WO2022172434A1 - Stirling engine, fluidyne pump, heat engine, and pumped-storage electricity generating system - Google Patents

Stirling engine, fluidyne pump, heat engine, and pumped-storage electricity generating system Download PDF

Info

Publication number
WO2022172434A1
WO2022172434A1 PCT/JP2021/005455 JP2021005455W WO2022172434A1 WO 2022172434 A1 WO2022172434 A1 WO 2022172434A1 JP 2021005455 W JP2021005455 W JP 2021005455W WO 2022172434 A1 WO2022172434 A1 WO 2022172434A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
tank
pump
water
fluidyne
Prior art date
Application number
PCT/JP2021/005455
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 森嶋
Original Assignee
俊介 森嶋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 俊介 森嶋 filed Critical 俊介 森嶋
Priority to JP2022581142A priority Critical patent/JPWO2022172434A1/ja
Priority to PCT/JP2021/005455 priority patent/WO2022172434A1/en
Publication of WO2022172434A1 publication Critical patent/WO2022172434A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines

Definitions

  • the present invention relates to Stirling engines, fluidyne pumps, heat engines, and pumped storage power generation systems.
  • a conventional pumped-storage power generation system is provided with two tanks (ponds) for storing water. It generates electricity by sending water to the water wheel of the machine.
  • energy mainly electric power
  • Patent Literature 1 the conventional pumped-storage power generation system as disclosed in Patent Literature 1 below is like a battery that temporarily converts surplus power into potential energy of water, and needs to be charged to generate power.
  • pumped storage power generation can be applied, for example, as a solar power generation device or an exhaust heat recovery power generation device, and the energy of flowing water caused by rainwater can be used as power generation energy, and power input from outside the system can be used.
  • An object of the present invention is to provide a Stirling engine, a fluidyne pump, a heat engine, and a pumped-storage power generation system capable of outputting electric power and improving power generation efficiency.
  • the pumped storage power generation system in the first aspect of the present invention includes: a central tank to which water is supplied from the outside and which can store the water; a lower tank positioned below the middle tank in the vertical direction, supplied with water from the outside, and capable of storing the water; a generator positioned below the middle tank in the vertical direction, generating electricity from water flowing in from the middle tank, and discharging the water used for power generation to the lower tank; and a first fluidine pump for pumping the water in the lower tank to the middle tank.
  • an upper tank positioned above the middle tank and the lower tank in the vertical direction, supplied with water from the outside, and capable of storing the water; a second fluidyne pump for pumping the water in the middle tank to the upper tank;
  • the generator is characterized in that it generates electricity from the water that flows in from the upper tank and the water that flows in from the middle tank.
  • a rainwater tank provided above each of the tanks and capable of storing rainwater; a rainwater-driven pump, which is installed vertically below the rainwater tank and driven by rainwater flowing from the rainwater tank, the pump pumping water from the lower tank to the upper tank; characterized by
  • an endothermic loop heat pipe capable of applying a heat load to a high-heat portion of the fluidyne pump; a heating unit that inputs heat to the endothermic loop heat pipe; and a heat radiating section capable of radiating heat from the endothermic loop heat pipe.
  • annular pipe having a compression pump and capable of applying a heat load to the hot section of the fluidyne pump; a heat-absorbing loop heat pipe that transfers heat to the annular pipe via a heat-exchanging heat sink; a heating unit that inputs heat to the endothermic loop heat pipe; and a heat radiating section capable of radiating heat from the endothermic loop heat pipe.
  • the heat dissipation part is a heat dissipating loop heat pipe having a second heat dissipating heat sink for dissipating heat; It is characterized by comprising a cylinder and a piston capable of transmitting the heat of the endothermic loop heat pipe to the heat radiating loop heat pipe.
  • the external combustion engine in the second aspect of the present invention is a Stirling engine or fluidyne pump; a heat-absorbing loop heat pipe capable of applying a heat load to a high-heat portion of the Stirling engine or the fluidyne pump; and a heating unit for inputting heat to the endothermic loop heat pipe.
  • the external combustion engine in the third aspect of the present invention is a Stirling engine or fluidyne pump; an annular pipe having a compression pump and capable of applying a heat load to the hot section of the Stirling engine or the fluidyne pump; a heat-absorbing loop heat pipe that transfers heat to the annular pipe via a heat-exchanging heat sink; and a heating unit for inputting heat to the endothermic loop heat pipe.
  • the external combustion engine in the fourth aspect of the present invention is a fluidyne pump in communication with the flow path; and a flow control valve provided downstream of a connection point with the fluidine pump in the flow path.
  • the pumped storage power generation system in the fifth aspect of the present invention is a fluidyne pump in communication with the flow path;
  • the rainwater-driven circulation pump is provided vertically below the rainwater tank and is driven by the rainwater flowing from the rainwater tank, and is provided in the flow path.
  • thermal energy such as solar energy and flow water energy such as rainwater can be converted into electric power, and application to exhaust heat recovery power generation is also possible.
  • FIG. 1 is an instrumentation diagram illustrating the configuration of a pumped-storage power generation system according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart illustrating processing by the pumped storage power generation system according to Embodiment 1 of the present invention
  • FIG. 5 is an instrumentation diagram illustrating the configuration of a heat transfer mechanism in Example 2 of the present invention
  • FIG. 9 is a flow chart illustrating processing (normal operation) by the pumped storage power generation system according to Embodiment 2 of the present invention
  • FIG. FIG. 9 is a flow chart explaining processing (heat dissipation operation) by the pumped-storage power generation system according to Embodiment 2 of the present invention.
  • FIG. FIG. 7 is an instrumentation diagram illustrating the configuration of a heat transfer mechanism in Example 3 of the present invention
  • the first and second fluidyne pumps used in the following examples have a fluid inside and are operated using this fluid.
  • a Stirling engine may also be used.
  • the number of the first full dyne pump (Stirling engine) and the number of the second full dyne pump (Stirling engine) are not limited to one each, and may be any number of one or more.
  • the pumped-storage power generation system 1 mainly includes an upper tank 11, a middle tank 12, a lower tank 13, a water purifier 14, a main generator 15, an auxiliary generator 16, a 1 Fluidyne Pump 17 (Fluidyne Pump), 2nd Fluidyne Pump 18 , rainwater tank 19 , and rainwater driven water pump 20 .
  • the upper tank 11 , the middle tank 12 , and the lower tank 13 are supplied with water from the outside through the flow path A.
  • a water purifier 14 for purifying pure water from water is provided in the flow path A, and a flow meter FT1 is provided downstream of the water purifier 14 . Further, the flow path A is branched into three flow paths A1, A2, and A3 on the downstream side of the flowmeter FT1.
  • Flow path A1, flow path A2, and flow path A3 are connected to upper tank 11, middle tank 12, and lower tank 13, respectively.
  • flow controllers FC1, FC2, and FC3 are provided in the flow paths A1, A2, and A3, respectively.
  • the upper tank 11 is located above the middle tank 12 and the lower tank 13 in the vertical direction, is provided downstream of the water purifier 14 via the flow paths A and A1, and stores pure water that has passed through the water purifier 14. (hereinafter simply referred to as “water”) can be stored. Further, the upper tank 11 is provided with an upper tank heater 21 . Furthermore, one end of the first vent pipe VE1, one end of the second vent pipe VE2, and one end of the third vent pipe VE3 are connected to the ceiling of the upper tank 11 .
  • a flow path B is connected to the bottom of the upper tank 11 .
  • This flow path B is provided with a gate valve VA1.
  • the middle tank 12 is located below the upper tank 11 and above the lower tank 13 in the vertical direction, and is provided downstream of the water purifier 14 via the flow paths A and A2. Water passing through 14 can be collected.
  • a central tank heater 22 is provided in the central tank 12 . Furthermore, the other end of the second vent pipe VE2 and one end of the fourth vent pipe VE4 are connected to the ceiling of the middle tank 12 .
  • the flow path C is connected to the bottom of the middle tank 12, and the flow path C joins the flow path B at a point on the downstream side of the gate valve VA1.
  • a closing gate valve C1 is provided in the flow path C.
  • the flow path B branches into flow paths B1 and B2 on the downstream side of the confluence point with the flow path C. As shown in FIG.
  • the lower tank 13 is located below the upper tank 11 and the middle tank 12 in the vertical direction, is provided downstream of the water purifier 14 via the flow paths A and A3, and receives water that has passed through the water purifier 14. can accumulate.
  • a lower tank heater 23 is provided in the lower tank 13 .
  • the other end of the third ventilation pipe VE3 and the other end of the fourth ventilation pipe VE4 are connected to the ceiling of the lower tank 13 .
  • a flow path D is connected to the lower tank 13 .
  • the main generator 15 is located below the upper tank 11 and the middle tank 12 in the vertical direction, is located above the lower tank 13, and is provided downstream of the upper tank 11 via the flow paths B and B1. It is provided on the downstream side of the middle tank 12 via (a part of) the flow path B, the flow path B1, and the flow path C.
  • a flow path D is connected to the main power generator 15 .
  • the main power generator 15 generates power by rotating the water wheel with water flowing in from the upper tank 11 located vertically above itself, and the water used for power generation is discharged to the flow path D.
  • the closing gate valve C1 it is also possible to use the water flowing in from the middle tank 12 located vertically above itself (the main generator 15 can use the water flowing in from the upper tank 11). or the water flowing from the central tank 12 is switched by the valves VA1 and C1).
  • the auxiliary generator 16 is positioned below the upper tank 11 and the middle tank 12 in the vertical direction, is positioned above the lower tank 13, and is downstream of the upper tank 11 via the flow paths B and B2. Further, it is provided on the downstream side of the middle tank 12 via (part of) the flow path B, the flow path C, and the flow path B2.
  • a flow path E is connected to the auxiliary generator 16 .
  • shutoff valve FC4 is upstream of the main generator 15 in the flow path B1
  • a flow meter FT7 is further upstream thereof
  • a shutoff valve FC5 is further upstream of the auxiliary generator 16 in the flow path B2.
  • a flow meter FT8 is provided on the upstream side thereof.
  • the auxiliary power generator 16 generates power by rotating the water wheel with water flowing in from the upper tank 11 located vertically above itself, and the water used for power generation is discharged to the flow path E.
  • the main generator 15 by opening the closing gate valve C1, it is also possible to use the water flowing in from the central tank 12 located vertically above itself (the auxiliary generator 16 It is switched by the valves VA1 and C1 whether to generate power using the water flowing from the tank 11 or using the water flowing from the middle tank 12).
  • the flow path E merges with the flow path D.
  • a flow path F is connected to the lower tank 13 .
  • the middle tank 12 is provided downstream of the lower tank 13 via a flow path F and a flow path J, which will be described later. Further, the middle tank 12 is connected to the flow path G, and the upper tank 11 is connected to the middle tank 12 via the flow path G, the flow path L described later, and (a part of) the flow path I described later. It is provided on the downstream side and on the downstream side of the lower tank 13 via a flow path I, which will be described later.
  • a first fluid-in pump 17 is provided in the flow path F and pumps the water in the lower tank 13 to the middle tank 12 .
  • a second fluid-in pump 18 is provided in the flow path G and pumps the water in the middle tank 12 to the upper tank 11 .
  • the fluidyne pump will be briefly described. Although the first fluidyne pump 17 is described below as an example, the second fluidyne pump 18 has the same configuration.
  • the first fluidyne pump 17 has a U-shaped first pipe piece 17A that communicates with the flow path F in the vertical direction downward, and a linear second pipe piece that connects both upper ends of the pipe piece 17A with a slope. 17B, a high heat portion 17C and a cooling portion 17D provided at both upper end portions of the first pipe piece 17A.
  • the inside of the second tube piece 17B becomes a gas phase portion, a heat regenerator (having a small pressure loss and a large heat capacity) 17BA, and a cutoff valve 17BB provided closer to the cooling part 17D than the heat regenerator 17BA. is provided.
  • the cutoff valve 17BB is opened when the temperature of the gas phase on the side of the high heat portion 17C in the second pipe piece 17B reaches a predetermined temperature.
  • the water in the flow path F has entered into the first pipe piece 17A.
  • the fluidyne vibration phenomenon will naturally occur even if the cutoff valve 17BB is not provided.
  • the amount of heat input starts from the morning sun and gradually increases. In such a situation, the entire gas phase portion inside the second tube piece 17B is only uniformly warmed, and the vibration phenomenon is unlikely to occur.
  • the shut-off valve 17BB and closing it only the high-temperature portion 17C side of the second pipe piece 17B increases in volume from the shut-off valve 17BB, and as a result, the water surface in the first pipe piece 17A differs. occur.
  • the vibration phenomenon can be triggered.
  • the water level at the end on the high heat section 17C side is pushed down and the water level at the end on the cooling section 17D side is pushed up in the first pipe piece 17A. and Next, the water level at the end on the cooling section 17D side begins to fall due to gravity, and at the same time the water level at the end on the high heat section 17C side begins to rise. Furthermore, in the gas phase portion inside the second pipe piece 17B, the gas on the side of the high temperature portion 17C starts to flow toward the side of the cooling portion 17D.
  • the heat retained in the high heat section 17C side is taken away by the heat regenerator 17BA, and the cooled gas flows to the cooling section 17D side.
  • the gas temperature is further lowered by a cooler (not shown).
  • the gas moves from the cooling portion 17D side to the high temperature portion 17C side.
  • the heat regenerator 17BA By passing through the heat regenerator 17BA, the heat deprived earlier is recovered and flows to the high heat section 17C side.
  • the temperature of the gas On the side of the high heat section 17C, the temperature of the gas further rises due to the high heat section 17C.
  • the pressure of the entire gas phase portion rises, and the first pipe piece 17A tries to push out water from the flow path F into the pipe F (downstream of a fluidyne pump check valve 17E, which will be described later).
  • the force of the first pipe piece 17A repeatedly sucking and discharging water acts as a pump.
  • the pump check valves 17E and 17F the fluid can flow like a diaphragm pump. The above is a brief description of the fluidyne pump.
  • the flow path F has a flow control valve FO1 downstream of the connection with the first fluidyne pump 17, a flow meter FT2 downstream of the flow control valve FO1, and a three-way valve downstream of the flow meter FT2.
  • T1 is provided, and in the flow path G, the flow control valve FO2 is downstream of the connection point with the second fluidyne pump 18, the flow meter FT3 is downstream of the flow control valve FO2, and the flow meter FT3 is connected.
  • a three-way valve T2 is provided downstream.
  • the flow state near the high heat portion 17C is improved (the Nusselt number is improved), and the amount of heat input to the fluidyne is improved.
  • the channel F is connected to one end of the channel J and one end of the channel K by a three-way valve T1.
  • the other end of the flow path J is connected to the central tank 12, and the other end of the flow path K merges with a drain pipe DR, which will be described later.
  • the channel G is connected to one end of the channel L and one end of the channel M by a three-way valve T1.
  • the other end of the flow path L joins the flow path I described later, and the other end of the flow path M joins the flow path K.
  • the flow paths K and M are provided with check valves CH1 and CH2, respectively.
  • Water level gauges LS1, LS2, and LS3 are provided on each side of the upper tank 11, middle tank 12, and lower tank 13, respectively. While the pumping operation is working, the first fluidy-in pump 17 and the second fluidy-in pump 18 always keep pumping according to the heat input to them. At that time, it is necessary to appropriately switch the main generator 15 or the auxiliary generator 16 so that the water pumped into the tanks 11 and 12 and the water discharged from the tanks 11 and 12 are balanced.
  • both the main generator 15 and the auxiliary generator 16 start generating electricity.
  • the shutoff valve FC4 provided on the flow path B1 to the main generator 15 is closed, or the auxiliary power generator
  • the shutoff valve FC5 provided on the flow path B2 to the machine 16 is closed.
  • each generator has a characteristic of power generation efficiency, and when the amount of falling water is small, it is preferable to allow a small amount of water to flow through the large main generator 15. This is because it is more efficient to generate power with the auxiliary generator 16 for small flow rates.
  • Air pressure gauges PT1, PT2, and PT3 are provided on the ceilings of the upper tank 11, middle tank 12, and lower tank 13, respectively.
  • water temperature gauges TT1, TT2, and TT3 are provided on each side of the upper tank 11, middle tank 12, and lower tank 13, respectively.
  • the upper tank heater 21 starts when the water temperature in the upper tank 11 falls below a first predetermined temperature and stops when it exceeds a second predetermined temperature based on the measurement of the water temperature gauge TT1.
  • the middle tank heater 22 is activated when the water temperature of the middle tank 12 falls below the first predetermined temperature and stops when the water temperature exceeds the second predetermined temperature based on the measurement of the water temperature gauge TT2.
  • the lower tank heater 23 is activated when the water temperature in the lower tank 13 falls below the first predetermined temperature and stops when the water temperature exceeds the second predetermined temperature based on the measurement of the water temperature gauge TT3.
  • the rainwater tank 19 is provided above the upper tank 11, the middle tank 12, and the lower tank 13 in the vertical direction, and can store rainwater.
  • a channel H is connected to the bottom of the rainwater tank 19 .
  • the rainwater-driven water pump 20 is provided below the rainwater tank 19 in the vertical direction, and is powered by the rainwater that flows from the rainwater tank 19 through the flow path H.
  • a rainwater-driven water pump 20 is provided in the flow path I.
  • the flow path I branches from the upstream side of the first fluid-in pump 17 of the flow path F and is connected to the upper tank 11 . Therefore, the rainwater-driven water pump 20 can pump the water in the lower tank 13 to the upper tank 11 through the channel I.
  • the upper tank 11 is provided on the downstream side of the lower tank 13 via the flow paths F and I, and the water in the lower tank 13 flows into it.
  • a flow meter FT4 is provided downstream of the rainwater-driven water pump 20 in the flow path I. As shown in FIG.
  • the lower tank 13 is provided with a drain pipe DR for discharging the water in the tank to the outside.
  • the drain pipe DR is provided with a closing gate valve C2 and a check valve CH3 on the downstream side thereof.
  • the water in the middle tank 12 and the lower tank 13 can be discharged by the flow path K, the flow path M, and the drain pipe DR. These are for draining water during maintenance.
  • the first fluidyne pump 17 and the second fluidyne pump 18 are provided with water level gauges LS4, LS5, air pressure gauges PT4, PT5, thermometers TT4, TT5, and flowmeters FT5, FT6, respectively. These configurations are for monitoring the state of internal energy of the first fluid-in pump 17 and the second fluid-in pump 18 . As already explained, if the internal energy grasped by these configurations is low, the degree of opening of the flow control valve FO1 is decreased, and if it is too high, the degree of opening of the flow control valve FO1 is increased.
  • the air pressure is equal to the atmospheric pressure. Because it is connected to , the air pressure is equal to the atmospheric pressure.
  • the present embodiment has been described with the upper tank 11 provided, the present invention is not limited to this, and can be established without the upper tank 11. That is, the upper tank 11 and associated mechanisms (the second full-dyne pump 18, each measuring instrument, each flow path, each ventilation pipe, the rainwater tank 19, the rainwater-driven pump 20, etc.) can be omitted. .
  • the auxiliary power generator 16 is provided, but the present invention is not limited to this, and can be established without the auxiliary power generator 16 . That is, the auxiliary generator 16 and the flow paths B2, E can be omitted.
  • the rainwater tank 19 and the rainwater-driven pump 20 are provided, but the present invention is not limited to this, and the rainwater tank 19 and the rainwater-driven pump are provided. It works even without 20. That is, the rainwater tank 19, the rainwater-driven pump 20, and the flow path I can be omitted, and the flow path L can be connected to the upper tank 11 instead of joining the flow path I (however, As already explained, when the middle tank 12 and the like are omitted, the flow path J instead of the flow path L is connected to the upper tank 11).
  • step S1 water from outside passes through the water supply and is stored in the upper tank 11, middle tank 12, and lower tank 13, respectively.
  • the middle tank heater 22 and the lower tank heater 23 are activated to raise the temperatures.
  • step S2 the water stored in the lower tank 13 is pumped by the first fluidyne pump 17 to the middle tank 12 based on the measurements of the water level gauges LS1, LS2, and LS3, and the second fluidyne pump 18 By pumping up the water stored in the tank 12 to the upper tank 11, the water levels of the upper tank 11, the middle tank 12 and the lower tank 13 are adjusted.
  • step S3 which is performed in parallel with step S2, the rainwater stored in the rainwater tank 19 flows into the rainwater-driven pump 20, and the water stored in the lower tank 13 is pumped up to the upper tank 11. be able to.
  • step S ⁇ b>4 the water stored in the upper tank 11 flows into the main generator 15 and the auxiliary generator 16 to generate power.
  • the closed gate valve C1 may be opened and the water in the upper tank 11 and the water from the middle tank 12 may be used together, or only the water in the middle tank 12 may be used.
  • one of the main generator 15 and the auxiliary generator 16 may be used by opening and closing the cutoff valves FC4 and FC5.
  • step S4 the water level is adjusted in this way. Water used for power generation is stored in the lower tank 13 .
  • water is supplied from the outside, a central tank 12 that can store the water, and a central tank 12 that is positioned below the central tank 12 in the vertical direction and is supplied with water from the outside, A lower tank 13 capable of storing the water, and a generator located below the middle tank 12 in the vertical direction to generate electricity from the water flowing in from the middle tank 12 and discharge the water used for power generation to the lower tank 13.
  • main generator 15 only, or main generator 15 and auxiliary generator 16 and a first fluidyne pump 17 for pumping the water in the lower tank 13 to the middle tank 12, so that the fluidyne pump It can convert thermal energy into the potential energy of water with high efficiency (approaching the efficiency of the Carnot cycle).
  • the potential energy of water can be generated with high power generation efficiency by a generator that is appropriately designed based on the positional relationship of the tank.
  • the pumped-storage power generation system 1 further includes an upper tank 11 which is positioned above the middle tank 12 and the lower tank 13 in the vertical direction, is supplied with water from the outside, and can store the water.
  • a second fluidic pump 18 for pumping the water in the tank 12 to the upper tank 11; Since power is generated using water and water flowing from the middle tank 12, power can be generated with even higher power generation efficiency.
  • a rainwater tank 19 is provided above the tanks 11, 12, and 13 and can store rainwater, and the rainwater tank 19 is provided below the rainwater tank 19 in the vertical direction,
  • the pump is powered by the rainwater flowing from the rainwater tank 19 and is driven by the rainwater-driven pump 20 for pumping the water in the lower tank 13 to the upper tank 11, so it has high potential energy in the natural state.
  • the tanks 11, 12, 13 are provided with the water temperature gauges TT1, TT2, TT3 and the tank heaters 21, 22, 23. Water in 11, 12, 13 can be prevented from freezing.
  • the pumped-storage power generation system 2 has the structure of the pumped-storage power generation system 1 according to the first embodiment, in which heat is applied to the high heat portion 17C of the first fluidyne pump 17 (and the high heat portion of the second fluidyne pump 18). is provided with a heat transfer mechanism that provides The heat transfer mechanism will be described below. However, although the heat transfer mechanism for the high heat portion 17C of the first fluidyne pump 17 will be described below, a similar heat transfer mechanism is provided on the high heat portion side of the second fluidyne pump 18 as well.
  • the heat transfer mechanism 2A in this embodiment includes a heat absorbing loop heat pipe 31, a heating section 32, and a heat radiating section 33 as main components.
  • the heating portion 32 and the heat radiating portion 33 are provided in the endothermic loop heat pipe 31 (however, in this embodiment and a third embodiment described later, the heat pipe may be used instead of the loop heat pipe. ).
  • the heating unit 32 inputs heat into the endothermic loop heat pipe 31 .
  • the heating unit 32 may be composed of, for example, a vacuum tube heat pipe that absorbs the heat of sunlight.
  • the present invention is not limited to this, and exhaust heat from an internal combustion engine or the like may be applied to heat input to the heating unit 32 .
  • the high heat portion 17C of the first fluidyne pump 17 is provided on the loop heat pipe 31 for heat absorption. As a result, a heat load can be applied from the endothermic loop heat pipe 31 to the high heat portion 17C.
  • the heat radiation part 33 mainly includes a first heat radiation heat sink 41, a cylinder 42, a piston 43, a heat radiation loop heat pipe 44, a second heat radiation heat sink 45, a third heat radiation heat sink 46, an automatic valve 47, and an electromagnetic valve.
  • a valve 48 is provided to allow the heat in the endothermic loop heat pipe 31 to be released.
  • the first heat radiation heat sink 41 is provided on the heat absorption loop heat pipe 31 (in FIG. 3, it is described as being provided apart from the high heat portion 17C, but in reality it is provided at substantially the same position). This point also applies to the positional relationship between the first heat sink 41 for heat radiation and the heat sink 51 for heat exchange in Example 3 (FIG. 6) described later). Further, the cylinder 42 and the piston 43 are capable of transmitting the heat of the endothermic loop heat pipe 31 to the heat radiating loop heat pipe 44 .
  • the section from the heating section 32 through the high heat section 17C to the first heat radiating heat sink 41 is the gas phase section, and the rest is the liquid phase section.
  • the cylinder 42 is a cylindrical member having an opening 42A between one end and the other end (near the center in the extending direction). It is provided in contact with the heat sink 41 . Also, the contact portion of the side wall 42B with the first heat sink 41 is made of a thermally conductive material.
  • the piston 43 is provided inside the cylinder 42 and includes a piston heat pipe 43A, a first piston heat sink 43B, a second piston heat sink 43C, a partition member 43D, and a spring 43E.
  • the piston heat pipe 43A is a linear heat pipe extending coaxially with the axis of the piston 43.
  • the first piston heat sink 43B is a heat sink provided at one end of the cylinder 42 in the piston heat pipe 43A.
  • the second piston heat sink 43C is a heat sink provided at the other end of the cylinder 42 in the piston heat pipe 43A.
  • the partition member 43D is provided at one end of the cylinder 42 in the first piston heat sink 43B and slides on the inner peripheral surface of the cylinder 42 .
  • the air is shielded between the front side and the back side of the partition member 43D.
  • the spring 43E is provided at the end of the second piston heat sink 43C on the other end side of the cylinder 42 and spans between the inside of the other end surface of the cylinder 42 and the spring 43E.
  • a through hole 42C is provided in one end (end surface) of the cylinder 42, and the chamber O on the one end side of the cylinder 42, which is shielded by the partition member 43D, communicates with the first heat radiating section ventilation pipe VE5 through the through hole 42C. ing.
  • One end of the first heat radiating section ventilation pipe VE5 is connected to the through hole 42C, and the other end is connected to the gas supply device (not shown) via the automatic valve 47.
  • the automatic valve 47 is controlled by opening and closing operations of the electromagnetic valve 48 . That is, when the electromagnetic valve 48 is opened, the instrument air is supplied, thereby opening the automatic valve 47 .
  • the gas supply device supplies service air. That is, service air is supplied to the chamber O from the gas supply device when the automatic valve 47 is opened.
  • the third heat sink 46 for heat radiation is provided on the loop heat pipe 44 for heat radiation (however, in this embodiment and a third embodiment described later, this may be a heat pipe instead of the loop heat pipe).
  • the cylinder 42 is provided such that a portion of the side wall 42D on the other end side of the opening 42A is in contact with the third heat sink 46 for heat radiation. Also, the contact portion of the side wall 42D with the third heat sink 46 is made of a thermally conductive material.
  • the second heat sink 45 for heat dissipation is provided on the loop heat pipe 44 for heat dissipation.
  • the cylinder 42 has the opening 42A between the one end and the other end, the cylinder 42 does not have the opening 42A, and is composed of two cylindrical members with the one end and the other end completely separated from each other. It may consist of Alternatively, the function of the partition member 43D may be provided to the first piston heat sink 43B, and the partition member 43D may be omitted.
  • the heat radiating section 33 can release the heat accumulated in the heat transfer mechanism 2A to the outside of the system. While the pumped-storage power generation system 2 according to the present embodiment is not activated, heat is radiated by the heat radiating section 33 . This allows safe operation. Further, the heat radiating section 33 is automatically connected even when the temperature of the high heat section 17C becomes abnormally high by a temperature sensor TT6, which will be described later, thereby enabling safe operation.
  • the heat radiation part 33 is configured such that the first heat sink 41 and the third heat sink 46 are joined and separated by a thermal conductor that can be manually operated by, for example, attaching a handle.
  • the heat dissipation state and the non-heat dissipation state may be realized by switching between and.
  • steps S11 to S15 in FIG. 4 are a flowchart for normal operation
  • steps S21 to S24 in FIG. 5 are a flowchart for heat dissipation operation.
  • step S11 the solenoid valve 48 is energized and opened, so that the instrumentation air is guided to the automatic valve 47, and the automatic valve 47 is opened.
  • step S12 service air is supplied into the chamber O through the first heat radiating section vent pipe VE5, and the first piston heat sink 43B is pressed against the other end side of the cylinder 42, thereby causing the first piston heat sink 43B and the The first heat sink for heat radiation 41 is separated from the first heat sink 41 in the axial direction of the cylinder 42 .
  • step S13 the amount of heat input from the heating unit 32 is transmitted to the loop heat pipe 31 for endothermic absorption.
  • step S14 a heat load is applied to the high heat portion 17C of the first fluidyne pump 17 by the loop heat pipe 31 for heat absorption.
  • step S15 the first fluidyne pump 17 is driven to generate power as in step S2 of FIG. 2 described in the first embodiment.
  • step S21 the electromagnetic valve 48 (three-way valve) is de-energized, and the secondary side instrumentation air pipe becomes atmospheric pressure. Then, the single-acting automatic valve 47 is closed.
  • step S22 the service air is discharged from the chamber O through the first heat radiator vent pipe VE5, the piston 43 is moved by the force of the spring 43E, and the first piston heat sink 43B is pressed against the other end side of the cylinder 42.
  • the first piston heat sink 43B and the first heat radiation heat sink 41 overlap each other in the axial direction of the cylinder 42 .
  • step S23 heat transfer from the endothermic loop heat pipe 31 to the cylinder 42 and the piston 43
  • the heat in the endothermic loop heat pipe 31 is transferred from the first heat radiating heat sink 41 through the heat conductive material portion of the side wall 42B. It is transmitted to the first piston heat sink 43B.
  • the heat transmitted to the first piston heat sink 43B is transmitted to the piston heat pipe 43A and the second piston heat sink 43C.
  • step S24 heat transfer from the cylinder 42 and the piston 43 to the heat radiation loop heat pipe 44
  • the heat of the second piston heat sink 43C is transferred to the third heat radiation heat sink 46 through the heat conductive material of the side wall 42D, and then to the heat radiation. After that, the heat is radiated to the outside from the second heat sink 45 on the loop heat pipe 44 for heat dissipation.
  • the above is the general description of the operation of the pumped-storage power generation system 2 according to the present embodiment.
  • a heat absorption loop heat pipe 31 capable of applying a heat load to the high heat portion 17C of the first fluidyne pump 17 (and the high heat portion of the second fluidyne pump 18), Since the heating portion 32 for inputting heat to the endothermic loop heat pipe 31 and the heat radiating portion 33 for releasing heat from the endothermic loop heat pipe 31 are provided, the first fluidyne as described in the first embodiment is provided.
  • the pump 17 second fluidyne pump 18
  • unnecessary heat in the endothermic loop heat pipe 31 can be released to the outside.
  • the heat dissipation unit 33 includes a heat dissipation loop heat pipe 44 having a second heat dissipation heat sink 45 for dissipating heat, and a heat dissipation loop heat pipe 44 for dissipating heat from the heat absorption loop heat pipe 31 . Since the cylinder 42 and the piston 43 that can be transmitted to 44 are provided, heat can be easily dissipated.
  • Example 3 A pumped-storage power generation system 3 according to this embodiment is obtained by partially changing the heat transfer mechanism in the second embodiment.
  • parts overlapping with the second embodiment will be omitted as much as possible, and different parts will be mainly described.
  • the heat transfer mechanism for the high heat portion 17C of the first fluidyne pump 17 will be described below, a similar heat transfer mechanism is provided on the high heat portion side of the second fluidyne pump 18 as well.
  • the high heat portion 17C of the first fluidyne pump 17 (second fluidyne pump 18) is provided on the endothermic loop heat pipe 31.
  • a heat exchange heat sink 51 is provided instead.
  • the heat exchange heat sink 51 is installed so as to bridge the endothermic loop heat pipe 31 and the annular pipe 52 .
  • the annular pipe 52 is further provided with a compression pump 53, a pressure reducing valve 54, and a high heat section 17C, so that a heat load can be applied to the high heat section 17C.
  • Temperature sensors TT6 to TT9 are provided between the members of the heat exchange heat sink 51 and the annular pipe 52, respectively.
  • the heat exchange heat sink 51 transfers heat from the endothermic loop heat pipe 31 to the annular pipe 52 .
  • a heat medium is circulated in the annular pipe 52 by a compression pump 53 .
  • the heat transferred from the endothermic loop heat pipe 31 to the heat exchange heat sink 51 is given to this heat medium.
  • the heat medium in the annular pipe 52 is further heated by the compression pump 53, and a heat load can be applied to the high heat portion 17C of the first fluidy-in pump 17 (second fluidy-in pump 18) on the downstream side. .
  • the pressure reducing valve 54 is provided downstream of the high heat portion 17 ⁇ /b>C of the first fluidy-in pump 17 .
  • the heat medium pressurized by the compression pump 53 of the back pressure valve 54 maintains a high pressure state up to the primary side of the pressure reducing valve 54, and expands on the secondary side of the pressure reducing valve 54, thereby lowering the temperature of the heat medium.
  • the pumped-storage power generation system 3 has the compression pump 53, and applies heat load to the high heat portion 17C of the first fluidyne pump 17 (and the high heat portion of the second fluidyne pump 18).
  • a heat-absorbing loop heat pipe 31 through which heat is transferred to the annular pipe 52 via the heat exchange heat sink 51; a heating unit 32 that inputs heat to the heat-absorbing loop heat pipe 31; Since it is equipped with a heat radiating part 33 capable of radiating heat from the loop heat pipe 31, in addition to the effects of the second embodiment, when automating the device, it is possible to keep the device running stably.
  • the compression pump 53 the amount of heat given from the heating unit 32 to the fluidyne pumps 17 and 18 can be increased.
  • the present invention is suitable as a pumped-storage power generation system.

Abstract

[Problem] To provide a pumped-storage electricity generating system which with convenience can be improved. [Solution] This pumped-storage electricity generating system is provided with: a central tank 12 to which water is supplied from outside, and in which the water can accumulate; a lower tank 13 which is positioned below the central tank 12 in a vertical direction, to which water from outside is supplied, and in which the water can accumulate; an electricity generator (main electricity generator 15 only, or main electricity generator 15 and auxiliary electricity generator 16) which is positioned below the central tank 12 in the vertical direction, generates electricity by means of water flowing in from the central tank 12, and which discharges the water used for electricity generation to the lower tank 13; and one or more first Fluidyne pumps or first Stirling engines which pump the water in the lower tank 13 to the central tank 12.

Description

スターリングエンジン、フルイダインポンプ、熱機関、及び、揚水発電システムStirling engines, fluidyne pumps, heat engines, and pumped storage power generation systems
 本発明は、スターリングエンジン、フルイダインポンプ、熱機関、及び、揚水発電システムに関するものである。 The present invention relates to Stirling engines, fluidyne pumps, heat engines, and pumped storage power generation systems.
例えば下記特許文献1に示すように、従来の揚水発電システムは、水を貯蔵するタンク(池)が2つ設けられており、下部のタンクの水を上部のタンクに送り、上部のタンクから発電機の水車に水を送ることで発電する。このような揚水発電では、揚水を行うために系外から電力を主としたエネルギーを供給する方法が一般的であった。 For example, as shown in Patent Document 1 below, a conventional pumped-storage power generation system is provided with two tanks (ponds) for storing water. It generates electricity by sending water to the water wheel of the machine. In such pumped-storage power generation, it was common to supply energy, mainly electric power, from outside the system in order to pump water.
特開2015-121179号公報JP 2015-121179 A
しかしながら、下記特許文献1のような従来の揚水発電システムは、余剰電力を一時的に水の位置エネルギーに変換する電池のようなものであり、発電するために充電が必要となる。 However, the conventional pumped-storage power generation system as disclosed in Patent Literature 1 below is like a battery that temporarily converts surplus power into potential energy of water, and needs to be charged to generate power.
本発明では、このような課題に鑑み、揚水発電を例えば太陽光発電装置又は排熱回収発電装置として応用でき、また、雨水による流水エネルギーを発電エネルギーとして利用でき、系外からの電力の入力が無くとも電力を出力できるようにし、発電効率の向上を図ることができる、スターリングエンジン、フルイダインポンプ、熱機関、及び、揚水発電システムを提供することを目的とする。 In the present invention, in view of such problems, pumped storage power generation can be applied, for example, as a solar power generation device or an exhaust heat recovery power generation device, and the energy of flowing water caused by rainwater can be used as power generation energy, and power input from outside the system can be used. An object of the present invention is to provide a Stirling engine, a fluidyne pump, a heat engine, and a pumped-storage power generation system capable of outputting electric power and improving power generation efficiency.
 本発明の第1の観点における揚水発電システムは、
外部から水が供給され、当該水を溜めることができる中部タンクと、
鉛直方向において前記中部タンクよりも下方に位置し、外部から水が供給され、当該水を溜めることができる下部タンクと、
鉛直方向において前記中部タンクよりも下方に位置し、前記中部タンクから流入する水により発電し、発電に用いた水を前記下部タンクに排出する発電機と、
前記下部タンクの水を前記中部タンクに揚水する第1フルイダインポンプとを備える
ことを特徴とする。
The pumped storage power generation system in the first aspect of the present invention includes:
a central tank to which water is supplied from the outside and which can store the water;
a lower tank positioned below the middle tank in the vertical direction, supplied with water from the outside, and capable of storing the water;
a generator positioned below the middle tank in the vertical direction, generating electricity from water flowing in from the middle tank, and discharging the water used for power generation to the lower tank;
and a first fluidine pump for pumping the water in the lower tank to the middle tank.
より好適には、
鉛直方向において前記中部タンク及び前記下部タンクよりも上方に位置し、外部から水が供給され、当該水を溜めることができる上部タンクと、
 前記中部タンクの水を前記上部タンクに揚水する第2フルイダインポンプとを備え、
 前記発電機は、前記上部タンクから流入する水、及び、前記中部タンクから流入する水により発電する
ことを特徴とする。
More preferably
an upper tank positioned above the middle tank and the lower tank in the vertical direction, supplied with water from the outside, and capable of storing the water;
a second fluidyne pump for pumping the water in the middle tank to the upper tank;
The generator is characterized in that it generates electricity from the water that flows in from the upper tank and the water that flows in from the middle tank.
 より好適には、
 各前記タンクよりも上方に設けられ、雨水を溜めることができる雨水タンクと、
鉛直方向において前記雨水タンクの下方に設けられ、前記雨水タンクから流入する雨水により動力を得て駆動するポンプであり、前記下部タンクの水を前記上部タンクに揚水する雨水駆動揚水ポンプとを備える
ことを特徴とする。
More preferably
a rainwater tank provided above each of the tanks and capable of storing rainwater;
a rainwater-driven pump, which is installed vertically below the rainwater tank and driven by rainwater flowing from the rainwater tank, the pump pumping water from the lower tank to the upper tank; characterized by
 より好適には、
 前記フルイダインポンプの高熱部に熱負荷を与えることができる吸熱用ループヒートパイプと、
前記吸熱用ループヒートパイプに熱を入力する加熱部と、
前記吸熱用ループヒートパイプから熱を放出することができる放熱部とを備える
ことを特徴とする。
More preferably
an endothermic loop heat pipe capable of applying a heat load to a high-heat portion of the fluidyne pump;
a heating unit that inputs heat to the endothermic loop heat pipe;
and a heat radiating section capable of radiating heat from the endothermic loop heat pipe.
 より好適には、
 圧縮ポンプを有し、前記フルイダインポンプの高熱部に熱負荷を与えることができる環状パイプと、
 熱交換用ヒートシンクを介して前記環状パイプに熱が伝達される吸熱用ループヒートパイプと、
前記吸熱用ループヒートパイプに熱を入力する加熱部と、
前記吸熱用ループヒートパイプから熱を放出することができる放熱部とを備える
ことを特徴とする。
More preferably
an annular pipe having a compression pump and capable of applying a heat load to the hot section of the fluidyne pump;
a heat-absorbing loop heat pipe that transfers heat to the annular pipe via a heat-exchanging heat sink;
a heating unit that inputs heat to the endothermic loop heat pipe;
and a heat radiating section capable of radiating heat from the endothermic loop heat pipe.
 より好適には、
 前記放熱部は、
 熱を放出する第2放熱用ヒートシンクを有する放熱用ループヒートパイプと、
 前記吸熱用ループヒートパイプの熱を前記放熱用ループヒートパイプに伝達可能なシリンダ及びピストンとを備える
ことを特徴とする。
More preferably
The heat dissipation part is
a heat dissipating loop heat pipe having a second heat dissipating heat sink for dissipating heat;
It is characterized by comprising a cylinder and a piston capable of transmitting the heat of the endothermic loop heat pipe to the heat radiating loop heat pipe.
 本発明の第2の観点における外燃機関は、
 スターリングエンジン又はフルイダインポンプと、
前記スターリングエンジン又は前記フルイダインポンプの高熱部に熱負荷を与えることができる吸熱用ループヒートパイプと、
前記吸熱用ループヒートパイプに熱を入力する加熱部とを備える
ことを特徴とする。
The external combustion engine in the second aspect of the present invention is
a Stirling engine or fluidyne pump;
a heat-absorbing loop heat pipe capable of applying a heat load to a high-heat portion of the Stirling engine or the fluidyne pump;
and a heating unit for inputting heat to the endothermic loop heat pipe.
 本発明の第3の観点における外燃機関は、
 スターリングエンジン又はフルイダインポンプと、
 圧縮ポンプを有し、前記スターリングエンジン又は前記フルイダインポンプの高熱部に熱負荷を与えることができる環状パイプと、
 熱交換用ヒートシンクを介して前記環状パイプに熱が伝達される吸熱用ループヒートパイプと、
前記吸熱用ループヒートパイプに熱を入力する加熱部とを備える
ことを特徴とする。
The external combustion engine in the third aspect of the present invention is
a Stirling engine or fluidyne pump;
an annular pipe having a compression pump and capable of applying a heat load to the hot section of the Stirling engine or the fluidyne pump;
a heat-absorbing loop heat pipe that transfers heat to the annular pipe via a heat-exchanging heat sink;
and a heating unit for inputting heat to the endothermic loop heat pipe.
 より好適には、
前記吸熱用ループヒートパイプから熱を放出することができる放熱部を備える
ことを特徴とする。
More preferably
It is characterized by comprising a heat radiating part capable of radiating heat from the endothermic loop heat pipe.
 本発明の第4の観点における外燃機関は、
 流路に連通するフルイダインポンプと、
前記流路のうち前記フルイダインポンプとの接続箇所よりも下流側に設けられる流量調整弁とを備える
ことを特徴とする。
The external combustion engine in the fourth aspect of the present invention is
a fluidyne pump in communication with the flow path;
and a flow control valve provided downstream of a connection point with the fluidine pump in the flow path.
 本発明の第5の観点における揚水発電システムは、
 流路に連通するフルイダインポンプと、
雨水タンクの鉛直方向下方に設けられ、当該雨水タンクから流入する雨水により動力を得て駆動するポンプであり、前記流路に設けられる雨水駆動循環ポンプとを備える
ことを特徴とする。
The pumped storage power generation system in the fifth aspect of the present invention is
a fluidyne pump in communication with the flow path;
The rainwater-driven circulation pump is provided vertically below the rainwater tank and is driven by the rainwater flowing from the rainwater tank, and is provided in the flow path.
本発明に係る揚水発電システムによれば、太陽光エネルギーなどの熱エネルギー、さらに、雨水などの流水エネルギーを電力に変換することができ、排熱回収発電への応用も可能である。 According to the pumped-storage power generation system according to the present invention, thermal energy such as solar energy and flow water energy such as rainwater can be converted into electric power, and application to exhaust heat recovery power generation is also possible.
本発明の実施例1に係る揚水発電システムの構成を説明する計装図である。1 is an instrumentation diagram illustrating the configuration of a pumped-storage power generation system according to Embodiment 1 of the present invention; FIG. 本発明の実施例1に係る揚水発電システムによる処理について説明するフローチャートである。4 is a flowchart illustrating processing by the pumped storage power generation system according to Embodiment 1 of the present invention; 本発明の実施例2における送熱機構の構成を説明する計装図である。FIG. 5 is an instrumentation diagram illustrating the configuration of a heat transfer mechanism in Example 2 of the present invention; 本発明の実施例2に係る揚水発電システムによる処理(通常運転)について説明するフローチャートである。FIG. 9 is a flow chart illustrating processing (normal operation) by the pumped storage power generation system according to Embodiment 2 of the present invention; FIG. 本発明の実施例2に係る揚水発電システムによる処理(放熱運転)について説明するフローチャートである。FIG. 9 is a flow chart explaining processing (heat dissipation operation) by the pumped-storage power generation system according to Embodiment 2 of the present invention. FIG. 本発明の実施例3における送熱機構の構成を説明する計装図である。FIG. 7 is an instrumentation diagram illustrating the configuration of a heat transfer mechanism in Example 3 of the present invention;
以下、本発明に係る揚水発電システムについて、実施例にて図面を用いて説明する。
なお、下記実施例において用いている第1,2フルイダインポンプは、内部に流体を有し、これを用いて作動するが、本発明は、この流体の代わりにピストンを用いた第1,2スターリングエンジンを用いるようにしてもよい。また、第1フルダインポンプ(スターリングエンジン)及び第2フルダインポンプ(スターリングエンジン)は、それぞれ1つずつに限定されるものではなく、1つ以上であればいくつであってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a pumped-storage power generation system according to the present invention will be described in an embodiment with reference to the drawings.
The first and second fluidyne pumps used in the following examples have a fluid inside and are operated using this fluid. A Stirling engine may also be used. Also, the number of the first full dyne pump (Stirling engine) and the number of the second full dyne pump (Stirling engine) are not limited to one each, and may be any number of one or more.
[実施例1]
図1に示すように、本実施例に係る揚水発電システム1は、主たる構成として、上部タンク11、中部タンク12、下部タンク13、純水器14、主発電機15、補発電機16、第1フルイダインポンプ17(Fluidyne Pump)、第2フルイダインポンプ18、雨水タンク19、及び、雨水駆動揚水ポンプ20を備えている。
[Example 1]
As shown in FIG. 1, the pumped-storage power generation system 1 according to the present embodiment mainly includes an upper tank 11, a middle tank 12, a lower tank 13, a water purifier 14, a main generator 15, an auxiliary generator 16, a 1 Fluidyne Pump 17 (Fluidyne Pump), 2nd Fluidyne Pump 18 , rainwater tank 19 , and rainwater driven water pump 20 .
上部タンク11、中部タンク12、及び、下部タンク13には、流路Aにより外部からの水が給水される。流路Aには、水から純水を精製する純水器14が設けられており、純水器14の下流側には流量計FT1が設けられている。また、流路Aは、流量計FT1の下流側において流路A1、流路A2、流路A3の3つに分岐している。 The upper tank 11 , the middle tank 12 , and the lower tank 13 are supplied with water from the outside through the flow path A. A water purifier 14 for purifying pure water from water is provided in the flow path A, and a flow meter FT1 is provided downstream of the water purifier 14 . Further, the flow path A is branched into three flow paths A1, A2, and A3 on the downstream side of the flowmeter FT1.
流路A1、流路A2、流路A3は、それぞれ上部タンク11、中部タンク12、下部タンク13に接続している。また、流路A1、流路A2、流路A3には、それぞれ流量調節器FC1,FC2,FC3が設けられている。 Flow path A1, flow path A2, and flow path A3 are connected to upper tank 11, middle tank 12, and lower tank 13, respectively. In addition, flow controllers FC1, FC2, and FC3 are provided in the flow paths A1, A2, and A3, respectively.
 上部タンク11は、鉛直方向において中部タンク12及び下部タンク13よりも上方に位置し、流路A,A1を介して純水器14の下流側に設けられ、純水器14を通過した純水(以下、単に「水」と記載)を溜めることができる。また、上部タンク11には、上部タンク用ヒータ21が設けられている。さらに、上部タンク11の天井には、第1通気管VE1の一端、第2通気管VE2の一端、及び、第3通気管VE3の一端が接続している。 The upper tank 11 is located above the middle tank 12 and the lower tank 13 in the vertical direction, is provided downstream of the water purifier 14 via the flow paths A and A1, and stores pure water that has passed through the water purifier 14. (hereinafter simply referred to as “water”) can be stored. Further, the upper tank 11 is provided with an upper tank heater 21 . Furthermore, one end of the first vent pipe VE1, one end of the second vent pipe VE2, and one end of the third vent pipe VE3 are connected to the ceiling of the upper tank 11 .
また、上部タンク11の底部には流路Bが接続している。この流路Bには仕切弁VA1が設けられている。 A flow path B is connected to the bottom of the upper tank 11 . This flow path B is provided with a gate valve VA1.
 中部タンク12は、鉛直方向において上部タンク11よりも下方に位置するとともに下部タンク13よりも上方に位置し、流路A,A2を介して純水器14の下流側に設けられ、純水器14を通過した水を溜めることができる。また、中部タンク12には、中部タンク用ヒータ22が設けられている。さらに、中部タンク12の天井には、第2通気管VE2の他端、及び、第4通気管VE4の一端が接続している。 The middle tank 12 is located below the upper tank 11 and above the lower tank 13 in the vertical direction, and is provided downstream of the water purifier 14 via the flow paths A and A2. Water passing through 14 can be collected. A central tank heater 22 is provided in the central tank 12 . Furthermore, the other end of the second vent pipe VE2 and one end of the fourth vent pipe VE4 are connected to the ceiling of the middle tank 12 .
また、中部タンク12の底部には流路Cが接続しており、流路Cは流路Bの仕切弁VA1よりも下流側の地点に合流している。そして、この流路Cには閉仕切弁C1が設けられている。また、流路Bは、流路Cとの合流地点よりも下流側において、流路B1,B2に分岐している。 Further, the flow path C is connected to the bottom of the middle tank 12, and the flow path C joins the flow path B at a point on the downstream side of the gate valve VA1. A closing gate valve C1 is provided in the flow path C. As shown in FIG. Further, the flow path B branches into flow paths B1 and B2 on the downstream side of the confluence point with the flow path C. As shown in FIG.
 下部タンク13は、鉛直方向において上部タンク11及び中部タンク12よりも下方に位置し、流路A,A3を介して純水器14の下流側に設けられ、純水器14を通過した水を溜めることができる。また、下部タンク13には、下部タンク用ヒータ23が設けられている。さらに、下部タンク13の天井には、第3通気管VE3の他端、及び、第4通気管VE4の他端が接続している。さらに、下部タンク13には流路Dが接続している。 The lower tank 13 is located below the upper tank 11 and the middle tank 12 in the vertical direction, is provided downstream of the water purifier 14 via the flow paths A and A3, and receives water that has passed through the water purifier 14. can accumulate. A lower tank heater 23 is provided in the lower tank 13 . Furthermore, the other end of the third ventilation pipe VE3 and the other end of the fourth ventilation pipe VE4 are connected to the ceiling of the lower tank 13 . Furthermore, a flow path D is connected to the lower tank 13 .
 主発電機15は、鉛直方向において上部タンク11及び中部タンク12よりも下方に位置するとともに、下部タンク13よりも上方に位置し、流路B,B1を介して上部タンク11の下流側に設けられるとともに、流路B(の一部)、流路B1、流路Cを介して中部タンク12の下流側に設けられている。また、主発電機15には流路Dが接続している。 The main generator 15 is located below the upper tank 11 and the middle tank 12 in the vertical direction, is located above the lower tank 13, and is provided downstream of the upper tank 11 via the flow paths B and B1. It is provided on the downstream side of the middle tank 12 via (a part of) the flow path B, the flow path B1, and the flow path C. A flow path D is connected to the main power generator 15 .
主発電機15は、自身よりも鉛直方向上方に位置する上部タンク11から流入する水により水車が回転することで発電し、発電に用いた水は流路Dに排出される。ただし、閉仕切弁C1を開状態とすることで、自身よりも鉛直方向上方に位置する中部タンク12から流入する水も用いることも可能である(主発電機15が上部タンク11から流入する水を用いて発電するか、中部タンク12から流入する水を用いて発電するかを、弁VA1,C1により切り替えられる)。 The main power generator 15 generates power by rotating the water wheel with water flowing in from the upper tank 11 located vertically above itself, and the water used for power generation is discharged to the flow path D. However, by opening the closing gate valve C1, it is also possible to use the water flowing in from the middle tank 12 located vertically above itself (the main generator 15 can use the water flowing in from the upper tank 11). or the water flowing from the central tank 12 is switched by the valves VA1 and C1).
 補発電機16は、鉛直方向において上部タンク11及び中部タンク12よりも下方に位置するとともに、下部タンク13よりも上方に位置し、流路B,B2を介して上部タンク11の下流側に、かつ、流路B(の一部)、流路C、流路B2を介して中部タンク12の下流側に設けられている。また、補発電機16には流路Eが接続している。 The auxiliary generator 16 is positioned below the upper tank 11 and the middle tank 12 in the vertical direction, is positioned above the lower tank 13, and is downstream of the upper tank 11 via the flow paths B and B2. Further, it is provided on the downstream side of the middle tank 12 via (part of) the flow path B, the flow path C, and the flow path B2. A flow path E is connected to the auxiliary generator 16 .
 また、流路B1における主発電機15の上流側には遮断弁FC4が、さらにその上流側には流量計FT7が、流路B2における補発電機16の上流側には遮断弁FC5が、さらにその上流側には流量計FT8が、それぞれ設けられている。 In addition, a shutoff valve FC4 is upstream of the main generator 15 in the flow path B1, a flow meter FT7 is further upstream thereof, and a shutoff valve FC5 is further upstream of the auxiliary generator 16 in the flow path B2. A flow meter FT8 is provided on the upstream side thereof.
補発電機16は、自身よりも鉛直方向上方に位置する上部タンク11から流入する水により水車が回転することで発電し、発電に用いた水は流路Eに排出される。ただし、主発電機15同様、閉仕切弁C1を開状態とすることで、自身よりも鉛直方向上方に位置する中部タンク12から流入する水も用いることも可能である(補発電機16が上部タンク11から流入する水を用いて発電するか、中部タンク12から流入する水を用いて発電するかを、弁VA1,C1により切り替えられる)。なお、流路Eは流路Dに合流している。 The auxiliary power generator 16 generates power by rotating the water wheel with water flowing in from the upper tank 11 located vertically above itself, and the water used for power generation is discharged to the flow path E. However, similarly to the main generator 15, by opening the closing gate valve C1, it is also possible to use the water flowing in from the central tank 12 located vertically above itself (the auxiliary generator 16 It is switched by the valves VA1 and C1 whether to generate power using the water flowing from the tank 11 or using the water flowing from the middle tank 12). In addition, the flow path E merges with the flow path D.
 下部タンク13は、流路D,Eを介して主発電機15及び補発電機16に連通しているため、(純水器14から流入する水とともに)主発電機15及び補発電機16から流入する水を溜めることができる。また、下部タンク13には流路Fが接続している。 Since the lower tank 13 communicates with the main generator 15 and the auxiliary generator 16 via the flow paths D and E, It can collect incoming water. A flow path F is connected to the lower tank 13 .
中部タンク12は、流路F及び後述の流路Jを介して下部タンク13の下流側に設けられている。また、中部タンク12には流路Gが接続しており、上部タンク11は、流路G、後述の流路L、及び、後述の流路I(の一部)を介して中部タンク12の下流側に、かつ、後述の流路Iを介して下部タンク13の下流側に設けられている。 The middle tank 12 is provided downstream of the lower tank 13 via a flow path F and a flow path J, which will be described later. Further, the middle tank 12 is connected to the flow path G, and the upper tank 11 is connected to the middle tank 12 via the flow path G, the flow path L described later, and (a part of) the flow path I described later. It is provided on the downstream side and on the downstream side of the lower tank 13 via a flow path I, which will be described later.
第1フルイダインポンプ17は流路Fに設けられており、下部タンク13の水を中部タンク12に揚水する。第2フルイダインポンプ18は流路Gに設けられており、中部タンク12の水を上部タンク11に揚水する。 A first fluid-in pump 17 is provided in the flow path F and pumps the water in the lower tank 13 to the middle tank 12 . A second fluid-in pump 18 is provided in the flow path G and pumps the water in the middle tank 12 to the upper tank 11 .
ここで、フルイダインポンプについて簡単に説明する。なお、以下では第1フルイダインポンプ17を例に挙げて説明しているが、第2フルイダインポンプ18も同様の構成である。 Here, the fluidyne pump will be briefly described. Although the first fluidyne pump 17 is described below as an example, the second fluidyne pump 18 has the same configuration.
第1フルイダインポンプ17は、鉛直方向下方において流路Fに連通するU字状の第1管片17A、管片17Aの両上端部を、勾配を付けて連通する直線状の第2管片17B、第1管片17Aの両上端部にそれぞれ設けられる高熱部17C及び冷却部17Dを備えている。また、第2管片17B内は気相部となり、熱再生機(圧力損失が少なく、熱容量をもったもの)17BA、及び、熱再生機17BAよりも冷却部17D側に設けられた遮断弁17BBが備えられている。遮断弁17BBは、第2管片17B内における高熱部17C側の気相部温度が所定の温度に達したときに開状態となるものとする。なお、第1管片17A内には流路F内の水が入り込んでいる。 The first fluidyne pump 17 has a U-shaped first pipe piece 17A that communicates with the flow path F in the vertical direction downward, and a linear second pipe piece that connects both upper ends of the pipe piece 17A with a slope. 17B, a high heat portion 17C and a cooling portion 17D provided at both upper end portions of the first pipe piece 17A. In addition, the inside of the second tube piece 17B becomes a gas phase portion, a heat regenerator (having a small pressure loss and a large heat capacity) 17BA, and a cutoff valve 17BB provided closer to the cooling part 17D than the heat regenerator 17BA. is provided. The cutoff valve 17BB is opened when the temperature of the gas phase on the side of the high heat portion 17C in the second pipe piece 17B reaches a predetermined temperature. In addition, the water in the flow path F has entered into the first pipe piece 17A.
高熱部17C(熱を気相部に伝える部分)に高熱量を供給できれば仮に遮断弁17BBが無くても自然とフルイダインの振動現象が発生する。しかし、例えば太陽光を熱源とする場合、入熱量は朝日からはじまり、徐々に増加する。そのような状況では、第2管片17B内の気相部全体が均一に温まるだけで振動現象は生じにくい。遮断弁17BBを設け、これを閉状態とすることで、第2管片17Bのうち遮断弁17BBより高熱部17C側だけが体積が増加し、結果として第1管片17A内の水面に差が生じる。水面に差が生じた段階で遮断弁17BBを開状態とすることで振動現象のきっかけを与えることができる。 If a high amount of heat can be supplied to the high heat portion 17C (the portion that transfers heat to the gas phase portion), the fluidyne vibration phenomenon will naturally occur even if the cutoff valve 17BB is not provided. However, for example, when sunlight is used as a heat source, the amount of heat input starts from the morning sun and gradually increases. In such a situation, the entire gas phase portion inside the second tube piece 17B is only uniformly warmed, and the vibration phenomenon is unlikely to occur. By providing the shut-off valve 17BB and closing it, only the high-temperature portion 17C side of the second pipe piece 17B increases in volume from the shut-off valve 17BB, and as a result, the water surface in the first pipe piece 17A differs. occur. By opening the shut-off valve 17BB at the stage when a difference in water surface occurs, the vibration phenomenon can be triggered.
このようにして構成された第1フルイダインポンプ17は、まず、第1管片17A内において、高熱部17C側端部の水位が押し下げられ、冷却部17D側端部の水位が押し上げられているとする。次に、冷却部17D側端部の水位は重力によって下がり始め、同時に高熱部17C側端部の水位は上がり始める。さらに、第2管片17B内の気相部では高熱部17C側の気体が冷却部17D側へ流れ始める。 In the first fluidyne pump 17 constructed in this manner, the water level at the end on the high heat section 17C side is pushed down and the water level at the end on the cooling section 17D side is pushed up in the first pipe piece 17A. and Next, the water level at the end on the cooling section 17D side begins to fall due to gravity, and at the same time the water level at the end on the high heat section 17C side begins to rise. Furthermore, in the gas phase portion inside the second pipe piece 17B, the gas on the side of the high temperature portion 17C starts to flow toward the side of the cooling portion 17D.
このとき、高熱部17C側にて保有していた熱は熱再生機17BAにて奪われ、冷たくなった気体が冷却部17D側へ流れる。冷却部17D側ではクーラ(図示略)によってさらに気体温度が下がる。 At this time, the heat retained in the high heat section 17C side is taken away by the heat regenerator 17BA, and the cooled gas flows to the cooling section 17D side. On the cooling part 17D side, the gas temperature is further lowered by a cooler (not shown).
これにより、気相側全体の体積が低下する。それに伴って気相部の圧力低下が発生し、その力によって第1管片17A内の液相部が配管F(後述するフルイダインポンプ用逆止弁17Fの上流側)の水を吸引する。 This reduces the volume of the entire gas phase side. As a result, a pressure drop occurs in the gas phase, and the pressure causes the liquid phase in the first pipe piece 17A to suck water from the pipe F (on the upstream side of the fluidine pump check valve 17F, which will be described later).
高熱部17C側の水位が冷却部17D側の水位よりも上がることで、再び高熱部17C側の水位が下がり始める。同時に、冷却部17D側の水位は上がり始める。 When the water level on the high heat section 17C side rises above the water level on the cooling section 17D side, the water level on the high heat section 17C side begins to fall again. At the same time, the water level on the cooling section 17D side begins to rise.
気相部では冷却部17D側から高熱部17C側へ気体が移動する。熱再生機17BAを通過することで、先ほど奪われた熱を回収して高熱部17C側へ流れる。高熱部17C側では高熱部17Cによってさらに気体の温度が上昇する。これによって、気相部全体の圧力が上昇し、第1管片17Aは流路Fから吸引した配管F(後述するフルイダインポンプ用逆止弁17Eの下流側)に水を押し出そうとする。 In the gas phase portion, the gas moves from the cooling portion 17D side to the high temperature portion 17C side. By passing through the heat regenerator 17BA, the heat deprived earlier is recovered and flows to the high heat section 17C side. On the side of the high heat section 17C, the temperature of the gas further rises due to the high heat section 17C. As a result, the pressure of the entire gas phase portion rises, and the first pipe piece 17A tries to push out water from the flow path F into the pipe F (downstream of a fluidyne pump check valve 17E, which will be described later). .
上述の繰り返しによって第1管片17Aが水の吸引と吐出を繰り返す力がポンプとして作用し、流路Fにおける、第1フルイダインポンプ17との接続箇所の前後に、同方向の2つのフルイダインポンプ用逆止弁17E,17Fを設けることで、ダイヤフラムポンプのようにして流体を流すことができる。
以上がフルイダインポンプについての簡単な説明である。
By repeating the above, the force of the first pipe piece 17A repeatedly sucking and discharging water acts as a pump. By providing the pump check valves 17E and 17F, the fluid can flow like a diaphragm pump.
The above is a brief description of the fluidyne pump.
また、流路Fは、第1フルイダインポンプ17との接続箇所よりも下流側に流量調整弁FO1が、流量調整弁FO1の下流側に流量計FT2が、流量計FT2の下流側に三方弁T1が設けられており、流路Gは、第2フルイダインポンプ18との接続箇所よりも下流側に流量調整弁FO2が、流量調整弁FO2の下流側に流量計FT3が、流量計FT3の下流側に三方弁T2が設けられている。 In addition, the flow path F has a flow control valve FO1 downstream of the connection with the first fluidyne pump 17, a flow meter FT2 downstream of the flow control valve FO1, and a three-way valve downstream of the flow meter FT2. T1 is provided, and in the flow path G, the flow control valve FO2 is downstream of the connection point with the second fluidyne pump 18, the flow meter FT3 is downstream of the flow control valve FO2, and the flow meter FT3 is connected. A three-way valve T2 is provided downstream.
ちなみに、フルイダインポンプ17,18は、熱を与えることで内部エネルギーの増加と仕事を行うものである。すなわち、入熱=内部エネルギー上昇+仕事+排熱+損失となる。そして、第1管片17A内の水の振動の振幅が大きいほど内部エネルギーが大きい状態となる。内部エネルギーが大きい状態の方が高熱部17C付近の流動状態が向上(ヌッセルト数が向上)し、フルイダインへの入熱量が向上する。 Incidentally, the fluidyne pumps 17 and 18 increase internal energy and work by applying heat. That is, heat input=increase in internal energy+work+exhaust heat+loss. The larger the vibration amplitude of the water in the first pipe piece 17A, the larger the internal energy. When the internal energy is large, the flow state near the high heat portion 17C is improved (the Nusselt number is improved), and the amount of heat input to the fluidyne is improved.
したがって、内部エネルギーをある程度高めてから仕事をさせる方が効率的であり、そのために内部エネルギーが十分高まるまで流量調整弁FO1の開度を小さくしておくことが望ましい。一方、内部エネルギーが高くなりすぎるとフルイダイン内部の圧力損失が高くなりすぎ、逆に非効率となるので、流量調整弁FO1の開度を大きく開けて内部エネルギーを低下させる。このようにフルイダインの内部エネルギーを適切な状態に保ちながら、流量調整弁FO1の開度を適時調整することで効率的に揚水の仕事をさせることができる。 Therefore, it is more efficient to increase the internal energy to some extent before doing work, and for this reason, it is desirable to keep the opening of the flow control valve FO1 small until the internal energy is sufficiently increased. On the other hand, if the internal energy becomes too high, the pressure loss inside the fluidyne will become too high, and conversely, it will become inefficient. By adjusting the opening degree of the flow control valve FO1 appropriately while maintaining the internal energy of the Fluidyne in this way, the work of pumping water can be performed efficiently.
そして、流路Fは、三方弁T1により流路Jの一端、及び、流路Kの一端と接続している。流路Jの他端は中部タンク12に接続しており、流路Kの他端は後述の排水管DRと合流している。さらに、流路Gは、三方弁T1により流路Lの一端、及び、流路Mの一端と接続している。流路Lの他端は後述の流路Iに合流しており、流路Mの他端は流路Kと合流している。なお、流路K、流路Mには、それぞれ逆止弁CH1,CH2が設けられている。 The channel F is connected to one end of the channel J and one end of the channel K by a three-way valve T1. The other end of the flow path J is connected to the central tank 12, and the other end of the flow path K merges with a drain pipe DR, which will be described later. Further, the channel G is connected to one end of the channel L and one end of the channel M by a three-way valve T1. The other end of the flow path L joins the flow path I described later, and the other end of the flow path M joins the flow path K. The flow paths K and M are provided with check valves CH1 and CH2, respectively.
 上部タンク11、中部タンク12、下部タンク13の各側面には、それぞれ水位計LS1,LS2,LS3が設けられている。揚水運転が働いている間、第1フルイダインポンプ17及び第2フルイダインポンプ18はそれらへの入熱に従って常に揚水を続ける。その際、各タンク11,12への揚水と各タンク11,12からの排水がバランスするように、適切に主発電機15又は補発電機16を切り替える必要がある。 Water level gauges LS1, LS2, and LS3 are provided on each side of the upper tank 11, middle tank 12, and lower tank 13, respectively. While the pumping operation is working, the first fluidy-in pump 17 and the second fluidy-in pump 18 always keep pumping according to the heat input to them. At that time, it is necessary to appropriately switch the main generator 15 or the auxiliary generator 16 so that the water pumped into the tanks 11 and 12 and the water discharged from the tanks 11 and 12 are balanced.
下部タンク13の水位が減少すると、主発電機15及び補発電機16の双方が発電を開始する。第1フルイダインポンプ17及び第2フルイダインポンプ18による揚水量が低下する又は揚水しなくなると、主発電機15への流路B1上に設けられた遮断弁FC4を閉じるか、又は、補発電機16への流路B2上に設けられた遮断弁FC5を閉じる。 When the water level in the lower tank 13 decreases, both the main generator 15 and the auxiliary generator 16 start generating electricity. When the amount of water pumped by the first fluidy-in pump 17 and the second fluidy-in pump 18 decreases or ceases to be pumped, the shutoff valve FC4 provided on the flow path B1 to the main generator 15 is closed, or the auxiliary power generator The shutoff valve FC5 provided on the flow path B2 to the machine 16 is closed.
その際、揚水量は流量計FT2,FT3で、落水量は流量計FT7,FT8で、それぞれ監視される。主発電機15及び補発電機16を設ける理由としては、それぞれの発電機には発電効率の特性があり、落水量が小量の場合は大型の主発電機15に僅かに水を流すよりも、小流量用の補発電機16にて発電させた方が、効率が良いためである。 At that time, the amount of pumped water is monitored by flowmeters FT2 and FT3, and the amount of falling water is monitored by flowmeters FT7 and FT8, respectively. The reason why the main generator 15 and the auxiliary generator 16 are provided is that each generator has a characteristic of power generation efficiency, and when the amount of falling water is small, it is preferable to allow a small amount of water to flow through the large main generator 15. This is because it is more efficient to generate power with the auxiliary generator 16 for small flow rates.
 また、上部タンク11、中部タンク12、下部タンク13の各天井には、それぞれ空気圧計PT1,PT2,PT3が設けられている。 Air pressure gauges PT1, PT2, and PT3 are provided on the ceilings of the upper tank 11, middle tank 12, and lower tank 13, respectively.
 さらに、上部タンク11、中部タンク12、下部タンク13の各側面には、それぞれ水温計TT1,TT2,TT3が設けられている。上部タンク用ヒータ21は、水温計TT1の計測に基づき、上部タンク11の水温が第1所定温度を下回ると起動し、第2所定温度を上回ると停止する。また、中部タンク用ヒータ22は、水温計TT2の計測に基づき、中部タンク12の水温が第1所定温度を下回ると起動し、第2所定温度を上回ると停止する。そして、下部タンク用ヒータ23は、水温計TT3の計測に基づき、下部タンク13の水温が第1所定温度を下回ると起動し、第2所定温度を上回ると停止する。 Furthermore, water temperature gauges TT1, TT2, and TT3 are provided on each side of the upper tank 11, middle tank 12, and lower tank 13, respectively. The upper tank heater 21 starts when the water temperature in the upper tank 11 falls below a first predetermined temperature and stops when it exceeds a second predetermined temperature based on the measurement of the water temperature gauge TT1. Further, the middle tank heater 22 is activated when the water temperature of the middle tank 12 falls below the first predetermined temperature and stops when the water temperature exceeds the second predetermined temperature based on the measurement of the water temperature gauge TT2. The lower tank heater 23 is activated when the water temperature in the lower tank 13 falls below the first predetermined temperature and stops when the water temperature exceeds the second predetermined temperature based on the measurement of the water temperature gauge TT3.
 雨水タンク19は、鉛直方向において上部タンク11、中部タンク12,及び、下部タンク13よりも上方に設けられ、雨水を溜めることができるものである。雨水タンク19の底部には流路Hが接続している。 The rainwater tank 19 is provided above the upper tank 11, the middle tank 12, and the lower tank 13 in the vertical direction, and can store rainwater. A channel H is connected to the bottom of the rainwater tank 19 .
 雨水駆動揚水ポンプ20は、鉛直方向において雨水タンク19の下方に設けられ、雨水タンク19から流路Hを通じて流入する雨水により動力を得て駆動するポンプである。 The rainwater-driven water pump 20 is provided below the rainwater tank 19 in the vertical direction, and is powered by the rainwater that flows from the rainwater tank 19 through the flow path H.
また、雨水駆動揚水ポンプ20は流路Iに設けられている。流路Iは、流路Fの第1フルイダインポンプ17よりも上流側から分岐したものであり、上部タンク11に接続している。したがって、雨水駆動揚水ポンプ20は、流路Iを通じて下部タンク13の水を上部タンク11に揚水することができる。これにより、上部タンク11は、流路F,Iを介して下部タンク13の下流側に設けられることとなり、下部タンク13の水が流入されることとなる。なお、流路Iにおける雨水駆動揚水ポンプ20よりも下流側には、流量計FT4が設けられている。 Also, a rainwater-driven water pump 20 is provided in the flow path I. As shown in FIG. The flow path I branches from the upstream side of the first fluid-in pump 17 of the flow path F and is connected to the upper tank 11 . Therefore, the rainwater-driven water pump 20 can pump the water in the lower tank 13 to the upper tank 11 through the channel I. As a result, the upper tank 11 is provided on the downstream side of the lower tank 13 via the flow paths F and I, and the water in the lower tank 13 flows into it. A flow meter FT4 is provided downstream of the rainwater-driven water pump 20 in the flow path I. As shown in FIG.
 下部タンク13には、タンク内の水を外部に排出する排水管DRが設けられている。排水管DRには閉仕切弁C2、その下流側には逆止弁CH3が設けられており、さらにその下流側には、既に説明したように流路Kが合流している。 The lower tank 13 is provided with a drain pipe DR for discharging the water in the tank to the outside. The drain pipe DR is provided with a closing gate valve C2 and a check valve CH3 on the downstream side thereof.
 流路K、流路M、及び、排水管DRにより、中部タンク12、及び、下部タンク13内の水を排出可能である。これらはメンテナンス時に排水するためのものである。 The water in the middle tank 12 and the lower tank 13 can be discharged by the flow path K, the flow path M, and the drain pipe DR. These are for draining water during maintenance.
 第1フルイダインポンプ17、第2フルイダインポンプ18には、それぞれ、水位計LS4,LS5、空気圧計PT4,PT5、温度計TT4,TT5、及び、流量計FT5,FT6が設けられている。これらの構成は、第1フルイダインポンプ17、第2フルイダインポンプ18の内部エネルギーの状態を監視するためのものである。既に説明したように、これらの構成により把握した内部エネルギーが低ければ、流量調整弁FO1の開度を小さくし、高すぎる場合は流量調整弁FO1の開度を大きくする。 The first fluidyne pump 17 and the second fluidyne pump 18 are provided with water level gauges LS4, LS5, air pressure gauges PT4, PT5, thermometers TT4, TT5, and flowmeters FT5, FT6, respectively. These configurations are for monitoring the state of internal energy of the first fluid-in pump 17 and the second fluid-in pump 18 . As already explained, if the internal energy grasped by these configurations is low, the degree of opening of the flow control valve FO1 is decreased, and if it is too high, the degree of opening of the flow control valve FO1 is increased.
 上部タンク11は、第1通気管VE1により外部と連通しているため、空気圧が大気圧と等しくなっており、中部タンク12及び下部タンク13は、各通気管VE2,VE3,VE4により上部タンク11と繋がっているため、やはり空気圧が大気圧と等しくなっている。 Since the upper tank 11 communicates with the outside through the first vent pipe VE1, the air pressure is equal to the atmospheric pressure. Because it is connected to , the air pressure is equal to the atmospheric pressure.
 なお、本実施例においては、上部タンク11が設けられるものとして説明したが、本発明はこれに限定されるものではなく、上部タンク11がなくとも成立する。すなわち、上部タンク11、及び、それに付随する諸機構(第2フルダインポンプ18、各計測器、各流路、各通気管、雨水タンク19、雨水駆動揚水ポンプ20等)を省略することもできる。 Although the present embodiment has been described with the upper tank 11 provided, the present invention is not limited to this, and can be established without the upper tank 11. That is, the upper tank 11 and associated mechanisms (the second full-dyne pump 18, each measuring instrument, each flow path, each ventilation pipe, the rainwater tank 19, the rainwater-driven pump 20, etc.) can be omitted. .
また、本実施例においては、補発電機16が設けられるものとして説明したが、本発明はこれに限定されるものではなく、補発電機16がなくとも成立する。すなわち、補発電機16、及び、流路B2,Eを省略することもできる。 Further, in the present embodiment, the auxiliary power generator 16 is provided, but the present invention is not limited to this, and can be established without the auxiliary power generator 16 . That is, the auxiliary generator 16 and the flow paths B2, E can be omitted.
また、本実施例においては、雨水タンク19、及び、雨水駆動揚水ポンプ20が設けられるものとして説明したが、本発明はこれに限定されるものではなく、雨水タンク19、及び、雨水駆動揚水ポンプ20がなくとも成立する。すなわち、雨水タンク19、雨水駆動揚水ポンプ20、及び、流路Iを省略し、流路Lが流路Iに合流するのではなく、上部タンク11に接続するものとすることもできる(ただし、既に説明したように、中部タンク12等を省略する場合は、流路Lではなく流路Jが上部タンク11に接続するようにする)。 Further, in this embodiment, the rainwater tank 19 and the rainwater-driven pump 20 are provided, but the present invention is not limited to this, and the rainwater tank 19 and the rainwater-driven pump are provided. It works even without 20. That is, the rainwater tank 19, the rainwater-driven pump 20, and the flow path I can be omitted, and the flow path L can be connected to the upper tank 11 instead of joining the flow path I (however, As already explained, when the middle tank 12 and the like are omitted, the flow path J instead of the flow path L is connected to the upper tank 11).
 以上が、本実施例に係る揚水発電システム1の構成についての説明である。以下では、本実施例に係る揚水発電システム1による処理の概要について、図2のフローチャートを用いて説明する。 The above is the description of the configuration of the pumped-storage power generation system 1 according to the present embodiment. Below, the outline of the processing by the pumped-storage power generation system 1 according to the present embodiment will be described using the flowchart of FIG. 2 .
 ステップS1では、外部からの水が給水器を通過し、上部タンク11、中部タンク12、下部タンク13にそれぞれ溜められる。なお、上部タンク11、中部タンク12、下部タンク13に溜められた水の温度が所定値を下回ると、それぞれ中部タンク用ヒータ22、下部タンク用ヒータ23が起動し、当該温度を上昇させる。 In step S1, water from outside passes through the water supply and is stored in the upper tank 11, middle tank 12, and lower tank 13, respectively. When the temperature of the water stored in the upper tank 11, the middle tank 12, and the lower tank 13 falls below a predetermined value, the middle tank heater 22 and the lower tank heater 23 are activated to raise the temperatures.
 ステップS2では、水位計LS1,LS2,LS3の計測に基づき、第1フルイダインポンプ17により、下部タンク13に溜められた水を中部タンク12に揚水するとともに、第2フルイダインポンプ18により、中部タンク12に溜められた水を上部タンク11に揚水することで、上部タンク11、中部タンク12、下部タンク13の水位を調整する。 In step S2, the water stored in the lower tank 13 is pumped by the first fluidyne pump 17 to the middle tank 12 based on the measurements of the water level gauges LS1, LS2, and LS3, and the second fluidyne pump 18 By pumping up the water stored in the tank 12 to the upper tank 11, the water levels of the upper tank 11, the middle tank 12 and the lower tank 13 are adjusted.
 ステップS2と並行して行われるステップS3では、雨水タンク19に溜められた雨水が流入することで、雨水駆動揚水ポンプ20が駆動し、下部タンク13に溜められた水を上部タンク11に揚水することができる。 In step S3, which is performed in parallel with step S2, the rainwater stored in the rainwater tank 19 flows into the rainwater-driven pump 20, and the water stored in the lower tank 13 is pumped up to the upper tank 11. be able to.
ステップS4では、上部タンク11に溜められた水が、主発電機15及び補発電機16に流入することで、主発電機15及び補発電機16により発電する。ただし、状況に応じて、閉仕切弁C1を開状態として、上部タンク11の水と中部タンク12からの水を併せて用いるようにしてもよく、あるいは、中部タンク12の水のみを用いるようにしてもよい。さらには、遮断弁FC4,FC5の開閉により、主発電機15、補発電機16のうち、一方を用いるようにしてもよい。ステップS4ではこのようにして水位調整を行う。なお、発電に用いられた水は下部タンク13に溜められる。
 以上が、本実施例に係る揚水発電システム1による処理の概要についての説明である。これにより本実施例に係る揚水発電システム1では、連続的な発電が可能となる。
In step S<b>4 , the water stored in the upper tank 11 flows into the main generator 15 and the auxiliary generator 16 to generate power. However, depending on the situation, the closed gate valve C1 may be opened and the water in the upper tank 11 and the water from the middle tank 12 may be used together, or only the water in the middle tank 12 may be used. may Furthermore, one of the main generator 15 and the auxiliary generator 16 may be used by opening and closing the cutoff valves FC4 and FC5. In step S4, the water level is adjusted in this way. Water used for power generation is stored in the lower tank 13 .
The above is an explanation of the outline of the processing by the pumped-storage power generation system 1 according to the present embodiment. As a result, the pumped-storage power generation system 1 according to the present embodiment enables continuous power generation.
本実施例に係る揚水発電システム1では、外部から水が供給され、当該水を溜めることができる中部タンク12と、鉛直方向において中部タンク12よりも下方に位置し、外部から水が供給され、当該水を溜めることができる下部タンク13と、鉛直方向において中部タンク12よりも下方に位置し、中部タンク12から流入する水により発電し、発電に用いた水を下部タンク13に排出する発電機(主発電機15のみ、あるいは、主発電機15補及び発電機16)と、下部タンク13の水を中部タンク12に揚水する第1フルイダインポンプ17とを備えているので、フルイダインポンプによって高効率で(カルノーサイクルの効率に近づけて)熱エネルギーを水の位置エネルギーへと変換することができる。また、水の位置エネルギーはタンクの位置関係に基づいて適切に設計された発電機によって高い発電効率で発電を行うことができる。 In the pumped-storage power generation system 1 according to the present embodiment, water is supplied from the outside, a central tank 12 that can store the water, and a central tank 12 that is positioned below the central tank 12 in the vertical direction and is supplied with water from the outside, A lower tank 13 capable of storing the water, and a generator located below the middle tank 12 in the vertical direction to generate electricity from the water flowing in from the middle tank 12 and discharge the water used for power generation to the lower tank 13. (main generator 15 only, or main generator 15 and auxiliary generator 16) and a first fluidyne pump 17 for pumping the water in the lower tank 13 to the middle tank 12, so that the fluidyne pump It can convert thermal energy into the potential energy of water with high efficiency (approaching the efficiency of the Carnot cycle). In addition, the potential energy of water can be generated with high power generation efficiency by a generator that is appropriately designed based on the positional relationship of the tank.
本実施例に係る揚水発電システム1では、さらに、鉛直方向において中部タンク12及び下部タンク13よりも上方に位置し、外部から水が供給され、当該水を溜めることができる上部タンク11と、中部タンク12の水を上部タンク11に揚水する第2フルイダインポンプ18とを備え、発電機(主発電機15のみ、あるいは、主発電機15補及び発電機16)は、上部タンク11から流入する水、及び、中部タンク12から流入する水により発電するので、さらに高い発電効率で発電を行うことができる。 The pumped-storage power generation system 1 according to the present embodiment further includes an upper tank 11 which is positioned above the middle tank 12 and the lower tank 13 in the vertical direction, is supplied with water from the outside, and can store the water. a second fluidic pump 18 for pumping the water in the tank 12 to the upper tank 11; Since power is generated using water and water flowing from the middle tank 12, power can be generated with even higher power generation efficiency.
 本実施例に係る揚水発電システム1では、さらに、各タンク11,12,13よりも上方に設けられ、雨水を溜めることができる雨水タンク19と、鉛直方向において雨水タンク19の下方に設けられ、雨水タンク19から流入する雨水により動力を得て駆動するポンプであり、下部タンク13の水を上部タンク11に揚水する雨水駆動揚水ポンプ20とを備えているので、自然状態において高い位置エネルギーを持つ雨水タンク19の雨水を動力に利用することで、さらに高い発電効率で発電を行うことができる。 In the pumped-storage power generation system 1 according to the present embodiment, a rainwater tank 19 is provided above the tanks 11, 12, and 13 and can store rainwater, and the rainwater tank 19 is provided below the rainwater tank 19 in the vertical direction, The pump is powered by the rainwater flowing from the rainwater tank 19 and is driven by the rainwater-driven pump 20 for pumping the water in the lower tank 13 to the upper tank 11, so it has high potential energy in the natural state. By using the rainwater in the rainwater tank 19 as power, it is possible to generate power with even higher power generation efficiency.
 本実施例に係る揚水発電システム1では、各タンク11,12,13に、水温計TT1,TT2,TT3、及び、タンク用ヒータ21,22,23が設けられているので、寒冷地などでタンク11,12,13内の水が凍ることを防ぐことができる。 In the pumped-storage power generation system 1 according to the present embodiment, the tanks 11, 12, 13 are provided with the water temperature gauges TT1, TT2, TT3 and the tank heaters 21, 22, 23. Water in 11, 12, 13 can be prevented from freezing.
[実施例2]
 本実施例に係る揚水発電システム2は、実施例1に係る揚水発電システム1の構成に加え、第1フルイダインポンプ17の高熱部17C(及び、第2フルイダインポンプ18の高熱部)に熱を与える送熱機構が備えられている。以下では、この送熱機構に着目して説明する。ただし、以下では第1フルイダインポンプ17の高熱部17C用の送熱機構について説明するが、第2フルイダインポンプ18の高熱部側にも同様の送熱機構が設けられるものとする。
[Example 2]
The pumped-storage power generation system 2 according to the present embodiment has the structure of the pumped-storage power generation system 1 according to the first embodiment, in which heat is applied to the high heat portion 17C of the first fluidyne pump 17 (and the high heat portion of the second fluidyne pump 18). is provided with a heat transfer mechanism that provides The heat transfer mechanism will be described below. However, although the heat transfer mechanism for the high heat portion 17C of the first fluidyne pump 17 will be described below, a similar heat transfer mechanism is provided on the high heat portion side of the second fluidyne pump 18 as well.
 図3に示すように、本実施例における送熱機構2Aは、主たる構成として、吸熱用ループヒートパイプ31、加熱部32、及び、放熱部33を備えている。このうち、加熱部32及び放熱部33は、吸熱用ループヒートパイプ31に設けられている(ただし、本実施例及び後述する実施例3においては、これをループヒートパイプではなくヒートパイプとしてもよい)。 As shown in FIG. 3, the heat transfer mechanism 2A in this embodiment includes a heat absorbing loop heat pipe 31, a heating section 32, and a heat radiating section 33 as main components. Of these, the heating portion 32 and the heat radiating portion 33 are provided in the endothermic loop heat pipe 31 (however, in this embodiment and a third embodiment described later, the heat pipe may be used instead of the loop heat pipe. ).
 加熱部32は、吸熱用ループヒートパイプ31中に熱を入力するものである。加熱部32は、例えば太陽光の熱を吸熱する真空管ヒートパイプから成るものとしてもよい。ただし、本発明はこれに限定されるものではなく、内燃機関などの排熱を加熱部32の入熱に充てても良い。 The heating unit 32 inputs heat into the endothermic loop heat pipe 31 . The heating unit 32 may be composed of, for example, a vacuum tube heat pipe that absorbs the heat of sunlight. However, the present invention is not limited to this, and exhaust heat from an internal combustion engine or the like may be applied to heat input to the heating unit 32 .
 また、第1フルイダインポンプ17の高熱部17Cは、吸熱用ループヒートパイプ31上に設けられている。これにより吸熱用ループヒートパイプ31から高熱部17Cに熱負荷を与えることができる。 Also, the high heat portion 17C of the first fluidyne pump 17 is provided on the loop heat pipe 31 for heat absorption. As a result, a heat load can be applied from the endothermic loop heat pipe 31 to the high heat portion 17C.
 放熱部33は、主たる構成として、第1放熱用ヒートシンク41、シリンダ42、ピストン43、放熱用ループヒートパイプ44、第2放熱用ヒートシンク45、第3放熱用ヒートシンク46、自動弁47、及び、電磁弁48を備え、吸熱用ループヒートパイプ31中の熱を放出することができる。 The heat radiation part 33 mainly includes a first heat radiation heat sink 41, a cylinder 42, a piston 43, a heat radiation loop heat pipe 44, a second heat radiation heat sink 45, a third heat radiation heat sink 46, an automatic valve 47, and an electromagnetic valve. A valve 48 is provided to allow the heat in the endothermic loop heat pipe 31 to be released.
 第1放熱用ヒートシンク41は、吸熱用ループヒートパイプ31上に設けられている(図3では高熱部17Cと離れて設けられているものとして記載しているが、実際にはほぼ同位置に設けられている。この点は後述する実施例3(図6)の第1放熱用ヒートシンク41と熱交換用ヒートシンク51との位置関係においても同様である)。また、シリンダ42及びピストン43は、吸熱用ループヒートパイプ31の熱を放熱用ループヒートパイプ44に伝達可能なものである。 The first heat radiation heat sink 41 is provided on the heat absorption loop heat pipe 31 (in FIG. 3, it is described as being provided apart from the high heat portion 17C, but in reality it is provided at substantially the same position). This point also applies to the positional relationship between the first heat sink 41 for heat radiation and the heat sink 51 for heat exchange in Example 3 (FIG. 6) described later). Further, the cylinder 42 and the piston 43 are capable of transmitting the heat of the endothermic loop heat pipe 31 to the heat radiating loop heat pipe 44 .
 なお、吸熱用ループヒートパイプ31は、加熱部32から高熱部17Cを通り第1放熱用ヒートシンク41までの区間が気相部となり、それ以外が液相部となる。 In addition, in the endothermic loop heat pipe 31, the section from the heating section 32 through the high heat section 17C to the first heat radiating heat sink 41 is the gas phase section, and the rest is the liquid phase section.
シリンダ42は、一端側と他端側との間(延伸方向中央付近)に、開口部42Aを有した筒状部材であり、開口部42Aより一端側の側壁42Bの一部が第1放熱用ヒートシンク41に接するようにして設けられている。また、側壁42Bにおける、第1放熱用ヒートシンク41との接触部分は、熱伝導材料により形成されているものとする。 The cylinder 42 is a cylindrical member having an opening 42A between one end and the other end (near the center in the extending direction). It is provided in contact with the heat sink 41 . Also, the contact portion of the side wall 42B with the first heat sink 41 is made of a thermally conductive material.
 ピストン43は、シリンダ42の内部に設けられており、ピストン用ヒートパイプ43A、第1ピストン用ヒートシンク43B、第2ピストン用ヒートシンク43C、仕切部材43D、及び、バネ43Eを備えている。 The piston 43 is provided inside the cylinder 42 and includes a piston heat pipe 43A, a first piston heat sink 43B, a second piston heat sink 43C, a partition member 43D, and a spring 43E.
 ピストン用ヒートパイプ43Aは、ピストン43の軸心と同軸上に延伸する直線形状のヒートパイプである。 The piston heat pipe 43A is a linear heat pipe extending coaxially with the axis of the piston 43.
第1ピストン用ヒートシンク43Bは、ピストン用ヒートパイプ43Aにおけるシリンダ42の一端側端部に設けられたヒートシンクである。 The first piston heat sink 43B is a heat sink provided at one end of the cylinder 42 in the piston heat pipe 43A.
第2ピストン用ヒートシンク43Cは、ピストン用ヒートパイプ43Aにおけるシリンダ42の他端側端部に設けられたヒートシンクである。 The second piston heat sink 43C is a heat sink provided at the other end of the cylinder 42 in the piston heat pipe 43A.
仕切部材43Dは、第1ピストン用ヒートシンク43Bにおけるシリンダ42の一端側端部に設けられ、シリンダ42の内周面に対し摺動するものである。この仕切部材43Dの表面側と裏面側とで、空気が遮蔽されている。 The partition member 43D is provided at one end of the cylinder 42 in the first piston heat sink 43B and slides on the inner peripheral surface of the cylinder 42 . The air is shielded between the front side and the back side of the partition member 43D.
バネ43Eは、第2ピストン用ヒートシンク43Cにおけるシリンダ42の他端側端部に設けられ、シリンダ42の他端面の内側との間に架設されている。 The spring 43E is provided at the end of the second piston heat sink 43C on the other end side of the cylinder 42 and spans between the inside of the other end surface of the cylinder 42 and the spring 43E.
 また、シリンダ42の一端(端面)には貫通孔42Cが設けられ、仕切部材43Dによって遮蔽されたシリンダ42の一端側の室Oは、貫通孔42Cにより第1放熱部用通気管VE5と連通している。 A through hole 42C is provided in one end (end surface) of the cylinder 42, and the chamber O on the one end side of the cylinder 42, which is shielded by the partition member 43D, communicates with the first heat radiating section ventilation pipe VE5 through the through hole 42C. ing.
 第1放熱部用通気管VE5は、一端が貫通孔42Cに接続し、他端が自動弁47を介して気体供給装置(図示略)に接続している。 One end of the first heat radiating section ventilation pipe VE5 is connected to the through hole 42C, and the other end is connected to the gas supply device (not shown) via the automatic valve 47.
 自動弁47は、電磁弁48の開閉動作により制御される。すなわち、電磁弁48が開状態になると、計装空気が供給され、これにより、自動弁47が開状態となる。一方、気体供給装置はサービスエアを供給するものである。すなわち、自動弁47が開状態となると、気体供給装置から室Oへサービスエアが供給される。 The automatic valve 47 is controlled by opening and closing operations of the electromagnetic valve 48 . That is, when the electromagnetic valve 48 is opened, the instrument air is supplied, thereby opening the automatic valve 47 . On the other hand, the gas supply device supplies service air. That is, service air is supplied to the chamber O from the gas supply device when the automatic valve 47 is opened.
 第3放熱用ヒートシンク46は、放熱用ループヒートパイプ44上に設けられている(ただし、本実施例及び後述する実施例3においては、これをループヒートパイプではなくヒートパイプとしてもよい)。シリンダ42は、開口部42Aより他端側の側壁42Dの一部が第3放熱用ヒートシンク46に接するようにして設けられている。また、側壁42Dにおける、第3放熱用ヒートシンク46との接触部分は、熱伝導材料により形成されているものとする。
第2放熱用ヒートシンク45は、放熱用ループヒートパイプ44上に設けられている。
The third heat sink 46 for heat radiation is provided on the loop heat pipe 44 for heat radiation (however, in this embodiment and a third embodiment described later, this may be a heat pipe instead of the loop heat pipe). The cylinder 42 is provided such that a portion of the side wall 42D on the other end side of the opening 42A is in contact with the third heat sink 46 for heat radiation. Also, the contact portion of the side wall 42D with the third heat sink 46 is made of a thermally conductive material.
The second heat sink 45 for heat dissipation is provided on the loop heat pipe 44 for heat dissipation.
 なお、シリンダ42は、一端側と他端側との間に開口部42Aを有するものとしたが、開口部42Aを有するのではなく、一端側と他端側が完全に離隔した2つの筒状部材からなるようにしてもよい。また、第1ピストン用ヒートシンク43Bに仕切部材43Dの機能を持たせるようにし、仕切部材43Dを省いてもよい。 Although the cylinder 42 has the opening 42A between the one end and the other end, the cylinder 42 does not have the opening 42A, and is composed of two cylindrical members with the one end and the other end completely separated from each other. It may consist of Alternatively, the function of the partition member 43D may be provided to the first piston heat sink 43B, and the partition member 43D may be omitted.
 すなわち、放熱部33は、送熱機構2Aに蓄積された熱を系外に放出可能とするものである。本実施例に係る揚水発電システム2を起動していない間においては、放熱部33により放熱しておく。これにより安全に運用することができる。また、放熱部33は、後述する温度センサTT6によって高熱部17Cの温度が異常に高くなった場合にも自動的に接続され、これにより安全な運転を行うことができる。 That is, the heat radiating section 33 can release the heat accumulated in the heat transfer mechanism 2A to the outside of the system. While the pumped-storage power generation system 2 according to the present embodiment is not activated, heat is radiated by the heat radiating section 33 . This allows safe operation. Further, the heat radiating section 33 is automatically connected even when the temperature of the high heat section 17C becomes abnormally high by a temperature sensor TT6, which will be described later, thereby enabling safe operation.
以上が、送熱機構2Aの構成についての説明である。ただし、放熱部33は、上述した機構の代わりに、第1放熱用ヒートシンク41と第3放熱用ヒートシンク46とを、例えば取っ手を取り付ける等により手動操作可能な熱伝導体にて接合状態と分離状態とに切り替えることで、放熱状態及び非放熱状態を実現するようにしてもよい。 The above is the description of the configuration of the heat transfer mechanism 2A. However, instead of the mechanism described above, the heat radiation part 33 is configured such that the first heat sink 41 and the third heat sink 46 are joined and separated by a thermal conductor that can be manually operated by, for example, attaching a handle. The heat dissipation state and the non-heat dissipation state may be realized by switching between and.
以下では、図4,5を用いて送熱機構2Aによる大まかな動作について説明する。なお、図4のステップS11~S15は、通常運転時のフローチャートであり、図5のステップS21~S24は、放熱運転時のフローチャートである。 Below, the general operation of the heat transfer mechanism 2A will be described with reference to FIGS. Note that steps S11 to S15 in FIG. 4 are a flowchart for normal operation, and steps S21 to S24 in FIG. 5 are a flowchart for heat dissipation operation.
 ステップS11では、電磁弁48が励磁され開状態となることで、計装空気が自動弁47に導かれ、自動弁47が開状態となる。 In step S11, the solenoid valve 48 is energized and opened, so that the instrumentation air is guided to the automatic valve 47, and the automatic valve 47 is opened.
 ステップS12では、第1放熱部用通気管VE5を通じてサービスエアが室O内に供給され、第1ピストン用ヒートシンク43Bがシリンダ42の他端側に押圧されることで、第1ピストン用ヒートシンク43Bと第1放熱用ヒートシンク41とが、シリンダ42の軸心方向において離隔状態となる。 In step S12, service air is supplied into the chamber O through the first heat radiating section vent pipe VE5, and the first piston heat sink 43B is pressed against the other end side of the cylinder 42, thereby causing the first piston heat sink 43B and the The first heat sink for heat radiation 41 is separated from the first heat sink 41 in the axial direction of the cylinder 42 .
 ステップS13では、加熱部32により入力された熱量が、吸熱用ループヒートパイプ31に伝達される。 In step S13, the amount of heat input from the heating unit 32 is transmitted to the loop heat pipe 31 for endothermic absorption.
 ステップS14では、吸熱用ループヒートパイプ31により第1フルイダインポンプ17の高熱部17Cに熱負荷を与える。 In step S14, a heat load is applied to the high heat portion 17C of the first fluidyne pump 17 by the loop heat pipe 31 for heat absorption.
 ステップS15では、第1フルイダインポンプ17が駆動し、実施例1にて説明した図2のステップS2のとおり発電する。 In step S15, the first fluidyne pump 17 is driven to generate power as in step S2 of FIG. 2 described in the first embodiment.
 一方、ステップS21では、電磁弁48(3方弁)が非励磁となり二次側の計装空気配管は大気圧となる。そして単作動の自動弁47が閉状態となる。 On the other hand, in step S21, the electromagnetic valve 48 (three-way valve) is de-energized, and the secondary side instrumentation air pipe becomes atmospheric pressure. Then, the single-acting automatic valve 47 is closed.
 ステップS22では、第1放熱部用通気管VE5を通じてサービスエアが室Oから排出され、ばね43Eの力によってピストン43が動き、第1ピストン用ヒートシンク43Bがシリンダ42の他端側に押圧されることで、第1ピストン用ヒートシンク43Bと第1放熱用ヒートシンク41とが、シリンダ42の軸心方向において重複状態となる。 In step S22, the service air is discharged from the chamber O through the first heat radiator vent pipe VE5, the piston 43 is moved by the force of the spring 43E, and the first piston heat sink 43B is pressed against the other end side of the cylinder 42. Thus, the first piston heat sink 43B and the first heat radiation heat sink 41 overlap each other in the axial direction of the cylinder 42 .
 ステップS23(吸熱用ループヒートパイプ31からシリンダ42及びピストン43へ伝熱)では、吸熱用ループヒートパイプ31中の熱が、第1放熱用ヒートシンク41から、側壁42Bの熱伝導材料部分を介して第1ピストン用ヒートシンク43Bに伝達される。第1ピストン用ヒートシンク43Bに伝達された熱は、ピストン用ヒートパイプ43A、第2ピストン用ヒートシンク43Cへと伝わる。 In step S23 (heat transfer from the endothermic loop heat pipe 31 to the cylinder 42 and the piston 43), the heat in the endothermic loop heat pipe 31 is transferred from the first heat radiating heat sink 41 through the heat conductive material portion of the side wall 42B. It is transmitted to the first piston heat sink 43B. The heat transmitted to the first piston heat sink 43B is transmitted to the piston heat pipe 43A and the second piston heat sink 43C.
 ステップS24(シリンダ42及びピストン43から放熱用ループヒートパイプ44へ伝熱)では、第2ピストン用ヒートシンク43Cの熱が、側壁42Dの熱伝導材料分を介して第3放熱用ヒートシンク46、そして放熱用ループヒートパイプ44に伝達され、その後、放熱用ループヒートパイプ44上の第2放熱用ヒートシンク45から外部へ放熱される。
以上が、本実施例に係る揚水発電システム2による大まかな動作の説明である。
In step S24 (heat transfer from the cylinder 42 and the piston 43 to the heat radiation loop heat pipe 44), the heat of the second piston heat sink 43C is transferred to the third heat radiation heat sink 46 through the heat conductive material of the side wall 42D, and then to the heat radiation. After that, the heat is radiated to the outside from the second heat sink 45 on the loop heat pipe 44 for heat dissipation.
The above is the general description of the operation of the pumped-storage power generation system 2 according to the present embodiment.
 本実施例に係る揚水発電システム2では、第1フルイダインポンプ17の高熱部17C(及び、第2フルイダインポンプ18の高熱部)に熱負荷を与えることができる吸熱用ループヒートパイプ31と、吸熱用ループヒートパイプ31に熱を入力する加熱部32と、吸熱用ループヒートパイプ31から熱を放出することができる放熱部33とを備えているので、実施例1で説明した第1フルイダインポンプ17(第2フルイダインポンプ18)を簡便に駆動することができるとともに、吸熱用ループヒートパイプ31中の不要な熱を外部に放出することができる。 In the pumped-storage power generation system 2 according to the present embodiment, a heat absorption loop heat pipe 31 capable of applying a heat load to the high heat portion 17C of the first fluidyne pump 17 (and the high heat portion of the second fluidyne pump 18), Since the heating portion 32 for inputting heat to the endothermic loop heat pipe 31 and the heat radiating portion 33 for releasing heat from the endothermic loop heat pipe 31 are provided, the first fluidyne as described in the first embodiment is provided. The pump 17 (second fluidyne pump 18) can be easily driven, and unnecessary heat in the endothermic loop heat pipe 31 can be released to the outside.
本実施例に係る揚水発電システム2では、放熱部33は、熱を放出する第2放熱用ヒートシンク45を有する放熱用ループヒートパイプ44と、吸熱用ループヒートパイプ31の熱を放熱用ループヒートパイプ44に伝達可能なシリンダ42及びピストン43とを備えているので、簡便に放熱することができる。 In the pumped-storage power generation system 2 according to the present embodiment, the heat dissipation unit 33 includes a heat dissipation loop heat pipe 44 having a second heat dissipation heat sink 45 for dissipating heat, and a heat dissipation loop heat pipe 44 for dissipating heat from the heat absorption loop heat pipe 31 . Since the cylinder 42 and the piston 43 that can be transmitted to 44 are provided, heat can be easily dissipated.
[実施例3]
 本実施例に係る揚水発電システム3は、実施例2における送熱機構の一部を変更したものである。以下、実施例2と重複する部分は極力省略し、相違する部分を中心に説明する。ただし、以下では第1フルイダインポンプ17の高熱部17C用の送熱機構について説明するが、第2フルイダインポンプ18の高熱部側にも同様の送熱機構が設けられるものとする。
[Example 3]
A pumped-storage power generation system 3 according to this embodiment is obtained by partially changing the heat transfer mechanism in the second embodiment. In the following, parts overlapping with the second embodiment will be omitted as much as possible, and different parts will be mainly described. However, although the heat transfer mechanism for the high heat portion 17C of the first fluidyne pump 17 will be described below, a similar heat transfer mechanism is provided on the high heat portion side of the second fluidyne pump 18 as well.
 実施例2では、第1フルイダインポンプ17(第2フルイダインポンプ18)の高熱部17Cが吸熱用ループヒートパイプ31上に設けられているものとしたが、図6に示すように、本実施例における送熱機構3Aでは、その代わりに熱交換用ヒートシンク51が設けられている。 In the second embodiment, the high heat portion 17C of the first fluidyne pump 17 (second fluidyne pump 18) is provided on the endothermic loop heat pipe 31. However, as shown in FIG. In the heat transfer mechanism 3A in the example, a heat exchange heat sink 51 is provided instead.
熱交換用ヒートシンク51は、吸熱用ループヒートパイプ31と環状パイプ52とを架設するようにして設置されている。 The heat exchange heat sink 51 is installed so as to bridge the endothermic loop heat pipe 31 and the annular pipe 52 .
環状パイプ52には、さらに圧縮ポンプ53、減圧弁54、及び、高熱部17Cが設けられ、高熱部17Cに熱負荷を与えることができる。なお、熱交換用ヒートシンク51、及び、環状パイプ52の各部材間には、それぞれ温度センサTT6~TT9が設けられている。 The annular pipe 52 is further provided with a compression pump 53, a pressure reducing valve 54, and a high heat section 17C, so that a heat load can be applied to the high heat section 17C. Temperature sensors TT6 to TT9 are provided between the members of the heat exchange heat sink 51 and the annular pipe 52, respectively.
 熱交換用ヒートシンク51は、吸熱用ループヒートパイプ31の熱を環状パイプ52に伝達するものである。また、環状パイプ52内は圧縮ポンプ53により熱媒体が循環している。吸熱用ループヒートパイプ31から熱交換用ヒートシンク51に伝達された熱は、この熱媒体に与えられる。 The heat exchange heat sink 51 transfers heat from the endothermic loop heat pipe 31 to the annular pipe 52 . A heat medium is circulated in the annular pipe 52 by a compression pump 53 . The heat transferred from the endothermic loop heat pipe 31 to the heat exchange heat sink 51 is given to this heat medium.
 また、圧縮ポンプ53により、環状パイプ52内の熱媒体はさらに加熱され、その下流側にある第1フルイダインポンプ17(第2フルイダインポンプ18)の高熱部17Cに熱負荷を与えることができる。 Further, the heat medium in the annular pipe 52 is further heated by the compression pump 53, and a heat load can be applied to the high heat portion 17C of the first fluidy-in pump 17 (second fluidy-in pump 18) on the downstream side. .
 減圧弁54は、第1フルイダインポンプ17の高熱部17Cよりも下流側に設けられている。背圧弁54の圧縮ポンプ53で加圧された熱媒体が減圧弁54の一次側まで高圧状態を保ち、減圧弁54の二次側にて膨張させることで熱媒体の温度が低下し、吸熱用ループヒートパイプ31から熱媒体に効率よく熱を移動させる。
 以上が、本実施例における送熱機構3Aの構成の一部についての説明である。
The pressure reducing valve 54 is provided downstream of the high heat portion 17</b>C of the first fluidy-in pump 17 . The heat medium pressurized by the compression pump 53 of the back pressure valve 54 maintains a high pressure state up to the primary side of the pressure reducing valve 54, and expands on the secondary side of the pressure reducing valve 54, thereby lowering the temperature of the heat medium. To efficiently transfer heat from a loop heat pipe 31 to a heat medium.
The above is a description of part of the configuration of the heat transfer mechanism 3A in this embodiment.
 このようにして本実施例に係る揚水発電システム3では、圧縮ポンプ53を有し、第1フルイダインポンプ17の高熱部17C(及び、第2フルイダインポンプ18の高熱部)に熱負荷を与えることができる環状パイプ52と、熱交換用ヒートシンク51を介して環状パイプ52に熱が伝達される吸熱用ループヒートパイプ31と、吸熱用ループヒートパイプ31に熱を入力する加熱部32と、吸熱用ループヒートパイプ31から熱を放出することができる放熱部33とを備えているので、実施例2の作用効果に加え、装置を自動化させるにあたって、安定して装置を動かし続けることが可能となる。また、圧縮ポンプ53を設けることで加熱部32からフルイダインポンプ17,18へ与えられる熱量を増加させることができる。 In this way, the pumped-storage power generation system 3 according to this embodiment has the compression pump 53, and applies heat load to the high heat portion 17C of the first fluidyne pump 17 (and the high heat portion of the second fluidyne pump 18). a heat-absorbing loop heat pipe 31 through which heat is transferred to the annular pipe 52 via the heat exchange heat sink 51; a heating unit 32 that inputs heat to the heat-absorbing loop heat pipe 31; Since it is equipped with a heat radiating part 33 capable of radiating heat from the loop heat pipe 31, in addition to the effects of the second embodiment, when automating the device, it is possible to keep the device running stably. . Also, by providing the compression pump 53, the amount of heat given from the heating unit 32 to the fluidyne pumps 17 and 18 can be increased.
 本発明は、揚水発電システムとして好適である。 The present invention is suitable as a pumped-storage power generation system.
1~3 揚水発電システム
2A,3A 送熱機構
11 上部タンク
12 中部タンク
13 下部タンク
14 純水器
15 主発電機
16 補発電機
17 第1フルイダインポンプ
17A 第1管片
17B 第2管片
17BA 熱再生機
17BB 遮断弁
17C 高熱部
17D 冷却部
17E,17F フルイダインポンプ用逆止弁
18 第2フルイダインポンプ
19 雨水タンク
20 雨水駆動揚水ポンプ
21 上部タンク用ヒータ
22 中部タンク用ヒータ
23 下部タンク用ヒータ
31 吸熱用ループヒートパイプ
32 加熱部
33 放熱部
41 第1放熱用ヒートシンク
42 シリンダ
42A 開口部
42B (一端側の)側壁
42C 貫通孔
42D (他端側の)側壁
43 ピストン
43A ピストン用ヒートパイプ
43B 第1ピストン用ヒートシンク
43C 第2ピストン用ヒートシンク
43D 仕切部材
43E バネ
44 放熱用ループヒートパイプ
45 第2放熱用ヒートシンク
46 第3放熱用ヒートシンク
47 自動弁
48 電磁弁
51 熱交換用ヒートシンク
52 環状パイプ
53 圧縮ポンプ
54 減圧弁
1 to 3 pumped storage power generation system 2A, 3A heat transfer mechanism 11 upper tank 12 middle tank 13 lower tank 14 water purifier 15 main generator 16 auxiliary generator 17 first fluidic pump 17A first pipe piece 17B second pipe piece 17BA Heat regenerator 17BB Shutoff valve 17C High heat section 17D Cooling section 17E, 17F Fluidyne pump check valve 18 Second fluidyne pump 19 Rainwater tank 20 Rainwater driven pump 21 Upper tank heater 22 Middle tank heater 23 Lower tank Heater 31 Endothermic loop heat pipe 32 Heating unit 33 Heat radiating unit 41 First heat sink 42 for heat radiating Cylinder 42A Opening 42B Side wall 42C (on one end) Through hole 42D Side wall 43 (on the other end) Piston 43A Piston heat pipe 43B First piston heat sink 43C Second piston heat sink 43D Partition member 43E Spring 44 Radiation loop heat pipe 45 Second radiation heat sink 46 Third radiation heat sink 47 Automatic valve 48 Solenoid valve 51 Heat exchange heat sink 52 Annular pipe 53 Compression Pump 54 Pressure reducing valve

Claims (11)

  1. 外部から水が供給され、当該水を溜めることができる中部タンクと、
    鉛直方向において前記中部タンクよりも下方に位置し、外部から水が供給され、当該水を溜めることができる下部タンクと、
    鉛直方向において前記中部タンクよりも下方に位置し、前記中部タンクから流入する水により発電し、発電に用いた水を前記下部タンクに排出する発電機と、
    前記下部タンクの水を前記中部タンクに揚水する1つ以上の第1フルイダインポンプ又は第1スターリングエンジンとを備える
     ことを特徴とする揚水発電システム。
    a central tank to which water is supplied from the outside and which can store the water;
    a lower tank positioned below the middle tank in the vertical direction, supplied with water from the outside, and capable of storing the water;
    a generator positioned below the middle tank in the vertical direction, generating electricity from water flowing in from the middle tank, and discharging the water used for power generation to the lower tank;
    A pumped storage power generation system comprising: one or more first fluidyne pumps or first Stirling engines for pumping water in the lower tank to the middle tank.
  2. 鉛直方向において前記中部タンク及び前記下部タンクよりも上方に位置し、外部から水が供給され、当該水を溜めることができる上部タンクと、
     前記中部タンクの水を前記上部タンクに揚水する1つ以上の第2フルイダインポンプ又は第2スターリングエンジンとを備え、
     前記発電機は、前記上部タンクから流入する水、及び、前記中部タンクから流入する水により発電する
     ことを特徴とする請求項1に記載の揚水発電システム。
    an upper tank positioned above the middle tank and the lower tank in the vertical direction, supplied with water from the outside, and capable of storing the water;
    one or more second fluidyne pumps or a second Stirling engine for pumping water from the middle tank to the upper tank;
    2. The pumped-storage power generation system according to claim 1, wherein the generator generates power using water flowing in from the upper tank and water flowing in from the middle tank.
  3.  各前記タンクよりも上方に設けられ、雨水を溜めることができる雨水タンクと、
    鉛直方向において前記雨水タンクの下方に設けられ、前記雨水タンクから流入する雨水により動力を得て駆動するポンプであり、前記下部タンクの水を前記上部タンクに揚水する雨水駆動揚水ポンプとを備える
     ことを特徴とする請求項2に記載の揚水発電システム。
    a rainwater tank provided above each of the tanks and capable of storing rainwater;
    a rainwater-driven pump, which is installed vertically below the rainwater tank, is driven by rainwater flowing from the rainwater tank, and pumps water from the lower tank to the upper tank; The pumped-storage power generation system according to claim 2, characterized by:
  4.  前記フルイダインポンプの高熱部に熱負荷を与えることができる吸熱用ループヒートパイプと、
    前記吸熱用ループヒートパイプに熱を入力する加熱部と、
    前記吸熱用ループヒートパイプから熱を放出することができる放熱部とを備える
     ことを特徴とする請求項1から3のいずれか1項に記載の揚水発電システム。
    an endothermic loop heat pipe capable of applying a heat load to a high-heat portion of the fluidyne pump;
    a heating unit that inputs heat to the endothermic loop heat pipe;
    The pumped-storage power generation system according to any one of Claims 1 to 3, further comprising a heat radiating section capable of radiating heat from the endothermic loop heat pipe.
  5.  圧縮ポンプを有し、前記フルイダインポンプの高熱部に熱負荷を与えることができる環状パイプと、
     熱交換用ヒートシンクを介して前記環状パイプに熱が伝達される吸熱用ループヒートパイプと、
    前記吸熱用ループヒートパイプに熱を入力する加熱部と、
    前記吸熱用ループヒートパイプから熱を放出することができる放熱部とを備える
     ことを特徴とする請求項1から3のいずれか1項に記載の揚水発電システム。
    an annular pipe having a compression pump and capable of applying a heat load to the hot section of the fluidyne pump;
    a heat-absorbing loop heat pipe that transfers heat to the annular pipe via a heat-exchanging heat sink;
    a heating unit that inputs heat to the endothermic loop heat pipe;
    The pumped-storage power generation system according to any one of Claims 1 to 3, further comprising a heat radiating section capable of radiating heat from the endothermic loop heat pipe.
  6.  前記放熱部は、
     熱を放出する第2放熱用ヒートシンクを有する放熱用ループヒートパイプと、
     前記吸熱用ループヒートパイプの熱を前記放熱用ループヒートパイプに伝達可能なシリンダ及びピストンとを備える
    ことを特徴とする請求項4又は5に記載の揚水発電システム。
    The heat dissipation part is
    a heat dissipating loop heat pipe having a second heat dissipating heat sink for dissipating heat;
    6. The pumped-storage power generation system according to claim 4, further comprising a cylinder and a piston capable of transmitting heat of said heat-absorbing loop heat pipe to said heat-releasing loop heat pipe.
  7.  スターリングエンジン又はフルイダインポンプと、
    前記スターリングエンジン又は前記フルイダインポンプの高熱部に熱負荷を与えることができる吸熱用ループヒートパイプと、
    前記吸熱用ループヒートパイプに熱を入力する加熱部とを備える
     ことを特徴とする外燃機関。
    a Stirling engine or fluidyne pump;
    a heat-absorbing loop heat pipe capable of applying a heat load to a high-heat portion of the Stirling engine or the fluidyne pump;
    An external combustion engine, comprising: a heating section that inputs heat to the endothermic loop heat pipe.
  8.  スターリングエンジン又はフルイダインポンプと、
     圧縮ポンプを有し、前記スターリングエンジン又は前記フルイダインポンプの高熱部に熱負荷を与えることができる環状パイプと、
     熱交換用ヒートシンクを介して前記環状パイプに熱が伝達される吸熱用ループヒートパイプと、
    前記吸熱用ループヒートパイプに熱を入力する加熱部とを備える
     ことを特徴とする外燃機関。
    a Stirling engine or fluidyne pump;
    an annular pipe having a compression pump and capable of applying a heat load to the hot section of the Stirling engine or the fluidyne pump;
    a heat-absorbing loop heat pipe that transfers heat to the annular pipe via a heat-exchanging heat sink;
    An external combustion engine, comprising: a heating section that inputs heat to the endothermic loop heat pipe.
  9. 前記吸熱用ループヒートパイプから熱を放出することができる放熱部を備える
     ことを特徴とする請求項7又は8に記載の外燃機関。
    The external combustion engine according to claim 7 or 8, further comprising a heat radiating section capable of radiating heat from the endothermic loop heat pipe.
  10.  流路に連通するフルイダインポンプと、
    前記流路のうち前記フルイダインポンプとの接続箇所よりも下流側に設けられる流量調整弁とを備える
     ことを特徴とする外燃機関。
    a fluidyne pump in communication with the flow path;
    An external combustion engine, comprising: a flow regulating valve provided downstream of a connection point with the fluidine pump in the flow path.
  11.  流路に連通するフルイダインポンプと、
    雨水タンクの鉛直方向下方に設けられ、当該雨水タンクから流入する雨水により動力を得て駆動するポンプであり、前記流路に設けられる雨水駆動循環ポンプとを備える
     ことを特徴とする揚水発電システム。
    a fluidyne pump in communication with the flow path;
    A pumped-storage power generation system, comprising: a rainwater-driven circulation pump provided in the flow path, which is a pump provided vertically below a rainwater tank and driven by rainwater flowing from the rainwater tank.
PCT/JP2021/005455 2021-02-15 2021-02-15 Stirling engine, fluidyne pump, heat engine, and pumped-storage electricity generating system WO2022172434A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022581142A JPWO2022172434A1 (en) 2021-02-15 2021-02-15
PCT/JP2021/005455 WO2022172434A1 (en) 2021-02-15 2021-02-15 Stirling engine, fluidyne pump, heat engine, and pumped-storage electricity generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005455 WO2022172434A1 (en) 2021-02-15 2021-02-15 Stirling engine, fluidyne pump, heat engine, and pumped-storage electricity generating system

Publications (1)

Publication Number Publication Date
WO2022172434A1 true WO2022172434A1 (en) 2022-08-18

Family

ID=82838545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005455 WO2022172434A1 (en) 2021-02-15 2021-02-15 Stirling engine, fluidyne pump, heat engine, and pumped-storage electricity generating system

Country Status (2)

Country Link
JP (1) JPWO2022172434A1 (en)
WO (1) WO2022172434A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131426A (en) * 1977-04-22 1978-11-16 Hitachi Ltd Operation control method and equipment for water wheel
JPS5996487A (en) * 1982-11-24 1984-06-02 Tadao Ikejiri Hydraulic power generating system utilizing solar heat for pumping-up of water
JPS6062351A (en) * 1983-09-16 1985-04-10 株式会社長谷川工務店 Water discharge system by rain water utilizing electricity generation
US20080250788A1 (en) * 2007-04-13 2008-10-16 Cool Energy, Inc. Power generation and space conditioning using a thermodynamic engine driven through environmental heating and cooling
JP2015034544A (en) * 2013-07-09 2015-02-19 株式会社アルファプラスパワー Energy system using external combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131426A (en) * 1977-04-22 1978-11-16 Hitachi Ltd Operation control method and equipment for water wheel
JPS5996487A (en) * 1982-11-24 1984-06-02 Tadao Ikejiri Hydraulic power generating system utilizing solar heat for pumping-up of water
JPS6062351A (en) * 1983-09-16 1985-04-10 株式会社長谷川工務店 Water discharge system by rain water utilizing electricity generation
US20080250788A1 (en) * 2007-04-13 2008-10-16 Cool Energy, Inc. Power generation and space conditioning using a thermodynamic engine driven through environmental heating and cooling
JP2015034544A (en) * 2013-07-09 2015-02-19 株式会社アルファプラスパワー Energy system using external combustion engine

Also Published As

Publication number Publication date
JPWO2022172434A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP4891318B2 (en) Thermoelectric generator with intermediate loop
JP4441091B2 (en) Exhaust heat energy recovery device for internal combustion engine
JP5028521B2 (en) Auxiliary heat exchange for high pressure gas tank
CN101128952B (en) Method of using hydrogen storage tank and hydrogen storage tank
JP6243669B2 (en) Compressed air cooling device for fuel cell system
RU2010129500A (en) ELECTRIC HEATING DEVICE INCLUDING A THERMOELECTRIC GENERATOR
CN108099658B (en) A kind of heat management system and electric car
CN107394072B (en) Thermal management system of power battery and hybrid electric vehicle
CN113611895A (en) Fuel cell cooling system and method based on cooling coupling heat control
WO2022172434A1 (en) Stirling engine, fluidyne pump, heat engine, and pumped-storage electricity generating system
CN108709177B (en) Loop heat pipe steam generator with medicine fumigation and washing treatment function
CN102418585A (en) Cooling system for safe running of engine
RU2012140040A (en) GENERATOR
TW201005239A (en) Solar energy collection and storing sysetm
JP4128054B2 (en) Fuel cell system and operating method thereof
JP2007154792A (en) Energy recovery device of internal combustion engine
JP2008115795A (en) Heat storage device
WO2012123934A2 (en) Solar energy system
RU2131987C1 (en) Hear-transfer apparatus using stirling-cycle principle
JP2013208002A (en) Power generation system with heat storage section
WO2013038563A1 (en) Solar thermal power generation facility, solar thermal power generation method, heat medium supply device, and heat medium heating device
JP2015203515A (en) Solar heat storage system
CN212720471U (en) Single water pump circulation system of cold and heat exchange
JP4548515B2 (en) External combustion engine
TWI814035B (en) Heat storage and pressure storage cycle power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581142

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925685

Country of ref document: EP

Kind code of ref document: A1