Cable breakage detector and cable breakage detection method
JP2019027785A (en) * 2017-07-25 2019-02-21 矢崎エナジーシステム株式会社 Insulation deterioration diagnostic method and diagnostic apparatus for high-voltage aerial cable connector
WO2020161967A1 (en) * 2019-02-04 2020-08-13 住友電気工業株式会社 Partial discharge detection device

Also Published As

Publication number Publication date
JPWO2022172541A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
US9261549B2 (en) Leakage current sensor for suspension type insulator
CA2656025C (en) Detection and monitoring of partial discharge of a power line
AU2006326931B2 (en) Method and apparatus for detecting an event
US11733276B2 (en) Power line sag monitoring device
US20160054363A1 (en) Corona avoidance electric power line monitoring, communication and response system
US9244114B2 (en) System and method for assessing faulty power-line insulator strings
WO2003094765A2 (en) Method and system for power line network fault detection and quality monitoring
HU216030B (en) Method and apparatus for signal coupling at medium voltage in a power line carrier communications system
US10802054B2 (en) High-fidelity voltage measurement using a capacitance-coupled voltage transformer
US9903899B2 (en) Leakage current sensor for post type insulator
KR102117938B1 (en) Partial discharge monitoring system of power device
US20190094287A1 (en) High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer
CN111065932A (en) Traveling wave identification using distortion for power system protection
JP2010243504A (en) Fault locating system
US20230020865A1 (en) Local partial discharge monitoring
WO2022172541A1 (en) Cable monitoring device, management device, cable monitoring system, and cable monitoring method
WO2016028274A1 (en) Corona avoidance electric power line monitoring and response system
WO2020161967A1 (en) Partial discharge detection device
CN108429341A (en) A kind of plesiochronous startup of harmonic wave on-line monitoring terminal and synchronization data obtaining method based on time synchronization system
CN114200252A (en) Cable fault detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925786

Country of ref document: EP

Kind code of ref document: A1