WO2022172479A1 - Rotating electrical machine - Google Patents

Rotating electrical machine Download PDF

Info

Publication number
WO2022172479A1
WO2022172479A1 PCT/JP2021/021979 JP2021021979W WO2022172479A1 WO 2022172479 A1 WO2022172479 A1 WO 2022172479A1 JP 2021021979 W JP2021021979 W JP 2021021979W WO 2022172479 A1 WO2022172479 A1 WO 2022172479A1
Authority
WO
WIPO (PCT)
Prior art keywords
circumferential
magnet
pair
magnets
viewed
Prior art date
Application number
PCT/JP2021/021979
Other languages
French (fr)
Japanese (ja)
Inventor
正倫 綿引
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202180093476.2A priority Critical patent/CN116888861A/en
Publication of WO2022172479A1 publication Critical patent/WO2022172479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to rotating electric machines.
  • a rotary electric machine such as an interior permanent magnet synchronous motor (IPMSM) is known that includes a rotor core and permanent magnets arranged in holes provided in the rotor core.
  • IPMSM interior permanent magnet synchronous motor
  • Patent Document 1 discloses a first magnet in which permanent magnets are arranged in a V shape, and magnetization directions inside the magnets of each of two sets of magnet portions forming the V shape are directed to intersect each other.
  • a rotary electric machine is disclosed in which demagnetization of a magnet is suppressed by arranging a portion and a second magnet portion.
  • Patent Document 2 discloses a radially inner portion on the outer peripheral surface of the rotor core. It is disclosed to provide a recessed groove in the .
  • the provision of grooves on the outer peripheral surface of the rotor core increases the air gap between the rotor core and the stator, thereby reducing the electromagnetic excitation force in the circumferential direction.
  • the drive range is wide, and as the number of revolutions of the motor increases, more d-axis current may flow in order to reduce the induced voltage.
  • the balance relationship between the d-axis magnetic flux and the q-axis magnetic flux in the motor also changes significantly, and the electromagnetic excitation force that excites the motor also changes significantly.
  • a circumferential electromagnetic excitation force becomes a noise source at low speed
  • a radial electromagnetic excitation force becomes a noise source at high speed. Therefore, it is necessary to deal with different components of the electromagnetic excitation force in the circumferential direction and the radial direction with one motor shape. cannot be said to have been taken into consideration.
  • the present invention has been made in consideration of the above points, and an object of the present invention is to provide a rotating electric machine that can reduce noise regardless of the number of revolutions of the motor.
  • One aspect of the rotating electrical machine of the present invention includes a rotor rotatable about a central axis, and a stator positioned radially outward of the rotor, the rotor including a rotor core having a plurality of housing holes; and a plurality of magnets respectively housed within the plurality of housing holes, wherein the stator includes an annular core-back surrounding the rotor core, and a stator extending radially inward from the core-back and spaced circumferentially from the core-back. a stator core having a plurality of teeth arranged side by side; and a plurality of coils attached to the stator core.
  • the rotor core has a pair of grooves recessed radially inward at intervals on both sides in the circumferential direction of the outer peripheral surface of the rotor core across the q-axis when viewed in the axial direction.
  • L1 is the maximum dimension of the grooves
  • L2 is the minimum dimension of the interval between the pair of grooves in the circumferential direction.
  • noise can be reduced in a rotating electric machine regardless of the number of revolutions of the motor.
  • FIG. 1 is a cross-sectional view showing a rotating electrical machine of this embodiment.
  • FIG. 2 is a cross-sectional view showing a part of the rotating electric machine of this embodiment, taken along the line II--II in FIG.
  • FIG. 3 is a sectional view showing the magnetic pole portions of the rotor and part of the stator core of the present embodiment.
  • FIG. 4 is an enlarged cross-sectional view of the periphery of the groove facing the teeth 66F in the radial direction.
  • FIG. 5 is a diagram showing the relationship between the number of revolutions of the motor and the increase/decrease ratio of the 12th order radial electromagnetic excitation force.
  • FIG. 1 is a cross-sectional view showing a rotating electrical machine of this embodiment.
  • FIG. 2 is a cross-sectional view showing a part of the rotating electric machine of this embodiment, taken along the line II--II in FIG.
  • FIG. 3 is a sectional view showing the magnetic pole portions of the rotor and part of
  • FIG. 6 is a diagram showing the relationship between the number of rotations of the motor and the increase/decrease ratio of the twelfth circumferential electromagnetic excitation force.
  • FIG. 7 is a diagram showing the relationship between the number of grooves and the increase/decrease ratio of the average torque, and the relationship between the number of grooves and the increase/decrease ratio of the electromagnetic excitation force of 12th electrical angle.
  • FIG. 8 is an enlarged cross-sectional view of the periphery of a groove portion of a rotating electric machine having "one groove".
  • FIG. 9 shows the groove width L3, the average torque, the radial electromagnetic excitation force of the twelfth electrical angle, and the circumferential electromagnetic force of the twelfth electrical angle in the rotating electrical machine having the groove 80C, as compared with the rotating electrical machine having no groove. It is a figure which shows the relationship with each increase-and-decrease ratio of vibration force.
  • FIG. 10 is a diagram showing the relationship between the groove width L3 and the increase/decrease ratio of the average torque, the radial electromagnetic excitation force of the 12th electrical angle, and the circumferential electromagnetic excitation force of the 12th electrical angle.
  • 11 shows the relationship between the minimum dimension L2 of the circumferential interval between the grooves and the ratio of increase/decrease of the average torque, radial electromagnetic excitation force of 12th electrical angle, and circumferential electromagnetic excitation force of 12th electrical angle. It is a diagram.
  • the Z-axis direction shown as appropriate in each figure is a vertical direction in which the positive side is the "upper side” and the negative side is the “lower side.”
  • a central axis J appropriately shown in each figure is a virtual line parallel to the Z-axis direction and extending in the vertical direction.
  • the axial direction of the central axis J that is, the direction parallel to the vertical direction is simply referred to as the "axial direction”
  • the radial direction around the central axis J is simply referred to as the "radial direction”
  • the central axis J is simply referred to as the "circumferential direction”.
  • An arrow ⁇ appropriately shown in each figure indicates the circumferential direction.
  • the arrow ⁇ points clockwise around the central axis J when viewed from above.
  • the side toward which the arrow ⁇ is directed that is, the side proceeding clockwise when viewed from the upper side
  • the side opposite to the direction of the arrow ⁇ , that is, the side proceeding counterclockwise when viewed from above is called the “other side in the circumferential direction”.
  • the rotating electrical machine 1 of this embodiment is an inner rotor type rotating electrical machine.
  • the rotating electrical machine 1 is a three-phase AC rotating electrical machine.
  • the rotary electric machine 1 is, for example, a three-phase motor that is driven by being supplied with three-phase AC power.
  • the rotating electric machine 1 includes a housing 2, a rotor 10, a stator 60, a bearing holder 4, and bearings 5a and 5b.
  • the housing 2 accommodates the rotor 10, the stator 60, the bearing holder 4, and the bearings 5a and 5b inside.
  • the bottom of housing 2 holds a bearing 5b.
  • a bearing holder 4 holds a bearing 5a.
  • the bearings 5a, 5b are, for example, ball bearings.
  • the stator 60 is located radially outside the rotor 10 .
  • the stator 60 has a stator core 61 , insulators 64 and multiple coils 65 .
  • Stator core 61 has a core back 62 and a plurality of teeth 63 .
  • the core back 62 is located radially outside the rotor core 20, which will be described later. As shown in FIG. 2 , core back 62 has an annular shape surrounding rotor core 20 .
  • the core back 62 has an annular shape centering on the central axis J, for example.
  • a plurality of teeth 63 extend radially inward from the core back 62 .
  • the plurality of teeth 63 are arranged side by side at intervals in the circumferential direction.
  • the multiple teeth 63 are, for example, arranged at regular intervals along the circumferential direction.
  • 48 teeth 63 are provided. That is, the number of slots 67 of the rotating electric machine 1 is 48, for example.
  • each of the teeth 63 has a base portion 63a and an umbrella portion 63b.
  • the base portion 63 a extends radially inward from the core back 62 .
  • the circumferential dimension of the base portion 63a is, for example, the same throughout the radial direction. Note that the circumferential dimension of the base portion 63a may decrease, for example, toward the radially inner side.
  • the umbrella portion 63b is provided at the radially inner end portion of the base portion 63a.
  • the umbrella portion 63b protrudes to both sides in the circumferential direction from the base portion 63a.
  • the circumferential dimension of the umbrella portion 63b is greater than the circumferential dimension of the radially inner end portion of the base portion 63a.
  • a radially inner surface of the umbrella portion 63b is a curved surface along the circumferential direction.
  • a radially inner surface of the umbrella portion 63b extends in an arc around the central axis J when viewed in the axial direction.
  • the radially inner surface of the umbrella portion 63b faces the outer peripheral surface of the rotor core 20 to be described later with a gap in the radial direction.
  • Umbrella portions 63b of teeth 63 adjacent to each other in the circumferential direction are arranged side by side with a gap in the circumferential direction.
  • a plurality of coils 65 are attached to the stator core 61 . As shown in FIG. 1, the plurality of coils 65 are attached to the teeth 63 via insulators 64, for example.
  • the coil 65 is distributed winding. That is, each coil 65 is wound over a plurality of teeth 63 .
  • the coil 65 is wound in full pitch. That is, the circumferential pitch between the slots of the stator 60 into which the coils 65 are inserted is equal to the circumferential pitch of the magnetic poles generated when the stator 60 is supplied with the three-phase AC power.
  • the number of poles of the rotary electric machine 1 is eight, for example. That is, the rotary electric machine 1 is, for example, an 8-pole 48-slot rotary electric machine.
  • the number of poles is N
  • the number of slots is N ⁇ 6. 2 and 3, illustration of the insulator 64 is omitted.
  • the rotor 10 is rotatable around the central axis J.
  • the rotor 10 has a shaft 11 , a rotor core 20 and a plurality of magnets 40 .
  • the shaft 11 has a columnar shape extending in the axial direction around the central axis J.
  • the shaft 11 is rotatably supported around a central axis J by bearings 5a and 5b.
  • the rotor core 20 is a magnetic material. Rotor core 20 is fixed to the outer peripheral surface of shaft 11 . Rotor core 20 has a through hole 21 that axially penetrates rotor core 20 . As shown in FIG. 2, the through hole 21 has a circular shape centered on the central axis J when viewed in the axial direction.
  • the shaft 11 is passed through the through hole 21 .
  • the shaft 11 is fixed in the through hole 21 by, for example, press fitting.
  • the rotor core 20 is configured, for example, by laminating a plurality of electromagnetic steel sheets in the axial direction.
  • the rotor core 20 has a plurality of accommodation holes 30.
  • the plurality of housing holes 30 for example, penetrate the rotor core 20 in the axial direction.
  • a plurality of magnets 40 are housed inside the plurality of housing holes 30, respectively.
  • a method for fixing the magnet 40 in the accommodation hole 30 is not particularly limited.
  • the multiple accommodation holes 30 include a pair of first accommodation holes 31 a and 31 b and a second accommodation hole 32 .
  • the types of the plurality of magnets 40 are not particularly limited.
  • the magnet 40 may be, for example, a neodymium magnet or a ferrite magnet.
  • the multiple magnets 40 include a pair of first magnets 41 a and 41 b and a second magnet 42 .
  • the pair of first magnets 41a and 41b and the second magnet 42 form poles.
  • the pair of first accommodation holes 31a, 31b, the pair of first magnets 41a, 41b, the second accommodation holes 32, and the second magnets 42 are provided at intervals in the circumferential direction.
  • the pair of first accommodation holes 31a, 31b, the pair of first magnets 41a, 41b, the second accommodation holes 32, and the second magnets 42 are provided, for example, eight each.
  • the rotor 10 has a plurality of magnetic pole portions 70 each including a pair of first housing holes 31a, 31b, a pair of first magnets 41a, 41b, a second housing hole 32, and a second magnet 42.
  • eight magnetic pole portions 70 are provided.
  • the plurality of magnetic pole portions 70 are, for example, arranged at regular intervals along the circumferential direction.
  • the plurality of magnetic pole portions 70 include a plurality of magnetic pole portions 70N having N-pole magnetic poles on the outer peripheral surface of the rotor core 20 and a plurality of magnetic pole portions 70S having S-pole magnetic poles on the outer peripheral surface of the rotor core 20, respectively.
  • four magnetic pole portions 70N and four magnetic pole portions 70S are provided.
  • the four magnetic pole portions 70N and the four magnetic pole portions 70S are alternately arranged along the circumferential direction.
  • the configuration of each magnetic pole portion 70 is the same except that the magnetic poles on the outer peripheral surface of the rotor core 20 are different and the positions in the circumferential direction are different.
  • the pair of first accommodation holes 31a and 31b are arranged with a space therebetween in the circumferential direction.
  • the first accommodation hole 31a is positioned, for example, on one circumferential side (+ ⁇ side) of the first accommodation hole 31b.
  • the first accommodation holes 31a and 31b extend substantially linearly in a direction oblique to the radial direction, for example, when viewed in the axial direction.
  • the pair of first receiving holes 31a and 31b extend in directions away from each other in the circumferential direction as viewed in the axial direction from the radially inner side toward the radially outer side. That is, the circumferential distance between the first receiving holes 31a and 31b increases from the radially inner side to the radially outer side.
  • the first accommodation hole 31a is located on one side in the circumferential direction, for example, from the radially inner side to the radially outer side.
  • the first accommodation hole 31b is located, for example, on the other circumferential side ( ⁇ side) from the radially inner side toward the radially outer side.
  • the radially outer ends of the first accommodation holes 31 a and 31 b are positioned at the radially outer peripheral edge of the rotor core 20 .
  • the first accommodation holes 31a and 31b are arranged, for example, in the axial direction so as to sandwich the magnetic pole center line IL1 shown in FIG. 3, which constitutes the d-axis, in the circumferential direction.
  • the magnetic pole center line IL1 is a virtual line passing through the circumferential center of the magnetic pole portion 70 and the central axis J and extending in the radial direction.
  • the first receiving holes 31a and the first receiving holes 31b are, for example, arranged line-symmetrically with respect to the magnetic pole center line IL1 when viewed in the axial direction.
  • description of the first receiving hole 31b may be omitted for the same configuration as the first receiving hole 31a except that it is line-symmetrical with respect to the magnetic pole center line IL1.
  • the first accommodation hole 31a has a first linear portion 31c, an inner end portion 31d, and an outer end portion 31e.
  • the first linear portion 31c linearly extends in the direction in which the first receiving hole 31a extends when viewed in the axial direction.
  • the first linear portion 31c has, for example, a rectangular shape when viewed in the axial direction.
  • the inner end portion 31d is connected to the radially inner end portion of the first straight portion 31c.
  • the inner end portion 31d is a radially inner end portion of the first receiving hole 31a.
  • the outer end portion 31e is connected to the radially outer end portion of the first straight portion 31c.
  • the outer end portion 31e is a radially outer end portion of the first accommodation hole 31a.
  • the first accommodation hole 31b has a first linear portion 31f, an inner end portion 31g, and an outer end portion 31h.
  • the second accommodation hole 32 is located between the radial outer ends of the pair of first accommodation holes 31a and 31b in the circumferential direction. That is, in the present embodiment, the second accommodation hole 32 is located between the outer end portion 31e and the outer end portion 31h in the circumferential direction.
  • the second receiving hole 32 extends substantially linearly in a direction orthogonal to the radial direction, for example, when viewed in the axial direction.
  • the second receiving hole 32 extends, for example, in a direction orthogonal to the magnetic pole center line IL1 when viewed in the axial direction.
  • the pair of first receiving holes 31a and 31b and the second receiving hole 32 are arranged, for example, along a ⁇ shape when viewed in the axial direction.
  • a certain object extends in a direction orthogonal to a certain direction
  • a certain object extends in a direction strictly orthogonal to a certain direction
  • a certain object It also includes the case where it extends in a direction substantially orthogonal to a certain direction.
  • a direction substantially orthogonal to a certain direction includes, for example, a direction inclined within a range of several degrees [°] with respect to a direction strictly orthogonal to a certain direction due to manufacturing tolerances or the like.
  • the magnetic pole center line IL1 passes through the center of the second housing hole 32 in the circumferential direction. That is, the circumferential position of the circumferential center of the second housing hole 32 coincides with, for example, the circumferential position of the magnetic pole portion 70 .
  • the shape of the second housing hole 32 when viewed in the axial direction is, for example, a line-symmetrical shape about the magnetic pole center line IL1.
  • the second accommodation hole 32 is positioned at the radially outer peripheral edge of the rotor core 20 .
  • the second accommodation hole 32 has a second linear portion 32a, one end portion 32b, and the other end portion 32c.
  • the second linear portion 32a linearly extends in the direction in which the second receiving hole 32 extends when viewed in the axial direction.
  • the second linear portion 32a has, for example, a rectangular shape when viewed in the axial direction.
  • the one end portion 32b is connected to the end portion on one circumferential side (+ ⁇ side) of the second linear portion 32a.
  • the one end portion 32b is an end portion on one side in the circumferential direction of the second accommodation hole 32 .
  • the one end portion 32b is spaced apart from the outer end portion 31e of the first accommodating hole 31a in the circumferential direction ( ⁇ side).
  • the other end 32c is connected to the end of the second linear portion 32a on the other circumferential side ( ⁇ side).
  • the other end 32c is the end of the second receiving hole 32 on the other side in the circumferential direction.
  • the other end portion 32c is arranged on one circumferential side of the outer end portion 31h of the first accommodation hole 31b with a space therebetween.
  • the pair of first magnets 41a and 41b are housed inside the pair of first housing holes 31a and 31b, respectively.
  • the first magnet 41a is housed inside the first housing hole 31a.
  • the first magnet 41b is housed inside the first housing hole 31b.
  • the pair of first magnets 41a and 41b has, for example, a rectangular shape when viewed in the axial direction.
  • the lengths in the direction in which the pair of first magnets 41a and 41b extend are the same.
  • the lengths of the first magnets 41a and 41b in the direction orthogonal to the direction in which the pair of first magnets 41a and 41b extend are the same.
  • the first magnets 41a and 41b are rectangular parallelepipeds, for example. Although not shown, the first magnets 41a and 41b are provided, for example, over the entirety of the first receiving holes 31a and 31b in the axial direction. The pair of first magnets 41a and 41b are arranged with a space therebetween in the circumferential direction. The first magnet 41a is positioned, for example, on one circumferential side (+ ⁇ side) of the first magnet 41b.
  • the first magnet 41a extends along the first receiving hole 31a when viewed in the axial direction.
  • the first magnet 41b extends along the first receiving hole 31b when viewed in the axial direction.
  • the first magnets 41a and 41b for example, extend substantially linearly in a direction oblique to the radial direction when viewed in the axial direction.
  • the pair of first magnets 41a and 41b extend in directions away from each other in the circumferential direction as viewed in the axial direction from the radially inner side toward the radially outer side. That is, the circumferential distance between the first magnets 41a and 41b increases from the radially inner side to the radially outer side.
  • the first magnet 41a is positioned, for example, on one circumferential side (+ ⁇ side) from the radially inner side to the radially outer side.
  • the first magnet 41b is positioned, for example, on the other circumferential side ( ⁇ side) from the radially inner side to the radially outer side.
  • the first magnet 41a and the first magnet 41b are arranged, for example, so as to sandwich the magnetic pole center line IL1 in the circumferential direction when viewed in the axial direction.
  • the first magnet 41a and the first magnet 41b are arranged line-symmetrically with respect to the magnetic pole center line IL1, for example, when viewed in the axial direction.
  • the description of the first magnet 41b may be omitted for the same configuration as the first magnet 41a except that it is line-symmetrical with respect to the magnetic pole center line IL1.
  • the first magnet 41a is fitted in the first accommodation hole 31a. More specifically, the first magnet 41a is fitted inside the first linear portion 31c. Of the side surfaces of the first magnet 41a, both side surfaces in the direction perpendicular to the direction in which the first straight portion 31c extends are in contact with the inner side surface of the first straight portion 31c, for example. In the direction in which the first linear portion 31c extends when viewed in the axial direction, the length of the first magnet 41a is, for example, the same as the length of the first linear portion 31c.
  • both ends of the first magnet 41a in the extending direction are arranged apart from both ends of the first accommodating hole 31a in the extending direction.
  • an inner end portion 31d and an outer end portion 31e are arranged adjacent to each other on both sides of the first magnet 41a in the direction in which the first magnet 41a extends.
  • the inner end portion 31d constitutes the first flux barrier portion 51a.
  • the outer end portion 31e constitutes a first flux barrier portion 51b. That is, the rotor core 20 has a pair of first flux barrier portions 51a and 51b arranged to sandwich the first magnet 41a in the direction in which the first magnet 41a extends when viewed in the axial direction.
  • the rotor core 20 has a pair of first flux barrier portions 51c and 51d arranged to sandwich the first magnet 41b in the direction in which the first magnet 41b extends when viewed in the axial direction.
  • the rotor core 20 has a pair of first flux barrier portions 51a and 51b arranged with each of the first magnets 41a and 41b interposed therebetween in the direction in which the first magnets 41a and 41b extend when viewed in the axial direction. , 51c and 51d.
  • the first flux barrier portions 51a, 51b, 51c, and 51d, the second flux barrier portions 52a and 52b, which will be described later, and the groove portion 80, which will be described later, are portions that can suppress the flow of magnetic flux. That is, it is difficult for magnetic flux to pass through each flux barrier portion and groove portion.
  • Each flux barrier portion and groove portion is not particularly limited as long as it can suppress the flow of magnetic flux, and may include a void portion or a non-magnetic portion such as a resin portion.
  • the second magnet 42 is housed inside the second housing hole 32 .
  • the second magnet 42 is arranged at a circumferential position between the pair of first magnets 41a and 41b radially outside the radial inner end portions of the pair of first magnets 41a and 41b.
  • the second magnet 42 extends along the second receiving hole 32 when viewed in the axial direction.
  • the second magnet 42 extends in a direction perpendicular to the radial direction when viewed in the axial direction.
  • the pair of first magnets 41a and 41b and the second magnet 42 are arranged, for example, along a ⁇ shape when viewed in the axial direction.
  • the second magnet is arranged at a circumferential position between the pair of first magnets
  • the circumferential position of the second magnet is between the pair of first magnets.
  • the radial position of the second magnet with respect to the first magnet is not particularly limited as long as it is included in the directional position.
  • the shape of the second magnet 42 when viewed in the axial direction is, for example, a line-symmetrical shape with respect to the magnetic pole center line IL1.
  • the second magnet 42 has, for example, a rectangular shape when viewed in the axial direction.
  • the second magnet 42 has, for example, a rectangular parallelepiped shape.
  • the second magnet 42 is provided, for example, over the entirety of the second housing hole 32 in the axial direction.
  • the radially inner portion of the second magnet 42 is positioned, for example, between the radially outer ends of the pair of first magnets 41a and 41b in the circumferential direction.
  • the radially outer portion of the second magnet 42 is positioned, for example, radially outer than the pair of first magnets 41a and 41b.
  • the second magnet 42 is fitted inside the second housing hole 32 . More specifically, the second magnet 42 is fitted inside the second straight portion 32a. Of the side surfaces of the second magnet 42, both side surfaces in the radial direction perpendicular to the direction in which the second straight portion 32a extends are in contact with, for example, the inner side surface of the second straight portion 32a.
  • the length of the second magnet 42 is, for example, the same as the length of the second straight portion 32a in the direction in which the second straight portion 32a extends when viewed in the axial direction.
  • both ends of the second magnet 42 in the extending direction are arranged apart from both ends of the second receiving hole 32 in the extending direction.
  • one end portion 32b and the other end portion 32c are arranged adjacent to each other on both sides of the second magnet 42 in the direction in which the second magnet 42 extends.
  • the one end portion 32b constitutes the second flux barrier portion 52a.
  • the other end portion 32c constitutes a second flux barrier portion 52b.
  • the rotor core 20 has a pair of second flux barrier portions 52a and 52b arranged to sandwich the second magnet 42 in the direction in which the second magnet 42 extends when viewed in the axial direction.
  • the pair of second flux barrier portions 52a and 52b and the second magnet 42 are composed of the first flux barrier portion 51b positioned radially outward of the pair of first flux barrier portions 51a and 51b sandwiching the first magnet 41a, Among the pair of first flux barrier portions 51c and 51d sandwiching one magnet 41b, it is located between the first flux barrier portion 51d located radially outside and the first flux barrier portion 51d in the circumferential direction.
  • the magnetic poles of the first magnet 41a are arranged along the direction orthogonal to the direction in which the first magnet 41a extends when viewed in the axial direction.
  • the magnetic poles of the first magnet 41b are arranged along the direction orthogonal to the direction in which the first magnet 41b extends when viewed in the axial direction.
  • the magnetic poles of the second magnet 42 are arranged along the radial direction.
  • the magnetic pole located radially outward among the magnetic poles of the first magnet 41a, the magnetic pole located radially outward among the magnetic poles of the first magnet 41b, and the magnetic pole located radially outward among the magnetic poles of the second magnet 42, are the same as each other.
  • the magnetic pole located radially inward among the magnetic poles of the first magnet 41a, the magnetic pole located radially inward among the magnetic poles of the first magnet 41b, and the magnetic pole located radially inward among the magnetic poles of the second magnet 42, are the same as each other.
  • the radially outer magnetic pole of the first magnet 41a and the radially outer magnetic pole of the first magnet 41b and the magnetic pole of the second magnet 42 The magnetic pole positioned radially outward is, for example, the N pole.
  • the radially inner magnetic pole of the first magnet 41a, the radially inner magnetic pole of the first magnet 41b, and the radially inner magnetic pole of the second magnet 42 The magnetic pole to be used is, for example, the S pole.
  • the magnetic pole of each magnet 40 is reversed with respect to the magnetic pole portion 70N. That is, in the magnetic pole portion 70S, the radially outer magnetic pole of the first magnet 41a, the radially outer magnetic pole of the first magnet 41b, and the radially outer magnetic pole of the second magnet 42
  • the magnetic pole located at is, for example, the S pole.
  • the magnetic pole to be used is, for example, the N pole.
  • the circumferential center of the second magnet 42 is arranged at the same circumferential position as the circumferential center of one tooth 63 (hereinafter simply referred to as a "certain state")
  • the circumferential center is Teeth 63 arranged at the same circumferential position as the circumferential center of the second magnet 42 are referred to as teeth 66A.
  • 2 and 3 show an example of such a certain state. That is, in a certain state shown in FIGS. 2 and 3, the tooth 66A corresponds to "one certain tooth”.
  • the magnetic pole center line IL1 passes through the circumferential center of the teeth 66A when viewed in the axial direction.
  • “a certain state” is a state in which "the center position of the teeth 66A in the circumferential direction coincides with the magnetic pole center line IL1, which is the d-axis”.
  • teeth 63 adjacent to the teeth 66A on one side in the circumferential direction (+ ⁇ side) are called teeth 66B.
  • a tooth 63 adjacent to the tooth 66A on the other circumferential side ( ⁇ side) is called a tooth 66C.
  • a tooth 63 adjacent to one side of the tooth 66B in the circumferential direction is called a tooth 66D.
  • the teeth 63 adjacent to the teeth 66C on the other side in the circumferential direction are called teeth 66E.
  • a tooth 63 adjacent to one side in the circumferential direction of the tooth 66D is called a tooth 66F.
  • the teeth 63 adjacent to the teeth 66E on the other side in the circumferential direction are called teeth 66G.
  • the rotor core 20 has grooves 80 .
  • the groove portion 80 has a pair of groove portions 80A and 80B.
  • the groove portion 80A and the groove portion 80B are recessed radially inward from the outer peripheral surface 20a when viewed in the axial direction.
  • Groove portion 80A and groove portion 80B each penetrate rotor core 20 in the axial direction.
  • the groove portion 80A and the groove portion 80B are provided for each q-axis IL2.
  • the q-axis IL2 is an axis extending in a direction electrically perpendicular to the d-axis.
  • FIG. 4 is an enlarged sectional view of the periphery of the groove portion 80 radially facing the teeth 66F.
  • the groove portion 80A and the groove portion 80B are spaced apart from each other in the circumferential direction with the q-axis IL2 interposed therebetween.
  • the groove portion 80 has a groove portion 80A and a groove portion 80B extending in the circumferential direction with a gap located on the q-axis IL2 when viewed in the axial direction.
  • Groove portion 80A is positioned on one circumferential side of q-axis IL2.
  • Groove portion 80B is located on the other circumferential side of q-axis IL2.
  • the groove portion 80A and the groove portion 80B are arranged line-symmetrically with respect to the q-axis IL2 when viewed in the axial direction.
  • the description of the groove portion 80B may be omitted for the configuration similar to that of the groove portion 80A except that the groove portion 80B is line-symmetrical with respect to the q-axis IL2.
  • the groove portion 80 located on the q-axis IL2 when viewed in the axial direction By providing the groove portion 80 located on the q-axis IL2 when viewed in the axial direction, the radial electromagnetic excitation force during high-speed rotation can be reduced, and the radial vibration of the twelfth electrical angle generated by the radial electromagnetic excitation force can be suppressed. can. If the groove portion 80A and the groove portion 80B are continuously provided in the circumferential direction including the position of the q-axis IL2 without leaving an interval therebetween, the circumferential electromagnetic excitation force increases during low-speed rotation. According to the present embodiment, the groove 80A and the groove 80B are provided on both sides in the circumferential direction with the q-axis IL2 interposed therebetween.
  • High-speed rotation means, for example, that the rotation speed of the motor (rotor core 20) is 5000 (rpm) or more.
  • Low-speed rotation means, for example, that the rotation speed of the motor (rotor core 20) is less than 5000 (rpm).
  • the circumferential electromagnetic excitation force becomes a noise source during low-speed rotation
  • the radial electromagnetic excitation force becomes a noise source during high-speed rotation.
  • the maximum radial dimension L1 of the grooves 80A and 80B and the minimum dimension L2 of the circumferential interval between the grooves 80A and 80B satisfy 0.8 ⁇ (L2/L1) ⁇ 1.
  • FIG. 5 is a diagram showing the relationship between the rotation speed of the motor (rotor core 20) and the increase/decrease ratio of the twelfth radial electromagnetic excitation force.
  • the increase/decrease ratio of the radial electromagnetic excitation force of the twelfth electrical angle in the rotating electrical machine having the above-described grooves 80A and 80B is The increase/decrease ratio of the twelfth electrical angle radial electromagnetic excitation force is shown as "two grooves". As shown in FIG. 8, "one groove" in FIG.
  • the groove portion 80A and the groove portion 80B of "two grooves" satisfy the relationship of 0.8 ⁇ (L2/L1) ⁇ 1.2.
  • FIG. 6 is a diagram showing the relationship between the rotation speed of the motor (rotor core 20) and the increase/decrease ratio of the twelfth circumferential electromagnetic excitation force.
  • the increase/decrease ratio of the circumferential electromagnetic excitation force of twelfth electrical angle in the rotating electrical machine having the above-described grooves 80A and 80B is The increase/decrease ratio of the circumferential electromagnetic excitation force of the twelfth electrical angle is indicated as “two grooves", and the groove portion 80C is provided as "one groove” in a rotating electric machine. is shown.
  • the groove portion 80A and the groove portion 80B of "two grooves" satisfy the relationship of 0.8 ⁇ (L2/L1) ⁇ 1.2.
  • both the "two grooves” provided with the grooves 80A and 80B and the “single groove” provided with the grooves 80C rotate at a higher speed than the rotating electric machine without the grooves 80. It is possible to reduce the radial electromagnetic excitation force.
  • the circumferential electromagnetic excitation force during low-speed rotation is equivalent to that of the rotary electric machine in which the grooves 80 are not provided.
  • the circumferential electromagnetic excitation force during low-speed rotation increased as compared to the rotating electric machine in which the groove portion 80 was not provided.
  • the groove 80A and the groove 80B satisfy the relationship 0.8 ⁇ (L2/L1) ⁇ 1.2, so that the circumferential electromagnetic excitation force during low-speed rotation is reduced by the groove 80. It was equivalent to the rotary electric machine without the grooves 80, and the radial electromagnetic excitation force during high-speed rotation could be reduced more than the rotary electric machine without the grooves 80.
  • FIG. 1 is equivalent to the rotary electric machine without the grooves 80, and the radial electromagnetic excitation force during high-speed rotation could be reduced more than the rotary electric machine without the grooves 80.
  • the groove portion 80A has first linear portions 81 and 82, a second linear portion 83, and curved portions 84 and 85 when viewed in the axial direction.
  • the first linear portions 81 and 82 linearly extend radially inward from the outer peripheral surface 20a.
  • the first straight portion 81 is further from the q-axis IL2 than the first straight portion 82 in the circumferential direction.
  • the first linear portion 82 is closer to the q-axis IL2 than the first linear portion 81 in the circumferential direction.
  • the second straight portion 83 is positioned radially inward of the first straight portions 81 and 82 and extends linearly in the circumferential direction.
  • the curved portion 84 has an arc shape and connects the first straight portion 81 and the second straight portion 83 .
  • the curved portion 85 has an arc shape and connects the first straight portion 82 and the second straight portion 83 .
  • the arc-shaped curved portion 84 connects the first straight portion 81 and the second straight portion 83, thereby reducing the stress concentration at the intersection of the first straight portion 81 and the second straight portion 83. can be mitigated.
  • the arc-shaped curved portion 85 connects the first straight portion 82 and the second straight portion 83, thereby reducing the stress concentration at the intersection of the first straight portion 82 and the second straight portion 83. can be mitigated.
  • the circumferential distance from the farthest point from the q-axis IL2 (the radially outer end portion of the first straight portion 81) is the distance between the radially outer flux barrier portion 51d and the q-axis IL2. Shorter than the shortest circumferential distance.
  • the circumferential distance to the farthest point from the q-axis IL2 in the groove portion 80B is shorter than the circumferential shortest distance between the q-axis IL2 and the flux barrier portion 51b positioned radially outward.
  • the circumferential distance to the furthest point from the q-axis IL2 is shorter than the circumferential shortest distance between the q-axis IL2 and the flux barrier portion 51d located radially outward. It is possible to prevent the magnetic path between the flux barrier portion 51d from narrowing and the flow of the magnetic flux from being obstructed, thereby reducing the average torque.
  • the circumferential distance to the furthest point from the q-axis IL2 is shorter than the circumferential shortest distance between the q-axis IL2 and the flux barrier portion 51b located radially outward. It is possible to prevent the magnetic path between the flux barrier portion 51b from being narrowed and the flow of magnetic flux from being obstructed, thereby reducing the average torque.
  • FIG. 7 is a diagram showing the relationship between the number of grooves and the increase/decrease ratio of the average torque, and the relationship between the number of grooves and the increase/decrease ratio of the electromagnetic excitation force of 12th electrical angle.
  • the rotary electric machine without the groove portion 80 is indicated as "no groove”.
  • "one groove” indicates a rotary electric machine having a groove portion 80C with a maximum radial dimension L1 of 1.0 mm and a circumferential groove width L3 of 4.0 mm.
  • Tro grooves have a maximum radial dimension L1 of 1.0 mm for the grooves 80A and 80B, a minimum distance L2 of the circumferential spacing between the grooves 80A and 80B of 1.0 mm, and a groove width in the circumferential direction of 1.0 mm.
  • a rotating electrical machine with L3 of 4.0 mm is shown.
  • the average torque is the same value with no big difference in any of the "no groove”, “one groove”, and “two groove” rotary electric machines.
  • the increase/decrease ratio of the radial electromagnetic excitation force of the 12th electrical angle can be reduced more than the rotating electric machine in which the groove portion 80 is not provided in both the “single groove” and the “two grooves” rotating electric machines.
  • Regarding the increase/decrease ratio of the twelfth electrical angle circumferential electromagnetic excitation force in the case of the rotating electric machine with "one groove”, it increases more than in the case of the rotating electric machine with "no grooves", and in the case of the rotating electric machine with "two grooves", It is less than that of a "grooveless" rotary electric machine.
  • FIG. 9 shows the groove width L3, the average torque, the twelfth electrical angle radial electromagnetic
  • FIG. 10 is a diagram showing the relationship between the excitation force and each increase/decrease ratio of the circumferential electromagnetic excitation force of twelfth electrical angle;
  • the maximum radial dimension L1 is fixed at 1.0 mm, and the radius of the arc-shaped curved portion is fixed at 1.0 mm.
  • the average torque increase/decrease ratio is the same value without a large difference regardless of the value of the groove width L3.
  • the increase/decrease ratio of the radial electromagnetic excitation force of the 12th electrical angle is between 2.0 and 4.0 mm. Reduce.
  • the increase/decrease ratio of the circumferential electromagnetic excitation force of the twelfth electrical angle increases as the value of the groove width L3 increases. For this reason, in the case of a rotating electric machine having "one groove", it is difficult to reduce the increase/decrease ratio of the circumferential electromagnetic excitation force of the twelfth electrical angle.
  • FIG. 10 shows the groove width L3, the average torque, and the electrical angle 12 in the rotating electric machine having the groove portion 80A and the groove portion 80B of the "two grooves" shown in FIG.
  • FIG. 5 is a diagram showing the relationship between the increase/decrease ratios of the secondary radial electromagnetic excitation force and the electrical angle twelfth circumferential electromagnetic excitation force.
  • the minimum dimension L2 of the circumferential interval between the grooves 80A and 80B is fixed at 1.0 mm
  • the maximum radial dimension L1 and the radius of the arc-shaped curved portion are fixed at 1.0 mm. .
  • the average torque increase/decrease ratio is the same value without a large difference regardless of the value of the groove width L3.
  • the increase/decrease ratio of the radial electromagnetic excitation force of the 12th electrical angle is between 2.0 and 4.0 mm. Reduce.
  • the increase/decrease ratio of the circumferential electromagnetic excitation force of the 12th order in electrical angle is as follows: When the value of the groove width L3 exceeds 2.5 mm and is 4.0 mm or less, it is lower than that of the "no groove” rotary electric machine.
  • the value of the groove width L3 is set to, for example, 3.0 mm or more and 4.0 mm or less, thereby reducing the increase/decrease ratio of the twelfth electrical angle circumferential electromagnetic excitation force. can.
  • FIG. 11 shows the circumferential distance L2 between the grooves 80A and 80B in the rotating electric machine having the grooves 80A and 80B of "two grooves", the average torque, the electric power
  • FIG. 10 is a diagram showing the relationship between the increase/decrease ratios of the angular twelfth order radial electromagnetic excitation force and the electrical angle twelfth order circumferential electromagnetic excitation force;
  • the groove width L3 is fixed at 2.0 mm
  • the maximum radial dimension L1 and the radius of the arc-shaped curved portion are fixed at 1.0 mm.
  • the increase/decrease ratio of the average torque is such that when the value of the circumferential interval L2 is between 0.2 and 1.2 mm, the circumferential interval L2 There is no big difference regardless of the value of , and the values are equivalent.
  • the increase/decrease ratio of the radial electromagnetic excitation force of the 12th electrical angle is the same as that of "no groove” rotation when the value of the circumferential interval L2 is between 0.2 and 1.2 mm. Less than electric.
  • the increase/decrease ratio of the twelfth-order circumferential electromagnetic excitation force in the electrical angle is "no groove” rotation when the value of the circumferential interval L2 is between 0.2 and 1.2 mm. Although it increases more than the electric machine, the increase ratio is the smallest when the value of the interval L2 in the circumferential direction is 1.0 mm. Therefore, in the case of a rotating electric machine having "two grooves", the increase/decrease ratio of the circumferential electromagnetic excitation force of the twelfth electrical angle can be suppressed by setting the value of the circumferential interval L2 to 1.0 mm, for example.
  • the rotating electrical machine 1 may have a configuration in which the magnet 40 does not have the second magnet 42 and the magnetic pole pieces are adjacent to the first magnets 41a and 41b arranged in a V shape.
  • the magnet 40 does not have the second magnet 42, and a plurality of sets (for example, two sets) of adjacent magnetic pole pieces are arranged in the first magnets 41a and 41b with an interval in the radial direction. It may be the rotary electric machine 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

One embodiment of the rotating electric machine according to the present invention comprises: a rotor rotatable about the central axis; and a stator located outside the rotor in the radial direction. The rotor has a rotor core having a plurality of housing holes and a plurality of magnets respectively housed in the plurality of housing holes. The stator has: a stator core having an annular core back surrounding the rotor core and a plurality of teeth extending inward in the radial direction from the core back and disposed side by side at intervals in the circumferential direction; and a plurality of coils attached to the stator core. The plurality of magnets constitute poles and are disposed in the circumferential direction with the q-axis interposed therebetween. The rotor core has a pair of groove portions spaced on both sides sandwiching the q-axis in the circumferential direction in the outer circumferential surface when viewed in the axial direction and hollowed inward in the radial direction. When the maximum dimension of the groove portions in the radial direction is denoted by L1 and the minimum dimension of the space between the pair of groove portions in the circumferential direction is denoted by L2, the relationship of 0.8 ≤ (L2/L1) ≤ 1.2 is satisfied.

Description

回転電機Rotating electric machine
 本発明は、回転電機に関する。 The present invention relates to rotating electric machines.
 ロータコアとロータコアに設けられた穴に配置された永久磁石とを備える埋込磁石同期モータ(IPMSM)等の回転電機が知られている。この種の回転電機では、減磁対策として、溝や突起,スリット,孔等をロータコアに設けること、磁石自体の寸法および材質、磁石の温度変化対策等が採られている。例えば、特許文献1には、永久磁石がV形状に配置されるとともに、V形状を構成する二組の磁石部のそれぞれが、磁石内部の磁化方向が互いに交差する向きとなっている第1磁石部と第2磁石部とを配置することで磁石の減磁を抑制する回転電機が開示されている。 A rotary electric machine such as an interior permanent magnet synchronous motor (IPMSM) is known that includes a rotor core and permanent magnets arranged in holes provided in the rotor core. In this type of rotary electric machine, as countermeasures against demagnetization, grooves, protrusions, slits, holes, etc. are provided in the rotor core, the dimensions and materials of the magnets themselves, countermeasures against temperature changes of the magnets, and the like are taken. For example, Patent Document 1 discloses a first magnet in which permanent magnets are arranged in a V shape, and magnetization directions inside the magnets of each of two sets of magnet portions forming the V shape are directed to intersect each other. A rotary electric machine is disclosed in which demagnetization of a magnet is suppressed by arranging a portion and a second magnet portion.
 回転電機においては、低振動・低騒音化が要求されている。そのため、モータを励振するロータとステータと間に働く電磁加振力への寄与度が高いエアギャップ近傍の形状を変更する技術として、例えば、特許文献2には、ロータコアの外周面に径方向内側に窪んだ溝を設けることが開示されている。特許文献2に記載された回転電機では、ロータコアの外周面に溝を設けることでステータとのエアギャップが大きくなり、周方向の電磁加振力を低減できる。  In rotating electric machines, low vibration and low noise are required. Therefore, as a technique for changing the shape of the vicinity of the air gap that highly contributes to the electromagnetic excitation force acting between the rotor and the stator that excites the motor, for example, Patent Document 2 discloses a radially inner portion on the outer peripheral surface of the rotor core. It is disclosed to provide a recessed groove in the . In the rotary electric machine disclosed in Patent Document 2, the provision of grooves on the outer peripheral surface of the rotor core increases the air gap between the rotor core and the stator, thereby reducing the electromagnetic excitation force in the circumferential direction.
特開2019-30206号公報Japanese Patent Application Laid-Open No. 2019-30206 特開2009-213256号公報JP 2009-213256 A
 上記の回転電機では、モータの用途によっては駆動範囲が広く、モータの回転数が増えるほど、誘起電圧を低減するためにd軸電流を多く流すことがある。この場合、モータにおけるd軸磁束とq軸磁束のバランス関係も大きく変化し、モータを励振する電磁加振力も大きく変化する。例えば、モータは、低速時に周方向の電磁加振力が騒音源となり、高速時に径方向の電磁加振力が騒音源となる。そのため、1つのモータ形状で周方向と径方向の異なる成分の電磁加振力に対応する必要があるが、特許文献2に記載された溝は、低速時および高速時における電磁加振力を十分に考慮したものとは言えない。 In the rotating electric machine described above, depending on the application of the motor, the drive range is wide, and as the number of revolutions of the motor increases, more d-axis current may flow in order to reduce the induced voltage. In this case, the balance relationship between the d-axis magnetic flux and the q-axis magnetic flux in the motor also changes significantly, and the electromagnetic excitation force that excites the motor also changes significantly. For example, in a motor, a circumferential electromagnetic excitation force becomes a noise source at low speed, and a radial electromagnetic excitation force becomes a noise source at high speed. Therefore, it is necessary to deal with different components of the electromagnetic excitation force in the circumferential direction and the radial direction with one motor shape. cannot be said to have been taken into consideration.
 本発明は、以上のような点を考慮してなされたもので、モータの回転数に依らず騒音を低減できる回転電機を提供することを目的とする。 The present invention has been made in consideration of the above points, and an object of the present invention is to provide a rotating electric machine that can reduce noise regardless of the number of revolutions of the motor.
 本発明の回転電機の一つの態様は、中心軸を中心として回転可能なロータと、前記ロータの径方向外側に位置するステータと、を備え、前記ロータは、複数の収容穴を有するロータコアと、前記複数の収容穴の内部にそれぞれ収容された複数のマグネットと、を有し、前記ステータは、前記ロータコアを囲む環状のコアバック、および前記コアバックから径方向内側に延び周方向に間隔を空けて並んで配置された複数のティースを有するステータコアと、前記ステータコアに取り付けられた複数のコイルと、を有し、前記複数のマグネットは、極を構成し、q軸を介して前記周方向に複数配置され、前記ロータコアは、軸方向に見て外周面における前記q軸を挟んだ周方向の両側に間隔をあけて、径方向内側に窪んだ一対の溝部をそれぞれ有し、前記溝部の径方向の最大寸法をL1とし、一対の前記溝部同士の周方向の間隔の最小寸法をL2とすると、0.8≦(L2/L1)≦1.2の関係を満足する。 One aspect of the rotating electrical machine of the present invention includes a rotor rotatable about a central axis, and a stator positioned radially outward of the rotor, the rotor including a rotor core having a plurality of housing holes; and a plurality of magnets respectively housed within the plurality of housing holes, wherein the stator includes an annular core-back surrounding the rotor core, and a stator extending radially inward from the core-back and spaced circumferentially from the core-back. a stator core having a plurality of teeth arranged side by side; and a plurality of coils attached to the stator core. The rotor core has a pair of grooves recessed radially inward at intervals on both sides in the circumferential direction of the outer peripheral surface of the rotor core across the q-axis when viewed in the axial direction. L1 is the maximum dimension of the grooves, and L2 is the minimum dimension of the interval between the pair of grooves in the circumferential direction.
 本発明の一つの態様によれば、回転電機においてモータの回転数に依らず騒音を低減できる。 According to one aspect of the present invention, noise can be reduced in a rotating electric machine regardless of the number of revolutions of the motor.
図1は、本実施形態の回転電機を示す断面図である。FIG. 1 is a cross-sectional view showing a rotating electrical machine of this embodiment. 図2は、本実施形態の回転電機の一部を示す断面図であって、図1におけるII-II断面図である。FIG. 2 is a cross-sectional view showing a part of the rotating electric machine of this embodiment, taken along the line II--II in FIG. 図3は、本実施形態のロータの磁極部およびステータコアの一部を示す断面図である。FIG. 3 is a sectional view showing the magnetic pole portions of the rotor and part of the stator core of the present embodiment. 図4は、ティース66Fと径方向に対向する溝部の周辺を拡大した断面図である。FIG. 4 is an enlarged cross-sectional view of the periphery of the groove facing the teeth 66F in the radial direction. 図5は、モータの回転数と、12次径方向電磁加振力の増減比との関係を示す図である。FIG. 5 is a diagram showing the relationship between the number of revolutions of the motor and the increase/decrease ratio of the 12th order radial electromagnetic excitation force. 図6は、モータの回転数と、12次周方向電磁加振力の増減比との関係を示す図である。FIG. 6 is a diagram showing the relationship between the number of rotations of the motor and the increase/decrease ratio of the twelfth circumferential electromagnetic excitation force. 図7は、溝部の数と平均トルクの増減比との関係を示すとともに、溝部の数と電気角12次電磁加振力の増減比との関係を示す図である。FIG. 7 is a diagram showing the relationship between the number of grooves and the increase/decrease ratio of the average torque, and the relationship between the number of grooves and the increase/decrease ratio of the electromagnetic excitation force of 12th electrical angle. 図8は、「溝1つ」を有する回転電機の溝部の周辺を拡大した断面図である。FIG. 8 is an enlarged cross-sectional view of the periphery of a groove portion of a rotating electric machine having "one groove". 図9は、溝部が設けられない回転電機に対して、溝部80Cを有する回転電機における、溝幅L3と、平均トルク、電気角12次径方向電磁加振力および電気角12次周方向電磁加振力の各増減比との関係を示す図である。FIG. 9 shows the groove width L3, the average torque, the radial electromagnetic excitation force of the twelfth electrical angle, and the circumferential electromagnetic force of the twelfth electrical angle in the rotating electrical machine having the groove 80C, as compared with the rotating electrical machine having no groove. It is a figure which shows the relationship with each increase-and-decrease ratio of vibration force. 図10は、溝幅L3と、平均トルク、電気角12次径方向電磁加振力および電気角12次周方向電磁加振力の各増減比との関係を示す図である。FIG. 10 is a diagram showing the relationship between the groove width L3 and the increase/decrease ratio of the average torque, the radial electromagnetic excitation force of the 12th electrical angle, and the circumferential electromagnetic excitation force of the 12th electrical angle. 図11は、溝部同士の周方向の間隔の最小寸法L2と、平均トルク、電気角12次径方向電磁加振力および電気角12次周方向電磁加振力の各増減比との関係を示す図である。FIG. 11 shows the relationship between the minimum dimension L2 of the circumferential interval between the grooves and the ratio of increase/decrease of the average torque, radial electromagnetic excitation force of 12th electrical angle, and circumferential electromagnetic excitation force of 12th electrical angle. It is a diagram.
 以下、図面を参照しながら、本発明の実施形態に係る回転電機について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。 A rotating electrical machine according to an embodiment of the present invention will be described below with reference to the drawings. It should be noted that the scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Also, in the drawings below, in order to make each configuration easier to understand, there are cases where the actual structure and the scale, number, etc. of each structure are different.
 各図に適宜示すZ軸方向は、正の側を「上側」とし、負の側を「下側」とする上下方向である。各図に適宜示す中心軸Jは、Z軸方向と平行であり、上下方向に延びる仮想線である。以下の説明においては、中心軸Jの軸方向、すなわち上下方向と平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。各図に適宜示す矢印θは、周方向を示している。矢印θは、上側から見て中心軸Jを中心として時計回りの向きを向いている。以下の説明では、或る対象を基準として周方向のうち矢印θが向かう側、すなわち上側から見て時計回りに進む側を「周方向一方側」と呼び、或る対象を基準として周方向のうち矢印θが向かう側と逆側、すなわち上側から見て反時計回りに進む側を「周方向他方側」と呼ぶ。 The Z-axis direction shown as appropriate in each figure is a vertical direction in which the positive side is the "upper side" and the negative side is the "lower side." A central axis J appropriately shown in each figure is a virtual line parallel to the Z-axis direction and extending in the vertical direction. In the following description, the axial direction of the central axis J, that is, the direction parallel to the vertical direction is simply referred to as the "axial direction", the radial direction around the central axis J is simply referred to as the "radial direction", and the central axis J is simply referred to as the "circumferential direction". An arrow θ appropriately shown in each figure indicates the circumferential direction. The arrow θ points clockwise around the central axis J when viewed from above. In the following description, of the circumferential direction with a certain object as a reference, the side toward which the arrow θ is directed, that is, the side proceeding clockwise when viewed from the upper side will be referred to as "one side in the circumferential direction". Of these, the side opposite to the direction of the arrow θ, that is, the side proceeding counterclockwise when viewed from above is called the “other side in the circumferential direction”.
 なお、上下方向、上側、および下側とは、単に各部の配置関係等を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 It should be noted that the vertical direction, upper side, and lower side are simply names for explaining the arrangement relationship of each part, and the actual arrangement relationship is not the arrangement relationship indicated by these names. There may be.
 図1に示すように、本実施形態の回転電機1は、インナーロータ型の回転電機である。
 本実施形態において回転電機1は、三相交流式の回転電機である。回転電機1は、例えば、三相交流の電源が供給されることで駆動される三相モータである。回転電機1は、ハウジング2と、ロータ10と、ステータ60と、ベアリングホルダ4と、ベアリング5a,5bと、を備える。
As shown in FIG. 1, the rotating electrical machine 1 of this embodiment is an inner rotor type rotating electrical machine.
In this embodiment, the rotating electrical machine 1 is a three-phase AC rotating electrical machine. The rotary electric machine 1 is, for example, a three-phase motor that is driven by being supplied with three-phase AC power. The rotating electric machine 1 includes a housing 2, a rotor 10, a stator 60, a bearing holder 4, and bearings 5a and 5b.
 ハウジング2は、ロータ10、ステータ60、ベアリングホルダ4、およびベアリング5a,5bを内部に収容している。ハウジング2の底部は、ベアリング5bを保持している。ベアリングホルダ4は、ベアリング5aを保持している。ベアリング5a,5bは、例えば、ボールベアリングである。 The housing 2 accommodates the rotor 10, the stator 60, the bearing holder 4, and the bearings 5a and 5b inside. The bottom of housing 2 holds a bearing 5b. A bearing holder 4 holds a bearing 5a. The bearings 5a, 5b are, for example, ball bearings.
 ステータ60は、ロータ10の径方向外側に位置する。ステータ60は、ステータコア61と、インシュレータ64と、複数のコイル65と、を有する。ステータコア61は、コアバック62と、複数のティース63と、を有する。コアバック62は、後述するロータコア20の径方向外側に位置する。図2に示すように、コアバック62は、ロータコア20を囲む環状である。コアバック62は、例えば、中心軸Jを中心とする円環状である。 The stator 60 is located radially outside the rotor 10 . The stator 60 has a stator core 61 , insulators 64 and multiple coils 65 . Stator core 61 has a core back 62 and a plurality of teeth 63 . The core back 62 is located radially outside the rotor core 20, which will be described later. As shown in FIG. 2 , core back 62 has an annular shape surrounding rotor core 20 . The core back 62 has an annular shape centering on the central axis J, for example.
 複数のティース63は、コアバック62から径方向内側に延びている。複数のティース63は、周方向に間隔を空けて並んで配置されている。複数のティース63は、例えば、周方向に沿って一周に亘って等間隔に配置されている。ティース63は、例えば、48個設けられている。つまり、回転電機1のスロット67の数は、例えば、48である。図3および図4に示すように、複数のティース63は、基部63aと、アンブレラ部63bと、をそれぞれ有する。 A plurality of teeth 63 extend radially inward from the core back 62 . The plurality of teeth 63 are arranged side by side at intervals in the circumferential direction. The multiple teeth 63 are, for example, arranged at regular intervals along the circumferential direction. For example, 48 teeth 63 are provided. That is, the number of slots 67 of the rotating electric machine 1 is 48, for example. As shown in FIGS. 3 and 4, each of the teeth 63 has a base portion 63a and an umbrella portion 63b.
 基部63aは、コアバック62から径方向内側に延びている。基部63aの周方向の寸法は、例えば、径方向の全体に亘って同じである。なお、基部63aの周方向の寸法は、例えば、径方向内側に向かうに従って小さくなっていてもよい。 The base portion 63 a extends radially inward from the core back 62 . The circumferential dimension of the base portion 63a is, for example, the same throughout the radial direction. Note that the circumferential dimension of the base portion 63a may decrease, for example, toward the radially inner side.
 アンブレラ部63bは、基部63aの径方向内側の端部に設けられている。アンブレラ部63bは、基部63aよりも周方向の両側に突出している。アンブレラ部63bの周方向の寸法は、基部63aの径方向内側の端部における周方向の寸法よりも大きい。アンブレラ部63bの径方向内側の面は、周方向に沿った曲面である。アンブレラ部63bの径方向内側の面は、軸方向に見て、中心軸Jを中心とする円弧状に延びている。アンブレラ部63bの径方向内側の面は、後述するロータコア20の外周面と径方向に隙間を介して対向している。周方向に隣り合うティース63同士において、アンブレラ部63b同士は、周方向に隙間を介して並んで配置されている。 The umbrella portion 63b is provided at the radially inner end portion of the base portion 63a. The umbrella portion 63b protrudes to both sides in the circumferential direction from the base portion 63a. The circumferential dimension of the umbrella portion 63b is greater than the circumferential dimension of the radially inner end portion of the base portion 63a. A radially inner surface of the umbrella portion 63b is a curved surface along the circumferential direction. A radially inner surface of the umbrella portion 63b extends in an arc around the central axis J when viewed in the axial direction. The radially inner surface of the umbrella portion 63b faces the outer peripheral surface of the rotor core 20 to be described later with a gap in the radial direction. Umbrella portions 63b of teeth 63 adjacent to each other in the circumferential direction are arranged side by side with a gap in the circumferential direction.
 複数のコイル65は、ステータコア61に取り付けられている。図1に示すように、複数のコイル65は、例えば、インシュレータ64を介してティース63に取り付けられている。本実施形態においてコイル65は、分布巻きされている。つまり、各コイル65は、複数のティース63に跨って巻き回されている。本実施形態においてコイル65は、全節巻きされている。つまり、コイル65が差し込まれるステータ60のスロット同士の周方向ピッチが、ステータ60に三相交流電源が供給された際に生じる磁極の周方向ピッチと等しい。回転電機1の極数は、例えば、8である。つまり、回転電機1は、例えば、8極48スロットの回転電機である。このように、本実施形態の回転電機1においては、極数をNとしたとき、スロット数がN×6となる。なお、図2~図3においては、インシュレータ64の図示を省略している。 A plurality of coils 65 are attached to the stator core 61 . As shown in FIG. 1, the plurality of coils 65 are attached to the teeth 63 via insulators 64, for example. In this embodiment, the coil 65 is distributed winding. That is, each coil 65 is wound over a plurality of teeth 63 . In this embodiment, the coil 65 is wound in full pitch. That is, the circumferential pitch between the slots of the stator 60 into which the coils 65 are inserted is equal to the circumferential pitch of the magnetic poles generated when the stator 60 is supplied with the three-phase AC power. The number of poles of the rotary electric machine 1 is eight, for example. That is, the rotary electric machine 1 is, for example, an 8-pole 48-slot rotary electric machine. Thus, in the rotary electric machine 1 of this embodiment, when the number of poles is N, the number of slots is N×6. 2 and 3, illustration of the insulator 64 is omitted.
 ロータ10は、中心軸Jを中心として回転可能である。図2に示すように、ロータ10は、シャフト11と、ロータコア20と、複数のマグネット40と、を有する。シャフト11は、中心軸Jを中心として軸方向に延びる円柱状である。図1に示すように、シャフト11は、ベアリング5a,5bによって中心軸J回りに回転可能に支持されている。 The rotor 10 is rotatable around the central axis J. As shown in FIG. 2 , the rotor 10 has a shaft 11 , a rotor core 20 and a plurality of magnets 40 . The shaft 11 has a columnar shape extending in the axial direction around the central axis J. As shown in FIG. As shown in FIG. 1, the shaft 11 is rotatably supported around a central axis J by bearings 5a and 5b.
 ロータコア20は、磁性体である。ロータコア20は、シャフト11の外周面に固定されている。ロータコア20は、ロータコア20を軸方向に貫通する貫通孔21を有する。図2に示すように、貫通孔21は、軸方向に見て、中心軸Jを中心とする円形状である。貫通孔21には、シャフト11が通されている。シャフト11は、例えば圧入等により、貫通孔21内に固定されている。図示は省略するが、ロータコア20は、例えば、複数の電磁鋼板が軸方向に積層されて構成されている。 The rotor core 20 is a magnetic material. Rotor core 20 is fixed to the outer peripheral surface of shaft 11 . Rotor core 20 has a through hole 21 that axially penetrates rotor core 20 . As shown in FIG. 2, the through hole 21 has a circular shape centered on the central axis J when viewed in the axial direction. The shaft 11 is passed through the through hole 21 . The shaft 11 is fixed in the through hole 21 by, for example, press fitting. Although illustration is omitted, the rotor core 20 is configured, for example, by laminating a plurality of electromagnetic steel sheets in the axial direction.
 ロータコア20は、複数の収容穴30を有する。複数の収容穴30は、例えば、ロータコア20を軸方向に貫通している。複数の収容穴30の内部には、複数のマグネット40がそれぞれ収容されている。収容穴30内におけるマグネット40の固定方法は、特に限定されない。複数の収容穴30は、一対の第1収容穴31a,31bと、第2収容穴32と、を含む。 The rotor core 20 has a plurality of accommodation holes 30. The plurality of housing holes 30 , for example, penetrate the rotor core 20 in the axial direction. A plurality of magnets 40 are housed inside the plurality of housing holes 30, respectively. A method for fixing the magnet 40 in the accommodation hole 30 is not particularly limited. The multiple accommodation holes 30 include a pair of first accommodation holes 31 a and 31 b and a second accommodation hole 32 .
 複数のマグネット40の種類は、特に限定されない。マグネット40は、例えば、ネオジム磁石であってもよいし、フェライト磁石であってもよい。複数のマグネット40は、一対の第1マグネット41a,41bと、第2マグネット42と、を含む。一対の第1マグネット41a,41bと、第2マグネット42とは極を構成する。 The types of the plurality of magnets 40 are not particularly limited. The magnet 40 may be, for example, a neodymium magnet or a ferrite magnet. The multiple magnets 40 include a pair of first magnets 41 a and 41 b and a second magnet 42 . The pair of first magnets 41a and 41b and the second magnet 42 form poles.
 本実施形態において一対の第1収容穴31a,31bと一対の第1マグネット41a,41bと第2収容穴32と第2マグネット42とは、周方向に間隔を空けて複数ずつ設けられている。一対の第1収容穴31a,31bと一対の第1マグネット41a,41bと第2収容穴32と第2マグネット42とは、例えば、8つずつ設けられている。 In the present embodiment, the pair of first accommodation holes 31a, 31b, the pair of first magnets 41a, 41b, the second accommodation holes 32, and the second magnets 42 are provided at intervals in the circumferential direction. The pair of first accommodation holes 31a, 31b, the pair of first magnets 41a, 41b, the second accommodation holes 32, and the second magnets 42 are provided, for example, eight each.
 ロータ10は、一対の第1収容穴31a,31bと一対の第1マグネット41a,41bと第2収容穴32と第2マグネット42とを1つずつ含む磁極部70を複数有する。磁極部70は、例えば、8つ設けられている。複数の磁極部70は、例えば、周方向に沿って一周に亘って等間隔に配置されている。複数の磁極部70は、ロータコア20の外周面における磁極がN極の磁極部70Nと、ロータコア20の外周面における磁極がS極の磁極部70Sと、を複数ずつ含む。磁極部70Nと磁極部70Sとは、例えば、4つずつ設けられている。4つの磁極部70Nと4つの磁極部70Sとは、周方向に沿って交互に配置されている。各磁極部70の構成は、ロータコア20の外周面の磁極が異なる点および周方向位置が異なる点を除いて、同様の構成である。 The rotor 10 has a plurality of magnetic pole portions 70 each including a pair of first housing holes 31a, 31b, a pair of first magnets 41a, 41b, a second housing hole 32, and a second magnet 42. For example, eight magnetic pole portions 70 are provided. The plurality of magnetic pole portions 70 are, for example, arranged at regular intervals along the circumferential direction. The plurality of magnetic pole portions 70 include a plurality of magnetic pole portions 70N having N-pole magnetic poles on the outer peripheral surface of the rotor core 20 and a plurality of magnetic pole portions 70S having S-pole magnetic poles on the outer peripheral surface of the rotor core 20, respectively. For example, four magnetic pole portions 70N and four magnetic pole portions 70S are provided. The four magnetic pole portions 70N and the four magnetic pole portions 70S are alternately arranged along the circumferential direction. The configuration of each magnetic pole portion 70 is the same except that the magnetic poles on the outer peripheral surface of the rotor core 20 are different and the positions in the circumferential direction are different.
 図3に示すように、磁極部70において、一対の第1収容穴31a,31bは、周方向に互いに間隔を空けて配置されている。第1収容穴31aは、例えば、第1収容穴31bの周方向一方側(+θ側)に位置する。第1収容穴31a,31bは、例えば、軸方向に見て、径方向に対して斜めに傾いた方向に略直線状に延びている。一対の第1収容穴31a,31bは、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びている。つまり、第1収容穴31aと第1収容穴31bとの間の周方向の距離は、径方向内側から径方向外側に向かうに従って大きくなっている。第1収容穴31aは、例えば、径方向内側から径方向外側に向かうに従って、周方向一方側に位置する。第1収容穴31bは、例えば、径方向内側から径方向外側に向かうに従って、周方向他方側(-θ側)に位置する。第1収容穴31a,31bの径方向外側の端部は、ロータコア20の径方向外周縁部に位置する。 As shown in FIG. 3, in the magnetic pole portion 70, the pair of first accommodation holes 31a and 31b are arranged with a space therebetween in the circumferential direction. The first accommodation hole 31a is positioned, for example, on one circumferential side (+θ side) of the first accommodation hole 31b. The first accommodation holes 31a and 31b extend substantially linearly in a direction oblique to the radial direction, for example, when viewed in the axial direction. The pair of first receiving holes 31a and 31b extend in directions away from each other in the circumferential direction as viewed in the axial direction from the radially inner side toward the radially outer side. That is, the circumferential distance between the first receiving holes 31a and 31b increases from the radially inner side to the radially outer side. The first accommodation hole 31a is located on one side in the circumferential direction, for example, from the radially inner side to the radially outer side. The first accommodation hole 31b is located, for example, on the other circumferential side (−θ side) from the radially inner side toward the radially outer side. The radially outer ends of the first accommodation holes 31 a and 31 b are positioned at the radially outer peripheral edge of the rotor core 20 .
 第1収容穴31aと第1収容穴31bとは、例えば、軸方向に見て、d軸を構成する図3に示す磁極中心線IL1を周方向に挟んで配置されている。磁極中心線IL1は、磁極部70の周方向中心と中心軸Jとを通り、径方向に延びる仮想線である。第1収容穴31aと第1収容穴31bとは、例えば、軸方向に見て、磁極中心線IL1に対して線対称に配置されている。以下、磁極中心線IL1に対して線対称である点を除いて第1収容穴31aと同様の構成については、第1収容穴31bについての説明を省略する場合がある。 The first accommodation holes 31a and 31b are arranged, for example, in the axial direction so as to sandwich the magnetic pole center line IL1 shown in FIG. 3, which constitutes the d-axis, in the circumferential direction. The magnetic pole center line IL1 is a virtual line passing through the circumferential center of the magnetic pole portion 70 and the central axis J and extending in the radial direction. The first receiving holes 31a and the first receiving holes 31b are, for example, arranged line-symmetrically with respect to the magnetic pole center line IL1 when viewed in the axial direction. Hereinafter, description of the first receiving hole 31b may be omitted for the same configuration as the first receiving hole 31a except that it is line-symmetrical with respect to the magnetic pole center line IL1.
 第1収容穴31aは、第1直線部31cと、内端部31dと、外端部31eと、を有する。第1直線部31cは、軸方向に見て、第1収容穴31aが延びる方向に直線状に延びている。第1直線部31cは、例えば、軸方向に見て長方形状である。内端部31dは、第1直線部31cの径方向内側の端部に繋がっている。内端部31dは、第1収容穴31aの径方向内側の端部である。外端部31eは、第1直線部31cの径方向外側の端部に繋がっている。外端部31eは、第1収容穴31aの径方向外側の端部である。第1収容穴31bは、第1直線部31fと、内端部31gと、外端部31hと、を有する。 The first accommodation hole 31a has a first linear portion 31c, an inner end portion 31d, and an outer end portion 31e. The first linear portion 31c linearly extends in the direction in which the first receiving hole 31a extends when viewed in the axial direction. The first linear portion 31c has, for example, a rectangular shape when viewed in the axial direction. The inner end portion 31d is connected to the radially inner end portion of the first straight portion 31c. The inner end portion 31d is a radially inner end portion of the first receiving hole 31a. The outer end portion 31e is connected to the radially outer end portion of the first straight portion 31c. The outer end portion 31e is a radially outer end portion of the first accommodation hole 31a. The first accommodation hole 31b has a first linear portion 31f, an inner end portion 31g, and an outer end portion 31h.
 第2収容穴32は、一対の第1収容穴31a,31bの径方向外側の端部同士の周方向の間に位置する。つまり、本実施形態において第2収容穴32は、外端部31eと外端部31hとの周方向の間に位置する。第2収容穴32は、例えば、軸方向に見て、径方向と直交する方向に略直線状に延びている。第2収容穴32は、例えば、軸方向に見て、磁極中心線IL1と直交する方向に延びている。一対の第1収容穴31a,31bと第2収容穴32とは、例えば、軸方向に見て、∇形状に沿って配置されている。 The second accommodation hole 32 is located between the radial outer ends of the pair of first accommodation holes 31a and 31b in the circumferential direction. That is, in the present embodiment, the second accommodation hole 32 is located between the outer end portion 31e and the outer end portion 31h in the circumferential direction. The second receiving hole 32 extends substantially linearly in a direction orthogonal to the radial direction, for example, when viewed in the axial direction. The second receiving hole 32 extends, for example, in a direction orthogonal to the magnetic pole center line IL1 when viewed in the axial direction. The pair of first receiving holes 31a and 31b and the second receiving hole 32 are arranged, for example, along a ∇ shape when viewed in the axial direction.
 なお、本明細書において「或る対象が或る方向と直交する方向に延びる」とは、或る対象が、或る方向と厳密に直交する方向に延びる場合に加えて、或る対象が、或る方向と略直交する方向に延びる場合も含む。「或る方向と略直交する方向」とは、例えば、製造時の公差等によって、或る方向と厳密に直交する方向に対して数度[°]程度の範囲内で傾いた方向を含む。 In addition, in this specification, "a certain object extends in a direction orthogonal to a certain direction" means that a certain object extends in a direction strictly orthogonal to a certain direction, and in addition, a certain object It also includes the case where it extends in a direction substantially orthogonal to a certain direction. "A direction substantially orthogonal to a certain direction" includes, for example, a direction inclined within a range of several degrees [°] with respect to a direction strictly orthogonal to a certain direction due to manufacturing tolerances or the like.
 軸方向に見て、第2収容穴32の周方向の中心には、例えば、磁極中心線IL1が通っている。つまり、第2収容穴32の周方向中心の周方向位置は、例えば、磁極部70の周方向中心の周方向位置と一致している。第2収容穴32の軸方向に見た形状は、例えば、磁極中心線IL1を中心とする線対称な形状である。第2収容穴32は、ロータコア20の径方向外周縁部に位置する。 When viewed in the axial direction, for example, the magnetic pole center line IL1 passes through the center of the second housing hole 32 in the circumferential direction. That is, the circumferential position of the circumferential center of the second housing hole 32 coincides with, for example, the circumferential position of the magnetic pole portion 70 . The shape of the second housing hole 32 when viewed in the axial direction is, for example, a line-symmetrical shape about the magnetic pole center line IL1. The second accommodation hole 32 is positioned at the radially outer peripheral edge of the rotor core 20 .
 第2収容穴32は、第2直線部32aと、一端部32bと、他端部32cと、を有する。第2直線部32aは、軸方向に見て、第2収容穴32が延びる方向に直線状に延びている。第2直線部32aは、例えば、軸方向に見て長方形状である。一端部32bは、第2直線部32aの周方向一方側(+θ側)の端部に繋がっている。一端部32bは、第2収容穴32の周方向一方側の端部である。一端部32bは、第1収容穴31aにおける外端部31eの周方向他方側(-θ側)に間隔を空けて配置されている。他端部32cは、第2直線部32aの周方向他方側(-θ側)の端部に繋がっている。他端部32cは、第2収容穴32の周方向他方側の端部である。他端部32cは、第1収容穴31bにおける外端部31hの周方向一方側に間隔を空けて配置されている。 The second accommodation hole 32 has a second linear portion 32a, one end portion 32b, and the other end portion 32c. The second linear portion 32a linearly extends in the direction in which the second receiving hole 32 extends when viewed in the axial direction. The second linear portion 32a has, for example, a rectangular shape when viewed in the axial direction. The one end portion 32b is connected to the end portion on one circumferential side (+θ side) of the second linear portion 32a. The one end portion 32b is an end portion on one side in the circumferential direction of the second accommodation hole 32 . The one end portion 32b is spaced apart from the outer end portion 31e of the first accommodating hole 31a in the circumferential direction (−θ side). The other end 32c is connected to the end of the second linear portion 32a on the other circumferential side (−θ side). The other end 32c is the end of the second receiving hole 32 on the other side in the circumferential direction. The other end portion 32c is arranged on one circumferential side of the outer end portion 31h of the first accommodation hole 31b with a space therebetween.
 一対の第1マグネット41a,41bは、一対の第1収容穴31a,31bの内部にそれぞれ収容されている。第1マグネット41aは、第1収容穴31aの内部に収容されている。第1マグネット41bは、第1収容穴31bの内部に収容されている。一対の第1マグネット41a,41bは、例えば、軸方向に見て長方形状である。一対の第1マグネット41a,41bが延びる方向の長さは同じである。一対の第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さは同じである。 The pair of first magnets 41a and 41b are housed inside the pair of first housing holes 31a and 31b, respectively. The first magnet 41a is housed inside the first housing hole 31a. The first magnet 41b is housed inside the first housing hole 31b. The pair of first magnets 41a and 41b has, for example, a rectangular shape when viewed in the axial direction. The lengths in the direction in which the pair of first magnets 41a and 41b extend are the same. The lengths of the first magnets 41a and 41b in the direction orthogonal to the direction in which the pair of first magnets 41a and 41b extend are the same.
 図示は省略するが、第1マグネット41a,41bは、例えば、直方体状である。図示は省略するが、第1マグネット41a,41bは、例えば、第1収容穴31a,31b内の軸方向の全体に亘って設けられている。一対の第1マグネット41a,41bは、周方向に互いに間隔を空けて配置されている。第1マグネット41aは、例えば、第1マグネット41bの周方向一方側(+θ側)に位置する。 Although not shown, the first magnets 41a and 41b are rectangular parallelepipeds, for example. Although not shown, the first magnets 41a and 41b are provided, for example, over the entirety of the first receiving holes 31a and 31b in the axial direction. The pair of first magnets 41a and 41b are arranged with a space therebetween in the circumferential direction. The first magnet 41a is positioned, for example, on one circumferential side (+θ side) of the first magnet 41b.
 第1マグネット41aは、軸方向に見て第1収容穴31aに沿って延びている。第1マグネット41bは、軸方向に見て第1収容穴31bに沿って延びている。第1マグネット41a,41bは、例えば、軸方向に見て、径方向に対して斜めに傾いた方向に略直線状に延びている。一対の第1マグネット41a,41bは、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びている。つまり、第1マグネット41aと第1マグネット41bとの間の周方向の距離は、径方向内側から径方向外側に向かうに従って大きくなっている。 The first magnet 41a extends along the first receiving hole 31a when viewed in the axial direction. The first magnet 41b extends along the first receiving hole 31b when viewed in the axial direction. The first magnets 41a and 41b, for example, extend substantially linearly in a direction oblique to the radial direction when viewed in the axial direction. The pair of first magnets 41a and 41b extend in directions away from each other in the circumferential direction as viewed in the axial direction from the radially inner side toward the radially outer side. That is, the circumferential distance between the first magnets 41a and 41b increases from the radially inner side to the radially outer side.
 第1マグネット41aは、例えば、径方向内側から径方向外側に向かうに従って、周方向一方側(+θ側)に位置する。第1マグネット41bは、例えば、径方向内側から径方向外側に向かうに従って、周方向他方側(-θ側)に位置する。第1マグネット41aと第1マグネット41bとは、例えば、軸方向に見て、磁極中心線IL1を周方向に挟んで配置されている。第1マグネット41aと第1マグネット41bとは、例えば、軸方向に見て、磁極中心線IL1に対して線対称に配置されている。以下、磁極中心線IL1に対して線対称である点を除いて第1マグネット41aと同様の構成については、第1マグネット41bについての説明を省略する場合がある。 The first magnet 41a is positioned, for example, on one circumferential side (+θ side) from the radially inner side to the radially outer side. The first magnet 41b is positioned, for example, on the other circumferential side (−θ side) from the radially inner side to the radially outer side. The first magnet 41a and the first magnet 41b are arranged, for example, so as to sandwich the magnetic pole center line IL1 in the circumferential direction when viewed in the axial direction. The first magnet 41a and the first magnet 41b are arranged line-symmetrically with respect to the magnetic pole center line IL1, for example, when viewed in the axial direction. Hereinafter, the description of the first magnet 41b may be omitted for the same configuration as the first magnet 41a except that it is line-symmetrical with respect to the magnetic pole center line IL1.
 第1マグネット41aは、第1収容穴31a内に嵌め合わされている。より詳細には、第1マグネット41aは、第1直線部31c内に嵌め合わされている。第1マグネット41aの側面のうち、第1直線部31cが延びる方向と直交する方向における両側面は、例えば、第1直線部31cの内側面とそれぞれ接触している。軸方向に見て第1直線部31cが延びる方向において、第1マグネット41aの長さは、例えば、第1直線部31cの長さと同じである。 The first magnet 41a is fitted in the first accommodation hole 31a. More specifically, the first magnet 41a is fitted inside the first linear portion 31c. Of the side surfaces of the first magnet 41a, both side surfaces in the direction perpendicular to the direction in which the first straight portion 31c extends are in contact with the inner side surface of the first straight portion 31c, for example. In the direction in which the first linear portion 31c extends when viewed in the axial direction, the length of the first magnet 41a is, for example, the same as the length of the first linear portion 31c.
 軸方向に見て、第1マグネット41aの延伸方向の両端部は、第1収容穴31aの延伸方向の両端部からそれぞれ離れて配置されている。軸方向に見て、第1マグネット41aが延びる方向において第1マグネット41aの両側には、内端部31dと外端部31eとがそれぞれ隣接して配置されている。ここで、本実施形態において内端部31dは、第1フラックスバリア部51aを構成している。外端部31eは、第1フラックスバリア部51bを構成している。つまり、ロータコア20は、軸方向に見て、第1マグネット41aが延びる方向において第1マグネット41aを挟んで配置された一対の第1フラックスバリア部51a,51bを有する。ロータコア20は、軸方向に見て、第1マグネット41bが延びる方向において第1マグネット41bを挟んで配置された一対の第1フラックスバリア部51c,51dを有する。 When viewed in the axial direction, both ends of the first magnet 41a in the extending direction are arranged apart from both ends of the first accommodating hole 31a in the extending direction. When viewed in the axial direction, an inner end portion 31d and an outer end portion 31e are arranged adjacent to each other on both sides of the first magnet 41a in the direction in which the first magnet 41a extends. Here, in this embodiment, the inner end portion 31d constitutes the first flux barrier portion 51a. The outer end portion 31e constitutes a first flux barrier portion 51b. That is, the rotor core 20 has a pair of first flux barrier portions 51a and 51b arranged to sandwich the first magnet 41a in the direction in which the first magnet 41a extends when viewed in the axial direction. The rotor core 20 has a pair of first flux barrier portions 51c and 51d arranged to sandwich the first magnet 41b in the direction in which the first magnet 41b extends when viewed in the axial direction.
 このように、ロータコア20は、軸方向に見て、各第1マグネット41a,41bが延びる方向において各第1マグネット41a,41bのそれぞれを挟んで一対ずつ配置された第1フラックスバリア部51a,51b,51c,51dを有する。第1フラックスバリア部51a,51b,51c,51d、後述する第2フラックスバリア部52a,52b、および後述する溝部80は、磁束の流れを抑制できる部分である。すなわち、各フラックスバリア部および溝部には、磁束が通りにくい。各フラックスバリア部および溝部は、磁束の流れを抑制できるならば、特に限定されず、空隙部を含んでもよいし、樹脂部等の非磁性部を含んでもよい。 As described above, the rotor core 20 has a pair of first flux barrier portions 51a and 51b arranged with each of the first magnets 41a and 41b interposed therebetween in the direction in which the first magnets 41a and 41b extend when viewed in the axial direction. , 51c and 51d. The first flux barrier portions 51a, 51b, 51c, and 51d, the second flux barrier portions 52a and 52b, which will be described later, and the groove portion 80, which will be described later, are portions that can suppress the flow of magnetic flux. That is, it is difficult for magnetic flux to pass through each flux barrier portion and groove portion. Each flux barrier portion and groove portion is not particularly limited as long as it can suppress the flow of magnetic flux, and may include a void portion or a non-magnetic portion such as a resin portion.
 第2マグネット42は、第2収容穴32の内部に収容されている。第2マグネット42は、一対の第1マグネット41a,41bの径方向内端部よりも径方向外側において一対の第1マグネット41a,41b同士の間の周方向位置に配置されている。第2マグネット42は、軸方向に見て第2収容穴32に沿って延びている。第2マグネット42は、軸方向に見て径方向と直交する方向に延びている。一対の第1マグネット41a,41bと第2マグネット42とは、例えば、軸方向に見て、∇形状に沿って配置されている。 The second magnet 42 is housed inside the second housing hole 32 . The second magnet 42 is arranged at a circumferential position between the pair of first magnets 41a and 41b radially outside the radial inner end portions of the pair of first magnets 41a and 41b. The second magnet 42 extends along the second receiving hole 32 when viewed in the axial direction. The second magnet 42 extends in a direction perpendicular to the radial direction when viewed in the axial direction. The pair of first magnets 41a and 41b and the second magnet 42 are arranged, for example, along a ∇ shape when viewed in the axial direction.
 なお、本明細書において「第2マグネットが一対の第1マグネット同士の間の周方向位置に配置されている」とは、第2マグネットの周方向位置が一対の第1マグネット同士の間の周方向位置に含まれていればよく、第1マグネットに対する第2マグネットの径方向位置は特に限定されない。 In this specification, "the second magnet is arranged at a circumferential position between the pair of first magnets" means that the circumferential position of the second magnet is between the pair of first magnets. The radial position of the second magnet with respect to the first magnet is not particularly limited as long as it is included in the directional position.
 第2マグネット42の軸方向に見た形状は、例えば、磁極中心線IL1に対して線対称な形状である。第2マグネット42は、例えば、軸方向に見て長方形状である。図示は省略するが、第2マグネット42は、例えば、直方体状である。図示は省略するが、第2マグネット42は、例えば、第2収容穴32内の軸方向の全体に亘って設けられている。第2マグネット42の径方向内側部分は、例えば、一対の第1マグネット41a,41bの径方向外端部同士の周方向の間に位置する。第2マグネット42の径方向外側部分は、例えば、一対の第1マグネット41a,41bよりも径方向外側に位置する。 The shape of the second magnet 42 when viewed in the axial direction is, for example, a line-symmetrical shape with respect to the magnetic pole center line IL1. The second magnet 42 has, for example, a rectangular shape when viewed in the axial direction. Although not shown, the second magnet 42 has, for example, a rectangular parallelepiped shape. Although not shown, the second magnet 42 is provided, for example, over the entirety of the second housing hole 32 in the axial direction. The radially inner portion of the second magnet 42 is positioned, for example, between the radially outer ends of the pair of first magnets 41a and 41b in the circumferential direction. The radially outer portion of the second magnet 42 is positioned, for example, radially outer than the pair of first magnets 41a and 41b.
 第2マグネット42は、第2収容穴32内に嵌め合わされている。より詳細には、第2マグネット42は、第2直線部32a内に嵌め合わされている。第2マグネット42の側面のうち、第2直線部32aが延びる方向と直交する径方向における両側面は、例えば、第2直線部32aの内側面とそれぞれ接触している。軸方向に見て第2直線部32aが延びる方向において、第2マグネット42の長さは、例えば、第2直線部32aの長さと同じである。 The second magnet 42 is fitted inside the second housing hole 32 . More specifically, the second magnet 42 is fitted inside the second straight portion 32a. Of the side surfaces of the second magnet 42, both side surfaces in the radial direction perpendicular to the direction in which the second straight portion 32a extends are in contact with, for example, the inner side surface of the second straight portion 32a. The length of the second magnet 42 is, for example, the same as the length of the second straight portion 32a in the direction in which the second straight portion 32a extends when viewed in the axial direction.
 軸方向に見て、第2マグネット42の延伸方向の両端部は、第2収容穴32の延伸方向の両端部からそれぞれ離れて配置されている。軸方向に見て、第2マグネット42が延びる方向において第2マグネット42の両側には、一端部32bと他端部32cとがそれぞれ隣接して配置されている。ここで、本実施形態において一端部32bは、第2フラックスバリア部52aを構成している。他端部32cは、第2フラックスバリア部52bを構成している。つまり、ロータコア20は、軸方向に見て、第2マグネット42が延びる方向において第2マグネット42挟んで配置された一対の第2フラックスバリア部52a,52bを有する。一対の第2フラックスバリア部52a,52bおよび第2マグネット42は、第1マグネット41aを挟む一対の第1フラックスバリア部51a,51bのうち径方向外側に位置する第1フラックスバリア部51bと、第1マグネット41bを挟む一対の第1フラックスバリア部51c,51dのうち径方向外側に位置する第1フラックスバリア部51dとの周方向の間に位置する。 When viewed in the axial direction, both ends of the second magnet 42 in the extending direction are arranged apart from both ends of the second receiving hole 32 in the extending direction. When viewed in the axial direction, one end portion 32b and the other end portion 32c are arranged adjacent to each other on both sides of the second magnet 42 in the direction in which the second magnet 42 extends. Here, in this embodiment, the one end portion 32b constitutes the second flux barrier portion 52a. The other end portion 32c constitutes a second flux barrier portion 52b. In other words, the rotor core 20 has a pair of second flux barrier portions 52a and 52b arranged to sandwich the second magnet 42 in the direction in which the second magnet 42 extends when viewed in the axial direction. The pair of second flux barrier portions 52a and 52b and the second magnet 42 are composed of the first flux barrier portion 51b positioned radially outward of the pair of first flux barrier portions 51a and 51b sandwiching the first magnet 41a, Among the pair of first flux barrier portions 51c and 51d sandwiching one magnet 41b, it is located between the first flux barrier portion 51d located radially outside and the first flux barrier portion 51d in the circumferential direction.
 第1マグネット41aの磁極は、軸方向に見て第1マグネット41aが延びる方向と直交する方向に沿って配置されている。第1マグネット41bの磁極は、軸方向に見て第1マグネット41bが延びる方向と直交する方向に沿って配置されている。第2マグネット42の磁極は、径方向に沿って配置されている。 The magnetic poles of the first magnet 41a are arranged along the direction orthogonal to the direction in which the first magnet 41a extends when viewed in the axial direction. The magnetic poles of the first magnet 41b are arranged along the direction orthogonal to the direction in which the first magnet 41b extends when viewed in the axial direction. The magnetic poles of the second magnet 42 are arranged along the radial direction.
 第1マグネット41aの磁極のうち径方向外側に位置する磁極と第1マグネット41bの磁極のうち径方向外側に位置する磁極と第2マグネット42の磁極のうち径方向外側に位置する磁極とは、互いに同じである。第1マグネット41aの磁極のうち径方向内側に位置する磁極と第1マグネット41bの磁極のうち径方向内側に位置する磁極と第2マグネット42の磁極のうち径方向内側に位置する磁極とは、互いに同じである。 The magnetic pole located radially outward among the magnetic poles of the first magnet 41a, the magnetic pole located radially outward among the magnetic poles of the first magnet 41b, and the magnetic pole located radially outward among the magnetic poles of the second magnet 42, are the same as each other. The magnetic pole located radially inward among the magnetic poles of the first magnet 41a, the magnetic pole located radially inward among the magnetic poles of the first magnet 41b, and the magnetic pole located radially inward among the magnetic poles of the second magnet 42, are the same as each other.
 図3に示すように、磁極部70Nにおいて、第1マグネット41aの磁極のうち径方向外側に位置する磁極と第1マグネット41bの磁極のうち径方向外側に位置する磁極と第2マグネット42の磁極のうち径方向外側に位置する磁極とは、例えば、N極である。磁極部70Nにおいて、第1マグネット41aの磁極のうち径方向内側に位置する磁極と第1マグネット41bの磁極のうち径方向内側に位置する磁極と第2マグネット42の磁極のうち径方向内側に位置する磁極とは、例えば、S極である。 As shown in FIG. 3, in the magnetic pole portion 70N, the radially outer magnetic pole of the first magnet 41a and the radially outer magnetic pole of the first magnet 41b and the magnetic pole of the second magnet 42 The magnetic pole positioned radially outward is, for example, the N pole. In the magnetic pole portion 70N, the radially inner magnetic pole of the first magnet 41a, the radially inner magnetic pole of the first magnet 41b, and the radially inner magnetic pole of the second magnet 42. The magnetic pole to be used is, for example, the S pole.
 図示は省略するが、磁極部70Sにおいては、磁極部70Nに対して、各マグネット40の磁極が反転して配置されている。つまり、磁極部70Sにおいて、第1マグネット41aの磁極のうち径方向外側に位置する磁極と第1マグネット41bの磁極のうち径方向外側に位置する磁極と第2マグネット42の磁極のうち径方向外側に位置する磁極とは、例えば、S極である。磁極部70Sにおいて、第1マグネット41aの磁極のうち径方向内側に位置する磁極と第1マグネット41bの磁極のうち径方向内側に位置する磁極と第2マグネット42の磁極のうち径方向内側に位置する磁極とは、例えば、N極である。 Although not shown, in the magnetic pole portion 70S, the magnetic pole of each magnet 40 is reversed with respect to the magnetic pole portion 70N. That is, in the magnetic pole portion 70S, the radially outer magnetic pole of the first magnet 41a, the radially outer magnetic pole of the first magnet 41b, and the radially outer magnetic pole of the second magnet 42 The magnetic pole located at is, for example, the S pole. In the magnetic pole portion 70S, the magnetic pole positioned radially inward among the magnetic poles of the first magnet 41a, the magnetic pole positioned radially inward among the magnetic poles of the first magnet 41b, and the magnetic pole positioned radially inward among the magnetic poles of the second magnet 42 The magnetic pole to be used is, for example, the N pole.
 第2マグネット42の周方向中心が或る1つのティース63の周方向中心と同じ周方向位置に配置された或る状態(以下では、単に「或る状態」と称する)において、周方向中心が第2マグネット42の周方向中心と同じ周方向の位置に配置されたティース63を、ティース66Aと呼ぶ。図2~図3は、当該或る状態の一例を示している。つまり、図2~図3に示す或る状態において、ティース66Aが「或る1つのティース」に相当する。図2~図3に示す或る状態において、軸方向に見て、ティース66Aの周方向中心には、磁極中心線IL1が通る。また、本明細書において「或る状態」は、「ティース66Aの周方向の中心位置がd軸である磁極中心線IL1と一致している」状態である。 In a certain state where the circumferential center of the second magnet 42 is arranged at the same circumferential position as the circumferential center of one tooth 63 (hereinafter simply referred to as a "certain state"), the circumferential center is Teeth 63 arranged at the same circumferential position as the circumferential center of the second magnet 42 are referred to as teeth 66A. 2 and 3 show an example of such a certain state. That is, in a certain state shown in FIGS. 2 and 3, the tooth 66A corresponds to "one certain tooth". In a certain state shown in FIGS. 2 and 3, the magnetic pole center line IL1 passes through the circumferential center of the teeth 66A when viewed in the axial direction. In this specification, "a certain state" is a state in which "the center position of the teeth 66A in the circumferential direction coincides with the magnetic pole center line IL1, which is the d-axis".
 図2~図3に示す或る状態において、ティース66Aの周方向一方側(+θ側)に隣り合うティース63をティース66Bと呼ぶ。ティース66Aの周方向他方側(-θ側)に隣り合うティース63をティース66Cと呼ぶ。ティース66Bの周方向一方側に隣り合うティース63をティース66Dと呼ぶ。ティース66Cの周方向他方側に隣り合うティース63をティース66Eと呼ぶ。ティース66Dの周方向一方側に隣り合うティース63をティース66Fと呼ぶ。ティース66Eの周方向他方側に隣り合うティース63をティース66Gと呼ぶ。 In a certain state shown in FIGS. 2 and 3, the teeth 63 adjacent to the teeth 66A on one side in the circumferential direction (+θ side) are called teeth 66B. A tooth 63 adjacent to the tooth 66A on the other circumferential side (−θ side) is called a tooth 66C. A tooth 63 adjacent to one side of the tooth 66B in the circumferential direction is called a tooth 66D. The teeth 63 adjacent to the teeth 66C on the other side in the circumferential direction are called teeth 66E. A tooth 63 adjacent to one side in the circumferential direction of the tooth 66D is called a tooth 66F. The teeth 63 adjacent to the teeth 66E on the other side in the circumferential direction are called teeth 66G.
 図3に示すように、ロータコア20は、溝部80を有する。溝部80は、一対の溝部80Aおよび溝部80Bを有する。溝部80Aおよび溝部80Bは、軸方向に見て外周面20aから径方向内側にそれぞれ窪んでいる。溝部80Aおよび溝部80Bは、それぞれロータコア20を軸方向に貫通している。軸方向に見て、溝部80Aおよび溝部80Bは、q軸IL2ごとに設けられている。q軸IL2は、d軸に対して電気的に直角方向に延びる軸である。 As shown in FIG. 3, the rotor core 20 has grooves 80 . The groove portion 80 has a pair of groove portions 80A and 80B. The groove portion 80A and the groove portion 80B are recessed radially inward from the outer peripheral surface 20a when viewed in the axial direction. Groove portion 80A and groove portion 80B each penetrate rotor core 20 in the axial direction. When viewed in the axial direction, the groove portion 80A and the groove portion 80B are provided for each q-axis IL2. The q-axis IL2 is an axis extending in a direction electrically perpendicular to the d-axis.
 図4は、ティース66Fと径方向に対向する溝部80の周辺を拡大した断面図である。図4に示すように、溝部80Aと溝部80Bは、q軸IL2を挟んだ周方向の両側に間隔をあけて設けられている。言い換えると、溝部80は、軸方向に見てq軸IL2に位置する間隔をあけて周方向に延びる溝部80Aと溝部80Bとを有している。溝部80Aは、q軸IL2の周方向一方側に位置する。溝部80Bは、q軸IL2の周方向他方側に位置する。溝部80Aと溝部80Bとは、例えば、軸方向に見て、q軸IL2に対して線対称に配置されている。以下、q軸IL2に対して線対称である点を除いて溝部80Aと同様の構成については、溝部80Bについての説明を省略する場合がある。 FIG. 4 is an enlarged sectional view of the periphery of the groove portion 80 radially facing the teeth 66F. As shown in FIG. 4, the groove portion 80A and the groove portion 80B are spaced apart from each other in the circumferential direction with the q-axis IL2 interposed therebetween. In other words, the groove portion 80 has a groove portion 80A and a groove portion 80B extending in the circumferential direction with a gap located on the q-axis IL2 when viewed in the axial direction. Groove portion 80A is positioned on one circumferential side of q-axis IL2. Groove portion 80B is located on the other circumferential side of q-axis IL2. For example, the groove portion 80A and the groove portion 80B are arranged line-symmetrically with respect to the q-axis IL2 when viewed in the axial direction. Hereinafter, the description of the groove portion 80B may be omitted for the configuration similar to that of the groove portion 80A except that the groove portion 80B is line-symmetrical with respect to the q-axis IL2.
 軸方向に見てq軸IL2に位置する溝部80が設けられることで、高速回転時の径方向電磁加振力を低減でき、径方向電磁加振力で生じる電気角12次のラジアル振動を抑制できる。溝部80Aと溝部80Bとがq軸IL2の位置を含んで周方向に間隔をあけずに連続して設けられる場合は、低速回転時の周方向電磁加振力が増加してしまう。本実施形態によれば、q軸IL2を挟んだ周方向の両側に間隔をあけて溝部80Aと溝部80Bとが設けられることで、図3に示すように、或る状態において、溝部80Aと溝部80Bとが設けられていないロータコア20の外周面20aがティース66Fおよびティース66Gと径方向に対向する。このため、ティース66Fおよびティース66Gから径方向内側に流れる磁束の磁路が確保されることで、低速回転時の周方向電磁加振力を低減でき、周方向電磁加振力で生じる電気角12次のラジアル振動を抑制できる。高速回転とは、一例として、モータ(ロータコア20)の回転数が5000(rpm)以上である。低速回転とは、一例として、モータ(ロータコア20)の回転数が5000(rpm)未満である。 By providing the groove portion 80 located on the q-axis IL2 when viewed in the axial direction, the radial electromagnetic excitation force during high-speed rotation can be reduced, and the radial vibration of the twelfth electrical angle generated by the radial electromagnetic excitation force can be suppressed. can. If the groove portion 80A and the groove portion 80B are continuously provided in the circumferential direction including the position of the q-axis IL2 without leaving an interval therebetween, the circumferential electromagnetic excitation force increases during low-speed rotation. According to the present embodiment, the groove 80A and the groove 80B are provided on both sides in the circumferential direction with the q-axis IL2 interposed therebetween. The outer peripheral surface 20a of the rotor core 20 without the teeth 80B radially faces the teeth 66F and 66G. Therefore, by securing the magnetic path of the magnetic flux flowing radially inward from the teeth 66F and 66G, the circumferential electromagnetic excitation force during low-speed rotation can be reduced, and the electrical angle 12 generated by the circumferential electromagnetic excitation force can be reduced. The following radial vibration can be suppressed. High-speed rotation means, for example, that the rotation speed of the motor (rotor core 20) is 5000 (rpm) or more. Low-speed rotation means, for example, that the rotation speed of the motor (rotor core 20) is less than 5000 (rpm).
 図4に示すように、溝部80Aおよび溝部80Bの径方向の最大寸法をL1とし、一対の溝部80A、80B同士の周方向の間隔の最小寸法をL2とすると、0.8≦(L2/L1)≦1.2の関係を満足する。(L2/L1)で表される値が0.8未満の場合、ティース66Fおよびティース66Gから径方向内側に流れる磁束の磁路が狭くなり、低速回転時の周方向電磁加振力の低減が十分ではなくなる可能性がある。(L2/L1)で表される値が1.2を超えた場合、高速回転時の径方向電磁加振力の低減が十分ではなくなる可能性がある。(L2/L1)で表される値が0.8以上、1.2以下であることで、低速回転時の周方向電磁加振力および高速回転時の径方向電磁加振力を十分に低減できる。 As shown in FIG. 4, when the maximum radial dimension of the grooves 80A and 80B is L1, and the minimum distance between the pair of grooves 80A and 80B in the circumferential direction is L2, 0.8≦(L2/L1 )≦1.2. When the value represented by (L2/L1) is less than 0.8, the magnetic path of the magnetic flux flowing radially inward from the teeth 66F and 66G narrows, reducing the circumferential electromagnetic excitation force during low-speed rotation. may not be enough. If the value represented by (L2/L1) exceeds 1.2, there is a possibility that the reduction in the radial electromagnetic excitation force during high-speed rotation will not be sufficient. When the value represented by (L2/L1) is 0.8 or more and 1.2 or less, the circumferential electromagnetic excitation force during low-speed rotation and the radial electromagnetic excitation force during high-speed rotation are sufficiently reduced. can.
 回転電機1においては、低速回転時には周方向電磁加振力が騒音源となり、高速回転時には径方向電磁加振力が騒音源となる。本実施形態によれば、溝部80Aおよび溝部80Bの径方向の最大寸法L1と、溝部80A、80B同士の周方向の間隔の最小寸法L2とが、0.8≦(L2/L1)≦1.2の関係を満足することで、低速回転時の周方向電磁加振力および高速回転時の径方向電磁加振力を低減し、低速回転時から高速回転時に亘ってモータの回転数に依らず騒音を低減できる。 In the rotating electric machine 1, the circumferential electromagnetic excitation force becomes a noise source during low-speed rotation, and the radial electromagnetic excitation force becomes a noise source during high-speed rotation. According to the present embodiment, the maximum radial dimension L1 of the grooves 80A and 80B and the minimum dimension L2 of the circumferential interval between the grooves 80A and 80B satisfy 0.8≦(L2/L1)≦1. By satisfying the relationship of 2, the circumferential electromagnetic excitation force at low speed rotation and the radial electromagnetic excitation force at high speed rotation can be reduced, regardless of the motor rotation speed from low speed rotation to high speed rotation. Noise can be reduced.
[回転数と12次電磁加振力の増減比との関係]
 図5は、モータ(ロータコア20)の回転数と、12次径方向電磁加振力の増減比との関係を示す図である。電気角12次径方向電磁加振力の増減比は、溝部80が設けられない回転電機における電気角12次径方向電磁加振力に対して、上述した溝部80Aおよび溝部80Bを有する回転電機における電気角12次径方向電磁加振力の増減比が「溝2つ」として示されている。図5における「溝1つ」は、図8に示すように、周方向中心がq軸IL2上に位置し、径方向の最大寸法L1が1.0mm、周方向の溝幅L3が2.0mmの溝部80Cを有する回転電機における電気角12次径方向電磁加振力の増減比が示されている。「溝2つ」の溝部80Aおよび溝部80Bは、上記0.8≦(L2/L1)≦1.2の関係を満足する。
[Relationship between rotation speed and increase/decrease ratio of 12th order electromagnetic excitation force]
FIG. 5 is a diagram showing the relationship between the rotation speed of the motor (rotor core 20) and the increase/decrease ratio of the twelfth radial electromagnetic excitation force. The increase/decrease ratio of the radial electromagnetic excitation force of the twelfth electrical angle in the rotating electrical machine having the above-described grooves 80A and 80B is The increase/decrease ratio of the twelfth electrical angle radial electromagnetic excitation force is shown as "two grooves". As shown in FIG. 8, "one groove" in FIG. 5 has a circumferential center located on the q-axis IL2, a maximum radial dimension L1 of 1.0 mm, and a circumferential groove width L3 of 2.0 mm. shows the increase/decrease ratio of the radial electromagnetic excitation force of the 12th electrical angle in the rotary electric machine having the groove portion 80C. The groove portion 80A and the groove portion 80B of "two grooves" satisfy the relationship of 0.8≦(L2/L1)≦1.2.
 図6は、モータ(ロータコア20)の回転数と、12次周方向電磁加振力の増減比との関係を示す図である。電気角12次周方向電磁加振力の増減比は、溝部80が設けられない回転電機における電気角12次周方向電磁加振力に対して、上述した溝部80Aおよび溝部80Bを有する回転電機における電気角12次周方向電磁加振力の増減比が「溝2つ」として示され、上記の溝部80Cが「溝1つ」として設けられた回転電機における電気角12次周方向電磁加振力の増減比が示されている。「溝2つ」の溝部80Aおよび溝部80Bは、上記0.8≦(L2/L1)≦1.2の関係を満足する。 FIG. 6 is a diagram showing the relationship between the rotation speed of the motor (rotor core 20) and the increase/decrease ratio of the twelfth circumferential electromagnetic excitation force. The increase/decrease ratio of the circumferential electromagnetic excitation force of twelfth electrical angle in the rotating electrical machine having the above-described grooves 80A and 80B is The increase/decrease ratio of the circumferential electromagnetic excitation force of the twelfth electrical angle is indicated as "two grooves", and the groove portion 80C is provided as "one groove" in a rotating electric machine. is shown. The groove portion 80A and the groove portion 80B of "two grooves" satisfy the relationship of 0.8≦(L2/L1)≦1.2.
 図5に示すように、溝部80Aおよび溝部80Bが設けられた「溝2つ」と、溝部80Cが設けられた「溝1つ」の両方で、溝部80が設けられない回転電機よりも高速回転時の径方向電磁加振力を低減できる。
 図6に示すように、溝部80Aおよび溝部80Bが設けられた「溝2つ」では、溝部80が設けられない回転電機と同等の低速回転時の周方向電磁加振力であった。溝部80Cが設けられた「溝1つ」では、溝部80が設けられない回転電機よりも低速回転時の周方向電磁加振力が増加した。
 本実施形態によれば、溝部80Aおよび溝部80Bが、上記0.8≦(L2/L1)≦1.2の関係を満足することで、低速回転時の周方向電磁加振力は溝部80が設けられない回転電機と同等であり、高速回転時の径方向電磁加振力は溝部80が設けられない回転電機よりも低減できた。
As shown in FIG. 5, both the "two grooves" provided with the grooves 80A and 80B and the "single groove" provided with the grooves 80C rotate at a higher speed than the rotating electric machine without the grooves 80. It is possible to reduce the radial electromagnetic excitation force.
As shown in FIG. 6 , in the case of “two grooves” in which the grooves 80A and 80B are provided, the circumferential electromagnetic excitation force during low-speed rotation is equivalent to that of the rotary electric machine in which the grooves 80 are not provided. In the "single groove" in which the groove portion 80C was provided, the circumferential electromagnetic excitation force during low-speed rotation increased as compared to the rotating electric machine in which the groove portion 80 was not provided.
According to the present embodiment, the groove 80A and the groove 80B satisfy the relationship 0.8≦(L2/L1)≦1.2, so that the circumferential electromagnetic excitation force during low-speed rotation is reduced by the groove 80. It was equivalent to the rotary electric machine without the grooves 80, and the radial electromagnetic excitation force during high-speed rotation could be reduced more than the rotary electric machine without the grooves 80. FIG.
 溝部80Aは、軸方向に見て第1直線部81、82と、第2直線部83と、曲線部84、85と、を有する。第1直線部81、82は、外周面20aから径方向の内側に直線状に延びる。第1直線部81は、周方向で第1直線部82よりもq軸IL2から遠い。第1直線部82は、周方向で第1直線部81よりもq軸IL2に近い。第2直線部83は、第1直線部81、82よりも径方向内側に位置し周方向に直線状に延びる。曲線部84は、円弧状であり、第1直線部81と第2直線部83とをつなぐ。曲線部85は、円弧状であり、第1直線部82と第2直線部83とをつなぐ。 The groove portion 80A has first linear portions 81 and 82, a second linear portion 83, and curved portions 84 and 85 when viewed in the axial direction. The first linear portions 81 and 82 linearly extend radially inward from the outer peripheral surface 20a. The first straight portion 81 is further from the q-axis IL2 than the first straight portion 82 in the circumferential direction. The first linear portion 82 is closer to the q-axis IL2 than the first linear portion 81 in the circumferential direction. The second straight portion 83 is positioned radially inward of the first straight portions 81 and 82 and extends linearly in the circumferential direction. The curved portion 84 has an arc shape and connects the first straight portion 81 and the second straight portion 83 . The curved portion 85 has an arc shape and connects the first straight portion 82 and the second straight portion 83 .
 本実施形態によれば、円弧状の曲線部84が第1直線部81と第2直線部83とをつなぐことで、第1直線部81と第2直線部83との交差部の応力集中を緩和できる。本実施形態によれば、円弧状の曲線部85が第1直線部82と第2直線部83とをつなぐことで、第1直線部82と第2直線部83との交差部の応力集中を緩和できる。 According to the present embodiment, the arc-shaped curved portion 84 connects the first straight portion 81 and the second straight portion 83, thereby reducing the stress concentration at the intersection of the first straight portion 81 and the second straight portion 83. can be mitigated. According to the present embodiment, the arc-shaped curved portion 85 connects the first straight portion 82 and the second straight portion 83, thereby reducing the stress concentration at the intersection of the first straight portion 82 and the second straight portion 83. can be mitigated.
 溝部80Aのうち、q軸IL2から最も遠い箇所(第1直線部81の径方向外側の端部)までの周方向の距離は、径方向外側に位置するフラックスバリア部51dとq軸IL2との周方向の最短距離よりも短い。溝部80Bのうち、q軸IL2から最も遠い箇所までの周方向の距離は、径方向外側に位置するフラックスバリア部51bとq軸IL2との周方向の最短距離よりも短い。 In the groove portion 80A, the circumferential distance from the farthest point from the q-axis IL2 (the radially outer end portion of the first straight portion 81) is the distance between the radially outer flux barrier portion 51d and the q-axis IL2. Shorter than the shortest circumferential distance. The circumferential distance to the farthest point from the q-axis IL2 in the groove portion 80B is shorter than the circumferential shortest distance between the q-axis IL2 and the flux barrier portion 51b positioned radially outward.
 溝部80Aのうち、q軸IL2から最も遠い箇所までの周方向の距離が、径方向外側に位置するフラックスバリア部51dとq軸IL2との周方向の最短距離よりも短いことで、溝部80Aとフラックスバリア部51dとの間の磁路が狭くなってしまい磁束の流れを阻害して平均トルクが低下することを抑制できる。溝部80Bのうち、q軸IL2から最も遠い箇所までの周方向の距離が、径方向外側に位置するフラックスバリア部51bとq軸IL2との周方向の最短距離よりも短いことで、溝部80Bとフラックスバリア部51bとの間の磁路が狭くなってしまい磁束の流れを阻害して平均トルクが低下することを抑制できる。 In the groove portion 80A, the circumferential distance to the furthest point from the q-axis IL2 is shorter than the circumferential shortest distance between the q-axis IL2 and the flux barrier portion 51d located radially outward. It is possible to prevent the magnetic path between the flux barrier portion 51d from narrowing and the flow of the magnetic flux from being obstructed, thereby reducing the average torque. In the groove portion 80B, the circumferential distance to the furthest point from the q-axis IL2 is shorter than the circumferential shortest distance between the q-axis IL2 and the flux barrier portion 51b located radially outward. It is possible to prevent the magnetic path between the flux barrier portion 51b from being narrowed and the flow of magnetic flux from being obstructed, thereby reducing the average torque.
[溝部の数と、平均トルクおよび電気角12次電磁加振力の増減比との関係]
 図7は、溝部の数と平均トルクの増減比との関係を示すとともに、溝部の数と電気角12次電磁加振力の増減比との関係を示す図である。図7においては、溝部80が設けられない回転電機を「溝なし」と示している。「溝1つ」は、図8に示すように、径方向の最大寸法L1が1.0mm、周方向の溝幅L3が4.0mmの溝部80Cを有する回転電機を示している。「溝2つ」は、上述した溝部80Aおよび溝部80Bが径方向の最大寸法L1が1.0mm、溝部80A、80B同士の周方向の間隔の最小寸法L2が1.0mm、周方向の溝幅L3が4.0mmで設けられた回転電機を示している。
[Relationship Between Number of Grooves and Increase/Decrease Ratio of Average Torque and 12th Electrical Angular Electromagnetic Excitation Force]
FIG. 7 is a diagram showing the relationship between the number of grooves and the increase/decrease ratio of the average torque, and the relationship between the number of grooves and the increase/decrease ratio of the electromagnetic excitation force of 12th electrical angle. In FIG. 7, the rotary electric machine without the groove portion 80 is indicated as "no groove". As shown in FIG. 8, "one groove" indicates a rotary electric machine having a groove portion 80C with a maximum radial dimension L1 of 1.0 mm and a circumferential groove width L3 of 4.0 mm. "Two grooves" have a maximum radial dimension L1 of 1.0 mm for the grooves 80A and 80B, a minimum distance L2 of the circumferential spacing between the grooves 80A and 80B of 1.0 mm, and a groove width in the circumferential direction of 1.0 mm. A rotating electrical machine with L3 of 4.0 mm is shown.
 図7に示すように、平均トルクについては、「溝なし」、「溝1つ」および「溝2つ」のいずれの回転電機の場合も大きな差はなく同等の値である。電気角12次径方向電磁加振力の増減比については、「溝1つ」および「溝2つ」のいずれの回転電機の場合も溝部80が設けられない回転電機よりも低減できた。電気角12次周方向電磁加振力の増減比については、「溝1つ」の回転電機の場合は「溝なし」の回転電機よりも増加し、「溝2つ」の回転電機の場合は「溝なし」の回転電機よりも低減する。 As shown in FIG. 7, the average torque is the same value with no big difference in any of the "no groove", "one groove", and "two groove" rotary electric machines. The increase/decrease ratio of the radial electromagnetic excitation force of the 12th electrical angle can be reduced more than the rotating electric machine in which the groove portion 80 is not provided in both the "single groove" and the "two grooves" rotating electric machines. Regarding the increase/decrease ratio of the twelfth electrical angle circumferential electromagnetic excitation force, in the case of the rotating electric machine with "one groove", it increases more than in the case of the rotating electric machine with "no grooves", and in the case of the rotating electric machine with "two grooves", It is less than that of a "grooveless" rotary electric machine.
 図9は、「溝なし」の回転電機に対して、図8に示した上記「溝1つ」の溝部80Cを有する回転電機における、溝幅L3と、平均トルク、電気角12次径方向電磁加振力および電気角12次周方向電磁加振力の各増減比との関係を示す図である。図9においては、径方向の最大寸法L1は1.0mmに固定し、円弧状の曲線部の半径は1.0mmに固定している。 FIG. 9 shows the groove width L3, the average torque, the twelfth electrical angle radial electromagnetic FIG. 10 is a diagram showing the relationship between the excitation force and each increase/decrease ratio of the circumferential electromagnetic excitation force of twelfth electrical angle; In FIG. 9, the maximum radial dimension L1 is fixed at 1.0 mm, and the radius of the arc-shaped curved portion is fixed at 1.0 mm.
 図9に示されるように、「溝1つ」の回転電機の場合、平均トルクの増減比については、溝幅L3の値に依らず大きな差はなく同等の値である。「溝1つ」の回転電機の場合、電気角12次径方向電磁加振力の増減比は、溝幅L3の値が2.0~4.0mmの間では溝幅L3の値が大きいほど低減する。「溝1つ」の回転電機の場合、電気角12次周方向電磁加振力の増減比は、溝幅L3の値が大きいほど増加する。このため、「溝1つ」の回転電機の場合、電気角12次周方向電磁加振力の増減比を低減することは困難である。 As shown in FIG. 9, in the case of the "single groove" rotary electric machine, the average torque increase/decrease ratio is the same value without a large difference regardless of the value of the groove width L3. In the case of a "single groove" rotary electric machine, the increase/decrease ratio of the radial electromagnetic excitation force of the 12th electrical angle is between 2.0 and 4.0 mm. Reduce. In the case of a rotating electric machine having "one groove", the increase/decrease ratio of the circumferential electromagnetic excitation force of the twelfth electrical angle increases as the value of the groove width L3 increases. For this reason, in the case of a rotating electric machine having "one groove", it is difficult to reduce the increase/decrease ratio of the circumferential electromagnetic excitation force of the twelfth electrical angle.
 図10は、上記「溝なし」の回転電機に対して、図4に示した上記「溝2つ」の溝部80Aおよび溝部80Bを有する回転電機における、溝幅L3と、平均トルク、電気角12次径方向電磁加振力および電気角12次周方向電磁加振力の各増減比との関係を示す図である。図10においては、溝部80A、80B同士の周方向の間隔の最小寸法L2を1.0mmに固定し、径方向の最大寸法L1および円弧状の曲線部の半径は1.0mmに固定している。 FIG. 10 shows the groove width L3, the average torque, and the electrical angle 12 in the rotating electric machine having the groove portion 80A and the groove portion 80B of the "two grooves" shown in FIG. FIG. 5 is a diagram showing the relationship between the increase/decrease ratios of the secondary radial electromagnetic excitation force and the electrical angle twelfth circumferential electromagnetic excitation force. In FIG. 10, the minimum dimension L2 of the circumferential interval between the grooves 80A and 80B is fixed at 1.0 mm, and the maximum radial dimension L1 and the radius of the arc-shaped curved portion are fixed at 1.0 mm. .
 図10に示されるように、「溝2つ」の回転電機の場合、平均トルクの増減比については、溝幅L3の値に依らず大きな差はなく同等の値である。「溝2つ」の回転電機の場合、電気角12次径方向電磁加振力の増減比は、溝幅L3の値が2.0~4.0mmの間では溝幅L3の値が大きいほど低減する。「溝2つ」の回転電機の場合、電気角12次周方向電磁加振力の増減比は、溝幅L3の値が2.0~2.5mmの間では「溝なし」の回転電機よりも増加し、溝幅L3の値が2.5mmを超え、4.0mm以下では「溝なし」の回転電機よりも低減する。このため、「溝2つ」の回転電機の場合、溝幅L3の値を例えば、3.0mm以上、4.0mm以下とすることで電気角12次周方向電磁加振力の増減比を低減できる。 As shown in FIG. 10, in the case of the "two-groove" rotary electric machine, the average torque increase/decrease ratio is the same value without a large difference regardless of the value of the groove width L3. In the case of a rotating electrical machine with two grooves, the increase/decrease ratio of the radial electromagnetic excitation force of the 12th electrical angle is between 2.0 and 4.0 mm. Reduce. In the case of a rotating electric machine with "two grooves", the increase/decrease ratio of the circumferential electromagnetic excitation force of the 12th order in electrical angle is as follows: When the value of the groove width L3 exceeds 2.5 mm and is 4.0 mm or less, it is lower than that of the "no groove" rotary electric machine. For this reason, in the case of a rotating electrical machine with "two grooves", the value of the groove width L3 is set to, for example, 3.0 mm or more and 4.0 mm or less, thereby reducing the increase/decrease ratio of the twelfth electrical angle circumferential electromagnetic excitation force. can.
 図11は、上記「溝なし」の回転電機に対して、「溝2つ」の溝部80Aおよび溝部80Bを有する回転電機における、溝部80A、80B同士の周方向の間隔L2と、平均トルク、電気角12次径方向電磁加振力および電気角12次周方向電磁加振力の各増減比との関係を示す図である。図11においては、溝幅L3を2.0mmに固定し、径方向の最大寸法L1および円弧状の曲線部の半径は1.0mmに固定している。 FIG. 11 shows the circumferential distance L2 between the grooves 80A and 80B in the rotating electric machine having the grooves 80A and 80B of "two grooves", the average torque, the electric power FIG. 10 is a diagram showing the relationship between the increase/decrease ratios of the angular twelfth order radial electromagnetic excitation force and the electrical angle twelfth order circumferential electromagnetic excitation force; In FIG. 11, the groove width L3 is fixed at 2.0 mm, and the maximum radial dimension L1 and the radius of the arc-shaped curved portion are fixed at 1.0 mm.
 図11に示されるように、「溝2つ」の回転電機の場合、平均トルクの増減比については、周方向の間隔L2の値が0.2~1.2mmの間では周方向の間隔L2の値に依らず大きな差はなく同等の値である。「溝2つ」の回転電機の場合、電気角12次径方向電磁加振力の増減比は、周方向の間隔L2の値が0.2~1.2mmの間では「溝なし」の回転電機よりも低減する。「溝2つ」の回転電機の場合、電気角12次周方向電磁加振力の増減比は、周方向の間隔L2の値が0.2~1.2mmの間では「溝なし」の回転電機よりも増加するが、周方向の間隔L2の値が1.0mmで増加比が最も小さくなる。このため、「溝2つ」の回転電機の場合、周方向の間隔L2の値を例えば、1.0mmとすることで電気角12次周方向電磁加振力の増減比を抑制できる。 As shown in FIG. 11, in the case of the rotating electric machine with “two grooves”, the increase/decrease ratio of the average torque is such that when the value of the circumferential interval L2 is between 0.2 and 1.2 mm, the circumferential interval L2 There is no big difference regardless of the value of , and the values are equivalent. In the case of a rotating electrical machine with "two grooves", the increase/decrease ratio of the radial electromagnetic excitation force of the 12th electrical angle is the same as that of "no groove" rotation when the value of the circumferential interval L2 is between 0.2 and 1.2 mm. Less than electric. In the case of a rotating electrical machine with "two grooves", the increase/decrease ratio of the twelfth-order circumferential electromagnetic excitation force in the electrical angle is "no groove" rotation when the value of the circumferential interval L2 is between 0.2 and 1.2 mm. Although it increases more than the electric machine, the increase ratio is the smallest when the value of the interval L2 in the circumferential direction is 1.0 mm. Therefore, in the case of a rotating electric machine having "two grooves", the increase/decrease ratio of the circumferential electromagnetic excitation force of the twelfth electrical angle can be suppressed by setting the value of the circumferential interval L2 to 1.0 mm, for example.
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. The various shapes, combinations, etc., of the constituent members shown in the above examples are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 例えば、上記実施形態では、第1マグネット41a,41bと第2マグネット42とを有する∇型のマグネット40を例示したが、この構成に限定されない。例えば、マグネット40が第2マグネット42を有さず、V型に配置された第1マグネット41a,41bに磁極片が隣り合う構成の回転電機1であってもよい。また、例えば、マグネット40が第2マグネット42を有さず、第1マグネット41a,41bに磁極片が隣り合う組が径方向に間隔をあけて複数組(例えば、二組)配置された構成の回転電機1であってもよい。 For example, in the above embodiment, the ∇-shaped magnet 40 having the first magnets 41a and 41b and the second magnet 42 was exemplified, but the configuration is not limited to this. For example, the rotating electrical machine 1 may have a configuration in which the magnet 40 does not have the second magnet 42 and the magnetic pole pieces are adjacent to the first magnets 41a and 41b arranged in a V shape. Alternatively, for example, the magnet 40 does not have the second magnet 42, and a plurality of sets (for example, two sets) of adjacent magnetic pole pieces are arranged in the first magnets 41a and 41b with an interval in the radial direction. It may be the rotary electric machine 1 .
 1…回転電機、 10…ロータ、 20…ロータコア、 20a…外周面、 30…収容穴、 40…マグネット、 41a,41b…第1マグネット、 42…第2マグネット、 51b,51d…第1フラックスバリア部(フラックスバリア部)、 52a,52b…第2フラックスバリア部、 60…ステータ、 61…ステータコア、 62…コアバック、 63,66A,66B,66C,66D,66E…ティース、 65…コイル、 67…スロット、 70、70N、70S…磁極部、 80A、80B…溝部、 81、82…第1直線部、 83…第2直線部、 84、85…曲線部、 IL1…磁極中心線(d軸)、 IL2…q軸、 J…中心軸 1... Rotating electric machine 10... Rotor 20... Rotor core 20a... Outer peripheral surface 30... Accommodating hole 40... Magnets 41a, 41b... First magnets 42... Second magnets 51b, 51d... First flux barrier part (Flux barrier portion) 52a, 52b... Second flux barrier portion 60... Stator 61... Stator core 62... Core back 63, 66A, 66B, 66C, 66D, 66E... Teeth 65... Coil 67... Slot , 70, 70N, 70S... magnetic pole portions, 80A, 80B... groove portions, 81, 82... first straight portion, 83... second straight portion, 84, 85... curved portion, IL1... magnetic pole center line (d-axis), IL2 … q-axis, J … central axis

Claims (4)

  1.  中心軸を中心として回転可能なロータと、
     前記ロータの径方向外側に位置するステータと、
     を備え、
     前記ロータは、
      複数の収容穴を有するロータコアと、
      前記複数の収容穴の内部にそれぞれ収容された複数のマグネットと、
     を有し、
     前記ステータは、
      前記ロータコアを囲む環状のコアバック、および前記コアバックから径方向内側に延び周方向に間隔を空けて並んで配置された複数のティースを有するステータコアと、
      前記ステータコアに取り付けられた複数のコイルと、
     を有し、
     前記複数のマグネットは、極を構成し、q軸を介して前記周方向に複数配置され、
     前記ロータコアは、
      軸方向に見て外周面における前記q軸を挟んだ周方向の両側に間隔をあけて、径方向内側に窪んだ一対の溝部をそれぞれ有し、
      前記溝部の径方向の最大寸法をL1とし、一対の前記溝部同士の周方向の間隔の最小寸法をL2とすると、 0.8≦(L2/L1)≦1.2
     の関係を満足する、回転電機。
    a rotor rotatable about a central axis;
    a stator positioned radially outward of the rotor;
    with
    The rotor is
    a rotor core having a plurality of accommodation holes;
    a plurality of magnets respectively housed inside the plurality of housing holes;
    has
    The stator is
    a stator core having an annular core-back surrounding the rotor core, and a plurality of teeth extending radially inward from the core-back and arranged side by side at intervals in the circumferential direction;
    a plurality of coils attached to the stator core;
    has
    The plurality of magnets constitute poles and are arranged in plurality in the circumferential direction via the q-axis,
    The rotor core is
    having a pair of grooves recessed inward in the radial direction at intervals on both sides in the circumferential direction of the outer peripheral surface across the q-axis when viewed in the axial direction,
    Let L1 be the maximum radial dimension of the grooves, and L2 be the minimum distance between the pair of grooves in the circumferential direction, then 0.8≦(L2/L1)≦1.2
    A rotating electrical machine that satisfies the relationship between
  2.  前記溝部は、軸方向に見て、前記外周面から径方向の内側に直線状に延びる第1直線部と、
     前記第1直線部よりも径方向内側に位置し周方向に直線状に延びる第2直線部と、
     前記第1直線部と前記第2直線部とをつなぐ円弧状の曲線部と、
     を有する、
     請求項1に記載の回転電機。
    a first linear portion extending linearly inward in the radial direction from the outer peripheral surface when viewed in the axial direction;
    a second straight portion positioned radially inward of the first straight portion and extending linearly in the circumferential direction;
    an arc-shaped curved portion connecting the first straight portion and the second straight portion;
    has a
    The rotary electric machine according to claim 1.
  3.  前記ロータコアは、
      軸方向に見て、前記マグネットが延びる方向において前記マグネットを挟んで一対で配置されたフラックスバリア部を有し、
     前記溝部のうち、前記q軸から最も遠い箇所までの距離は、
     一対の前記フラックスバリア部のうち径方向外側に位置する前記フラックスバリア部と前記q軸との最短距離よりも短い、
     請求項1または2に記載の回転電機。
    The rotor core is
    Having a pair of flux barrier portions arranged across the magnet in the direction in which the magnet extends when viewed in the axial direction,
    Among the grooves, the distance to the furthest point from the q-axis is
    shorter than the shortest distance between the flux barrier portion located radially outside of the pair of flux barrier portions and the q-axis;
    The rotary electric machine according to claim 1 or 2.
  4.  前記複数のマグネットは、
      周方向に互いに間隔を空けて配置され、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びる一対の第1マグネットと、
      前記一対の第1マグネットの径方向内端部よりも径方向外側において前記一対の第1マグネット同士の間の周方向位置に配置され、軸方向に見て径方向と直交する方向に延びる第2マグネットと、
     を含む、
     請求項1から3のいずれか一項に記載の回転電機。
    The plurality of magnets are
    a pair of first magnets arranged circumferentially spaced apart from each other and extending in directions away from each other in the circumferential direction as viewed in the axial direction from the radially inner side to the radially outer side;
    A second magnet is arranged at a circumferential position between the pair of first magnets radially outside of the radial inner end portions of the pair of first magnets and extends in a direction orthogonal to the radial direction when viewed in the axial direction. a magnet;
    including,
    The rotary electric machine according to any one of claims 1 to 3.
PCT/JP2021/021979 2021-02-15 2021-06-09 Rotating electrical machine WO2022172479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180093476.2A CN116888861A (en) 2021-02-15 2021-06-09 Rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021985 2021-02-15
JP2021021985 2021-02-15

Publications (1)

Publication Number Publication Date
WO2022172479A1 true WO2022172479A1 (en) 2022-08-18

Family

ID=82837670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021979 WO2022172479A1 (en) 2021-02-15 2021-06-09 Rotating electrical machine

Country Status (2)

Country Link
CN (1) CN116888861A (en)
WO (1) WO2022172479A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005354798A (en) * 2004-06-10 2005-12-22 Fujitsu General Ltd Electric motor
JP2017050965A (en) * 2015-09-01 2017-03-09 日産自動車株式会社 Rotor structure for rotary electric machine
JP2017085821A (en) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル Rotor and permanent magnet motor
WO2018235145A1 (en) * 2017-06-19 2018-12-27 日産自動車株式会社 Rotating electric machine rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005354798A (en) * 2004-06-10 2005-12-22 Fujitsu General Ltd Electric motor
JP2017050965A (en) * 2015-09-01 2017-03-09 日産自動車株式会社 Rotor structure for rotary electric machine
JP2017085821A (en) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル Rotor and permanent magnet motor
WO2018235145A1 (en) * 2017-06-19 2018-12-27 日産自動車株式会社 Rotating electric machine rotor

Also Published As

Publication number Publication date
CN116888861A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
EP1990895B1 (en) Stress distributing permanent magnet rotor geometry for electric machines
WO2017110688A1 (en) Motor
US20210218301A1 (en) Rotating electric machine
WO2020110191A1 (en) Rotating electrical machine
JP7484465B2 (en) Rotating Electric Machine
WO2014069288A1 (en) Inner rotor motor
WO2017212575A1 (en) Permanent magnet motor
WO2022172479A1 (en) Rotating electrical machine
US20220368183A1 (en) Rotor for a synchronous machine
WO2022172478A1 (en) Rotating electrical machine
CN113206564A (en) Rotating electrical machine
WO2023171488A1 (en) Rotor and rotating electric machine
WO2022097322A1 (en) Rotary electrical machine
CN217335220U (en) Rotating electrical machine
WO2018070430A1 (en) Synchronous reluctance rotary electric machine
WO2022123863A1 (en) Rotating electric machine
WO2022044359A1 (en) Rotary electric machine
WO2022054302A1 (en) Rotating electric machine
US20240063671A1 (en) Rotor
US20230291255A1 (en) Rotor of rotary electrical machine
US20230223805A1 (en) Rotor and rotary electric machine
US20220271584A1 (en) Rotating electric machine
WO2023053604A1 (en) Rotor and rotating electric machine
JP2023094105A (en) Rotor, and rotary electric machine
JP2022047760A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093476.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP