WO2022168507A1 - Internal combustion engine exhaust gas purifying device - Google Patents

Internal combustion engine exhaust gas purifying device Download PDF

Info

Publication number
WO2022168507A1
WO2022168507A1 PCT/JP2021/048805 JP2021048805W WO2022168507A1 WO 2022168507 A1 WO2022168507 A1 WO 2022168507A1 JP 2021048805 W JP2021048805 W JP 2021048805W WO 2022168507 A1 WO2022168507 A1 WO 2022168507A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
catalyst
exhaust purification
purification catalyst
air
Prior art date
Application number
PCT/JP2021/048805
Other languages
French (fr)
Japanese (ja)
Inventor
亜美 米澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022168507A1 publication Critical patent/WO2022168507A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present disclosure relates to an exhaust purification device for an internal combustion engine.
  • the exhaust purification device described in Patent Document 1 includes an exhaust sensor provided upstream of a three-way catalyst in an exhaust passage of an internal combustion engine, and a control device that determines whether or not the three-way catalyst has deteriorated.
  • the control device calculates the oxygen storage amount of the three-way catalyst using a predetermined arithmetic expression from the air-fuel ratio detected by the exhaust sensor when the air-fuel ratio of the internal combustion engine is changed from rich to lean or from lean to rich. do. Then, the control device determines that the three-way catalyst has deteriorated when the calculated oxygen storage amount is less than a predetermined threshold value.
  • a three-way catalyst as described in Patent Document 1 is generally constructed by coating the surface of a monolith carrier made of cordierite with a washcoat layer.
  • the washcoat layer is composed of a noble metal and a co-catalyst.
  • the co-catalyst is a catalyst having oxygen storage and release functions, such as a ceria-zirconia solid solution.
  • CZ (ceria-zirconia) catalysts have been attracting attention in recent years.
  • the CZ catalyst has a structure in which a honeycomb structure is formed from ceria-zirconia as a promoter, and a noble metal catalyst is supported on the surface of the honeycomb structure.
  • the co-catalyst is fired at a temperature higher than the temperature of the environment in which it is actually used when forming the co-catalyst honeycomb structure. Therefore, the CZ catalyst has the characteristic that the heat deterioration of the co-catalyst is unlikely to occur with the passage of time of use, in other words, the characteristic that the oxygen storage amount is unlikely to decrease.
  • An object of the present disclosure is to provide an exhaust purification system for an internal combustion engine capable of determining the deterioration of an exhaust purification catalyst having a structure in which a precious metal catalyst is supported on the surface of a honeycomb structure of a co-catalyst having an oxygen storage function and an oxygen release function. It is to provide a device.
  • An exhaust purification device for an internal combustion engine includes a first exhaust purification catalyst, a second exhaust purification catalyst, a first exhaust sensor, a second exhaust sensor, a detection section, and a determination section.
  • the first exhaust purification catalyst is arranged in the exhaust passage of the internal combustion engine and has a structure in which a noble metal catalyst is supported on the surface of a honeycomb structure of a co-catalyst having an oxygen storage function and an oxygen release function.
  • the second exhaust gas purification catalyst is arranged downstream of the first exhaust gas purification catalyst in the exhaust passage, and contains a co-catalyst and a noble metal catalyst having an oxygen storage function and an oxygen release function on the surface of the honeycomb structure formed of cordierite.
  • the first exhaust sensor is arranged upstream of the first exhaust purification catalyst in the exhaust passage and detects a specific component of the exhaust.
  • the second exhaust sensor is arranged downstream of the second exhaust purification catalyst in the exhaust passage and detects a specific component of the exhaust. Based on the specific components detected by the first exhaust sensor and the second exhaust sensor, respectively, the detection unit detects the total value of the oxygen storage amounts of the first exhaust purification catalyst and the second exhaust purification catalyst, or the first exhaust purification catalyst. A total value of the oxygen release amount of each of the catalyst and the second exhaust purification catalyst is detected.
  • the determination unit determines deterioration of the first exhaust purification catalyst and the second exhaust purification catalyst based on the total value of the oxygen storage amount or the total value of the oxygen release amount detected by the detection unit.
  • the oxygen storage amount of the first exhaust purification catalyst hardly decreases as the usage time elapses, whereas the oxygen storage amount of the second exhaust purification catalyst decreases. Therefore, the total value of the oxygen storage amounts of the first exhaust purification catalyst and the second exhaust purification catalyst decreases as the usage time elapses.
  • the exhaust gas purification performance of each of the first exhaust gas purification catalyst and the second exhaust gas purification catalyst decreases with the passage of time of use. Therefore, it is considered that there is a correlation between the total value of the oxygen storage amounts of the first exhaust purification catalyst and the second exhaust purification catalyst and their exhaust purification performance.
  • Another exhaust purification device for an internal combustion engine that solves the above problems includes a first exhaust purification catalyst, a second exhaust purification catalyst, a first exhaust sensor, a second exhaust sensor, a detection section, and a determination section.
  • the first exhaust purification catalyst is arranged in the exhaust passage of the internal combustion engine and has a structure in which a noble metal catalyst is supported on the surface of a honeycomb structure of a co-catalyst having an oxygen storage function and an oxygen release function.
  • the second exhaust gas purification catalyst is arranged downstream of the first exhaust gas purification catalyst in the exhaust passage, and contains a co-catalyst and a noble metal catalyst having an oxygen storage function and an oxygen release function on the surface of the honeycomb structure formed of cordierite.
  • the first exhaust sensor is arranged between the first exhaust purification catalyst and the second exhaust purification catalyst in the exhaust passage and detects a specific component of the exhaust.
  • the second exhaust sensor is arranged downstream of the second exhaust purification catalyst in the exhaust passage and detects a specific component of the exhaust.
  • the detection unit detects an oxygen storage amount or an oxygen release amount of the second exhaust purification catalyst based on the specific components detected by the first exhaust sensor and the second exhaust sensor, respectively.
  • the determination unit determines deterioration of the first exhaust purification catalyst and the second exhaust purification catalyst based on the oxygen storage amount or the oxygen release amount detected by the detection unit.
  • the oxygen storage amount of the first exhaust purification catalyst hardly decreases as the usage time elapses, whereas the oxygen storage amount of the second exhaust purification catalyst decreases. Therefore, the total value of the oxygen storage amounts of the first exhaust purification catalyst and the second exhaust purification catalyst decreases as the usage time elapses.
  • the exhaust gas purification performance of each of the first exhaust gas purification catalyst and the second exhaust gas purification catalyst decreases with the passage of time of use. Therefore, it is considered that there is a correlation between the oxygen storage amount of the second exhaust purification catalyst and the exhaust purification performance of each of the first exhaust purification catalyst and the second exhaust purification catalyst.
  • FIG. 1 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the cross-sectional structure of the CZ catalyst of the first embodiment.
  • FIG. 3 is a cross-sectional view showing the cross-sectional structure of the cordierite catalyst of the first embodiment.
  • FIGS. 4A and 4B are time charts showing changes in the maximum oxygen storage amount and the exhaust purification performance of the CZ catalyst.
  • FIGS. 5A and 5B are time charts showing transitions of the maximum oxygen storage amount and exhaust purification performance of the cordierite catalyst.
  • FIGS. 9A to 9C are timing charts showing changes in the upstream air-fuel ratio AF11, the downstream air-fuel ratio AF12, and the oxygen storage amount OSC in the first embodiment.
  • FIG. 10 is a graph showing the total value of the maximum oxygen storage amounts of the CZ catalyst and the cordierite catalyst in comparison between the normal state and the deteriorated state.
  • FIG. 11 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to a first modification of the first embodiment.
  • FIG. 12 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to a second modification of the first embodiment.
  • FIG. 13 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to the second embodiment.
  • FIG. 14 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to a first modification of the second embodiment.
  • FIG. 15 is a block diagram showing a schematic configuration of an internal combustion engine exhaust purification system according to a second modification of the second embodiment.
  • FIG. 1 An embodiment of an exhaust emission control device for an internal combustion engine will be described below with reference to the drawings. In order to facilitate understanding of the description, the same components are denoted by the same reference numerals as much as possible in each drawing, and overlapping descriptions are omitted.
  • Internal combustion engine 10 is a gasoline engine.
  • a fuel injection valve 11 and a spark plug 12 are provided in the internal combustion engine 10 .
  • a fuel injection valve 11 injects fuel into a combustion chamber of the internal combustion engine 10 .
  • the ignition plug 12 forms spark discharge in the combustion chamber based on the supply of electric power.
  • An intake passage 20 and an exhaust passage 30 are connected to the internal combustion engine 10 .
  • an air-fuel mixture is generated by mixing the air taken into the combustion chamber through the intake passage 20 and the fuel injected from the fuel injection valve 11. As shown in FIG. This air-fuel mixture is ignited by the spark plug 12 and combusted to obtain power for the internal combustion engine 10 .
  • Exhaust gas generated by combustion of the air-fuel mixture is discharged out of the vehicle through an exhaust passage 30 .
  • a throttle valve 21 and an airflow meter 22 are provided in the intake passage 20 .
  • the throttle valve 21 adjusts the amount of air introduced into the internal combustion engine 10 by its opening and closing operations.
  • the air flow meter 22 is arranged upstream of the throttle valve 21 in the air flow direction.
  • the airflow meter 22 detects the amount of air introduced into the internal combustion engine 10 through the intake passage 20 and outputs a signal corresponding to the detected amount of air.
  • a CZ (ceria-zirconia) catalyst 31 and a cordierite catalyst 32 are spaced apart from each other in the exhaust passage 30 .
  • the cordierite catalyst 32 is arranged downstream of the CZ catalyst 31 in the exhaust passage 30 .
  • the CZ catalyst 31 corresponds to the first exhaust purification catalyst
  • the cordierite catalyst 32 corresponds to the second exhaust purification catalyst.
  • the CZ catalyst 31 has a honeycomb structure 310 and a noble metal catalyst 311.
  • the honeycomb structure 310 is composed of a co-catalyst having an oxygen storage function and an oxygen release function.
  • a ceria-zirconia cocatalyst is used as the cocatalyst, but any other cocatalyst can also be used.
  • the noble metal catalyst 311 is carried in the form of particles on the surface of the honeycomb structure 310 , that is, on the exhaust contact surface of the honeycomb structure 310 .
  • the noble metal catalyst 311 is platinum group metal (PGM) such as platinum, palladium, and rhodium.
  • PGM platinum group metal
  • the noble metal catalyst 311 has the function of removing harmful substances such as hydrocarbons, carbon monoxide, and nitrogen oxides contained in the exhaust.
  • the honeycomb structure 310 is formed using a co-catalyst. At that time, the honeycomb structure 310 is fired at a temperature higher than the actual use environment temperature. After molding the honeycomb structure 310 of the co-catalyst, the platinum group element is supported on the surface of the honeycomb structure 310, whereby the production of the CZ catalyst 31 is completed. A heat treatment is performed at a temperature of 500 [° C.] to 600 [° C.] when the platinum group element is supported on the surface of the honeycomb structure 310 .
  • the co-catalyst honeycomb structure 310 is fired at a temperature higher than the actual use environment temperature. It has the property that the storage function and the release function are unlikely to deteriorate.
  • the noble metal catalyst is heat-treated only at about 500[°C] to 600[°C], so the particles of the noble metal grow with the passage of time, resulting in a decrease in the exhaust purification function. have.
  • the cordierite catalyst 32 has a honeycomb structure 320 and a washcoat layer 321.
  • the honeycomb structure 320 is made of cordierite.
  • the washcoat layer 321 is coated on the surface of the honeycomb structure 320 in layers. Washcoat layer 321 contains a promoter such as ceria-zirconia and a noble metal.
  • the CZ catalyst 31 can reduce the heat capacity and improve the warm-up performance. Furthermore, the CZ catalyst 31 without the washcoat layer 321 has a large opening area and a large hydraulic diameter, so it also has the advantage of being able to reduce the pressure loss of the exhaust gas.
  • the catalysts 31 and 32 shown in FIGS. 2 and 3 store excess oxygen contained in the exhaust gas in the promoter and produce nitrogen. Reduces oxides.
  • the catalysts 31 and 32 release the oxygen stored in the co-catalyst to oxidize. In this manner, the catalysts 31 and 32 have the oxygen storage and release functions of the co-catalyst regardless of whether the air-fuel ratio of the internal combustion engine 10 deviates to the lean side or to the rich side. Depending on the function, it is possible to purify unburned components and nitrogen oxides contained in the exhaust.
  • the exhaust passage 30 is further provided with a first air-fuel ratio sensor 33 and a second air-fuel ratio sensor 34 .
  • the first air-fuel ratio sensor 33 is arranged upstream of the CZ catalyst 31 in the exhaust passage 30 .
  • the second air-fuel ratio sensor 34 is arranged downstream of the cordierite catalyst 32 in the exhaust passage 30 .
  • Each air-fuel ratio sensor 33, 34 detects the air-fuel ratio or oxygen concentration of the exhaust gas and outputs a signal corresponding to the air-fuel ratio of the exhaust gas.
  • the first air-fuel ratio sensor 33 corresponds to the first exhaust sensor
  • the second air-fuel ratio sensor 34 corresponds to the second exhaust sensor.
  • the air-fuel ratio of the exhaust detected by each air-fuel ratio sensor 33, 34 corresponds to a specific component of the exhaust.
  • the internal combustion engine 10 further includes an accelerator opening sensor 40 and a crank position sensor 41 .
  • the accelerator opening sensor 40 detects the amount of depression of the accelerator pedal by the driver and outputs a signal corresponding to the detected amount of depression.
  • the crank position sensor 41 detects the rotational position of the crankshaft, which is the output shaft of the internal combustion engine 10, and outputs a signal corresponding to the detected rotational position.
  • the internal combustion engine 10 has an ECU (Electronic Control Unit) 50 for controlling the internal combustion engine 10 .
  • the exhaust purification device 60 of the present embodiment includes the ECU 50, catalysts 31 and 32, air-fuel ratio sensors 33 and 34, and the like provided in the exhaust passage 30. As shown in FIG.
  • the ECU 50 is mainly composed of a microcomputer having a CPU, a storage device, and the like.
  • the ECU 50 executes various controls of the internal combustion engine 10 by executing programs pre-stored in the storage device. For example, the ECU 50 determines the internal combustion engine speed, engine load, etc. based on the output signals of various sensors provided in the vehicle, in addition to the respective output signals of the air flow meter 22, the accelerator opening sensor 40, and the crank position sensor 41. Acquire 10 various state quantities. Then, the ECU 50 controls the fuel injection valve 11, the spark plug 12, and the throttle valve 21 based on various state quantities of the internal combustion engine 10 such as the engine rotation speed and the engine load, thereby performing fuel injection control and ignition timing control. , intake air amount control, etc.
  • the ECU 50 has a detection section 51, an air-fuel ratio control section 52, and a determination section 53 as functional parts realized by executing a program stored in a storage device.
  • the detection unit 51 is a portion that detects various state quantities of the internal combustion engine 10 .
  • the detection unit 51 detects an upstream air-fuel ratio AF11, which is the air-fuel ratio of exhaust flowing upstream of the CZ catalyst 31 in the exhaust passage 30, based on the output signal of the first air-fuel ratio sensor 33, for example. Based on the output signal of the second air-fuel ratio sensor 34, the detection unit 51 also detects a downstream air-fuel ratio AF12, which is the air-fuel ratio of the exhaust flowing downstream of the cordierite catalyst 32 in the exhaust passage 30.
  • the air-fuel ratio control unit 52 executes air-fuel ratio control to make the air-fuel ratio of the internal combustion engine 10 follow the target air-fuel ratio based on the upstream air-fuel ratio AF11 and the downstream air-fuel ratio AF12 detected by the detection unit 51.
  • the air-fuel ratio control unit 52 increases or decreases the amount of fuel injected from the fuel injection valve 11 based on the output signal of the first air-fuel ratio sensor 33 so that the upstream air-fuel ratio AF11 matches the target air-fuel ratio.
  • the target air-fuel ratio is set to, for example, the stoichiometric air-fuel ratio. As a result, the air-fuel ratio of the air-fuel mixture in the combustion chamber of the internal combustion engine 10 is controlled to converge to the stoichiometric air-fuel ratio.
  • the determination unit 53 determines whether the CZ catalyst 31 and the cordierite catalyst 32 have deteriorated based on the upstream air-fuel ratio AF11 and the downstream air-fuel ratio AF12 detected by the detection unit 51 . Next, the principle of deterioration determination of the catalysts 31 and 32 in this embodiment will be described.
  • the maximum oxygen storage capacity (OSC: Oxygen Storage Capacity) of each of the catalysts 31 and 32 is the maximum oxygen storage capacity
  • the maximum oxygen storage capacity and exhaust purification performance of the CZ catalyst 31 are shown in FIGS. transition as shown in . That is, as shown in FIG. 4A, although the maximum oxygen storage amount of the CZ catalyst 31 hardly decreases with the lapse of usage time, the exhaust purification performance gradually decreases. Therefore, with respect to the CZ catalyst 31, it is difficult to establish a correlation between the maximum oxygen storage amount and the exhaust purification performance, so it is difficult to determine the deterioration of the exhaust purification performance based on the maximum oxygen storage amount.
  • the maximum oxygen storage amount and the exhaust purification performance of the cordierite catalyst 32 change as shown in FIGS. 5(A) and 5(B), for example. That is, as shown in FIGS. 5A and 5B, the maximum oxygen storage amount and the exhaust purification performance of the cordierite catalyst 32 gradually decrease as the usage time elapses. Therefore, regarding the cordierite catalyst 32, since there is a correlation between the maximum oxygen storage amount and the exhaust purification performance, deterioration of the exhaust purification performance can be determined based on the maximum oxygen storage amount.
  • the amount of decrease in the maximum oxygen storage amount of the single cordierite catalyst 32 is It is considered to be approximately equal to the reduction amount of the total value of the amount. Therefore, it is considered possible to determine the degree of deterioration of the exhaust purification performance of each of the catalysts 31 and 32 based on the amount of decrease in the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 .
  • the total value of the oxygen storage amounts of the catalysts 31 and 32 is the total value of the respective graph values of FIGS. 4(A) and 5(A). Therefore, the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 changes as shown in FIG. 6(A). At this time, the exhaust purification performance of each catalyst 31, 32 changes as shown in FIG. 6(B). As shown in FIGS. 6A and 6B, there is a correlation between the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 and the exhaust purification performance of each catalyst 31 and 32. It is possible to determine the deterioration of the exhaust purification performance of each of the catalysts 31 and 32 based on the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 .
  • the ECU 50 of this embodiment determines whether or not the catalysts 31 and 32 have deteriorated using the above principle.
  • FIGS. 7 and 8 a specific description will be given of the procedure of the process of determining whether or not the catalysts 31 and 32 have deteriorated, which is executed by the ECU 50.
  • FIG. 7 is a flow chart showing the procedure for determining whether or not the catalysts 31 and 32 have deteriorated based on the total value of the maximum oxygen storage amounts of the catalysts 31 and 32.
  • FIG. FIG. 8 is a flow chart showing a procedure for determining whether or not the catalysts 31 and 32 have deteriorated based on the total value of the oxygen release amounts of the catalysts 31 and 32.
  • the ECU 50 periodically determines deterioration of each of the catalysts 31 and 32 by executing either the process shown in FIG. 7 or the process shown in FIG. 8 at predetermined intervals.
  • the ECU 50 executes the processing shown in FIG. As shown in FIG. 7, the air-fuel ratio control unit 52 of the ECU 50 first executes rich control to intentionally change the air-fuel ratio of the internal combustion engine 10 to rich as the process of step S10. Specifically, the air-fuel ratio control unit 52 sets the target air-fuel ratio to a rich air-fuel ratio that is set on the richer side than the stoichiometric air-fuel ratio. As a result, the air-fuel ratio of the internal combustion engine 10 changes richly, so that the oxygen stored in the catalysts 31 and 32 is released.
  • the air-fuel ratio control unit 52 continues the rich control until the downstream air-fuel ratio AF12 detected by the detection unit 51 becomes equal to or less than the rich judgment value.
  • the rich determination value is a value set on the richer side than the stoichiometric air-fuel ratio, and is set to a value that can determine whether or not the air-fuel ratio of the exhaust gas is rich. By executing the rich control, the oxygen storage amount of each catalyst 31, 32 becomes "0" or a value close to it.
  • the air-fuel ratio control unit 52 starts lean control to change the air-fuel ratio of the internal combustion engine 10 to lean as the processing of step S11 following step S10. Specifically, the air-fuel ratio control unit 52 sets the target air-fuel ratio to a lean air-fuel ratio that is set to be leaner than the stoichiometric air-fuel ratio. As a result, the air-fuel ratio of the internal combustion engine 10 becomes lean, so oxygen contained in the exhaust gas is stored in the catalysts 31 and 32 .
  • the detection unit 51 of the ECU 50 calculates the total value ⁇ OSC of the oxygen storage amounts of the catalysts 31 and 32 per unit time as the process of step S12 following step S11. Specifically, the detection unit 51 calculates the total value ⁇ OSC of the oxygen storage amounts of the catalysts 31 and 32 per unit time from the upstream air-fuel ratio AF11 and the downstream air-fuel ratio AF12 based on the following equation f1.
  • ⁇ OSC (AF12 ⁇ AF11) ⁇ Q ⁇ K (f1)
  • ⁇ Q is the fuel injection amount per unit time
  • K is the ratio of oxygen contained in the intake air.
  • a predetermined fixed value is used as the oxygen content ratio K.
  • the air-fuel ratio control unit 52 determines whether or not the conditions for ending the lean control are met as the process of step S13 following step S12. Specifically, when the downstream air-fuel ratio AF12 detected by the detection unit 51 becomes equal to or greater than the lean determination value, the air-fuel ratio control unit 52 determines that the lean control end condition is satisfied. When the air-fuel ratio control unit 52 makes a negative determination in the process of step S13, that is, when the lean control end condition is not satisfied, the detection unit 51 executes the process of step S12. That is, during the period in which the lean control is continued, the detection unit 51 sequentially calculates the total values ⁇ OSC1, ⁇ OSC2, . .
  • step S14 ends the lean control.
  • the downstream air-fuel ratio AF12 is equal to or higher than the lean judgment value, so the oxygen storage amounts of the catalysts 31 and 32 reach the maximum value or a value close to it.
  • the detection unit 51 calculates the total value OSCmax of the maximum oxygen storage amounts of the catalysts 31 and 32 as the process of step S15 following step S14. Specifically, the detection unit 51 integrates the total values ⁇ OSC1, ⁇ OSC2, . A total value OSCmax of the maximum oxygen storage amount is calculated.
  • the determination unit 53 of the ECU 50 determines whether or not the total value OSCmax of the maximum oxygen storage amounts is less than a predetermined threshold value ⁇ as the process of step S16. If the determination unit 53 makes a negative determination in the processing of step S16, that is, if the total value OSCmax of the maximum oxygen storage amounts is equal to or greater than the threshold value ⁇ , the determination unit 53 performs the processing of step S17 by adjusting the catalysts 31 and 32. is normal.
  • step S16 determines whether the total value OSCmax of the maximum oxygen storage amounts is less than the threshold value ⁇ . If the determination unit 53 makes an affirmative determination in the process of step S16, that is, if the total value OSCmax of the maximum oxygen storage amounts is less than the threshold value ⁇ , the process of step S18 is performed by the catalyst 31 , 32 are determined to be degraded. In this case, the determination unit 53 notifies the driver that the catalysts 31 and 32 have deteriorated, for example, by turning on a warning light provided on the instrument panel of the vehicle.
  • the ECU 50 executes the processing shown in FIG. Since the processing shown in FIG. 8 is similar to the processing shown in FIG. 7, the differences therebetween will be mainly described below.
  • the air-fuel ratio control unit 52 executes lean control as the process of step S20. As a result, the oxygen storage amount of each of the catalysts 31 and 32 becomes the maximum value or a value close to it.
  • the air-fuel ratio control unit 52 starts rich control as the process of step S21 following step S20. As the rich control is started, the air-fuel ratio of the internal combustion engine 10 becomes rich, so oxygen stored in the catalysts 31 and 32 is released to the exhaust.
  • step S22 the detection unit 51 of the ECU 50 calculates the total value ⁇ ORC of the oxygen release amounts of the catalysts 31 and 32 per unit time based on the following equation f2.
  • ⁇ ORC (AF11 ⁇ AF12) ⁇ Q ⁇ K (f2)
  • the air-fuel ratio control unit 52 determines whether or not the downstream air-fuel ratio AF12 is equal to or less than the rich determination value, thereby determining whether or not the end condition of the rich control is satisfied. do.
  • the detection unit 51 determines the amount of air per unit time based on the above equation f2.
  • step S24 ends the rich control.
  • the downstream air-fuel ratio AF12 is equal to or lower than the rich judgment value, so the total value of the oxygen release amounts of the catalysts 31 and 32 reaches the maximum value.
  • step S25 the detection unit 51 integrates the total values ⁇ ORC1, ⁇ ORC2, .
  • a total value ORCmax of the oxygen release amount is calculated.
  • the determination unit 53 of the ECU 50 determines whether or not the total value ORCmax of the maximum oxygen release amounts is less than the threshold value ⁇ as the process of step S26. If the determination unit 53 makes a negative determination in the process of step S26, it determines that the catalysts 31 and 32 are normal in the process of step S27. If the determination unit 53 makes an affirmative determination in the processing of step S26, it determines that the catalysts 31 and 32 have deteriorated in the processing of step S28.
  • the air-fuel ratio of the exhaust reaching the first air-fuel ratio sensor 33 changes to a lean value, so as shown in FIG.
  • the upstream air-fuel ratio AF11 changes to a lean value.
  • the air-fuel ratio of the internal combustion engine 10 changes to lean, the period during which the catalysts 31 and 32 can occlude the excess oxygen contained in the exhaust gas reaches the second air-fuel ratio sensor 34.
  • the air-fuel ratio maintains the stoichiometric value. Therefore, after time t10, the downstream air-fuel ratio AF12 is maintained at the stoichiometric value as shown in FIG.
  • the value OSC increases gradually.
  • the downstream air-fuel ratio AF12 changes from the stoichiometric value to the lean value.
  • the detection unit 51 maximizes the total value OSC of the oxygen storage amounts of the catalysts 31 and 32 calculated at time t12. It is detected as the total value OSCmax1 of the oxygen storage amount.
  • the total value OSCmax1 of the maximum oxygen storage amount is greater than or equal to the threshold ⁇ as shown in FIG. 9C. , it is determined that the catalysts 31 and 32 are normal.
  • the maximum oxygen storage amount of the cordierite catalyst 32 decreases, and the total value OSC of the maximum oxygen storage amount decreases.
  • the total value OSCmax1 of the maximum oxygen storage amount in the normal state can be represented by the sum of the maximum oxygen storage amount OSCmax11 of the CZ catalyst 31 and the maximum oxygen storage amount OSCmax12 of the cordierite catalyst 32, as shown in FIG. can be done.
  • the maximum oxygen storage amount of the CZ catalyst 31 slightly decreases from "OSCmax11" to "OSCmax21", while the maximum oxygen storage amount of the cordierite catalyst 32 is "OSCmax12". to "OSCmax22". Under the influence of this change in the maximum oxygen storage amount of the cordierite catalyst 32, the total value of the maximum oxygen storage amount is reduced from "OSCmax1" to "OSCmax2".
  • the total value of the maximum oxygen storage amount is reduced to "OSCmax2", so that the downstream air-fuel ratio AF12 becomes stoichiometric as shown by the dashed line in FIG. 9(B).
  • the time at which the value changes to the lean value is time t11, which is earlier than time t12.
  • the total value OSCmax2 of the maximum oxygen storage amounts is less than the threshold value ⁇ , so the determination unit 53 determines that the catalysts 31 and 32 have deteriorated at time t11.
  • the exhaust purification device 60 of the present embodiment it is possible to determine not only the deterioration of the cordierite catalyst 32 but also the deterioration of the CZ catalyst 31 .
  • the exhaust purification device 60 of this embodiment determines the deterioration of each of the catalysts 31 and 32 based on the deviation of the total value OSCmax of the maximum oxygen storage amounts before and after deterioration. . Therefore, for example, when the maximum oxygen storage amount of the CZ catalyst 31 is excessive compared to the oxygen storage amount of the cordierite catalyst 32, the deviation of the total value OSCmax of the maximum oxygen storage amounts before and after deterioration is relatively very small. may become.
  • the co-catalyst of each catalyst 31, 32 is adjusted so that the deviation of the total value OSCmax of the maximum oxygen storage amount before and after deterioration exceeds the lower limit value of the amount of change in the oxygen storage amount detectable by the air-fuel ratio sensors 33, 34. It is desirable to adjust the amount of Such adjustment is, for example, adjusting the ratio between the amount of the co-catalyst of the CZ catalyst 31 and the amount of the co-catalyst of the cordierite catalyst 32, or adjusting the coat amount of the wash coat layer 321 of the cordierite catalyst 32. can be done by
  • the exhaust purification device 60 of the present embodiment considering that the maximum oxygen storage amount of the CZ catalyst 31 hardly changes with the lapse of usage time, based on the change in the maximum oxygen storage amount of the cordierite catalyst 32 Deterioration of each catalyst 31, 32 is determined. In the case of such a determination method, it is important for securing the determination accuracy that the degrees of deterioration of the catalysts 31 and 32 exhibit similar tendencies.
  • the thermal histories of the catalysts 31 and 32 are greatly different. Specifically, since the heat of the exhaust gas that has passed through the CZ catalyst 31 is more likely to be released from the pipe arranged between the CZ catalyst 31 and the cordierite catalyst 32, the temperature of the cordierite catalyst 32 is higher than the temperature of the CZ catalyst 31. temperature can be significantly lower. If the thermal histories of the catalysts 31 and 32 are significantly different in this way, for example, the deterioration of the CZ catalyst 31 arranged upstream of the exhaust passage 30 progresses, but the cordierite arranged downstream of the exhaust passage 30 deteriorates.
  • a situation may occur in which the deterioration of the catalyst 32 is not progressing.
  • the threshold ⁇ used in the process of step S16 shown in FIG. 7 and the step shown in FIG. When the threshold value ⁇ used in the process of S26 is set, the degree of deterioration of the cordierite catalyst 32 can be determined with high accuracy, but it becomes difficult to determine the degree of deterioration of the CZ catalyst 31 with high accuracy.
  • the threshold ⁇ and the threshold ⁇ are set to It is desirable to set the threshold to a value that is larger than the threshold that allows determination of deterioration.
  • the catalysts 31 and 32 are arranged adjacent to each other in tandem in the exhaust passage 30 as shown in FIG. According to such a configuration, since the thermal histories of the catalysts 31 and 32 can be made as close as possible, the deterioration determination accuracy of the catalysts 31 and 32 can be improved.
  • the exhaust purification device 60 of this modification further includes a third air-fuel ratio sensor 35 arranged between the CZ catalyst 31 and the cordierite catalyst 32 in the exhaust passage 30 .
  • the third air-fuel ratio sensor 35 corresponds to the third exhaust sensor.
  • the detection unit 51 of the ECU 50 detects the air-fuel ratio of the exhaust discharged from the CZ catalyst 31 and the air-fuel ratio of the exhaust flowing into the cordierite catalyst 32 based on the output signal of the third air-fuel ratio sensor 35 . Further, the air-fuel ratio control unit 52 of the ECU 50 controls the internal combustion engine 10 based on the air-fuel ratio of the exhaust discharged from the CZ catalyst 31 and the air-fuel ratio of the exhaust flowing into the cordierite catalyst 32 detected by the detection unit 51. Air-fuel ratio control is executed to match the air-fuel ratio of the engine to the stoichiometric air-fuel ratio.
  • the configuration of the exhaust purification device 60 shown in FIG. 12 is also applicable to a configuration in which the CZ catalyst 31 and the cordierite catalyst 32 are arranged in tandem as shown in FIG.
  • the first air-fuel ratio sensor 33 is arranged between the CZ catalyst 31 and the cordierite catalyst 32 in the exhaust passage 30. It differs from the exhaust emission control device 60 of the first embodiment in that the A detection unit 51 of the ECU 50 detects a midstream air-fuel ratio AF13, which is the air-fuel ratio of exhaust flowing between the CZ catalyst 31 and the cordierite catalyst 32 in the exhaust passage 30, based on the output signal of the first air-fuel ratio sensor 33. .
  • a determination unit 53 of the ECU 50 determines whether or not the CZ catalyst 31 and the cordierite catalyst 32 have deteriorated based on the midstream air-fuel ratio AF13 and the downstream air-fuel ratio AF12 detected by the detection unit 51 . Specifically, in the process of step S12 shown in FIG. 7, the detection unit 51 calculates the air-fuel ratio per unit time from the downstream air-fuel ratio AF12 and the midstream air-fuel ratio AF13 detected by the detection unit 51 based on the following equation f3. The oxygen storage amount ⁇ OSCC of the cordierite catalyst 32 is calculated.
  • ⁇ OSCC (AF12 ⁇ AF13) ⁇ Q ⁇ K (f3)
  • the detection unit 51 calculates the maximum oxygen storage amount OSCCmax of the cordierite catalyst 32 by integrating the oxygen storage amounts ⁇ OSCC1, ⁇ OSCC2, . . . of the cordierite catalyst 32 per unit time.
  • the determination unit 53 determines whether or not the maximum oxygen storage amount OSCCmax of the cordierite catalyst 32 is less than the threshold value ⁇ .
  • the exhaust purification device 60 of the present embodiment it is possible to determine not only the deterioration of the cordierite catalyst 32 but also the deterioration of the CZ catalyst 31, like the exhaust purification device 60 of the first embodiment. . Further, in the exhaust purification device 60 of the present embodiment, it is effective to employ a structure in which the catalysts 31 and 32 are arranged in tandem as shown in FIG. 14, as in the first modification of the first embodiment. . As a result, the same or similar actions and effects as those of the first modified example of the first embodiment can be obtained.
  • the third air-fuel ratio sensor is arranged upstream of the CZ catalyst 31 in the exhaust passage 30 as shown in FIG. 35 may also be provided.
  • the same or similar actions and effects as those of the second modification of the first embodiment can be obtained.
  • the exhaust purification device 60 of each embodiment detects the oxygen concentration or air-fuel ratio in the exhaust instead of the air-fuel ratio sensors 33 to 35 as the exhaust sensor arranged in the exhaust passage, and detects the oxygen concentration in the exhaust. It may have an oxygen sensor that outputs a signal. With such a configuration, the total value OSCmax of the maximum oxygen storage amounts of the catalysts 31 and 32 and the maximum value OSCCmax of the oxygen storage amount of the cordierite catalyst 32 can be calculated based on the output signal of the oxygen sensor. , the same or similar actions and effects as those of the exhaust emission control device 60 of each embodiment can be obtained. It should be noted that when the oxygen sensor is used in this way, the oxygen concentration detected by the oxygen sensor corresponds to the specific component of the exhaust gas.
  • the exhaust gas purification device 60 of each embodiment can use any exhaust gas purification catalyst whose oxygen storage amount and oxygen release amount deteriorate with the passage of time.
  • an exhaust purification catalyst for example, a 4-way GPF catalyst obtained by adding a purification function of a 3-way catalyst to a GPF (gasoline particulate filter), or a CZ catalyst with a lowered firing temperature can be used.
  • the ECU 50 and its control method described in the present disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may also be implemented by a dedicated computer.
  • the ECU 50 and its control method described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor that includes one or more dedicated hardware logic circuits.
  • the ECU 50 and its control method described in the present disclosure are configured by a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be implemented by one or more special purpose computers.
  • the computer program may be stored as computer-executable instructions on a computer-readable non-transitional tangible storage medium.
  • Dedicated hardware logic circuits and hardware logic circuits may be implemented by digital circuits containing multiple logic circuits or by analog circuits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

This internal combustion engine exhaust gas purifying device is provided with a first exhaust gas purification catalyst (31), a second exhaust gas purification catalyst (32), a first exhaust gas sensor (33), a second exhaust gas sensor (34), a detecting unit (51), and an assessing unit (53). The detecting unit detects a total value of oxygen storage amounts of each of the first exhaust gas purification catalyst and the second exhaust gas purification catalyst, or a total value of oxygen release amounts of each of the first exhaust gas purification catalyst and the second exhaust gas purification catalyst, on the basis of specific components detected by each of the first exhaust gas sensor and the second exhaust gas sensor. The assessing unit assesses deterioration of the first exhaust gas purification catalyst and the second exhaust gas purification catalyst on the basis of the total value of the oxygen storage amount or the total value of the oxygen release amount detected by the detecting unit.

Description

内燃機関の排気浄化装置Exhaust purification device for internal combustion engine 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年2月8日に出願された日本国特許出願2021-018124号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2021-018124 filed on February 8, 2021, and claims the benefit of priority thereof. incorporated herein by reference.
 本開示は、内燃機関の排気浄化装置に関する。 The present disclosure relates to an exhaust purification device for an internal combustion engine.
 従来、下記の特許文献1に記載の内燃機関の排気浄化装置がある。特許文献1に記載の排気浄化装置は、内燃機関の排気通路における三元触媒の上流に設けられる排気センサと、三元触媒の劣化の有無を判定する制御装置とを備えている。制御装置は、内燃機関の空燃比をリッチからリーンに、またはリーンからリッチに変化させた際に排気センサにより検出される空燃比から所定の演算式を用いて三元触媒の酸素吸蔵量を算出する。そして、制御装置は、算出された酸素吸蔵量が所定の閾値未満である場合には、三元触媒が劣化していると判定する。 Conventionally, there is an internal combustion engine exhaust purification device described in Patent Document 1 below. The exhaust purification device described in Patent Document 1 includes an exhaust sensor provided upstream of a three-way catalyst in an exhaust passage of an internal combustion engine, and a control device that determines whether or not the three-way catalyst has deteriorated. The control device calculates the oxygen storage amount of the three-way catalyst using a predetermined arithmetic expression from the air-fuel ratio detected by the exhaust sensor when the air-fuel ratio of the internal combustion engine is changed from rich to lean or from lean to rich. do. Then, the control device determines that the three-way catalyst has deteriorated when the calculated oxygen storage amount is less than a predetermined threshold value.
特許第5282844号公報Japanese Patent No. 5282844
 特許文献1に記載されるような三元触媒は、一般的に、コージェライト製のモノリス担体の表面をウォッシュコート層で被覆することで構成されている。ウォッシュコート層は、貴金属と助触媒とにより構成されている。助触媒は、酸素の吸蔵機能及び放出機能を有する触媒であり、例えばセリア-ジルコニア固溶体である。 A three-way catalyst as described in Patent Document 1 is generally constructed by coating the surface of a monolith carrier made of cordierite with a washcoat layer. The washcoat layer is composed of a noble metal and a co-catalyst. The co-catalyst is a catalyst having oxygen storage and release functions, such as a ceria-zirconia solid solution.
 一方、排気浄化触媒としては、近年、CZ(セリア-ジルコニア)触媒が注目されている。CZ触媒は、助触媒であるセリア-ジルコニアによりハニカム構造体を成形するとともに、そのハニカム構造体の表面に貴金属触媒が担持された構造を有するものである。CZ触媒では、助触媒のハニカム構造体を成形する際に実使用環境温度以上の高温度で助触媒の焼成が行われる。そのため、CZ触媒は、使用時間の経過に伴う助触媒の熱劣化が生じ難いという特性、換言すれば酸素吸蔵量が低下し難いという特性を有している。したがって、CZ触媒では、助触媒の酸素吸蔵量の低下と貴金属触媒の性能の低下との間に相関関係が成立し難い。そのため、特許文献1に記載の排気浄化装置のような酸素吸蔵量に基づく触媒の劣化判定が困難である。 On the other hand, as an exhaust purification catalyst, CZ (ceria-zirconia) catalysts have been attracting attention in recent years. The CZ catalyst has a structure in which a honeycomb structure is formed from ceria-zirconia as a promoter, and a noble metal catalyst is supported on the surface of the honeycomb structure. In the case of the CZ catalyst, the co-catalyst is fired at a temperature higher than the temperature of the environment in which it is actually used when forming the co-catalyst honeycomb structure. Therefore, the CZ catalyst has the characteristic that the heat deterioration of the co-catalyst is unlikely to occur with the passage of time of use, in other words, the characteristic that the oxygen storage amount is unlikely to decrease. Therefore, in the CZ catalyst, it is difficult to establish a correlation between the decrease in the oxygen storage amount of the co-catalyst and the decrease in the performance of the noble metal catalyst. Therefore, it is difficult to determine the deterioration of the catalyst based on the oxygen storage amount as in the exhaust purification device described in Patent Document 1.
 なお、このような課題は、CZ触媒に限らず、酸素の吸蔵機能及び放出機能を有する助触媒のハニカム構造体の表面に貴金属触媒が担持された構造を有する排気浄化触媒の劣化判定を行う際に共通する課題である。
 本開示の目的は、酸素の吸蔵機能及び放出機能を有する助触媒のハニカム構造体の表面に貴金属触媒が担持された構造を有する排気浄化触媒の劣化を判定することが可能な内燃機関の排気浄化装置を提供することにある。
In addition, such a problem is not limited to CZ catalysts, but when determining deterioration of exhaust purification catalysts having a structure in which a noble metal catalyst is supported on the surface of a honeycomb structure of a co-catalyst having an oxygen storage function and an oxygen release function. This is a common issue for
An object of the present disclosure is to provide an exhaust purification system for an internal combustion engine capable of determining the deterioration of an exhaust purification catalyst having a structure in which a precious metal catalyst is supported on the surface of a honeycomb structure of a co-catalyst having an oxygen storage function and an oxygen release function. It is to provide a device.
 本開示の一態様による内燃機関の排気浄化装置は、第1排気浄化触媒と、第2排気浄化触媒と、第1排気センサと、第2排気センサと、検出部と、判定部と、を備える。第1排気浄化触媒は、内燃機関の排気通路に配置され、酸素の吸蔵機能及び放出機能を有する助触媒のハニカム構造体の表面に貴金属触媒が担持された構造を有する。第2排気浄化触媒は、排気通路において第1排気浄化触媒の下流に配置され、コージェライトにより形成されるハニカム構造体の表面に、酸素の吸蔵機能及び放出機能を有する助触媒及び貴金属触媒を含むウォッシュコート層がコーティングされた構造を有する。第1排気センサは、排気通路において第1排気浄化触媒の上流に配置され、排気の特定成分を検出する。第2排気センサは、排気通路において第2排気浄化触媒の下流に配置され、排気の特定成分を検出する。検出部は、第1排気センサ及び第2排気センサによりそれぞれ検出される特定成分に基づいて、第1排気浄化触媒及び第2排気浄化触媒のそれぞれの酸素吸蔵量の合計値、又は第1排気浄化触媒及び第2排気浄化触媒のそれぞれの酸素放出量の合計値を検出する。判定部は、検出部により検出される酸素吸蔵量の合計値又は酸素放出量の合計値に基づいて第1排気浄化触媒及び第2排気浄化触媒の劣化を判定する。 An exhaust purification device for an internal combustion engine according to one aspect of the present disclosure includes a first exhaust purification catalyst, a second exhaust purification catalyst, a first exhaust sensor, a second exhaust sensor, a detection section, and a determination section. . The first exhaust purification catalyst is arranged in the exhaust passage of the internal combustion engine and has a structure in which a noble metal catalyst is supported on the surface of a honeycomb structure of a co-catalyst having an oxygen storage function and an oxygen release function. The second exhaust gas purification catalyst is arranged downstream of the first exhaust gas purification catalyst in the exhaust passage, and contains a co-catalyst and a noble metal catalyst having an oxygen storage function and an oxygen release function on the surface of the honeycomb structure formed of cordierite. It has a structure coated with a washcoat layer. The first exhaust sensor is arranged upstream of the first exhaust purification catalyst in the exhaust passage and detects a specific component of the exhaust. The second exhaust sensor is arranged downstream of the second exhaust purification catalyst in the exhaust passage and detects a specific component of the exhaust. Based on the specific components detected by the first exhaust sensor and the second exhaust sensor, respectively, the detection unit detects the total value of the oxygen storage amounts of the first exhaust purification catalyst and the second exhaust purification catalyst, or the first exhaust purification catalyst. A total value of the oxygen release amount of each of the catalyst and the second exhaust purification catalyst is detected. The determination unit determines deterioration of the first exhaust purification catalyst and the second exhaust purification catalyst based on the total value of the oxygen storage amount or the total value of the oxygen release amount detected by the detection unit.
 この構成によれば、使用時間の経過に伴って第1排気浄化触媒の酸素吸蔵量は殆ど低下しないのに対して、第2排気浄化触媒の酸素吸蔵量は低下する。そのため、使用時間の経過に伴って第1排気浄化触媒及び第2排気浄化触媒のそれぞれの酸素吸蔵量の合計値は低下する。一方、第1排気浄化触媒及び第2排気浄化触媒のそれぞれの排気浄化性能は使用時間の経過に伴って共に低下していく。したがって、第1排気浄化触媒及び第2排気浄化触媒のそれぞれの酸素吸蔵量の合計値とそれらの排気浄化性能とは相関関係を有していると考えられる。同様に、第1排気浄化触媒及び第2排気浄化触媒のそれぞれの酸素放出量の合計値と、それらの排気浄化性能とは相関関係を有していると考えられる。よって、上記構成によれば、第2排気浄化触媒の劣化だけでなく、第1排気浄化触媒の劣化を判定することが可能である。 According to this configuration, the oxygen storage amount of the first exhaust purification catalyst hardly decreases as the usage time elapses, whereas the oxygen storage amount of the second exhaust purification catalyst decreases. Therefore, the total value of the oxygen storage amounts of the first exhaust purification catalyst and the second exhaust purification catalyst decreases as the usage time elapses. On the other hand, the exhaust gas purification performance of each of the first exhaust gas purification catalyst and the second exhaust gas purification catalyst decreases with the passage of time of use. Therefore, it is considered that there is a correlation between the total value of the oxygen storage amounts of the first exhaust purification catalyst and the second exhaust purification catalyst and their exhaust purification performance. Similarly, it is considered that the total value of the oxygen release amount of each of the first exhaust purification catalyst and the second exhaust purification catalyst and their exhaust purification performance are correlated. Therefore, according to the above configuration, it is possible to determine not only the deterioration of the second exhaust purification catalyst but also the deterioration of the first exhaust purification catalyst.
 上記課題を解決する他の内燃機関の排気浄化装置は、第1排気浄化触媒と、第2排気浄化触媒と、第1排気センサと、第2排気センサと、検出部と、判定部と、を備える。第1排気浄化触媒は、内燃機関の排気通路に配置され、酸素の吸蔵機能及び放出機能を有する助触媒のハニカム構造体の表面に貴金属触媒が担持された構造を有する。第2排気浄化触媒は、排気通路において第1排気浄化触媒の下流に配置され、コージェライトにより形成されるハニカム構造体の表面に、酸素の吸蔵機能及び放出機能を有する助触媒及び貴金属触媒を含むウォッシュコート層がコーティングされた構造を有する。第1排気センサは、排気通路において第1排気浄化触媒と第2排気浄化触媒との間に配置され、排気の特定成分を検出する。第2排気センサは、排気通路において第2排気浄化触媒の下流に配置され、排気の特定成分を検出する。検出部は、第1排気センサ及び第2排気センサによりそれぞれ検出される特定成分に基づいて、第2排気浄化触媒の酸素吸蔵量又は酸素放出量を検出する。判定部は、検出部により検出される酸素吸蔵量又は酸素放出量に基づいて第1排気浄化触媒及び第2排気浄化触媒の劣化を判定する。 Another exhaust purification device for an internal combustion engine that solves the above problems includes a first exhaust purification catalyst, a second exhaust purification catalyst, a first exhaust sensor, a second exhaust sensor, a detection section, and a determination section. Prepare. The first exhaust purification catalyst is arranged in the exhaust passage of the internal combustion engine and has a structure in which a noble metal catalyst is supported on the surface of a honeycomb structure of a co-catalyst having an oxygen storage function and an oxygen release function. The second exhaust gas purification catalyst is arranged downstream of the first exhaust gas purification catalyst in the exhaust passage, and contains a co-catalyst and a noble metal catalyst having an oxygen storage function and an oxygen release function on the surface of the honeycomb structure formed of cordierite. It has a structure coated with a washcoat layer. The first exhaust sensor is arranged between the first exhaust purification catalyst and the second exhaust purification catalyst in the exhaust passage and detects a specific component of the exhaust. The second exhaust sensor is arranged downstream of the second exhaust purification catalyst in the exhaust passage and detects a specific component of the exhaust. The detection unit detects an oxygen storage amount or an oxygen release amount of the second exhaust purification catalyst based on the specific components detected by the first exhaust sensor and the second exhaust sensor, respectively. The determination unit determines deterioration of the first exhaust purification catalyst and the second exhaust purification catalyst based on the oxygen storage amount or the oxygen release amount detected by the detection unit.
 この構成によれば、使用時間の経過に伴って第1排気浄化触媒の酸素吸蔵量は殆ど低下しないのに対して、第2排気浄化触媒の酸素吸蔵量は低下する。そのため、使用時間の経過に伴って第1排気浄化触媒及び第2排気浄化触媒のそれぞれの酸素吸蔵量の合計値は低下する。一方、第1排気浄化触媒及び第2排気浄化触媒のそれぞれの排気浄化性能は使用時間の経過に伴って共に低下していく。したがって、第2排気浄化触媒の酸素吸蔵量と、第1排気浄化触媒及び第2排気浄化触媒のそれぞれの排気浄化性能とは相関関係を有していると考えられる。同様に、第2排気浄化触媒の酸素放出量の合計値と、第1排気浄化触媒及び第2排気浄化触媒のそれぞれの排気浄化性能とは相関関係を有していると考えられる。よって、上記構成によれば、第2排気浄化触媒の劣化だけでなく、第1排気浄化触媒の劣化を判定することが可能である。 According to this configuration, the oxygen storage amount of the first exhaust purification catalyst hardly decreases as the usage time elapses, whereas the oxygen storage amount of the second exhaust purification catalyst decreases. Therefore, the total value of the oxygen storage amounts of the first exhaust purification catalyst and the second exhaust purification catalyst decreases as the usage time elapses. On the other hand, the exhaust gas purification performance of each of the first exhaust gas purification catalyst and the second exhaust gas purification catalyst decreases with the passage of time of use. Therefore, it is considered that there is a correlation between the oxygen storage amount of the second exhaust purification catalyst and the exhaust purification performance of each of the first exhaust purification catalyst and the second exhaust purification catalyst. Similarly, it is considered that there is a correlation between the total value of the oxygen release amount of the second exhaust purification catalyst and the exhaust purification performance of each of the first exhaust purification catalyst and the second exhaust purification catalyst. Therefore, according to the above configuration, it is possible to determine not only the deterioration of the second exhaust purification catalyst but also the deterioration of the first exhaust purification catalyst.
図1は、第1実施形態の内燃機関の排気浄化装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to the first embodiment. 図2は、第1実施形態のCZ触媒の断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing the cross-sectional structure of the CZ catalyst of the first embodiment. 図3は、第1実施形態のコージェライト触媒の断面構造を示す断面図である。FIG. 3 is a cross-sectional view showing the cross-sectional structure of the cordierite catalyst of the first embodiment. 図4(A),(B)は、CZ触媒の最大酸素吸蔵量及び排気浄化性能の推移を示すタイムチャートである。FIGS. 4A and 4B are time charts showing changes in the maximum oxygen storage amount and the exhaust purification performance of the CZ catalyst. 図5(A),(B)は、コージェライト触媒の最大酸素吸蔵量及び排気浄化性能の推移を示すタイムチャートである。FIGS. 5A and 5B are time charts showing transitions of the maximum oxygen storage amount and exhaust purification performance of the cordierite catalyst. 図6(A),(B)は、CZ触媒及びコージェライト触媒の最大酸素吸蔵量の合計値及び各触媒の排気浄化性能の推移を示すタイムチャートである。FIGS. 6A and 6B are time charts showing the total value of the maximum oxygen storage amounts of the CZ catalyst and the cordierite catalyst and changes in the exhaust purification performance of each catalyst. 図7は、第1実施形態のECUにより実行される処理の手順を示すフローチャートである。FIG. 7 is a flow chart showing the procedure of processing executed by the ECU of the first embodiment. 図8は、第1実施形態のECUにより実行される処理の手順を示すフローチャートである。FIG. 8 is a flow chart showing the procedure of processing executed by the ECU of the first embodiment. 図9(A)~(C)は、第1実施形態の上流空燃比AF11、下流空燃比AF12、及び酸素吸蔵量OSCの推移を示すタイミングチャートである。FIGS. 9A to 9C are timing charts showing changes in the upstream air-fuel ratio AF11, the downstream air-fuel ratio AF12, and the oxygen storage amount OSC in the first embodiment. 図10は、CZ触媒及びコージェライト触媒の最大酸素吸蔵量の合計値について正常時と劣化時とを比較して示すグラフである。FIG. 10 is a graph showing the total value of the maximum oxygen storage amounts of the CZ catalyst and the cordierite catalyst in comparison between the normal state and the deteriorated state. 図11は、第1実施形態の第1変形例の内燃機関の排気浄化装置の概略構成を示すブロック図である。FIG. 11 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to a first modification of the first embodiment. 図12は、第1実施形態の第2変形例の内燃機関の排気浄化装置の概略構成を示すブロック図である。FIG. 12 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to a second modification of the first embodiment. 図13は、第2実施形態の内燃機関の排気浄化装置の概略構成を示すブロック図である。FIG. 13 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to the second embodiment. 図14は、第2実施形態の第1変形例の内燃機関の排気浄化装置の概略構成を示すブロック図である。FIG. 14 is a block diagram showing a schematic configuration of an exhaust purification system for an internal combustion engine according to a first modification of the second embodiment. 図15は、第2実施形態の第2変形例の内燃機関の排気浄化装置の概略構成を示すブロック図である。FIG. 15 is a block diagram showing a schematic configuration of an internal combustion engine exhaust purification system according to a second modification of the second embodiment.
 以下、内燃機関の排気浄化装置の一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、図1に示される本実施形態の内燃機関10の概略構成について説明する。内燃機関10はガソリンエンジンである。内燃機関10には燃料噴射弁11及び点火プラグ12が設けられている。燃料噴射弁11は内燃機関10の燃焼室に燃料を噴射する。点火プラグ12は、電力の供給に基づき燃焼室内に火花放電を形成する。
An embodiment of an exhaust emission control device for an internal combustion engine will be described below with reference to the drawings. In order to facilitate understanding of the description, the same components are denoted by the same reference numerals as much as possible in each drawing, and overlapping descriptions are omitted.
<First embodiment>
First, a schematic configuration of an internal combustion engine 10 of this embodiment shown in FIG. 1 will be described. Internal combustion engine 10 is a gasoline engine. A fuel injection valve 11 and a spark plug 12 are provided in the internal combustion engine 10 . A fuel injection valve 11 injects fuel into a combustion chamber of the internal combustion engine 10 . The ignition plug 12 forms spark discharge in the combustion chamber based on the supply of electric power.
 内燃機関10には吸気通路20及び排気通路30が接続されている。内燃機関10では、吸気通路20を通じて燃焼室に吸入される空気と、燃料噴射弁11から噴射される燃料とが混合することで混合気が生成される。この混合気が点火プラグ12により着火されて燃焼することで内燃機関10の動力が得られる。混合気の燃焼により生成される排気は排気通路30を通じて車外へと排出される。 An intake passage 20 and an exhaust passage 30 are connected to the internal combustion engine 10 . In the internal combustion engine 10, an air-fuel mixture is generated by mixing the air taken into the combustion chamber through the intake passage 20 and the fuel injected from the fuel injection valve 11. As shown in FIG. This air-fuel mixture is ignited by the spark plug 12 and combusted to obtain power for the internal combustion engine 10 . Exhaust gas generated by combustion of the air-fuel mixture is discharged out of the vehicle through an exhaust passage 30 .
 吸気通路20にはスロットルバルブ21とエアフロメータ22とが設けられている。スロットルバルブ21は、その開閉動作により、内燃機関10に導入される空気の量を調整する。エアフロメータ22は、スロットルバルブ21よりも空気流れ方向の上流に配置されている。エアフロメータ22は、吸気通路20を通じて内燃機関10に導入される空気の量を検出するとともに、検出された空気の量に応じた信号を出力する。 A throttle valve 21 and an airflow meter 22 are provided in the intake passage 20 . The throttle valve 21 adjusts the amount of air introduced into the internal combustion engine 10 by its opening and closing operations. The air flow meter 22 is arranged upstream of the throttle valve 21 in the air flow direction. The airflow meter 22 detects the amount of air introduced into the internal combustion engine 10 through the intake passage 20 and outputs a signal corresponding to the detected amount of air.
 排気通路30には、CZ(セリア-ジルコニア)触媒31と、コージェライト触媒32とが離間して配置されている。コージェライト触媒32は排気通路30においてCZ触媒31の下流に配置されている。本実施形態では、CZ触媒31が第1排気浄化触媒に相当し、コージェライト触媒32が第2排気浄化触媒に相当する。 A CZ (ceria-zirconia) catalyst 31 and a cordierite catalyst 32 are spaced apart from each other in the exhaust passage 30 . The cordierite catalyst 32 is arranged downstream of the CZ catalyst 31 in the exhaust passage 30 . In this embodiment, the CZ catalyst 31 corresponds to the first exhaust purification catalyst, and the cordierite catalyst 32 corresponds to the second exhaust purification catalyst.
 図2に示されるように、CZ触媒31は、ハニカム構造体310と、貴金属触媒311とを有している。ハニカム構造体310は、酸素の吸蔵機能及び放出機能を有する助触媒により構成されている。本実施形態では、助触媒としてセリア-ジルコニア助触媒が用いられているが、それ以外の任意の助触媒を用いることも可能である。貴金属触媒311は、ハニカム構造体310の表面に、すなわちハニカム構造体310の排気の接触面に粒子の状態で担持されている。貴金属触媒311は、白金やパラジウム、ロジウム等の白金族元素(PGM:Platinum Group Metal)である。貴金属触媒311は、排気に含まれる炭化水素や一酸化炭素、窒素酸化物などの有害物質を除去する機能を有している。 As shown in FIG. 2, the CZ catalyst 31 has a honeycomb structure 310 and a noble metal catalyst 311. The honeycomb structure 310 is composed of a co-catalyst having an oxygen storage function and an oxygen release function. In this embodiment, a ceria-zirconia cocatalyst is used as the cocatalyst, but any other cocatalyst can also be used. The noble metal catalyst 311 is carried in the form of particles on the surface of the honeycomb structure 310 , that is, on the exhaust contact surface of the honeycomb structure 310 . The noble metal catalyst 311 is platinum group metal (PGM) such as platinum, palladium, and rhodium. The noble metal catalyst 311 has the function of removing harmful substances such as hydrocarbons, carbon monoxide, and nitrogen oxides contained in the exhaust.
 CZ触媒31の製造の際には、まず、助触媒によりハニカム構造体310を成形する。その際、実使用環境温度以上の高温でハニカム構造体310を焼成する。助触媒のハニカム構造体310を成形した後、ハニカム構造体310の表面に白金族元素を担持させることで、CZ触媒31の製造が完了する。ハニカム構造体310の表面に白金族元素を担持させる際に500[℃]から600[℃]の温度で熱処理が行われる。 When manufacturing the CZ catalyst 31, first, the honeycomb structure 310 is formed using a co-catalyst. At that time, the honeycomb structure 310 is fired at a temperature higher than the actual use environment temperature. After molding the honeycomb structure 310 of the co-catalyst, the platinum group element is supported on the surface of the honeycomb structure 310, whereby the production of the CZ catalyst 31 is completed. A heat treatment is performed at a temperature of 500 [° C.] to 600 [° C.] when the platinum group element is supported on the surface of the honeycomb structure 310 .
 このような工程を経て製造されるCZ触媒31では、実使用環境温度以上の高温で助触媒のハニカム構造体310が焼成されるため、使用時間の経過に伴う助触媒の熱劣化、すなわち酸素の吸蔵機能及び放出機能の低下が生じ難いという特性を有している。一方、貴金属触媒に関しては、500[℃]から600[℃]程度でしか熱処理が行われないため、使用時間の経過に伴って貴金属の粒子が成長することにより、排気浄化機能が低下するという特性を有している。 In the CZ catalyst 31 manufactured through such a process, the co-catalyst honeycomb structure 310 is fired at a temperature higher than the actual use environment temperature. It has the property that the storage function and the release function are unlikely to deteriorate. On the other hand, the noble metal catalyst is heat-treated only at about 500[°C] to 600[°C], so the particles of the noble metal grow with the passage of time, resulting in a decrease in the exhaust purification function. have.
 図3に示されるように、コージェライト触媒32は、ハニカム構造体320と、ウォッシュコート層321とを有している。ハニカム構造体320はコージェライトにより構成されている。ウォッシュコート層321はハニカム構造体320の表面に層状にコーティングされている。ウォッシュコート層321にはセリア-ジルコニア等の助触媒と貴金属とが含まれている。 As shown in FIG. 3, the cordierite catalyst 32 has a honeycomb structure 320 and a washcoat layer 321. The honeycomb structure 320 is made of cordierite. The washcoat layer 321 is coated on the surface of the honeycomb structure 320 in layers. Washcoat layer 321 contains a promoter such as ceria-zirconia and a noble metal.
 図2に示されるCZ触媒31と、図3に示されるコージェライト触媒32とを比較して明らかなように、CZ触媒31には、コージェライト触媒32のようなウォッシュコート層321が存在しない。そのため、CZ触媒31は、熱容量を小さくすることができるとともに、暖機性能を向上させることができる。更に、ウォッシュコート層321が存在しないCZ触媒31は、開口面積及び水力直径が大きいため、排気の圧力損失を小さくすることができるという利点も有している。 As is clear from comparing the CZ catalyst 31 shown in FIG. 2 and the cordierite catalyst 32 shown in FIG. Therefore, the CZ catalyst 31 can reduce the heat capacity and improve the warm-up performance. Furthermore, the CZ catalyst 31 without the washcoat layer 321 has a large opening area and a large hydraulic diameter, so it also has the advantage of being able to reduce the pressure loss of the exhaust gas.
 図2及び図3に示される各触媒31,32は、内燃機関10の空燃比が理論空燃比に対してリーン側である場合、排気に含まれる余剰の酸素を助触媒内に吸蔵して窒素酸化物を還元する。一方、各触媒31,32では、内燃機関10の空燃比が理論空燃比に対してリッチ側である場合には、助触媒に吸蔵された酸素を放出することで一酸化炭素等の未燃成分を酸化する。このように、各触媒31,32は、内燃機関10の空燃比がリーン側にずれた場合、及びリッチ側にずれた場合のいずれの場合であっても、助触媒の酸素の吸蔵機能及び放出機能により、排気に含まれる未燃成分や窒素酸化物を浄化することができる。 When the air-fuel ratio of the internal combustion engine 10 is on the lean side with respect to the stoichiometric air-fuel ratio, the catalysts 31 and 32 shown in FIGS. 2 and 3 store excess oxygen contained in the exhaust gas in the promoter and produce nitrogen. Reduces oxides. On the other hand, when the air-fuel ratio of the internal combustion engine 10 is on the rich side with respect to the stoichiometric air-fuel ratio, the catalysts 31 and 32 release the oxygen stored in the co-catalyst to oxidize. In this manner, the catalysts 31 and 32 have the oxygen storage and release functions of the co-catalyst regardless of whether the air-fuel ratio of the internal combustion engine 10 deviates to the lean side or to the rich side. Depending on the function, it is possible to purify unburned components and nitrogen oxides contained in the exhaust.
 図1に示されるように、排気通路30には、第1空燃比センサ33と、第2空燃比センサ34とが更に設けられている。第1空燃比センサ33は、排気通路30においてCZ触媒31の上流に配置されている。第2空燃比センサ34は、排気通路30においてコージェライト触媒32の下流に配置されている。各空燃比センサ33,34は、排気の空燃比もしくは酸素濃度を検出して、排気の空燃比に応じた信号を出力する。本実施形態では、第1空燃比センサ33が第1排気センサに相当し、第2空燃比センサ34が第2排気センサに相当する。また、各空燃比センサ33,34により検出される排気の空燃比が排気の特定成分に相当する。 As shown in FIG. 1, the exhaust passage 30 is further provided with a first air-fuel ratio sensor 33 and a second air-fuel ratio sensor 34 . The first air-fuel ratio sensor 33 is arranged upstream of the CZ catalyst 31 in the exhaust passage 30 . The second air-fuel ratio sensor 34 is arranged downstream of the cordierite catalyst 32 in the exhaust passage 30 . Each air- fuel ratio sensor 33, 34 detects the air-fuel ratio or oxygen concentration of the exhaust gas and outputs a signal corresponding to the air-fuel ratio of the exhaust gas. In this embodiment, the first air-fuel ratio sensor 33 corresponds to the first exhaust sensor, and the second air-fuel ratio sensor 34 corresponds to the second exhaust sensor. Also, the air-fuel ratio of the exhaust detected by each air- fuel ratio sensor 33, 34 corresponds to a specific component of the exhaust.
 内燃機関10は、アクセル開度センサ40と、クランクポジションセンサ41とを更に備えている。アクセル開度センサ40は、運転者によるアクセルペダルの踏み込み量を検出するとともに、検出された踏み込み量に応じた信号を出力する。クランクポジションセンサ41は、内燃機関10の出力軸であるクランク軸の回転位置を検出するとともに、検出された回転位置に応じた信号を出力する。 The internal combustion engine 10 further includes an accelerator opening sensor 40 and a crank position sensor 41 . The accelerator opening sensor 40 detects the amount of depression of the accelerator pedal by the driver and outputs a signal corresponding to the detected amount of depression. The crank position sensor 41 detects the rotational position of the crankshaft, which is the output shaft of the internal combustion engine 10, and outputs a signal corresponding to the detected rotational position.
 内燃機関10は、当該内燃機関10を制御するためのECU(Electronic Control Unit)50を備えている。本実施形態の排気浄化装置60は、ECU50の他、排気通路30に設けられる各触媒31,32及び空燃比センサ33,34等により構成されている。 The internal combustion engine 10 has an ECU (Electronic Control Unit) 50 for controlling the internal combustion engine 10 . The exhaust purification device 60 of the present embodiment includes the ECU 50, catalysts 31 and 32, air- fuel ratio sensors 33 and 34, and the like provided in the exhaust passage 30. As shown in FIG.
 ECU50は、CPUや記憶装置等を有するマイクロコンピュータを中心に構成されている。ECU50は、記憶装置に予め記憶されているプログラムを実行することにより、内燃機関10の各種制御を実行する。例えば、ECU50は、エアフロメータ22、アクセル開度センサ40、及びクランクポジションセンサ41のそれぞれの出力信号の他、車両に設けられる各種センサの出力信号に基づいてエンジン回転速度やエンジン負荷等の内燃機関10の各種状態量を取得する。そして、ECU50は、エンジン回転速度やエンジン負荷等の内燃機関10の各種状態量に基づいて、燃料噴射弁11、点火プラグ12、及びスロットルバルブ21を制御することにより、燃料噴射制御や点火時期制御、吸入空気量制御等を実行する。 The ECU 50 is mainly composed of a microcomputer having a CPU, a storage device, and the like. The ECU 50 executes various controls of the internal combustion engine 10 by executing programs pre-stored in the storage device. For example, the ECU 50 determines the internal combustion engine speed, engine load, etc. based on the output signals of various sensors provided in the vehicle, in addition to the respective output signals of the air flow meter 22, the accelerator opening sensor 40, and the crank position sensor 41. Acquire 10 various state quantities. Then, the ECU 50 controls the fuel injection valve 11, the spark plug 12, and the throttle valve 21 based on various state quantities of the internal combustion engine 10 such as the engine rotation speed and the engine load, thereby performing fuel injection control and ignition timing control. , intake air amount control, etc.
 ECU50は、記憶装置に記憶されているプログラムの実行により実現される機能的な部分として、検出部51と、空燃比制御部52と、判定部53とを有している。
 検出部51は内燃機関10の各種状態量を検出する部分である。検出部51は、例えば第1空燃比センサ33の出力信号に基づいて、排気通路30におけるCZ触媒31の上流部分を流れる排気の空燃比である上流空燃比AF11を検出する。また、検出部51は、第2空燃比センサ34の出力信号に基づいて、排気通路30におけるコージェライト触媒32の下流部分を流れる排気の空燃比である下流空燃比AF12を検出する。
The ECU 50 has a detection section 51, an air-fuel ratio control section 52, and a determination section 53 as functional parts realized by executing a program stored in a storage device.
The detection unit 51 is a portion that detects various state quantities of the internal combustion engine 10 . The detection unit 51 detects an upstream air-fuel ratio AF11, which is the air-fuel ratio of exhaust flowing upstream of the CZ catalyst 31 in the exhaust passage 30, based on the output signal of the first air-fuel ratio sensor 33, for example. Based on the output signal of the second air-fuel ratio sensor 34, the detection unit 51 also detects a downstream air-fuel ratio AF12, which is the air-fuel ratio of the exhaust flowing downstream of the cordierite catalyst 32 in the exhaust passage 30.
 空燃比制御部52は、検出部51により検出される上流空燃比AF11及び下流空燃比AF12等に基づいて、内燃機関10の空燃比を目標空燃比に追従させる空燃比制御を実行する。例えば、空燃比制御部52は、上流空燃比AF11が目標空燃比に一致するように、第1空燃比センサ33の出力信号に基づいて、燃料噴射弁11から噴射される燃料の量を増減させる。目標空燃比は例えば理論空燃比に設定される。これにより、内燃機関10の燃焼室内における混合気の空燃比が理論空燃比に収束するように制御される。 The air-fuel ratio control unit 52 executes air-fuel ratio control to make the air-fuel ratio of the internal combustion engine 10 follow the target air-fuel ratio based on the upstream air-fuel ratio AF11 and the downstream air-fuel ratio AF12 detected by the detection unit 51. For example, the air-fuel ratio control unit 52 increases or decreases the amount of fuel injected from the fuel injection valve 11 based on the output signal of the first air-fuel ratio sensor 33 so that the upstream air-fuel ratio AF11 matches the target air-fuel ratio. . The target air-fuel ratio is set to, for example, the stoichiometric air-fuel ratio. As a result, the air-fuel ratio of the air-fuel mixture in the combustion chamber of the internal combustion engine 10 is controlled to converge to the stoichiometric air-fuel ratio.
 判定部53は、検出部51により検出される上流空燃比AF11及び下流空燃比AF12に基づいて、CZ触媒31及びコージェライト触媒32の劣化の有無を判定する。
 次に、本実施形態における触媒31,32の劣化判定の原理について説明する。
The determination unit 53 determines whether the CZ catalyst 31 and the cordierite catalyst 32 have deteriorated based on the upstream air-fuel ratio AF11 and the downstream air-fuel ratio AF12 detected by the detection unit 51 .
Next, the principle of deterioration determination of the catalysts 31 and 32 in this embodiment will be described.
 各触媒31,32の酸素吸蔵量(OSC:Oxygen Storage Capacity)の最大値を最大酸素吸蔵量とすると、CZ触媒31の最大酸素吸蔵量及び排気浄化性能は例えば図4(A),(B)に示されるように推移する。すなわち、図4(A)に示されるように、使用時間の経過に伴ってCZ触媒31の最大酸素吸蔵量は殆ど低下しないものの、排気浄化性能は徐々に低下していく。したがって、CZ触媒31に関しては、その最大酸素吸蔵量と排気浄化性能とに相関関係が成立し難いため、最大酸素吸蔵量に基づいて排気浄化性能の劣化を判定することが困難である。 Assuming that the maximum oxygen storage capacity (OSC: Oxygen Storage Capacity) of each of the catalysts 31 and 32 is the maximum oxygen storage capacity, the maximum oxygen storage capacity and exhaust purification performance of the CZ catalyst 31 are shown in FIGS. transition as shown in . That is, as shown in FIG. 4A, although the maximum oxygen storage amount of the CZ catalyst 31 hardly decreases with the lapse of usage time, the exhaust purification performance gradually decreases. Therefore, with respect to the CZ catalyst 31, it is difficult to establish a correlation between the maximum oxygen storage amount and the exhaust purification performance, so it is difficult to determine the deterioration of the exhaust purification performance based on the maximum oxygen storage amount.
 また、コージェライト触媒32の最大酸素吸蔵量及び排気浄化性能は例えば図5(A),(B)に示されるように推移する。すなわち、図5(A),(B)に示されるように、使用時間の経過に伴ってコージェライト触媒32の最大酸素吸蔵量及び排気浄化性能は徐々に低下していく。したがって、コージェライト触媒32に関しては、その最大酸素吸蔵量と排気浄化性能とに相関関係が成立するため、最大酸素吸蔵量に基づいて排気浄化性能の劣化を判定することが可能である。 Also, the maximum oxygen storage amount and the exhaust purification performance of the cordierite catalyst 32 change as shown in FIGS. 5(A) and 5(B), for example. That is, as shown in FIGS. 5A and 5B, the maximum oxygen storage amount and the exhaust purification performance of the cordierite catalyst 32 gradually decrease as the usage time elapses. Therefore, regarding the cordierite catalyst 32, since there is a correlation between the maximum oxygen storage amount and the exhaust purification performance, deterioration of the exhaust purification performance can be determined based on the maximum oxygen storage amount.
 一方、図4(B),図5(B)を比較して明らかなように、各触媒31,32の排気浄化性能は相関関係を有している。よって、コージェライト触媒32の最大酸素吸蔵量の低下量に基づいて、同触媒32の排気浄化性能の劣化度合いだけでなく、CZ触媒31の排気浄化性能の劣化度合いを判定することは可能であると考えられる。 On the other hand, as is clear from a comparison of FIGS. 4(B) and 5(B), the exhaust purification performances of the catalysts 31 and 32 are correlated. Therefore, based on the amount of decrease in the maximum oxygen storage amount of the cordierite catalyst 32, it is possible to determine not only the degree of deterioration of the exhaust purification performance of the catalyst 32, but also the degree of deterioration of the exhaust purification performance of the CZ catalyst 31. it is conceivable that.
 また、使用時間の経過に伴ってCZ触媒31の最大酸素吸蔵量が殆ど低下しないことに鑑みれば、コージェライト触媒32の単体の最大酸素吸蔵量の低下量は、触媒31,32の最大酸素吸蔵量の合計値の低下量に略等しいと考えられる。よって、触媒31,32の最大酸素吸蔵量の合計値の低下量に基づいて各触媒31,32の排気浄化性能の劣化度合いを判定することも可能であると考えられる。 In addition, considering that the maximum oxygen storage amount of the CZ catalyst 31 hardly decreases with the passage of usage time, the amount of decrease in the maximum oxygen storage amount of the single cordierite catalyst 32 is It is considered to be approximately equal to the reduction amount of the total value of the amount. Therefore, it is considered possible to determine the degree of deterioration of the exhaust purification performance of each of the catalysts 31 and 32 based on the amount of decrease in the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 .
 具体的には、触媒31,32の酸素吸蔵量の合計値は、図4(A)及び図5(A)のそれぞれのグラフの値の合計値となる。よって、触媒31,32の最大酸素吸蔵量の合計値は図6(A)に示されるように推移する。このとき、各触媒31,32の排気浄化性能は図6(B)に示されるように変化する。図6(A),(B)に示されるように、触媒31,32の最大酸素吸蔵量の合計値と、各触媒31,32の排気浄化性能との間には相関関係が成立するため、触媒31,32の最大酸素吸蔵量の合計値に基づいて各触媒31,32の排気浄化性能の劣化を判定することは可能である。 Specifically, the total value of the oxygen storage amounts of the catalysts 31 and 32 is the total value of the respective graph values of FIGS. 4(A) and 5(A). Therefore, the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 changes as shown in FIG. 6(A). At this time, the exhaust purification performance of each catalyst 31, 32 changes as shown in FIG. 6(B). As shown in FIGS. 6A and 6B, there is a correlation between the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 and the exhaust purification performance of each catalyst 31 and 32. It is possible to determine the deterioration of the exhaust purification performance of each of the catalysts 31 and 32 based on the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 .
 また、触媒31,32の最大酸素吸蔵量の合計値が、それらの最大酸素放出量の合計値に略等しいことに着目すれば、触媒31,32の最大酸素放出量の合計値に基づいて各触媒31,32の排気浄化性能の劣化を判定できることは言うまでもない。
 本実施形態のECU50は、以上の原理を利用して各触媒31,32の劣化の有無を判定する。次に、図7及び図8を参照して、ECU50により実行される、各触媒31,32の劣化の有無を判定する処理の手順について具体的に説明する。
Also, if we focus on the fact that the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 is approximately equal to the total value of their maximum oxygen release amounts, each Needless to say, the deterioration of the exhaust purification performance of the catalysts 31, 32 can be determined.
The ECU 50 of this embodiment determines whether or not the catalysts 31 and 32 have deteriorated using the above principle. Next, referring to FIGS. 7 and 8, a specific description will be given of the procedure of the process of determining whether or not the catalysts 31 and 32 have deteriorated, which is executed by the ECU 50. FIG.
 図7は、各触媒31,32の最大酸素吸蔵量の合計値に基づいて各触媒31,32の劣化の有無を判定する処理の手順を示すフローチャートである。図8は、各触媒31,32の酸素放出量の合計値に基づいて各触媒31,32の劣化の有無を判定する処理の手順を示すフローチャートである。ECU50は、図7に示される処理、及び図8に示される処理のいずれか一方を所定の周期で実行することにより各触媒31,32の劣化を定期的に判定する。 FIG. 7 is a flow chart showing the procedure for determining whether or not the catalysts 31 and 32 have deteriorated based on the total value of the maximum oxygen storage amounts of the catalysts 31 and 32. FIG. FIG. 8 is a flow chart showing a procedure for determining whether or not the catalysts 31 and 32 have deteriorated based on the total value of the oxygen release amounts of the catalysts 31 and 32. As shown in FIG. The ECU 50 periodically determines deterioration of each of the catalysts 31 and 32 by executing either the process shown in FIG. 7 or the process shown in FIG. 8 at predetermined intervals.
 ECU50は、所定の周期になったと判定した時点で現在の内燃機関10の空燃比が理論空燃比よりもリッチ寄りである場合には、図7に示される処理を実行する。図7に示されるように、ECU50の空燃比制御部52は、まず、ステップS10の処理として、内燃機関10の空燃比を意図的にリッチに変化させるリッチ制御を実行する。具体的には、空燃比制御部52は、目標空燃比を、理論空燃比よりもリッチ側に設定されたリッチ空燃比に設定する。これにより、内燃機関10の空燃比がリッチに変化するため、各触媒31,32に吸蔵されている酸素が放出される。空燃比制御部52は、検出部51により検出される下流空燃比AF12がリッチ判定値以下になるまでリッチ制御を継続する。リッチ判定値は、理論空燃比よりもリッチ側に設定された値であり、排気の空燃比がリッチであるか否かを判定できる値に設定されている。リッチ制御が実行されることにより、各触媒31,32の酸素吸蔵量が「0」又はそれに近い値になる。 If the current air-fuel ratio of the internal combustion engine 10 is richer than the stoichiometric air-fuel ratio at the time when the ECU 50 determines that the predetermined period has elapsed, the ECU 50 executes the processing shown in FIG. As shown in FIG. 7, the air-fuel ratio control unit 52 of the ECU 50 first executes rich control to intentionally change the air-fuel ratio of the internal combustion engine 10 to rich as the process of step S10. Specifically, the air-fuel ratio control unit 52 sets the target air-fuel ratio to a rich air-fuel ratio that is set on the richer side than the stoichiometric air-fuel ratio. As a result, the air-fuel ratio of the internal combustion engine 10 changes richly, so that the oxygen stored in the catalysts 31 and 32 is released. The air-fuel ratio control unit 52 continues the rich control until the downstream air-fuel ratio AF12 detected by the detection unit 51 becomes equal to or less than the rich judgment value. The rich determination value is a value set on the richer side than the stoichiometric air-fuel ratio, and is set to a value that can determine whether or not the air-fuel ratio of the exhaust gas is rich. By executing the rich control, the oxygen storage amount of each catalyst 31, 32 becomes "0" or a value close to it.
 空燃比制御部52は、ステップS10に続くステップS11の処理として、内燃機関10の空燃比をリーンに変化させるリーン制御を開始する。具体的には、空燃比制御部52は、目標空燃比を、理論空燃比よりもリーン側に設定されたリーン空燃比に設定する。これにより、内燃機関10の空燃比がリーンに変化するため、排気に含まれる酸素が各触媒31,32に吸蔵されるようになる。 The air-fuel ratio control unit 52 starts lean control to change the air-fuel ratio of the internal combustion engine 10 to lean as the processing of step S11 following step S10. Specifically, the air-fuel ratio control unit 52 sets the target air-fuel ratio to a lean air-fuel ratio that is set to be leaner than the stoichiometric air-fuel ratio. As a result, the air-fuel ratio of the internal combustion engine 10 becomes lean, so oxygen contained in the exhaust gas is stored in the catalysts 31 and 32 .
 このようにリーン制御が実行されている期間に、ECU50の検出部51は、ステップS11に続くステップS12の処理として、単位時間当たりの触媒31,32の酸素吸蔵量の合計値ΔOSCを演算する。具体的には、検出部51は、以下の式f1に基づいて、上流空燃比AF11及び下流空燃比AF12から単位時間当たりの触媒31,32の酸素吸蔵量の合計値ΔOSCを演算する。 While the lean control is being executed in this manner, the detection unit 51 of the ECU 50 calculates the total value ΔOSC of the oxygen storage amounts of the catalysts 31 and 32 per unit time as the process of step S12 following step S11. Specifically, the detection unit 51 calculates the total value ΔOSC of the oxygen storage amounts of the catalysts 31 and 32 per unit time from the upstream air-fuel ratio AF11 and the downstream air-fuel ratio AF12 based on the following equation f1.
 ΔOSC=(AF12-AF11)×ΔQ×K (f1)
 なお、式f1において「ΔQ」は単位時間当たりの燃料噴射量であり、「K」は、吸気中に含まれる酸素の割合である。本実施形態では、酸素含有割合Kとして、予め定められた固定値が用いられている。
ΔOSC=(AF12−AF11)×ΔQ×K (f1)
In the formula f1, "ΔQ" is the fuel injection amount per unit time, and "K" is the ratio of oxygen contained in the intake air. In this embodiment, a predetermined fixed value is used as the oxygen content ratio K.
 空燃比制御部52は、ステップS12に続くステップS13の処理として、リーン制御の終了条件が成立したか否かを判断する。具体的には、空燃比制御部52は、検出部51により検出される下流空燃比AF12がリーン判定値以上になることに基づいてリーン制御の終了条件が成立したと判断する。空燃比制御部52がステップS13の処理で否定的な判断を行った場合には、すなわちリーン制御の終了条件が成立していない場合には、検出部51がステップS12の処理を実行する。すなわち、リーン制御が継続されている期間、検出部51は、上記の式f1に基づいて、単位時間当たりの触媒31,32の酸素吸蔵量の合計値ΔOSC1,ΔOSC2,・・・を順次算出する。 The air-fuel ratio control unit 52 determines whether or not the conditions for ending the lean control are met as the process of step S13 following step S12. Specifically, when the downstream air-fuel ratio AF12 detected by the detection unit 51 becomes equal to or greater than the lean determination value, the air-fuel ratio control unit 52 determines that the lean control end condition is satisfied. When the air-fuel ratio control unit 52 makes a negative determination in the process of step S13, that is, when the lean control end condition is not satisfied, the detection unit 51 executes the process of step S12. That is, during the period in which the lean control is continued, the detection unit 51 sequentially calculates the total values ΔOSC1, ΔOSC2, . .
 その後、空燃比制御部52は、ステップS13の処理で肯定的な判断を行った場合には、すなわちリーン制御の終了条件が成立した場合には、ステップS14の処理として、リーン制御を終了する。この時点では、下流空燃比AF12がリーン判定値以上になっているため、触媒31,32の酸素吸蔵量は最大値又はそれに近い値に達することになる。 After that, when the air-fuel ratio control unit 52 makes an affirmative determination in the process of step S13, that is, when the conditions for ending the lean control are met, the process of step S14 ends the lean control. At this time, the downstream air-fuel ratio AF12 is equal to or higher than the lean judgment value, so the oxygen storage amounts of the catalysts 31 and 32 reach the maximum value or a value close to it.
 検出部51は、ステップS14に続くステップS15の処理として、触媒31,32の最大酸素吸蔵量の合計値OSCmaxを演算する。具体的には、検出部51は、ステップS12の処理で求められた単位時間当たりの触媒31,32の酸素吸蔵量の合計値ΔOSC1,ΔOSC2,・・・を積算することにより触媒31,32の最大酸素吸蔵量の合計値OSCmaxを演算する。 The detection unit 51 calculates the total value OSCmax of the maximum oxygen storage amounts of the catalysts 31 and 32 as the process of step S15 following step S14. Specifically, the detection unit 51 integrates the total values ΔOSC1, ΔOSC2, . A total value OSCmax of the maximum oxygen storage amount is calculated.
 続いて、ECU50の判定部53は、ステップS16の処理として、最大酸素吸蔵量の合計値OSCmaxが、予め定められた閾値α未満であるか否かを判断する。判定部53は、ステップS16の処理で否定的な判断を行った場合には、すなわち最大酸素吸蔵量の合計値OSCmaxが閾値α以上である場合には、ステップS17の処理として、触媒31,32は正常であると判定する。 Subsequently, the determination unit 53 of the ECU 50 determines whether or not the total value OSCmax of the maximum oxygen storage amounts is less than a predetermined threshold value α as the process of step S16. If the determination unit 53 makes a negative determination in the processing of step S16, that is, if the total value OSCmax of the maximum oxygen storage amounts is equal to or greater than the threshold value α, the determination unit 53 performs the processing of step S17 by adjusting the catalysts 31 and 32. is normal.
 一方、判定部53は、ステップS16の処理で肯定的な判断を行った場合には、すなわち最大酸素吸蔵量の合計値OSCmaxが閾値α未満である場合には、ステップS18の処理として、触媒31,32は劣化していると判定する。この場合、判定部53は、例えば車両のインストルメントパネルに設けられる警告灯を点灯させることにより、触媒31,32が劣化していることを運転者に通知する。 On the other hand, if the determination unit 53 makes an affirmative determination in the process of step S16, that is, if the total value OSCmax of the maximum oxygen storage amounts is less than the threshold value α, the process of step S18 is performed by the catalyst 31 , 32 are determined to be degraded. In this case, the determination unit 53 notifies the driver that the catalysts 31 and 32 have deteriorated, for example, by turning on a warning light provided on the instrument panel of the vehicle.
 ECU50は、所定の周期になったと判定したときに現在の内燃機関10の空燃比が理論空燃比よりもリーン寄りである場合には、図8に示される処理を実行する。なお、図8に示される処理は、図7に示される処理に類似しているため、以下ではそれらの相違点を中心に説明する。 If the current air-fuel ratio of the internal combustion engine 10 is leaner than the stoichiometric air-fuel ratio when the ECU 50 determines that the predetermined period has elapsed, the ECU 50 executes the processing shown in FIG. Since the processing shown in FIG. 8 is similar to the processing shown in FIG. 7, the differences therebetween will be mainly described below.
 図8に示されるように、空燃比制御部52は、ステップS20の処理としてリーン制御を実行する。これにより、各触媒31,32の酸素吸蔵量は最大値又はそれに近い値になる。空燃比制御部52は、ステップS20に続くステップS21の処理として、リッチ制御を開始する。リッチ制御が開始されることにより、内燃機関10の空燃比がリッチになるため、各触媒31,32に吸蔵されている酸素が排気に放出される。 As shown in FIG. 8, the air-fuel ratio control unit 52 executes lean control as the process of step S20. As a result, the oxygen storage amount of each of the catalysts 31 and 32 becomes the maximum value or a value close to it. The air-fuel ratio control unit 52 starts rich control as the process of step S21 following step S20. As the rich control is started, the air-fuel ratio of the internal combustion engine 10 becomes rich, so oxygen stored in the catalysts 31 and 32 is released to the exhaust.
 ECU50の検出部51は、ステップS21に続くステップS22の処理として、単位時間当たりの触媒31,32の酸素放出量の合計値ΔORCを以下の式f2に基づいて演算する。
 ΔORC=(AF11-AF12)×ΔQ×K (f2)
 空燃比制御部52は、ステップS22に続くステップS23の処理として、下流空燃比AF12がリッチ判定値以下であるか否かを判定することにより、リッチ制御の終了条件が成立したか否かを判断する。空燃比制御部52がステップS23の処理で否定的な判定を行っている期間、すなわちリッチ制御の終了条件が不成立である期間、検出部51は、上記の式f2に基づいて、単位時間当たりの触媒31,32の酸素放出量の合計値ΔORC1,ΔORC2,・・・を順次算出する。
As the process of step S22 following step S21, the detection unit 51 of the ECU 50 calculates the total value ΔORC of the oxygen release amounts of the catalysts 31 and 32 per unit time based on the following equation f2.
ΔORC=(AF11−AF12)×ΔQ×K (f2)
As the process of step S23 following step S22, the air-fuel ratio control unit 52 determines whether or not the downstream air-fuel ratio AF12 is equal to or less than the rich determination value, thereby determining whether or not the end condition of the rich control is satisfied. do. During the period in which the air-fuel ratio control unit 52 makes a negative determination in the process of step S23, that is, during the period in which the conditions for ending the rich control are not satisfied, the detection unit 51 determines the amount of air per unit time based on the above equation f2. The total values ΔORC1, ΔORC2, .
 空燃比制御部52は、ステップS23の処理で肯定的な判断を行った場合には、ステップS24の処理として、リッチ制御を終了する。この時点では、下流空燃比AF12がリッチ判定値以下になっているため、触媒31,32の酸素放出量の合計値は最大値に達することになる。 When the air-fuel ratio control unit 52 makes an affirmative determination in the process of step S23, the process of step S24 ends the rich control. At this time, the downstream air-fuel ratio AF12 is equal to or lower than the rich judgment value, so the total value of the oxygen release amounts of the catalysts 31 and 32 reaches the maximum value.
 検出部51は、ステップS24に続くステップS25の処理として、単位時間当たりの触媒31,32の酸素放出量の合計値ΔORC1,ΔORC2,・・・を積算することにより、各触媒31,32の最大酸素放出量の合計値ORCmaxを演算する。
 続いて、ECU50の判定部53は、ステップS26の処理として、最大酸素放出量の合計値ORCmaxが閾値β未満であるか否かを判断する。判定部53は、ステップS26の処理で否定的な判断を行った場合には、ステップS27の処理として、触媒31,32は正常であると判定する。判定部53は、ステップS26の処理で肯定的な判断を行った場合には、ステップS28の処理として、触媒31,32は劣化していると判定する。
As the process of step S25 following step S24, the detection unit 51 integrates the total values ΔORC1, ΔORC2, . A total value ORCmax of the oxygen release amount is calculated.
Subsequently, the determination unit 53 of the ECU 50 determines whether or not the total value ORCmax of the maximum oxygen release amounts is less than the threshold value β as the process of step S26. If the determination unit 53 makes a negative determination in the process of step S26, it determines that the catalysts 31 and 32 are normal in the process of step S27. If the determination unit 53 makes an affirmative determination in the processing of step S26, it determines that the catalysts 31 and 32 have deteriorated in the processing of step S28.
 次に、本実施形態の排気浄化装置60の動作例について説明する。なお、図7に示される処理が実行された場合と、図8に示される処理が実行された場合とで排気浄化装置60は類似の動作を行うため、以下では、前者の場合を例に挙げて説明する。
 図9に示される時刻t10で、空燃比制御部52によりリッチ制御が実行されている状態から、リーン制御が実行されている状態に切り替わったとする。このとき、時刻t10よりも前の時点では、リッチ制御の実行により、図9(A),(B)に示されるように、上流空燃比AF11及び下流空燃比AF12が共にリッチの値を示す。また、リッチ制御の実行により、各触媒31,32に吸蔵されている酸素が放出されるため、図9(C)に示されるように、触媒31,32の酸素吸蔵量の合計値OSCは「0」となる。
Next, an operation example of the exhaust purification device 60 of this embodiment will be described. Since the exhaust purification device 60 performs similar operations when the processing shown in FIG. 7 is executed and when the processing shown in FIG. 8 is executed, the former case will be taken as an example below. to explain.
Assume that at time t10 shown in FIG. 9, the state in which the air-fuel ratio control unit 52 is performing the rich control is switched to the state in which the lean control is being performed. At this time, before time t10, both the upstream air-fuel ratio AF11 and the downstream air-fuel ratio AF12 exhibit rich values due to the execution of the rich control, as shown in FIGS. 9A and 9B. In addition, since the oxygen stored in the catalysts 31 and 32 is released by executing the rich control, the total value OSC of the oxygen storage amounts of the catalysts 31 and 32 is " 0”.
 時刻t10で空燃比制御部52によりリーン制御が開始されると、第1空燃比センサ33に到達する排気の空燃比がリーンの値に変化するため、図9(A)に示されるように、上流空燃比AF11がリーンの値に変化する。一方、内燃機関10の空燃比がリーンに変化したとしても、排気に含まれている余剰分の酸素を各触媒31,32により吸蔵可能な期間は、第2空燃比センサ34に到達する排気の空燃比はストイキの値を維持する。そのため、時刻t10以降、図9(B)に示されるように下流空燃比AF12はストイキの値に維持されるとともに、図9(C)に示されるように触媒31,32の酸素吸蔵量の合計値OSCは徐々に増加する。 When lean control is started by the air-fuel ratio control unit 52 at time t10, the air-fuel ratio of the exhaust reaching the first air-fuel ratio sensor 33 changes to a lean value, so as shown in FIG. The upstream air-fuel ratio AF11 changes to a lean value. On the other hand, even if the air-fuel ratio of the internal combustion engine 10 changes to lean, the period during which the catalysts 31 and 32 can occlude the excess oxygen contained in the exhaust gas reaches the second air-fuel ratio sensor 34. The air-fuel ratio maintains the stoichiometric value. Therefore, after time t10, the downstream air-fuel ratio AF12 is maintained at the stoichiometric value as shown in FIG. The value OSC increases gradually.
 その後、触媒31,32による酸素の吸蔵が限界に達して、それ以上の酸素の吸蔵ができなくなると、第2空燃比センサ34に到達する排気の空燃比がストイキの値からリーンの値に変化する。そのため、図9(B)に実線で示されるように、下流空燃比AF12がストイキの値からリーンの値に変化する。下流空燃比AF12がストイキの値からリーンの値に変化する時刻を「t12」とすると、検出部51は、時刻t12の時点で演算される触媒31,32の酸素吸蔵量の合計値OSCを最大酸素吸蔵量の合計値OSCmax1として検出する。このとき、各触媒31,32が正常であれば、図9(C)に示されるように、最大酸素吸蔵量の合計値OSCmax1が閾値α以上になるため、判定部53は、時刻t12の時点で、各触媒31,32が正常であると判定する。 After that, when the oxygen storage by the catalysts 31 and 32 reaches its limit and no more oxygen can be stored, the air-fuel ratio of the exhaust reaching the second air-fuel ratio sensor 34 changes from the stoichiometric value to the lean value. do. Therefore, as indicated by the solid line in FIG. 9B, the downstream air-fuel ratio AF12 changes from the stoichiometric value to the lean value. Assuming that the time at which the downstream air-fuel ratio AF12 changes from the stoichiometric value to the lean value is "t12", the detection unit 51 maximizes the total value OSC of the oxygen storage amounts of the catalysts 31 and 32 calculated at time t12. It is detected as the total value OSCmax1 of the oxygen storage amount. At this time, if the catalysts 31 and 32 are normal, the total value OSCmax1 of the maximum oxygen storage amount is greater than or equal to the threshold α as shown in FIG. 9C. , it is determined that the catalysts 31 and 32 are normal.
 一方、使用時間の経過に伴って各触媒31,32が劣化すると、特にコージェライト触媒32の最大酸素吸蔵量の低下に伴って、最大酸素吸蔵量の合計値OSCは低下する。例えば、正常時における最大酸素吸蔵量の合計値OSCmax1は、図10に示されるように、CZ触媒31の最大酸素吸蔵量OSCmax11とコージェライト触媒32の最大酸素吸蔵量OSCmax12との加算値で表すことができる。このとき、各触媒31,32が劣化すると、CZ触媒31の最大酸素吸蔵量は「OSCmax11」から「OSCmax21」に僅かに低下するのに対し、コージェライト触媒32の最大酸素吸蔵量は「OSCmax12」から「OSCmax22」に大きく低下する。このコージェライト触媒32の最大酸素吸蔵量の変化の影響を受けて、最大酸素吸蔵量の合計値が「OSCmax1」から「OSCmax2」に低下することとなる。 On the other hand, when the catalysts 31 and 32 deteriorate with the lapse of usage time, the maximum oxygen storage amount of the cordierite catalyst 32 decreases, and the total value OSC of the maximum oxygen storage amount decreases. For example, the total value OSCmax1 of the maximum oxygen storage amount in the normal state can be represented by the sum of the maximum oxygen storage amount OSCmax11 of the CZ catalyst 31 and the maximum oxygen storage amount OSCmax12 of the cordierite catalyst 32, as shown in FIG. can be done. At this time, when the catalysts 31 and 32 deteriorate, the maximum oxygen storage amount of the CZ catalyst 31 slightly decreases from "OSCmax11" to "OSCmax21", while the maximum oxygen storage amount of the cordierite catalyst 32 is "OSCmax12". to "OSCmax22". Under the influence of this change in the maximum oxygen storage amount of the cordierite catalyst 32, the total value of the maximum oxygen storage amount is reduced from "OSCmax1" to "OSCmax2".
 図9(C)に一点鎖線で示されるように最大酸素吸蔵量の合計値が「OSCmax2」に低下することにより、図9(B)に一点鎖線で示されるように下流空燃比AF12がストイキの値からリーンの値に変化する時刻が、時刻t12よりも早い時刻t11となる。この状況では、最大酸素吸蔵量の合計値OSCmax2は閾値α未満であるため、判定部53は、時刻t11の時点で、各触媒31,32が劣化していると判定する。 As shown by the dashed line in FIG. 9(C), the total value of the maximum oxygen storage amount is reduced to "OSCmax2", so that the downstream air-fuel ratio AF12 becomes stoichiometric as shown by the dashed line in FIG. 9(B). The time at which the value changes to the lean value is time t11, which is earlier than time t12. In this situation, the total value OSCmax2 of the maximum oxygen storage amounts is less than the threshold value α, so the determination unit 53 determines that the catalysts 31 and 32 have deteriorated at time t11.
 このように、本実施形態の排気浄化装置60によれば、コージェライト触媒32の劣化だけでなく、CZ触媒31の劣化を判定することが可能である。
 なお、図10に示されるように、本実施形態の排気浄化装置60は、劣化の前後における最大酸素吸蔵量の合計値OSCmaxの偏差に基づいて各触媒31,32の劣化を判定するものである。そのため、例えばCZ触媒31の最大酸素吸蔵量がコージェライト触媒32の酸素吸蔵量と比較して過大である場合、劣化の前後における最大酸素吸蔵量の合計値OSCmaxの偏差が相対的に非常に小さくなる可能性がある。仮に劣化の前後における最大酸素吸蔵量の合計値OSCmaxの偏差が、空燃比センサ33,34により検出可能な酸素吸蔵量の変化量の下限値を下回ると、各触媒31,32の劣化を判定することが困難となる。
As described above, according to the exhaust purification device 60 of the present embodiment, it is possible to determine not only the deterioration of the cordierite catalyst 32 but also the deterioration of the CZ catalyst 31 .
As shown in FIG. 10, the exhaust purification device 60 of this embodiment determines the deterioration of each of the catalysts 31 and 32 based on the deviation of the total value OSCmax of the maximum oxygen storage amounts before and after deterioration. . Therefore, for example, when the maximum oxygen storage amount of the CZ catalyst 31 is excessive compared to the oxygen storage amount of the cordierite catalyst 32, the deviation of the total value OSCmax of the maximum oxygen storage amounts before and after deterioration is relatively very small. may become. If the deviation of the total value OSCmax of the maximum oxygen storage amounts before and after deterioration falls below the lower limit of the amount of change in the oxygen storage amount that can be detected by the air- fuel ratio sensors 33, 34, the catalysts 31, 32 are determined to be deteriorated. becomes difficult.
 そこで、劣化の前後における最大酸素吸蔵量の合計値OSCmaxの偏差が、空燃比センサ33,34により検出可能な酸素吸蔵量の変化量の下限値を上回るように、各触媒31,32の助触媒の量を調整することが望ましい。このような調整は、例えばCZ触媒31の助触媒の量とコージェライト触媒32の助触媒の量との比率を調整したり、コージェライト触媒32のウォッシュコート層321のコート量を調整したりすることで行うことができる。 Therefore, the co-catalyst of each catalyst 31, 32 is adjusted so that the deviation of the total value OSCmax of the maximum oxygen storage amount before and after deterioration exceeds the lower limit value of the amount of change in the oxygen storage amount detectable by the air- fuel ratio sensors 33, 34. It is desirable to adjust the amount of Such adjustment is, for example, adjusting the ratio between the amount of the co-catalyst of the CZ catalyst 31 and the amount of the co-catalyst of the cordierite catalyst 32, or adjusting the coat amount of the wash coat layer 321 of the cordierite catalyst 32. can be done by
 一方、本実施形態の排気浄化装置60では、使用時間の経過に伴ってCZ触媒31の最大酸素吸蔵量が殆ど変化しないことに鑑みれば、コージェライト触媒32の最大酸素吸蔵量の変化に基づいて各触媒31,32の劣化を判定していることになる。このような判定方法の場合、各触媒31,32の劣化度合いが類似の傾向を示していることが判定精度を確保する上で重要となる。 On the other hand, in the exhaust purification device 60 of the present embodiment, considering that the maximum oxygen storage amount of the CZ catalyst 31 hardly changes with the lapse of usage time, based on the change in the maximum oxygen storage amount of the cordierite catalyst 32 Deterioration of each catalyst 31, 32 is determined. In the case of such a determination method, it is important for securing the determination accuracy that the degrees of deterioration of the catalysts 31 and 32 exhibit similar tendencies.
 仮に排気通路30においてCZ触媒31とコージェライト触媒32とが大きく離間して配置されているような場合、各触媒31,32の熱履歴が大きく異なる。具体的には、CZ触媒31を通過した排気の熱が、CZ触媒31とコージェライト触媒32との間に配置される配管から放出され易くなるため、CZ触媒31の温度よりもコージェライト触媒32の温度の方が大幅に低くなる可能性がある。このように各触媒31,32の熱履歴が大きく異なると、例えば排気通路30の上流に配置されているCZ触媒31の劣化は進んでいるものの、排気通路30の下流に配置されているコージェライト触媒32の劣化は進んでいないという状況が発生し得る。このような場合、コージェライト触媒32の最大酸素吸蔵量の変化量とその劣化度合いとの関係に基づいて、図7に示されるステップS16の処理で用いられる閾値α、及び図8に示されるステップS26の処理で用いられる閾値βを設定すると、コージェライト触媒32の劣化度合いは精度良く判定できるものの、CZ触媒31の劣化度合いを精度良く判定することは困難となる。 If the CZ catalyst 31 and the cordierite catalyst 32 are arranged at a large distance in the exhaust passage 30, the thermal histories of the catalysts 31 and 32 are greatly different. Specifically, since the heat of the exhaust gas that has passed through the CZ catalyst 31 is more likely to be released from the pipe arranged between the CZ catalyst 31 and the cordierite catalyst 32, the temperature of the cordierite catalyst 32 is higher than the temperature of the CZ catalyst 31. temperature can be significantly lower. If the thermal histories of the catalysts 31 and 32 are significantly different in this way, for example, the deterioration of the CZ catalyst 31 arranged upstream of the exhaust passage 30 progresses, but the cordierite arranged downstream of the exhaust passage 30 deteriorates. A situation may occur in which the deterioration of the catalyst 32 is not progressing. In such a case, based on the relationship between the amount of change in the maximum oxygen storage amount of the cordierite catalyst 32 and the degree of deterioration thereof, the threshold α used in the process of step S16 shown in FIG. 7 and the step shown in FIG. When the threshold value β used in the process of S26 is set, the degree of deterioration of the cordierite catalyst 32 can be determined with high accuracy, but it becomes difficult to determine the degree of deterioration of the CZ catalyst 31 with high accuracy.
 そこで、仮にCZ触媒31とコージェライト触媒32とが大きく離間して配置されているような場合には、それらの劣化度合いの差を考慮して、閾値α及び閾値βを、コージェライト触媒32の劣化を判定することが可能な閾値よりも大きい値に設定することが望ましい。これにより、コージェライト触媒32が劣化するよりも前にCZ触媒31が劣化した時点で、各触媒31,32の劣化が検出されるようになる。すなわち各触媒31,32の劣化が、より厳しめに検出されるため、劣化の誤検出を防止することができる。 Therefore, if the CZ catalyst 31 and the cordierite catalyst 32 are arranged with a large separation, the threshold α and the threshold β are set to It is desirable to set the threshold to a value that is larger than the threshold that allows determination of deterioration. As a result, when the CZ catalyst 31 deteriorates before the cordierite catalyst 32 deteriorates, the deterioration of each of the catalysts 31 and 32 is detected. That is, deterioration of each of the catalysts 31 and 32 is detected more severely, so erroneous detection of deterioration can be prevented.
 (第1変形例)
 次に、第1実施形態の排気浄化装置60の第1変形例について説明する。
 第1実施形態の排気浄化装置60では、上述の通り、各触媒31,32の熱履歴を可能な限り近づけることが各触媒31,32の劣化の判定精度を高める上で重要である。
(First modification)
Next, a first modified example of the exhaust purification device 60 of the first embodiment will be described.
In the exhaust purification device 60 of the first embodiment, as described above, it is important to make the thermal histories of the catalysts 31 and 32 as close as possible in order to improve the accuracy of determining deterioration of the catalysts 31 and 32 .
 そこで、本変形例の排気浄化装置60では、図11に示されるように、各触媒31,32が排気通路30において互いに隣接してタンデムに配置されている。このような構成によれば、各触媒31,32の熱履歴を可能な限り近づけることができるため、各触媒31,32の劣化の判定精度を向上させることができる。 Therefore, in the exhaust purification device 60 of this modified example, the catalysts 31 and 32 are arranged adjacent to each other in tandem in the exhaust passage 30 as shown in FIG. According to such a configuration, since the thermal histories of the catalysts 31 and 32 can be made as close as possible, the deterioration determination accuracy of the catalysts 31 and 32 can be improved.
 (第2変形例)
 次に、第1実施形態の排気浄化装置60の第2変形例について説明する。
 図12に示されるように、本変形例の排気浄化装置60では、排気通路30におけるCZ触媒31とコージェライト触媒32との間に配置される第3空燃比センサ35を更に備えている。本実施形態では、第3空燃比センサ35が第3排気センサに相当する。
(Second modification)
Next, a second modification of the exhaust purification device 60 of the first embodiment will be described.
As shown in FIG. 12 , the exhaust purification device 60 of this modification further includes a third air-fuel ratio sensor 35 arranged between the CZ catalyst 31 and the cordierite catalyst 32 in the exhaust passage 30 . In this embodiment, the third air-fuel ratio sensor 35 corresponds to the third exhaust sensor.
 ECU50の検出部51は、第3空燃比センサ35の出力信号に基づいて、CZ触媒31から排出される排気の空燃比、及びコージェライト触媒32に流入する排気の空燃比を検出する。また、ECU50の空燃比制御部52は、検出部51により検出される、CZ触媒31から排出される排気の空燃比、及びコージェライト触媒32に流入する排気の空燃比に基づいて、内燃機関10の空燃比を理論空燃比に一致させる空燃比制御を実行する。 The detection unit 51 of the ECU 50 detects the air-fuel ratio of the exhaust discharged from the CZ catalyst 31 and the air-fuel ratio of the exhaust flowing into the cordierite catalyst 32 based on the output signal of the third air-fuel ratio sensor 35 . Further, the air-fuel ratio control unit 52 of the ECU 50 controls the internal combustion engine 10 based on the air-fuel ratio of the exhaust discharged from the CZ catalyst 31 and the air-fuel ratio of the exhaust flowing into the cordierite catalyst 32 detected by the detection unit 51. Air-fuel ratio control is executed to match the air-fuel ratio of the engine to the stoichiometric air-fuel ratio.
 このような構成によれば、各触媒31,32の状態を個別に監視しつつ空燃比制御を実行することが可能であるため、空燃比制御の制御性を向上させることができる。結果的に、排気に含まれるエミッション等を更に低減することができる。
 なお、図12に示される排気浄化装置60の構成は、図11に示されるようなCZ触媒31及びコージェライト触媒32がタンデムに配置される構成にも適用可能である。
According to such a configuration, it is possible to execute the air-fuel ratio control while individually monitoring the states of the catalysts 31 and 32, so it is possible to improve the controllability of the air-fuel ratio control. As a result, emissions and the like contained in the exhaust can be further reduced.
The configuration of the exhaust purification device 60 shown in FIG. 12 is also applicable to a configuration in which the CZ catalyst 31 and the cordierite catalyst 32 are arranged in tandem as shown in FIG.
 <第2実施形態>
 次に、排気浄化装置60の第2実施形態について説明する。以下、第1実施形態の排気浄化装置60との相違点を中心に説明する。
 使用時間の経過に伴ってCZ触媒31の最大酸素吸蔵量が殆ど低下しないことに鑑みれば、触媒31,32の最大酸素吸蔵量の合計値の低下量はコージェライト触媒32の単体の最大酸素吸蔵量の低下量に略等しいと考えられる。よって、コージェライト触媒32の単体の最大酸素吸蔵量の低下量に基づいて各触媒31,32の排気浄化性能の低下量を判定することも可能であると考えられる。本実施形態では、これを利用して各触媒31,32の劣化を判定する。
<Second embodiment>
Next, a second embodiment of the exhaust purification device 60 will be described. The following description will focus on differences from the exhaust emission control device 60 of the first embodiment.
Considering that the maximum oxygen storage amount of the CZ catalyst 31 hardly decreases with the passage of usage time, the amount of decrease in the total value of the maximum oxygen storage amounts of the catalysts 31 and 32 is equal to the maximum oxygen storage amount of the single cordierite catalyst 32. It is considered to be approximately equal to the amount of decrease in the amount. Therefore, it is considered possible to determine the amount of decrease in the exhaust purification performance of each of the catalysts 31 and 32 based on the amount of decrease in the maximum oxygen storage amount of the single cordierite catalyst 32 . In the present embodiment, deterioration of each catalyst 31, 32 is determined using this.
 具体的には、図13に示されるように、本実施形態の排気浄化装置60は、第1空燃比センサ33が、排気通路30においてCZ触媒31とコージェライト触媒32との間に配置されている点で、第1実施形態の排気浄化装置60と異なる。
 ECU50の検出部51は、第1空燃比センサ33の出力信号に基づいて、排気通路30におけるCZ触媒31とコージェライト触媒32との間を流れる排気の空燃比である中流空燃比AF13を検出する。
Specifically, as shown in FIG. 13 , in the exhaust purification device 60 of the present embodiment, the first air-fuel ratio sensor 33 is arranged between the CZ catalyst 31 and the cordierite catalyst 32 in the exhaust passage 30. It differs from the exhaust emission control device 60 of the first embodiment in that the
A detection unit 51 of the ECU 50 detects a midstream air-fuel ratio AF13, which is the air-fuel ratio of exhaust flowing between the CZ catalyst 31 and the cordierite catalyst 32 in the exhaust passage 30, based on the output signal of the first air-fuel ratio sensor 33. .
 ECU50の判定部53は、検出部51により検出される中流空燃比AF13及び下流空燃比AF12に基づいてCZ触媒31及びコージェライト触媒32の劣化の有無を判定する。
 具体的には、検出部51は、図7に示されるステップS12の処理において、以下の式f3に基づいて、検出部51により検出される下流空燃比AF12及び中流空燃比AF13から単位時間当たりのコージェライト触媒32の酸素吸蔵量ΔOSCCを演算する。
A determination unit 53 of the ECU 50 determines whether or not the CZ catalyst 31 and the cordierite catalyst 32 have deteriorated based on the midstream air-fuel ratio AF13 and the downstream air-fuel ratio AF12 detected by the detection unit 51 .
Specifically, in the process of step S12 shown in FIG. 7, the detection unit 51 calculates the air-fuel ratio per unit time from the downstream air-fuel ratio AF12 and the midstream air-fuel ratio AF13 detected by the detection unit 51 based on the following equation f3. The oxygen storage amount ΔOSCC of the cordierite catalyst 32 is calculated.
 ΔOSCC=(AF12-AF13)×ΔQ×K (f3)
 また、検出部51は、ステップS15の処理として、単位時間当たりのコージェライト触媒32の酸素吸蔵量ΔOSCC1,ΔOSCC2,・・・を積算することによりコージェライト触媒32の最大酸素吸蔵量OSCCmaxを演算する。続いて、判定部53は、ステップS16の処理として、コージェライト触媒32の最大酸素吸蔵量OSCCmaxが閾値α未満であるか否かを判断する。
ΔOSCC=(AF12−AF13)×ΔQ×K (f3)
Further, as the process of step S15, the detection unit 51 calculates the maximum oxygen storage amount OSCCmax of the cordierite catalyst 32 by integrating the oxygen storage amounts ΔOSCC1, ΔOSCC2, . . . of the cordierite catalyst 32 per unit time. . Subsequently, as the process of step S16, the determination unit 53 determines whether or not the maximum oxygen storage amount OSCCmax of the cordierite catalyst 32 is less than the threshold value α.
 一方、検出部51は、図8に示されるステップS22の処理において、以下の式f4に基づいて、下流空燃比AF12及び中流空燃比AF13から単位時間当たりのコージェライト触媒32の酸素放出量ΔORCCを演算する。
 ΔORCC=(AF13-AF12)×ΔQ×K (f4)
 また、検出部51は、ステップS25の処理として、単位時間当たりのコージェライト触媒32の酸素放出量ΔORCC1,ΔORCC2,・・・を積算することによりコージェライト触媒32の最大酸素放出量ORCCmaxを演算する。続いて、検出部51は、ステップS26の処理として、コージェライト触媒32の最大酸素放出量ORCCmaxが閾値α未満であるか否かを判断する。
On the other hand, in the processing of step S22 shown in FIG. 8, the detection unit 51 calculates the oxygen release amount ΔORCC of the cordierite catalyst 32 per unit time from the downstream air-fuel ratio AF12 and the midstream air-fuel ratio AF13 based on the following equation f4. Calculate.
ΔORCC=(AF13−AF12)×ΔQ×K (f4)
Further, as the process of step S25, the detection unit 51 calculates the maximum oxygen release amount ORCCmax of the cordierite catalyst 32 by integrating the oxygen release amounts ΔORCC1, ΔORCC2, . . . of the cordierite catalyst 32 per unit time. . Subsequently, as the process of step S26, the detection unit 51 determines whether or not the maximum oxygen release amount ORCCmax of the cordierite catalyst 32 is less than the threshold value α.
 本実施形態の排気浄化装置60の構成であれば、第1実施形態の排気浄化装置60と同様に、コージェライト触媒32の劣化だけでなく、CZ触媒31の劣化を判定することが可能である。
 また、本実施形態の排気浄化装置60では、第1実施形態の第1変形例と同様に、図14に示されるような触媒31,32をタンデムに配置する構造を採用することが有効である。これにより、第1実施形態の第1変形例と同一又は類似の作用及び効果を得ることができる。
With the configuration of the exhaust purification device 60 of the present embodiment, it is possible to determine not only the deterioration of the cordierite catalyst 32 but also the deterioration of the CZ catalyst 31, like the exhaust purification device 60 of the first embodiment. .
Further, in the exhaust purification device 60 of the present embodiment, it is effective to employ a structure in which the catalysts 31 and 32 are arranged in tandem as shown in FIG. 14, as in the first modification of the first embodiment. . As a result, the same or similar actions and effects as those of the first modified example of the first embodiment can be obtained.
 さらに、本実施形態の排気浄化装置60では、第1実施形態の第2変形例と同様に、図15に示されるような排気通路30においてCZ触媒31の上流に配置される第3空燃比センサ35を更に備えていてもよい。これにより、第1実施形態の第2変形例と同一又は類似の作用及び効果を得ることができる。 Furthermore, in the exhaust purification device 60 of the present embodiment, as in the second modification of the first embodiment, the third air-fuel ratio sensor is arranged upstream of the CZ catalyst 31 in the exhaust passage 30 as shown in FIG. 35 may also be provided. As a result, the same or similar actions and effects as those of the second modification of the first embodiment can be obtained.
 なお、図15に示される排気浄化装置60の構成は、図14に示されるようなCZ触媒31及びコージェライト触媒32がタンデムに配置される構成にも適用可能である。
 <他の実施形態>
 なお、上記実施形態は、以下の形態にて実施することもできる。
15 can also be applied to a configuration in which the CZ catalyst 31 and the cordierite catalyst 32 are arranged in tandem as shown in FIG.
<Other embodiments>
The above embodiment can also be implemented in the following forms.
 ・各実施形態の排気浄化装置60は、排気通路に配置される排気センサとして、空燃比センサ33~35に代えて、排気中の酸素濃度もしくは空燃比を検出して排気の酸素濃度に応じた信号を出力する酸素センサを有するものであってもよい。このような構成によれば、酸素センサの出力信号に基づいて、触媒31,32の最大酸素吸蔵量の合計値OSCmaxやコージェライト触媒32の酸素吸蔵量の最大値OSCCmaxを演算することができるため、各実施形態の排気浄化装置60と同一又は類似の作用及び効果を得ることができる。なお、このように酸素センサを用いた場合には、酸素センサにより検出される酸素濃度が排気の特定成分に相当する。 The exhaust purification device 60 of each embodiment detects the oxygen concentration or air-fuel ratio in the exhaust instead of the air-fuel ratio sensors 33 to 35 as the exhaust sensor arranged in the exhaust passage, and detects the oxygen concentration in the exhaust. It may have an oxygen sensor that outputs a signal. With such a configuration, the total value OSCmax of the maximum oxygen storage amounts of the catalysts 31 and 32 and the maximum value OSCCmax of the oxygen storage amount of the cordierite catalyst 32 can be calculated based on the output signal of the oxygen sensor. , the same or similar actions and effects as those of the exhaust emission control device 60 of each embodiment can be obtained. It should be noted that when the oxygen sensor is used in this way, the oxygen concentration detected by the oxygen sensor corresponds to the specific component of the exhaust gas.
 ・各実施形態の排気浄化装置60は、コージェライト触媒32に代えて、使用時間の経過に伴って酸素吸蔵量及び酸素放出量の劣化が生じる任意の排気浄化触媒を用いることができる。このような排気浄化触媒としては、例えばGPF(ガソリン・パティキュレート・フィルタ)に3way触媒の浄化機能を付与した4wayのGPF触媒や、焼成温度を下げたCZ触媒等を用いることができる。 · Instead of the cordierite catalyst 32, the exhaust gas purification device 60 of each embodiment can use any exhaust gas purification catalyst whose oxygen storage amount and oxygen release amount deteriorate with the passage of time. As such an exhaust purification catalyst, for example, a 4-way GPF catalyst obtained by adding a purification function of a 3-way catalyst to a GPF (gasoline particulate filter), or a CZ catalyst with a lowered firing temperature can be used.
 ・本開示に記載のECU50及びその制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載のECU50及びその制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載のECU50及びその制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。 - The ECU 50 and its control method described in the present disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may also be implemented by a dedicated computer. The ECU 50 and its control method described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor that includes one or more dedicated hardware logic circuits. The ECU 50 and its control method described in the present disclosure are configured by a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be implemented by one or more special purpose computers. The computer program may be stored as computer-executable instructions on a computer-readable non-transitional tangible storage medium. Dedicated hardware logic circuits and hardware logic circuits may be implemented by digital circuits containing multiple logic circuits or by analog circuits.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 · The present disclosure is not limited to the above specific examples. Appropriate design changes made by those skilled in the art to the above specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each specific example described above, and its arrangement, conditions, shape, etc., are not limited to those illustrated and can be changed as appropriate. As long as there is no technical contradiction, the combination of the elements included in the specific examples described above can be changed as appropriate.

Claims (7)

  1.  内燃機関の排気通路(30)に配置され、酸素の吸蔵機能及び放出機能を有する助触媒のハニカム構造体(310)の表面に貴金属触媒(311)が担持された構造を有する第1排気浄化触媒(31)と、
     前記排気通路において前記第1排気浄化触媒の下流に配置され、コージェライトにより形成されるハニカム構造体(320)の表面に、酸素の吸蔵機能及び放出機能を有する助触媒及び貴金属触媒を含むウォッシュコート層(321)がコーティングされた構造を有する第2排気浄化触媒(32)と、
     前記排気通路において前記第1排気浄化触媒の上流に配置され、排気の特定成分を検出する第1排気センサ(33)と、
     前記排気通路において前記第2排気浄化触媒の下流に配置され、排気の特定成分を検出する第2排気センサ(34)と、
     前記第1排気センサ及び前記第2排気センサによりそれぞれ検出される前記特定成分に基づいて、前記第1排気浄化触媒及び前記第2排気浄化触媒のそれぞれの酸素吸蔵量の合計値、又は前記第1排気浄化触媒及び前記第2排気浄化触媒のそれぞれの酸素放出量の合計値を検出する検出部(51)と、
     前記検出部により検出される前記酸素吸蔵量の合計値又は前記酸素放出量の合計値に基づいて前記第1排気浄化触媒及び前記第2排気浄化触媒の劣化を判定する判定部(53)と、を備える
     内燃機関の排気浄化装置。
    A first exhaust purification catalyst arranged in an exhaust passage (30) of an internal combustion engine and having a structure in which a precious metal catalyst (311) is carried on the surface of a co-catalyst honeycomb structure (310) having an oxygen storage function and an oxygen release function. (31) and
    A wash coat containing a co-catalyst having oxygen storage and release functions and a precious metal catalyst on the surface of a honeycomb structure (320) formed of cordierite and disposed downstream of the first exhaust purification catalyst in the exhaust passage. a second exhaust purification catalyst (32) having a structure coated with a layer (321);
    a first exhaust sensor (33) arranged upstream of the first exhaust purification catalyst in the exhaust passage and detecting a specific component of exhaust gas;
    a second exhaust sensor (34) arranged downstream of the second exhaust purification catalyst in the exhaust passage and detecting a specific component of exhaust gas;
    Based on the specific component detected by the first exhaust sensor and the second exhaust sensor, respectively, the total value of the oxygen storage amounts of the first exhaust purification catalyst and the second exhaust purification catalyst, or the first a detection unit (51) for detecting the total value of the oxygen release amount of each of the exhaust purification catalyst and the second exhaust purification catalyst;
    a determination unit (53) that determines deterioration of the first exhaust purification catalyst and the second exhaust purification catalyst based on the total value of the oxygen storage amount or the total value of the oxygen release amount detected by the detection unit; An exhaust purification device for an internal combustion engine.
  2.  前記排気通路において前記第1排気浄化触媒と前記第2排気浄化触媒との間に配置され、排気の特定成分を検出する第3排気センサ(35)を更に備える
     請求項1に記載の内燃機関の排気浄化装置。
    2. The internal combustion engine according to claim 1, further comprising a third exhaust sensor (35) disposed between said first exhaust purification catalyst and said second exhaust purification catalyst in said exhaust passage and detecting a specific component of exhaust gas. Exhaust purification device.
  3.  内燃機関の排気通路(30)に配置され、酸素の吸蔵機能及び放出機能を有する助触媒のハニカム構造体(310)の表面に貴金属触媒(311)が担持された構造を有する第1排気浄化触媒(31)と、
     前記排気通路において前記第1排気浄化触媒の下流に配置され、コージェライトにより形成されるハニカム構造体(320)の表面に、酸素の吸蔵機能及び放出機能を有する助触媒及び貴金属触媒を含むウォッシュコート層(321)がコーティングされた構造を有する第2排気浄化触媒(32)と、
     前記排気通路において前記第1排気浄化触媒と前記第2排気浄化触媒との間に配置され、排気の特定成分を検出する第1排気センサ(33)と、
     前記排気通路において前記第2排気浄化触媒の下流に配置され、排気の特定成分を検出する第2排気センサ(34)と、
     前記第1排気センサ及び前記第2排気センサによりそれぞれ検出される前記特定成分に基づいて、前記第2排気浄化触媒の酸素吸蔵量又は酸素放出量を検出する検出部(51)と、
     前記検出部により検出される前記酸素吸蔵量又は前記酸素放出量に基づいて前記第1排気浄化触媒及び前記第2排気浄化触媒の劣化を判定する判定部(53)と、を備える
     内燃機関の排気浄化装置。
    A first exhaust purification catalyst arranged in an exhaust passage (30) of an internal combustion engine and having a structure in which a precious metal catalyst (311) is carried on the surface of a co-catalyst honeycomb structure (310) having an oxygen storage function and an oxygen release function. (31) and
    A wash coat containing a co-catalyst having oxygen storage and release functions and a precious metal catalyst on the surface of a honeycomb structure (320) formed of cordierite and disposed downstream of the first exhaust purification catalyst in the exhaust passage. a second exhaust purification catalyst (32) having a structure coated with a layer (321);
    a first exhaust sensor (33) disposed between the first exhaust purification catalyst and the second exhaust purification catalyst in the exhaust passage and detecting a specific component of exhaust gas;
    a second exhaust sensor (34) arranged downstream of the second exhaust purification catalyst in the exhaust passage and detecting a specific component of exhaust gas;
    a detection unit (51) for detecting an oxygen storage amount or an oxygen release amount of the second exhaust purification catalyst based on the specific components respectively detected by the first exhaust sensor and the second exhaust sensor;
    a determination unit (53) that determines deterioration of the first exhaust purification catalyst and the second exhaust purification catalyst based on the oxygen storage amount or the oxygen release amount detected by the detection unit; exhaust of an internal combustion engine purifier.
  4.  前記排気通路において前記第1排気浄化触媒の上流に配置され、排気の特定成分を検出する第3排気センサ(35)を更に備える
     請求項3に記載の内燃機関の排気浄化装置。
    4. The exhaust purification system for an internal combustion engine according to claim 3, further comprising a third exhaust sensor (35) arranged upstream of said first exhaust purification catalyst in said exhaust passage and detecting a specific component of the exhaust.
  5.  前記第1排気浄化触媒及び前記第2排気浄化触媒は、前記排気通路において互いに隣接してタンデムに配置されている
     請求項1~4のいずれか一項に記載の内燃機関の排気浄化装置。
    The exhaust purification device for an internal combustion engine according to any one of claims 1 to 4, wherein the first exhaust purification catalyst and the second exhaust purification catalyst are arranged adjacent to each other in tandem in the exhaust passage.
  6.  前記第1排気センサ及び前記第2排気センサは、排気の空燃比もしくは酸素濃度を検出する空燃比センサである
     請求項1~5のいずれか一項に記載の内燃機関の排気浄化装置。
    6. The exhaust purification device for an internal combustion engine according to claim 1, wherein the first exhaust sensor and the second exhaust sensor are air-fuel ratio sensors that detect the air-fuel ratio or oxygen concentration of the exhaust.
  7.  前記第1排気センサ及び前記第2排気センサは、排気の酸素濃度もしくは空燃比を検出する酸素センサである
     請求項1~5のいずれか一項に記載の内燃機関の排気浄化装置。
    The exhaust purification device for an internal combustion engine according to any one of claims 1 to 5, wherein the first exhaust sensor and the second exhaust sensor are oxygen sensors that detect the oxygen concentration or air-fuel ratio of the exhaust.
PCT/JP2021/048805 2021-02-08 2021-12-28 Internal combustion engine exhaust gas purifying device WO2022168507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021018124 2021-02-08
JP2021-018124 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022168507A1 true WO2022168507A1 (en) 2022-08-11

Family

ID=82742266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048805 WO2022168507A1 (en) 2021-02-08 2021-12-28 Internal combustion engine exhaust gas purifying device

Country Status (1)

Country Link
WO (1) WO2022168507A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115879A (en) * 1999-10-14 2001-04-24 Denso Corp Catalyst deterioration state detecting device
JP2005330848A (en) * 2004-05-18 2005-12-02 Mitsubishi Motors Corp Catalyst degradation estimating device
JP2011226430A (en) * 2010-04-22 2011-11-10 Toyota Motor Corp Catalyst failure diagnostic device
JP2015085241A (en) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 Exhaust gas purification catalyst
WO2019087875A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Exhaust gas purification device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115879A (en) * 1999-10-14 2001-04-24 Denso Corp Catalyst deterioration state detecting device
JP2005330848A (en) * 2004-05-18 2005-12-02 Mitsubishi Motors Corp Catalyst degradation estimating device
JP2011226430A (en) * 2010-04-22 2011-11-10 Toyota Motor Corp Catalyst failure diagnostic device
JP2015085241A (en) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 Exhaust gas purification catalyst
WO2019087875A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Exhaust gas purification device

Similar Documents

Publication Publication Date Title
US6244046B1 (en) Engine exhaust purification system and method having NOx occluding and reducing catalyst
JP4877610B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
CN108457758B (en) Control device for internal combustion engine
JP5273297B2 (en) Catalyst abnormality diagnosis device
WO2011132233A1 (en) Catalyst anomaly diagnostic system
JP6834917B2 (en) Exhaust purification device for internal combustion engine
US11492952B2 (en) Catalyst degradation detection apparatus
JP2008031901A (en) Catalyst degradation detecting apparatus of internal-combustion engine
JP2006291824A (en) Exhaust emission control device for internal combustion engine
JP6669100B2 (en) Abnormality diagnosis device for internal combustion engine
JP4636273B2 (en) Exhaust gas purification device for internal combustion engine
WO2022168507A1 (en) Internal combustion engine exhaust gas purifying device
JP2009127597A (en) Catalyst degradation diagnostic device
JP2005155422A (en) Catalyst control device for internal combustion engine
JP2009150367A (en) Catalyst degradation diagnostic apparatus for internal combustion engine
JP2005240716A (en) Deterioration diagnostic device for catalyst
JP6711310B2 (en) Exhaust treatment device for internal combustion engine
JP5113374B2 (en) Exhaust gas purification device for internal combustion engine
JP7234956B2 (en) Abnormality detection device for air-fuel ratio detection device
JP4853792B2 (en) Catalyst deterioration diagnosis device
JP2005140041A (en) Air/fuel ratio control device for internal combustion engine
JP4924924B2 (en) Catalyst deterioration detection device for internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
US11434806B2 (en) Catalyst deterioration detection system
JP7111043B2 (en) engine controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP