WO2022168682A1 - Disc-shaped edged tool and manufacturing method of same - Google Patents

Disc-shaped edged tool and manufacturing method of same Download PDF

Info

Publication number
WO2022168682A1
WO2022168682A1 PCT/JP2022/002716 JP2022002716W WO2022168682A1 WO 2022168682 A1 WO2022168682 A1 WO 2022168682A1 JP 2022002716 W JP2022002716 W JP 2022002716W WO 2022168682 A1 WO2022168682 A1 WO 2022168682A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
disk
angle
base metal
coating layer
Prior art date
Application number
PCT/JP2022/002716
Other languages
French (fr)
Japanese (ja)
Inventor
京久 内海
真澄 宮嶋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022579470A priority Critical patent/JPWO2022168682A1/ja
Priority to CN202280010817.XA priority patent/CN116867624A/en
Publication of WO2022168682A1 publication Critical patent/WO2022168682A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D19/00Shearing machines or shearing devices cutting by rotary discs
    • B23D19/04Shearing machines or shearing devices cutting by rotary discs having rotary shearing discs arranged in co-operating pairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/40Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools shearing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/36Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of cutting blades
    • B24B3/46Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of cutting blades of disc blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/12Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
    • B26D1/14Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter
    • B26D1/20Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter coacting with a fixed member

Definitions

  • the present disclosure relates to a disk-shaped blade and a manufacturing method thereof.
  • Disk-shaped blades having a coating layer on the surface of a bare metal are disclosed, for example, in FIG. 1 of Japanese Patent Application Laid-Open No. 2012-11475 and FIG.
  • a disk-shaped blade having a coating layer on the surface of a bare metal is required to have a cutting edge without chipping when cutting an object to be cut.
  • the term "disc-shaped blade with no chipping on the cutting edge” refers to a disc-shaped blade with no concave portion having a width of 10 ⁇ m or more on the cutting edge.
  • the problem to be solved by one embodiment of the present disclosure was made in view of the above circumstances, and is to provide a disk-shaped blade that has no chipping on the cutting edge and is easy to manufacture.
  • Another problem to be solved by another embodiment of the present disclosure is to provide a method for manufacturing the disk-shaped blade.
  • Means for solving the above problems include the following embodiments. ⁇ 1> A disk-shaped blade used in a pair with another blade, A disc-shaped base metal having a single-edged tip portion formed by connecting a plane on the side that contacts the other blade and an inclined surface that is inclined with respect to the plane, and covering the plane of the disc-shaped base metal a covering layer that Having a cutting edge composed of the coating layer, Of the two surfaces formed by the coating layer constituting the cutting edge, one surface is inclined at an acute angle with respect to the plane of the disk-shaped base metal, and the other surface is the exposed disk-shaped surface.
  • ⁇ 2> The disc-shaped cutter according to ⁇ 1>, wherein the angle ⁇ and the angle ⁇ satisfy the relationship ⁇ +1° ⁇ +10°.
  • ⁇ 3> The disc-shaped blade according to ⁇ 1> or ⁇ 2>, wherein the angle ⁇ is 10° to 110°.
  • ⁇ 4> The disc-shaped cutlery according to any one of ⁇ 1> to ⁇ 3>, wherein the hardness of the coating layer is 1.5 to 5 times the hardness of the disc-shaped base metal.
  • ⁇ 5> The method for manufacturing a disc-shaped blade according to any one of ⁇ 1> to ⁇ 4>, An object to be ground, comprising a disk-shaped base metal having a tip portion formed including a flat surface on the side that contacts the other blade, and a coating layer covering the entire tip portion of the disk-shaped base metal using Grinding the object to be ground, exposing a portion of the disk-shaped base metal in the object to be ground, forming an inclined surface of the exposed disk-shaped base metal in the disk-shaped cutting tool, and setting the angle ⁇ A first grinding step to adjust; a second grinding step of grinding the object to be ground after the first grinding step, forming a cutting edge composed of the coating layer of the disk-shaped blade, and adjusting the angle ⁇ ; A method for manufacturing a disc-shaped blade.
  • the grinding is performed by up-cutting using a cup-shaped grindstone, and the angle ⁇ formed by the traveling direction of the cup-shaped grindstone and the rotation direction of the object to be ground is 30° to 150°.
  • FIG. 4 is a schematic cross-sectional view showing another example of the tip portion of the disk-shaped cutter according to one embodiment. It is a cross-sectional schematic diagram for demonstrating the 1st grinding process of the manufacturing method of the disk-shaped cutlery which concerns on one Embodiment. It is a cross-sectional schematic diagram for demonstrating the 2nd grinding process of the manufacturing method of the disk-shaped cutlery which concerns on one Embodiment. It is a cross-sectional schematic diagram for demonstrating the 3rd grinding process of the manufacturing method of the disk-shaped cutlery which concerns on one Embodiment. FIG.
  • FIG. 4 is a schematic diagram for explaining an example of grinding applied to the method for manufacturing a disk-shaped blade according to one embodiment; "Advance direction of cup-shaped grindstone”, “Rotational direction of object to be ground”, and “Angle formed by the advancing direction of cup-type grindstone and the rotational direction of object to be ground” in the method for manufacturing a disk-shaped blade according to one embodiment It is a schematic diagram for explaining an angle ⁇ '.
  • FIG. 5 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge portion of the cup-shaped grindstone when performing the first grinding step.
  • FIG. 6 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge portion of the cup-shaped grindstone when performing the second grinding step.
  • a numerical range indicated using “to” means a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • the elements in the figures shown in this disclosure are not necessarily to scale, and emphasis is placed on clearly illustrating the principles of the disclosure, and some emphasis is placed on them.
  • a disk-shaped blade according to the present embodiment is a disk-shaped blade that is used in a pair with another blade, and is formed by connecting a plane on the side that contacts the other blade and an inclined surface that is inclined with respect to the plane. and a coating layer covering the plane of the disc-shaped base metal.
  • the two surfaces formed by the coating layer one surface is inclined at an acute angle with respect to the plane of the disk-shaped base metal, and the other surface is the exposed inclined surface of the disk-shaped base metal.
  • the angle ⁇ formed by the flat surface and the inclined surface of the disk-shaped base metal and the angle ⁇ formed by the two surfaces formed by the coating layer constituting the cutting edge are ⁇ satisfies the relation of ⁇ .
  • the disk-shaped blade according to this embodiment is, as described above, a disk-shaped blade used in a pair with another blade (preferably a disk-shaped blade).
  • the "flat surface” of the disc-shaped ingot is the plane on the side that contacts the "other blade” that is used in a pair with the disc-shaped blade according to the present embodiment.
  • the surface of the coating layer contacts the "other blade” (the ventral side It is also called the side of the face, the belly, etc.).
  • the surface of the flat surface of the disk-shaped base metal and the surface of the coating layer that covers the flat surface face the “other blade (specifically, the blade surface of the other blade)”. It is also the surface that is arranged so as to be the surface that
  • the "single-edged tip” may be an acute angle (see, for example, the tip of the disc-shaped ingot 10 shown in FIG. 1 or FIG. 2), and the angle ⁇ can be measured by the method described later. It may be rounded at a level that allows That is, the "single-edged tip” may be chamfered to a level that allows the angle ⁇ to be measured by the method described later.
  • the disk-shaped blade according to the present embodiment is a disk-shaped blade that has no chipping on the cutting edge (hereinafter also simply referred to as "no chipping") and is easy to manufacture.
  • the inclined surface of the disk-shaped base metal is exposed, and this exposed surface is connected to the surface formed by the coating layer that constitutes the cutting edge.
  • the disk-shaped blade according to the present embodiment has an angle ⁇ formed by the plane and the inclined surface of the disk-shaped base metal, an angle ⁇ formed by the two surfaces formed by the coating layer constituting the cutting edge, satisfies the relationship ⁇ . From the viewpoint of a disc-shaped blade that is hard to chip and a sharp cutting edge, it is preferable to satisfy the relationship ⁇ + 1 ° ⁇ ⁇ ⁇ + 10 °, and more preferably satisfy the relationship ⁇ + 2 ° ⁇ ⁇ ⁇ + 8 °. , ⁇ +3° ⁇ +7°.
  • the angles ⁇ and ⁇ are measured as follows.
  • the angle ⁇ is measured from the cutting edge side of the disk-shaped blade using a laser microscope that is a non-contact measurement method or a surface roughness meter that is a contact measurement method. Since the angle ⁇ cannot be measured directly from the disk-shaped blade, it is measured as follows. First, the thickness of the coating layer formed on a plane excluding the cutting edge (for example, the coating layer 20A in FIG. 1 and the coating layer 20B in FIG. 2) is uniform, and the surface and the plane of the coating layer are uniform.
  • the angle ⁇ is the angle at a position 5 ⁇ m away from the cutting edge.
  • the accuracy of the thickness of the coating layer used when obtaining the angle ⁇ is about 0.01 ⁇ m or less in the above measurement area, so the above assumption can be made.
  • a laser microscope for example, VK-9500 manufactured by Keyence Corporation can be used.
  • a surface roughness meter SURFCOM FLEX-50A manufactured by Tokyo Seimitsu Co., Ltd. can be used.
  • Both the disk-shaped blades described in JP-A-2012-11475 and JP-A-2016-190497 are scribing wheels.
  • the scribing wheel does not use other blades to cut the material to be cut. Therefore, the disk-shaped base metal in the disk-shaped blades described in JP-A-2012-11475 and JP-A-2016-190497 does not have a flat surface on the side that contacts other blades, and the disk according to the present embodiment It is different from the shape knife.
  • the disc-shaped blades described in JP-A-2012-11475 and JP-A-2016-190497 have no region where the disc-shaped base metal is exposed, and in this respect also, the disc-shaped blade according to the present embodiment is different.
  • a disk-shaped blade according to this embodiment will be described below.
  • FIG. 1 and 2 used here are schematic cross-sectional views for explaining the layer configuration and shape of the disk-shaped blade according to this embodiment.
  • the tip of the disc-shaped blade 100A includes a disc-shaped base metal 10 having a single-edged tip formed of a plane 12 and an inclined plane 14 inclined with respect to the plane 12, and a disc-shaped It has a coating layer 20A that covers the plane 12 of the ingot 10 .
  • a cutting edge 30A is formed by the coating layer 20A.
  • one surface 22A is inclined at an acute angle with respect to the plane 12 of the disk-shaped base metal 10, and the other surface 22A
  • the surface 24A is connected to the exposed inclined surface 14 of the disc-shaped ingot 10 .
  • FIG. 1 the tip of the disc-shaped blade 100A includes a disc-shaped base metal 10 having a single-edged tip formed of a plane 12 and an inclined plane 14 inclined with respect to the plane 12, and a disc-shaped It has a coating layer 20A that covers the plane 12 of the ingot 10 .
  • a cutting edge 30A is formed by the coating layer 20A.
  • one surface 22A is inclined at an acute angle with respect to the plane 12 of
  • the surface 24A formed by the coating layer 20A and the exposed inclined surface 14 of the disk-shaped base metal 10 form the same plane. That is, the angle formed by the surface 24A and the inclined surface 14 is 180°. Further, as shown in FIG. 1, two surfaces 22A and 24A formed by the angle ⁇ formed by the flat surface 12 and the inclined surface 14 of the disc-shaped ingot 10 and the coating layer 20A constituting the cutting edge 30A. The angle ⁇ of the formed angle satisfies the relationship ⁇ .
  • one of the two surfaces formed by the coating layer that constitutes the cutting edge is inclined at an acute angle with respect to the plane of the disk-shaped bare metal
  • the surface 22A formed by the coating layer is inclined with respect to the plane 12 of the disc-shaped base metal 10 so as to form an acute angle toward the cutting edge 30A. Therefore, the angle formed by the intersection of the extension of the plane 12 and the surface 22A is an acute angle.
  • is an angle formed by the plane 12 and the inclined plane 14 inclined with respect to the plane 12, and The apex angle at the tip is shown.
  • " ⁇ " is the angle between the two surfaces 22A and 24A formed by the coating layer 20A that constitutes the cutting edge 30A, as shown in FIG. shows the included angle of the cut edge.
  • the tip of the disc-shaped blade 100B has a disc-shaped base metal 10 having a single-edged tip formed by a flat surface 12 and an inclined surface 14 inclined with respect to the plane 12, and It has a coating layer 20B that covers the flat surface 12 of the disk-shaped ingot 10 .
  • a cutting edge 30B is formed by the coating layer 20B.
  • one surface 22B is inclined at an acute angle with respect to the plane 12 of the disk-shaped base metal 10, and the other surface 22B The surface 24B is connected to the exposed inclined surface 14 of the disk-shaped ingot 10 .
  • FIG. 2 unlike FIG.
  • the surface 24B formed by the coating layer 20B and the exposed inclined surface 14 of the disk-shaped ingot 10 do not form the same plane.
  • the angle (specifically, the internal angle) formed by the surface 24B and the inclined surface 14 is less than 180°.
  • two surfaces 22B formed by the angle ⁇ formed by the flat surface 12 of the disk-shaped base metal 10 and the inclined surface 14 and the coating layer 20B constituting the cutting edge 30B and 24B satisfy the relationship ⁇ .
  • the angle (that is, internal angle) formed by the surface 24B and the inclined surface 14 is preferably 120° to 150°, for example.
  • the disk-shaped base metal that constitutes the disk-shaped blade according to the present embodiment is not particularly limited as long as it is a disk-shaped base metal that has a single-edged tip formed by a plane and an inclined surface that is inclined with respect to the plane. do not have.
  • Examples of the material of the disk-shaped base metal include metals and metal compounds.
  • the material of the disk-shaped base metal includes high-speed tool steel (also called high-speed steel), alloy tool steel, cemented carbide, ceramics, and the like.
  • the size of the disc-shaped ingot is not particularly limited, but may be determined according to the application, the type of the material to be cut, the space allowed in the facility, and the like.
  • the outer diameter of the disk-shaped base metal is, for example, 30 mm to 300 mm, and preferably 80 mm to 160 mm from the viewpoint of ease of replacement work of the disk-shaped cutting tool, handleability during regrinding, and the like.
  • the inner diameter ie, the diameter of the through hole
  • the inner diameter of the through hole is, for example, 20 mm to 200 mm.
  • the thickness of the disk-shaped base metal specifically, the thickness of the region excluding the tip of the single-edged blade is, for example, 0.3 mm from the viewpoint of the strength, dimensional accuracy, weight suitable for work, etc. of the disk-shaped blade. ⁇ 3 mm.
  • the angle ⁇ between the flat surface and the inclined surface that is inclined with respect to the flat surface is determined according to the type of material to be cut, ease of manufacture, difficulty in generating dust from the cut surface, etc. Just do it.
  • the angle ⁇ include 10° to 110°, preferably 20° to 100°, more preferably 30° to 95°.
  • the coating layer constituting the disc-shaped blade according to the present embodiment is not particularly limited as long as it is a coating layer having a higher degree than the disc-shaped base metal.
  • Materials for the coating layer include diamond-like carbon (DLC), titanium nitride (TiN), titanium carbonitride (TiCN), and aluminum chromium nitride (AlCrN).
  • the hardness of the coating layer is preferably 1.2 to 8 times the hardness of the disk-shaped base metal from the viewpoint of improving the cutting ability and obtaining a chip-free disk-shaped blade. It is more preferably 5-fold to 5-fold, and even more preferably 2-fold to 5-fold.
  • the hardness of the coating layer and the disk-shaped base metal is measured by the following method.
  • the hardness of the coating layer and the disk-shaped base metal is indicated by Vickers hardness.
  • the Vickers hardness of the coating layer and the disk-shaped base metal is measured by the method described in JIS Z 2244:2009. Specifically, the Vickers hardness of the coating layer and the disk-shaped base metal is measured using, for example, a Vickers hardness tester HV-100 manufactured by Mitutoyo Corporation.
  • PVD physical vapor deposition
  • sputtering vacuum deposition
  • ion beam deposition molecular beam deposition
  • ion plating chemical vapor deposition
  • the thickness of the coating layer formed on the flat surface of the disk-shaped base metal is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m.
  • the thickness of the coating layer is measured by the following method.
  • a disk-shaped base metal to be coated with a coating layer and a partially masked measurement sample (specifically, a measurement sample made of the same material as the disk-shaped base metal) are placed in the same device.
  • a coating layer is formed on both the disk-shaped ingot and the sample for measurement. After that, in the measurement sample on which the coating layer is formed, the difference in level caused by masking or not is measured as the thickness of the coating layer using a laser microscope or a stylus type roughness meter.
  • the thickness of the above-mentioned coating layer is obtained by removing a part of the coating layer by laser processing, grinding, etc., exposing the disk-shaped base metal, and the step between the exposed disk-shaped base metal and the remaining coating layer. can also be measured with a laser microscope or a scanning electron microscope (SEM) as the thickness of the coating layer.
  • the method for manufacturing a disk-shaped blade according to this embodiment is the method for manufacturing a disk-shaped blade according to the above-described embodiment, and is used in a pair with the other blade (that is, the disk-shaped blade according to this embodiment).
  • an object to be ground comprising a disk-shaped base metal having a tip portion formed including a flat surface on the side that comes into contact with another blade), and a coating layer covering the entire tip portion of the disk-shaped base metal using Grinding the object to be ground, exposing a portion of the disk-shaped base metal in the object to be ground, forming an inclined surface of the exposed disk-shaped base metal in the disk-shaped cutting tool, and setting the angle ⁇
  • a method for manufacturing a disk-shaped blade according to this embodiment will be described below with reference to the drawings.
  • a ground object 110a including 52, 54 is prepared.
  • the object 110a to be ground is ground from the inclined surface side of the disk-shaped bare metal 40 (first grinding step). That is, in the first grinding step, the coating layer 54 is ground from the inclined surface side of the disk-shaped base metal 40 to expose a portion of the disk-shaped base metal 40 .
  • first grinding step the coating layer 54 is ground from the inclined surface side of the disk-shaped base metal 40 to expose a portion of the disk-shaped base metal 40 .
  • the grinding in the first grinding step is performed on the workpiece 110a to be ground in the direction of the arrow. It is possible to adjust the angle ⁇ while forming the “exposed inclined surface of the disk-shaped ingot” in .
  • the object to be ground 110b in which the inclined surface of the disk-shaped ingot 40 is exposed is obtained.
  • the object to be ground 110b after the first grinding step is ground from the plane side of the disk-shaped ingot 40 (second grinding step). That is, in the second grinding step, the coating layer 52 is ground from the plane side of the disk-shaped base metal 40 to determine the shape of the cutting edge.
  • the grinding in the second grinding step is performed on the workpiece 110b to be ground in the direction of the arrow. It is possible to adjust the angle ⁇ while forming the “cutting edge composed of the coating layer” in .
  • the shape of the blade edge of the object 110b to be ground is adjusted, the angle ⁇ is adjusted, and the disk-shaped blade 100A according to this embodiment as shown in FIG. 1 is obtained.
  • the coating layer of the object to be ground may be ground to adjust the angle ⁇ (third grinding step).
  • the third grinding process is preferably performed after the first grinding process and before the second grinding process.
  • the coating layer 52 of the object to be ground 110b after the first grinding process is ground (an example of the third grinding process). That is, according to an example of the third grinding step, the coating layer 52 of the object to be ground 110b can be ground to adjust the shape of the cutting edge.
  • the grinding in the third grinding step is performed on the object 110c to be ground in the direction of the arrow, and by this grinding, the shape of the "cutting edge composed of the coating layer" is obtained. can be adjusted and the angle ⁇ can be adjusted.
  • FIG. 5 shows an example in which the third grinding process is performed on the object to be ground 110c obtained by performing the first grinding process and after the second grinding process in this order.
  • the object 110b to be ground may be ground in the direction of the arrow, as in FIG.
  • the disc-shaped blade manufacturing method according to the present embodiment may obtain the disc-shaped blade 100B according to the present embodiment as shown in FIG. 2 by including the third grinding step.
  • the object to be ground includes a disk-shaped base metal having a tip formed with a flat surface, and a coating layer covering the entire tip of the disk-shaped base metal.
  • the object to be ground may be any object that can be ground into the disk-shaped blade according to the present embodiment.
  • the disk-shaped base metal in the object to be ground is the same as the disk-shaped base metal in the disk-shaped cutting tool according to the present embodiment.
  • the angle ⁇ is adjusted in the first grinding step, the apex angle is not particularly limited as long as the tip of the disk-shaped bare metal in the object to be ground is formed including a plane, and the angle It may be larger than ⁇ .
  • the coating layer of the object to be ground is made of the same material as the coating layer of the disc-shaped blade according to the present embodiment.
  • the coating layer on the object to be ground is thicker than the coating layer on the disc-shaped blade according to the present embodiment. is desirable.
  • grinding is preferably performed using a cup-shaped grindstone from the viewpoint of manufacturing a disk-shaped blade without chipping and from the viewpoint of performing precise grinding.
  • the cup-shaped grindstone is a cup-shaped grindstone whose opening is formed by an annular edge, and the widthwise central portion of the annular edge (also simply referred to as "annular portion") is Functions as a grindstone.
  • grinding using a cup-shaped grindstone for example, as shown in FIG. Grinding is performed by applying a cup-shaped grindstone 130 rotating in the direction of the arrow y to the surface.
  • up-cut grinding using a cup-shaped grindstone refers to grinding in which the cup-shaped grindstone advances from the outside of the object to be ground toward the cutting edge. The details of the up-cut grinding using the cup-shaped grindstone will be described in the description of the first grinding process using FIG. 8 and the description of the second grinding process using FIG. 9 .
  • FIG. 7 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge of the cup-shaped grindstone when the object is ground by the cup-shaped grindstone. Further, FIG.
  • FIG. 7 is a schematic diagram viewed from the side of the object to be ground from a position where the rotation direction of the cup-shaped grindstone (that is, the rotation direction of the annular edge of the cup-shaped grindstone) can be seen. .
  • the rotation direction of the cup-shaped grindstone that is, the rotation direction of the annular edge of the cup-shaped grindstone
  • FIG. 7 along the rotational direction of the annular edge 132 of the cup-shaped grindstone passing through the contact points p1 and p2 between both ends of the object 110 in the thickness direction and the annular edge 132 of the cup-shaped grindstone.
  • the arrow y1 pointing in this direction is the above-mentioned "advancing direction of the cup-shaped grindstone". Further, in FIG.
  • the direction of arrow x1 which is the direction of rotation of the object to be ground 110 at the contact points p1 and p2, is defined as the "rotation direction of the object to be ground”. Therefore, the angle ⁇ between the direction of the arrow x1 and the direction of the arrow y1 shown in FIG. Become.
  • the above angle ⁇ is preferably 30° to 150°, more preferably 30° to 90°, from the viewpoint of manufacturing a chip-free disk-shaped blade.
  • the angle .theta. can be adjusted by adjusting the installation position of the cup-shaped grindstone and the installation position of the object to be ground.
  • FIG. 8 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge portion of the cup-shaped grindstone when performing the first grinding step.
  • grinding in the first grinding step involves rotating an object to be ground 110a having the configuration and shape as shown in FIG. This is preferably done by rotating the edge 132 in the direction of the arrow y.
  • the coating layer 54 of the object to be ground 110a is ground by up-cutting in the first grinding step.
  • the grinding of the object 110a to be ground which is performed by up-cutting shown in FIG. It is preferably done below.
  • FIG. 9 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge of the cup-shaped grindstone when performing the second grinding step.
  • the grinding in the second grinding step involves rotating an object to be ground 110b having the configuration and shape as shown in FIG. This is preferably done by rotating the edge 132 in the direction of the arrow y.
  • the object 110b to be ground in the direction of the arrow x and rotating the annular edge portion 132 of the cup-shaped grindstone in the direction of the arrow y shown in FIG. Grinding is performed in which the cup-shaped grindstone advances. 9, the coating layer 52 of the object 110b to be ground is ground by up-cutting.
  • the grinding of the object 110b to be ground which is performed by up-cutting shown in FIG. It is preferably done below.
  • cup-shaped grindstone that can be used in the method for manufacturing a disc-shaped blade according to this embodiment is not particularly limited as long as the first grinding step and the second grinding step are possible.
  • the cup-shaped grindstone used in the first grinding step since the amount of grinding is large, it is possible to use one with an abrasive grain size of 2 ⁇ m to 80 ⁇ m (preferably 3 ⁇ m to 30 ⁇ m, more preferably 5 ⁇ m to 10 ⁇ m). preferable. Further, the abrasive grains of the cup-shaped grindstone used in the first grinding step may be determined according to the material of the object to be ground, and examples thereof include diamond, cubic boron nitride, and the like. Furthermore, the width of the annular edge of the cup-shaped grindstone used in the first grinding step is preferably 0.5 mm to 20 mm (preferably 5 mm to 10 mm).
  • the abrasive grain size is 0.5 ⁇ m to 10 ⁇ m (preferably 0.75 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 3 ⁇ m). It is preferable to use a material. Further, the abrasive grains of the cup-shaped grindstone used in the second grinding step may be determined according to the material of the object to be ground, and examples thereof include diamond, cubic boron nitride, and the like. Furthermore, the width of the annular edge of the cup-shaped grindstone used in the second grinding step is preferably 2 mm to 15 mm (preferably 5 mm to 10 mm).
  • Grinding conditions in the first grinding process, the second grinding process, and the third grinding process are not particularly limited as long as the intended grinding is performed and the desired angles ⁇ and ⁇ can be obtained.
  • the desired angles ⁇ and ⁇ the type of cup-shaped grindstone, the peripheral speed of the cup-shaped grindstone, the peripheral speed of the object to be ground, the amount of cutting, the grinding time, the amount of grinding, the number of times of cutting, etc. can be adjusted as appropriate. good.
  • the peripheral speed of the cup-shaped grindstone, the peripheral speed of the object to be ground, the depth of cut, the grinding time, the amount of grinding, and the number of times of cutting may be selected within the following ranges, for example: ⁇ Peripheral speed of cup-shaped grindstone: 200 m/min to 2000 m/min ⁇ Peripheral speed of object to be ground: 10 m/min to 500 m/min ⁇ Amount of cut: 0.5 ⁇ m/time to 5 ⁇ m/time ⁇ Grinding time: 1 s to 60 s ⁇ Amount of grinding (amount to be ground): 1 ⁇ m to 100 ⁇ m ⁇ Number of incisions: Amount to be ground / Amount of incision
  • grinding device As a grinding device applied to the method for manufacturing a disk-shaped cutlery according to the present embodiment, a device capable of performing the first grinding step, the second grinding step, and the third grinding step (for example, a , a rotating shaft, driving means for rotating it, driving means for rotating the cup-shaped grindstone, moving means for moving the cup-shaped grindstone, means for moving the object to be ground, means for applying grinding liquid to the grinding part, etc.
  • a device capable of performing the first grinding step, the second grinding step, and the third grinding step
  • driving means for rotating it driving means for rotating the cup-shaped grindstone
  • moving means for moving the cup-shaped grindstone means for moving the object to be ground
  • means for applying grinding liquid to the grinding part etc.
  • the disk-shaped blade according to this embodiment can be used in combination with other blades to cut an object to be cut.
  • the disk-shaped blade according to this embodiment and the other blade are arranged so that their blade surfaces (that is, the side surfaces of the blade edges) face each other and are in sliding contact with each other, thereby cutting the object to be cut. is done.
  • Another blade to be combined (that is, another blade used in a pair with the disk-shaped blade according to the present embodiment) is a disk-shaped blade that is combined with the disk-shaped blade according to the present embodiment to cut the object to be cut. There is no particular limitation as long as it can be cut.
  • a disk-shaped cutting tool made of cemented carbide and having a deflection accuracy of about 50 ⁇ m or less on the outer circumference and side surface during rotation is preferable. Also, the cutting edges of other blades may be chamfered. Note that the disk-shaped blade according to the present embodiment may be used as another blade.
  • the disk-shaped blade according to this embodiment be used for slitting as a pair with another blade.
  • the disk-shaped cutter according to the present embodiment is preferably a disk-shaped cutter applied to a Goebel type slitter or a gang type slitter.
  • the disk-shaped cutter according to this embodiment may be applied only to the upper blade or only to the lower blade. It may be applied to both blades.
  • the method and apparatus for cutting an object using a combination of a disk-shaped blade and other blades according to the present embodiment include, for example, the method and apparatus for cutting an object described in Japanese Unexamined Patent Application Publication No. 2001-315089.
  • the device or the like can be applied.
  • An object to be ground 110a as shown in FIG. 3 was prepared. Specifically, a cemented carbide (FW35, manufactured by Kyocera Corporation, hardness: A 3 ⁇ m-thick TiCN (hardness: 3500 HV) was formed on the entire surface of a disk-shaped ingot made of 1550 HV) by physical vapor deposition. This was used as an object to be ground.
  • a cemented carbide FW35, manufactured by Kyocera Corporation, hardness: A 3 ⁇ m-thick TiCN (hardness: 3500 HV) was formed on the entire surface of a disk-shaped ingot made of 1550 HV) by physical vapor deposition. This was used as an object to be ground.
  • Example 1 ⁇ First Grinding Process> As shown in FIG. 8, a #1000 cup-shaped grindstone (diameter ⁇ 100mm) is used for the object to be ground having a diameter of ⁇ 100mm, and the contact angle of the cup-shaped grindstone (i.e., The first grinding step was performed by adjusting the angle of the rotating shaft of the cup-shaped grindstone. At this time, the grinding was performed by up-cutting, and the other grinding conditions were as follows.
  • ⁇ Peripheral speed of cup-shaped grindstone 1200m/min
  • ⁇ Peripheral speed of object to be ground 100m/min
  • ⁇ Amount of cut 2 ⁇ m/time
  • ⁇ Grinding time 20 seconds
  • Angle ⁇ of the angle formed with the direction of rotation 75°
  • a portion of the disk-shaped base metal in the object to be ground was exposed to form an inclined surface of the disk-shaped base metal, and the angle ⁇ was set to 30°.
  • ⁇ Peripheral speed of cup-shaped grindstone 100 m/min
  • ⁇ Peripheral speed of object to be ground 100 m/min
  • ⁇ Amount of cut 0.5 ⁇ m
  • ⁇ Grinding time 2 seconds x 3 times ⁇ Angle ⁇ formed by the advancing direction of the cup-shaped grindstone and the rotating direction of the object to be ground: 75°
  • Example 2 In the second grinding step, in the same manner as in Example 1, except that the angle of contact of the cup-shaped grindstone with respect to the object to be ground (that is, the angle of the rotation axis of the cup-shaped grindstone) was adjusted. was 30° and ⁇ was 32°.
  • Examples 3 to 7 In the first grinding step and the second grinding step, the contact angle of the cup-shaped grindstone with respect to the object to be ground (that is, the angle of the rotation axis of the cup-shaped grindstone) was adjusted. In the same manner as in No. 1, a disk-shaped blade having a cutting edge made of TiCN and having the values of ⁇ and ⁇ shown in Table 1 was obtained.
  • Example 8 After the first grinding step so that the angle ⁇ becomes 30°, the following third grinding step is performed, and then the contact angle of the cup-shaped grindstone so that the angle ⁇ becomes 38° (that is, the cup-shaped grindstone In the same manner as in Example 1 except that the angle of the rotating shaft was adjusted and the second grinding step was performed, a disk-shaped blade having a TiCN cutting edge with ⁇ of 30° and ⁇ of 38° was obtained. .
  • a #6000 cup-shaped grindstone (diameter ⁇ 100 mm) is used on the workpiece after the first grinding step, and the cup is adjusted so that the angle ⁇ is 35°.
  • a cutting test was conducted by combining the disk-shaped blade obtained in the example and the lower blade described below.
  • a PET film (Cosmoshine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 50 ⁇ m was used as the material to be cut.
  • the disk-shaped blade obtained in the example was used as an upper blade, and this was combined with the above lower blade to continue cutting the object to be cut up to 10,000 m.
  • the upper blade and the lower blade were arranged so that the coating layers of the cutting edges were in sliding contact with each other, and the meshing amount was 0.8 mm. After that, the presence or absence of chipping of the cutting edge of the disk-shaped cutter was performed in the same manner as in the above-mentioned "evaluation of chipping".

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

Provided are a disc-shaped edged tool, and a manufacturing method of the same. The disc-shaped edged tool: includes a disc-shaped base metal having a single-edged tip portion formed by connecting a flat face on a side contacting another edged tool used in a pair and an inclined face inclined with respect to the flat face, and a coating layer coating the flat face of the disc-shaped base metal; and has a cutting edge constituted by the coating layer. One of two surfaces formed by the coating layer constituting the cutting edge is inclined at an acute angle to the flat face of the disc-shaped base metal, and the other surface is connected to the inclined face of the exposed disc-shaped base metal. In the disc-shaped edged tool, an angle α of the angle between the flat face and the inclined face and an angle β of the angle between the two surfaces formed by the coating layer constituting the cutting edge satisfy the relationship α < β.

Description

円盤状刃物及びその製造方法Disk-shaped blade and its manufacturing method
 本開示は、円盤状刃物及びその製造方法に関する。 The present disclosure relates to a disk-shaped blade and a manufacturing method thereof.
 下刃及び上刃からなる一対の円盤状刃物にて、帯状の被裁断物を裁断する方法がある。
 円盤状刃物としては、例えば、地金の表面に、地金より硬度の高い被覆層を備えた円盤状刃物が用いられる。
 地金の表面に被覆層を備えた円盤状刃物としては、例えば、特開2012-11475号公報の図1、特開2016-190497号公報の図2A等にそれぞれ開示されている。
There is a method of cutting a strip-shaped material using a pair of disc-shaped blades consisting of a lower blade and an upper blade.
As the disk-shaped blade, for example, a disk-shaped blade provided with a coating layer having higher hardness than the base metal on the surface of the base metal is used.
Disk-shaped blades having a coating layer on the surface of a bare metal are disclosed, for example, in FIG. 1 of Japanese Patent Application Laid-Open No. 2012-11475 and FIG.
 地金の表面に被覆層を備えた円盤状刃物は、被裁断物を裁断するにあたり、刃先に欠けのない状態であることを要する。しかしながら、刃先に欠けのない円盤状刃物を製造することは、地金と被覆層との硬度の差に由来して容易ではなかった。
 ここで、「刃先に欠けのない円盤状刃物」とは、刃先に幅が10μm以上である凹部がない円盤状刃物を指す。
A disk-shaped blade having a coating layer on the surface of a bare metal is required to have a cutting edge without chipping when cutting an object to be cut. However, it has not been easy to manufacture a disk-shaped blade without chipping on the cutting edge due to the difference in hardness between the base metal and the coating layer.
Here, the term "disc-shaped blade with no chipping on the cutting edge" refers to a disc-shaped blade with no concave portion having a width of 10 μm or more on the cutting edge.
 そこで、本開示の一実施形態が解決しようとする課題は、上記事情に鑑みてなされたものであり、刃先に欠けがなく、且つ、製造しやすい円盤状刃物を提供することにある。
 また、本開示の別の一実施形態が解決しようとする課題は、上記円盤状刃物の製造方法を提供することにある。
Therefore, the problem to be solved by one embodiment of the present disclosure was made in view of the above circumstances, and is to provide a disk-shaped blade that has no chipping on the cutting edge and is easy to manufacture.
Another problem to be solved by another embodiment of the present disclosure is to provide a method for manufacturing the disk-shaped blade.
 上記課題を解決するための手段は、以下の実施形態を含む。
<1> 他の刃物と対で用いられる円盤状刃物であって、
 上記他の刃物と接触する側の平面と上記平面に対して傾斜する傾斜面とが繋がり形成される片刃状の先端部を有する円盤状地金、及び、上記円盤状地金の上記平面を被覆する被覆層と、を含み、
 上記被覆層により構成される刃先を有し、
 上記刃先を構成する被覆層により形成される2つの表面のうち、一方の表面が上記円盤状地金の平面に対して鋭角に傾斜しており、且つ、他方の表面が、露出した上記円盤状地金の傾斜面と繋がっており、
 上記円盤状地金における平面と傾斜面とでなす角の角度αと、上記刃先を構成する被覆層により形成される2つの表面とでなす角の角度βと、がα<βの関係を満たす、円盤状刃物。
Means for solving the above problems include the following embodiments.
<1> A disk-shaped blade used in a pair with another blade,
A disc-shaped base metal having a single-edged tip portion formed by connecting a plane on the side that contacts the other blade and an inclined surface that is inclined with respect to the plane, and covering the plane of the disc-shaped base metal a covering layer that
Having a cutting edge composed of the coating layer,
Of the two surfaces formed by the coating layer constituting the cutting edge, one surface is inclined at an acute angle with respect to the plane of the disk-shaped base metal, and the other surface is the exposed disk-shaped surface. It is connected to the slope of the base metal,
The angle α formed by the flat surface and the inclined surface of the disk-shaped base metal and the angle β formed by the two surfaces formed by the coating layer constituting the cutting edge satisfy the relationship α<β. , a disc-shaped blade.
<2> 上記角度α及び上記角度βが、α+1°≦β≦α+10°の関係を満たす、<1>に記載の円盤状刃物。
<3> 上記角度αが10°~110°である、<1>又は<2>に記載の円盤状刃物。
<4> 上記被覆層の硬度が、上記円盤状地金の硬度に対して1.5倍~5倍である、<1>~<3>のいずれか1つに記載の円盤状刃物。
<2> The disc-shaped cutter according to <1>, wherein the angle α and the angle β satisfy the relationship α+1°≦β≦α+10°.
<3> The disc-shaped blade according to <1> or <2>, wherein the angle α is 10° to 110°.
<4> The disc-shaped cutlery according to any one of <1> to <3>, wherein the hardness of the coating layer is 1.5 to 5 times the hardness of the disc-shaped base metal.
<5> <1>~<4>のいずれか1つに記載の円盤状刃物の製造方法であって、
 上記他の刃物と接触する側の平面を含んで形成される先端部を有する円盤状地金、及び、上記円盤状地金の上記先端部全体を被覆する被覆層と、を含む被研削物を用い、
 上記被研削物を研削し、上記被研削物における円盤状地金の一部を露出させて、上記円盤状刃物における上記露出した円盤状地金の傾斜面を形成し、かつ、上記角度αを調整する第1研削工程と、
 第1研削工程後の上記被研削物を研削し、上記円盤状刃物における上記被覆層により構成される刃先を形成し、かつ、上記角度βを調整する第2研削工程と、
を有する、円盤状刃物の製造方法。
<5> The method for manufacturing a disc-shaped blade according to any one of <1> to <4>,
An object to be ground, comprising a disk-shaped base metal having a tip portion formed including a flat surface on the side that contacts the other blade, and a coating layer covering the entire tip portion of the disk-shaped base metal using
Grinding the object to be ground, exposing a portion of the disk-shaped base metal in the object to be ground, forming an inclined surface of the exposed disk-shaped base metal in the disk-shaped cutting tool, and setting the angle α A first grinding step to adjust;
a second grinding step of grinding the object to be ground after the first grinding step, forming a cutting edge composed of the coating layer of the disk-shaped blade, and adjusting the angle β;
A method for manufacturing a disc-shaped blade.
<6> 上記研削が、カップ型砥石を用いたアップカットにて行われ、且つ、上記カップ型砥石の進行方向と上記被研削物の回転方向とでなす角の角度θが30°~150°である、<5>に記載の円盤状刃物の製造方法。 <6> The grinding is performed by up-cutting using a cup-shaped grindstone, and the angle θ formed by the traveling direction of the cup-shaped grindstone and the rotation direction of the object to be ground is 30° to 150°. The method for manufacturing a disk-shaped blade according to <5>.
 本開示の一実施形態によれば、刃先に欠けがなく、且つ、製造しやすい円盤状刃物を提供することができる。
 また、本開示の別の一実施形態によれば、上記円盤状刃物の製造方法を提供することができる。
According to an embodiment of the present disclosure, it is possible to provide a disk-shaped blade that has no chipping on the cutting edge and is easy to manufacture.
Further, according to another embodiment of the present disclosure, it is possible to provide a method for manufacturing the disk-shaped blade.
一実施形態に係る円盤状刃物の先端部の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the front-end|tip part of the disk-shaped blade which concerns on one Embodiment. 一実施形態に係る円盤状刃物の先端部の別の一例を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing another example of the tip portion of the disk-shaped cutter according to one embodiment. 一実施形態に係る円盤状刃物の製造方法の第1研削工程を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the 1st grinding process of the manufacturing method of the disk-shaped cutlery which concerns on one Embodiment. 一実施形態に係る円盤状刃物の製造方法の第2研削工程を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the 2nd grinding process of the manufacturing method of the disk-shaped cutlery which concerns on one Embodiment. 一実施形態に係る円盤状刃物の製造方法の第3研削工程を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the 3rd grinding process of the manufacturing method of the disk-shaped cutlery which concerns on one Embodiment. 一実施形態に係る円盤状刃物の製造方法に適用される研削の一例を説明するための模式図である。FIG. 4 is a schematic diagram for explaining an example of grinding applied to the method for manufacturing a disk-shaped blade according to one embodiment; 一実施形態に係る円盤状刃物の製造方法における「カップ型砥石の進行方向」、「被研削物の回転方向」、及び「カップ型砥石の進行方向と被研削物の回転方向とでなす角の角度θ」を説明するための模式図である。"Advance direction of cup-shaped grindstone", "Rotational direction of object to be ground", and "Angle formed by the advancing direction of cup-type grindstone and the rotational direction of object to be ground" in the method for manufacturing a disk-shaped blade according to one embodiment It is a schematic diagram for explaining an angle θ'. 第1研削工程を行う際の、被研削物とカップ型砥石の円環状の縁部との位置関係を示す模式図である。FIG. 5 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge portion of the cup-shaped grindstone when performing the first grinding step. 第2研削工程を行う際の、被研削物とカップ型砥石の円環状の縁部との位置関係を示す模式図である。FIG. 6 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge portion of the cup-shaped grindstone when performing the second grinding step.
 以下、円盤状刃物及びその製造方法の実施形態について説明する。但し、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 An embodiment of a disk-shaped blade and a method for manufacturing the same will be described below. However, the present invention is by no means limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the purpose of the present invention.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示にて示す各図面における各要素は必ずしも正確な縮尺ではなく、本開示の原理を明確に示すことに主眼が置かれており、強調がなされている箇所もある。
 また、各図面において、同一機能を有する構成要素には同一符号を付し、重複する説明は省略する。
 本開示において、2以上の好ましい形態又は態様の組み合わせは、より好ましい形態又は態様である。
In the present disclosure, a numerical range indicated using "to" means a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step. In addition, in the numerical ranges described in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
The elements in the figures shown in this disclosure are not necessarily to scale, and emphasis is placed on clearly illustrating the principles of the disclosure, and some emphasis is placed on them.
Moreover, in each drawing, the same code|symbol is attached|subjected to the component which has the same function, and the overlapping description is abbreviate|omitted.
In the present disclosure, a combination of two or more preferred forms or aspects is a more preferred form or aspect.
≪円盤状刃物≫
 既述のように、地金の表面に地金より硬度の高い被覆層を備える円盤状刃物の製造にあたっては、地金と被覆層との硬度差に起因して、刃先に欠けのない状態の製品を製造することが容易ではなかった。例えば、従来の円盤状刃物が記載されている種々の先行技術文献には、図面にて、地金と被覆層とを備えており、且つ、刃先に欠けのない円盤状刃物が示されているが、このような刃先に欠けのない円盤状刃物を得るための研削は容易ではなかった。
 本発明者らは、片刃状の地金の表面に被覆層を備えた円盤状刃物について鋭意検討を行った結果、地金の外側(傾斜面部)を露出させつつ、被覆層により刃先が構成される形状とし、その上で、地金の先端部の角度よりも被覆層による刃先の角度を大きくすることを見出し、本実施形態に係る円盤状刃物をなすに至った。
≪Disc shaped knife≫
As described above, when manufacturing a disc-shaped blade having a coating layer on the surface of a base metal with a hardness higher than that of the base metal, the difference in hardness between the base metal and the coating layer causes the cutting edge to have no cracks. It was not easy to manufacture the product. For example, in various prior art documents describing conventional disk-shaped blades, the drawings show disk-shaped blades that are provided with base metal and a coating layer and that have no cracks on the cutting edge. However, it was not easy to grind to obtain such a disk-shaped blade without chipping on the cutting edge.
The inventors of the present invention have made intensive studies on a disc-shaped blade having a coating layer on the surface of a single-edged base metal. In addition, the inventors discovered that the angle of the edge of the blade due to the coating layer is larger than the angle of the tip of the base metal, resulting in the disk-shaped blade according to the present embodiment.
 本実施形態に係る円盤状刃物は、他の刃物と対で用いられる円盤状刃物であって、上記他の刃物と接触する側の平面と上記平面に対して傾斜する傾斜面とが繋がり形成される片刃状の先端部を有する円盤状地金、及び、上記円盤状地金の上記平面を被覆する被覆層と、を含み、上記被覆層により構成される刃先を有し、上記刃先を構成する被覆層により形成される2つの表面のうち、一方の表面が上記円盤状地金の平面に対して鋭角に傾斜しており、且つ、他方の表面が、露出した上記円盤状地金の傾斜面と繋がっており、上記円盤状地金における平面と傾斜面とでなす角の角度αと、上記刃先を構成する被覆層により形成される2つの表面とでなす角の角度βと、がα<βの関係を満たす。
 本実施形態に係る円盤状刃物は、上述のように、他の刃物(好ましくは、円盤状刃物)と対で用いられる円盤状刃物である。
 ここで、円盤状地金における「平面」は、本実施形態に係る円盤状刃物と対になって用いられる「他の刃物」に接する側の平面である。上述のように、円盤状地金における平面は被覆層にて被覆されていることから、本実施形態に係る円盤状刃物において、かかる被覆層の表面が「他の刃物」に接する面(腹側の面、腹等とも呼ばれる)となる。言い換えれば、本実施形態に係る円盤状刃物において、円盤状地金における平面及び平面を被覆する被覆層の表面は、「他の刃物(具体的には、他の刃物の刃面)」に対向する面となるよう配置される面でもある。
 また、「片刃状の先端部」は、鋭角であってもよいし(例えば、図1又は図2に示す円盤状地金10の先端部を参照)、後述の方法で角度αを測定することができるレベルにて丸みを帯びていてもよい。つまり、「片刃状の先端部」は、後述の方法で角度αを測定することができるレベルでの面取りがされていてもよい。
A disk-shaped blade according to the present embodiment is a disk-shaped blade that is used in a pair with another blade, and is formed by connecting a plane on the side that contacts the other blade and an inclined surface that is inclined with respect to the plane. and a coating layer covering the plane of the disc-shaped base metal. Of the two surfaces formed by the coating layer, one surface is inclined at an acute angle with respect to the plane of the disk-shaped base metal, and the other surface is the exposed inclined surface of the disk-shaped base metal. , and the angle α formed by the flat surface and the inclined surface of the disk-shaped base metal and the angle β formed by the two surfaces formed by the coating layer constituting the cutting edge are α< satisfies the relation of β.
The disk-shaped blade according to this embodiment is, as described above, a disk-shaped blade used in a pair with another blade (preferably a disk-shaped blade).
Here, the "flat surface" of the disc-shaped ingot is the plane on the side that contacts the "other blade" that is used in a pair with the disc-shaped blade according to the present embodiment. As described above, since the flat surface of the disk-shaped base metal is covered with the coating layer, in the disk-shaped blade according to the present embodiment, the surface of the coating layer contacts the "other blade" (the ventral side It is also called the side of the face, the belly, etc.). In other words, in the disk-shaped blade according to the present embodiment, the surface of the flat surface of the disk-shaped base metal and the surface of the coating layer that covers the flat surface face the “other blade (specifically, the blade surface of the other blade)”. It is also the surface that is arranged so as to be the surface that
In addition, the "single-edged tip" may be an acute angle (see, for example, the tip of the disc-shaped ingot 10 shown in FIG. 1 or FIG. 2), and the angle α can be measured by the method described later. It may be rounded at a level that allows That is, the "single-edged tip" may be chamfered to a level that allows the angle α to be measured by the method described later.
 本実施形態に係る円盤状刃物は、刃先に欠けがなく(以下、単に「欠けがない」ともいう)、且つ、製造しやすい円盤状刃物である。
 なお、本実施形態に係る円盤状刃物は、円盤状地金の傾斜面が露出しており、この露出面と、刃先を構成する被覆層により形成される表面と、が繋がっている。このような構成を有することで、例えば、円盤状刃物の刃先が鈍り、再研削を行う必要が出てきた際にも、円盤状刃物を製造する際の、円盤状地金の傾斜面を露出させるための研削条件をそのまま適用することができる、といった利点がある。
The disk-shaped blade according to the present embodiment is a disk-shaped blade that has no chipping on the cutting edge (hereinafter also simply referred to as "no chipping") and is easy to manufacture.
In the disk-shaped blade according to this embodiment, the inclined surface of the disk-shaped base metal is exposed, and this exposed surface is connected to the surface formed by the coating layer that constitutes the cutting edge. By having such a configuration, for example, even when the cutting edge of the disk-shaped blade becomes dull and it becomes necessary to re-grind it, the inclined surface of the disk-shaped base metal is exposed when manufacturing the disk-shaped blade. There is an advantage in that the grinding conditions for obtaining a smooth surface can be applied as they are.
(α及びβの関係)
 本実施形態に係る円盤状刃物は、円盤状地金の平面と傾斜面とでなす角の角度αと、刃先を構成する被覆層により形成される2つの表面とでなす角の角度βと、がα<βの関係を満たす。
 欠けにくい円盤状刃物とする観点、及び、シャープな刃先とする観点からは、α+1°≦β≦α+10°の関係を満たすことが好ましく、α+2°≦β≦α+8°の関係を満たすことがより好ましく、α+3°≦β≦α+7°の関係を満たすことが更に好ましい。
(Relationship between α and β)
The disk-shaped blade according to the present embodiment has an angle α formed by the plane and the inclined surface of the disk-shaped base metal, an angle β formed by the two surfaces formed by the coating layer constituting the cutting edge, satisfies the relationship α<β.
From the viewpoint of a disc-shaped blade that is hard to chip and a sharp cutting edge, it is preferable to satisfy the relationship α + 1 ° ≤ β ≤ α + 10 °, and more preferably satisfy the relationship α + 2 ° ≤ β ≤ α + 8 °. , α+3°≦β≦α+7°.
(角度α及び角度βの測定方法)
 角度α及び角度βは、以下のようにして測定する。
 円盤状刃物の刃先側から、非接触での測定方式であるレーザー顕微鏡、又は、接触での測定方式である表面粗さ計を用いて角度βを測定する。
 角度αは、円盤状刃物から直接測定することができないことから、以下のようにして測定する。まず、刃先を除く平面上に形成された被覆層(例えば、図1であれば被覆層20A、図2であれば被覆層20Bに該当)の厚みが均一で、かかる被覆層の表面と平面とが平行であることを前提とし、かかる被覆層の表面と露出した円盤状地金の傾斜面とでなす角の角度をレーザー顕微鏡又は表面粗さ計にて測定し、得られた値を角度αとする。そのため、角度αは、刃先から5μm離れた位置での角度とする。
 なお、角度αを求める際に用いる被覆層の厚みの精度は、上記の測定領域において約0.01μm以下であることから、上記の前提とすることができる。
 ここで、レーザー顕微鏡としては、例えば、キーエンス社のVK-9500を用いることができる。また、表面粗さ計としては、東京精密(株)のSURFCOM FLEX-50Aを用いることができる。
(Method of measuring angle α and angle β)
The angles α and β are measured as follows.
The angle β is measured from the cutting edge side of the disk-shaped blade using a laser microscope that is a non-contact measurement method or a surface roughness meter that is a contact measurement method.
Since the angle α cannot be measured directly from the disk-shaped blade, it is measured as follows. First, the thickness of the coating layer formed on a plane excluding the cutting edge (for example, the coating layer 20A in FIG. 1 and the coating layer 20B in FIG. 2) is uniform, and the surface and the plane of the coating layer are uniform. is parallel, the angle formed by the surface of the coating layer and the inclined surface of the exposed disk-shaped base metal is measured with a laser microscope or a surface roughness meter, and the obtained value is the angle α and Therefore, the angle α is the angle at a position 5 μm away from the cutting edge.
The accuracy of the thickness of the coating layer used when obtaining the angle α is about 0.01 μm or less in the above measurement area, so the above assumption can be made.
Here, as a laser microscope, for example, VK-9500 manufactured by Keyence Corporation can be used. As a surface roughness meter, SURFCOM FLEX-50A manufactured by Tokyo Seimitsu Co., Ltd. can be used.
 特開2012-11475号公報及び特開2016-190497号公報に記載の円盤状刃物は、いずれも、スクライビングホイールである。スクライビングホイールは、被裁断物を裁断する際に、他の刃物を使用しない。そのため、特開2012-11475号公報及び特開2016-190497号公報に記載の円盤状刃物における円盤状地金は、いずれも、他の刃物と接する側の平面はなく、本実施形態に係る円盤状刃物とは異なる。また、特開2012-11475号公報及び特開2016-190497号公報に記載の円盤状刃物は、円盤状地金が露出した領域もなく、この点においても、本実施形態に係る円盤状刃物とは異なる。 Both the disk-shaped blades described in JP-A-2012-11475 and JP-A-2016-190497 are scribing wheels. The scribing wheel does not use other blades to cut the material to be cut. Therefore, the disk-shaped base metal in the disk-shaped blades described in JP-A-2012-11475 and JP-A-2016-190497 does not have a flat surface on the side that contacts other blades, and the disk according to the present embodiment It is different from the shape knife. In addition, the disc-shaped blades described in JP-A-2012-11475 and JP-A-2016-190497 have no region where the disc-shaped base metal is exposed, and in this respect also, the disc-shaped blade according to the present embodiment is different.
 以下、本実施形態に係る円盤状刃物について説明する。 A disk-shaped blade according to this embodiment will be described below.
 まず、図面を参照しつつ、本実施形態に係る円盤状刃物の層構成及び形状について説明する。ここで使用する図1及び図2は、本実施形態に係る円盤状刃物の層構成及び形状を説明するための概略断面図である。 First, the layer configuration and shape of the disk-shaped blade according to this embodiment will be described with reference to the drawings. 1 and 2 used here are schematic cross-sectional views for explaining the layer configuration and shape of the disk-shaped blade according to this embodiment.
 図1に示すように、円盤状刃物100Aの先端部は、平面12と平面12に対して傾斜する傾斜面14で形成される片刃状の先端部を有する円盤状地金10、及び、円盤状地金10の平面12を被覆する被覆層20Aを有している。
 そして、被覆層20Aにより刃先30Aが形成されている。
 更に、刃先30Aを構成する被覆層20Aにより形成される2つの表面22A,24Aのうち、一方の表面22Aは円盤状地金10の平面12に対して鋭角に傾斜しており、且つ、他方の表面24Aは露出した円盤状地金10の傾斜面14と繋がっている。特に、図1では、被覆層20Aにより形成される表面24Aと、露出した円盤状地金10の傾斜面14と、が同一平面を形成している。つまり、表面24Aと傾斜面14とでなす角は180°となる。
 また、図1に示すように、円盤状地金10の平面12と傾斜面14とでなす角の角度αと、刃先30Aを構成する被覆層20Aにより形成される2つの表面22Aと24Aとでなす角の角度βと、はα<βの関係を満たしている。
As shown in FIG. 1, the tip of the disc-shaped blade 100A includes a disc-shaped base metal 10 having a single-edged tip formed of a plane 12 and an inclined plane 14 inclined with respect to the plane 12, and a disc-shaped It has a coating layer 20A that covers the plane 12 of the ingot 10 .
A cutting edge 30A is formed by the coating layer 20A.
Furthermore, of the two surfaces 22A and 24A formed by the coating layer 20A that constitutes the cutting edge 30A, one surface 22A is inclined at an acute angle with respect to the plane 12 of the disk-shaped base metal 10, and the other surface 22A The surface 24A is connected to the exposed inclined surface 14 of the disc-shaped ingot 10 . In particular, in FIG. 1, the surface 24A formed by the coating layer 20A and the exposed inclined surface 14 of the disk-shaped base metal 10 form the same plane. That is, the angle formed by the surface 24A and the inclined surface 14 is 180°.
Further, as shown in FIG. 1, two surfaces 22A and 24A formed by the angle α formed by the flat surface 12 and the inclined surface 14 of the disc-shaped ingot 10 and the coating layer 20A constituting the cutting edge 30A. The angle β of the formed angle satisfies the relationship α<β.
 本開示において、「刃先を構成する被覆層により形成される2つの表面のうち、一方の表面が円盤状地金の平面に対して鋭角に傾斜している」とは、図1に示すように、円盤状地金10の平面12に対して、被覆層により形成される表面22Aが、刃先30Aに向かって鋭角が形成されるよう、傾斜していることを意味する。そのため、平面12の延長線と、表面22Aとが交差してなる角は鋭角になる。
 また、本開示において、「α」は、図1に示すように、平面12と平面12に対して傾斜する傾斜面14とでなす角の角度であって、円盤状地金10の片刃状の先端部における頂角を示す。
 更に、本開示において、「β」は、図1に示すように、刃先30Aを構成する被覆層20Aにより形成される2つの表面22Aと24Aとでなす角の角度であって、被覆層により構成された刃先の刃先角を示す。
In the present disclosure, "one of the two surfaces formed by the coating layer that constitutes the cutting edge is inclined at an acute angle with respect to the plane of the disk-shaped bare metal" means, as shown in FIG. , means that the surface 22A formed by the coating layer is inclined with respect to the plane 12 of the disc-shaped base metal 10 so as to form an acute angle toward the cutting edge 30A. Therefore, the angle formed by the intersection of the extension of the plane 12 and the surface 22A is an acute angle.
Further, in the present disclosure, as shown in FIG. 1, "α" is an angle formed by the plane 12 and the inclined plane 14 inclined with respect to the plane 12, and The apex angle at the tip is shown.
Furthermore, in the present disclosure, "β" is the angle between the two surfaces 22A and 24A formed by the coating layer 20A that constitutes the cutting edge 30A, as shown in FIG. shows the included angle of the cut edge.
 また、図2に示すように、円盤状刃物100Bの先端部は、平面12と平面12に対して傾斜する傾斜面14で形成される片刃状の先端部を有する円盤状地金10、及び、円盤状地金10の平面12を被覆する被覆層20Bを有している。
 そして、被覆層20Bにより刃先30Bが形成されている。
 更に、刃先30Bを構成する被覆層20Bにより形成される2つの表面22B,24Bのうち、一方の表面22Bは円盤状地金10の平面12に対して鋭角に傾斜しており、且つ、他方の表面24Bは露出した円盤状地金10の傾斜面14と繋がっている。図2では、図1とは異なり、被覆層20Bにより形成される表面24Bと、露出した円盤状地金10の傾斜面14と、が同一平面を形成していない。ここでは、表面24Bと傾斜面14とでなす角(具体的には、内角)は180°未満としている。
 また、図2に示す円盤状刃物100Bにおいても、円盤状地金10の平面12と傾斜面14とでなす角の角度αと、刃先30Bを構成する被覆層20Bにより形成される2つの表面22Bと24Bとでなす角の角度βと、はα<βの関係を満たしている。
Further, as shown in FIG. 2, the tip of the disc-shaped blade 100B has a disc-shaped base metal 10 having a single-edged tip formed by a flat surface 12 and an inclined surface 14 inclined with respect to the plane 12, and It has a coating layer 20B that covers the flat surface 12 of the disk-shaped ingot 10 .
A cutting edge 30B is formed by the coating layer 20B.
Furthermore, of the two surfaces 22B and 24B formed by the coating layer 20B constituting the cutting edge 30B, one surface 22B is inclined at an acute angle with respect to the plane 12 of the disk-shaped base metal 10, and the other surface 22B The surface 24B is connected to the exposed inclined surface 14 of the disk-shaped ingot 10 . In FIG. 2, unlike FIG. 1, the surface 24B formed by the coating layer 20B and the exposed inclined surface 14 of the disk-shaped ingot 10 do not form the same plane. Here, the angle (specifically, the internal angle) formed by the surface 24B and the inclined surface 14 is less than 180°.
Also, in the disk-shaped blade 100B shown in FIG. 2, two surfaces 22B formed by the angle α formed by the flat surface 12 of the disk-shaped base metal 10 and the inclined surface 14 and the coating layer 20B constituting the cutting edge 30B and 24B satisfy the relationship α<β.
 図2に示す円盤状刃物100Bの場合、表面24Bと傾斜面14とでなす角(即ち、内角)は、例えば、120°~150°であることが好ましい。 In the case of the disk-shaped blade 100B shown in FIG. 2, the angle (that is, internal angle) formed by the surface 24B and the inclined surface 14 is preferably 120° to 150°, for example.
 続いて、本実施形態に係る円盤状刃物を構成する円盤状地金及び被覆層について説明する。 Next, the disk-shaped base metal and the coating layer that constitute the disk-shaped cutlery according to this embodiment will be described.
(円盤状地金)
 本実施形態に係る円盤状刃物を構成する円盤状地金は、平面とかかる平面に対して傾斜する傾斜面で形成される片刃状の先端部を有する円盤状地金であれば、特に制限はない。
 円盤状地金の材質としては、金属又は金属化合物が挙げられる。具体的には、円盤状地金の材質としては、高速度工具鋼(ハイス鋼とも呼ばれる)、合金工具鋼、超硬合金、セラミック等が挙げられる。
(disk-shaped base metal)
The disk-shaped base metal that constitutes the disk-shaped blade according to the present embodiment is not particularly limited as long as it is a disk-shaped base metal that has a single-edged tip formed by a plane and an inclined surface that is inclined with respect to the plane. do not have.
Examples of the material of the disk-shaped base metal include metals and metal compounds. Specifically, the material of the disk-shaped base metal includes high-speed tool steel (also called high-speed steel), alloy tool steel, cemented carbide, ceramics, and the like.
 円盤状地金の大きさとしては、特に制限はないが、用途、被裁断物の種類、設備内で許容されるスペース等に応じて、決定されればよい。
 円盤状地金の外径としては、例えば、30mm~300mmが挙げられ、円盤状刃物の交換作業の容易性、再研削の際の取り扱い性等の観点から、80mm~160mmが好ましい。
 円盤状地金が貫通孔を有する場合、つまり、円環状地金である場合、その内径(即ち、貫通孔の径)としては、例えば、20mm~200mmが挙げられる。
The size of the disc-shaped ingot is not particularly limited, but may be determined according to the application, the type of the material to be cut, the space allowed in the facility, and the like.
The outer diameter of the disk-shaped base metal is, for example, 30 mm to 300 mm, and preferably 80 mm to 160 mm from the viewpoint of ease of replacement work of the disk-shaped cutting tool, handleability during regrinding, and the like.
When the disk-shaped base metal has a through hole, that is, when it is an annular base metal, the inner diameter (ie, the diameter of the through hole) is, for example, 20 mm to 200 mm.
 円盤状地金の厚み、具体的には、片刃状の先端部を除く領域の厚みとしては、円盤状刃物の強度、寸法精度、作業に適した重さ等の観点から、例えば、0.3mm~3mmが挙げられる。 The thickness of the disk-shaped base metal, specifically, the thickness of the region excluding the tip of the single-edged blade is, for example, 0.3 mm from the viewpoint of the strength, dimensional accuracy, weight suitable for work, etc. of the disk-shaped blade. ~3 mm.
 円盤状地金において、平面と平面に対して傾斜する傾斜面とでなす角度αは、被裁断物の種類、製造のし易さ、裁断面からの発塵し難さ等から、決定されればよい。
 角度αとしては、例えば、10°~110°が挙げられ、20°~100°が好ましく、30°~95°がより好ましい。
In the disk-shaped ingot, the angle α between the flat surface and the inclined surface that is inclined with respect to the flat surface is determined according to the type of material to be cut, ease of manufacture, difficulty in generating dust from the cut surface, etc. Just do it.
Examples of the angle α include 10° to 110°, preferably 20° to 100°, more preferably 30° to 95°.
(被覆層)
 本実施形態に係る円盤状刃物を構成する被覆層は、円盤状地金よりも高度の高い被覆層であれば、特に制限はない。
 被覆層の材質としては、ダイヤモンドライクカーボン(DLC)、窒化チタン(TiN)、炭窒化チタン(TiCN)、窒化アルミクロム(AlCrN)等が挙げられる。
(coating layer)
The coating layer constituting the disc-shaped blade according to the present embodiment is not particularly limited as long as it is a coating layer having a higher degree than the disc-shaped base metal.
Materials for the coating layer include diamond-like carbon (DLC), titanium nitride (TiN), titanium carbonitride (TiCN), and aluminum chromium nitride (AlCrN).
 被覆層の硬度は、裁断能を高める観点、及び、欠けのない円盤状刃物を得る観点から、円盤状地金の硬度に対して、1.2倍~8倍であることが好ましく、1.5倍~5倍であることがより好ましく、2倍~5倍であることが更に好ましい。 The hardness of the coating layer is preferably 1.2 to 8 times the hardness of the disk-shaped base metal from the viewpoint of improving the cutting ability and obtaining a chip-free disk-shaped blade. It is more preferably 5-fold to 5-fold, and even more preferably 2-fold to 5-fold.
 ここで、被膜層及び円盤状地金の硬度は、以下の方法で測定する。
 被膜層及び円盤状地金の硬度は、ビッカース硬度で示される。
 被膜層及び円盤状地金のビッカース硬度は、JIS Z 2244:2009に記載の方法により測定される。具体的には、被膜層及び円盤状地金のビッカース硬度は、例えば、(株)ミツトヨのビッカース硬さ試験機HV-100を用いて測定される。
Here, the hardness of the coating layer and the disk-shaped base metal is measured by the following method.
The hardness of the coating layer and the disk-shaped base metal is indicated by Vickers hardness.
The Vickers hardness of the coating layer and the disk-shaped base metal is measured by the method described in JIS Z 2244:2009. Specifically, the Vickers hardness of the coating layer and the disk-shaped base metal is measured using, for example, a Vickers hardness tester HV-100 manufactured by Mitutoyo Corporation.
 被覆層の形成方法としては、スパッタリング、真空蒸着、イオンビーム蒸着、分子ビーム蒸着、イオンプレーティング等の物理蒸着(PVD)、又は化学気相成長(CVD)が適用される。 As a method for forming the coating layer, physical vapor deposition (PVD) such as sputtering, vacuum deposition, ion beam deposition, molecular beam deposition, ion plating, or chemical vapor deposition (CVD) is applied.
 円盤状刃物の強度を高める観点から、円盤状地金の平面上に形成される被覆層の厚み(刃先を除く)としては、0.5μm~10μmが好ましく、1μm~6μmがより好ましい。 From the viewpoint of increasing the strength of the disk-shaped blade, the thickness of the coating layer formed on the flat surface of the disk-shaped base metal (excluding the cutting edge) is preferably 0.5 μm to 10 μm, more preferably 1 μm to 6 μm.
 上記の被覆層の厚みは、以下の方法にて測定される。
 被覆層の形成する対象である円盤状地金と、一部をマスキングした測定用試料(具体的には、円盤状地金と同じ素材でできた測定用試料)と、を同じ装置内に入れておき、円盤状地金及び測定用試料の両方に被覆層を形成する。その後、被覆層が形成された測定用試料において、マスキング有無で生じる段差を被覆層の厚みとして、レーザー顕微鏡又は触針式粗さ計で測定する。
 また、上記の被覆層の厚みは、被覆層の一部を、レーザー加工、研削等にて除去し、円盤状地金を露出させて、露出した円盤状地金と残存する被覆層との段差を被覆層の厚みとして、レーザー顕微鏡又は走査型電子顕微鏡(SEM)にて測定することもできる。
The thickness of the coating layer is measured by the following method.
A disk-shaped base metal to be coated with a coating layer and a partially masked measurement sample (specifically, a measurement sample made of the same material as the disk-shaped base metal) are placed in the same device. A coating layer is formed on both the disk-shaped ingot and the sample for measurement. After that, in the measurement sample on which the coating layer is formed, the difference in level caused by masking or not is measured as the thickness of the coating layer using a laser microscope or a stylus type roughness meter.
In addition, the thickness of the above-mentioned coating layer is obtained by removing a part of the coating layer by laser processing, grinding, etc., exposing the disk-shaped base metal, and the step between the exposed disk-shaped base metal and the remaining coating layer. can also be measured with a laser microscope or a scanning electron microscope (SEM) as the thickness of the coating layer.
<円盤状刃物の製造方法>
 本実施形態に係る円盤状刃物の製造方法は、上述の本実施形態に係る円盤状刃物の製造方法であって、上記他の刃物(即ち、本実施形態に係る円盤状刃物と対で用いられる他の刃物)と接触する側の平面を含んで形成される先端部を有する円盤状地金、及び、上記円盤状地金の上記先端部全体を被覆する被覆層と、を含む被研削物を用い、
 上記被研削物を研削し、上記被研削物における円盤状地金の一部を露出させて、上記円盤状刃物における上記露出した円盤状地金の傾斜面を形成し、かつ、上記角度αを調整する第1研削工程と、
 第1研削工程後の上記被研削物を研削し、上記円盤状刃物における上記被覆層により構成される刃先を形成し、かつ、上記角度βを調整する第2研削工程と、
を有する。
<Manufacturing method of disk-shaped blade>
The method for manufacturing a disk-shaped blade according to this embodiment is the method for manufacturing a disk-shaped blade according to the above-described embodiment, and is used in a pair with the other blade (that is, the disk-shaped blade according to this embodiment). an object to be ground, comprising a disk-shaped base metal having a tip portion formed including a flat surface on the side that comes into contact with another blade), and a coating layer covering the entire tip portion of the disk-shaped base metal using
Grinding the object to be ground, exposing a portion of the disk-shaped base metal in the object to be ground, forming an inclined surface of the exposed disk-shaped base metal in the disk-shaped cutting tool, and setting the angle α A first grinding step to adjust;
a second grinding step of grinding the object to be ground after the first grinding step, forming a cutting edge composed of the coating layer of the disk-shaped blade, and adjusting the angle β;
have
 以下、図面を参照して、本実施形態に係る円盤状刃物の製造方法について説明する。
 図3に示すように、平面を含んで形成される先端部(ここでは、片刃状の先端部)を有する円盤状地金40、及び、円盤状地金40の先端部全体を被覆する被覆層52,54と、を含む被研削物110aを準備する。
 まず、この被研削物110aを、図3に示すようにして、円盤状地金40における傾斜面側から研削する(第1研削工程)。つまり、第1研削工程では、円盤状地金40における傾斜面側から被覆層54を研削し、円盤状地金40の一部を露出させる。ここで、第1研削工程での研削は、図3に示すように、被研削物110aに対して矢印方向に向かって行われ、この研削によって、既述の、本実施形態に係る円盤状刃物における「露出した円盤状地金の傾斜面」を形成するとともに、角度αを調整することができる。
 第1研削工程により、円盤状地金40の傾斜面が露出した被研削物110bが得られる。
A method for manufacturing a disk-shaped blade according to this embodiment will be described below with reference to the drawings.
As shown in FIG. 3, a disk-shaped base metal 40 having a tip portion formed including a flat surface (here, a single-edged tip portion), and a coating layer covering the entire tip portion of the disk-shaped base metal 40 A ground object 110a including 52, 54 is prepared.
First, as shown in FIG. 3, the object 110a to be ground is ground from the inclined surface side of the disk-shaped bare metal 40 (first grinding step). That is, in the first grinding step, the coating layer 54 is ground from the inclined surface side of the disk-shaped base metal 40 to expose a portion of the disk-shaped base metal 40 . Here, as shown in FIG. 3, the grinding in the first grinding step is performed on the workpiece 110a to be ground in the direction of the arrow. It is possible to adjust the angle α while forming the “exposed inclined surface of the disk-shaped ingot” in .
Through the first grinding step, the object to be ground 110b in which the inclined surface of the disk-shaped ingot 40 is exposed is obtained.
 続いて、第1研削工程後の被研削物110bを、図4に示すようにして、円盤状地金40における平面側から研削する(第2研削工程)。つまり、第2研削工程では、円盤状地金40における平面側から被覆層52を研削し、刃先の形状を決める。ここで、第2研削工程での研削は、図4に示すように、被研削物110bに対して矢印方向に向かって行われ、この研削によって、既述の、本実施形態に係る円盤状刃物における「被覆層により構成される刃先」を形成するとともに、角度βを調整することができる。
 第2研削工程により、被研削物110bの刃先の形状が整えられ、角度βが調整されて、図1に示すような、本実施形態に係る円盤状刃物100Aが得られる。
Subsequently, as shown in FIG. 4, the object to be ground 110b after the first grinding step is ground from the plane side of the disk-shaped ingot 40 (second grinding step). That is, in the second grinding step, the coating layer 52 is ground from the plane side of the disk-shaped base metal 40 to determine the shape of the cutting edge. Here, as shown in FIG. 4, the grinding in the second grinding step is performed on the workpiece 110b to be ground in the direction of the arrow. It is possible to adjust the angle β while forming the “cutting edge composed of the coating layer” in .
By the second grinding step, the shape of the blade edge of the object 110b to be ground is adjusted, the angle β is adjusted, and the disk-shaped blade 100A according to this embodiment as shown in FIG. 1 is obtained.
 なお、第1研削工程後又は第2研削工程後、被研削物における被覆層を研削し、角度βの調整を行うこともできる(第3研削工程)。第3研削工程は、刃先の欠け、破壊を防止する観点から、第1研削工程後であって、第2研削工程前に行うことが好ましい。
 第3研削工程を第1研削工程後に行う場合、第1研削工程後の被研削物110bの被覆層52を研削する(第3研削工程の一例)。つまり、第3研削工程の一例によれば、被研削物110bの被覆層52を研削し、刃先の形状を整えることができる。
 ここで、第3研削工程での研削は、図5に示すように、被研削物110cに対して矢印方向に向かって行われ、この研削によって、「被覆層により構成される刃先」の形状を調整するとともに、角度βを調整することができる。なお、図5は、第1研削工程と第2研削工程後とをこの順に行って得られた被研削物110cに対して第3研削工程を行う場合の例を示している。第1研削工程後の被研削物110bに対して第3研削工程を行う場合も、図5と同様に、被研削物110bに対して矢印方向に向かって研削が行われればよい。
 このように、本実施形態に係る円盤状刃物の製造方法では、第3研削工程を有することで、図2に示すような、本実施形態に係る円盤状刃物100Bを得てもよい。
After the first grinding step or the second grinding step, the coating layer of the object to be ground may be ground to adjust the angle β (third grinding step). From the viewpoint of preventing chipping and breakage of the cutting edge, the third grinding process is preferably performed after the first grinding process and before the second grinding process.
When performing the third grinding process after the first grinding process, the coating layer 52 of the object to be ground 110b after the first grinding process is ground (an example of the third grinding process). That is, according to an example of the third grinding step, the coating layer 52 of the object to be ground 110b can be ground to adjust the shape of the cutting edge.
Here, as shown in FIG. 5, the grinding in the third grinding step is performed on the object 110c to be ground in the direction of the arrow, and by this grinding, the shape of the "cutting edge composed of the coating layer" is obtained. can be adjusted and the angle β can be adjusted. Note that FIG. 5 shows an example in which the third grinding process is performed on the object to be ground 110c obtained by performing the first grinding process and after the second grinding process in this order. When performing the third grinding process on the object 110b to be ground after the first grinding process, the object 110b to be ground may be ground in the direction of the arrow, as in FIG.
As described above, the disc-shaped blade manufacturing method according to the present embodiment may obtain the disc-shaped blade 100B according to the present embodiment as shown in FIG. 2 by including the third grinding step.
(被研削物)
 被研削物は、平面を含んで形成される先端部を有する円盤状地金、及び、上記円盤状地金の上記先端部全体を被覆する被覆層と、を含む。
 被研削物は、研削によって、本実施形態に係る円盤状刃物になりうるものであればよい。
 被研削物における円盤状地金は、本実施形態に係る円盤状刃物における円盤状地金と同様である。但し、第1研削工程にて角度αが調整されることから、被研削物における円盤状地金の先端部は、平面を含んで形成されていれば、その頂角は特に制限されず、角度αよりも大きくてもよい。
 また、被研削物における被覆層は、本実施形態に係る円盤状刃物における被覆層と同じ材質である。但し、第1研削工程~第3研削工程にて、刃先の形状、及び、角度βが調整されることから、被研削物における被覆層は本実施形態に係る円盤状刃物における被覆層よりも厚いことが望ましい。
(object to be ground)
The object to be ground includes a disk-shaped base metal having a tip formed with a flat surface, and a coating layer covering the entire tip of the disk-shaped base metal.
The object to be ground may be any object that can be ground into the disk-shaped blade according to the present embodiment.
The disk-shaped base metal in the object to be ground is the same as the disk-shaped base metal in the disk-shaped cutting tool according to the present embodiment. However, since the angle α is adjusted in the first grinding step, the apex angle is not particularly limited as long as the tip of the disk-shaped bare metal in the object to be ground is formed including a plane, and the angle It may be larger than α.
Moreover, the coating layer of the object to be ground is made of the same material as the coating layer of the disc-shaped blade according to the present embodiment. However, since the shape of the cutting edge and the angle β are adjusted in the first to third grinding steps, the coating layer on the object to be ground is thicker than the coating layer on the disc-shaped blade according to the present embodiment. is desirable.
(研削方法)
 本実施形態に係る円盤状刃物の製造方法において、欠けのない円盤状刃物を製造する観点、及び、精密な研削を行う観点から、研削は、カップ型砥石を用いて行われることが好ましい。
 ここで、カップ型砥石は、開口部が円環状の縁部で形成されているカップ形状の砥石であって、円環状の縁部(単に「円環部」ともいう)の幅方向中央部が砥石として機能する。研削の際には、円環部の幅方向中央部であって、円環部の幅の1/2~2/3程の領域が被研削物に接触することが好ましい。
 カップ型砥石を用いた研削では、例えば、図6に示すように、回転駆動するシャフト120に固定された被研削物110を矢印x方向に回転させ、回転している被研削物110の先端部に対し、矢印y方向に回転しているカップ型砥石130を当てることで研削を行う。
(Grinding method)
In the method for manufacturing a disk-shaped blade according to the present embodiment, grinding is preferably performed using a cup-shaped grindstone from the viewpoint of manufacturing a disk-shaped blade without chipping and from the viewpoint of performing precise grinding.
Here, the cup-shaped grindstone is a cup-shaped grindstone whose opening is formed by an annular edge, and the widthwise central portion of the annular edge (also simply referred to as "annular portion") is Functions as a grindstone. At the time of grinding, it is preferable that a region of about 1/2 to 2/3 of the width of the annular portion, which is the central portion in the width direction of the annular portion, is in contact with the object to be ground.
In grinding using a cup-shaped grindstone, for example, as shown in FIG. Grinding is performed by applying a cup-shaped grindstone 130 rotating in the direction of the arrow y to the surface.
 カップ型砥石を用いた研削は、欠けのない円盤状刃物を製造する観点から、アップカットにて行われることが好ましい。
 本開示において、カップ型砥石を用いたアップカットにて行われる研削とは、カップ型砥石が被研削物の外側から刃先に向かって進行する研削を指す。カップ型砥石を用いたアップカットにて行われる研削の詳細については、図8を用いた第1研削工程の説明及び図9を用いた第2研削工程の説明の欄にて行う。
Grinding with a cup-shaped grindstone is preferably performed by up-cutting from the viewpoint of producing a chip-free disc-shaped blade.
In the present disclosure, up-cut grinding using a cup-shaped grindstone refers to grinding in which the cup-shaped grindstone advances from the outside of the object to be ground toward the cutting edge. The details of the up-cut grinding using the cup-shaped grindstone will be described in the description of the first grinding process using FIG. 8 and the description of the second grinding process using FIG. 9 .
 本実施形態に係る円盤状刃物の製造方法では、上述したように、研削は、カップ型砥石を用いたアップカットにて行われ、更に、カップ型砥石の進行方向と被研削物の回転方向とでなす角の角度θが30°~150°である、ことが好ましい。
 ここで、図7を用いて、「カップ型砥石の進行方向」、「被研削物の回転方向」、及び「カップ型砥石の進行方向と被研削物の回転方向とでなす角の角度θ」について説明する。図7は、カップ型砥石にて被研削物の研削が行われている際の、被研削物とカップ型砥石の円環状の縁部との位置関係を示す概略模式図である。また、図7は、被研削物の側面側であって、カップ型砥石の回転方向(即ち、カップ型砥石の円環状の縁部の回転方向)が分かる位置から視た模式図になっている。
 図7において、被研削物110の厚み方向両端と、カップ型砥石の円環状の縁部132と、の接触点p1,p2を通り、カップ型砥石の円環状の縁部132の回転方向に沿った方向に向く矢印y1を、上記の「カップ型砥石の進行方向」とする。また、図7において、接触点p1,p2における被研削物110の回転方向である矢印x1方向を、上記の「被研削物の回転方向」とする。よって、図7に示される、矢印x1方向と、矢印y1方向とでなす角の角度θが、上記の「カップ型砥石の進行方向と被研削物の回転方向とでなす角の角度θ」となる。
In the method for manufacturing a disc-shaped blade according to the present embodiment, as described above, grinding is performed by up-cutting using a cup-shaped grindstone, and furthermore, the traveling direction of the cup-shaped grindstone and the rotation direction of the object to be ground are aligned. is preferably 30° to 150°.
Here, referring to FIG. 7, "direction of travel of the cup-shaped grindstone", "direction of rotation of the object to be ground", and "angle θ formed by the direction of travel of the cup-shaped grindstone and the direction of rotation of the object to be ground" will be explained. FIG. 7 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge of the cup-shaped grindstone when the object is ground by the cup-shaped grindstone. Further, FIG. 7 is a schematic diagram viewed from the side of the object to be ground from a position where the rotation direction of the cup-shaped grindstone (that is, the rotation direction of the annular edge of the cup-shaped grindstone) can be seen. .
In FIG. 7, along the rotational direction of the annular edge 132 of the cup-shaped grindstone passing through the contact points p1 and p2 between both ends of the object 110 in the thickness direction and the annular edge 132 of the cup-shaped grindstone. The arrow y1 pointing in this direction is the above-mentioned "advancing direction of the cup-shaped grindstone". Further, in FIG. 7, the direction of arrow x1, which is the direction of rotation of the object to be ground 110 at the contact points p1 and p2, is defined as the "rotation direction of the object to be ground". Therefore, the angle θ between the direction of the arrow x1 and the direction of the arrow y1 shown in FIG. Become.
 上記の角度θは、欠けのない円盤状刃物を製造する観点から、30°~150°であることが好ましく、30°~90°であることがより好ましい。
 角度θは、カップ型砥石の設置位置、被研削物の設置位置によって調節することができる。
The above angle θ is preferably 30° to 150°, more preferably 30° to 90°, from the viewpoint of manufacturing a chip-free disk-shaped blade.
The angle .theta. can be adjusted by adjusting the installation position of the cup-shaped grindstone and the installation position of the object to be ground.
-第1研削工程の具体的な態様-
 第1研削工程の具体的な態様について図8を用いて説明する。ここで、図8は、第1研削工程を行う際の、被研削物とカップ型砥石の円環状の縁部との位置関係を示す概略模式図である。
 図8に示すように、第1研削工程における研削は、図3に示すような構成及び形状を有する被研削物110aを、矢印x方向に回転させているところに、カップ型砥石の円環状の縁部132を矢印y方向に回転させることで行うことが好ましい。図8に示す、被研削物110aの矢印x方向への回転と、カップ型砥石の円環状の縁部132の矢印y方向への回転と、により、被研削物110aの稜線112aから右側に向かってカップ型砥石が進行する研削が行われる。つまり、図8のようにすることで、第1研削工程における被研削物110aの被覆層54の研削が、アップカットにより行われる。
-Specific aspects of the first grinding step-
A specific aspect of the first grinding step will be described with reference to FIG. Here, FIG. 8 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge portion of the cup-shaped grindstone when performing the first grinding step.
As shown in FIG. 8, grinding in the first grinding step involves rotating an object to be ground 110a having the configuration and shape as shown in FIG. This is preferably done by rotating the edge 132 in the direction of the arrow y. By rotating the object 110a to be ground in the direction of the arrow x and rotating the annular edge portion 132 of the cup-shaped grindstone in the direction of the arrow y shown in FIG. Grinding is performed in which the cup-shaped grindstone advances. 8, the coating layer 54 of the object to be ground 110a is ground by up-cutting in the first grinding step.
 なお、図8に示す、アップカットにて行われる被研削物110aの研削は、カップ型砥石の進行方向と被研削物の回転方向とでなす角の角度θが30°~150°である条件下で行われることが好ましい。 In addition, the grinding of the object 110a to be ground, which is performed by up-cutting shown in FIG. It is preferably done below.
-第2研削工程の具体的な態様-
 第2研削工程の具体的な態様について図9を用いて説明する。ここで、図9は、第2研削工程を行う際の、被研削物とカップ型砥石の円環状の縁部との位置関係を示す概略模式図である。
 図9に示すように、第2研削工程における研削は、図4に示すような構成及び形状を有する被研削物110bを、矢印x方向に回転させているところに、カップ型砥石の円環状の縁部132を矢印y方向に回転させることで行うことが好ましい。図9に示す、被研削物110bの矢印x方向への回転と、カップ型砥石の円環状の縁部132の矢印y方向への回転と、により、被研削物110bの稜線112bから左側に向かってカップ型砥石が進行する研削が行われる。つまり、図9のようにすることで、被研削物110bの被覆層52の研削が、アップカットにより行われる。
-Specific aspects of the second grinding step-
A specific aspect of the second grinding step will be described with reference to FIG. Here, FIG. 9 is a schematic diagram showing the positional relationship between the object to be ground and the annular edge of the cup-shaped grindstone when performing the second grinding step.
As shown in FIG. 9, the grinding in the second grinding step involves rotating an object to be ground 110b having the configuration and shape as shown in FIG. This is preferably done by rotating the edge 132 in the direction of the arrow y. By rotating the object 110b to be ground in the direction of the arrow x and rotating the annular edge portion 132 of the cup-shaped grindstone in the direction of the arrow y shown in FIG. Grinding is performed in which the cup-shaped grindstone advances. 9, the coating layer 52 of the object 110b to be ground is ground by up-cutting.
 なお、図9に示す、アップカットにて行われる被研削物110bの研削は、カップ型砥石の進行方向と被研削物の回転方向とでなす角の角度θが30°~150°である条件下で行われることが好ましい。 In addition, the grinding of the object 110b to be ground, which is performed by up-cutting shown in FIG. It is preferably done below.
(カップ型砥石)
 本実施形態に係る円盤状刃物の製造方法に用い得る、カップ型砥石としては、第1研削工程及び第2研削工程が可能であれば、特に制限はない。
(Cup type whetstone)
The cup-shaped grindstone that can be used in the method for manufacturing a disc-shaped blade according to this embodiment is not particularly limited as long as the first grinding step and the second grinding step are possible.
 第1研削工程に用いるカップ型砥石としては、研削量が多いことから、砥粒の大きさが2μm~80μm(好ましくは、3μm~30μm、より好ましくは、5μm~10μm)のものを用いることが好ましい。
 また、第1研削工程に用いるカップ型砥石の砥粒としては、被研削物の材質に応じて決定されればよく、ダイヤモンド、立方晶窒化ホウ素等が挙げられる。
 更に、第1研削工程に用いるカップ型砥石の円環状の縁部の幅としては、0.5mm~20mm(好ましくは、5mm~10mm)であることが好ましい。
As the cup-shaped grindstone used in the first grinding step, since the amount of grinding is large, it is possible to use one with an abrasive grain size of 2 μm to 80 μm (preferably 3 μm to 30 μm, more preferably 5 μm to 10 μm). preferable.
Further, the abrasive grains of the cup-shaped grindstone used in the first grinding step may be determined according to the material of the object to be ground, and examples thereof include diamond, cubic boron nitride, and the like.
Furthermore, the width of the annular edge of the cup-shaped grindstone used in the first grinding step is preferably 0.5 mm to 20 mm (preferably 5 mm to 10 mm).
 第2研削工程に用いるカップ型砥石としては、精密な研削が求められることから、砥粒の大きさが0.5μm~10μm(好ましくは、0.75μm~8μm、より好ましくは1μm~3μm)のものを用いることが好ましい。
 また、第2研削工程に用いるカップ型砥石の砥粒としては、被研削物の材質に応じて決定されればよく、ダイヤモンド、立方晶窒化ホウ素等が挙げられる。
 更に、第2研削工程に用いるカップ型砥石の円環状の縁部の幅としては、2mm~15mm(好ましくは、5mm~10mm)であることが好ましい。
As the cup-shaped grindstone used in the second grinding step, since precise grinding is required, the abrasive grain size is 0.5 μm to 10 μm (preferably 0.75 μm to 8 μm, more preferably 1 μm to 3 μm). It is preferable to use a material.
Further, the abrasive grains of the cup-shaped grindstone used in the second grinding step may be determined according to the material of the object to be ground, and examples thereof include diamond, cubic boron nitride, and the like.
Furthermore, the width of the annular edge of the cup-shaped grindstone used in the second grinding step is preferably 2 mm to 15 mm (preferably 5 mm to 10 mm).
(研削条件)
 第1研削工程、第2研削工程、及び第3研削工程における研削条件は、目的とする研削が行われ、所望の角度α及び角度βを得ることができれば、特に制限はない。
 所望の角度α及び角度βを得るためには、カップ型砥石の種類、カップ型砥石の周速、被研削物の周速、切込み量、研削時間、研削量、切り込み回数等を適宜調整すればよい。
 カップ型砥石の周速、被研削物の周速、切込み量、研削時間、研削量、切り込み回数(研削したい量/仕込み量)としては、例えば、以下に示す範囲で選択されればよい、
・カップ型砥石の周速:200m/分~2000m/分
・被研削物の周速:10m/分~500m/分
・切込み量:0.5μm/回~5μm/回
・研削時間:1s~60s
・研削量(研削したい量):1μm~100μm
・切込み回数:上記研削したい量/上記切込み量
(Grinding conditions)
Grinding conditions in the first grinding process, the second grinding process, and the third grinding process are not particularly limited as long as the intended grinding is performed and the desired angles α and β can be obtained.
In order to obtain the desired angles α and β, the type of cup-shaped grindstone, the peripheral speed of the cup-shaped grindstone, the peripheral speed of the object to be ground, the amount of cutting, the grinding time, the amount of grinding, the number of times of cutting, etc. can be adjusted as appropriate. good.
The peripheral speed of the cup-shaped grindstone, the peripheral speed of the object to be ground, the depth of cut, the grinding time, the amount of grinding, and the number of times of cutting (amount to be ground/amount to be ground) may be selected within the following ranges, for example:
・Peripheral speed of cup-shaped grindstone: 200 m/min to 2000 m/min ・Peripheral speed of object to be ground: 10 m/min to 500 m/min ・Amount of cut: 0.5 μm/time to 5 μm/time ・Grinding time: 1 s to 60 s
・Amount of grinding (amount to be ground): 1 μm to 100 μm
・Number of incisions: Amount to be ground / Amount of incision
(研削装置)
 本実施形態に係る円盤状刃物の製造方法に適用される研削装置としては、第1研削工程、第2研削工程、及び第3研削工程を行うことができる装置(例えば、被研削物を固定し、回転駆動するシャフトと、これを回転駆動させる駆動手段、カップ型砥石を回転させる駆動手段、カップ型砥石の移動させる移動手段、被研削物を移動させる手段、研削部に研削液をかける手段等を備える装置)であれば、特に制限はない。
(grinding device)
As a grinding device applied to the method for manufacturing a disk-shaped cutlery according to the present embodiment, a device capable of performing the first grinding step, the second grinding step, and the third grinding step (for example, a , a rotating shaft, driving means for rotating it, driving means for rotating the cup-shaped grindstone, moving means for moving the cup-shaped grindstone, means for moving the object to be ground, means for applying grinding liquid to the grinding part, etc. There is no particular limitation as long as it is a device provided with
<用途(使用形態)、裁断装置、及び裁断方法>
 本実施形態に係る円盤状刃物は、他の刃物と共に組み合わせて用い、被裁断物の裁断を行うことができる。このとき、本実施形態に係る円盤状刃物と他の刃物とは、それぞれの刃面(即ち、刃先の側面)が対向し、且つ、摺接するように配置されることで、被裁断物の裁断が行われる。
 組み合わせる他の刃物(即ち、本実施形態に係る円盤状刃物と対で用いられる他の刃物)としては、円盤状刃物であって、本実施形態に係る円盤状刃物と組み合わせて、被裁断物の裁断を行うことができれば、特に制限はない。他の刃物としては、具体的には、例えば、超硬合金から構成され、回転時の外周と側面の振れ精度を約50μm以下に調整された円盤状刃物が好ましい。また、他の刃物の刃先は、面取りがされていてもよい。なお、他の刃物として、本実施形態に係る円盤状刃物を用いてもよい。
<Usage (type of use), cutting device, and cutting method>
The disk-shaped blade according to this embodiment can be used in combination with other blades to cut an object to be cut. At this time, the disk-shaped blade according to this embodiment and the other blade are arranged so that their blade surfaces (that is, the side surfaces of the blade edges) face each other and are in sliding contact with each other, thereby cutting the object to be cut. is done.
Another blade to be combined (that is, another blade used in a pair with the disk-shaped blade according to the present embodiment) is a disk-shaped blade that is combined with the disk-shaped blade according to the present embodiment to cut the object to be cut. There is no particular limitation as long as it can be cut. As another cutting tool, specifically, for example, a disk-shaped cutting tool made of cemented carbide and having a deflection accuracy of about 50 μm or less on the outer circumference and side surface during rotation is preferable. Also, the cutting edges of other blades may be chamfered. Note that the disk-shaped blade according to the present embodiment may be used as another blade.
 具体的には、本実施形態に係る円盤状刃物は、他の刃物と一対で、スリット加工に用いられることが好ましい。より具体的には、本実施形態に係る円盤状刃物は、ゲーベル式スリッタ、又は、ギャング式スリッタに適用される円盤状刃物であることが好ましい。ゲーベル式スリッタ、又は、ギャング式スリッタに、本実施形態に係る円盤状刃物を適用する場合、上刃のみに適用してもよいし、下刃のみに適用してもよいし、上刃と下刃との両方に適用してもよい。 Specifically, it is preferable that the disk-shaped blade according to this embodiment be used for slitting as a pair with another blade. More specifically, the disk-shaped cutter according to the present embodiment is preferably a disk-shaped cutter applied to a Goebel type slitter or a gang type slitter. When applying the disk-shaped cutter according to this embodiment to a Goebel type slitter or a gang type slitter, it may be applied only to the upper blade or only to the lower blade. It may be applied to both blades.
 本実施形態に係る円盤状刃物と他の刃物との組み合わせにて被裁断物を裁断する方法及びその装置としては、例えば、特開2001-315089号公報に記載の被裁断物を裁断する方法及びその装置等を適用することができる。 The method and apparatus for cutting an object using a combination of a disk-shaped blade and other blades according to the present embodiment include, for example, the method and apparatus for cutting an object described in Japanese Unexamined Patent Application Publication No. 2001-315089. The device or the like can be applied.
 以下に、実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、各工程の詳細等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically below with reference to examples. Materials, usage amounts, proportions, details of each step, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Accordingly, the scope of the present invention is not limited to the specific examples shown below.
<被研削物の準備>
 図3に示すような、被研削物110aを準備した。具体的には、外径100mm、内径80mm、厚み1mmであって、平面を含んで形成される頂角30°の片刃状の先端部を有する超硬合金(FW35、京セラ(株)、硬度:1550HV)製の円盤状地金の表面全体に、物理蒸着法にて、厚み3μmのTiCN(硬度:3500HV)を形成した。これを被研削物とした。
<Preparation of the object to be ground>
An object to be ground 110a as shown in FIG. 3 was prepared. Specifically, a cemented carbide (FW35, manufactured by Kyocera Corporation, hardness: A 3 μm-thick TiCN (hardness: 3500 HV) was formed on the entire surface of a disk-shaped ingot made of 1550 HV) by physical vapor deposition. This was used as an object to be ground.
[実施例1]
<第1研削工程>
 図8に示すようにして、直径φ100mmの上記被研削物に対し、番手#1000のカップ型砥石(直径φ100mm)を用い、角度αが30°になるようにカップ型砥石の当て角(即ち、カップ型砥石の回転軸の角度)を調整して、第1研削工程を行った。
 このとき、研削はアップカットにて行われ、その他の研削条件は以下の通りであった。
・カップ型砥石の周速:1200m/分
・被研削物の周速:100m/分
・切込み量:2μm/回
・研削時間:20秒×20回
・カップ型砥石の進行方向と被研削物の回転方向とでなす角の角度θ:75°
 この第1研削工程により、被研削物における円盤状地金の一部を露出させて、円盤状地金の傾斜面を形成し、かつ、角度αを30°とした。
[Example 1]
<First Grinding Process>
As shown in FIG. 8, a #1000 cup-shaped grindstone (diameter φ100mm) is used for the object to be ground having a diameter of φ100mm, and the contact angle of the cup-shaped grindstone (i.e., The first grinding step was performed by adjusting the angle of the rotating shaft of the cup-shaped grindstone.
At this time, the grinding was performed by up-cutting, and the other grinding conditions were as follows.
・Peripheral speed of cup-shaped grindstone: 1200m/min ・Peripheral speed of object to be ground: 100m/min ・Amount of cut: 2μm/time ・Grinding time: 20 seconds × 20 times Angle θ of the angle formed with the direction of rotation: 75°
In this first grinding step, a portion of the disk-shaped base metal in the object to be ground was exposed to form an inclined surface of the disk-shaped base metal, and the angle α was set to 30°.
<第2研削工程>
 続いて、図9に示すようにして、第1研削工程後の被研削物に対し、番手#6000のカップ型砥石(直径φ100mm)を用い、角度βが35°になるようにカップ型砥石の当て角(即ち、カップ型砥石の回転軸の角度)を調整して、第2研削工程を行った。
 このとき、研削はアップカットにて行われ、その他の研削条件は以下の通りであった。
・カップ型砥石の周速:100m/分
・被研削物の周速:100m/分
・切込み量:0.5μm
・研削時間:2秒×3回
・カップ型砥石の進行方向と被研削物の回転方向とでなす角の角度θ:75°
 この第2研削工程により、被覆層により構成される刃先を形成し、かつ、角度βを35°とした。
<Second Grinding Process>
Subsequently, as shown in FIG. 9, a #6000 cup-shaped grindstone (diameter φ100 mm) was used on the object to be ground after the first grinding step, and the cup-shaped grindstone was adjusted so that the angle β was 35°. The second grinding step was performed by adjusting the contact angle (that is, the angle of the rotating shaft of the cup-shaped grindstone).
At this time, the grinding was performed by up-cutting, and the other grinding conditions were as follows.
・Peripheral speed of cup-shaped grindstone: 100 m/min ・Peripheral speed of object to be ground: 100 m/min ・Amount of cut: 0.5 μm
・Grinding time: 2 seconds x 3 times ・Angle θ formed by the advancing direction of the cup-shaped grindstone and the rotating direction of the object to be ground: 75°
By this second grinding step, a cutting edge composed of the coating layer was formed, and the angle β was set to 35°.
 以上の工程を経て、TiCNによる刃先を有し、αが30°でβが35°である円盤状刃物を得た。 Through the above steps, a disk-shaped blade having a cutting edge made of TiCN and having α of 30° and β of 35° was obtained.
[実施例2]
 第2研削工程にて、被研削物に対するカップ型砥石の当て角(即ち、カップ型砥石の回転軸の角度)を調整した以外は実施例1と同様にして、TiCNによる刃先を有し、αが30°でβが32°である円盤状刃物を得た。
[Example 2]
In the second grinding step, in the same manner as in Example 1, except that the angle of contact of the cup-shaped grindstone with respect to the object to be ground (that is, the angle of the rotation axis of the cup-shaped grindstone) was adjusted. was 30° and β was 32°.
[実施例3~7]
 第1研削工程及び第2研削工程において、被研削物に対するカップ型砥石の当て角(即ち、カップ型砥石の回転軸の角度)を調整砥石の回転軸の角度を適宜変化させた以外は実施例1と同様にして、TiCNによる刃先を有し、表1に記載のα及びβの値を有する円盤状刃物を得た。
[Examples 3 to 7]
In the first grinding step and the second grinding step, the contact angle of the cup-shaped grindstone with respect to the object to be ground (that is, the angle of the rotation axis of the cup-shaped grindstone) was adjusted. In the same manner as in No. 1, a disk-shaped blade having a cutting edge made of TiCN and having the values of α and β shown in Table 1 was obtained.
[実施例8]
 角度αが30°になるように第1研削工程後、以下のような第3研削工程を行い、その後、角度βが38°になるようにカップ型砥石の当て角(即ち、カップ型砥石の回転軸の角度)を調整し、第2研削工程を行った以外は実施例1と同様にして、TiCNによる刃先を有し、αが30°でβが38°である円盤状刃物を得た。
 第3研削工程では、図8に示すようにして、第1研削工程後の被研削物に対し、番手#6000のカップ型砥石(直径φ100mm)を用い、角度βが35°になるようにカップ型砥石の当て角(即ち、カップ型砥石の回転軸の角度)を調整して研削を行った。
 このとき、研削はアップカットにて行われ、その他の研削条件は以下の通りであった。
・カップ型砥石の周速:100m/分
・被研削物の周速:100m/分
・切込み量:0.5μm
・研削時間:2秒×10回
・カップ型砥石の進行方向と被研削物の回転方向とでなす角の角度θ:75°
[Example 8]
After the first grinding step so that the angle α becomes 30°, the following third grinding step is performed, and then the contact angle of the cup-shaped grindstone so that the angle β becomes 38° (that is, the cup-shaped grindstone In the same manner as in Example 1 except that the angle of the rotating shaft was adjusted and the second grinding step was performed, a disk-shaped blade having a TiCN cutting edge with α of 30° and β of 38° was obtained. .
In the third grinding step, as shown in FIG. 8, a #6000 cup-shaped grindstone (diameter φ100 mm) is used on the workpiece after the first grinding step, and the cup is adjusted so that the angle β is 35°. Grinding was performed by adjusting the contact angle of the type grindstone (that is, the angle of the rotating shaft of the cup type grindstone).
At this time, the grinding was performed by up-cutting, and the other grinding conditions were as follows.
・Peripheral speed of cup-shaped grindstone: 100 m/min ・Peripheral speed of object to be ground: 100 m/min ・Amount of cut: 0.5 μm
・Grinding time: 2 seconds x 10 times ・Angle θ formed by the advancing direction of the cup-shaped grindstone and the rotating direction of the object to be ground: 75°
[比較例1~3]
 第2研削工程を行わなかった以外は、実施例1、3、又は4とそれぞれ同様にして、表1に記載のα及びβの値を有する円盤状刃物を得た。
[Comparative Examples 1 to 3]
Disc-shaped blades having the values of α and β listed in Table 1 were obtained in the same manner as in Examples 1, 3, or 4, respectively, except that the second grinding step was not performed.
[欠けの評価]
 各例で得られた円盤状刃物の刃先を光学顕微鏡にて観察し、円盤状刃物の刃先に幅10μm以上の凹部があれば、「C:欠けあり」と評価した。また、円盤状刃物の刃先に凹部があっても、その幅が5μm以上10μm未満であれば、「B:微細欠けあり」と評価し、円盤状刃物の刃先に凹部がない、又は、刃先に凹部があってもその幅が5μm未満であれば、「A:欠けなし」と評価した。
 結果を表1に示す。
[Evaluation of Chipping]
The blade edge of the disk-shaped blade obtained in each example was observed with an optical microscope. In addition, even if there is a recess on the cutting edge of the disk-shaped blade, if the width is 5 μm or more and less than 10 μm, it is evaluated as “B: fine chipping”, and there is no recess on the cutting edge of the disk-shaped blade, or Even if there was a recess, if the width was less than 5 μm, it was evaluated as “A: no chipping”.
Table 1 shows the results.
[シャープさ(刃先の滑らかさ)の評価]
 各例で得られた円盤状刃物について、刃先の先端側からレーザー顕微鏡で形状測定の行い、先端形状を円近似して半径Rを求めた。刃先の先端形状における半径Rが1μm以上であったものを「C:シャープさなし」と評価し、刃先の先端形状における半径Rが0.5μm以上1μm未満であったものを「B:シャープさあり」と評価し、刃先の先端形状における半径Rが0.5μm未満であったものを「A:シャープさ良好」と評価した。
 結果を表1に示す。
[Evaluation of sharpness (smoothness of cutting edge)]
The shape of the disk-shaped cutting tool obtained in each example was measured from the tip side of the cutting edge with a laser microscope, and the radius R was obtained by approximating the shape of the tip to a circle. Those with a radius R of 1 μm or more in the tip shape of the cutting edge were evaluated as “C: no sharpness”, and those with a radius R of 0.5 μm or more and less than 1 μm in the tip shape of the cutting edge were evaluated as “B: sharpness. Those with a radius R of less than 0.5 μm in the tip shape of the cutting edge were evaluated as “A: good sharpness”.
Table 1 shows the results.
[裁断試験]
 実施例で得られた円盤状刃物と、下記の下刃とを組み合わせ、裁断試験を行った。
 下刃としては、実施例4で得られた円盤状刃物(刃先角度はα=90°、β=95°であるもの)を用いた。
 被裁断物としては、厚み50μmのPETフィルム(東洋紡(株)製、コスモシャイン(登録商標) A4300)を用いた。
 実施例で得られた円盤状刃物を上刃として用い、これと上記の下刃とを組み合わせて、被裁断物の裁断を10,000mまで継続した。このとき、上刃と下刃とは、刃先の被覆層同士が摺接するように配置され、かみ合わせ量は0.8mmであった。その後の、円盤状刃物の刃先の欠けの有無を、上記「欠けの評価」と同様にして行った。
[Cutting test]
A cutting test was conducted by combining the disk-shaped blade obtained in the example and the lower blade described below.
As the lower blade, the disk-shaped blade obtained in Example 4 (the edge angle of α=90° and β=95°) was used.
A PET film (Cosmoshine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm was used as the material to be cut.
The disk-shaped blade obtained in the example was used as an upper blade, and this was combined with the above lower blade to continue cutting the object to be cut up to 10,000 m. At this time, the upper blade and the lower blade were arranged so that the coating layers of the cutting edges were in sliding contact with each other, and the meshing amount was 0.8 mm. After that, the presence or absence of chipping of the cutting edge of the disk-shaped cutter was performed in the same manner as in the above-mentioned "evaluation of chipping".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、α<βを満たす実施例の円盤状刃物は、欠けがないことが分かる。
 一方、α=βである比較例の円盤状刃物は、欠けが見られた。
 これにより、α<βを満たす実施例の円盤状刃物は、欠けがなく、且つ、製造しやすい刃物であることが分かる。
From the results shown in Table 1, it can be seen that the disk-shaped blades of the examples satisfying α<β have no chipping.
On the other hand, chipping was observed in the disk-shaped cutter of the comparative example in which α=β.
From this, it can be seen that the disk-shaped blades of the examples satisfying α<β are free from chipping and easy to manufacture.
 なお、比較例1のように、α=β=30°の円盤状刃物を製造するにあたり、刃先に欠けがでないようにするためには、例えば、番手#6000の砥石を使い、切込み量を0.5μmとして、研削時間を1h程度とする、繊細で且つ長時間の研削を用いる方法が考えられるが、非常に生産性が悪い。そのため、欠けのない、α=β=30°の円盤状刃物を製造することは、容易ではないと言える。 As in Comparative Example 1, when manufacturing a disk-shaped blade with α = β = 30°, in order to prevent chipping on the blade edge, for example, use a #6000 grindstone and set the depth of cut to 0. 0.5 .mu.m and the grinding time is about 1 hour. Therefore, it can be said that it is not easy to manufacture a chip-free disk-shaped blade with α=β=30°.
[符号の説明]
10 円盤状地金
12 平面
14 傾斜面
20A,20B 被覆層
22A,22B 被覆層により形成される表面
24A,24B 被覆層により形成される表面
30A,30B 刃先
40 円盤状地金
52,54 被覆層
100A,100B 円盤状刃物
110a,110b,110c,110 被研削物
112a,112b 稜線
120 シャフト
130 カップ型砥石
132 円環状の縁部
p1,p2 被研削物の厚み方向両端と、カップ型砥石の円環状の縁部と、の接触点
x 被研削物の回転方向
x1 被研削物の厚み方向両端とカップ型砥石の円環状の縁部との交点における被研削物の回転方向
y カップ型砥石の回転方向
y1 被研削物の厚み方向両端とカップ型砥石の円環状の縁部との交点を通り、カップ型砥石の円環状の縁部の回転方向に沿った方向
θ カップ型砥石の進行方向と上記被研削物の回転方向とでなす角
[Description of symbols]
10 disc-shaped base metal 12 plane 14 inclined surfaces 20A, 20B coating layers 22A, 22B surfaces 24A, 24B formed by coating layers surfaces 30A, 30B formed by coating layers cutting edge 40 disc-shaped base metals 52, 54 coating layer 100A , 100B disk-shaped blades 110a, 110b, 110c, 110 objects to be ground 112a, 112b ridge line 120 shaft 130 cup-shaped grindstone 132 annular edge p1, p2 The contact point x between the edge and the object to be ground Rotation direction x1 The rotation direction y of the object to be ground at the intersection of both ends in the thickness direction of the object to be ground and the annular edge of the cup-shaped grindstone Rotation direction y1 of the cup-shaped grindstone A direction θ along the rotation direction of the annular edge of the cup-shaped grindstone passing through the intersection of both ends in the thickness direction of the object to be ground and the annular edge of the cup-shaped grindstone The angle formed with the direction of rotation of an object
 2021年2月8日に出願された日本国特許出願2021-018378号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-018378 filed on February 8, 2021 is incorporated herein by reference in its entirety. All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually indicated to be incorporated by reference. incorporated herein by reference.

Claims (6)

  1.  他の刃物と対で用いられる円盤状刃物であって、
     前記他の刃物と接触する側の平面と該平面に対して傾斜する傾斜面とが繋がり形成される片刃状の先端部を有する円盤状地金、及び、該円盤状地金の前記平面を被覆する被覆層と、を含み、
     前記被覆層により構成される刃先を有し、
     前記刃先を構成する被覆層により形成される2つの表面のうち、一方の表面が前記円盤状地金の平面に対して鋭角に傾斜しており、且つ、他方の表面が、露出した前記円盤状地金の傾斜面と繋がっており、
     前記円盤状地金における平面と傾斜面とでなす角の角度αと、前記刃先を構成する被覆層により形成される2つの表面とでなす角の角度βと、がα<βの関係を満たす、円盤状刃物。
    A disk-shaped blade used in pairs with other blades,
    A disc-shaped base metal having a single-edged tip portion formed by connecting a plane on the side that contacts the other blade and an inclined surface that is inclined with respect to the plane, and covering the plane of the disc-shaped base metal a covering layer that
    Having a cutting edge composed of the coating layer,
    Of the two surfaces formed by the coating layer forming the cutting edge, one surface is inclined at an acute angle with respect to the plane of the disk-shaped base metal, and the other surface is the exposed disk-shaped surface. It is connected to the slope of the base metal,
    The angle α formed by the flat surface and the inclined surface of the disk-shaped base metal and the angle β formed by the two surfaces formed by the coating layer forming the cutting edge satisfy the relationship α<β. , a disc-shaped blade.
  2.  前記角度α及び前記角度βが、α+1°≦β≦α+10°の関係を満たす、請求項1に記載の円盤状刃物。 The disk-shaped blade according to claim 1, wherein the angle α and the angle β satisfy the relationship α+1°≤β≤α+10°.
  3.  前記角度αが10°~110°である、請求項1又は請求項2に記載の円盤状刃物。 The disc-shaped blade according to claim 1 or claim 2, wherein the angle α is 10° to 110°.
  4.  前記被覆層の硬度が、前記円盤状地金の硬度に対して1.5倍~5倍である、請求項1~請求項3のいずれか1項に記載の円盤状刃物。 The disk-shaped cutlery according to any one of claims 1 to 3, wherein the hardness of the coating layer is 1.5 to 5 times the hardness of the disk-shaped base metal.
  5.  請求項1~請求項4のいずれか1項に記載の円盤状刃物の製造方法であって、
     前記他の刃物と接触する側の平面を含んで形成される先端部を有する円盤状地金、及び、該円盤状地金の前記先端部全体を被覆する被覆層と、を含む被研削物を用い、
     前記被研削物を研削し、該被研削物における円盤状地金の一部を露出させて、前記円盤状刃物における前記露出した円盤状地金の傾斜面を形成し、かつ、前記角度αを調整する第1研削工程と、
     第1研削工程後の前記被研削物を研削し、前記円盤状刃物における前記被覆層により構成される刃先を形成し、かつ、前記角度βを調整する第2研削工程と、
    を有する、円盤状刃物の製造方法。
    A method for manufacturing a disk-shaped blade according to any one of claims 1 to 4,
    An object to be ground, comprising: a disk-shaped base metal having a tip portion formed including a flat surface on the side that contacts the other blade; and a coating layer covering the entire tip portion of the disk-shaped base metal using
    Grinding the object to be ground, exposing a portion of the disk-shaped base metal in the object to be ground, forming an inclined surface of the exposed disk-shaped base metal in the disk-shaped cutting tool, and setting the angle α A first grinding step to adjust;
    a second grinding step of grinding the object to be ground after the first grinding step, forming a cutting edge composed of the coating layer of the disk-shaped blade, and adjusting the angle β;
    A method for manufacturing a disc-shaped blade.
  6.  前記研削が、カップ型砥石を用いたアップカットにて行われ、且つ、前記カップ型砥石の進行方向と前記被研削物の回転方向とでなす角の角度θが30°~150°である、請求項5に記載の円盤状刃物の製造方法。 The grinding is performed by up-cutting using a cup-shaped grindstone, and the angle θ formed by the traveling direction of the cup-shaped grindstone and the rotation direction of the object to be ground is 30° to 150°. The method for manufacturing a disk-shaped blade according to claim 5.
PCT/JP2022/002716 2021-02-08 2022-01-25 Disc-shaped edged tool and manufacturing method of same WO2022168682A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022579470A JPWO2022168682A1 (en) 2021-02-08 2022-01-25
CN202280010817.XA CN116867624A (en) 2021-02-08 2022-01-25 Disc cutter and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021018378 2021-02-08
JP2021-018378 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022168682A1 true WO2022168682A1 (en) 2022-08-11

Family

ID=82741291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002716 WO2022168682A1 (en) 2021-02-08 2022-01-25 Disc-shaped edged tool and manufacturing method of same

Country Status (3)

Country Link
JP (1) JPWO2022168682A1 (en)
CN (1) CN116867624A (en)
WO (1) WO2022168682A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321196A (en) * 1988-06-17 1989-12-27 Mitsubishi Metal Corp Round tool and manufacture thereof
JP2007257695A (en) * 2006-03-20 2007-10-04 Fujifilm Corp Method and device of manufacturing magnetic tape
JP2014037011A (en) * 2012-08-10 2014-02-27 Kanefusa Corp Slitter knife
JP2015009350A (en) * 2013-07-02 2015-01-19 株式会社Ihi Rotary blade and slitter
JP2018164970A (en) * 2017-03-28 2018-10-25 トヨタ自動車株式会社 Cutting apparatus and rotary knife

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321196A (en) * 1988-06-17 1989-12-27 Mitsubishi Metal Corp Round tool and manufacture thereof
JP2007257695A (en) * 2006-03-20 2007-10-04 Fujifilm Corp Method and device of manufacturing magnetic tape
JP2014037011A (en) * 2012-08-10 2014-02-27 Kanefusa Corp Slitter knife
JP2015009350A (en) * 2013-07-02 2015-01-19 株式会社Ihi Rotary blade and slitter
JP2018164970A (en) * 2017-03-28 2018-10-25 トヨタ自動車株式会社 Cutting apparatus and rotary knife

Also Published As

Publication number Publication date
CN116867624A (en) 2023-10-10
JPWO2022168682A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
TWI613035B (en) Scribing wheel and manufacturing method thereof
TWI665065B (en) Scribing wheel and scribing method
US20180161886A1 (en) Cutting insert, cutting tool, and method for manufacturing machined product
TWI750172B (en) Cutting tools
JP2016175141A (en) Cutting tool with hard carbon coating
WO2022168682A1 (en) Disc-shaped edged tool and manufacturing method of same
CN114728352A (en) Ball end mill
JP2009072900A (en) Sheet cutting device
US11780018B2 (en) Rotary cutting tool
CN107470650A (en) The processing method of silver-colored target
JP2017132025A (en) Cutting tool
JP2010221351A (en) Tip for cutting edge replacement type cutting tool
JP5942783B2 (en) Scribing wheel and manufacturing method thereof
JP5586401B2 (en) Cutting blade, manufacturing method thereof and slitting tool
US11819979B2 (en) Abrasive tool
JP4335593B2 (en) Hard coating coated cutting tool
JP2023115729A (en) Grinding method
JP2012066352A (en) Cutting tool
JP2012045663A (en) Cutting tool
JP4098978B2 (en) Round blade for slitter and slitting method using the same
KR20050059034A (en) Disk cutter
JP2000052132A (en) Coated end mill whose tip is processed
JP2013184388A (en) Scribing wheel and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579470

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280010817.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749556

Country of ref document: EP

Kind code of ref document: A1