WO2022172426A1 - Ozone generator and ozone generation method - Google Patents

Ozone generator and ozone generation method Download PDF

Info

Publication number
WO2022172426A1
WO2022172426A1 PCT/JP2021/005421 JP2021005421W WO2022172426A1 WO 2022172426 A1 WO2022172426 A1 WO 2022172426A1 JP 2021005421 W JP2021005421 W JP 2021005421W WO 2022172426 A1 WO2022172426 A1 WO 2022172426A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
discharge
gas
discharge space
space portion
Prior art date
Application number
PCT/JP2021/005421
Other languages
French (fr)
Japanese (ja)
Inventor
昌樹 葛本
太一郎 民田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180069759.3A priority Critical patent/CN116724668A/en
Priority to PCT/JP2021/005421 priority patent/WO2022172426A1/en
Priority to JP2021531711A priority patent/JP7019872B1/en
Priority to JP2021167175A priority patent/JP7154363B2/en
Publication of WO2022172426A1 publication Critical patent/WO2022172426A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • This application relates to an ozone generator and an ozone generation method.
  • An ozone generator that generates ozone using a discharge generated in a discharge space between a high-voltage electrode and a ground electrode is known (for example, Patent Document 1).
  • This ozone generator causes electron collisions with oxygen gas (O 2 ) in a discharge space to generate ozone (O 3 ).
  • oxygen radicals (O) are generated by dissociation from oxygen gas (O 2 ) that has undergone electron collision (O 2 +e ⁇ O+O+e, where e indicates an electron).
  • the generated oxygen radicals combine with oxygen gas present in the surroundings to generate ozone (O 3 ) (O+O 2 +M ⁇ O 3 +M, where M indicates the third body).
  • the ozone decomposition reaction (O 3 +e ⁇ O+O 2 +e) can also proceed. If the ozone decomposition reaction progresses with respect to the generated ozone, the efficiency of generating ozone generated by the ozone generator may decrease.
  • the present application has been made in view of the above circumstances, and aims to provide an ozone generator and method capable of suppressing a decrease in ozone generation efficiency.
  • An ozone generator is an ozone generator that generates ozone using a gas containing oxygen that is introduced in the gas flow direction, and includes a discharge space portion that causes electron collision with the gas by discharge. a derivation part for deriving generated ozone converted from oxygen contained in the gas by electron collision in the discharge space part; and a decomposition reaction suppression mechanism for suppressing the decomposition reaction of the generated ozone by electron collision.
  • An ozone generating method is a method of generating ozone using a gas containing oxygen introduced in the direction of gas flow, and causes electron collisions with the gas in a discharge space portion by discharge.
  • a discharge step a derivation step of deriving from the derivation portion ozone generated by electron collision in the discharge space portion, which is converted from oxygen contained in the gas, and suppressing the decomposition reaction in which the generated ozone is decomposed by the electron collision.
  • a decomposition reaction suppression step of suppressing using a mechanism is a method of generating ozone using a gas containing oxygen introduced in the direction of gas flow, and causes electron collisions with the gas in a discharge space portion by discharge.
  • FIG. 1 is a schematic diagram showing the configuration of an ozone generator according to Embodiment 1.
  • FIG. 4 is a graph showing the relationship between changes in gas pressure P and conversion time ⁇ from oxygen radicals to ozone.
  • FIG. FIG. 4 is a schematic diagram showing the configuration of an ozone generator according to Embodiment 2;
  • FIG. 11 is an explanatory diagram showing the relationship between the waveform of power supply output and discharge power in Embodiment 2;
  • FIG. 1 is a schematic diagram showing the configuration of an ozone generator according to Embodiment 1.
  • the ozone generator 10 comprises a high frequency power source 1, a high voltage electrode 2, a ground electrode 3, a high voltage side dielectric 4 and a ground side dielectric 5, as shown in FIG. Further, the ozone generator 10 introduces a gas containing oxygen gas, which is a raw material for generating ozone, from left to right on the page of FIG. Lead out in lead-out direction 55 .
  • a high frequency power supply 1 is connected to a high voltage electrode 2 and a ground electrode 3 and applies a high frequency voltage between the high voltage electrode 2 and the ground electrode 3 .
  • the high voltage electrode 2 and the ground electrode 3 are made of metal, for example.
  • the high voltage side dielectric 4 and the ground side dielectric 5 are made of, for example, an alumina ceramic plate.
  • the high-voltage electrode 2 has a width of Ld along the gas introduction direction 54 of the gas containing oxygen gas, and extends toward the back of the paper surface of FIG. 1 perpendicular to the gas introduction direction 54. It is an electrode member extending with a length Lw. As shown in FIG. 1, the high-voltage electrode 2 is connected to a high-voltage side dielectric 4, which will be described later, at the bottom of FIG.
  • the ground electrode 3 has a width Ld along the gas introduction direction 54 of the oxygen gas-containing gas, and extends toward the back of the paper surface of FIG. 1 perpendicular to the gas introduction direction 54. It is an electrode member extending with a length Lw. One end of the ground electrode 3 is grounded, and the ground electrode 3 is arranged so as to face the high-voltage electrode 2 while being spaced apart in the vertical direction with respect to the plane of FIG. Furthermore, as shown in FIG. 1, the ground electrode 3 is connected to the ground side dielectric 5 described later in the upper part of FIG. are placed facing each other.
  • the high voltage side dielectric 4 and the ground side dielectric 5 are arranged so as to be vertically separated from each other by a separation distance d with respect to the plane of FIG.
  • a space between the high-voltage side dielectric 4 and the ground side dielectric 5 functions as a discharge space portion, which will be described later. That is, a discharge electrode in which the high voltage electrode 2 is provided on a portion of one surface of the high voltage side dielectric 4 and a discharge electrode in which the ground electrode 3 is provided on a portion of one surface of the ground side dielectric 5 are provided.
  • An ozone generation unit 11 is configured by arranging the high-voltage side dielectric 4 and the ground side dielectric 5 so that the other surfaces face each other.
  • the high-voltage side dielectric 4 and the ground side dielectric 5 are separated from each other by a value larger than d in the vertical direction with respect to the plane of FIG. 1, a discharge space portion 52 with a separation distance d in the vertical direction of the paper surface of FIG.
  • An enlarged portion 53 in which the separation distance in the vertical direction with respect to the plane of the paper is enlarged from d to a value larger than d in the gas lead-out direction 55, and expands the flow of the gas flowing out from the discharge space portion 52 to be led out.
  • the reduced portion 51 has, for example, a reduced angle of 45 degrees.
  • the enlarged portion 53 has, for example, an enlarged angle of 10 degrees.
  • the reduced portion 51 functions as an example of an introduction portion for introducing gas
  • the expanded portion 53 functions as an example of an extraction portion for extracting ozone.
  • the ozone generator 10 of the present embodiment is an ozone generator in which a pair of discharge electrodes each having a metal electrode provided on a part of one surface of a dielectric are arranged with the other surface of the dielectric facing each other. It has a generating unit 11 and a high frequency power supply 1 for applying voltage to metal electrodes.
  • the ozone generating unit 11 has a gas flow path through which gas containing oxygen flows between the pair of discharge electrodes, and the distance between the other surfaces of the dielectric is the largest at the portion where the metal electrode is provided. It is narrow and widens upstream and downstream of the gas flow path.
  • the discharge space portion 52 is a space in which discharge plasma is generated when the high-frequency power supply 1 applies a high voltage to the high-voltage electrode 2 and the ground electrode 3 .
  • the discharge space portion 52 is a space having length, width and height Ld, Lw and d, which will be described later.
  • the high-voltage electrode 2 is arranged so that the width Ld portion of the high-voltage electrode 2 faces the width Ld portion forming the discharge space portion 52 of the high-voltage side dielectric 4 .
  • the ground electrode 3 is arranged so that the width Ld portion of the ground electrode 3 faces the width Ld portion forming the discharge space portion 52 of the ground-side dielectric 5 .
  • the discharge space of the contracted portion 51, the discharge space portion 52, and the expanded portion 53 which are the spaces formed by the high voltage side dielectric 4 and the ground side dielectric 5, is reduced.
  • the portion 52 is configured to generate electron collisions by electric discharge.
  • the length Ld of the high-voltage side dielectric 4 and the ground side dielectric 5 is greater than the length Lw of the extension direction perpendicular to the gas introduction direction 54 in the gas introduction direction 54 . is designed to be small.
  • the length Ld in the gas introduction direction 54 is 1/10 or less of the length Lw in the extending direction perpendicular to the gas introduction direction 54 .
  • the distance d between the high voltage side dielectric 4 and the ground side dielectric 5 is set to 0.2 mm or less.
  • the ozone generator 10 can shorten the time during which the generated ozone stays in the discharge space portion 52, as will be described later, with a relatively simple configuration. It becomes a device capable of suppressing a decrease in ozone generation efficiency. Therefore, such a configuration including the high voltage side dielectric 4 and the ground side dielectric 5 functions as an example of a decomposition reaction suppression mechanism that suppresses the decomposition reaction in which generated ozone is decomposed by electron collision.
  • the ozone generator 10 is configured to have lengths Ld, Lw and d through the high-voltage side dielectric 4 when the high-frequency power supply 1 applies a high voltage to the high-voltage electrode 2 and the ground electrode 3.
  • a discharge plasma is generated in the discharge space portion 52 .
  • the gas containing oxygen gas introduced into the discharge space portion 52 in the direction of the gas introduction direction 54 indicated by the arrow in FIG. 53 is discharged downstream from the enlarged portion 53 in the direction of the gas discharge direction 55 indicated by the arrow.
  • the oxygen gas introduced into the discharge space portion 52 and the discharge plasma generated in the discharge space portion 52 react with each other, the oxygen gas is dissociated by electron collision and oxygen radicals (O) are generated (O 2 +e ⁇ O+O+e: e indicates an electron).
  • the ozone generator 10 When the generated oxygen radicals (O) react with oxygen gas, the ozone generator 10 generates ozone in the discharge space portion 52 (O+O 2 +M ⁇ O 3 +M, where M indicates the third body).
  • the produced ozone can be decomposed into oxygen radicals and oxygen gas (O 3 +e ⁇ O+O 2 +e). If the produced ozone is decomposed, the production efficiency of ozone discharged from the ozone generator may be lowered.
  • FIG. 2 is a graph showing the relationship between the change in gas pressure P and the conversion time ⁇ from oxygen radicals to ozone.
  • the conversion time ⁇ (sec) from oxygen radicals (O) to ozone (O 3 ) when the gas pressure P (kPa) changes is shown.
  • the graph also shows cases where the gas temperature is 300K, 500K, and 1000K.
  • the conversion time ⁇ to ozone is inversely proportional to the square of the gas pressure.
  • the gas temperature is 300 K, it is 0.29 msec at 10 kPa and 2.9 ⁇ sec at 100 kPa.
  • FIG. 2 it can be interpreted that the conversion time ⁇ to ozone increases when the gas temperature increases.
  • it is possible to lengthen the conversion time ⁇ (sec) from oxygen radicals (O) to ozone (O 3 ) by realizing a discharge space portion 52 with a high temperature and a low gas pressure. becomes.
  • the ozone generator 10 does not have a mechanism for intentionally generating discharge plasma in the expanded portion 53 converted into ozone, and discharge plasma is intended downstream of the expanded portion 53 as well.
  • the length Ld of the gas introduction direction 54 is the length of the extension direction perpendicular to the gas introduction direction 54 It is configured to be smaller than the height Lw.
  • the time ⁇ g (sec) during which the gas stays in the discharge space portion 52 is V/Q.
  • the ozone generator 10 is configured so that the time ( ⁇ g) for the gas to stay in the discharge space portion 52 ⁇ the conversion time ( ⁇ ) for conversion from oxygen radicals (O) to ozone (O 3 ).
  • ⁇ g ⁇ the time for the gas to stay in the discharge space portion 52 ⁇ the conversion time ( ⁇ ) for conversion from oxygen radicals (O) to ozone (O 3 ).
  • the ozone generator 10 generates O radicals in the discharge space portion 52 and starts to react with the O radicals in the discharge space portion 52, but the oxygen gas that has started the reaction is is converted to ozone (O 3 ) outside the discharge space portion 52 . Therefore, the ozone generator 10 according to the present embodiment suppresses decomposition of the generated ozone due to electron collision in the discharge space portion 52, so that the ozone generator 10 has a relatively simple configuration and high ozone generation efficiency. obtain.
  • the length Ld in the gas flow direction of the electrode surface of the discharge space portion 52 formed by the high voltage side dielectric 4 and the ground side dielectric 5 is set to the direction perpendicular to the gas flow direction. is shorter than the length Lw, preferably 1/10 or less (Ld/Lw ⁇ 0.1).
  • Ld/Lw ⁇ 0.1 the length of the shorter Ld side from the longer Lw side of the discharge surface configured by Ld ⁇ Lw
  • 3 becomes smaller
  • Ld/vg in the expression (3) becomes smaller, and it becomes possible to set the residence time of the discharge space portion 52 to be small.
  • the separation distance d which is the length of the discharge gap, is set to 0.2 mm or less to increase the gas flow velocity, thereby further providing the reduced portion 51 and the expanded portion 53.
  • vg in equation (3) increases and Ld/vg in equation (3) decreases, making it possible to set the residence time of discharge space portion 52 short. Therefore, the ozone generator 10 according to the present embodiment suppresses decomposition of the generated ozone due to electron collision in the discharge space portion 52, so that the ozone generator 10 has a relatively simple configuration and high ozone generation efficiency. obtain.
  • the above-described configuration including the reduced portion 51, the discharge space portion 52, and the expanded portion 53 functions as an example of the decomposition reaction suppression mechanism of the present application that suppresses the decomposition reaction in which generated ozone is decomposed by electron collision.
  • an open space having dimensions of Ld ⁇ Lw ⁇ d is secured as the discharge space portion 52 into which oxygen gas is introduced.
  • No flow-restricting material is intentionally placed in this open space to restrict the flow of oxygen gas introduced. Therefore, this ozone generator can move the oxygen gas introduced from the longer Lw side of the discharge surface as quickly as possible by the shorter Ld on the discharge surface. It is possible to provide an ozone generator and method with high generation efficiency. In other words, the ozone generator converts oxygen radicals into ozone by moving the oxygen gas introduced from the side of the discharge surface with longer Lw as quickly as possible by the shorter Ld on the discharge surface.
  • This ozone generator introduces a gas containing oxygen gas, which is a raw material for generating ozone, from left to right on the page of FIG. 1, that is, in a gas introduction direction 54 indicated by an arrow in FIG.
  • the ozone generator accelerates the introduced gas by means of a constricted portion 51 whose separation narrows in the direction of flow.
  • the ozone generator uses the gas velocity increase due to acceleration to reduce the gas pressure in the discharge space region 52 .
  • the conversion time ⁇ (sec) from oxygen radicals (O) to ozone (O 3 ) is lengthened.
  • the ozone generator decelerates the gas passing through the discharge space section 52 by means of the enlarged section 53 where the separation increases in the direction of flow.
  • the ozone generator utilizes the velocity reduction of the gas due to deceleration to discharge the static pressure-restored gas downstream.
  • the ozone generator 10 increases the gas flow velocity in the discharge space portion 52 while lengthening the conversion time ⁇ to ozone in the discharge space portion 52, and discharges the gas. It is possible to shorten the time ⁇ g for staying in the spatial part 52 .
  • the step of performing discharge using the discharge space portion 52 functions as an example of the discharge step of causing electron collision with the gas by discharge, and the step of leading gas from the expanded portion 53 leads ozone from the lead-out portion.
  • the decomposition reaction of the present application which functions as an example of the process and is executed using the reduced portion 51, the discharge space portion 52, and the enlarged portion 53, suppresses the decomposition reaction in which generated ozone is decomposed by electron collision. It functions as an example of a suppression process.
  • FIG. 3 is a schematic diagram showing the configuration of an ozone generator according to Embodiment 2.
  • FIG. 3 In the ozone generator of this embodiment, a plurality of ozone generation units are connected in parallel to one high-frequency power source.
  • the high-frequency power supply 1 of the ozone generator 10 of this embodiment is composed of a single-phase inverter circuit 12 and a frequency control circuit 13 .
  • the frequency control circuit 13 includes a drive circuit for the single-phase inverter circuit 12 and controls the power frequency output from the single-phase inverter circuit 12 .
  • a plurality of ozone generation units 11 are connected in parallel to the output terminal of the single-phase inverter circuit 12 .
  • a reactor 14 is connected between the high-voltage electrode 2 of each ozone generating unit 11 and the output terminal of the single-phase inverter circuit 12 . All the potentials of the ground electrodes 3 of the respective ozone generating units 11 are set to the ground potential.
  • an ozone generator in which five ozone generating units are connected in parallel will be described.
  • each ozone generating unit 11 AC discharge (barrier discharge) is generated between the high voltage electrode 2 and the ground electrode 3 via the high voltage side dielectric 4 and the ground side dielectric 5.
  • the ground-side dielectric 5 is not necessarily required, and the ground electrode 3 alone may be used.
  • pulse-like energy is injected into the discharge space by resonance between the capacitance component (C) between the high-voltage electrode 2 and the ground electrode 3 and the inductance component (L) of the reactor 14.
  • the capacitive component between the high voltage electrode 2 and the ground electrode 3 is mainly determined by the capacitive component of the high voltage side dielectric 4 and the capacitive component of the ground side dielectric 5 .
  • the inductances of the reactors 14 connected to the five ozone generating units 11 are respectively L1, L2, L3, L4, and L5, then L1>L2>L3>L4>L5. is set to be
  • the capacitive component (C) between the high-voltage electrode 2 and the ground electrode 3 in the five ozone generating units 11 is set substantially the same.
  • the resonance frequencies of the ozone generating unit 11 connected to the reactors 14 having inductances L1, L2, L3, L4, and L5 are f1, f2, f3, f4, and f5, respectively. Then, f1 ⁇ f2 ⁇ f3 ⁇ f4 ⁇ f5.
  • FIG. 4 is an explanatory diagram showing the relationship between the power output waveform of the high-frequency power supply 1 and the discharge power injected into each of the five ozone generating units 11 in this embodiment.
  • a waveform 15 shown in the upper part of FIG. 4 is a waveform of the power output of the high frequency power supply.
  • the diagram shown in the lower part of FIG. 4 is the waveform of the discharge power injected into each of the five ozone generating units.
  • the duration of one cycle of the power supply output shown by the waveform 15 is defined by the pulse discharge time ⁇ d in each ozone generation unit 11. It is set to the multiplied time n ⁇ d.
  • This time ⁇ d is shorter than the time ⁇ g during which the gas stays in the discharge space, and is set to the same extent as the conversion time ⁇ for converting oxygen radicals (O) into ozone (O 3 ) shown in equation (2).
  • the time n ⁇ d of one cycle of the power supply output is set to be approximately the same as ⁇ g.
  • the time of one cycle of the power output and the amount of change in the power frequency during one cycle are set so as to satisfy ⁇ d ⁇ and n ⁇ d ⁇ g.
  • the power output of the high frequency power supply is controlled by the frequency control circuit 13 so that the frequency changes during one cycle, as shown by the waveform 15 in FIG.
  • the power supply frequency changes among the five ozone generation units 11, the power output from the power supply is concentrated and injected into the ozone generation unit 11 whose resonance frequency matches the power supply frequency.
  • the power supply output is controlled to increase in frequency during one cycle, as shown by waveform 15 in FIG. Then, the power supply frequency and the resonance frequency will match in order from the ozone generating unit having the lowest resonance frequency.
  • the ozone generating units having the lowest resonance frequencies are referred to as unit 1, unit 2, unit 3, unit 4 and unit 5, respectively. As shown in FIG.
  • one ozone generation unit 11 when the power supply frequency and the resonance frequency match, discharge occurs for time ⁇ d, during which oxygen radicals are generated due to dissociation of oxygen molecules. After that, while the discharge is stopped, ozone is generated from the oxygen radicals, and at the same time the gas is exhausted out of the discharge space part by the gas flow. As shown in FIG. 4, in one ozone generation unit 11, the next discharge occurs after 5 ⁇ d time has elapsed.
  • ozone generator configured in this manner, a plurality of ozone generation units are connected in parallel to one high-frequency power supply, and power is supplied to each ozone generation unit in a pulsed manner. Therefore, since the power supply itself does not have a rest period, the power supply capacity can be used up all the time, and the ozone generator can be configured with an inexpensive power supply system.
  • the ozone generator of the present embodiment five reactors having different inductances are connected to the five ozone generating units 11, respectively.
  • a reactor with the smallest inductance L5 may be connected in series to the output terminal of the single-phase inverter circuit 12, and reactors having inductances with different differences from L5 may be connected to the respective ozone generating units 11. .
  • the inductance of each reactor can be reduced, so that the ozone generator can be downsized.
  • ozone generation units are connected in parallel.
  • the number of ozone generation units connected in parallel may be two or more.
  • the time for one cycle of power output from the high-frequency power source is set to n ⁇ d.
  • the power output is controlled so that the frequency increases during one cycle.
  • the power supply output may be controlled to decrease in frequency during one cycle. If the power supply output is controlled to decrease in frequency during one cycle, the order of the ozone generating units that match the power supply frequency and the resonance frequency is simply reversed.
  • 1 high-frequency power supply 2 high-voltage electrode, 3 ground electrode, 4 high-voltage side dielectric, 5 ground side dielectric, 10 ozone generator, 11 ozone generation unit, 12 single-phase inverter circuit, 13 frequency control circuit, 14 reactor, 15 waveform , 51 Reduced portion, 52 Discharge space portion, 53 Enlarged portion, 54 Gas introduction direction, 55 Gas discharge direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

The present application relates to an ozone generator and an ozone generation method. Provided is an ozone generator that generates ozone using an oxygen-containing gas introduced in a gas flow direction. The ozone generator (10) comprises a discharge space site (52) at which electrons are caused to collide with the gas by discharge, an extraction site at which ozone that is converted and generated from the oxygen contained in the gas that has undergone electron collision at the discharge space site is extracted, and a decomposition reaction suppression mechanism that suppresses a decomposition reaction in which the generated ozone is decomposed by electron collision.

Description

オゾン発生装置およびオゾン発生方法Ozone generator and ozone generation method
 本願は、オゾン発生装置およびオゾン発生方法に関する。 This application relates to an ozone generator and an ozone generation method.
 高圧電極と接地電極との間の放電空間に発生させた放電を用いてオゾンを発生させるオゾン発生装置が知られている(例えば、特許文献1)。当オゾン発生装置は、酸素ガス(O)に対し放電空間で電子衝突を生じさせ、オゾン(O)を生成する。 An ozone generator that generates ozone using a discharge generated in a discharge space between a high-voltage electrode and a ground electrode is known (for example, Patent Document 1). This ozone generator causes electron collisions with oxygen gas (O 2 ) in a discharge space to generate ozone (O 3 ).
 上述したオゾン発生装置において、電子衝突が生じた酸素ガス(O)から、解離によって酸素ラジカル(O)が生成される(O+e→O+O+e、eは電子を示す)。生成された酸素ラジカルは、周辺に存在する酸素ガスと結合してオゾン(O)を生成する(O+O+M→O+M、Mは第三体を示す)。 In the ozone generator described above, oxygen radicals (O) are generated by dissociation from oxygen gas (O 2 ) that has undergone electron collision (O 2 +e→O+O+e, where e indicates an electron). The generated oxygen radicals combine with oxygen gas present in the surroundings to generate ozone (O 3 ) (O+O 2 +M→O 3 +M, where M indicates the third body).
特開昭62-132706号公報JP-A-62-132706
 しかしながら、生成したオゾンに対し同一の放電空間で更に電子衝突が生じた場合、オゾンの分解反応(O+e→O+O+e)も進行し得る。生成したオゾンに対してオゾン分解反応が進行した場合、オゾン発生装置が生成するオゾン生成効率が低下し得る。 However, if the generated ozone is further bombarded with electrons in the same discharge space, the ozone decomposition reaction (O 3 +e→O+O 2 +e) can also proceed. If the ozone decomposition reaction progresses with respect to the generated ozone, the efficiency of generating ozone generated by the ozone generator may decrease.
 本願は、上記のような事情を鑑みてなされたものであり、オゾン生成効率低下を抑制し得るオゾン発生装置および方法を提供することを目的とする。 The present application has been made in view of the above circumstances, and aims to provide an ozone generator and method capable of suppressing a decrease in ozone generation efficiency.
 本願の一側面に係るオゾン発生装置は、ガス流方向に導入される酸素を含んだガスを用いてオゾンを発生させるオゾン発生装置であり、ガスに対して放電で電子衝突を生じさせる放電空間部位と、放電空間部位が電子衝突を行ってガスに含まれる酸素から変換され発生したオゾンを導出する導出部位と、発生したオゾンが電子衝突によって分解される分解反応を抑制する分解反応抑制機構とを備える。 An ozone generator according to one aspect of the present application is an ozone generator that generates ozone using a gas containing oxygen that is introduced in the gas flow direction, and includes a discharge space portion that causes electron collision with the gas by discharge. a derivation part for deriving generated ozone converted from oxygen contained in the gas by electron collision in the discharge space part; and a decomposition reaction suppression mechanism for suppressing the decomposition reaction of the generated ozone by electron collision. Prepare.
 本願の一側面に係るオゾン発生方法は、ガス流方向に導入される酸素を含んだガスを用いてオゾンを発生させるオゾン発生方法であり、ガスに対し放電空間部位において放電で電子衝突を生じさせる放電工程と、放電空間部位が電子衝突を行ってガスに含まれる酸素から変換され発生したオゾンを導出部位から導出する導出工程と、発生したオゾンが電子衝突によって分解される分解反応を分解反応抑制機構を用いて抑制する分解反応抑制工程とを備える。 An ozone generating method according to one aspect of the present application is a method of generating ozone using a gas containing oxygen introduced in the direction of gas flow, and causes electron collisions with the gas in a discharge space portion by discharge. a discharge step, a derivation step of deriving from the derivation portion ozone generated by electron collision in the discharge space portion, which is converted from oxygen contained in the gas, and suppressing the decomposition reaction in which the generated ozone is decomposed by the electron collision. and a decomposition reaction suppression step of suppressing using a mechanism.
 本願の一側面においては、オゾン生成効率低下を抑制し得るオゾン発生装置および方法を提供することが可能となる。 In one aspect of the present application, it is possible to provide an ozone generator and method capable of suppressing a decrease in ozone generation efficiency.
実施の形態1に係るオゾン発生装置の構成を示す模式図である。1 is a schematic diagram showing the configuration of an ozone generator according to Embodiment 1. FIG. ガス圧力Pの変化と酸素ラジカルからオゾンへの変換時間τとの関係を示すグラフの図である。4 is a graph showing the relationship between changes in gas pressure P and conversion time τ from oxygen radicals to ozone. FIG. 実施の形態2に係るオゾン発生装置の構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of an ozone generator according to Embodiment 2; 実施の形態2における電源出力の波形と放電電力との関係を示した説明図である。FIG. 11 is an explanatory diagram showing the relationship between the waveform of power supply output and discharge power in Embodiment 2;
 以下、添付図面を参照して、本願が開示するオゾン発生装置および方法の実施の形態を詳細に説明する。なお、以下に示す実施の形態は一例であり、これらの実施の形態によって本願が限定されるものではない。 Hereinafter, embodiments of the ozone generator and method disclosed by the present application will be described in detail with reference to the accompanying drawings. In addition, the embodiment shown below is an example, and this application is not limited by these embodiments.
実施の形態1.
 図1は、実施の形態1に係るオゾン発生装置の構成を示す模式図である。オゾン発生装置10は、図1に示してあるように、高周波電源1、高圧電極2、接地電極3、高圧側誘電体4、接地側誘電体5を備える。またオゾン発生装置10は、オゾン発生の原材料となる酸素ガスを含んだガスを図1の紙面に向かって左から右へ、つまり矢印で示されるガス導入方向54に導入し、矢印で示されるガス導出方向55に導出する。
Embodiment 1.
FIG. 1 is a schematic diagram showing the configuration of an ozone generator according to Embodiment 1. FIG. The ozone generator 10 comprises a high frequency power source 1, a high voltage electrode 2, a ground electrode 3, a high voltage side dielectric 4 and a ground side dielectric 5, as shown in FIG. Further, the ozone generator 10 introduces a gas containing oxygen gas, which is a raw material for generating ozone, from left to right on the page of FIG. Lead out in lead-out direction 55 .
 高周波電源1は、高圧電極2および接地電極3に接続してあり、高圧電極2および接地電極3の間に高周波の電圧を印加する。高圧電極2および接地電極3は、例えば金属で構成されている。また、高圧側誘電体4および接地側誘電体5は、例えばアルミナセラミックス板で構成されている。 A high frequency power supply 1 is connected to a high voltage electrode 2 and a ground electrode 3 and applies a high frequency voltage between the high voltage electrode 2 and the ground electrode 3 . The high voltage electrode 2 and the ground electrode 3 are made of metal, for example. The high voltage side dielectric 4 and the ground side dielectric 5 are made of, for example, an alumina ceramic plate.
 高圧電極2は、図1に示してあるように、酸素ガスを含んだガスのガス導入方向54に沿った幅がLdであり、ガス導入方向54と直角な図1の紙面の奥に向かって長さLwで延出する電極部材である。また高圧電極2は、図1に示してあるように、図1の下方で後述する高圧側誘電体4と接続してある。 As shown in FIG. 1, the high-voltage electrode 2 has a width of Ld along the gas introduction direction 54 of the gas containing oxygen gas, and extends toward the back of the paper surface of FIG. 1 perpendicular to the gas introduction direction 54. It is an electrode member extending with a length Lw. As shown in FIG. 1, the high-voltage electrode 2 is connected to a high-voltage side dielectric 4, which will be described later, at the bottom of FIG.
 接地電極3は、図1に示してあるように、酸素ガスを含んだガスのガス導入方向54に沿った幅がLdであり、ガス導入方向54と直角な図1の紙面の奥に向かって長さLwで延出する電極部材である。また接地電極3は、一端が接地してあり、図1の紙面に対して上下方向に離隔して高圧電極2に対向するように配置してある。更に接地電極3は、図1に示してあるように、図1の上方で後述する接地側誘電体5と接続してあり、幅Ldと長さLwとの向きが高圧電極2と同方向となるよう対向配置してある。 As shown in FIG. 1, the ground electrode 3 has a width Ld along the gas introduction direction 54 of the oxygen gas-containing gas, and extends toward the back of the paper surface of FIG. 1 perpendicular to the gas introduction direction 54. It is an electrode member extending with a length Lw. One end of the ground electrode 3 is grounded, and the ground electrode 3 is arranged so as to face the high-voltage electrode 2 while being spaced apart in the vertical direction with respect to the plane of FIG. Furthermore, as shown in FIG. 1, the ground electrode 3 is connected to the ground side dielectric 5 described later in the upper part of FIG. are placed facing each other.
 高圧側誘電体4と接地側誘電体5とは、図1の紙面に対して上下に離隔距離dで離隔するように配置してある。高圧側誘電体4と接地側誘電体5との間の空間が後述する放電空間部位として機能する。すなわち、高圧側誘電体4の一方の面の一部に高圧電極2が設けられた放電電極と、接地側誘電体5の一方の面の一部に接地電極3が設けられた放電電極とが高圧側誘電体4および接地側誘電体5の他方の面同士を対向させて配置されてオゾン発生ユニット11が構成されている。 The high voltage side dielectric 4 and the ground side dielectric 5 are arranged so as to be vertically separated from each other by a separation distance d with respect to the plane of FIG. A space between the high-voltage side dielectric 4 and the ground side dielectric 5 functions as a discharge space portion, which will be described later. That is, a discharge electrode in which the high voltage electrode 2 is provided on a portion of one surface of the high voltage side dielectric 4 and a discharge electrode in which the ground electrode 3 is provided on a portion of one surface of the ground side dielectric 5 are provided. An ozone generation unit 11 is configured by arranging the high-voltage side dielectric 4 and the ground side dielectric 5 so that the other surfaces face each other.
 高圧側誘電体4と接地側誘電体5とは、図1の紙面に対して上下方向の離隔距離がdよりも大きな値からガス導入方向54に向かってdへと縮まっており、放電空間部位52に導入されるガスの流れを縮める縮小部位51と、図1の紙面に対して上下方向に離隔距離dがガス導入方向54に沿ってLdの長さ続く放電空間部位52と、図1の紙面に対して上下方向の離隔距離がdからガス導出方向55に向かってdよりも大きな値へ拡大しており、放電空間部位52から流れ出たガスの流れを拡大させて導出する拡大部位53とを備える。縮小部位51は例えば、縮小角度45度を有している。拡大部位53は例えば、拡大角度10度を有している。縮小部位51は、ガスを導入する導入部位の一例として機能し、拡大部位53はオゾンを導出する導出部位の一例として機能する。 The high-voltage side dielectric 4 and the ground side dielectric 5 are separated from each other by a value larger than d in the vertical direction with respect to the plane of FIG. 1, a discharge space portion 52 with a separation distance d in the vertical direction of the paper surface of FIG. An enlarged portion 53, in which the separation distance in the vertical direction with respect to the plane of the paper is enlarged from d to a value larger than d in the gas lead-out direction 55, and expands the flow of the gas flowing out from the discharge space portion 52 to be led out. Prepare. The reduced portion 51 has, for example, a reduced angle of 45 degrees. The enlarged portion 53 has, for example, an enlarged angle of 10 degrees. The reduced portion 51 functions as an example of an introduction portion for introducing gas, and the expanded portion 53 functions as an example of an extraction portion for extracting ozone.
 言い換えると、本実施の形態のオゾン発生装置10は、誘電体の一方の面の一部に金属電極が設けられた一対の放電電極が誘電体の他方の面同士を対向させて配置されたオゾン発生ユニット11と、金属電極に電圧を印加する高周波電源1とを有している。そして、オゾン発生ユニット11は、一対の放電電極の間が酸素を含んだガスが流れるガス流路となっており、誘電体の他方の面同士の間隔が、金属電極が設けられた部位が最も狭く、ガス流路の上流側および下流側に向かって広くなっている。 In other words, the ozone generator 10 of the present embodiment is an ozone generator in which a pair of discharge electrodes each having a metal electrode provided on a part of one surface of a dielectric are arranged with the other surface of the dielectric facing each other. It has a generating unit 11 and a high frequency power supply 1 for applying voltage to metal electrodes. The ozone generating unit 11 has a gas flow path through which gas containing oxygen flows between the pair of discharge electrodes, and the distance between the other surfaces of the dielectric is the largest at the portion where the metal electrode is provided. It is narrow and widens upstream and downstream of the gas flow path.
 放電空間部位52は、高周波電源1が高圧電極2および接地電極3に高電圧を印加した場合に放電プラズマが発生する空間である。また放電空間部位52は、縦、横および高さが後述するLd、Lwおよびdで構成される空間である。高圧電極2は、高圧電極2の幅Ld部分が高圧側誘電体4の放電空間部位52を構成する幅Ld部分と対向するよう配置してある。接地電極3は、接地電極3の幅Ld部分が接地側誘電体5の放電空間部位52を構成する幅Ld部分と対向するよう配置してある。そのため本実施の形態に係るオゾン発生装置10は、高圧側誘電体4と接地側誘電体5とで構成される空間である縮小部位51、放電空間部位52、および拡大部位53のうちの放電空間部位52で放電による電子衝突を発生させるよう構成してある。 The discharge space portion 52 is a space in which discharge plasma is generated when the high-frequency power supply 1 applies a high voltage to the high-voltage electrode 2 and the ground electrode 3 . The discharge space portion 52 is a space having length, width and height Ld, Lw and d, which will be described later. The high-voltage electrode 2 is arranged so that the width Ld portion of the high-voltage electrode 2 faces the width Ld portion forming the discharge space portion 52 of the high-voltage side dielectric 4 . The ground electrode 3 is arranged so that the width Ld portion of the ground electrode 3 faces the width Ld portion forming the discharge space portion 52 of the ground-side dielectric 5 . Therefore, in the ozone generator 10 according to the present embodiment, the discharge space of the contracted portion 51, the discharge space portion 52, and the expanded portion 53, which are the spaces formed by the high voltage side dielectric 4 and the ground side dielectric 5, is reduced. The portion 52 is configured to generate electron collisions by electric discharge.
 本実施の形態に係るオゾン発生装置10は、高圧側誘電体4と接地側誘電体5とについて、ガス導入方向54の長さLdがガス導入方向54に直角な延出方向の長さLwよりも小さくなるように構成してある。好ましくは、ガス導入方向54の長さLdがガス導入方向54に直角な延出方向の長さLwの1/10以下となるように構成してある。また本実施の形態に係るオゾン発生装置10は、高圧側誘電体4と接地側誘電体5との離隔距離dが0.2mm以下となるようにしてある。このような構成を採用することによって本実施の形態に係るオゾン発生装置10は、後述するように、生成したオゾンが放電空間部位52に留まる時間を短くすることができ、比較的簡単な構成でオゾン生成効率低下を抑制し得る装置となる。そのため、高圧側誘電体4と接地側誘電体5とを備えるこのような構成は、発生したオゾンが電子衝突によって分解される分解反応を抑制する分解反応抑制機構の一例として機能する。 In the ozone generator 10 according to the present embodiment, the length Ld of the high-voltage side dielectric 4 and the ground side dielectric 5 is greater than the length Lw of the extension direction perpendicular to the gas introduction direction 54 in the gas introduction direction 54 . is designed to be small. Preferably, the length Ld in the gas introduction direction 54 is 1/10 or less of the length Lw in the extending direction perpendicular to the gas introduction direction 54 . Further, in the ozone generator 10 according to this embodiment, the distance d between the high voltage side dielectric 4 and the ground side dielectric 5 is set to 0.2 mm or less. By adopting such a configuration, the ozone generator 10 according to the present embodiment can shorten the time during which the generated ozone stays in the discharge space portion 52, as will be described later, with a relatively simple configuration. It becomes a device capable of suppressing a decrease in ozone generation efficiency. Therefore, such a configuration including the high voltage side dielectric 4 and the ground side dielectric 5 functions as an example of a decomposition reaction suppression mechanism that suppresses the decomposition reaction in which generated ozone is decomposed by electron collision.
 本実施の形態に係るオゾン発生装置10は、高周波電源1が高圧電極2および接地電極3に高電圧を印加した場合、高圧側誘電体4を介し、長さLd、Lwおよびdで構成される放電空間部位52に放電プラズマを発生する。その際、図1の矢印で示されるガス導入方向54の方向で放電空間部位52に導入された酸素ガスを含むガスは、発生した放電プラズマと反応し、放電空間部位52から外部となる拡大部位53、拡大部位53よりも下流へと矢印で示されるガス導出方向55の方向で導出される。 The ozone generator 10 according to the present embodiment is configured to have lengths Ld, Lw and d through the high-voltage side dielectric 4 when the high-frequency power supply 1 applies a high voltage to the high-voltage electrode 2 and the ground electrode 3. A discharge plasma is generated in the discharge space portion 52 . At this time, the gas containing oxygen gas introduced into the discharge space portion 52 in the direction of the gas introduction direction 54 indicated by the arrow in FIG. 53, is discharged downstream from the enlarged portion 53 in the direction of the gas discharge direction 55 indicated by the arrow.
 放電空間部位52に導入された酸素ガスと放電空間部位52に発生した放電プラズマとが反応した場合、電子衝突によって酸素ガスが解離し、酸素ラジカル(O)が生成する(O+e→O+O+e:eは電子を示す)。生成した酸素ラジカル(O)が酸素ガスと反応した場合、オゾン発生装置10は、放電空間部位52内にオゾンを発生させる(O+O+M→O+M、Mは第三体を示す)。しかしながら、生成したオゾンに対して電子衝突が生じた場合、生成したオゾンが酸素ラジカルと酸素ガスとに分解され得る(O+e→O+O+e)。生成したオゾンに対する分解が発生した場合、オゾン発生装置から排出されるオゾンの生成効率低下が発生し得る。 When the oxygen gas introduced into the discharge space portion 52 and the discharge plasma generated in the discharge space portion 52 react with each other, the oxygen gas is dissociated by electron collision and oxygen radicals (O) are generated (O 2 +e→O+O+e: e indicates an electron). When the generated oxygen radicals (O) react with oxygen gas, the ozone generator 10 generates ozone in the discharge space portion 52 (O+O 2 +M→O 3 +M, where M indicates the third body). However, when electron collisions occur with the produced ozone, the produced ozone can be decomposed into oxygen radicals and oxygen gas (O 3 +e→O+O 2 +e). If the produced ozone is decomposed, the production efficiency of ozone discharged from the ozone generator may be lowered.
 ここで、酸素ラジカルからオゾンへの変換速度について検討する。酸素ラジカルがオゾンに変換されることによって減少する過程は、以下の(1)式で表される。[O]、[O]は、酸素ラジカル(O)および酸素ガス(O)の粒子密度(particles/cm)を示す。kは、反応速度定数(cm/s)を示す。ただし、供給ガスが酸素ガスである場合を仮定して、第三体であるMを酸素ガス(O)とした。なお、ガス温度(K)をTとした場合にkは6.45×10-35exp(663/T)である、と報告されている。
      d[O]/dt = -k×[O]×[O ・・・(1)
Here, the rate of conversion from oxygen radicals to ozone is examined. The process of reduction by conversion of oxygen radicals into ozone is represented by the following equation (1). [O] and [O 2 ] indicate particle densities (particles/cm 3 ) of oxygen radicals (O) and oxygen gas (O 2 ). k indicates a reaction rate constant (cm 6 /s). However, assuming that the supply gas is oxygen gas, M, which is the third body, was oxygen gas (O 2 ). It is reported that when the gas temperature (K) is T, k is 6.45×10 −35 exp (663/T).
d[O]/dt=-k×[O]×[O 2 ] 2 (1)
 上述した(1)式に対し、酸素ラジカル(O)からオゾン(O)への変換の変換時間τは、(2)式のように求められる。
      τ=1/(k×[O) ・・・(2)
The conversion time τ for the conversion from oxygen radicals (O) to ozone (O 3 ) is determined by the formula (2) in relation to the above formula (1).
τ=1/(k×[O 2 ] 2 ) (2)
 図2は、ガス圧力Pの変化と酸素ラジカルからオゾンへの変換時間τとの関係を示すグラフである。上述した(2)式を考慮し、ガス圧力P(kPa)が変化したときの酸素ラジカル(O)からオゾン(O)への変換時間τ(sec)を示している。またグラフには、ガス温度が300K、500K、1000Kの場合について示してある。(2)式および図2から明らかなように、オゾンへの変換時間τは、ガス圧力の2乗に反比例する。ガス温度が300Kの場合、10kPaで0.29msec、100kPaで2.9μsecとなる。また図2からも明らかなように、ガス温度が高くなった場合にオゾンへの変換時間τも長くなる、と解釈され得る。当解釈を考慮した場合、高温であって低ガス圧力の放電空間部位52を実現することによって、酸素ラジカル(O)からオゾン(O)への変換時間τ(sec)を長くすることが可能となる。 FIG. 2 is a graph showing the relationship between the change in gas pressure P and the conversion time τ from oxygen radicals to ozone. Considering the above equation (2), the conversion time τ (sec) from oxygen radicals (O) to ozone (O 3 ) when the gas pressure P (kPa) changes is shown. The graph also shows cases where the gas temperature is 300K, 500K, and 1000K. (2) and FIG. 2, the conversion time τ to ozone is inversely proportional to the square of the gas pressure. When the gas temperature is 300 K, it is 0.29 msec at 10 kPa and 2.9 μsec at 100 kPa. Also, as is clear from FIG. 2, it can be interpreted that the conversion time τ to ozone increases when the gas temperature increases. Considering this interpretation, it is possible to lengthen the conversion time τ (sec) from oxygen radicals (O) to ozone (O 3 ) by realizing a discharge space portion 52 with a high temperature and a low gas pressure. becomes.
 酸素ラジカル(O)がオゾン(O)に変換される変換時間τよりもガスの放電空間部位52に滞在する時間τg(sec)の方が短い場合、放電空間部位52内で酸素ラジカルと反応した酸素ガスは、放電空間部位52から外部となる拡大部位53、拡大部位53よりも下流でオゾンに変換される。本実施の形態に係るオゾン発生装置10は、オゾンに変換される拡大部位53には放電プラズマを意図的に発生させる機構を有しておらず、拡大部位53よりも下流にも放電プラズマを意図的に発生させる機構を有していない。また、電子衝突を引き起こす放電空間部位52を構成するための高圧側誘電体4と接地側誘電体5とについて、ガス導入方向54の長さLdがガス導入方向54に直角な延出方向の長さLwよりも小さくなるように構成してある。このような構成により、ガス導入方向54の長さLdがガス導入方向54に直角な延出方向の長さLwよりも大きい構成と比較し、同じ放電面積を確保しつつも、ガスが放電空間部位52に留まることになる時間が短くなる。そのため、生成したオゾンが電子衝突によって分解される影響を抑制することが可能になる。供給するガス量をQ(m/s)、放電空間部位52の体積をV(m)で表した場合、ガスが放電空間部位52に滞在する時間τg(sec)はV/Qとなる。また、ガス流方向の放電長Ld、ガス流に直角方向の放電空間部位52の放電空間長Lw、放電ギャップ長となる離隔距離dを用い、放電空間のガス流速をvgとした場合、ガスが放電空間部位52に滞在する時間τg(sec)は、以下の(3)式のように表される。
      τg=Ld×Lw×d/Q=Ld/vg ・・・(3)
When the time τg (sec) in which the gas stays in the discharge space portion 52 is shorter than the conversion time τ in which the oxygen radicals (O) are converted into ozone (O 3 ), the oxygen radicals react with the oxygen radicals in the discharge space portion 52. The oxygen gas thus generated is converted into ozone at an enlarged portion 53 outside the discharge space portion 52 and downstream from the enlarged portion 53 . The ozone generator 10 according to the present embodiment does not have a mechanism for intentionally generating discharge plasma in the expanded portion 53 converted into ozone, and discharge plasma is intended downstream of the expanded portion 53 as well. It does not have a mechanism to generate Further, regarding the high-voltage side dielectric 4 and the ground side dielectric 5 for forming the discharge space portion 52 that causes electron collision, the length Ld of the gas introduction direction 54 is the length of the extension direction perpendicular to the gas introduction direction 54 It is configured to be smaller than the height Lw. With such a configuration, compared with a configuration in which the length Ld of the gas introduction direction 54 is longer than the length Lw of the extending direction perpendicular to the gas introduction direction 54, the same discharge area is secured while the gas is in the discharge space. The amount of time it will stay at site 52 is reduced. Therefore, it is possible to suppress the influence of the generated ozone being decomposed by electron collision. When the amount of gas to be supplied is expressed by Q (m 3 /s) and the volume of the discharge space portion 52 is expressed by V (m 3 ), the time τg (sec) during which the gas stays in the discharge space portion 52 is V/Q. . Further, when the discharge length Ld in the gas flow direction, the discharge space length Lw of the discharge space portion 52 in the direction perpendicular to the gas flow, and the separation distance d that is the discharge gap length are used, and the gas flow velocity in the discharge space is vg, the gas is The time τg (sec) for staying in the discharge space portion 52 is represented by the following equation (3).
τg=Ld×Lw×d/Q=Ld/vg (3)
 本実施の形態に係るオゾン発生装置10は、ガスが放電空間部位52に滞在する時間(τg)<酸素ラジカル(O)からオゾン(O)への変換の変換時間(τ)となるよう構成してある。τg<τとなるよう構成することによって、オゾン発生装置10は、放電空間部位52でOラジカルを生成し、放電空間部位52内でOラジカルとの反応を開始するが、反応を開始した酸素ガスが放電空間部位52の外でオゾン(O)に変換される反応が促進されることになる。そのため、本実施の形態に係るオゾン発生装置10は、生成したオゾンに対し、放電空間部位52内での電子衝突によるオゾン分解を抑制し、比較的簡単な構成でオゾンの生成効率が高い装置となり得る。 The ozone generator 10 according to the present embodiment is configured so that the time (τg) for the gas to stay in the discharge space portion 52<the conversion time (τ) for conversion from oxygen radicals (O) to ozone (O 3 ). I have By configuring τg<τ, the ozone generator 10 generates O radicals in the discharge space portion 52 and starts to react with the O radicals in the discharge space portion 52, but the oxygen gas that has started the reaction is is converted to ozone (O 3 ) outside the discharge space portion 52 . Therefore, the ozone generator 10 according to the present embodiment suppresses decomposition of the generated ozone due to electron collision in the discharge space portion 52, so that the ozone generator 10 has a relatively simple configuration and high ozone generation efficiency. obtain.
 本実施の形態のオゾン発生装置10においては、高圧側誘電体4および接地側誘電体5が構成する放電空間部位52の電極面のガス流方向の長さLdをガス流方向に対して直角方向の長さLwよりも短く構成してあり、好ましくは、1/10以下の長さで構成(Ld/Lw<0.1)してある。また、本実施の形態のオゾン発生装置10においては、Ld×Lwで構成してある放電面におけるより長いLwの辺側からより短いLdの辺の方向に沿ってガスを流すことによって、(3)式のLdが小さくなり、(3)式のLd/vgが小さくなり、放電空間部位52滞在時間を小さく設定することが可能となる。また、本実施の形態のオゾン発生装置10においては、放電ギャップ長となる離隔距離dを0.2mm以下にしてガス流速を高速化することによって、さらには縮小部位51および拡大部位53を備えることによりガス流速を高速化することによって、(3)式のvgが大きくなり、(3)式のLd/vgが小さくなり、放電空間部位52滞在時間を小さく設定することが可能となる。そのため、本実施の形態に係るオゾン発生装置10は、生成したオゾンに対し、放電空間部位52内での電子衝突によるオゾン分解を抑制し、比較的簡単な構成でオゾンの生成効率が高い装置となり得る。つまり、縮小部位51、放電空間部位52、および拡大部位53を備える上述した構成は、発生したオゾンが電子衝突によって分解される分解反応を抑制する本願の分解反応抑制機構の一例として機能する。 In the ozone generator 10 of the present embodiment, the length Ld in the gas flow direction of the electrode surface of the discharge space portion 52 formed by the high voltage side dielectric 4 and the ground side dielectric 5 is set to the direction perpendicular to the gas flow direction. is shorter than the length Lw, preferably 1/10 or less (Ld/Lw<0.1). In addition, in the ozone generator 10 of the present embodiment, by flowing the gas along the direction of the shorter Ld side from the longer Lw side of the discharge surface configured by Ld×Lw, (3 ) becomes smaller, Ld/vg in the expression (3) becomes smaller, and it becomes possible to set the residence time of the discharge space portion 52 to be small. Further, in the ozone generator 10 of the present embodiment, the separation distance d, which is the length of the discharge gap, is set to 0.2 mm or less to increase the gas flow velocity, thereby further providing the reduced portion 51 and the expanded portion 53. By increasing the gas flow velocity by , vg in equation (3) increases and Ld/vg in equation (3) decreases, making it possible to set the residence time of discharge space portion 52 short. Therefore, the ozone generator 10 according to the present embodiment suppresses decomposition of the generated ozone due to electron collision in the discharge space portion 52, so that the ozone generator 10 has a relatively simple configuration and high ozone generation efficiency. obtain. That is, the above-described configuration including the reduced portion 51, the discharge space portion 52, and the expanded portion 53 functions as an example of the decomposition reaction suppression mechanism of the present application that suppresses the decomposition reaction in which generated ozone is decomposed by electron collision.
 本実施の形態のオゾン発生装置10においては、酸素ガスが導入される放電空間部位52として、Ld×Lw×dの寸法となる開放空間が確保してある。当開放空間には、導入される酸素ガスの流れを抑制するような流れ抑制物質を意図的には配置していない。そのため、当オゾン発生装置は、放電面におけるより長いLwの辺側から導入された酸素ガスを可及的速やかに放電面におけるより短いLd分移動させることが可能となり、比較的簡単な構成でオゾンの生成効率が高いオゾン発生装置および方法を提供することが可能になる。言い換えると、当オゾン発生装置は、放電面におけるより長いLwの辺側から導入された酸素ガスを可及的速やかに放電面におけるより短いLd分移動させることによって、酸素ラジカルがオゾンに変換される前に放電空間部位52から排出されて放電空間部位52の外部でオゾンが生成されることになり、生成されたオゾンに対する放電空間部位52内での電子衝突を抑制することができ、比較的簡単な構成でオゾンの生成効率が高いオゾン発生装置および方法を提供することが可能になる。 In the ozone generator 10 of the present embodiment, an open space having dimensions of Ld×Lw×d is secured as the discharge space portion 52 into which oxygen gas is introduced. No flow-restricting material is intentionally placed in this open space to restrict the flow of oxygen gas introduced. Therefore, this ozone generator can move the oxygen gas introduced from the longer Lw side of the discharge surface as quickly as possible by the shorter Ld on the discharge surface. It is possible to provide an ozone generator and method with high generation efficiency. In other words, the ozone generator converts oxygen radicals into ozone by moving the oxygen gas introduced from the side of the discharge surface with longer Lw as quickly as possible by the shorter Ld on the discharge surface. Since ozone is generated outside the discharge space portion 52 after being discharged from the discharge space portion 52 before, the collision of electrons in the discharge space portion 52 with the generated ozone can be suppressed. It is possible to provide an ozone generator and method with a simple configuration and high ozone generation efficiency.
 本実施の形態に係るオゾン発生装置10の動作について説明する。当オゾン発生装置は、オゾン発生の原材料となる酸素ガスを含んだガスを図1の紙面に向かって左から右へ、つまり図1の矢印で示されるガス導入方向54で導入する。当オゾン発生装置は、離隔距離が流れ方向に向かって狭まる縮小部位51により、導入されたガスを加速する。当オゾン発生装置は、加速によるガスの速度増加を用い、放電空間部位52におけるガス圧力を低下させる。放電空間部位52におけるガス圧力が低下した場合、図2に示すように、酸素ラジカル(O)からオゾン(O)への変換時間τ(sec)が長くなる。当オゾン発生装置は、離隔距離が流れ方向に向かって拡大する拡大部位53により、放電空間部位52を通過したガスを減速する。当オゾン発生装置は、減速によるガスの速度減少を用い、静圧を回復したガスを下流方向に導出する。このような構成によって、本実施の形態に係るオゾン発生装置10は、放電空間部位52でのオゾンへの変換時間τを長くしつつも、放電空間部位52のガス流速が速くなり、ガスの放電空間部位52に滞在する時間τgを短くすることが可能となる。つまり、放電空間部位52を用いて放電を行う工程がガスに対し放電で電子衝突を生じさせる放電工程の一例として機能し、拡大部位53からガスを導出する工程がオゾンを導出部から導出する導出工程の一例として機能し、縮小部位51、放電空間部位52、および拡大部位53を用いて実行される上述した工程が、発生したオゾンが電子衝突によって分解される分解反応を抑制する本願の分解反応抑制工程の一例として機能する。 The operation of the ozone generator 10 according to this embodiment will be described. This ozone generator introduces a gas containing oxygen gas, which is a raw material for generating ozone, from left to right on the page of FIG. 1, that is, in a gas introduction direction 54 indicated by an arrow in FIG. The ozone generator accelerates the introduced gas by means of a constricted portion 51 whose separation narrows in the direction of flow. The ozone generator uses the gas velocity increase due to acceleration to reduce the gas pressure in the discharge space region 52 . When the gas pressure in the discharge space portion 52 is lowered, as shown in FIG. 2, the conversion time τ (sec) from oxygen radicals (O) to ozone (O 3 ) is lengthened. The ozone generator decelerates the gas passing through the discharge space section 52 by means of the enlarged section 53 where the separation increases in the direction of flow. The ozone generator utilizes the velocity reduction of the gas due to deceleration to discharge the static pressure-restored gas downstream. With such a configuration, the ozone generator 10 according to the present embodiment increases the gas flow velocity in the discharge space portion 52 while lengthening the conversion time τ to ozone in the discharge space portion 52, and discharges the gas. It is possible to shorten the time τg for staying in the spatial part 52 . That is, the step of performing discharge using the discharge space portion 52 functions as an example of the discharge step of causing electron collision with the gas by discharge, and the step of leading gas from the expanded portion 53 leads ozone from the lead-out portion. The decomposition reaction of the present application, which functions as an example of the process and is executed using the reduced portion 51, the discharge space portion 52, and the enlarged portion 53, suppresses the decomposition reaction in which generated ozone is decomposed by electron collision. It functions as an example of a suppression process.
実施の形態2.
 図3は、実施の形態2に係るオゾン発生装置の構成を示す模式図である。本実施の形態のオゾン発生装置は、1つの高周波電源に対して複数のオゾン発生ユニットが並列に接続されている。
Embodiment 2.
FIG. 3 is a schematic diagram showing the configuration of an ozone generator according to Embodiment 2. FIG. In the ozone generator of this embodiment, a plurality of ozone generation units are connected in parallel to one high-frequency power source.
 図3に示すように、本実施の形態のオゾン発生装置10の高周波電源1は、単相インバータ回路12と周波数制御回路13とで構成されている。周波数制御回路13は、単相インバータ回路12の駆動回路を含んでおり、単相インバータ回路12から出力される電源周波数を制御している。単相インバータ回路12の出力端子には複数のオゾン発生ユニット11が並列に接続されている。それぞれのオゾン発生ユニット11の高圧電極2と単相インバータ回路12の出力端子との間にはリアクトル14がそれぞれ接続されている。それぞれのオゾン発生ユニット11の接地電極3の電位は、すべて接地電位に設定されている。本実施の形態においては、これ以降、5つのオゾン発生ユニットが並列に接続されたオゾン発生装置について説明する。 As shown in FIG. 3, the high-frequency power supply 1 of the ozone generator 10 of this embodiment is composed of a single-phase inverter circuit 12 and a frequency control circuit 13 . The frequency control circuit 13 includes a drive circuit for the single-phase inverter circuit 12 and controls the power frequency output from the single-phase inverter circuit 12 . A plurality of ozone generation units 11 are connected in parallel to the output terminal of the single-phase inverter circuit 12 . A reactor 14 is connected between the high-voltage electrode 2 of each ozone generating unit 11 and the output terminal of the single-phase inverter circuit 12 . All the potentials of the ground electrodes 3 of the respective ozone generating units 11 are set to the ground potential. In this embodiment, hereinafter, an ozone generator in which five ozone generating units are connected in parallel will be described.
 それぞれのオゾン発生ユニット11においては、高圧側誘電体4および接地側誘電体5を介して高圧電極2と接地電極3との間に交流放電(バリア放電)が発生する。なお、接地側誘電体5は必ずしも必要ではなく、接地電極3のみでもよい。各オゾン発生ユニット11においては、高圧電極2と接地電極3との間の容量成分(C)とリアクトル14のインダクタンス成分(L)との共振によって放電空間部位にパルス状のエネルギーが注入される。なお、高圧電極2と接地電極3との間の容量成分は、主に高圧側誘電体4の容量成分と接地側誘電体5の容量成分とで決まる。 In each ozone generating unit 11, AC discharge (barrier discharge) is generated between the high voltage electrode 2 and the ground electrode 3 via the high voltage side dielectric 4 and the ground side dielectric 5. Note that the ground-side dielectric 5 is not necessarily required, and the ground electrode 3 alone may be used. In each ozone generation unit 11, pulse-like energy is injected into the discharge space by resonance between the capacitance component (C) between the high-voltage electrode 2 and the ground electrode 3 and the inductance component (L) of the reactor 14. Note that the capacitive component between the high voltage electrode 2 and the ground electrode 3 is mainly determined by the capacitive component of the high voltage side dielectric 4 and the capacitive component of the ground side dielectric 5 .
 すなわち、高周波電源1の電源周波数fが以下の(4)式を満足するときに、放電空間部位にパルス状のエネルギーが注入される。
      f=1/2π√(L×C) ・・・(4)
That is, when the power frequency f of the high-frequency power source 1 satisfies the following equation (4), pulse-like energy is injected into the discharge space.
f=1/2π√(L×C) (4)
 本実施の形態のオゾン発生装置10においては、5つのオゾン発生ユニット11にそれぞれ接続されるリアクトル14のインダクタンスをそれぞれL1、L2、L3、L4、L5とすると、L1>L2>L3>L4>L5となるように設定されている。5つのオゾン発生ユニット11における高圧電極2と接地電極3との間の容量成分(C)はほぼ同じに設定されている。 In the ozone generator 10 of the present embodiment, if the inductances of the reactors 14 connected to the five ozone generating units 11 are respectively L1, L2, L3, L4, and L5, then L1>L2>L3>L4>L5. is set to be The capacitive component (C) between the high-voltage electrode 2 and the ground electrode 3 in the five ozone generating units 11 is set substantially the same.
 このように構成されたオゾン発生装置10においては、インダクタンスがL1、L2、L3、L4、L5のリアクトル14にそれぞれ接続されたオゾン発生ユニット11の共振周波数をそれぞれf1、f2、f3、f4、f5とすると、f1<f2<f3<f4<f5となる。 In the ozone generator 10 configured in this manner, the resonance frequencies of the ozone generating unit 11 connected to the reactors 14 having inductances L1, L2, L3, L4, and L5 are f1, f2, f3, f4, and f5, respectively. Then, f1<f2<f3<f4<f5.
 図4は、本実施の形態における高周波電源1の電源出力の波形と5つのオゾン発生ユニット11にそれぞれに注入される放電電力との関係を示した説明図である。図4の上部に示した波形15は、高周波電源の電源出力の波形である。図4の下部に示した図は、5つのオゾン発生ユニットにそれぞれ注入される放電電力の波形である。ここで、波形15で示す電源出力の1周期の時間は、並列に接続されたオゾン発生ユニット11の数をnとすると、nに各オゾン発生ユニット11でパルス状に発生する放電の時間τdを乗算した時間n×τdに設定されている。この時間τdは、ガスが放電空間部位に滞在する時間τgよりも短く、(2)式で示した酸素ラジカル(O)からオゾン(O)への変換の変換時間τと同程度に設定されている。また、電源出力の1周期の時間n×τdは、τgと同程度に設定されている。τd≒τおよびn×τd≒τgを満足するように、電源出力の1周期の時間および1周期の間の電源周波数の変化量が設定されている。 FIG. 4 is an explanatory diagram showing the relationship between the power output waveform of the high-frequency power supply 1 and the discharge power injected into each of the five ozone generating units 11 in this embodiment. A waveform 15 shown in the upper part of FIG. 4 is a waveform of the power output of the high frequency power supply. The diagram shown in the lower part of FIG. 4 is the waveform of the discharge power injected into each of the five ozone generating units. Here, assuming that the number of ozone generation units 11 connected in parallel is n, the duration of one cycle of the power supply output shown by the waveform 15 is defined by the pulse discharge time τd in each ozone generation unit 11. It is set to the multiplied time n×τd. This time τd is shorter than the time τg during which the gas stays in the discharge space, and is set to the same extent as the conversion time τ for converting oxygen radicals (O) into ozone (O 3 ) shown in equation (2). ing. Also, the time n×τd of one cycle of the power supply output is set to be approximately the same as τg. The time of one cycle of the power output and the amount of change in the power frequency during one cycle are set so as to satisfy τd≈τ and n×τd≈τg.
 高周波電源の電源出力は、図4の波形15に示すように、周波数制御回路13によって1周期の間に周波数が変化するように制御される。電源周波数が変化するにしたがって、5つのオゾン発生ユニット11の内、電源周波数と共振周波数とが一致したオゾン発生ユニット11に電源出力の電力が集中して注入される。電源出力は、図4の波形15に示すように、1周期の間に周波数が増加するように制御される。そうすると共振周波数が低いオゾン発生ユニットから順に電源周波数と共振周波数とが一致することになる。ここで、5つのオゾン発生ユニット11において、共振周波数が低いオゾン発生ユニットから順にユニット1、ユニット2、ユニット3、ユニット4およびユニット5と称する。図4に示すように、電源出力の波形15の1周期の間において、最初に共振周波数が低いユニット1に電力が注入されて時間τdの間だけこのユニット1で放電が発生する。電源周波数が増加するにしたがって、ユニット2、ユニット3、ユニット4、ユニット5の順に放電が発生する。電源出力の1周期が終了すると、次の周期において再びユニット1、ユニット2、ユニット3、ユニット4、ユニット5の順に放電が発生する。このようにして、5つのオゾン発生ユニット11の順次放電が周期的に発生する。 The power output of the high frequency power supply is controlled by the frequency control circuit 13 so that the frequency changes during one cycle, as shown by the waveform 15 in FIG. As the power supply frequency changes, among the five ozone generation units 11, the power output from the power supply is concentrated and injected into the ozone generation unit 11 whose resonance frequency matches the power supply frequency. The power supply output is controlled to increase in frequency during one cycle, as shown by waveform 15 in FIG. Then, the power supply frequency and the resonance frequency will match in order from the ozone generating unit having the lowest resonance frequency. Here, among the five ozone generating units 11, the ozone generating units having the lowest resonance frequencies are referred to as unit 1, unit 2, unit 3, unit 4 and unit 5, respectively. As shown in FIG. 4, during one period of the waveform 15 of the power supply output, power is first injected into the unit 1 having the lower resonance frequency, and discharge occurs in this unit 1 only during the time τd. As the power supply frequency increases, discharge occurs in the order of unit 2, unit 3, unit 4, and unit 5. FIG. When one cycle of power supply output ends, discharge occurs again in the order of unit 1, unit 2, unit 3, unit 4, and unit 5 in the next cycle. In this way, the sequential discharge of the five ozone generating units 11 is periodically generated.
 1つのオゾン発生ユニット11においては、電源周波数と共振周波数とが一致したときに放電が時間τdの間発生し、その間に酸素分子の解離による酸素ラジカルの生成が起こる。その後、放電が停止している間に酸素ラジカルからオゾンが生成され、同時にガス流によって放電空間部位の外にガスが排出される。図4に示すように、1つのオゾン発生ユニット11においては、5×τd時間経過後に次の放電が発生する。 In one ozone generation unit 11, when the power supply frequency and the resonance frequency match, discharge occurs for time τd, during which oxygen radicals are generated due to dissociation of oxygen molecules. After that, while the discharge is stopped, ozone is generated from the oxygen radicals, and at the same time the gas is exhausted out of the discharge space part by the gas flow. As shown in FIG. 4, in one ozone generation unit 11, the next discharge occurs after 5×τd time has elapsed.
 このように構成されたオゾン発生装置においては、1つの高周波電源に対して複数のオゾン発生ユニットが並列に接続されており、それぞれのオゾン発生ユニットにはパルス状に電力が供給されている。そのため、電源自体は休止する期間が存在しないので電源容量を常時使い切ることができ、安価な電源システムでオゾン発生装置を構成することができる。 In the ozone generator configured in this manner, a plurality of ozone generation units are connected in parallel to one high-frequency power supply, and power is supplied to each ozone generation unit in a pulsed manner. Therefore, since the power supply itself does not have a rest period, the power supply capacity can be used up all the time, and the ozone generator can be configured with an inexpensive power supply system.
 なお、本実施の形態のオゾン発生装置においては、5つのオゾン発生ユニット11にインダクタンスが異なる5つのリアクトルをそれぞれ接続している。別の構成として、単相インバータ回路12の出力端子に最も小さいインダクタンスL5のリアクトルを直列に接続し、L5との差分がそれぞれ異なるインダクタンスをもつリアクトルをそれぞれのオゾン発生ユニット11に接続してもよい。このように構成することで、それぞれのリアクトルのインダクタンスを小さくすることができるので、オゾン発生装置を小型にすることができる。 In addition, in the ozone generator of the present embodiment, five reactors having different inductances are connected to the five ozone generating units 11, respectively. As another configuration, a reactor with the smallest inductance L5 may be connected in series to the output terminal of the single-phase inverter circuit 12, and reactors having inductances with different differences from L5 may be connected to the respective ozone generating units 11. . By configuring in this way, the inductance of each reactor can be reduced, so that the ozone generator can be downsized.
 本実施の形態のオゾン発生装置においては、オゾン発生ユニットが5つ並列に接続されている。並列に接続されるオゾン発生ユニットの数は2以上であればよい。並列に接続されるオゾン発生ユニットの数をnとした場合、高周波電源の電源出力の1周期の時間は、n×τdに設定される。 In the ozone generator of this embodiment, five ozone generation units are connected in parallel. The number of ozone generation units connected in parallel may be two or more. When the number of ozone generation units connected in parallel is n, the time for one cycle of power output from the high-frequency power source is set to n×τd.
 本実施の形態のオゾン発生装置においては、電源出力は1周期の間に周波数が増加するように制御されている。電源出力は1周期の間に周波数が減少するように制御されてもよい。電源出力が1周期の間に周波数が減少するように制御された場合、電源周波数と共振周波数とが一致するオゾン発生ユニットの順番が逆になるだけである。 In the ozone generator of this embodiment, the power output is controlled so that the frequency increases during one cycle. The power supply output may be controlled to decrease in frequency during one cycle. If the power supply output is controlled to decrease in frequency during one cycle, the order of the ozone generating units that match the power supply frequency and the resonance frequency is simply reversed.
 本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
While this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may not apply to particular embodiments. can be applied to the embodiments singly or in various combinations.
Therefore, numerous variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, modification, addition or omission of at least one component, extraction of at least one component, and combination with components of other embodiments shall be included.
 1 高周波電源、2 高圧電極、3 接地電極、4 高圧側誘電体、5 接地側誘電体、10 オゾン発生装置、11 オゾン発生ユニット、12 単相インバータ回路、13 周波数制御回路、14 リアクトル、15 波形、51 縮小部位、52 放電空間部位、53 拡大部位、54 ガス導入方向、55 ガス導出方向。 1 high-frequency power supply, 2 high-voltage electrode, 3 ground electrode, 4 high-voltage side dielectric, 5 ground side dielectric, 10 ozone generator, 11 ozone generation unit, 12 single-phase inverter circuit, 13 frequency control circuit, 14 reactor, 15 waveform , 51 Reduced portion, 52 Discharge space portion, 53 Enlarged portion, 54 Gas introduction direction, 55 Gas discharge direction.

Claims (10)

  1.  ガス流方向に導入される酸素を含んだガスを用いてオゾンを発生させるオゾン発生装置において、
      前記ガスに対して放電で電子衝突を生じさせる放電空間部位と、
      前記放電空間部位が前記電子衝突を行って前記ガスに含まれる前記酸素から変換され発生した前記オゾンを導出する導出部位と、
      発生した前記オゾンが前記電子衝突によって分解される分解反応を抑制する分解反応抑制機構と備える
     ことを特徴とするオゾン発生装置。
    In an ozone generator that generates ozone using a gas containing oxygen introduced in the gas flow direction,
    a discharge space portion that causes electron collision by discharge with respect to the gas;
    a lead-out portion where the discharge space portion conducts the electron collision to lead out the ozone generated by converting the oxygen contained in the gas;
    An ozone generator comprising: a decomposition reaction suppression mechanism that suppresses a decomposition reaction in which the generated ozone is decomposed by the electron collision.
  2.  前記分解反応抑制機構は、前記ガスが前記放電空間部位に滞在する滞在時間を、前記放電空間部位の前記電子衝突によって前記酸素から前記オゾンに変換される変換時間よりも短くするように構成してある
     ことを特徴とする請求項1に記載のオゾン発生装置。
    The decomposition reaction suppressing mechanism is configured to make the residence time of the gas in the discharge space portion shorter than the conversion time of the oxygen to the ozone by the electron collision in the discharge space portion. The ozone generator according to claim 1, characterized in that:
  3.  前記分解反応抑制機構は、
      前記放電空間部位を構成する離隔した配置された高圧側誘電体および接地側誘電体と、
      前記放電空間部位の間に印加を行う前記高圧側誘電体に接続した高圧電極および前記接地側誘電体に接続した接地電極とを備え、
      前記ガス流方向における前記高圧電極および前記接地電極の幅Ldを、前記ガス流方向に直角な方向における前記高圧電極および前記接地電極の長さLwよりも短く構成してある
     ことを特徴とする請求項1または2に記載のオゾン発生装置。
    The decomposition reaction suppression mechanism is
    a high-voltage-side dielectric and a ground-side dielectric which constitute the discharge space portion and which are arranged apart from each other;
    a high-voltage electrode connected to the high-voltage side dielectric and a ground electrode connected to the ground-side dielectric for applying voltage between the discharge space parts;
    A width Ld of the high-voltage electrode and the ground electrode in the gas flow direction is configured to be shorter than a length Lw of the high-voltage electrode and the ground electrode in a direction perpendicular to the gas flow direction. Item 3. The ozone generator according to Item 1 or 2.
  4.  前記放電空間部位は、前記高圧側誘電体と前記接地側誘電体とのギャップとして構成してある
     ことを特徴とする請求項3に記載のオゾン発生装置。
    4. The ozone generator according to claim 3, wherein the discharge space portion is configured as a gap between the high voltage side dielectric and the ground side dielectric.
  5.  前記高圧側誘電体と前記接地側誘電体との間に、
      前記高圧側誘電体と前記接地側誘電体との離隔する距離が離隔距離dで前記ガス流方向に対して直角な方向へ前記長さLwで続く前記放電空間部位と、
      前記放電空間部位の前記ガス流方向における上流側に位置し、前記ガス流方向に沿って前記距離が前記離隔距離dへと縮小する縮小部位と、
      前記放電空間部位の前記ガス流方向における下流側に位置し、前記ガス流方向に沿って前記距離が前記離隔距離dから拡大する拡大部位とを備える
     ことを特徴とする請求項4に記載のオゾン発生装置。
    Between the high voltage side dielectric and the ground side dielectric,
    the discharge space portion where the distance between the high-voltage side dielectric and the ground side dielectric is the separation distance d and continues with the length Lw in the direction perpendicular to the gas flow direction;
    a contraction portion located upstream of the discharge space portion in the gas flow direction, the distance being reduced to the separation distance d along the gas flow direction;
    5. The ozone according to claim 4, further comprising an enlarged portion positioned downstream of said discharge space portion in said gas flow direction, said distance being enlarged from said separation distance d along said gas flow direction. Generator.
  6.  前記縮小部位の縮小角度は45度であり、
     前記拡大部位の拡大角度は10度である
     ことを特徴とする請求項5に記載のオゾン発生装置。
    a reduction angle of the reduced portion is 45 degrees;
    The ozone generator according to claim 5, wherein the expansion angle of the expansion portion is 10 degrees.
  7.  前記分解反応抑制機構は、前記放電空間部位における前記放電を前記変換時間よりも長い放電停止時間を有するパルス状放電とするように構成してある
     ことを特徴とする請求項2に記載のオゾン発生装置。
    3. The ozone generation according to claim 2, wherein the decomposition reaction suppression mechanism is configured such that the discharge in the discharge space portion is pulsed discharge having a discharge stop time longer than the conversion time. Device.
  8.  一対の放電電極を備えた複数のオゾン発生ユニットと、電源周波数が周期的に変化する電源とを備えたオゾン発生装置であって、
     複数の前記オゾン発生ユニットは前記電源に対して並列に接続されており、複数の前記オゾン発生ユニットと前記電源との間にはそれぞれインダクタンスが異なるリアクトルが接続されていることを特徴とするオゾン発生装置。
    An ozone generator comprising a plurality of ozone generating units each having a pair of discharge electrodes and a power supply whose power supply frequency changes periodically,
    A plurality of the ozone generating units are connected in parallel to the power supply, and reactors having different inductances are connected between the plurality of ozone generating units and the power supply. Device.
  9.  前記放電電極は、誘電体とこの誘電体の一方の面の一部に設けられた金属電極とを有し、一対の前記放電電極が前記誘電体の他方の面同士を対向させて配置されており、前記一対の放電電極の間が酸素を含んだガスが流れるガス流路であり、前記誘電体の前記他方の面同士の間隔が、前記金属電極が設けられた部位が最も狭く、前記ガス流路の上流側および下流側に向かって広くなっていることを特徴とする請求項8に記載のオゾン発生装置。 The discharge electrode has a dielectric and a metal electrode provided on a part of one surface of the dielectric, and a pair of the discharge electrodes are arranged with the other surfaces of the dielectric facing each other. a gas flow path through which a gas containing oxygen flows between the pair of discharge electrodes; 9. The ozone generator according to claim 8, wherein the flow path widens upstream and downstream.
  10.  ガス流方向に導入される酸素を含んだガスを用いてオゾンを発生させるオゾン発生方法において、
      前記ガスに対し放電空間部位において放電で電子衝突を生じさせる放電工程と、
      前記放電空間部位が前記電子衝突を行って前記ガスに含まれる前記酸素から変換され発生した前記オゾンを導出部位から導出する導出工程と、
      発生した前記オゾンが前記電子衝突によって分解される分解反応を分解反応抑制機構を用いて抑制する分解反応抑制工程と備える
     ことを特徴とするオゾン発生方法。
    In the ozone generating method for generating ozone using a gas containing oxygen introduced in the gas flow direction,
    a discharge step of causing electron collision by discharge in the discharge space portion with respect to the gas;
    a derivation step of deriving from the derivation portion the ozone generated by converting the oxygen contained in the gas by the electron collision in the discharge space portion;
    A method for generating ozone, comprising: a decomposition reaction suppression step of suppressing a decomposition reaction in which the generated ozone is decomposed by the electron collision using a decomposition reaction suppression mechanism.
PCT/JP2021/005421 2021-02-15 2021-02-15 Ozone generator and ozone generation method WO2022172426A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180069759.3A CN116724668A (en) 2021-02-15 2021-02-15 Ozone generating device and ozone generating method
PCT/JP2021/005421 WO2022172426A1 (en) 2021-02-15 2021-02-15 Ozone generator and ozone generation method
JP2021531711A JP7019872B1 (en) 2021-02-15 2021-02-15 Ozone generator
JP2021167175A JP7154363B2 (en) 2021-02-15 2021-10-12 ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005421 WO2022172426A1 (en) 2021-02-15 2021-02-15 Ozone generator and ozone generation method

Publications (1)

Publication Number Publication Date
WO2022172426A1 true WO2022172426A1 (en) 2022-08-18

Family

ID=80929759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005421 WO2022172426A1 (en) 2021-02-15 2021-02-15 Ozone generator and ozone generation method

Country Status (3)

Country Link
JP (1) JP7019872B1 (en)
CN (1) CN116724668A (en)
WO (1) WO2022172426A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154809A (en) * 2000-09-29 2002-05-28 Smartultoms Co Ltd Ozonizer
WO2006035506A1 (en) * 2004-09-29 2006-04-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation N-phase ozone generator apparatus
WO2008053940A1 (en) * 2006-10-31 2008-05-08 Kyocera Corporation Plasma generating body and apparatus and method for manufacturing plasma generating body
JP2015064966A (en) * 2013-09-24 2015-04-09 日本碍子株式会社 Structure and electrode structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154809A (en) * 2000-09-29 2002-05-28 Smartultoms Co Ltd Ozonizer
WO2006035506A1 (en) * 2004-09-29 2006-04-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation N-phase ozone generator apparatus
WO2008053940A1 (en) * 2006-10-31 2008-05-08 Kyocera Corporation Plasma generating body and apparatus and method for manufacturing plasma generating body
JP2015064966A (en) * 2013-09-24 2015-04-09 日本碍子株式会社 Structure and electrode structure

Also Published As

Publication number Publication date
JP7019872B1 (en) 2022-02-15
CN116724668A (en) 2023-09-08
JPWO2022172426A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
US8221689B2 (en) Decomposition of natural gas or methane using cold arc discharge
Kogelschatz Filamentary, patterned, and diffuse barrier discharges
JP5367369B2 (en) Method, apparatus and method of using the apparatus for generating and controlling discharge plasma
JP4817407B2 (en) Plasma generating apparatus and plasma generating method
RU2687422C1 (en) Method and device for plasma-chemical conversion of gas/gas mixture
US7931785B2 (en) Method for cracking, unification and refining of hydrocarbons and device for its implementation
Yagi et al. Streamer propagation of nanosecond pulse discharge with various rise times
WO2022172426A1 (en) Ozone generator and ozone generation method
JP7154363B2 (en) ozone generator
Avtaeva About Formation of Secondary Current Pulses in Dielectric Barrier Discharges in Xe-${\rm Cl} _ {2} $ Mixtures
Starikovskiy et al. Periodic pulse discharge self-focusing and streamer-to-spark transition in under-critical electric field
WO2015147703A2 (en) Method for producing thermal and electrical energy and device for implementing said method
CN116782994A (en) Plasma reactor and plasma chemical reaction
Huang et al. A comparative study of ozone generation using pulsed and continuous AC dielectric barrier discharges
CN116530218A (en) Driving circuit for dielectric barrier discharge device and method of controlling discharge in dielectric barrier discharge
Bisht et al. Plasma applications for environmental protection
Gasparik et al. Effect of CO2 and water vapors on NOx removal efficiency under conditions of DC corona discharge in cylindrical discharge reactor
Nakai et al. Comparison of ozone generation characteristics by filamentary discharge mode and townsend discharge mode of dielectric barrier discharge in oxygen
RU2127220C1 (en) Ozonizer and ozone generator
Liu Electrical modeling and unipolar pulsed energization of dielectric barrier discharges
Malanichev et al. Dielectric barrier discharge plasma reactor
Abdelaziz et al. Development and characterization of surface dielectric barrier discharge-based reactor for ozone production
Chang Electromagnetic emissions from atmospheric pressure gas discharges
EA040404B1 (en) METHOD AND DEVICE FOR PLASMA-CHEMICAL GAS/GAS MIXTURE CONVERSION
RU2219136C2 (en) Method and device for purification of liquid and gaseous mediums

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021531711

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180069759.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925677

Country of ref document: EP

Kind code of ref document: A1