WO2022166882A1 - 信号处理方法、装置、通信设备及存储介质 - Google Patents

信号处理方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022166882A1
WO2022166882A1 PCT/CN2022/074970 CN2022074970W WO2022166882A1 WO 2022166882 A1 WO2022166882 A1 WO 2022166882A1 CN 2022074970 W CN2022074970 W CN 2022074970W WO 2022166882 A1 WO2022166882 A1 WO 2022166882A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
target coefficient
coefficient
target
indication information
Prior art date
Application number
PCT/CN2022/074970
Other languages
English (en)
French (fr)
Inventor
袁璞
刘劲
陈保龙
姜大洁
白永春
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022166882A1 publication Critical patent/WO2022166882A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a signal processing method, apparatus, communication device and storage medium.
  • the interval of each symbol in the transmitter is much smaller than the minimum interval of Nyquist transmission, which causes adjacent data to overlap each other.
  • inter-symbol interference precursor inter-symbol interference, ISI
  • ISI cursor inter-symbol interference
  • MLSE maximum likelihood sequence estimation
  • the matrix inversion and the square root method Cholesky decomposition method involved in the algorithm for calculating the whitening filter by the receiver have relatively high operational complexity, resulting in relatively high receiver design complexity.
  • Embodiments of the present application provide a signal processing method, apparatus, communication device, and storage medium, which can avoid complex calculations performed by a receiver to obtain a whitening filter, reduce receiver complexity, and facilitate engineering implementation.
  • a signal processing method comprising:
  • the first communication device receives first indication information sent by the second communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter determined by the second communication device;
  • the first communication device processes the received first signal based on the first target coefficients of the whitening filter.
  • a signal processing method comprising:
  • the second communication device determines the first target coefficient of the whitening filter
  • the second communication device sends first indication information to the first communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter.
  • a signal processing apparatus comprising:
  • a first receiving module configured to receive first indication information sent by the second communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter determined by the second communication device;
  • the first processing module is configured to process the received first signal based on the first target coefficient of the whitening filter.
  • a signal processing apparatus comprising:
  • the fourth determining module for determining the first target coefficient of the whitening filter
  • the second sending module is configured to send first indication information to the first communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter.
  • a first communication device in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being processed by the processor. The steps of the method as described in the first aspect are implemented when the device is executed.
  • a second communication device in a sixth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being processed by the The steps of the method as described in the second aspect are implemented when the processor is executed.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect or the second aspect are implemented .
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first aspect or the second aspect the method described.
  • the receiver after calculating the whitening filter on the sending side and indicating it to the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter, which reduces the complexity of the receiver and facilitates engineering. accomplish.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG. 2 is a schematic diagram of a signal comparison without time-domain overlap and time-domain overlap provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a process flow diagram of a transceiver end of an FTN communication system provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a receiver processing flow provided by the present application.
  • FIG. 5 is one of the schematic flowcharts of the signal processing method provided by the embodiment of the present application.
  • FIG. 6 is one of the schematic diagrams of the first indication information provided by the embodiment of the present application.
  • FIG. 7 is the second schematic diagram of the first indication information provided by the embodiment of the present application.
  • FIG. 8 is the third schematic diagram of the first indication information provided by the embodiment of the present application.
  • FIG. 9 is the second schematic flowchart of the signal processing method provided by the embodiment of the present application.
  • FIG. 10 is a third schematic flowchart of a signal processing method provided by an embodiment of the present application.
  • FIG. 11 is one of the schematic structural diagrams of a signal processing apparatus provided by an embodiment of the present application.
  • FIG. 12 is a second schematic structural diagram of a signal processing apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation (6th Generation) , 6G) communication system.
  • 6th Generation 6th Generation
  • 6G 6th Generation
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • Super-Nyquist transmission namely Faster-than-Nyquist Signaling
  • OVXDM/FTN technology artificially introduces ISI and/or Inter Channel Interference (ICI) in the time domain/frequency domain based on waveform coding theory, thereby improving the symbol transmission rate and increasing the equivalent channel capacity.
  • ICI Inter Channel Interference
  • the waveform encoded signal puts forward higher requirements on the performance of the receiver, which increases the complexity of the decoding algorithm and the power consumption of the hardware.
  • the larger the time-frequency overlap coefficient during waveform coding that is, the more serious the artificially introduced ISI and ICI, the more states need to be judged by the receiver side, and the higher the complexity of the receiving algorithm.
  • the research results of the FTN/OVTDM system under the fading channel in the academic circle show that the fading channel can be countered by a more complex receiver algorithm.
  • methods such as channel pre-equalization and iterative algorithm of joint channel decoding are used.
  • the actual system due to the constraints of cost and power consumption, the actual system often cannot adopt an ideal receiver, and the complexity of the decoding algorithm implemented is limited.
  • the ISI/ICI exceeds a certain threshold, it will not be able to correctly decode code.
  • energy consumption will also increase, which is not conducive to saving energy and reducing consumption of the terminal.
  • the throughput advantage of the FTN/OVTDM system compared to the traditional OFDM system is mainly in the high signal-to-noise ratio (SNR) region.
  • SNR signal-to-noise ratio
  • the influence of noise on the received signal is relatively small, and the receiver is easy to decode correctly according to the known FTN/OVTDM inter-symbol coding constraints, and the bit error rate is very low.
  • the influence of noise on the received signal is relatively large, which destroys the constraint relationship between symbols and makes the bit error rate higher than that of the traditional OFDM system.
  • some methods such as using the prior information of the wireless channel, using the channel measurement results, etc., can reduce the complexity of the receiver algorithm as much as possible, so that the receiver can track the time-varying channel of the fading channel.
  • FTN/OVTDM is a signal processing method that artificially introduces an appropriate amount of ISI and/or ICI by performing shift superposition processing (also known as waveform coding) on the transmitted signal.
  • shift superposition processing also known as waveform coding
  • the number of symbols sent in (Hz*s).
  • OVXDM includes OVTDM, OVFDM and OVCDM, as well as the combined technology of OVTDM and OVFDM, which is called Overlapped X-Domain Multiplexing, that is, X-domain overlapping multiplexing. In the following, it is collectively referred to as FTN.
  • the introduced ISI and ICI will increase the complexity of decoding, which may increase the bit error rate.
  • the negative effect caused by the increase of the bit error rate can be suppressed by the advanced decoding algorithm, and the channel capacity can still be improved by the method of speeding up the symbol transmission rate. Its expression is as follows:
  • OVXDM OVXDM
  • is the overlap coefficient in the frequency domain.
  • FIG. 2 is a schematic diagram illustrating the comparison of signals without time-domain overlap and time-domain overlap provided by an embodiment of the present application, and FIG. 2 is used as an example to illustrate the generation of ISI.
  • T 0.8
  • 0.8
  • the processed signal at the time of each sampling point, the amplitude of the pulse waveform carrying the information of other sampling points is not zero, so ISI is generated.
  • the impulse response function of the path channel is h CH (t)
  • the signal after passing through the channel can be equivalently expressed as:
  • the expression of the signal received by the receiver is:
  • w(t) Gaussian white noise
  • FTN/OVTDM signals There are two main ways to generate FTN/OVTDM signals: 1) In a single-antenna system, it can be equivalently generated by oversampling the signal + shaping filtering, and the effect is similar to a convolutional encoder acting on the modulation level. 2) In a multi-antenna system, it can be generated in a way that is closer to its physical meaning, that is, controlling each antenna element/port of the multi-antenna to transmit signals with a delay of T ⁇ in turn according to the established shift and superposition principle, Signals sent by different antenna elements/ports with different delays are superimposed on the air interface, and ISI is introduced between the sampling points of the signals to form FTN/OVTDM signals.
  • the overlap coefficient is The FTN signal is equivalent to the OVTDM signal with K overlapping layers.
  • FTN can be used to refer to the super-Nyquist signal family represented by FTN/OVTDM.
  • the number of overlapping layers can be used as a description method to represent the characteristics of the FTN/OVTDM signal.
  • FIG. 3 is a schematic diagram of a processing flow of a transceiver end of an FTN communication system provided by an embodiment of the present application.
  • the FTN transceiver processing flow is shown in FIG. 3 .
  • the part marked in red is the difference from the communication system based on Nyquist transmission.
  • MLSE Maximum likelihood sequence estimation
  • FIG. 4 is a schematic diagram of a receiver processing flow provided by the present application, and the modules related to the present invention are mainly whitening filter modules.
  • the whitening filter module and its pre- and post-processing modules are shown in Figure 4.
  • the received time domain sampling point y(t) is input to the whitening filter module after matched filtering and downsampling.
  • the additive white noise originally caused by the wireless transmission channel in y(t) becomes colored noise after matched filtering, which is not conducive to the subsequent MLSE detection. Therefore, it is necessary to restore the colored noise to white noise through a whitening filter module.
  • the whitening filter abstracted as a mathematical model is actually a strip matrix, and each row of non-zero elements is the tap coefficient corresponding to the corresponding next module MLSE module.
  • the L matrix corresponding to the whitening filter can be calculated as follows.
  • L in the above H matrix is the number of time-domain sampling points of the processed data, and N is the number of time-domain sampling points of the shaping filter.
  • the matrix inversion and Cholesky decomposition involved are difficult to implement in actual hardware when the matrix dimension is large, that is, when L and N are large. Therefore, it is necessary to find a way to avoid the receiver frequently solving the operation of the whitening filter.
  • FIG. 5 is one of the schematic flowcharts of the signal processing method provided by the embodiment of the present application. As shown in FIG. 5 , the method includes the following steps:
  • Step 500 the first communication device receives first indication information sent by the second communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter determined by the second communication device;
  • Step 510 The first communication device processes the received first signal based on the first target coefficient of the whitening filter.
  • the second communication device is the sending side of the first signal
  • the first communication device is the receiving side of the first signal
  • the first communication device may directly receive the first indication information sent by the second communication device, and determine the first target coefficient of the whitening filter for processing the first signal; target coefficients, processing the received first signal.
  • the matrix inversion and Cholesky decomposition involved in the receiver algorithm have high computational complexity, and the hardware design is difficult to implement.
  • the demanding terminal equipment affects the engineering application of FTN technology.
  • the second communication device may calculate and obtain the first target of the whitening filter based on the number of sampling points in the time domain of the first signal to be transmitted and the second target coefficient of the first shaping filter used for transmitting the first signal. and indicate the first target coefficient of the whitening filter obtained by the calculation of the first communication device through the first indication information, and the first communication device can obtain the first target coefficient of the whitening filter after receiving the first indication information, that is, A whitening filter is determined for processing the received first signal.
  • the noise w(t) has nothing to do with the channel impulse response; therefore, the calculation of the whitening filter does not need to consider the channel impulse response. Therefore, the calculation of the whitening filter only depends on the coefficient of the shaping filter, that is, the second target coefficient, and the frame structure of the data;
  • the number of data samples is the number L of the columns of the H matrix, that is, the number of samples in the time domain of the first signal, and does not need to change with time-varying channel changes.
  • a time slot represents the minimum time resource unit used by the physical layer of the communication system to demodulate and decode data, which may be collectively referred to as a time slot in various embodiments of the present application, such as a time slot in NR, or a sub-slot in LTE. frame.
  • the filter used for ideal pulse shaping (frequency domain rectangular window, time domain Sinc function) is difficult to realize in engineering. Therefore, in engineering applications, the root raised cosine filter can be used as a shaping filter.
  • One of the key parameters is the roll-off factor ⁇ . When ⁇ is smaller, its frequency domain response function is closer to the ideal pulse, but the design and implementation of hardware devices are also more difficult. At the same time, when ⁇ is very small, the inter-symbol interference caused by the linear distortion in signal transmission is also more serious, which will also affect the performance of the receiver. Therefore, in practical systems, the value of ⁇ is usually between 0.15 and 0.5.
  • all indication and feedback messages and related control signaling involved in the embodiments of the present application are sent by Nyquist sampling signals instead of FTN signals.
  • FTN is only used to transmit data, not to transmit pilot and control signaling.
  • the embodiment of the present application proposes a solution in which the sending side sends signaling to indicate the whitening filter used by the receiving side.
  • the solution of the whitening filter By placing the solution of the whitening filter on the transmitting side, for example, when the second communication device is a base station, the solution of the whitening filter can be placed on the base station side, which has better computing power, reduces the complexity of receiver design, and Different shaping filters and their corresponding whitening filters can be selected according to receiver capabilities and channel state changes, and optimal performance can be obtained in different scenarios.
  • the second communication device that is, the transmitting side may first select an appropriate shaping filter according to its own capabilities and the capabilities of the receiver.
  • the first number of whitening filters required for demodulation of the signal by the first communication device is obtained by calculating based on the number of time-domain sampling points and the shaping filter.
  • the target coefficients ie the L matrix, are sent to the first communication device.
  • the number of time domain samples L is the number of data samples sent in the current time slot, and the FTN overlap coefficients ⁇ and ⁇ (or N and K of OVXDM) are known by the second communication device, that is, the sending side.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , reduces the complexity of the receiver, and is easy to implement in engineering
  • the first indication information includes:
  • a second index used to indicate the first target coefficient corresponding to the second index in the first target coefficient group corresponding to the second target coefficient
  • the second target coefficient is the second coefficient of the first shaping filter used for transmitting the first signal.
  • the second communication device may directly send the first target coefficient to the first communication device through the first indication information.
  • FIG. 6 is one of the schematic diagrams of the first indication information provided by the embodiment of the present application.
  • the second communication device may calculate and obtain the first a target coefficient, and indicating the first target coefficient to the first communication device.
  • the second communication device may indicate the first index through the first indication information, wherein different first indices may correspond to different first target coefficients; the first communication device may An index directly looks up the second target coefficient table, that is, the whitening filter table 1, to obtain the first target coefficient corresponding to the first index in the table.
  • FIG. 7 is the second schematic diagram of the first indication information provided by the embodiment of the present application.
  • the second communication device can calculate and obtain the first a target coefficient, and send the first index corresponding to the first target coefficient in the second target coefficient table to the first communication device, where the second target coefficient table may be indicated by the second communication device to the first communication device in advance of.
  • the second communication device may indicate the second index through the first indication information, wherein the second target coefficient of each shaping filter may correspond to a set of different second indexes, and each Each second index in a group of second indexes may correspond to a different first target coefficient, and the first communication device may determine the corresponding second index group according to the used shaping filter, and then use the determined second index to determine the corresponding second index group. determining the first target coefficient corresponding to the second index in the index group;
  • FIG. 8 is the third schematic diagram of the first indication information provided by the embodiment of the present application.
  • the second communication device can calculate and obtain the first a target coefficient, and send the second index corresponding to the first target coefficient in the second index group corresponding to the first shaping filter in the first target coefficient table to the first communication device, where the first target coefficient table may be The second communication device has previously indicated to the first communication device.
  • the first communication device may further determine the number L of sampling points in the time domain based on the second index.
  • the embodiments of the present application implement the indication to the first communication device through various solutions, and the solutions can be implemented flexibly and save signaling.
  • the method further includes:
  • the second target coefficient is determined based on second configuration information of a shaping filter supported by the second communication device and/or first configuration information of a shaping filter supported by the first communication device
  • the second target coefficient is predefined by a protocol
  • the second target coefficient is determined based on second configuration information of the shaping filter supported by the second communication device and/or first configuration information of the shaping filter supported by the first communication device.
  • the second target coefficient needs to be obtained first, and the first target coefficient is obtained by calculation based on the second target coefficient and the number L of sampling points in the time domain.
  • the second target coefficient may be predefined by a protocol, and when the second communication device and the first communication device determine the second target coefficient, the second target coefficient may be determined based on the predefined protocol.
  • the configuration of at least one shaping filter supported by the second communication device may be referred to as second configuration information
  • the configuration of at least one shaping filter supported by the first communication device may be referred to as first configuration information
  • a second target coefficient of a shaping filter may be determined based on the second configuration information
  • a second target coefficient of a shaping filter may be determined based on the first configuration information
  • a second target coefficient of a shaping filter may be determined based on the second configuration information and the first configuration information.
  • determining the second target coefficient based on the second configuration information of the shaping filter supported by the second communication device includes:
  • the receiving second communication device sends the first 2. Instruction information
  • the second target coefficient indicated by the second indication information is determined by the second communication device based on the second configuration information
  • the second capability is used to represent the configuration quantity of the shaping filter supported by the second communication device;
  • the first capability is used to represent the configuration quantity of the shaping filter supported by the first communication device.
  • the supported configurations (or key technical indicators) of the shaping filter are more.
  • the capability of the device is weak, and the configuration of the supported shaping filter is less.
  • the capabilities of the devices are known to both parties or can be easily obtained. Since the communication device itself knows its own device identity and the device identity of the communication peer, both the first communication device and the first communication device can easily know the capabilities of the two.
  • both parties can directly determine that the second capability is stronger than the first capability.
  • both parties can directly determine that the second capability is weaker than the first capability.
  • both parties can directly determine that the second capability is the same as the first capability.
  • both parties can directly determine that the second capability is the same as the first capability.
  • the second target coefficient of the shaping filter can be determined according to the configuration of the weaker side.
  • the second target coefficient of the shaping filter may be determined according to the configuration of either side, or the shaping filter may be determined together according to the configuration of both sides.
  • the second objective coefficient of the generator may be determined according to the configuration of either side, or the shaping filter may be determined together according to the configuration of both sides.
  • the second target coefficient may be determined based on second configuration information of the second communication device.
  • the second target coefficient may be determined based on second configuration information of the second communication device.
  • the second communication device may send second indication information to the first communication device, indicating to the first communication device that the second target coefficient, the first
  • a communication device can determine the first shaping filter used for the first signal transmission.
  • determining the second target coefficient based on the first configuration information of the shaping filter supported by the first communication device includes:
  • the second target coefficient is determined based on the first configuration information.
  • the second target coefficient may be determined based on the first configuration information, so the first communication device may determine the second target coefficient based on the first configuration information after determining the second target coefficient based on the The third indication information is indicated to the second communication device.
  • the second target coefficient may be determined based on the first configuration information, so the first communication device may determine the second target coefficient based on the first configuration information after determining the second target coefficient based on the The third indication information is indicated to the second communication device.
  • the method further includes: sending third indication information to the second communication device; wherein the third indication information is used to indicate the first Two objective coefficients;
  • the third indication information includes the second target coefficient; or, the third indication information includes a third index, which is used to indicate the second target corresponding to the third index in the first related parameter table predefined by the protocol coefficient.
  • the first communication device when the first communication device indicates the second target coefficient to the second communication device based on the third indication information, it may directly indicate the second target coefficient to the second communication device; it may also indicate the second target coefficient corresponding to the second target coefficient.
  • Third index when the first communication device indicates the second target coefficient to the second communication device based on the third indication information, it may directly indicate the second target coefficient to the second communication device; it may also indicate the second target coefficient corresponding to the second target coefficient.
  • a predefined first related parameter table may be agreed, which includes at least one third index, and a first related parameter table corresponding to each third index.
  • the second target coefficients of the first shaping filter may include: coefficients of the first shaping filter, or generation parameters of the first shaping filter.
  • the first relevant parameter table may be as shown in Table 3 below, the shaping filter coefficient table:
  • the first relevant parameter table may be as shown in Table 4 below, and the shaping filter generation parameter table is as shown:
  • third index Value a ⁇ Shaping filter type, roll-off factor, number of main lobe samples, filter length ⁇ b ⁇ Shaping filter type, roll-off factor, number of main lobe samples, filter length ⁇ c ...
  • the second communication device may obtain the coefficients of the first shaping filter or the generation parameters of the first shaping filter according to the third indication information received from the first communication device, and further obtain the first shaping filter. coefficient of the device.
  • the coefficient of the first shaping filter is directly obtained.
  • the generation parameters of the first shaping filter are directly obtained, and then the coefficients of the first shaping filter can be generated according to the generation parameters of the first shaping filter.
  • the coefficients of the first shaping filter can be directly obtained by looking up the table, or the generation parameters of the first shaping filter can be obtained by looking up the table, and then the generation parameters can be obtained according to the generation parameters.
  • the coefficients of the first shaping filter are obtained by calculation.
  • the sending side may calculate the first target coefficient of the whitening filter by using the obtained first shaping filter coefficient and the number L of data samples sent in the current time slot, L, the number of samples in the real time domain.
  • the first target coefficient of the whitening filter may be sent to the dedicated RRC signaling carried by the Physical Downlink Shared Channel (PDSCH) or the Downlink Control Information (DCI) carried by the PDCCH. receiving side.
  • PDSCH Physical Downlink Shared Channel
  • DCI Downlink Control Information
  • determining the second target coefficient based on the second configuration information and the first configuration information includes:
  • the second capability is the same as the first capability, receiving at least one second coefficient configured by the second configuration information sent by the second communication device;
  • the second target coefficient is determined based on the at least one second coefficient, and the first configuration information.
  • the second communication device may send at least one second coefficient configured by the second configuration information to the first communication device, and the first communication device may obtain the second communication device.
  • the supported second coefficient of the at least one shaping filter so the first communication device can determine a second target coefficient based on the at least one second coefficient configured by the second configuration information and the at least one second coefficient configured by the first configuration information.
  • the method further includes:
  • the fourth indication information is used to indicate the second target coefficient.
  • the first communication device may indicate the second target coefficient of the first shaping filter finally selected by the second communication device based on the fourth indication information.
  • the receiving at least one second coefficient configured by the second configuration information sent by the second communication device includes:
  • the second configuration information table includes at least one second coefficient configured by the second configuration information, and a fourth index corresponding to each second coefficient
  • the fourth indication information includes a fourth index, which is used to indicate the second target coefficient corresponding to the fourth index in the second configuration information table;
  • the fourth indication information includes the second target coefficient.
  • FIG. 9 is the second schematic flowchart of the signal processing method provided by the embodiment of the present application.
  • the second communication device may send a second configuration information table to the first communication device, and the first communication device is based on the second configuration information.
  • the configured at least one second coefficient and the at least one second coefficient configured by the first configuration information determine the second target coefficient, and indicate to the second communication device through the fourth indication information.
  • the second communication device may calculate and obtain the first target coefficient based on the second target coefficient and the number of domain sampling points L, and indicate the first target coefficient to the first communication device.
  • the second communication device when it sends at least one second coefficient configured by the second configuration information to the first communication device, it may directly send a second configuration information table to the first communication device, which includes the second configuration information configuration. at least one second coefficient of , and each second coefficient corresponds to a different fourth index.
  • the first communication device selects the last target coefficient based on the fourth indication information.
  • the second target coefficient of the first shaping filter is indicated to the second communication device, a fourth index in the second configuration information table can be indicated, and the second coefficient corresponding to the fourth index is selected by the first communication device.
  • the second objective coefficients of the first shaping filter is not limited to the first shape.
  • the first communication device selects the last target coefficient based on the fourth indication information.
  • the second target coefficient of the first shaping filter may be directly indicated.
  • the second configuration information table is carried by a physical broadcast channel (Physical Broadcast Channel, PBCH) or PDSCH, or, by a master information block (Master Information Block, MIB) or system information block (System Information Block, SIB) carried.
  • PBCH Physical Broadcast Channel
  • MIB Master Information Block
  • SIB System Information Block
  • the first communication device may be a terminal
  • the second configuration information table may be carried by PBCH or PDSCH, or carried by broadcast information MIB or SIB.
  • the second configuration information table may be sent to the receiving side by using a broadcast message carried on PBCH or PDSCH.
  • the second configuration information table is carried by a physical uplink control channel (Physical Uplink Control Channel, PUCCH) or PUSCH, or, by the uplink control information uplink control information (Uplink control information).
  • Control Information, UCI carry.
  • the first communication device may be a network side such as a base station
  • the second configuration information table is carried by PUCCH or a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), or carried by uplink control information UCI.
  • PUCCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the second configuration information table is carried by sidelink control signaling (system control information, SCI) or a synchronization message, or , which is carried by the Physical Sidelink Control Channel (PSCCH) or the Physical Sidelink Shared Channel (PSSCH) or the Physical Sidelink Broadcast Channel (PSBCH).
  • SCI system control information
  • PSSCH Physical Sidelink Shared Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the second configuration information table may be carried by sidelink control signaling SCI or synchronization message, or carried by PSCCH, PSSCH or PSBCH.
  • the method further includes:
  • the fifth indication information is used to instruct the second communication device to re-determine the first target coefficient of the whitening filter.
  • the whitening filter is obtained by calculation based on the number of time-domain sampling points of the first signal and the coefficients of the shaping filter, in the case where the number of time-domain sampling points of the first signal changes, it can be based on the above-mentioned various embodiments. way to recalculate to obtain the first target coefficient of the whitening filter;
  • the second communication device may indicate to the first communication device based on the fifth indication information.
  • the number of time domain sampling points of the first signal that is, the number of data samples L sent in the current time slot
  • changes that is, the data upsampling rate of the current transceiver communication link changes (equivalent to any of the FTN overlap coefficients ⁇ and ⁇ ).
  • it is necessary to recalculate to obtain the first target coefficient of the whitening filter.
  • the method further includes:
  • the first shaping filter changes, receiving sixth indication information sent by the second communication device;
  • the sixth indication information is used to instruct the second communication device to re-determine the first target coefficient of the whitening filter.
  • the second communication device may be triggered periodically or by a preset event, and the second communication device reselects the first shaping filter, that is, redetermines the second target coefficient of the first shaping filter.
  • the second communication device may trigger the re-determination of the second target coefficient of the first shaping filter every hour.
  • the second communication device can be based on the new first shaping filter.
  • the second target coefficient of the shaping filter is recalculated to obtain the first target coefficient of the whitening filter.
  • the second target coefficient of the first shaping filter includes:
  • the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter are the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter.
  • the second target coefficients of the first shaping filter may include coefficients of the first shaping filter
  • the second target coefficient of the first shaping filter may include generation parameters of the first shaping filter, and the second communication device and the first communication device may directly obtain the first shaping filter based on the generation parameters of the first shaping filter. coefficient of the device.
  • the second target coefficients of the first shaping filter may include coefficients of the first shaping filter and generation parameters of the first shaping filter.
  • the first indication information is carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the first communication device may be a terminal, and the first indication information is carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the coefficients of the whitening filter are sent to the receiving side through dedicated RRC signaling or data carried by the PDSCH.
  • the first indication information is carried by uplink control information UCI, or is carried by PUCCH or PUSCH.
  • the first communication device may be the network side, and the first indication information is carried by uplink control information UCI, or carried by PUCCH or PUSCH.
  • the first indication information is carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bear.
  • the first indication information may be carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bearer.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • FIG. 10 is a third schematic flowchart of a signal processing method provided by an embodiment of the present application. As shown in FIG. 10 , the method includes the following steps:
  • Step 1000 the second communication device determines the first target coefficient of the whitening filter
  • Step 1010 The second communication device sends first indication information to the first communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter.
  • the second communication device is the sending side of the first signal
  • the first communication device is the receiving side of the first signal
  • the matrix inversion and Cholesky decomposition involved in the receiver algorithm have high computational complexity, and the hardware design is difficult to implement.
  • the demanding terminal equipment affects the engineering application of FTN technology.
  • the second communication device may calculate and obtain the first target of the whitening filter based on the number of sampling points in the time domain of the first signal to be transmitted and the second target coefficient of the first shaping filter used for transmitting the first signal. and indicate the first target coefficient of the whitening filter obtained by the calculation to the first communication device through the first indication information, and the first communication device can obtain the first target coefficient of the whitening filter after receiving the first indication information, that is, A whitening filter is determined for processing the received first signal.
  • the noise w(t) has nothing to do with the channel impulse response; therefore, the calculation of the whitening filter does not need to consider the channel impulse response. Therefore, the calculation of the whitening filter only depends on the coefficient of the shaping filter, that is, the second target coefficient, and the frame structure of the data;
  • the number of data samples is the number L of the columns of the H matrix, that is, the number of samples in the time domain of the first signal, and does not need to change with time-varying channel changes.
  • a time slot represents the minimum time resource unit used by the physical layer of the communication system to demodulate and decode data, which may be collectively referred to as a time slot in various embodiments of the present application, such as a time slot in NR, or a sub-slot in LTE. frame.
  • the filter used for ideal pulse shaping (frequency domain rectangular window, time domain Sinc function) is difficult to realize in engineering. Therefore, in engineering applications, the root raised cosine filter can be used as a shaping filter.
  • One of the key parameters is the roll-off factor ⁇ . When ⁇ is smaller, its frequency domain response function is closer to the ideal pulse, but the design and implementation of hardware devices are also more difficult. At the same time, when ⁇ is very small, the inter-symbol interference caused by the linear distortion in signal transmission is also more serious, which will also affect the performance of the receiver. Therefore, in practical systems, the value of ⁇ is usually between 0.15 and 0.5.
  • all indication and feedback messages and related control signaling involved in the embodiments of the present application are sent by Nyquist sampling signals instead of FTN signals.
  • FTN is only used to transmit data, not to transmit pilot and control signaling.
  • the embodiment of the present application proposes a solution in which the sending side sends signaling to indicate the whitening filter used by the receiving side.
  • the solution of the whitening filter By placing the solution of the whitening filter on the transmitting side, for example, when the second communication device is a base station, the solution of the whitening filter can be placed on the base station side, which has better computing power, reduces the complexity of receiver design, and Different shaping filters and their corresponding whitening filters can be selected according to receiver capabilities and channel state changes to obtain optimal performance in different scenarios.
  • the second communication device that is, the transmitting side may first select an appropriate shaping filter according to its own capabilities and the capabilities of the receiver.
  • the first number of whitening filters required for demodulation of the signal by the first communication device is obtained by calculating based on the number of time-domain sampling points and the shaping filter.
  • the target coefficients ie the L matrix, are sent to the first communication device.
  • the number of time domain samples L is the number of data samples sent in the current time slot, and the FTN overlap coefficients ⁇ and ⁇ (or N and K of OVXDM) are known by the second communication device, that is, the sending side.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the first indication information includes:
  • a second index used to indicate the first target coefficient corresponding to the second index in the first target coefficient group corresponding to the second target coefficient
  • the second target coefficient is the second coefficient of the first shaping filter used for transmitting the first signal.
  • the second communication device may directly send the first target coefficient to the first communication device through the first indication information.
  • the second communication device may calculate and obtain the first target coefficient based on the second target coefficient and the number of domain sampling points L, and indicate the first target coefficient to the first target coefficient. communication device.
  • the second communication device may indicate the first index through the first indication information, wherein different first indices may correspond to different first target coefficients; the first communication device may An index directly looks up the second target coefficient table, that is, the whitening filter table 1, to obtain the first target coefficient corresponding to the first index in the table.
  • the second communication device can calculate and obtain the first target coefficient based on the second target coefficient and the number of domain sampling points L, and place the first target coefficient in the second target coefficient.
  • the first index corresponding to the coefficient table is sent to the first communication device, where the second target coefficient table may be indicated to the first communication device in advance by the second communication device.
  • the second communication device may indicate the second index through the first indication information, wherein the second target coefficient of each shaping filter may correspond to a set of different second indexes, and each Each second index in a group of second indexes may correspond to a different first target coefficient, and the first communication device may determine the corresponding second index group according to the used shaping filter, and then use the determined second index to determine the corresponding second index group. In the index group, the first target coefficient corresponding to the second index is determined.
  • the second communication device may calculate and obtain the first target coefficient based on the second target coefficient and the number of domain sampling points L, and use the first target coefficient in the first target coefficient table.
  • the second index corresponding to the first target coefficient in the second index group corresponding to the shaping filter is sent to the first communication device, wherein the first target coefficient table may be pre-indicated to the first communication device by the second communication device.
  • the first communication device may further determine the number L of sampling points in the time domain based on the second index.
  • the embodiments of the present application implement the indication to the first communication device through various solutions, and the solutions can be implemented flexibly and save signaling.
  • the method further includes:
  • the second target coefficient table is used to indicate the corresponding relationship between the whitening filter index and the first coefficient of the whitening filter, and the first index is in the whitening filter index
  • One of the first target coefficients is one of the first coefficients.
  • the second target coefficient table includes at least one first target coefficient and a first index corresponding to each first target coefficient.
  • a second target coefficient table including at least one first index and each first index corresponding to a first target coefficient of a whitening filter, ie, whitening filter table 1, may be set.
  • the second target coefficient table is used to indicate the whitening filter index and part. or the correspondence between all the first coefficients.
  • the second target coefficient table includes part or all of the time-domain sampling points corresponding to the first. a target coefficient, and a first index corresponding to each first target coefficient.
  • the protocol has specified the parameters of the used shaping filter, ie the second target coefficients are predefined by the protocol.
  • the second communication device only needs to calculate the first target coefficient of the whitening filter according to the second target coefficient of the shaping filter and the number of data samples L sent in the current time slot, and the number of samples in the real time domain L, and indicate to the first communication device.
  • the device is the receiving side.
  • the number of time-domain sampling points L depends on the overlap coefficients ⁇ and ⁇ of the FTN signal.
  • the values of ⁇ and ⁇ can also be set to discrete finite values.
  • the second communication device that is, the sending side, can pre-calculate the first target coefficients of the whitening filter corresponding to the combination of all shaping filter parameters and L, and store them in the form of a table, and can indicate a second target coefficient table, that is, the whitening filter.
  • the filter table 1 is indicated to the first communication device, for example, through a broadcast message; and the first communication device can directly look up the table to obtain the whitening filter according to the instruction message.
  • the number of time-domain sampling points L depends on the overlap coefficients ⁇ and ⁇ of the FTN signal.
  • the values of ⁇ and ⁇ can also be set to discrete finite values.
  • the second communication device that is, the sending side, can pre-calculate the first target coefficient of the whitening filter corresponding to the combination of the parameters of the partial shaping filter and L, and store it in the form of a table, and can indicate a second target coefficient table, that is, the whitening filter.
  • the filter table 1 is indicated to the first communication device, for example, through a broadcast message; and the first communication device can directly look up the table to obtain the whitening filter according to the instruction message.
  • the obtaining the second target coefficient table includes:
  • the part or all of the first coefficients are determined based on part or all of the time-domain sample points in the finite set and the second target coefficients.
  • the second communication device may calculate all or part of the time domain values according to the second target coefficient of the shaping filter and all or part of the time domain sampling points L.
  • the first target coefficient corresponding to the number of sampling points L is indicated to the first communication device, that is, the receiving side, through the second target coefficient table or the first target coefficient table.
  • the method further includes:
  • the first target coefficient table is used to indicate the correspondence between the second coefficient of the shaping filter and the whitening filter index, and the whitening filter index and the first coefficient of the whitening filter.
  • the corresponding relationship between, the second index is one of the whitening filter indexes, the first target coefficient is one of the first coefficients, and the second target coefficient of the shaping filter is the one of the second coefficients of the shaping filter.
  • the first target coefficient table includes at least one group of second indexes, and second coefficients corresponding to each group of second indexes;
  • each set of second indexes includes at least one second index, and each second index corresponds to a time-domain sampling point and a first target coefficient corresponding to the time-domain sampling point.
  • the second target coefficient of the shaping filter is also a variable, it can be set to include at least one second target coefficient, each second target coefficient corresponds to a group of second indexes, and each second index corresponds to a whitening filter.
  • the first target coefficient table of the first target coefficients is the whitening filter table 2.
  • L in the table can also be replaced with the corresponding overlap coefficient.
  • the first target coefficient table is used to indicate the whitening filter. Correspondence between the filter index and some or all of the first coefficients.
  • each group of the first target coefficients includes part or all of the time-domain sampling points corresponding to The first target coefficients of , and the second index corresponding to each first target coefficient.
  • the protocol has specified the parameters of the used shaping filter, ie the second target coefficients are predefined by the protocol.
  • the second communication device only needs to calculate the first target coefficient of the whitening filter according to the second target coefficient of the shaping filter and the number of data samples L sent in the current time slot, and the number of samples in the real time domain L, and indicate to the first communication device.
  • the device is the receiving side.
  • the number of time-domain sampling points L depends on the overlap coefficients ⁇ and ⁇ of the FTN signal.
  • the values of ⁇ and ⁇ can also be set to discrete finite values.
  • the overlap coefficient K it can be considered that it is more appropriate for the overlap coefficient K to be between 2 and 6.
  • the value of L is also a finite set. Therefore, the second communication device, that is, the sending side, can pre-calculate the first target coefficients of the whitening filters corresponding to the combinations of the parameters of all shaping filters and L, and store them in the form of a table.
  • the first target coefficient table may include the second target coefficient of the shaping filter, L, and the first target coefficient of the corresponding whitening filter, that is, indicating a first target coefficient table. It can be set to include at least one second target coefficient, each second target coefficient corresponds to a group of second indexes, and each second index corresponds to the first target coefficient of a whitening filter, wherein, each group of the first target coefficients can include Some or all of the first target coefficients corresponding to the number of time-domain sampling points L, and the second index corresponding to each first target coefficient, that is, all situations of the first target coefficient can be listed in the first target coefficient table, and the second communication device
  • the first target coefficient table that is, the whitening filter table 2
  • the first communication device can directly look up the table to obtain the whitening filter according to the instruction message.
  • the obtaining the first target coefficient table includes:
  • the part or all of the first coefficients are determined based on part or all of the time-domain sample points in the finite set and the second target coefficients.
  • the first target coefficients corresponding to some or all of the time-domain sampling points are calculated and obtained by the second communication device based on some or all of the time-domain sampling points and the second target coefficients.
  • the second communication device may calculate all or part of the time domain values according to the second target coefficient of the shaping filter and all or part of the time domain sampling points L.
  • the first target coefficient corresponding to the number of sampling points L is indicated to the first communication device, that is, the receiving side, through the second target coefficient table or the first target coefficient table.
  • the method further includes:
  • the second target coefficient is determined based on second configuration information of a shaping filter supported by the second communication device and/or first configuration information of a shaping filter supported by the first communication device.
  • the second target coefficient is predefined by a protocol
  • the second target coefficient is determined based on second configuration information of the shaping filter supported by the second communication device and/or first configuration information of the shaping filter supported by the first communication device.
  • the method further includes:
  • the second target coefficient is determined based on the second configuration information of the shaping filter supported by the second communication device and/or the first configuration information of the shaping filter supported by the first communication device.
  • first need to know the second target coefficient, and calculate the second target coefficient based on the second target coefficient and the number L of sampling points in the time domain.
  • the second target coefficient may be predefined by a protocol, and when the second communication device determines the second target coefficient, the second target coefficient may be determined based on the predefined protocol.
  • the supported configuration of at least one shaping filter may be referred to as second configuration information
  • the supported configuration of at least one shaping filter may be referred to as first configuration information
  • a second target coefficient of a shaping filter may be determined based on the second configuration information
  • a second target coefficient of a shaping filter may be determined based on the first configuration information
  • a second target coefficient of a shaping filter may be determined based on the second configuration information and the first configuration information.
  • determining the second target coefficient based on the second configuration information includes:
  • the second capability of the second communication device is weaker than the first capability of the first communication device, or if the second capability and the first capability are the same, based on the second configuration information determining the second target coefficient;
  • the second capability is used to represent the configuration quantity of the shaping filter supported by the second communication device;
  • the first capability is used to represent the configuration quantity of the shaping filter supported by the first communication device.
  • the supported configurations (or key technical indicators) of the shaping filter are more.
  • the capability of the device is weak, and the configuration of the supported shaping filter is less.
  • the capabilities of the devices are known to both parties or can be easily obtained. Since the communication device itself knows its own device identity and the device identity of the communication peer, both the first communication device and the first communication device can easily know the capabilities of the two.
  • both parties can directly determine that the second capability is stronger than the first capability.
  • both parties can directly determine that the second capability is weaker than the first capability.
  • both parties can directly determine that the second capability is the same as the first capability.
  • both parties can directly determine that the second capability is the same as the first capability.
  • the second target coefficient of the shaping filter can be determined according to the configuration of the weaker side.
  • the second target coefficient of the shaping filter can be determined according to the configuration of either side, or the configuration of both sides can be determined. Together, the second target coefficients of the shaping filter are determined.
  • the second target coefficient may be determined based on second configuration information of the second communication device.
  • the second target coefficient may be determined based on second configuration information of the second communication device.
  • the method further includes: sending second indication information to the first communication device for indicating the second target coefficient.
  • the second communication device may send second indication information to the first communication device, indicating to the first communication device that the second target coefficient, the first
  • a communication device can determine the first shaping filter used for the first signal transmission.
  • determining the second target coefficient based on the first configuration information includes:
  • the second target coefficient is determined based on the third indication information sent by the first communication device.
  • the third indication information is determined by the first communication device based on the first configuration information.
  • the third indication information includes the second target coefficient; or, the third indication information includes a third index, which is used to indicate the second target corresponding to the third index in the first related parameter table predefined by the protocol coefficient.
  • the second target coefficient may be determined based on the first configuration information, so the first communication device may determine the second target coefficient based on the first configuration information after determining the second target coefficient based on the The third indication information is indicated to the second communication device.
  • the second target coefficient may be determined based on the first configuration information, so the first communication device may determine to determine the second target based on the first configuration information. After the coefficient is determined, it is indicated to the second communication device based on the third indication information.
  • the first communication device when the first communication device indicates the second target coefficient to the second communication device based on the third indication information, it may directly indicate the second target coefficient to the second communication device; it may also indicate the second target coefficient corresponding to the second target coefficient.
  • Third index when the first communication device indicates the second target coefficient to the second communication device based on the third indication information, it may directly indicate the second target coefficient to the second communication device; it may also indicate the second target coefficient corresponding to the second target coefficient.
  • a predefined first related parameter table may be agreed, which includes at least one third index, and a first related parameter table corresponding to each third index.
  • the second target coefficients of the first shaping filter may include: coefficients of the first shaping filter, or generation parameters of the first shaping filter.
  • the first relevant parameter table may be as shown in Table 3 below, the shaping filter coefficient table:
  • the first relevant parameter table may be as shown in Table 4 below, and the shaping filter generation parameter table is as shown:
  • third index Value a ⁇ Shaping filter type, roll-off factor, number of main lobe samples, filter length ⁇ b ⁇ Shaping filter type, roll-off factor, number of main lobe samples, filter length ⁇ c ...
  • the second communication device may obtain the coefficients of the first shaping filter or the generation parameters of the first shaping filter according to the third indication information received from the first communication device, and further obtain the first shaping filter. coefficient of the device.
  • the coefficient of the first shaping filter is directly obtained.
  • the generation parameters of the first shaping filter are directly obtained, and then the coefficients of the first shaping filter can be generated according to the generation parameters of the first shaping filter.
  • the coefficients of the first shaping filter can be directly obtained by looking up the table, or the generation parameters of the first shaping filter can be obtained by looking up the table, and then the generation parameters can be obtained according to the generation parameters.
  • the coefficients of the first shaping filter are obtained by calculation.
  • the sending side may calculate the first target coefficient of the whitening filter by using the obtained first shaping filter coefficient and the number L of data samples sent in the current time slot, L, the number of samples in the real time domain.
  • the first target coefficient of the whitening filter may be sent to the receiving side through dedicated RRC signaling carried on PDSCH or DCI carried on PDCCH.
  • determining the second target coefficient based on the second configuration information and the first configuration information includes:
  • At least one second coefficient configured by the second configuration information is sent to the first communication device, the at least one second coefficient being used by the first communication device in combination with the first configuration information to determine the second target coefficient;
  • the second target coefficient is determined based on the fourth indication information sent by the first communication device.
  • At least one second coefficient configured by the second configuration information may be sent to the first communication device, so that the first communication device can obtain the At least one second coefficient of the shaping filter, so the first communication device can determine a second target coefficient related parameter based on the at least one second coefficient configured by the second configuration information and the at least one second coefficient configured by the first configuration information.
  • the first communication device may indicate the second target coefficient of the first shaping filter finally selected by the second communication device based on the fourth indication information.
  • the sending at least one second coefficient configured by the second configuration information to the first communication device includes:
  • the second configuration information table includes at least one second coefficient configured by the second configuration information, and a fourth index corresponding to each second coefficient
  • the fourth indication information includes a fourth index, which is used to indicate the second target coefficient corresponding to the fourth index in the second configuration information table;
  • the fourth indication information includes the second target coefficient.
  • the second communication device may send a second configuration information table to the first communication device, where the first communication device configures at least one second coefficient based on the second configuration information and a The at least one second coefficient determines the second target coefficient, and indicates to the second communication device through fourth indication information.
  • the second communication device may calculate and obtain the first target coefficient based on the second target coefficient and the number of domain sampling points L, and indicate the first target coefficient to the first communication device.
  • the second communication device when it sends at least one second coefficient configured by the second configuration information to the first communication device, it may directly send a second configuration information table to the first communication device, which includes the second configuration information configuration. at least one second coefficient of , and each second coefficient corresponds to a different fourth index.
  • the first communication device selects the last target coefficient based on the fourth indication information.
  • the second target coefficient of the first shaping filter is indicated to the second communication device, a fourth index in the second configuration information table can be indicated, and the second coefficient corresponding to the fourth index is selected by the first communication device.
  • the second objective coefficients of the first shaping filter is not limited to the first shape.
  • the first communication device selects the last target coefficient based on the fourth indication information.
  • the second target coefficient of the first shaping filter may be directly indicated.
  • the second configuration information table is carried by PBCH or PDSCH, or carried by broadcast information MIB or SIB.
  • the first communication device may be a terminal
  • the second configuration information table may be carried by PBCH or PDSCH, or carried by broadcast information MIB or SIB.
  • the second configuration information table may be sent to the receiving side by using a broadcast message carried on PBCH or PDSCH.
  • the second configuration information table is carried by PUCCH or PUSCH, or carried by uplink control information UCI.
  • the first communication device may be a network side such as a base station, and the second configuration information table is carried by PUCCH or PUSCH, or carried by uplink control information UCI.
  • the second configuration information table is carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bearer.
  • the second configuration information table may be carried by sidelink control signaling SCI or synchronization message, or carried by PSCCH, PSSCH or PSBCH.
  • the method further includes:
  • the first target coefficient of the whitening filter is re-determined, and is indicated to the first communication device through fifth indication information.
  • the whitening filter is obtained by calculation based on the number of time-domain sampling points of the first signal and the coefficients of the shaping filter, in the case where the number of time-domain sampling points of the first signal changes, it can be based on the above-mentioned various embodiments. way to recalculate to obtain the first target coefficient of the whitening filter;
  • the first target coefficient may be indicated to the first communication device based on the fifth indication information.
  • the number of time domain sampling points of the first signal that is, the number of data samples L sent in the current time slot
  • changes that is, the data upsampling rate of the current transceiver communication link changes (equivalent to any of the FTN overlap coefficients ⁇ and ⁇ ).
  • it is necessary to recalculate to obtain the first target coefficient of the whitening filter.
  • the method further includes:
  • the first trigger information includes periodic trigger information or preset event trigger information.
  • it can be triggered periodically or triggered by a preset event to reselect the first shaping filter, that is, redetermine the second target coefficient of the first shaping filter.
  • the second target coefficient of the first shaping filter may be triggered to be re-determined every hour.
  • the method further includes:
  • the first target coefficient of the whitening filter is re-determined and indicated to the first communication device through sixth indication information.
  • the whitening filter is obtained by calculation based on the time-domain sampling points of the first signal and the coefficients of the shaping filter, when the first shaping filter changes, it can be based on the new first shaping filter.
  • the second target coefficient is recalculated to obtain the first target coefficient of the whitening filter.
  • the second target coefficient of the first shaping filter includes:
  • the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter are the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter.
  • the second target coefficients of the first shaping filter may include coefficients of the first shaping filter
  • the second target coefficients of the first shaping filter may include generation parameters of the first shaping filter, and the coefficients of the first shaping filter may be obtained directly based on the generation parameters of the first shaping filter.
  • the second target coefficients of the first shaping filter may include coefficients of the first shaping filter and generation parameters of the first shaping filter.
  • the first indication information is carried by DCI or dedicated-RRC, or is carried by PDCCH or PDSCH.
  • the first communication device may be a terminal, and the first indication information is carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the coefficients of the whitening filter are sent to the receiving side through dedicated RRC signaling or data carried by the PDSCH.
  • the first indication information is carried by uplink control information UCI, or is carried by PUCCH or PUSCH.
  • the first communication device may be the network side, and the first indication information is carried by uplink control information UCI, or carried by PUCCH or PUSCH.
  • the first indication information is carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bear.
  • the first indication information may be carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bearer.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the execution body may be a signal processing apparatus, or a control module in the signal processing apparatus for executing the signal processing method.
  • the signal processing device provided by the embodiment of the present application is described by taking the signal processing method performed by the signal processing device as an example.
  • FIG. 11 is a schematic structural diagram of a signal processing apparatus provided by an embodiment of the present application. As shown in FIG. 11 , the apparatus includes: a first receiving module 1110 and a first processing module 1120; wherein:
  • the first receiving module 1110 is configured to receive first indication information sent by the second communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter determined by the second communication device;
  • the first processing module 1120 is configured to process the received first signal based on the first target coefficient of the whitening filter.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the first indication information includes:
  • a second index used to indicate the first target coefficient corresponding to the second index in the first target coefficient group corresponding to the second target coefficient
  • the second target coefficient is the second coefficient of the first shaping filter used for transmitting the first signal.
  • the device further includes:
  • an eleventh determination module configured to determine the second target coefficient based on a predefined protocol
  • a twelfth determination module configured to determine the first configuration based on the second configuration information of the shaping filter supported by the second communication device and/or the first configuration information of the shaping filter supported by the first communication device Two objective coefficients.
  • a first determining module configured to, in the case that the second capability of the second communication device is weaker than the first capability of the first communication device, or in the case that the second capability and the first capability are the same, receiving second indication information sent by the second communication device;
  • the second target coefficient indicated by the second indication information is determined by the second communication device based on the second configuration information
  • the second capability is used to represent the configuration quantity of the shaping filter supported by the second communication device;
  • the first capability is used to represent the configuration quantity of the shaping filter supported by the first communication device.
  • the second determination module determines the second target coefficient based on the first configuration information when the second capability is stronger than the first capability, or when the second capability and the first capability are the same.
  • the device further includes:
  • the first sending module is configured to send third indication information to the second communication device after the second target coefficient is determined based on the first configuration information.
  • the third indication information is used to indicate the second target coefficient
  • the third indication information includes the second target coefficient; or, the third indication information includes a third index, which is used to indicate the second target corresponding to the third index in the first related parameter table predefined by the protocol coefficient.
  • a third determining module configured to receive at least one second coefficient configured by the second configuration information sent by the second communication device when the second capability is the same as the first capability
  • the second target coefficient is determined based on the at least one second coefficient, and the first configuration information.
  • the device further includes:
  • a second sending module configured to send fourth indication information to the second communication device after the second target coefficient is determined based on the at least one second coefficient and the first configuration information
  • the fourth indication information is used to indicate the second target coefficient.
  • the third determining module is configured to: receive a second configuration information table sent by the second communication device, where the second configuration information table includes at least one second coefficient configured by the second configuration information, and the fourth index corresponding to each second coefficient;
  • the fourth indication information includes a fourth index, which is used to indicate the second target coefficient corresponding to the fourth index in the second configuration information table; or the fourth indication information includes the second target coefficient.
  • the second configuration information table is carried by PBCH or PDSCH, or carried by a master information block MIB or a system information block SIB.
  • the second configuration information table is carried by PUCCH or PUSCH, or carried by uplink control information UCI.
  • the second configuration information table is carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bear.
  • the apparatus further includes: in the case that the number of time domain sampling points of the first signal changes, receiving fifth indication information sent by the second communication device; wherein the fifth indication information is used to indicate The second communication device redetermines the first target coefficients of the whitening filter.
  • the apparatus further includes: a second receiving module, configured to receive sixth indication information sent by the second communication device when the first shaping filter changes.
  • the sixth indication information is used to instruct the second communication device to re-determine the first target coefficient of the whitening filter.
  • the second target coefficients of the first shaping filter include: coefficients of the first shaping filter, or generation parameters of the first shaping filter.
  • the first indication information is carried by DCI or dedicated-RRC, or is carried by PDCCH or PDSCH.
  • the first indication information is carried by uplink control information UCI, or is carried by PUCCH or PUSCH.
  • the first indication information is carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bear.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the signal processing apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the signal processing apparatus in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the signal processing apparatus provided by the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 2 to FIG. 10 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 12 is a second schematic structural diagram of a signal processing apparatus provided by an embodiment of the present application.
  • the apparatus includes: a fourth determining module 1210 and a second sending module 1220; wherein: the fourth determining module 1210 is used to determine The first target coefficient of the whitening filter; the second sending module 1220 is configured to send first indication information to the first communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the first indication information includes:
  • a second index used to indicate the first target coefficient corresponding to the second index in the first target coefficient group corresponding to the second target coefficient
  • the second target coefficient is the second coefficient of the first shaping filter used for transmitting the first signal.
  • the apparatus further includes: a first obtaining module, configured to obtain a second target coefficient table; wherein, the second target coefficient table is used to indicate the difference between the whitening filter index and the first coefficient of the whitening filter.
  • a first obtaining module configured to obtain a second target coefficient table; wherein, the second target coefficient table is used to indicate the difference between the whitening filter index and the first coefficient of the whitening filter.
  • the first index is one of the whitening filter indices
  • the first target coefficient is one of the first coefficients.
  • the second target coefficient table is used to indicate the whitening filter index and part. or the correspondence between all the first coefficients.
  • the first obtaining module is configured to: determine the part or all of the first coefficients based on part or all of the time-domain sampling points in the finite set and the second target coefficient.
  • the apparatus further includes: a second obtaining module, configured to obtain a first target coefficient table; wherein, the first target coefficient table is used to indicate the distance between the second coefficient of the shaping filter and the whitening filter index and the corresponding relationship between the whitening filter index and the first coefficient of the whitening filter, the second index is one of the whitening filter indexes, and the first target coefficient is the first one of the coefficients, the second target coefficient of the shaping filter is one of the second coefficients of the shaping filter.
  • a second obtaining module configured to obtain a first target coefficient table
  • the first target coefficient table is used to indicate the distance between the second coefficient of the shaping filter and the whitening filter index and the corresponding relationship between the whitening filter index and the first coefficient of the whitening filter
  • the second index is one of the whitening filter indexes
  • the first target coefficient is the first one of the coefficients
  • the second target coefficient of the shaping filter is one of the second coefficients of the shaping filter.
  • the first target coefficient table is used to indicate the whitening filter. Correspondence between the filter index and some or all of the first coefficients.
  • the second obtaining module is configured to: determine the part or all of the first coefficients based on part or all of the time-domain sampling points in the finite set and the second target coefficient.
  • the device further includes:
  • an eleventh determination module configured to determine the second target coefficient based on a predefined protocol
  • a twelfth determination module configured to determine the first configuration based on the second configuration information of the shaping filter supported by the second communication device and/or the first configuration information of the shaping filter supported by the first communication device Two objective coefficients.
  • the apparatus further includes: a fifth determination module, configured to, in the case that the second capability of the second communication device is weaker than the first capability of the first communication device, or, the second When the capability is the same as the first capability, the second target coefficient is determined based on the second configuration information.
  • the second capability is used to represent the configuration quantity of the shaping filter supported by the second communication device; the first capability is used to represent the configuration quantity of the shaping filter supported by the first communication device.
  • the apparatus further includes: a third sending module, configured to send second indication information to the first communication device after the second target coefficient is determined based on the second configuration information, for indicating the Describe the second target coefficient.
  • a third sending module configured to send second indication information to the first communication device after the second target coefficient is determined based on the second configuration information, for indicating the Describe the second target coefficient.
  • the apparatus further includes: a sixth determining module, configured to, in the case that the second capability is stronger than the first capability, or in the case that the second capability and the first capability are the same, based on the first communication
  • the third indication information sent by the device determines the second target coefficient.
  • the third indication information is determined by the first communication device based on the first configuration information.
  • the third indication information includes the second target coefficient; or, the third indication information includes a third index, which is used to indicate the second target corresponding to the third index in the first related parameter table predefined by the protocol coefficient.
  • the device further includes:
  • a seventh determination module configured to send at least one second coefficient configured by the second configuration information to the first communication device when the second capability is the same as the first capability, where the at least one second coefficient is used for the first communication
  • the device determines the second target coefficient in combination with the first configuration information
  • the second target coefficient is determined based on the fourth indication information sent by the first communication device.
  • the seventh determination module is used for:
  • the second configuration information table includes at least one second coefficient configured by the second configuration information, and a fourth index corresponding to each second coefficient
  • the fourth indication information includes a fourth index, which is used to indicate the second target coefficient corresponding to the fourth index in the second configuration information table;
  • the fourth indication information includes the second target coefficient.
  • the device further includes: an eighth determination module, configured to re-determine the first target coefficient of the whitening filter when the number of time-domain sampling points of the first signal changes, and use the fifth indication The information is indicated to the first communication device.
  • an eighth determination module configured to re-determine the first target coefficient of the whitening filter when the number of time-domain sampling points of the first signal changes, and use the fifth indication The information is indicated to the first communication device.
  • the apparatus further includes: a ninth determination module, configured to re-determine the second target coefficient of the first shaping filter based on the first trigger information; the first trigger information includes periodic trigger information or a preset Set event trigger information.
  • the apparatus further includes: a tenth determination module, configured to re-determine the first target coefficient of the whitening filter and indicate to the first target coefficient of the whitening filter through sixth indication information when the first shaping filter changes.
  • a communication device configured to re-determine the first target coefficient of the whitening filter and indicate to the first target coefficient of the whitening filter through sixth indication information when the first shaping filter changes.
  • the second target coefficient of the first shaping filter includes:
  • the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter are the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the signal processing apparatus in this embodiment of the present application may be an apparatus or electronic device with an operating system, or may be a component, an integrated circuit, or a chip in a terminal.
  • the electronic device may be a mobile electronic device or a non-mobile electronic device.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the signal processing apparatus provided by the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 2 to FIG. 10 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1300 includes a processor 1301 and a memory 1302 , which are stored in the memory 1302 and can be stored in the processor 1301
  • the communication device 1300 is a terminal
  • the program or instruction is executed by the processor 1301
  • each process of the above method embodiments can be implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a network side device, when the program or instruction is executed by the processor 1301, each process of the above method embodiments can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the second communication device may be a network side device, and the first communication device may be a terminal;
  • the first communication device may be a network side device, and the second communication device may be a terminal;
  • the second communication device may be a terminal
  • the first communication device may be a terminal
  • FIG. 14 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • the terminal 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409, and a processor 1410, etc. at least part of the components.
  • the terminal 1400 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1410 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 14 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1404 may include a graphics processor (Graphics Processing Unit, GPU) 14041 and a microphone 14042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1406 may include a display panel 14061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1407 includes a touch panel 14071 and other input devices 14072 .
  • the touch panel 14071 is also called a touch screen.
  • the touch panel 14071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 14072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 1401 receives the information from the communication peer end, and then processes it to the processor 1410; in addition, sends the information to be transmitted to the communication peer end.
  • the radio frequency unit 1401 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1409 may be used to store software programs or instructions as well as various data.
  • the memory 1409 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1409 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1410.
  • the processor 1410 is used for:
  • the first communication device receives first indication information sent by the second communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter determined by the second communication device;
  • the first communication device processes the received first signal based on the first target coefficients of the whitening filter.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the first indication information includes:
  • a second index used to indicate the first target coefficient corresponding to the second index in the first target coefficient group corresponding to the second target coefficient
  • the second target coefficient is the second coefficient of the first shaping filter used for transmitting the first signal.
  • processor 1410 is used to:
  • the second target coefficient is determined based on second configuration information of a shaping filter supported by the second communication device and/or first configuration information of a shaping filter supported by the first communication device.
  • processor 1410 is used to:
  • the receiving second communication device sends the first 2. Instruction information
  • the second target coefficient indicated by the second indication information is determined by the second communication device based on the second configuration information.
  • the second capability is used to represent the configuration quantity of the shaping filter supported by the second communication device; the first capability is used to represent the configuration quantity of the shaping filter supported by the first communication device.
  • the processor 1410 is configured to: determine the second target based on the first configuration information when the second capability is stronger than the first capability, or when the second capability and the first capability are the same coefficient.
  • the processor 1410 is configured to: send third indication information to the second communication device; wherein the third indication information is used to indicate the first Two target coefficients; the third indication information includes the second target coefficient; or, the third indication information includes a third index, which is used to indicate that the third index in the first correlation parameter table predefined by the protocol corresponds to The second objective coefficient of .
  • processor 1410 is used to:
  • the second capability is the same as the first capability, receiving at least one second coefficient configured by the second configuration information sent by the second communication device;
  • the second target coefficient is determined based on the at least one second coefficient, and the first configuration information.
  • the processor 1410 is configured to: send fourth indication information to the second communication device; wherein, The fourth indication information is used to indicate the second target coefficient.
  • processor 1410 is used to:
  • a second configuration information table sent by the second communication device is received, where the second configuration information table includes at least one second coefficient configured by the second configuration information, and a fourth index corresponding to each second coefficient.
  • the fourth indication information includes a fourth index, which is used to indicate the second target coefficient corresponding to the fourth index in the second configuration information table; or the fourth indication information includes the second target coefficient.
  • the second configuration information table is carried by PBCH or PDSCH, or carried by a master information block MIB or a system information block SIB.
  • the second configuration information table is carried by PUCCH or PUSCH, or carried by uplink control information UCI.
  • the second configuration information table is carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bearer.
  • processor 1410 is used to:
  • the fifth indication information is used to instruct the second communication device to re-determine the first target coefficient of the whitening filter.
  • the method further includes:
  • the first shaping filter changes, receiving sixth indication information sent by the second communication device;
  • the sixth indication information is used to instruct the second communication device to re-determine the first target coefficient of the whitening filter.
  • the second target coefficient of the first shaping filter includes:
  • the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter are the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter.
  • the first indication information is carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the first indication information is carried by uplink control information UCI, or is carried by PUCCH or PUSCH.
  • the first indication information is carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bear.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • Processor 1410 is used to:
  • the second communication device determines the first target coefficient of the whitening filter
  • the second communication device sends first indication information to the first communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the first indication information includes:
  • a second index used to indicate the first target coefficient corresponding to the second index in the first target coefficient group corresponding to the second target coefficient
  • the second target coefficient is the second coefficient of the first shaping filter used for transmitting the first signal.
  • processor 1410 is used to:
  • the second target coefficient table is used to indicate the corresponding relationship between the whitening filter index and the first coefficient of the whitening filter, and the first index is in the whitening filter index
  • One of the first target coefficients is one of the first coefficients.
  • the second target coefficient table is used to indicate the whitening filter index and part. or the correspondence between all the first coefficients.
  • processor 1410 is used to:
  • the part or all of the first coefficients are determined based on part or all of the time-domain sample points in the finite set and the second target coefficients.
  • processor 1410 is used to:
  • the first target coefficient table is used to indicate the correspondence between the second coefficient of the shaping filter and the whitening filter index, and the whitening filter index and the first coefficient of the whitening filter.
  • the corresponding relationship between, the second index is one of the whitening filter indexes, the first target coefficient is one of the first coefficients, and the second target coefficient of the shaping filter is the one of the second coefficients of the shaping filter.
  • the first target coefficient table is used to indicate the whitening filter. Correspondence between the filter index and some or all of the first coefficients.
  • processor 1410 is used to:
  • the part or all of the first coefficients are determined based on part or all of the time-domain sample points in the finite set and the second target coefficients.
  • processor 1410 is used to:
  • the second target coefficient is determined based on second configuration information of a shaping filter supported by the second communication device and/or first configuration information of a shaping filter supported by the first communication device.
  • processor 1410 is used to:
  • the second capability of the second communication device is weaker than the first capability of the first communication device, or if the second capability and the first capability are the same, based on the second configuration information determining the second target coefficient;
  • the second capability is used to represent the configuration quantity of the shaping filter supported by the second communication device;
  • the first capability is used to represent the configuration quantity of the shaping filter supported by the first communication device.
  • the processor 1410 is configured to:
  • processor 1410 is used to:
  • the second capability is stronger than the first capability, or, in the case that the second capability and the first capability are the same, determining the second target coefficient based on the third indication information sent by the first communication device;
  • the third indication information is determined by the first communication device based on the first configuration information
  • the third indication information includes the second target coefficient; or, the third indication information includes a third index, which is used to indicate the second target corresponding to the third index in the first related parameter table predefined by the protocol coefficient.
  • processor 1410 is used to:
  • At least one second coefficient configured by the second configuration information is sent to the first communication device, the at least one second coefficient being used by the first communication device in combination with the first configuration information to determine the second target coefficient;
  • the second target coefficient is determined based on the fourth indication information sent by the first communication device.
  • processor 1410 is used to:
  • the second configuration information table includes at least one second coefficient configured by the second configuration information, and a fourth index corresponding to each second coefficient
  • the fourth indication information includes a fourth index, which is used to indicate the second target coefficient corresponding to the fourth index in the second configuration information table;
  • the fourth indication information includes the second target coefficient.
  • processor 1410 is used to:
  • the first target coefficient of the whitening filter is re-determined, and is indicated to the first communication device through fifth indication information.
  • processor 1410 is used to:
  • the first trigger information includes periodic trigger information or preset event trigger information.
  • processor 1410 is used to:
  • the first target coefficient of the whitening filter is re-determined and indicated to the first communication device through sixth indication information.
  • the second target coefficient of the first shaping filter includes:
  • the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter are the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • terminal embodiments in the embodiments of the present application are product embodiments corresponding to the foregoing method embodiments, and all implementation manners in the foregoing method embodiments are applicable to the terminal embodiments, and the same or similar technical effects can also be achieved. This will not be repeated here.
  • FIG. 15 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • the network side device 1500 includes: an antenna 1501 , a radio frequency device 1502 , and a baseband device 1503 .
  • the antenna 1501 is connected to the radio frequency device 1502 .
  • the radio frequency device 1502 receives information through the antenna 1501, and sends the received information to the baseband device 1503 for processing.
  • the baseband device 1503 processes the information to be sent and sends it to the radio frequency device 1502
  • the radio frequency device 1502 processes the received information and sends it out through the antenna 1501 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1503 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1503 .
  • the baseband apparatus 1503 includes a processor 1504 and a memory 1505 .
  • the baseband device 1503 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 15 , one of the chips is, for example, the processor 1504 , which is connected to the memory 1505 to call the program in the memory 1505 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 1503 may further include a network interface 1506 for exchanging information with the radio frequency device 1502, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: an instruction or program stored in the memory 1505 and executable on the processor 1504, and the processor 1504 invokes the instruction or program in the memory 1505 to execute the instruction or program shown in FIG. 11 or FIG. 12 . In order to avoid repetition, it is not repeated here.
  • the processor 1504 is used for:
  • the first communication device receives first indication information sent by the second communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter determined by the second communication device;
  • the first communication device processes the received first signal based on the first target coefficients of the whitening filter.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the first indication information includes:
  • a second index used to indicate the first target coefficient corresponding to the second index in the first target coefficient group corresponding to the second target coefficient
  • the second target coefficient is the second coefficient of the first shaping filter used for transmitting the first signal.
  • processor 1504 is used to:
  • the second target coefficient is determined based on second configuration information of a shaping filter supported by the second communication device and/or first configuration information of a shaping filter supported by the first communication device.
  • processor 1504 is used to:
  • the receiving second communication device sends the first 2. Instruction information
  • the second target coefficient indicated by the second indication information is determined by the second communication device based on the second configuration information
  • the second capability is used to represent the configuration quantity of the shaping filter supported by the second communication device;
  • the first capability is used to represent the configuration quantity of the shaping filter supported by the first communication device.
  • processor 1504 is used to:
  • the second target coefficient is determined based on the first configuration information.
  • the processor 1504 is configured to:
  • the third indication information is used to indicate the second target coefficient
  • the third indication information includes the second target coefficient; or, the third indication information includes a third index, which is used to indicate the second target corresponding to the third index in the first related parameter table predefined by the protocol coefficient.
  • processor 1504 is used to:
  • the second capability is the same as the first capability, receiving at least one second coefficient configured by the second configuration information sent by the second communication device;
  • the second target coefficient is determined based on the at least one second coefficient, and the first configuration information.
  • the processor 1504 is configured to:
  • the fourth indication information is used to indicate the second target coefficient.
  • processor 1504 is used to:
  • the second configuration information table includes at least one second coefficient configured by the second configuration information, and a fourth index corresponding to each second coefficient
  • the fourth indication information includes a fourth index, which is used to indicate the second target coefficient corresponding to the fourth index in the second configuration information table;
  • the fourth indication information includes the second target coefficient.
  • the second configuration information table is carried by PBCH or PDSCH, or carried by a master information block MIB or a system information block SIB.
  • the second configuration information table is carried by PUCCH or PUSCH, or carried by uplink control information UCI.
  • the second configuration information table is carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bearer.
  • processor 1504 is used to:
  • the fifth indication information is used to instruct the second communication device to re-determine the first target coefficient of the whitening filter.
  • the method further includes:
  • the first shaping filter changes, receiving sixth indication information sent by the second communication device;
  • the sixth indication information is used to instruct the second communication device to re-determine the first target coefficient of the whitening filter.
  • the second target coefficient of the first shaping filter includes:
  • the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter are the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter.
  • the first indication information is carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the first indication information is carried by uplink control information UCI, or is carried by PUCCH or PUSCH.
  • the first indication information is carried by the sidelink control signaling SCI or synchronization message, or, by PSCCH or PSSCH or PSBCH bear.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • Processor 1504 is used to:
  • the second communication device determines the first target coefficient of the whitening filter
  • the second communication device sends first indication information to the first communication device, where the first indication information is used to indicate the first target coefficient of the whitening filter.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the first indication information includes:
  • a second index used to indicate the first target coefficient corresponding to the second index in the first target coefficient group corresponding to the second target coefficient
  • the second target coefficient is the second coefficient of the first shaping filter used for transmitting the first signal.
  • processor 1504 is used to:
  • the second target coefficient table is used to indicate the corresponding relationship between the whitening filter index and the first coefficient of the whitening filter, and the first index is in the whitening filter index
  • One of the first target coefficients is one of the first coefficients.
  • the second target coefficient table is used to indicate the whitening filter index and part. or the correspondence between all the first coefficients.
  • processor 1504 is used to:
  • the part or all of the first coefficients are determined based on part or all of the time-domain sample points in the finite set and the second target coefficients.
  • processor 1504 is used to:
  • the first target coefficient table is used to indicate the correspondence between the second coefficient of the shaping filter and the whitening filter index, and the whitening filter index and the first coefficient of the whitening filter
  • the corresponding relationship between, the second index is one of the whitening filter indexes
  • the first target coefficient is one of the first coefficients
  • the second target coefficient of the shaping filter is the one of the second coefficients of the shaping filter.
  • 25. The signal processing method according to claim 23, wherein when the second target coefficient of the shaping filter is predefined by a protocol, and the value of the number of sampling points in the time domain belongs to a finite set, the The first target coefficient table is used to indicate the correspondence between the whitening filter index and some or all of the first coefficients.
  • processor 1504 is used to:
  • the part or all of the first coefficients are determined based on part or all of the time-domain sample points in the finite set and the second target coefficients.
  • processor 1504 is used to:
  • the second target coefficient is determined based on second configuration information of a shaping filter supported by the second communication device and/or first configuration information of a shaping filter supported by the first communication device.
  • processor 1504 is used to:
  • the second capability of the second communication device is weaker than the first capability of the first communication device, or if the second capability and the first capability are the same, based on the second configuration information determining the second target coefficient;
  • the second capability is used to represent the configuration quantity of the shaping filter supported by the second communication device;
  • the first capability is used to represent the configuration quantity of the shaping filter supported by the first communication device.
  • the processor 1504 is configured to:
  • processor 1504 is used to:
  • the second capability is stronger than the first capability, or, in the case that the second capability and the first capability are the same, determining the second target coefficient based on the third indication information sent by the first communication device;
  • the third indication information is determined by the first communication device based on the first configuration information
  • the third indication information includes the second target coefficient; or, the third indication information includes a third index, which is used to indicate the second target corresponding to the third index in the first related parameter table predefined by the protocol coefficient.
  • processor 1504 is used to:
  • At least one second coefficient configured by the second configuration information is sent to the first communication device, the at least one second coefficient being used by the first communication device in combination with the first configuration information to determine the second target coefficient;
  • the second target coefficient is determined based on the fourth indication information sent by the first communication device.
  • processor 1504 is used to:
  • the second configuration information table includes at least one second coefficient configured by the second configuration information, and a fourth index corresponding to each second coefficient
  • the fourth indication information includes a fourth index, which is used to indicate the second target coefficient corresponding to the fourth index in the second configuration information table;
  • the fourth indication information includes the second target coefficient.
  • processor 1504 is used to:
  • the first target coefficient of the whitening filter is re-determined, and is indicated to the first communication device through fifth indication information.
  • processor 1504 is used to:
  • the first trigger information includes periodic trigger information or preset event trigger information.
  • processor 1504 is used to:
  • the first target coefficient of the whitening filter is re-determined and indicated to the first communication device through sixth indication information.
  • the second target coefficient of the first shaping filter includes:
  • the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter are the coefficients of the first shaping filter, or, the generation parameters of the first shaping filter.
  • the receiver after calculating the whitening filter on the second communication device, that is, the sending side, and indicating it to the first communication device, that is, the receiving end, it is avoided that the receiver performs complex matrix inversion and Cholesky decomposition in order to obtain the whitening filter. , which reduces the receiver complexity and is easy to implement in engineering.
  • the network-side device embodiments in the embodiments of the present application are product embodiments corresponding to the foregoing method embodiments, and all implementation manners in the foregoing method embodiments are applicable to the network-side device embodiments, and can also achieve the same or similar technologies effect, so it is not repeated here.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above signal processing method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above signal processing method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, or a communication device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号处理方法、装置、通信设备及存储介质。所述方法包括:第一通信设备接收第二通信设备发送的第一指示信息,所述第一指示信息用于指示第二通信设备确定的白化滤波器的第一目标系数;第一通信设备基于所述白化滤波器的第一目标系数,处理接收到的第一信号。

Description

信号处理方法、装置、通信设备及存储介质
相关申请的交叉引用
本申请主张在2021年2月3日在中国提交的中国专利申请号202110152781.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信号处理方法、装置、通信设备及存储介质。
背景技术
超奈奎斯特(Faster Than Nyquist,FTN)的收发处理流程中,发射机中各个符号的间隔远远小于奈奎斯特传输的最小间隔,这样就造成了相邻数据之间的彼此重叠,即符号间干扰(precursor inter-symbol interference,ISI);由此接收机必须采用白化滤波器和最大似然序列检测(Maximum likehood sequence estimation,MLSE)算法来消除这种ISI。
现有技术中,接收机计算白化滤波器的算法涉及到的矩阵求逆和平方根法Cholesky分解法运算复杂度较高,导致接收机设计的复杂度较高。
发明内容
本申请实施例提供一种信号处理方法、装置、通信设备及存储介质,能够实现避免接收机为获得白化滤波器进行复杂的计算,减少了接收机复杂度,易于工程实现。
第一方面,提供了一种信号处理方法,该方法包括:
第一通信设备接收第二通信设备发送的第一指示信息,所述第一指示信息用于指示第二通信设备确定的白化滤波器的第一目标系数;
第一通信设备基于所述白化滤波器的第一目标系数,处理接收到的第一信号。
第二方面,提供了一种信号处理方法,该方法包括:
第二通信设备确定白化滤波器的第一目标系数;
第二通信设备向第一通信设备发送第一指示信息,所述第一指示信息用于指示白化滤波器的第一目标系数。
第三方面,提供了一种信号处理装置,所述装置包括:
第一接收模块,用于接收第二通信设备发送的第一指示信息,所述第一指示信息用于指示第二通信设备确定的白化滤波器的第一目标系数;
第一处理模块,用于基于所述白化滤波器的第一目标系数,处理接收到的第一信号。
第四方面,提供了一种信号处理装置,所述装置包括:
第四确定模块,用于确定白化滤波器的第一目标系数;
第二发送模块,用于向第一通信设备发送第一指示信息,所述第一指示信息用于指示白化滤波器的第一目标系数。
第五方面,提供了一种第一通信设备,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种第二通信设备,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的方法。
在本申请实施例中,通过在发送侧计算好白化滤波器后指示给接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
附图说明
图1是本申请实施例可应用的一种无线通信***的框图;
图2是本申请实施例提供的无时域重叠与有时域重叠的信号对比示意图;
图3是本申请实施例提供的FTN通信***收发端处理流程示意图;
图4是本申请提供的接收机处理流程的示意图;
图5是本申请实施例提供的信号处理方法的流程示意图之一;
图6是本申请实施例提供的第一指示信息的示意图之一;
图7是本申请实施例提供的第一指示信息的示意图之二;
图8是本申请实施例提供的第一指示信息的示意图之三;
图9是本申请实施例提供的信号处理方法的流程示意图之二;
图10是本申请实施例提供的信号处理方法的流程示意图之三;
图11是本申请实施例提供的信号处理装置的结构示意图之一;
图12是本申请实施例提供的信号处理装置的结构示意图之二;
图13是本申请实施例提供的通信设备的结构示意图;
图14是本申请实施例提供的终端的硬件结构示意图;
图15是本申请实施例提供的网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图1是本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例,但是并不限定基站的具体类型。
为了更好地介绍本申请,首先介绍以下内容:
超奈奎斯特传输,即Faster-than-Nyquist Signaling,是目前被认为可以突破奈奎斯特采样速率,进一步逼近信道容量物理极限的一种新型信号处理技术。其衍生技术为X域重叠复用(Overlapped X Division Multiplexing,OVXDM)。OVXDM/FTN技术在时域/频域基于波形编码理论人为引入了ISI和/或信道干扰(Inter Channel Interference,ICI),从而提高了码元发送速率,增加了等效信道容量。然而,波形编码后的信号对接收机的性能提出了更高的要求,增加了译码算法的复杂度以及硬件的功耗。一般来说,波形编码时的时频域重叠系数越大,即人为引入的ISI和ICI越严重,则接收机侧需要判断的状态数越多,接收算法的复杂度越高。
在城市里复杂的电磁波传输环境中,由于存在大量的散射、反射和折射面,造成了无线信号经不同路径到达接收天线的时刻不同,即传输的多径效应,不同路径信号造成的。当发送信号的前后符号经过不同路径同时抵达时,或者说,当后一个符号在前一个符号的时延扩展内到达时,即产生了ISI。类似的,在频域上,由于频偏效应,多普勒效应等原因,信号所在的各个子载波会产生频率上不同程度的偏移,造成原本可能正交的子载波产生重叠,即ICI。上述在信号传输过程中产生的ISI/ICI与发送时采用波形编码引入的ISI/ICI叠加,对接收机的译码能力产生了更高的要求。
目前学术界对衰落信道下的FTN/OVTDM***的研究成果表明,通过更加复杂的接收机算法对抗衰落信道。例如利用信道预均衡,联合信道译码的迭代算法等方法。但在实际应用中,一方面,实际***受成 本和功耗等条件限制,往往无法采用理想接收机,实现的译码算法复杂度有限,当ISI/ICI超出了一定阈值后,会无法正确译码。同时,接收机的译码复杂度增加时,也会增加能量消耗,不利于终端节能降耗。同时,大量仿真结果表明,FTN/OVTDM***相对传统OFDM***的吞吐量优势主要在于高信噪比(Signal Noise Ratio,SNR)区域。在高SNR区域,噪声对接收信号的影响程度相对较小,接收机易于根据已知的FTN/OVTDM的符号间编码的约束关系正确的进行译码,误码率很低。在低SNR区域,噪声对接收信号的影响程度相对较大,破坏了符号间编码的约束关系,使得误码率较高,不如传统的OFDM***。
基于上述原因,在实际***中,可以通过一些方式,例如利用无线信道的先验信息,利用信道测量结果等,尽量能量降低接收机算法的复杂度,以利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
一、FTN/OVTDM相关背景技术;
FTN/OVTDM是通过对发送信号进行移位叠加处理(又称波形编码),人为地引入适量ISI和/或ICI一种信号处理方法,其目的是加快码元发送速率,即增加每赫兹每秒(Hz*s)内发送的符号数量。其中,FTN的全称为Faster-than-Nyquist,即超奈奎斯特。OVXDM包括OVTDM,OVFDM和OVCDM,以及OVTDM和OVFDM的组合技术,其全称为Overlapped X-Domain Multiplexing,即X域重叠复用。在下文中,统一用FTN指代。同时,引入的ISI和ICI会增加译码的复杂度,可能造成误码率的提升。然而,通过先进的译码算法可以抑制误码率提升带来的负面效应,综合来看仍然可以通过所述加快码元发送速率的方法提升信道容量。其表达式如下:
Figure PCTCN2022074970-appb-000001
其中,T Δ=τT,τ∈(0,1),τ为时域重叠系数。特别的,在OVXDM中,取
Figure PCTCN2022074970-appb-000002
因而有
Figure PCTCN2022074970-appb-000003
Figure PCTCN2022074970-appb-000004
ζ为频域重叠系数。特别的,在OVXDM中,取
Figure PCTCN2022074970-appb-000005
因而有
Figure PCTCN2022074970-appb-000006
图2是本申请实施例提供的无时域重叠与有时域重叠的信号对比示意图,下面以图2为例说明ISI的产生。当T=0.8时,即时域波形重叠系数τ=0.8后,经处理后的信号在在各个采样点所在时刻上,携带其他采样点信息的脉冲波形幅度不为零,因此产生了ISI,假设多径信道的冲激响应函数为h CH(t),则经过信道后的信号可以等效地表示为:
Figure PCTCN2022074970-appb-000007
其中
Figure PCTCN2022074970-appb-000008
接收机收到的信号表达式为:
y(t)=s′(t)+w(t);                    (3)
其中w(t)为高斯白噪声。
FTN/OVTDM信号的生成主要有两种方式:1)在单天线***中,可以通过对信号过采样+成型滤波的方式来等效生成,其效果类似为一个作用于调制级别的卷积编码器;2)在多天线***中,可以采用更贴近其物理含义的方式来生成,即控制多天线的每个天线振子/端口按照既定的移位叠加原则,依次以T Δ的延迟来发送信号,不同天线振子/端口以不同延迟发送的信号在空口叠加,和信号的采样点之间引入了ISI,形成FTN/OVTDM信号。
由于波形编码和多径信道的叠加效应,导致了等效多径数量的增加,以及更加“靠近”的符号间隔和子载波间隔,使得等效的时频域重叠程度增加。这种时频域重叠程度的增加,在接收端反映为更加严重的ISI和ICI,对接收机的设计提出了挑战。理论性能最优的ML类型接收机的复杂度随着波形重叠程度上升而上升,当{K,N}较大时,硬件无法实现。而固定译码复杂度的快速算法对于较高重叠程度的信号无能为力。
本发明中,重叠系数为
Figure PCTCN2022074970-appb-000009
的FTN信号,等价为重叠层数为K的OVTDM信号。在后面的文本中,为表达简洁,可以统一用FTN指代FTN/OVTDM为代表的超奈奎斯特信号族。同时,可以采用重叠层数作为表示FTN/OVTDM信号特征的描述方式。
二、FTN信号的接收侧算法
图3是本申请实施例提供的FTN通信***收发端处理流程示意图,实际***中,FTN的收发处理流程如图3所示。其中红字标注的部分就是和基于奈奎斯特传输的通信***不同的地方。其中主要有两点区别:1)发射机中各个符号的间隔远远小于奈奎斯特传输的最小间隔,这样就造成了相邻数据之间的彼此重叠,即ISI;由此导致了2),接收机必须采用白化滤波器和最大似然序列检测(Maximum likehood sequence estimation,MLSE)算法来消除这种ISI。
图4是本申请提供的接收机处理流程的示意图,与本发明有关的模块主要是白化滤波器模块。白化滤波器模块及其前后处理模块如图4所示。接收到的时域采样点y(t)经过匹配滤波和降采样后,输入到白化滤波器模块。此时,y(t)中原本由无线传输信道引起的加性白噪声经过匹配滤波后,变成了有色噪声,不利于后面的MLSE检测。因此,需要通过白化滤波模块,来把有色噪声还原成白噪声。抽象为数学模型的白化滤波器实际上是一个带状矩阵,其每一行非零元素就是对应的下一模块MLSE模块对应的抽头系数。对一个确定的***,白化滤波器对应的L矩阵可以通过如下方法计算。
首先,根据成型滤波器的系数g(t)=[g 0g 1…g n]构造一个H矩阵。
Figure PCTCN2022074970-appb-000010
上述H矩阵中的L为所处理的数据时域采样点数,N为成型滤波器的时域采样点数。计算H的协方差矩阵R=HH H,对所得的协方差矩阵R进行Cholesky分解。根据Cholesky定理有,R=L HL。对求得的满足条件的L的共轭转置求逆得到L -H,即所需要的白化滤波器。
可以验证白化滤波可以恢复噪声的高斯分布特性。前述的公式(3)可以写成向量形式,如下:
Y=S+N;                     (4)
在接收机侧经匹配滤波运算后得到:
Figure PCTCN2022074970-appb-000011
其中
Figure PCTCN2022074970-appb-000012
经匹配滤波后变成了有色噪声,需利用前述L进行白化处理:
Figure PCTCN2022074970-appb-000013
可以验证
Figure PCTCN2022074970-appb-000014
为高斯白噪声:
Figure PCTCN2022074970-appb-000015
求解白化滤波器的过程中,涉及到的矩阵求逆和Cholesky分解,在矩阵维度较大时,即L,N较大时,均难以在实际的硬件中实现。因此,需要找到一种方法避免接收机频繁求解白化滤波器的运算。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号处理方法进行详细地说明。
图5是本申请实施例提供的信号处理方法的流程示意图之一,如图5所示,该方法包括如下步骤:
步骤500,第一通信设备接收第二通信设备发送的第一指示信息,所述第一指示信息用于指示第二通信设备确定的白化滤波器的第一目标系数;
步骤510,第一通信设备基于所述白化滤波器的第一目标系数,处理接收到的第一信号。
可选地,第二通信设备为第一信号的发送侧,第一通信设备为第一信号的接收侧。
可选地,第一通信设备可以直接接收第二通信设备发送的第一指示信息,确定用于处理第一信号的白化滤波器的第一目标系数;然后可以基于所述白化滤波器的第一目标系数,处理接收到的第一信号。
可选地,通信***中,接收机算法涉及到的矩阵求逆和Cholesky分解运算复杂度较高,硬件设计难以实现,尤其在第一通信设备为终端时,对于对成本和功耗有更严苛要求的终端设备,影响了FTN技术的工程应用。
可选地,第二通信设备可以基于待传输的第一信号的时域采样点数,和传输第一信号所使用的第一成型滤波器的第二目标系数,计算获得白化滤波器的第一目标系数;并通过第一指示信息指示第一通信设备该计算获得的白化滤波器的第一目标系数,第一通信设备接收到第一指示信息后则可以获取白化滤波器的第一目标系数,即确定白化滤波器,用于处理接收到的所述第一信号。
可选地,基于前述公式(3)可以看出,噪声w(t)与信道冲激响应无关;因此白化滤波器的计算也无需考虑信道的冲激响应。因此,白化滤波器的计算只依赖于成型滤波器的系数,即第二目标系数,以及数据的帧结构;通信***中,以一个时隙为单位处理数据采样点,即一个时隙内发送的数据样点数量为H矩阵列的数量L,即第一信号的时域采样点数,而不需要随时变信道变化而变化。
可选地,一个时隙表示通信***物理层对数据进行解调译码的最小时间资源单元,本申请各实施例中可以统称为时隙,比如NR中的时隙,又比如LTE中的子帧。
可选地,理想的脉冲成型所使用的滤波器(频域矩形窗,时域Sinc函数)在工程上难以实现。因此在工程应用中,可以采用根升余弦滤波器作为成型滤波器。其中有一个关键参数,即滚降系数α。当α越小,其频域响应函数越逼近与理想脉冲,但是硬件器件的设计和实现也越加困难。同时,当α很小时,信号传输中发生的线性失真造成的符号间干扰也更加严重,也会影响接收机的性能。因此,实际***中通常α取值在0.15~0.5之间。
可选地,本申请各实施例中涉及的所有指示和反馈消息,以及相关控制信令,均以奈奎斯特采样信号发出,不通过FTN信号发送。为保证可靠性,FTN仅用于传输数据,不用于传输导频和控制信令。
可选地,本申请实施例提出了一种利用发送侧下发信令指示接收侧所用白化滤波器的方案。通过把白化滤波器的求解放到发送侧,比如第二通信设备是基站时,可以将白化滤波器的求解放在基站侧,具有更好的运算能力,减少了接收机设计的复杂度,并且可以根据接收机能力和信道状态变化,选取不同的成型滤波器及其对应的白化滤波器,在不同场景下都获得较优化的性能。
可选地,第二通信设备即发送侧可以首先根据自身的能力及接收机的能力来选择合适的成型滤波器。确定成型滤波器和当前时隙发送的时域采样点数L之后,再基于时域采样点数和成型滤波器计算获得用于第 一通信设备即接收机解调信号所需的白化滤波器的第一目标系数,即L矩阵,并发送给第一通信设备。其中时域采样点数L即当前时隙发送的数据样点数L,以及FTN重叠系数τ和ζ(或OVXDM的N和K)为第二通信设备即发送侧已知。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现
可选地,所述第一指示信息包括:
所述第一目标系数;或
第一索引,用于指示所述第一目标系数;或
第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
可选地,第二通信设备计算获得第一目标系数后,可以直接将第一目标系数通过第一指示信息发送给第一通信设备。
图6是本申请实施例提供的第一指示信息的示意图之一,如图6所示,第二通信设备接收第二目标系数后,可以基于第二目标系数及时域采样点数L,计算获得第一目标系数,并将第一目标系数指示给第一通信设备。
可选地,第二通信设备计算获得第一目标系数后,可以通过第一指示信息指示第一索引,其中,不同的第一索引可以对应不同的第一目标系数;第一通信设备可以根据第一索引直接查第二目标系数表即白化滤波器表1获得表中第一索引对应的第一目标系数。
表格1 白化滤波器表1
Index Value
1 {白化滤波器的第一目标系数1}
2 {白化滤波器的第一目标系数2}
3
图7是本申请实施例提供的第一指示信息的示意图之二,如图7所示,第二通信设备接收第二目标系数后,可以基于第二目标系数及时域采样点数L,计算获得第一目标系数,并将第一目标系数在第二目标系数表中对应的第一索引发送给第一通信设备,其中,第二目标系数表可以是第二通信设备预先指示给了第一通信设备的。
可选地,第二通信设备计算获得第一目标系数后,可以通过第一指示信息指示第二索引,其中,每一个成型滤波器的第二目标系数可以对应一组不同的第二索引,每一组第二索引中的每一个第二索引,可以对应一个不同的第一目标系数,则第一通信设备可以根据所使用的成型滤波器确定对应的第二索引组,再从确定的第二索引组中确定第二索引对应的第一目标系数;
图8是本申请实施例提供的第一指示信息的示意图之三,如图8所示,第二通信设备接收第二目标系数后,可以基于第二目标系数及时域采样点数L,计算获得第一目标系数,并将第一目标系数表中第一成型滤波器对应的第二索引组中该第一目标系数对应的第二索引发送给第一通信设备,其中,第一目标系数表可以是第二通信设备预先指示给了第一通信设备的。
可选地,第一通信设备还可以基于第二索引确定时域采样点数L。
本申请实施例通过多种方案实现对第一通信设备的指示,方案灵活可实现,且节省信令。
可选地,所述方法还包括:
基于预定义的协议确定所述第二目标系数;或者
基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数
可选地,所述第二目标系数是协议预定义的;或者
所述第二目标系数是基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定的。
可选地,要计算第一目标系数,首先需要获知第二目标系数,并基于第二目标系数以及时域采样点数L,计算得到第一目标系数。
可选地,可以协议预定义第二目标系数,第二通信设备和第一通信设备在确定第二目标系数时,可以基于预定义的协议确定。
可选地,对于第二通信设备,其所支持的至少一个成型滤波器的配置,可以称为第二配置信息;
可选地,对于第一通信设备,其所支持的至少一个成型滤波器的配置,可以称为第一配置信息;
可选地,可以基于第二配置信息确定一个成型滤波器的第二目标系数;
可选地,可以基于第一配置信息确定一个成型滤波器的第二目标系数;
可选地,可以基于第二配置信息和第一配置信息确定一个成型滤波器的第二目标系数。
可选地,基于所述第二通信设备所支持的成型滤波器的第二配置信息,确定所述第二目标系数,包括:
在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第 一能力相同的情况下,接收第二通信设备发送第二指示信息;
基于所述第二指示信息确定所述第二目标系数;
其中,所述第二指示信息指示的第二目标系数是第二通信设备基于所述第二配置信息确定的;
其中,所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
可选地,对于两个通信设备来说,设备的能力强,支持的成型滤波器的配置(或者关键技术指标)就多。设备的能力弱,支持的成型滤波器的配置就少。
可选地,对于两个通信设备来说,设备能力的强弱对双方来说是已知的或十分容易获得的,比如基站与终端相比,基站的能力更强,终端的能力更弱,由于通信设备本身对自己的设备身份以及通信对端的设备身份是已知的,因此第一通信设备与第一通信设备双方均十分容易就可以获知二者之间的能力强弱。
比如,第二通信设备为基站,第一通信设备为终端,则双方均可以直接确定第二能力比第一能力强。
比如,第一通信设备为基站,第二通信设备为终端,则双方均可以直接确定第二能力比第一能力弱。
比如,第二通信设备为基站,第一通信设备为基站,则双方均可以直接确定第二能力和第一能力相同。
比如,第二通信设备为终端,第一通信设备为最大,则双方均可以直接确定第二能力和第一能力相同。
可选地,在第二通信设备和第一通信设备的能力强弱不同的情况下,为了第一信号可以正常传输,可以根据能力较弱的一侧的配置确定成型滤波器的第二目标系数。
可选地,在第二通信设备和第一通信设备的能力强弱相同的情况下,可以根据任一侧的配置确定成型滤波器的第二目标系数,或根据两侧的配置一起确定成型滤波器的第二目标系数。
可选地,在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,可以基于第二通信设备的第二配置信息确定所述第二目标系数。
可选地,在所述第二通信设备的第二能力和所述第一通信设备的第一能力相同的情况下,可以基于第二通信设备的第二配置信息确定所述第二目标系数。
可选地,第二通信设备在确定所使用的成型滤波器的第二目标系数相关参数后,可以向第一通信设备发送第二指示信息,指示第一通信设备所述第二目标系数,第一通信设备接收到第二指示信息后,即可以确定第一信号传输所使用的第一成型滤波器。
可选地,基于所述第一通信设备所支持的成型滤波器的第一配置信息,确定所述第二目标系数,包括:
在第二能力比第一能力强的情况下,或,所述第二能力和第一能力相同的情况下,基于第一配置信息确定所述第二目标系数。
可选地,在第二能力比第一能力强的情况下,可以基于第一配置信息确定第二目标系数,因此可以由第一通信设备确定基于第一配置信息确定第二目标系数后,基于第三指示信息指示给第二通信设备。
可选地,在第二能力和第一能力相同的情况下,可以基于第一配置信息确定第二目标系数,因此可以由第一通信设备确定基于第一配置信息确定第二目标系数后,基于第三指示信息指示给第二通信设备。
可选地,在基于第一配置信息确定所述第二目标系数之后,所述方法还包括:向第二通信设备发送第三指示信息;其中,所述第三指示信息用于指示所述第二目标系数;
所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
可选地,第一通信设备基于第三指示信息将第二目标系数指示给第二通信设备时,可以直接指示第二目标系数给第二通信设备;还可以指示与第二目标系数相对应的第三索引。
可选地,可以协议预定义的第一相关参数表,其中包括至少一个第三索引,以及每个第三索引对应的第一相关参数表。
可选地,第一成型滤波器的第二目标系数可以包括:第一成型滤波器的系数,或,第一成型滤波器的生成参数。
可选地,在第一成型滤波器的第二目标系数包括第一成型滤波器的系数的情况下,第一相关参数表可以如下表3,成型滤波器系数表所示:
表格3 成型滤波器系数表
第三索引 Value
1 {成型滤波器的系数1}
2 {成型滤波器的系数2}
3
可选地,在第一成型滤波器的第二目标系数包括第一成型滤波器的生成参数的情况下,第一相关参数表可以如下表4,成型滤波器生成参数表所示:
表格4 成型滤波器生成参数表
第三索引 Value
a {成型滤波器类型,滚降系数,主瓣样点数,滤波器长度}
b {成型滤波器类型,滚降系数,主瓣样点数,滤波器长度}
c
可选地,第二通信设备可以根据从第一通信设备接收到的第三指示信息,获取第一成型滤波器的系数,或获取第一成型滤波器的生成参数,并进一步得到第一成型滤波器的系数。
可选地,第三指示信息为第一成型滤波器的系数时,直接获得第一成型滤波器的系数。
可选地,第三指示信息为第一成型滤波器的生成参数时,直接获得第一成型滤波器的生成参数,然后可以根据第一成型滤波器的生成参数生成第一成型滤波器的系数。
可选地,第三指示信息为表格三或表格四中的第三索引时,可以查表直接获得第一成型滤波器系数,或者查表获得第一成型滤波器的生成参数,再根据生成参数计算获得第一成型滤波器的系数。
可选地,发送侧则可以利用获取到的第一成型滤波器系数以及当前时隙发送的数据样点数L即时域采样点数L,计算白化滤波器的第一目标系数。
可选地,所述白化滤波器的第一目标系数可以通过物理下行共享信道(Physical Downlink Shared Channel,PDSCH)承载的dedicated RRC信令或者PDCCH承载的下行控制信息(Downlink Control Information,DCI)发送给接收侧。
可选地,基于所述第二配置信息和所述第一配置信息确定所述第二目标系数,包括:
在第二能力与第一能力相同的情况下,接收第二通信设备发送的所述第二配置信息配置的至少一个第二系数;
基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数。
可选地,在第二能力与第一能力相同的情况下,第二通信设备可以向第一通信设备发送第二配置信息配置的至少一个第二系数,第一通信设备可以获得第二通信设备支持的至少一个成型滤波器的第二系数,因此第一通信设备可以基于第二配置信息配置的至少一个第二系数以及第一配置信息配置的至少一个第二系数,确定一个第二目标系数。
可选地,在基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数之后,所述方法还包括:
向第二通信设备发送第四指示信息;
其中,所述第四指示信息用于指示所述第二目标系数。
可选地,第一通信设备在确定第二目标系数相关参数后,可以基于第四指示信息,指示给第二通信设备最后选择的第一成型滤波器的第二目标系数。
可选地,所述接收第二通信设备发送的所述第二配置信息配置的至少一个第二系数,包括:
接收第二通信设备发送的第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引;
其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或
所述第四指示信息包括所述第二目标系数。
图9是本申请实施例提供的信号处理方法的流程示意图之二,如图9所示,第二通信设备可以向第一通信设备发送第二配置信息表,第一通信设备基于第二配置信息配置的至少一个第二系数以及第一配置信息配置的至少一个第二系数确定第二目标系数,并通过第四指示信息指示给第二通信设备。第二通信设备接收第二目标系数后,可以基于第二目标系数及时域采样点数L,计算获得第一目标系数,并将第一目标系数指示给第一通信设备。
可选地,第二通信设备向第一通信设备发送第二配置信息配置的至少一个第二系数时,可以直接向第一通信设备发送第二配置信息表,其中包括所述第二配置信息配置的至少一个第二系数,每一个第二系数对应一个不同的第四索引。
可选地,第一通信设备在基于第二配置信息配置的至少一个第二系数以及第一配置信息配置的至少一个第二系数确定第二目标系数相关参数后,基于第四指示信息将最后选择的第一成型滤波器的第二目标系数指示给第二通信设备时,可以指示第二配置信息表中的一个第四索引,该第四索引所对应的第二系数即为第一通信设备选择的第一成型滤波器的第二目标系数。
可选地,第一通信设备在基于第二配置信息配置的至少一个第二系数以及第一配置信息配置的至少一个第二系数确定第二目标系数相关参数后,基于第四指示信息将最后选择的第一成型滤波器的第二目标系数指示给第二通信设备时,可以直接指示第二目标系数。
可选地,在所述第二通信设备为网络侧设备时,所述第二配置信息表由物理广播信道(Physical Broadcast Channel,PBCH)或者PDSCH承载,或,由主信息块(Master Information Block,MIB)或者***信息块(System Information Block,SIB)携带。
可选地,第二通信设备为网络侧设备时,第一通信设备可以是终端,第二配置信息表可以由PBCH或者PDSCH承载,或,由广播信息MIB或者SIB携带。
比如,第二配置信息表可以用PBCH或PDSCH承载的广播消息发送给接收侧。
可选地,在所述第二通信设备为终端时,所述第二配置信息表由物理上行控制信道(Physical Uplink Control Channel,PUCCH)或者PUSCH承载,或,由上行控制信息上行控制信息(Uplink Control Information,UCI)携带。
可选地,第二通信设备为终端时。第一通信设备可以是网络侧比如基站,第二配置信息表由PUCCH或者物理上行共享信道(Physical Uplink Shared Channel,PUSCH)承载,或,由上行控制信息UCI携带。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第二配置信息表由sidelink控制信令(system control information,SCI)或同步消息携带,或,由物理旁路控制信道(Physical Sidelink Control Channel,PSCCH)或者物理旁路共享信道(Physical sidelink shared Channel,PSSCH)或物理旁路广播信道(physical sidelink broadcast channel,PSBCH)承载。
可选地,第二通信设备为终端,且所述第一通信设备为终端时,第二配置信息表可以由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
可选地,所述方法还包括:
在所述第一信号的时域采样点数发生变化的情况下,接收第二通信设备发送的第五指示信息;
其中,所述第五指示信息用于指示所述第二通信设备重新确定的白化滤波器的第一目标系数。
可选地,由于白化滤波器是基于第一信号的时域采样点数和成型滤波器的系数计算获得,则在第一信号的时域采样点数发生变化的情况下,可以基于前述各实施例的方式重新计算获得白化滤波器的第一目标系数;
可选地,在第二通信设备重新计算获得白化滤波器的第一目标系数后,可以基于第五指示信息指示给第一通信设备。
可选地,第一信号的时域采样点数即当前时隙发送的数据样点数L改变时,即当前收发端通信链路的数据上采样速率改变(等效为FTN重叠系数τ和ζ中任意一个参数改变时),都需要重新计算获得白化滤波器的第一目标系数。
可选地,所述方法还包括:
在所述第一成型滤波器发生变化的情况下,接收第二通信设备发送的第六指示信息;
其中,所述第六指示信息用于指示第二通信设备重新确定的白化滤波器的第一目标系数。
可选地,可以周期性地触发或由预设事件触发,第二通信设备重新选择第一成型滤波器,即重新确定第一成型滤波器的第二目标系数。
比如,可以每经过一小时,第二通信设备触发重新确定第一成型滤波器的第二目标系数。
可选地,由于白化滤波器是基于第一信号的时域采样点数和成型滤波器的系数计算获得,则在第一成型滤波器发生变化的情况下,第二通信设备可以基于新的第一成型滤波器的第二目标系数,重新计算获得白化滤波器的第一目标系数。
可选地,所述第一成型滤波器的第二目标系数包括:
第一成型滤波器的系数,或,第一成型滤波器的生成参数。
可选地,第一成型滤波器的第二目标系数可以包括第一成型滤波器的系数;
可选地,第一成型滤波器的第二目标系数可以包括第一成型滤波器的生成参数,第二通信设备和第一通信设备可以直接基于第一成型滤波器的生成参数获得第一成型滤波器的系数。
可选地,第一成型滤波器的第二目标系数可以包括第一成型滤波器的系数和第一成型滤波器的生成参数。
可选地,在所述第一通信设备为终端时,所述第一指示信息由DCI或者专用dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
可选地,在所述第二通信设备为网络侧设备时,第一通信设备可以为终端,第一指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
比如,白化滤波器的系数通过PDSCH承载的dedicated RRC信令或者数据发送给接收侧。
可选地,在所述第一通信设备为网络侧设备时,所述第一指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,所述第二通信设备为终端时,第一通信设备可以为网络侧,所述第一指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第一指示信息由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第一指示信息可以由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
图10是本申请实施例提供的信号处理方法的流程示意图之三,如图10所示,该方法包括如下步骤:
步骤1000,第二通信设备确定白化滤波器的第一目标系数;
步骤1010,第二通信设备向第一通信设备发送第一指示信息,所述第一指示信息用于指示白化滤波器的第一目标系数。
可选地,第二通信设备为第一信号的发送侧,第一通信设备为第一信号的接收侧。
可选地,通信***中,接收机算法涉及到的矩阵求逆和Cholesky分解运算复杂度较高,硬件设计难以实现,尤其在第一通信设备为终端时,对于对成本和功耗有更严苛要求的终端设备,影响了FTN技术的工程应用。
可选地,第二通信设备可以基于待传输的第一信号的时域采样点数,和传输第一信号所使用的第一成型滤波器的第二目标系数,计算获得白化滤波器的第一目标系数;并通过第一指示信息指示第一通信设备该计算获得的白化滤波器的第一目标系数,第一通信设备接收到第一指示信息后则可以获取白化滤波器的第一目标系数,即确定白化滤波器,用于处理接收到的所述第一信号。
可选地,基于前述公式(3)可以看出,噪声w(t)与信道冲激响应无关;因此白化滤波器的计算也无需考虑信道的冲激响应。因此,白化滤波器的计算只依赖于成型滤波器的系数,即第二目标系数,以及数据的帧结构;通信***中,以一个时隙为单位处理数据采样点,即一个时隙内发送的数据样点数量为H矩阵列的数量L,即第一信号的时域采样点数,而不需要随时变信道变化而变化。
可选地,一个时隙表示通信***物理层对数据进行解调译码的最小时间资源单元,本申请各实施例中可以统称为时隙,比如NR中的时隙,又比如LTE中的子帧。
可选地,理想的脉冲成型所使用的滤波器(频域矩形窗,时域Sinc函数)在工程上难以实现。因此在工程应用中,可以采用根升余弦滤波器作为成型滤波器。其中有一个关键参数,即滚降系数α。当α越小,其频域响应函数越逼近与理想脉冲,但是硬件器件的设计和实现也越加困难。同时,当α很小时,信号传输中发生的线性失真造成的符号间干扰也更加严重,也会影响接收机的性能。因此,实际***中通常α取值在0.15~0.5之间。
可选地,本申请各实施例中涉及的所有指示和反馈消息,以及相关控制信令,均以奈奎斯特采样信号发出,不通过FTN信号发送。为保证可靠性,FTN仅用于传输数据,不用于传输导频和控制信令。
可选地,本申请实施例提出了一种利用发送侧下发信令指示接收侧所用白化滤波器的方案。通过把白化滤波器的求解放到发送侧,比如第二通信设备是基站时,可以将白化滤波器的求解放在基站侧,具有更好的运算能力,减少了接收机设计的复杂度,并且可以根据接收机能力和信道状态变化,选取不同的成型滤波器及其对应的白化滤波器,在不同场景下都获得较优化的性能。
可选地,第二通信设备即发送侧可以首先根据自身的能力及接收机的能力来选择合适的成型滤波器。确定成型滤波器和当前时隙发送的时域采样点数L之后,再基于时域采样点数和成型滤波器计算获得用于第一通信设备即接收机解调信号所需的白化滤波器的第一目标系数,即L矩阵,并发送给第一通信设备。其中时域采样点数L即当前时隙发送的数据样点数L,以及FTN重叠系数τ和ζ(或OVXDM的N和K)为第二通信设备即发送侧已知。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
可选地,所述第一指示信息包括:
所述第一目标系数;或
第一索引,用于指示所述第一目标系数;或
第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
可选地,第二通信设备计算获得第一目标系数后,可以直接将第一目标系数通过第一指示信息发送给第一通信设备。
可选地,如图6所示,第二通信设备接收第二目标系数后,可以基于第二目标系数及时域采样点数L,计算获得第一目标系数,并将第一目标系数指示给第一通信设备。
可选地,第二通信设备计算获得第一目标系数后,可以通过第一指示信息指示第一索引,其中,不同的第一索引可以对应不同的第一目标系数;第一通信设备可以根据第一索引直接查第二目标系数表即白化滤波器表1获得表中第一索引对应的第一目标系数。
可选地,如图7所示,第二通信设备接收第二目标系数后,可以基于第二目标系数及时域采样点数L,计算获得第一目标系数,并将第一目标系数在第二目标系数表中对应的第一索引发送给第一通信设备,其中,第二目标系数表可以是第二通信设备预先指示给了第一通信设备的。
可选地,第二通信设备计算获得第一目标系数后,可以通过第一指示信息指示第二索引,其中,每一个成型滤波器的第二目标系数可以对应一组不同的第二索引,每一组第二索引中的每一个第二索引,可以对应一个不同的第一目标系数,则第一通信设备可以根据所使用的成型滤波器确定对应的第二索引组,再从确定的第二索引组中确定第二索引对应的第一目标系数。
可选地,如图8所示,第二通信设备接收第二目标系数后,可以基于第二目标系数及时域采样点数L,计算获得第一目标系数,并将第一目标系数表中第一成型滤波器对应的第二索引组中该第一目标系数对应的第二索引发送给第一通信设备,其中,第一目标系数表可以是第二通信设备预先指示给了第一通信设备的。
可选地,第一通信设备还可以基于第二索引确定时域采样点数L。
本申请实施例通过多种方案实现对第一通信设备的指示,方案灵活可实现,且节省信令。
可选地,所述方法还包括:
获取第二目标系数表;其中,所述第二目标系数表用于指示白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第一索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个。
可选地,所述第二目标系数表中包括至少一个第一目标系数,及每一个第一目标系数对应的第一索引。
可选地,可以设置包括至少一个第一索引以及,每一个第一索引对应一个白化滤波器的第一目标系数的第二目标系数表即白化滤波器表1。
表格1 白化滤波器表1
Index Value
1 {白化滤波器的第一目标系数1}
2 {白化滤波器的第一目标系数2}
3
可选地,在所述第二目标系数是协议预定义的,且所述时域采样点数的取值属于有限集合的情况下,所述第二目标系数表用于指示白化滤波器索引与部分或所有所述第一系数之间的对应关系。
可选地,在所述第二目标系数是协议预定义的,且所述时域采样点数的取值有限的情况下,所述第二目标系数表包括部分或所有时域采样点数对应的第一目标系数,及每一个第一目标系数对应的第一索引。
可选地,假设协议已经规定了所使用的成型滤波器的参数,即第二目标系数是协议预定义的。则第二通信设备可以只需要根据成型滤波器第二目标系数和当前时隙发送的数据样点数L,即时域采样点数L,计算好白化滤波器的第一目标系数,并指示给第一通信设备即接收侧。
可选地,时域采样点数L取决于FTN信号的重叠系数τ和ζ。实际通信***中,τ和ζ的取值也可以设置为离散的有限值,例如OVTDM***中,可以认为重叠系数K取2~6之间较为合适。在这种设定下,L的取值也为有限集。因此第二通信设备即发送侧可以预先计算出所有成型滤波器的参数和L的组合对应的白化滤波器的第一目标系数并以表格的形式存储,并可以指示一个第二目标系数表即白化滤波器表1给第一通信设备,比如通过广播消息进行指示;而第一通信设备可以根据指示消息直接查表获取白化滤波器。
可选地,时域采样点数L取决于FTN信号的重叠系数τ和ζ。实际通信***中,τ和ζ的取值也可以设置为离散的有限值,例如OVTDM***中,可以认为重叠系数K取2~6之间较为合适。在这种设定下,L的取值也为有限集。因此第二通信设备即发送侧可以预先计算出部分成型滤波器的参数和L的组合对应的白化滤波器的第一目标系数并以表格的形式存储,并可以指示一个第二目标系数表即白化滤波器表1给第一通信设备,比如通过广播消息进行指示;而第一通信设备可以根据指示消息直接查表获取白化滤波器。
可选地,所述获取第二目标系数表,包括:
基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
可选地,第二目标系数是协议预定义的情况下,第二通信设备可以根据成型滤波器的第二目标系数和时域采样点数L的所有或者部分取值,计算出所有或部分时域采样点数L对应的第一目标系数,并通过第二目标系数表或第一目标系数表指示给第一通信设备即接收侧。
可选地,所述方法还包括:
获取第一目标系数表;其中,所述第一目标系数表用于指示成型滤波器的第二系数与白化滤波器索引之间的对应关系,及白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第二索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个,所述成型滤波器的第二目标系数是所述成型滤波器的第二系数中的一个。
可选地,所述第一目标系数表中包括至少一组第二索引,及每一组第二索引对应的第二系数;
其中,每一组第二索引中包括至少一个第二索引,每一个第二索引对应一个时域采样点数和一个所述时域采样点数对应的第一目标系数。
可选地,由于成型滤波器的第二目标系数也为变量,可以设置包括至少一个第二目标系数,每一个第二目标系数对应一组第二索引,每一个第二索引对应一个白化滤波器的第一目标系数的第一目标系数表即白化滤波器表2。
表格2 白化滤波器表2
Figure PCTCN2022074970-appb-000016
其中,表格中的L也可换成对应的重叠系数。
可选地,在所述成型滤波器的第二目标系数是协议预定义的,且时域采样点数的取值属于有限集合的情况下,所述第一目标系数表用于指示所述白化滤波器索引与部分或所有所述第一系数之间的对应关系。
可选地,在所述第二目标系数是协议预定义的,且所述时域采样点数的取值有限的情况下,所述每一组第一目标系数包括部分或所有时域采样点数对应的第一目标系数,及每一个第一目标系数对应的第二索引。
可选地,假设协议已经规定了所使用的成型滤波器的参数,即第二目标系数是协议预定义的。则第二通信设备可以只需要根据成型滤波器第二目标系数和当前时隙发送的数据样点数L,即时域采样点数L,计算好白化滤波器的第一目标系数,并指示给第一通信设备即接收侧。
可选地,时域采样点数L取决于FTN信号的重叠系数τ和ζ。实际通信***中,τ和ζ的取值也可以设置为离散的有限值,例如OVTDM***中,可以认为重叠系数K取2~6之间较为合适。在这种设定下,L的取值也为有限集。因此第二通信设备即发送侧可以预先计算出所有成型滤波器的参数和L的组合对应的白化滤波器的第一目标系数并以表格的形式存储。
可选地,在存储第一目标系数时,第一目标系数表可以包含成型滤波器的第二目标系数,L,以及对应的白化滤波器的第一目标系数,即指示一个第一目标系数表可以设置包括至少一个第二目标系数,每一个第二目标系数对应一组第二索引,每一个第二索引对应一个白化滤波器的第一目标系数,其中,每一组第一目标系数可以包括部分或所有时域采样点数L对应的第一目标系数,及每一个第一目标系数对应的第二索引,即第一目标系数表中可以列举出第一目标系数的所有情况,第二通信设备可以指示第一目标系数表即白化滤波器表2给第一通信设备,比如通过广播消息进行指示;而第一通信设备可以根据指示消息直接查表获取白化滤波器。
表格2 白化滤波器表2
Figure PCTCN2022074970-appb-000017
可选地,所述获取第一目标系数表,包括:
基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
可选地,所述部分或所有时域采样点数对应的第一目标系数由第二通信设备基于部分或所有时域采样点数和所述第二目标系数计算获得的。
可选地,第二目标系数是协议预定义的情况下,第二通信设备可以根据成型滤波器的第二目标系数和时域采样点数L的所有或者部分取值,计算出所有或部分时域采样点数L对应的第一目标系数,并通过第二目标系数表或第一目标系数表指示给第一通信设备即接收侧。
可选地,所述方法还包括:
基于预定义的协议确定所述第二目标系数;或者
基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数。
可选地,所述第二目标系数是协议预定义的;或者
所述第二目标系数是基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定的。
可选地,所述方法还包括:
基于协议预定义,确定所述第二目标系数;或
基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息,确定所述第二目标系数。
可选地,对于第二通信设备,要计算第一目标系数,首先需要获知第二目标系数,并基于第二目标系数以及时域采样点数L,计算第二目标系数。
可选地,可以协议预定义第二目标系数,第二通信设备在确定第二目标系数时,可以基于预定义的协议确定。
可选地,对于第二通信设备,有所支持的至少一个成型滤波器的配置,可以称为第二配置信息;
可选地,对于第一通信设备,有所支持的至少一个成型滤波器的配置,可以称为第一配置信息;
可选地,可以基于第二配置信息确定一个成型滤波器的第二目标系数;
可选地,可以基于第一配置信息确定一个成型滤波器的第二目标系数;
可选地,可以基于第二配置信息和第一配置信息确定一个成型滤波器的第二目标系数。
可选地,基于所述第二配置信息确定所述第二目标系数,包括:
在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第一能力相同的情况下,基于所述第二配置信息确定所述第二目标系数;
其中,所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
可选地,对于两个通信设备来说,设备的能力强,支持的成型滤波器的配置(或者关键技术指标)就多。设备的能力弱,支持的成型滤波器的配置就少。
可选地,对于两个通信设备来说,设备能力的强弱对双方来说是已知的或十分容易获得的,比如基站与终端相比,基站的能力更强,终端的能力更弱,由于通信设备本身对自己的设备身份以及通信对端的设备身份是已知的,因此第一通信设备与第一通信设备双方均十分容易就可以获知二者之间的能力强弱。
比如,第二通信设备为基站,第一通信设备为终端,则双方均可以直接确定第二能力比第一能力强。
比如,第一通信设备为基站,第二通信设备为终端,则双方均可以直接确定第二能力比第一能力弱。
比如,第二通信设备为基站,第一通信设备为基站,则双方均可以直接确定第二能力和第一能力相同。
比如,第二通信设备为终端,第一通信设备为最大,则双方均可以直接确定第二能力和第一能力相同。
可选地,在第二通信设备和第一通信设备的能力强弱不同的情况下,为了第一信号可以正常传输,可以根据能力较弱的一侧的配置确定成型滤波器的第二目标系数。
可选地,可选地,在第二通信设备和第一通信设备的能力强弱相同的情况下,可以根据任一侧的配置确定成型滤波器的第二目标系数,或根据两侧的配置一起确定成型滤波器的第二目标系数。
可选地,在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,可以基于第二通信设备的第二配置信息确定所述第二目标系数。
可选地,在所述第二通信设备的第二能力和所述第一通信设备的第一能力相同的情况下,可以基于第二通信设备的第二配置信息确定所述第二目标系数。
可选地,所述基于所述第二配置信息确定所述第二目标系数之后,所述方法还包括:向第一通信设备发送第二指示信息,用于指示所述第二目标系数。
可选地,第二通信设备在确定所使用的成型滤波器的第二目标系数相关参数后,可以向第一通信设备发送第二指示信息,指示第一通信设备所述第二目标系数,第一通信设备接收到第二指示信息后,即可以确定第一信号传输所使用的第一成型滤波器。
可选地,基于所述第一配置信息确定所述第二目标系数,包括:
在第二能力比第一能力强的情况下,或,所述第二能力和第一能力相同的情况下,基于第一通信设备发送的第三指示信息确定所述第二目标系数。
其中,所述第三指示信息由第一通信设备基于第一配置信息确定。
所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
可选地,在第二能力比第一能力强的情况下,可以基于第一配置信息确定第二目标系数,因此可以由第一通信设备确定基于第一配置信息确定第二目标系数后,基于第三指示信息指示给第二通信设备。
可选地,可选地,在第二能力和第一能力相同的情况下,可以基于第一配置信息确定第二目标系数,因此可以由第一通信设备确定基于第一配置信息确定第二目标系数后,基于第三指示信息指示给第二通信设备。
可选地,第一通信设备基于第三指示信息将第二目标系数指示给第二通信设备时,可以直接指示第二目标系数给第二通信设备;还可以指示与第二目标系数相对应的第三索引。
可选地,可以协议预定义的第一相关参数表,其中包括至少一个第三索引,以及每个第三索引对应的第一相关参数表。
可选地,第一成型滤波器的第二目标系数可以包括:第一成型滤波器的系数,或,第一成型滤波器的生成参数。
可选地,在第一成型滤波器的第二目标系数包括第一成型滤波器的系数的情况下,第一相关参数表可以如下表3,成型滤波器系数表所示:
表格3 成型滤波器系数表
第三索引 Value
1 {成型滤波器的系数1}
2 {成型滤波器的系数2}
3
可选地,在第一成型滤波器的第二目标系数包括第一成型滤波器的生成参数的情况下,第一相关参数表可以如下表4,成型滤波器生成参数表所示:
表格4 成型滤波器生成参数表
第三索引 Value
a {成型滤波器类型,滚降系数,主瓣样点数,滤波器长度}
b {成型滤波器类型,滚降系数,主瓣样点数,滤波器长度}
c
可选地,第二通信设备可以根据从第一通信设备接收到的第三指示信息,获取第一成型滤波器的系数,或获取第一成型滤波器的生成参数,并进一步得到第一成型滤波器的系数。
可选地,第三指示信息为第一成型滤波器的系数时,直接获得第一成型滤波器的系数。
可选地,第三指示信息为第一成型滤波器的生成参数时,直接获得第一成型滤波器的生成参数,然后可以根据第一成型滤波器的生成参数生成第一成型滤波器的系数。
可选地,第三指示信息为表格三或表格四中的第三索引时,可以查表直接获得第一成型滤波器系数,或者查表获得第一成型滤波器的生成参数,再根据生成参数计算获得第一成型滤波器的系数。
可选地,发送侧则可以利用获取到的第一成型滤波器系数以及当前时隙发送的数据样点数L即时域采样点数L,计算白化滤波器的第一目标系数。
可选地,所述白化滤波器的第一目标系数可以通过PDSCH承载的dedicated RRC信令或者PDCCH承载的DCI发送给接收侧。
可选地,基于所述第二配置信息和所述第一配置信息确定所述第二目标系数,包括:
在第二能力与第一能力相同的情况下,向第一通信设备发送第二配置信息配置的至少一个第二系数,所述至少一个第二系数用于第一通信设备结合所述第一配置信息确定所述第二目标系数;
基于第一通信设备发送的第四指示信息,确定所述第二目标系数。
可选地,在第二能力与第一能力相同的情况下,可以向第一通信设备发送第二配置信息配置的至少一个第二系数,以使第一通信设备可以获得第二通信设备支持的至少一个成型滤波器的第二系数,因此第一通信设备可以基于第二配置信息配置的至少一个第二系数以及第一配置信息配置的至少一个第二系数,确定一个第二目标系数相关参数。
可选地,第一通信设备在确定第二目标系数相关参数后,可以基于第四指示信息,指示给第二通信设备最后选择的第一成型滤波器的第二目标系数。
可选地,所述向第一通信设备发送第二配置信息配置的至少一个第二系数,包括:
向第一通信设备发送第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引;
其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或
所述第四指示信息包括所述第二目标系数。
可选地,如图9所示,第二通信设备可以向第一通信设备发送第二配置信息表,第一通信设备基于第二配置信息配置的至少一个第二系数以及第一配置信息配置的至少一个第二系数确定第二目标系数,并通过第四指示信息指示给第二通信设备。第二通信设备接收第二目标系数后,可以基于第二目标系数及时域采样点数L,计算获得第一目标系数,并将第一目标系数指示给第一通信设备。
可选地,第二通信设备向第一通信设备发送第二配置信息配置的至少一个第二系数时,可以直接向第一通信设备发送第二配置信息表,其中包括所述第二配置信息配置的至少一个第二系数,每一个第二系数对应一个不同的第四索引。
可选地,第一通信设备在基于第二配置信息配置的至少一个第二系数以及第一配置信息配置的至少一个第二系数确定第二目标系数相关参数后,基于第四指示信息将最后选择的第一成型滤波器的第二目标系数指示给第二通信设备时,可以指示第二配置信息表中的一个第四索引,该第四索引所对应的第二系数即为第一通信设备选择的第一成型滤波器的第二目标系数。
可选地,第一通信设备在基于第二配置信息配置的至少一个第二系数以及第一配置信息配置的至少一个第二系数确定第二目标系数相关参数后,基于第四指示信息将最后选择的第一成型滤波器的第二目标系数指示给第二通信设备时,可以直接指示第二目标系数。
可选地,在所述第二通信设备为网络侧设备时,所述第二配置信息表由PBCH或者PDSCH承载,或,由广播信息MIB或者SIB携带。
可选地,第二通信设备为网络侧设备时,第一通信设备可以是终端,第二配置信息表可以由PBCH或者PDSCH承载,或,由广播信息MIB或者SIB携带。
比如,第二配置信息表可以用PBCH或PDSCH承载的广播消息发送给接收侧。
可选地,在所述第二通信设备为终端时,所述第二配置信息表由PUCCH或者PUSCH承载,或,由上行控制信息UCI携带。
可选地,第二通信设备为终端时。第一通信设备可以是网络侧比如基站,第二配置信息表由PUCCH或者PUSCH承载,或,由上行控制信息UCI携带。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第二配置信息表由sidelink 控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
可选地,第二通信设备为终端,且所述第一通信设备为终端时,第二配置信息表可以由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
可选地,所述方法还包括:
在所述第一信号的时域采样点数发生变化的情况下,重新确定白化滤波器的第一目标系数,并通过第五指示信息指示给第一通信设备。
可选地,由于白化滤波器是基于第一信号的时域采样点数和成型滤波器的系数计算获得,则在第一信号的时域采样点数发生变化的情况下,可以基于前述各实施例的方式重新计算获得白化滤波器的第一目标系数;
可选地,在重新计算获得白化滤波器的第一目标系数后,可以基于第五指示信息指示给第一通信设备。
可选地,第一信号的时域采样点数即当前时隙发送的数据样点数L改变时,即当前收发端通信链路的数据上采样速率改变(等效为FTN重叠系数τ和ζ中任意一个参数改变时),都需要重新计算获得白化滤波器的第一目标系数。
可选地,所述方法还包括:
基于第一触发信息,重新确定所述第一成型滤波器的第二目标系数;
所述第一触发信息包括周期触发信息或预设事件触发信息。
可选地,可以周期性地触发或由预设事件触发,重新选择第一成型滤波器,即重新确定第一成型滤波器的第二目标系数。
比如,可以每经过一小时,触发重新确定第一成型滤波器的第二目标系数。
可选地,所述方法还包括:
在所述第一成型滤波器发生变化的情况下,重新确定白化滤波器的第一目标系数并通过第六指示信息指示给第一通信设备。
可选地,由于白化滤波器是基于第一信号的时域采样点数和成型滤波器的系数计算获得,则在第一成型滤波器发生变化的情况下,可以基于新的第一成型滤波器的第二目标系数,重新计算获得白化滤波器的第一目标系数。
可选地,所述第一成型滤波器的第二目标系数包括:
第一成型滤波器的系数,或,第一成型滤波器的生成参数。
可选地,第一成型滤波器的第二目标系数可以包括第一成型滤波器的系数;
可选地,第一成型滤波器的第二目标系数可以包括第一成型滤波器的生成参数,可以直接基于第一成型滤波器的生成参数获得第一成型滤波器的系数。
可选地,第一成型滤波器的第二目标系数可以包括第一成型滤波器的系数和第一成型滤波器的生成参数。
可选地,在所述第二通信设备为网络侧设备时,所述第一指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
可选地,在所述第二通信设备为网络侧设备时,第一通信设备可以为终端,第一指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
比如,白化滤波器的系数通过PDSCH承载的dedicated RRC信令或者数据发送给接收侧。
可选地,在所述第二通信设备为终端时,所述第一指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,所述第二通信设备为终端时,第一通信设备可以为网络侧,所述第一指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第一指示信息由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第一指示信息可以由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
需要说明的是,本申请实施例提供的信号处理方法,执行主体可以为信号处理装置,或者,该信号处理装置中的用于执行信号处理方法的控制模块。本申请实施例中以信号处理装置执行信号处理方法为例,说明本申请实施例提供的信号处理装置。
图11是本申请实施例提供的信号处理装置的结构示意图之一,如图11所示,该装置包括:第一接收模块1110,和第一处理模块1120;其中:
第一接收模块1110用于接收第二通信设备发送的第一指示信息,所述第一指示信息用于指示第二通信设备确定的白化滤波器的第一目标系数;
第一处理模块1120用于基于所述白化滤波器的第一目标系数,处理接收到的第一信号。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
可选地,所述第一指示信息包括:
所述第一目标系数;或
第一索引,用于指示所述第一目标系数;或
第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
可选地,所述装置还包括:
第十一确定模块,用于基于预定义的协议确定所述第二目标系数;或者
第十二确定模块,用于基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数。
可选地,还包括:
第一确定模块,用于在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第一能力相同的情况下,接收第二通信设备发送第二指示信息;
基于所述第二指示信息确定所述第二目标系数;
其中,所述第二指示信息指示的第二目标系数是第二通信设备基于所述第二配置信息确定的;
其中,所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
可选地,还包括:
第二确定模块,在第二能力比第一能力强的情况下,或,所述第二能力和第一能力相同的情况下,基于第一配置信息确定所述第二目标系数。
可选地,所述装置还包括:
第一发送模块,用于在基于第一配置信息确定所述第二目标系数之后,向第二通信设备发送第三指示信息。其中,所述第三指示信息用于指示所述第二目标系数;
所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
可选地,还包括:
第三确定模块,用于在第二能力与第一能力相同的情况下,接收第二通信设备发送的所述第二配置信息配置的至少一个第二系数;
基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数。
可选地,所述装置还包括:
第二发送模块,用于在基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数之后,向第二通信设备发送第四指示信息;
其中,所述第四指示信息用于指示所述第二目标系数。
可选地,所述第三确定模块,用于:接收第二通信设备发送的第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引;
其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或所述第四指示信息包括所述第二目标系数。
可选地,在所述第二通信设备为网络侧设备时,所述第二配置信息表由PBCH或者PDSCH承载,或,由主信息块MIB或者***信息块SIB携带。
可选地,在所述第二通信设备为终端时,所述第二配置信息表由PUCCH或者PUSCH承载,或,由上行控制信息UCI携带。
可选地,所述第二通信设备为终端,且所述第一通信设备为终端时,所述第二配置信息表由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
可选地,所述装置还包括:在所述第一信号的时域采样点数发生变化的情况下,接收第二通信设备发送的第五指示信息;其中,所述第五指示信息用于指示所述第二通信设备重新确定的白化滤波器的第一目标系数。
可选地,所述装置还包括:第二接收模块,用于在所述第一成型滤波器发生变化的情况下,接收第二通信设备发送的第六指示信息。其中,所述第六指示信息用于指示第二通信设备重新确定的白化滤波器的第一目标系数。
可选地,所述第一成型滤波器的第二目标系数包括:第一成型滤波器的系数,或,第一成型滤波器的生成参数。
可选地,在所述第一通信设备为终端时,所述第一指示信息由DCI或者专用dedicated-RRC携带,或, 由PDCCH或者PDSCH承载。
可选地,在所述第一通信设备为网络侧设备时,所述第一指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第一指示信息由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
本申请实施例中的信号处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的信号处理装置可以为具有操作***的装置。该操作***可以为安卓(Android)操作***,可以为ios操作***,还可以为其他可能的操作***,本申请实施例不作具体限定。
本申请实施例提供的信号处理装置能够实现图2至图10的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图12是本申请实施例提供的信号处理装置的结构示意图之二,如图12所示,该装置包括:第四确定模块1210和第二发送模块1220;其中:第四确定模块1210用于确定白化滤波器的第一目标系数;第二发送模块1220用于向第一通信设备发送第一指示信息,所述第一指示信息用于指示白化滤波器的第一目标系数。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
可选地,所述第一指示信息包括:
所述第一目标系数;或
第一索引,用于指示所述第一目标系数;或
第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
可选地,所述装置还包括:第一获取模块,用于获取第二目标系数表;其中,所述第二目标系数表用于指示白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第一索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个。
可选地,在所述第二目标系数是协议预定义的,且所述时域采样点数的取值属于有限集合的情况下,所述第二目标系数表用于指示白化滤波器索引与部分或所有所述第一系数之间的对应关系。
可选地,所述第一获取模块,用于:基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
可选地,所述装置还包括:第二获取模块,用于获取第一目标系数表;其中,所述第一目标系数表用于指示成型滤波器的第二系数与白化滤波器索引之间的对应关系,及白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第二索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个,所述成型滤波器的第二目标系数是所述成型滤波器的第二系数中的一个。
可选地,在所述成型滤波器的第二目标系数是协议预定义的,且时域采样点数的取值属于有限集合的情况下,所述第一目标系数表用于指示所述白化滤波器索引与部分或所有所述第一系数之间的对应关系。
可选地,所述第二获取模块,用于:基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
可选地,所述装置还包括:
第十一确定模块,用于基于预定义的协议确定所述第二目标系数;或者
第十二确定模块,用于基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数。
可选地,所述装置还包括:第五确定模块,用于在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第一能力相同的情况下,基于所述第二配置信息确定所述第二目标系数。其中,所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
可选地,所述装置还包括:第三发送模块,用于所述基于所述第二配置信息确定所述第二目标系数之后,向第一通信设备发送第二指示信息,用于指示所述第二目标系数。
可选地,所述装置还包括:第六确定模块,用于在第二能力比第一能力强的情况下,或,所述第二能 力和第一能力相同的情况下,基于第一通信设备发送的第三指示信息确定所述第二目标系数。其中,所述第三指示信息由第一通信设备基于第一配置信息确定。所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
可选地,所述装置还包括:
第七确定模块,用于在第二能力与第一能力相同的情况下,向第一通信设备发送第二配置信息配置的至少一个第二系数,所述至少一个第二系数用于第一通信设备结合所述第一配置信息确定所述第二目标系数;
基于第一通信设备发送的第四指示信息,确定所述第二目标系数。
可选地,所述第七确定模块,用于:
向第一通信设备发送第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引;
其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或
所述第四指示信息包括所述第二目标系数。
可选地,所述装置还包括:第八确定模块,用于在所述第一信号的时域采样点数发生变化的情况下,重新确定白化滤波器的第一目标系数,并通过第五指示信息指示给第一通信设备。
可选地,所述装置还包括:第九确定模块,用于基于第一触发信息,重新确定所述第一成型滤波器的第二目标系数;所述第一触发信息包括周期触发信息或预设事件触发信息。
可选地,所述装置还包括:第十确定模块,用于在所述第一成型滤波器发生变化的情况下,重新确定白化滤波器的第一目标系数并通过第六指示信息指示给第一通信设备。
可选地,所述第一成型滤波器的第二目标系数包括:
第一成型滤波器的系数,或,第一成型滤波器的生成参数。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
本申请实施例中的信号处理装置可以是具有操作***的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该电子设备可以是移动电子设备,也可以为非移动电子设备。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的信号处理装置能够实现图2至图10的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,图13是本申请实施例提供的通信设备的结构示意图,如图13所示,通信设备1300,包括处理器1301,存储器1302,存储在存储器1302上并可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可选地,第二通信设备可以为网络侧设备,第一通信设备可以为终端;
可选地,第一通信设备可以为网络侧设备,第二通信设备可以为终端;
可选地,第二通信设备可以为终端,第一通信设备可以为终端。
图14是本申请实施例提供的终端的硬件结构示意图。
该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409、以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器1410逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理器(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401将来自通信对端的信息接收后,给处理器1410处理;另外,将待传输的信息发送给通信对端。通常,射频单元1401包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1410可包括一个或多个处理单元;可选的,处理器1410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,处理器1410用于:
第一通信设备接收第二通信设备发送的第一指示信息,所述第一指示信息用于指示第二通信设备确定的白化滤波器的第一目标系数;
第一通信设备基于所述白化滤波器的第一目标系数,处理接收到的第一信号。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
可选地,所述第一指示信息包括:
所述第一目标系数;或
第一索引,用于指示所述第一目标系数;或
第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
可选地,处理器1410用于:
基于预定义的协议确定所述第二目标系数;或者
基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数。
可选地,处理器1410用于:
在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第一能力相同的情况下,接收第二通信设备发送第二指示信息;
基于所述第二指示信息确定所述第二目标系数;
其中,所述第二指示信息指示的第二目标系数是第二通信设备基于所述第二配置信息确定的。所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
可选地,处理器1410用于:在第二能力比第一能力强的情况下,或,所述第二能力和第一能力相同的情况下,基于第一配置信息确定所述第二目标系数。
可选地,在基于第一配置信息确定所述第二目标系数之后,处理器1410用于:向第二通信设备发送第三指示信息;其中,所述第三指示信息用于指示所述第二目标系数;所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
可选地,处理器1410用于:
在第二能力与第一能力相同的情况下,接收第二通信设备发送的所述第二配置信息配置的至少一个第二系数;
基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数。
可选地,在基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数之后,处理器1410用于:向第二通信设备发送第四指示信息;其中,所述第四指示信息用于指示所述第二目标系数。
可选地,处理器1410用于:
接收第二通信设备发送的第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引。其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或所述第四指示信息包括所述第二目标系数。
可选地,在所述第二通信设备为网络侧设备时,所述第二配置信息表由PBCH或者PDSCH承载,或,由主信息块MIB或者***信息块SIB携带。
可选地,在所述第二通信设备为终端时,所述第二配置信息表由PUCCH或者PUSCH承载,或,由上行控制信息UCI携带。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第二配置信息表由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
可选地,处理器1410用于:
在所述第一信号的时域采样点数发生变化的情况下,接收第二通信设备发送的第五指示信息;
其中,所述第五指示信息用于指示所述第二通信设备重新确定的白化滤波器的第一目标系数。
可选地,所述方法还包括:
在所述第一成型滤波器发生变化的情况下,接收第二通信设备发送的第六指示信息;
其中,所述第六指示信息用于指示第二通信设备重新确定的白化滤波器的第一目标系数。
可选地,所述第一成型滤波器的第二目标系数包括:
第一成型滤波器的系数,或,第一成型滤波器的生成参数。
可选地,在所述第一通信设备为终端时,所述第一指示信息由DCI或者专用dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
可选地,在所述第一通信设备为网络侧设备时,所述第一指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第一指示信息由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
或者,
处理器1410用于:
第二通信设备确定白化滤波器的第一目标系数;
第二通信设备向第一通信设备发送第一指示信息,所述第一指示信息用于指示白化滤波器的第一目标系数。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
可选地,所述第一指示信息包括:
所述第一目标系数;或
第一索引,用于指示所述第一目标系数;或
第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
可选地,处理器1410用于:
获取第二目标系数表;其中,所述第二目标系数表用于指示白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第一索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个。
可选地,在所述第二目标系数是协议预定义的,且所述时域采样点数的取值属于有限集合的情况下,所述第二目标系数表用于指示白化滤波器索引与部分或所有所述第一系数之间的对应关系。
可选地,处理器1410用于:
基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
可选地,处理器1410用于:
获取第一目标系数表;其中,所述第一目标系数表用于指示成型滤波器的第二系数与白化滤波器索引之间的对应关系,及白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第二索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个,所述成型滤波器的第二目标系数是所述成型滤波器的第二系数中的一个。
可选地,在所述成型滤波器的第二目标系数是协议预定义的,且时域采样点数的取值属于有限集合的情况下,所述第一目标系数表用于指示所述白化滤波器索引与部分或所有所述第一系数之间的对应关系。
可选地,处理器1410用于:
基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
可选地,处理器1410用于:
基于预定义的协议确定所述第二目标系数;或者
基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数。
可选地,处理器1410用于:
在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第一能力相同的情况下,基于所述第二配置信息确定所述第二目标系数;
其中,所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
可选地,所述基于所述第二配置信息确定所述第二目标系数之后,处理器1410用于:
向第一通信设备发送第二指示信息,用于指示所述第二目标系数。
可选地,处理器1410用于:
在第二能力比第一能力强的情况下,或,所述第二能力和第一能力相同的情况下,基于第一通信设备发送的第三指示信息确定所述第二目标系数;
其中,所述第三指示信息由第一通信设备基于第一配置信息确定;
所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
可选地,处理器1410用于:
在第二能力与第一能力相同的情况下,向第一通信设备发送第二配置信息配置的至少一个第二系数,所述至少一个第二系数用于第一通信设备结合所述第一配置信息确定所述第二目标系数;
基于第一通信设备发送的第四指示信息,确定所述第二目标系数。
可选地,处理器1410用于:
向第一通信设备发送第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引;
其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或
所述第四指示信息包括所述第二目标系数。
可选地,处理器1410用于:
在所述第一信号的时域采样点数发生变化的情况下,重新确定白化滤波器的第一目标系数,并通过第五指示信息指示给第一通信设备。
可选地,处理器1410用于:
基于第一触发信息,重新确定所述第一成型滤波器的第二目标系数;
所述第一触发信息包括周期触发信息或预设事件触发信息。
可选地,处理器1410用于:
在所述第一成型滤波器发生变化的情况下,重新确定白化滤波器的第一目标系数并通过第六指示信息指示给第一通信设备。
可选地,所述第一成型滤波器的第二目标系数包括:
第一成型滤波器的系数,或,第一成型滤波器的生成参数。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
本申请实施例中的终端实施例是与上述方法实施例对应的产品实施例,上述方法实施例中的所有实现方式均适用于该终端实施例,亦可达到相同或相似的技术效果,故在此不再赘述。
图15是本申请实施例提供的网络侧设备的硬件结构示意图。
如图15所示,该网络侧设备1500包括:天线1501、射频装置1502、基带装置1503。天线1501与射频装置1502连接。在上行方向上,射频装置1502通过天线1501接收信息,将接收的信息发送给基带装置1503进行处理。在下行方向上,基带装置1503对要发送的信息进行处理,并发送给射频装置1502,射频装置1502对收到的信息进行处理后经过天线1501发送出去。
上述频带处理装置可以位于基带装置1503中,以上实施例中网络侧设备执行的方法可以在基带装置1503中实现,该基带装置1503包括处理器1504和存储器1505。
基带装置1503例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为处理器1504,与存储器1505连接,以调用存储器1505中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1503还可以包括网络接口1506,用于与射频装置1502交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1505上并可在处理器1504上运行的指令或程序,处理器1504调用存储器1505中的指令或程序执行图11或图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
其中,处理器1504用于:
第一通信设备接收第二通信设备发送的第一指示信息,所述第一指示信息用于指示第二通信设备确定的白化滤波器的第一目标系数;
第一通信设备基于所述白化滤波器的第一目标系数,处理接收到的第一信号。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
可选地,所述第一指示信息包括:
所述第一目标系数;或
第一索引,用于指示所述第一目标系数;或
第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
可选地,处理器1504用于:
基于预定义的协议确定所述第二目标系数;或者
基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数。
可选地,处理器1504用于:
在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第一能力相同的情况下,接收第二通信设备发送第二指示信息;
基于所述第二指示信息确定所述第二目标系数;
其中,所述第二指示信息指示的第二目标系数是第二通信设备基于所述第二配置信息确定的;
其中,所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
可选地,处理器1504用于:
在第二能力比第一能力强的情况下,或,所述第二能力和第一能力相同的情况下,基于第一配置信息确定所述第二目标系数。
可选地,在基于第一配置信息确定所述第二目标系数之后,处理器1504用于:
向第二通信设备发送第三指示信息;
其中,所述第三指示信息用于指示所述第二目标系数;
所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
可选地,处理器1504用于:
在第二能力与第一能力相同的情况下,接收第二通信设备发送的所述第二配置信息配置的至少一个第二系数;
基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数。
可选地,在基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数之后,处理器1504用于:
向第二通信设备发送第四指示信息;
其中,所述第四指示信息用于指示所述第二目标系数。
可选地,处理器1504用于:
接收第二通信设备发送的第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引;
其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或
所述第四指示信息包括所述第二目标系数。
可选地,在所述第二通信设备为网络侧设备时,所述第二配置信息表由PBCH或者PDSCH承载,或,由主信息块MIB或者***信息块SIB携带。
可选地,在所述第二通信设备为终端时,所述第二配置信息表由PUCCH或者PUSCH承载,或,由上行控制信息UCI携带。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第二配置信息表由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
可选地,处理器1504用于:
在所述第一信号的时域采样点数发生变化的情况下,接收第二通信设备发送的第五指示信息;
其中,所述第五指示信息用于指示所述第二通信设备重新确定的白化滤波器的第一目标系数。
可选地,所述方法还包括:
在所述第一成型滤波器发生变化的情况下,接收第二通信设备发送的第六指示信息;
其中,所述第六指示信息用于指示第二通信设备重新确定的白化滤波器的第一目标系数。
可选地,所述第一成型滤波器的第二目标系数包括:
第一成型滤波器的系数,或,第一成型滤波器的生成参数。
可选地,在所述第一通信设备为终端时,所述第一指示信息由DCI或者专用dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
可选地,在所述第一通信设备为网络侧设备时,所述第一指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第一指示信息由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
或者,
处理器1504用于:
第二通信设备确定白化滤波器的第一目标系数;
第二通信设备向第一通信设备发送第一指示信息,所述第一指示信息用于指示白化滤波器的第一目标系数。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
可选地,所述第一指示信息包括:
所述第一目标系数;或
第一索引,用于指示所述第一目标系数;或
第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
可选地,处理器1504用于:
获取第二目标系数表;其中,所述第二目标系数表用于指示白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第一索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个。
可选地,在所述第二目标系数是协议预定义的,且所述时域采样点数的取值属于有限集合的情况下,所述第二目标系数表用于指示白化滤波器索引与部分或所有所述第一系数之间的对应关系。
可选地,处理器1504用于:
基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
可选地,处理器1504用于:
获取第一目标系数表;其中,所述第一目标系数表用于指示成型滤波器的第二系数与白化滤波器索引之间的对应关系,及白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第二索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个,所述成型滤波器的第二目标系数是所述成型滤波器的第二系数中的一个。25.根据权利要求23所述的信号处理方法,其特征在于,在所述成型滤波器的第二目标系数是协议预定义的,且时域采样点数的取值属于有限集合的情况下,所述第一目标系数表用于指示所述白化滤波器索引与部分或所有所述第一系数之间的对应关系。
可选地,处理器1504用于:
基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
可选地,处理器1504用于:
基于预定义的协议确定所述第二目标系数;或者
基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数。
可选地,处理器1504用于:
在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第一能力相同的情况下,基于所述第二配置信息确定所述第二目标系数;
其中,所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
可选地,所述基于所述第二配置信息确定所述第二目标系数之后,处理器1504用于:
向第一通信设备发送第二指示信息,用于指示所述第二目标系数。
可选地,处理器1504用于:
在第二能力比第一能力强的情况下,或,所述第二能力和第一能力相同的情况下,基于第一通信设备发送的第三指示信息确定所述第二目标系数;
其中,所述第三指示信息由第一通信设备基于第一配置信息确定;
所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
可选地,处理器1504用于:
在第二能力与第一能力相同的情况下,向第一通信设备发送第二配置信息配置的至少一个第二系数,所述至少一个第二系数用于第一通信设备结合所述第一配置信息确定所述第二目标系数;
基于第一通信设备发送的第四指示信息,确定所述第二目标系数。
可选地,处理器1504用于:
向第一通信设备发送第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引;
其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或
所述第四指示信息包括所述第二目标系数。
可选地,处理器1504用于:
在所述第一信号的时域采样点数发生变化的情况下,重新确定白化滤波器的第一目标系数,并通过第五指示信息指示给第一通信设备。
可选地,处理器1504用于:
基于第一触发信息,重新确定所述第一成型滤波器的第二目标系数;
所述第一触发信息包括周期触发信息或预设事件触发信息。
可选地,处理器1504用于:
在所述第一成型滤波器发生变化的情况下,重新确定白化滤波器的第一目标系数并通过第六指示信息指示给第一通信设备。
可选地,所述第一成型滤波器的第二目标系数包括:
第一成型滤波器的系数,或,第一成型滤波器的生成参数。
在本申请实施例中,通过在第二通信设备即发送侧计算好白化滤波器后指示给第一通信设备即接收端,避免了接收机为了获得白化滤波器进行复杂的矩阵求逆和Cholesky分解,减少了接收机复杂度,易于工程实现。
本申请实施例中的网络侧设备实施例是与上述方法实施例对应的产品实施例,上述方法实施例中的所有实现方式均适用于该网络侧设备实施例,亦可达到相同或相似的技术效果,故在此不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者通信设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (41)

  1. 一种信号处理方法,包括:
    第一通信设备接收第二通信设备发送的第一指示信息,所述第一指示信息用于指示第二通信设备确定的白化滤波器的第一目标系数;
    第一通信设备基于所述白化滤波器的第一目标系数,处理接收到的第一信号。
  2. 根据权利要求1所述的信号处理方法,其中,所述第一指示信息包括:
    所述第一目标系数;或
    第一索引,用于指示所述第一目标系数;或
    第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
    其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
  3. 根据权利要求2所述的信号处理方法,其中,所述方法还包括:
    基于预定义的协议确定所述第二目标系数;或者
    基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数。
  4. 根据权利要求3所述的信号处理方法,其中,基于所述第二通信设备所支持的成型滤波器的第二配置信息,确定所述第二目标系数,包括:
    在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第一能力相同的情况下,接收第二通信设备发送第二指示信息;
    基于所述第二指示信息确定所述第二目标系数;
    其中,所述第二指示信息指示的第二目标系数是第二通信设备基于所述第二配置信息确定的;
    其中,所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
  5. 根据权利要求3所述的信号处理方法,其中,基于所述第一通信设备所支持的成型滤波器的第一配置信息,确定所述第二目标系数,包括:
    在第二能力比第一能力强的情况下,或,所述第二能力和第一能力相同的情况下,基于第一配置信息确定所述第二目标系数。
  6. 根据权利要求5所述的信号处理方法,其中,在基于第一配置信息确定所述第二目标系数之后,所述方法还包括:
    向第二通信设备发送第三指示信息;
    其中,所述第三指示信息用于指示所述第二目标系数;
    所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
  7. 根据权利要求3所述的信号处理方法,其中,基于所述第二配置信息和所述第一配置信息确定所述第二目标系数,包括:
    在第二能力与第一能力相同的情况下,接收第二通信设备发送的所述第二配置信息配置的至少一个第二系数;
    基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数。
  8. 根据权利要求7所述的信号处理方法,其中,在基于所述至少一个第二系数,以及所述第一配置信息,确定所述第二目标系数之后,所述方法还包括:
    向第二通信设备发送第四指示信息;
    其中,所述第四指示信息用于指示所述第二目标系数。
  9. 根据权利要求8所述的信号处理方法,其中,所述接收第二通信设备发送的所述第二配置信息配置的至少一个第二系数,包括:
    接收第二通信设备发送的第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引;
    其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或
    所述第四指示信息包括所述第二目标系数。
  10. 根据权利要求9所述的信号处理方法,其中,在所述第二通信设备为网络侧设备时,所述第二配置信息表由物理广播信道PBCH或者物理下行共享信道PDSCH承载,或,由主信息块MIB或者***信息块SIB携带。
  11. 根据权利要求9所述的信号处理方法,其中,在所述第二通信设备为终端时,所述第二配置信息表由物理上行控制信道PUCCH或者物理上行共享信道PUSCH承载,或,由上行控制信息UCI携带。
  12. 根据权利要求9所述的信号处理方法,其中,当所述第二通信设备为终端,且所述第一通信设备为 终端时,所述第二配置信息表由sidelink控制信令SCI或同步消息携带,或,由物理旁路控制信道PSCCH或者物理旁路共享信道PSSCH或物理旁路广播信道PSBCH承载。
  13. 根据权利要求1-12任一项所述的信号处理方法,其中,所述方法还包括:
    在所述第一信号的时域采样点数发生变化的情况下,接收第二通信设备发送的第五指示信息;
    其中,所述第五指示信息用于指示所述第二通信设备重新确定的白化滤波器的第一目标系数。
  14. 根据权利要求1-12任一项所述的信号处理方法,其中,所述方法还包括:
    在所述第一成型滤波器发生变化的情况下,接收第二通信设备发送的第六指示信息;
    其中,所述第六指示信息用于指示第二通信设备重新确定的白化滤波器的第一目标系数。
  15. 根据权利要求1-12任一项所述的信号处理方法,其中,所述第一成型滤波器的第二目标系数包括:
    第一成型滤波器的系数,或,第一成型滤波器的生成参数。
  16. 根据权利要求1-12任一项所述的信号处理方法,其中,在所述第一通信设备为终端时,所述第一指示信息由下行控制信息DCI或者专用dedicated-RRC携带,或,由物理下行控制信道PDCCH或者物理下行共享信道PDSCH承载。
  17. 根据权利要求1-12任一项所述的信号处理方法,其中,在所述第一通信设备为网络侧设备时,所述第一指示信息由上行控制信息UCI携带,或,由物理上行控制信道PUCCH或者物理上行共享信道PUSCH承载。
  18. 根据权利要求1-12任一项所述的信号处理方法,其中,当所述第二通信设备为终端,且所述第一通信设备为终端时,所述第一指示信息由sidelink控制信令SCI或同步消息携带,或,由PSCCH或者PSSCH或PSBCH承载。
  19. 一种信号处理方法,包括:
    第二通信设备确定白化滤波器的第一目标系数;
    第二通信设备向第一通信设备发送第一指示信息,所述第一指示信息用于指示白化滤波器的第一目标系数。
  20. 根据权利要求19所述的信号处理方法,其中,所述第一指示信息包括:
    所述第一目标系数;或
    第一索引,用于指示所述第一目标系数;或
    第二索引,用于指示第二目标系数对应的第一目标系数组中,所述第二索引对应的第一目标系数;
    其中,所述第二目标系数是传输所述第一信号所使用的第一成型滤波器的第二系数。
  21. 根据权利要求20所述的信号处理方法,其中,所述方法还包括:
    获取第二目标系数表;其中,所述第二目标系数表用于指示白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第一索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个。
  22. 根据权利要求21所述的信号处理方法,其中,在所述第二目标系数是协议预定义的,且所述时域采样点数的取值属于有限集合的情况下,所述第二目标系数表用于指示白化滤波器索引与部分或所有所述第一系数之间的对应关系。
  23. 根据权利要求22所述的信号处理方法,其中,所述获取第二目标系数表,包括:
    基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
  24. 根据权利要求20所述的信号处理方法,其中,所述方法还包括:
    获取第一目标系数表;其中,所述第一目标系数表用于指示成型滤波器的第二系数与白化滤波器索引之间的对应关系,及白化滤波器索引与白化滤波器的第一系数之间的对应关系,所述第二索引为所述白化滤波器索引中的一个,所述第一目标系数为所述第一系数中的一个,所述成型滤波器的第二目标系数是所述成型滤波器的第二系数中的一个。
  25. 根据权利要求23所述的信号处理方法,其中,在所述成型滤波器的第二目标系数是协议预定义的,且时域采样点数的取值属于有限集合的情况下,所述第一目标系数表用于指示所述白化滤波器索引与部分或所有所述第一系数之间的对应关系。
  26. 根据权利要求25所述的信号处理方法,其中,所述获取第一目标系数表,包括:
    基于所述有限集合中部分或所有时域采样点数和所述第二目标系数,确定所述部分或所有所述第一系数。
  27. 根据权利要求20至26任一项所述的信号处理方法,其中,所述方法还包括:
    基于预定义的协议确定所述第二目标系数;或者
    基于所述第二通信设备所支持的成型滤波器的第二配置信息和/或所述第一通信设备所支持的成型滤波器的第一配置信息确定所述第二目标系数。
  28. 根据权利要求27所述的信号处理方法,其中,基于所述第二配置信息确定所述第二目标系数,包 括:
    在所述第二通信设备的第二能力比所述第一通信设备的第一能力弱的情况下,或,所述第二能力和第一能力相同的情况下,基于所述第二配置信息确定所述第二目标系数;
    其中,所述第二能力用于表示第二通信设备所支持的成型滤波器的配置数量;所述第一能力用于表示第一通信设备所支持的成型滤波器的配置数量。
  29. 根据权利要求27所述的信号处理方法,其中,所述基于所述第二配置信息确定所述第二目标系数之后,所述方法还包括:
    向第一通信设备发送第二指示信息,用于指示所述第二目标系数。
  30. 根据权利要求27所述的信号处理方法,其中,基于所述第一配置信息确定所述第二目标系数,包括:
    在第二能力比第一能力强的情况下,或,所述第二能力和第一能力相同的情况下,基于第一通信设备发送的第三指示信息确定所述第二目标系数;
    其中,所述第三指示信息由第一通信设备基于第一配置信息确定;
    所述第三指示信息包括所述第二目标系数;或,所述第三指示信息包括第三索引,用于指示协议预定义的第一相关参数表中所述第三索引对应的第二目标系数。
  31. 根据权利要求27所述的信号处理方法,其中,基于所述第二配置信息和所述第一配置信息确定所述第二目标系数,包括:
    在第二能力与第一能力相同的情况下,向第一通信设备发送第二配置信息配置的至少一个第二系数,所述至少一个第二系数用于第一通信设备结合所述第一配置信息确定所述第二目标系数;
    基于第一通信设备发送的第四指示信息,确定所述第二目标系数。
  32. 根据权利要求31所述的信号处理方法,其中,所述向第一通信设备发送第二配置信息配置的至少一个第二系数,包括:
    向第一通信设备发送第二配置信息表,所述第二配置信息表包括所述第二配置信息配置的至少一个第二系数,及每一个第二系数对应的第四索引;
    其中,所述第四指示信息包括第四索引,用于指示第二配置信息表中所述第四索引对应的第二目标系数;或
    所述第四指示信息包括所述第二目标系数。
  33. 根据权利要求19-26任一项或28-32任一项所述的信号处理方法,其中,所述方法还包括:
    在所述第一信号的时域采样点数发生变化的情况下,重新确定白化滤波器的第一目标系数,并通过第五指示信息指示给第一通信设备。
  34. 根据权利要求28-32任一项所述的信号处理方法,其中,所述方法还包括:
    基于第一触发信息,重新确定所述第一成型滤波器的第二目标系数;
    所述第一触发信息包括周期触发信息或预设事件触发信息。
  35. 根据权利要求34所述的信号处理方法,其中,所述方法还包括:
    在所述第一成型滤波器发生变化的情况下,重新确定白化滤波器的第一目标系数并通过第六指示信息指示给第一通信设备。
  36. 根据权利要求19-26任一项或28-32任一项所述的信号处理方法,其中,所述第一成型滤波器的第二目标系数包括:
    第一成型滤波器的系数,或,第一成型滤波器的生成参数。
  37. 一种信号处理装置,包括:
    第一接收模块,用于接收第二通信设备发送的第一指示信息,所述第一指示信息用于指示第二通信设备确定的白化滤波器的第一目标系数;
    第一处理模块,用于基于所述白化滤波器的第一目标系数,处理接收到的第一信号。
  38. 一种信号处理装置,包括:
    第四确定模块,用于确定白化滤波器的第一目标系数;
    第二发送模块,用于向第一通信设备发送第一指示信息,所述第一指示信息用于指示白化滤波器的第一目标系数。
  39. 一种第一通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至18任一项所述的信号处理方法的步骤。
  40. 一种第二通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求19至36任一项所述的信号处理方法的步骤。
  41. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-36任一项所述的信号处理方法的步骤。
PCT/CN2022/074970 2021-02-03 2022-01-29 信号处理方法、装置、通信设备及存储介质 WO2022166882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110152781.6 2021-02-03
CN202110152781.6A CN114866380A (zh) 2021-02-03 2021-02-03 信号处理方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022166882A1 true WO2022166882A1 (zh) 2022-08-11

Family

ID=82622970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074970 WO2022166882A1 (zh) 2021-02-03 2022-01-29 信号处理方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN114866380A (zh)
WO (1) WO2022166882A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516051A (zh) * 2008-02-01 2009-08-26 奥迪康有限公司 具有改进的反馈抵消***的听音***、方法和应用
US20120243716A1 (en) * 2011-03-25 2012-09-27 Siemens Medical Instruments Pte. Ltd. Hearing apparatus with feedback canceler and method for operating the hearing apparatus
US20190342013A1 (en) * 2018-05-01 2019-11-07 Cavium, Llc Methods and apparatus for sub-block based architecture of cholesky decomposition and channel whitening
CN110731104A (zh) * 2017-05-04 2020-01-24 三星电子株式会社 控制无线通信***中的终端的传输功率的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10003390B2 (en) * 2016-04-21 2018-06-19 Huawei Technologies Canada Co., Ltd. System and method for precoded Faster than Nyquist signaling
CN107018102B (zh) * 2017-03-23 2020-02-21 西安电子科技大学 基于Ungerboeck模型的超奈奎斯特信号检测方法
CN111431607B (zh) * 2020-04-14 2023-01-31 兰州理工大学 一种wo-ftn传输***中的分块矩阵干扰消除方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516051A (zh) * 2008-02-01 2009-08-26 奥迪康有限公司 具有改进的反馈抵消***的听音***、方法和应用
US20120243716A1 (en) * 2011-03-25 2012-09-27 Siemens Medical Instruments Pte. Ltd. Hearing apparatus with feedback canceler and method for operating the hearing apparatus
CN110731104A (zh) * 2017-05-04 2020-01-24 三星电子株式会社 控制无线通信***中的终端的传输功率的方法和装置
US20190342013A1 (en) * 2018-05-01 2019-11-07 Cavium, Llc Methods and apparatus for sub-block based architecture of cholesky decomposition and channel whitening

Also Published As

Publication number Publication date
CN114866380A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2022048639A1 (zh) 数据发送方法、数据接收处理方法及相关设备
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
WO2022007932A1 (zh) 信号发送方法、信道估计方法、发送端设备及接收端设备
WO2022242573A1 (zh) 数据传输方法、装置、通信设备及存储介质
WO2022048649A1 (zh) 导频接收处理方法、发送方法及相关设备
WO2022048642A1 (zh) 帧结构指示方法、帧结构更新方法及相关设备
WO2022199664A1 (zh) 信息发送方法和设备
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
WO2022105913A1 (zh) 通信方法、装置及通信设备
WO2022121891A1 (zh) 导频传输方法、装置、网络侧设备及存储介质
WO2022166882A1 (zh) 信号处理方法、装置、通信设备及存储介质
WO2023066307A1 (zh) 信道估计方法、装置、终端及网络侧设备
WO2022166880A1 (zh) 信号处理方法、装置、通信设备及存储介质
WO2022171076A1 (zh) 资源确定、配置方法及通信设备
WO2022083619A1 (zh) 通信信息的发送、接收方法及通信设备
CN109639602A (zh) 面向5g高速移动场景的低复杂度gfdm信道估计算法
WO2023078453A1 (zh) 传输方法、装置、设备及存储介质
WO2022012632A1 (zh) 信息发送方法、接收方法和通信设备
WO2022042536A1 (zh) 导频传输方法和设备
WO2022242541A1 (zh) 信道估计方法、装置、设备及可读存储介质
WO2022171155A1 (zh) 数据发送处理方法、接收处理方法、装置及设备
WO2023109734A1 (zh) 干扰测量方法、装置、设备及存储介质
WO2022257858A1 (zh) 信号传输方法、装置、网络侧设备和终端设备
WO2023169544A1 (zh) 质量信息确定方法、装置、终端及存储介质
US20240146359A1 (en) Transmission processing method and apparatus, communication device, and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749161

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2024)