WO2022166402A1 - 一种基于滚动螺旋的实训机器人***精密减速器 - Google Patents

一种基于滚动螺旋的实训机器人***精密减速器 Download PDF

Info

Publication number
WO2022166402A1
WO2022166402A1 PCT/CN2021/137366 CN2021137366W WO2022166402A1 WO 2022166402 A1 WO2022166402 A1 WO 2022166402A1 CN 2021137366 W CN2021137366 W CN 2021137366W WO 2022166402 A1 WO2022166402 A1 WO 2022166402A1
Authority
WO
WIPO (PCT)
Prior art keywords
handed
nut
handed nut
screw
thread
Prior art date
Application number
PCT/CN2021/137366
Other languages
English (en)
French (fr)
Inventor
于殿勇
Original Assignee
哈尔滨工业大学
福建(泉州)哈工大工程技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学, 福建(泉州)哈工大工程技术研究院 filed Critical 哈尔滨工业大学
Publication of WO2022166402A1 publication Critical patent/WO2022166402A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2247Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2059Superposing movement by two screws, e.g. with opposite thread direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors

Definitions

  • the invention relates to the field of reducers applied to industrial robots, in particular to a reducer based on rolling screw transmission.
  • the reducer used by the robot is mainly located at the joint as a mechanical transmission component.
  • the rotation range of each joint of the robot is fixed, and the quality of the robot's work mainly depends on the joint reducer.
  • the most widely used robot joint reducers are harmonic reducers and RV reducers.
  • the harmonic reducer is mainly used in the wrist joint, elbow joint and forearm joint of the robot, while the RV reducer is mainly used in the joints with high bearing capacity requirements such as waist and forearm.
  • the principle of rolling screw transmission is similar to that of a ball screw. Its typical application is a planetary roller screw, which can convert rotary motion into linear motion and linear motion into rotary motion. Its transmission mode is different. Several threaded rollers are distributed on the planet around the lead screw. When the lead screw rotates relative to the nut, the threaded roller rolls between the lead screw and the nut, replacing sliding friction with rolling friction, and its transmission efficiency is comparable to that of a ball screw. Compared with the ball screw, the rolling screw drive has the following characteristics: 1.
  • the contact curvature radius of the roller is larger than that of the ball screw under the same size condition, so the contact deformation of the rolling screw drive is smaller, and the shaft High rigidity, large bearing capacity and compact structure; 2.
  • the transmission speed is fast. Because the balls of the ball screw have a circulation device, the balls will chase back and forth. When the speed reaches a certain value, the balls are prone to spin sliding and increase. Friction reduces the efficiency, and at the same time, the balls are prone to collision and noise, so the maximum speed of the ball screw can not be too high, and for the rolling screw drive, there will be no front and rear interference and collision between the rollers, and It is easy to ensure pure rolling, form rolling friction, low noise, high efficiency, and faster speed; 3.
  • the rolling screw drive is easy to operate during installation or maintenance, because multiple rollers are always integrated with the cage, and when the screw is unscrewed When the ball screw is installed, the rollers will not be scattered, and the accuracy requirements can still be met during installation. However, when the ball screw is disassembled and assembled, the balls are easy to fall, and it is difficult to achieve the original transmission accuracy.
  • the reducers used by the existing robot joints cannot improve the flexibility of the robot joint movements.
  • the technical scheme of the present invention is: a precision reducer for a training robot system based on a rolling screw, comprising an input rod, a cage, a primary threaded roller, a left-handed nut, a right-handed nut, a linear guide rail structure, and a secondary threaded roller and the output nut;
  • the input rod is provided with two lead screw segments with different helical directions, which are respectively a left-handed lead screw segment and a right-handed lead screw segment;
  • the cage is a stationary part when the reducer is working; so
  • the left-handed nut and the right-handed nut respectively include an inner thread and an outer thread, the left-handed nut is movably sleeved outside the input rod corresponding to the left-handed screw segment, and the right-handed nut is movably sleeved on the input rod corresponding to the right-handed screw segment outside;
  • the first-level threaded rollers are respectively arranged circumferentially between the left-handed nut and
  • the secondary threaded rollers are circumferentially arranged between the left-handed nut and the left-handed internal thread segment of the output nut and between the right-handed nut and the right-handed internal thread segment of the output nut, respectively,
  • the secondary threaded rollers are respectively engaged with the external thread on the left-handed nut or the right-handed nut and the left-handed thread segment or the right-handed internal thread segment of the output nut to achieve rolling helix and axial movement;
  • the left-handed screw segment The inner thread of the left-handed nut and the first-grade threaded roller between the two, as well as the right-handed screw segment, the inner thread of the right-handed nut and the first-grade threaded roller between the two constitute a first-grade rolling screw drive;
  • the outer thread of the left-handed nut, the output nut and the secondary threaded roller between the two, and the outer thread of the right-handed nut, the output nut and the secondary threaded roller between the two constitute
  • the structure of the linear guide rail is that the left-handed nut and the right-handed nut are respectively provided with a guide hole axially between the inner thread and the outer thread, the cage is provided with a guide rail that penetrates in the guide hole, and the guide rail is connected to the guide hole.
  • the relative movement between the guide holes is achieved by the rolling of cylindrical rollers.
  • each first-level threaded roller is used as a planetary rolling transmission to the left-handed nut and the right-handed nut.
  • the left-handed nut and the right-handed nut can only perform linear motion to form a linear rolling guide rail transmission.
  • Each secondary threaded roller between them forms a rolling screw drive, which drives the left-handed nut and the right-handed nut to move toward and back.
  • the present invention is a new type of robot joint reducer developed based on the rolling screw. Its structural feature is that the two-stage rolling screw is connected in series in the radial direction. It also has the superior performance of rolling screw transmission, and can be used as a substitute for the robot joint RV reducer in some specific occasions.
  • FIG. 1 is a transmission principle diagram of a precision reducer of a training robot system based on a rolling screw according to the present invention.
  • a precision reducer for a training robot system based on a rolling screw includes an input rod 1, a cage 2, a primary threaded roller 3, a left-handed nut 4, a right-handed nut 5, and a secondary threaded roller 6.
  • the output nut 7 and the linear guide rail structure 8, the structural position connection relationship of each component will be described in detail below with reference to the accompanying drawings.
  • the cage 2 is a stationary part when the reducer is in use.
  • the end of the input rod 1 is for connecting with the motor output shaft.
  • the input rod 1 is provided with two lead screw segments with different helical directions, which are respectively a left-handed lead screw segment 11 and a right-handed lead screw. Paragraph 12.
  • the left-handed nut 4 and the right-handed nut 5 respectively include internal threads and external threads, the left-handed nut 4 is movably sleeved outside the input rod 1 corresponding to the left-handed screw segment 11, and the right-handed nut 5 corresponds to the right-handed screw
  • the segment 12 is movably sleeved outside the input rod 12 .
  • the first-level threaded rollers 3 are respectively circumferentially arranged between the left-handed nut 4 and the left-handed screw segment 11 and the right-handed nut 5 and the right-handed screw segment 12.
  • the first-level threaded rollers 3 are respectively connected to the left-handed screw
  • the inner thread on the nut 4 or the right-handed nut 5 and the thread of the left-handed screw segment 11 or the right-handed screw segment 12 are meshed correspondingly to achieve rolling helix and axial movement;
  • a limit installation sleeve can also be provided between the left-handed screw segment 11 or the right-handed screw segment 12 of the rod 1.
  • the limit installation sleeve is a tubular structure, and a number of spaced apart from the axial direction of the limit installation sleeve are arranged on the limit installation sleeve.
  • the linear guide rail structure 8 is provided with the left-handed nut 4 and the cage 2 and the right-handed nut 5 and the cage 2 between the left-handed nut 4 or the right-handed nut 5 for linear guide.
  • the structure can be that the left-handed nut 4 and the right-handed nut 5 are respectively provided with a guide hole (not shown in the figure) axially between the inner thread and the outer thread thereof, and the cage 2 is provided with a guide hole that penetrates through the guide hole.
  • the guide rail (not shown in the figure), the relative movement between the guide rail and the guide hole is realized by rolling the cylindrical roller 81, that is, a linear rolling guide rail structure is formed, which can reduce the gap between the left-handed nut 4 and the right-handed nut 5 and the cage 2 Frictional resistance to moving in a straight line.
  • the output nut 7 is movably sleeved on the outside corresponding to the left-handed nut 4 and the right-handed nut 5.
  • the inner side wall of the output nut 7 is provided with two internal thread segments with different helical directions, which are respectively a left-handed internal thread segment 71 and a right-handed thread. Internal thread segment 72 .
  • the secondary threaded rollers 6 are respectively arranged circumferentially between the left-handed internal thread segments 71 of the left-handed nut 4 and the output nut 7 and the right-handed internal thread segments 72 of the right-handed nut 5 and the output nut 7.
  • the step threaded rollers 6 are respectively engaged with the external threads on the left-handed nut 4 or the right-handed nut 5 and the threads of the left-handed internal thread segment 71 and the right-handed internal thread segment 72 of the output nut 7 to achieve rolling helical and axial movement.
  • the number of threaded heads of the lead screw segment can be determined as required, the number of primary threaded rollers 3 between the left-handed nut 4 and the right-handed nut 5 and the input rod 1 and the number of secondary threaded rollers 6 between the left-handed nut 4 and the input rod 1. 4.
  • the number set between the right-handed nut 5 and the output nut 7 is determined by the bearing capacity and geometric space.
  • the rotation direction of the thread of the primary threaded roller 3 and the secondary threaded roller 6 is to engage and cooperate with them for transmission.
  • the thread of the component is the correspondingly matched thread rotation direction, which is the basic structure realized by the thread transmission. In this embodiment, the thread structure of each thread engaging component will not be described and limited in detail.
  • the primary threaded roller 3 performs planetary rolling between the left-handed nut 4, the right-handed nut 5 and the input rod 1, and when it is transmitted to the left-handed nut 4 and the right-handed nut 5, the two Under the constraints of the linear guide structure, only linear motion can be performed, and the transmission forms a linear rolling guide transmission method.
  • the roller 3 constitutes a primary rolling screw drive;
  • the two-stage threaded rollers 6 between them constitute a two-stage rolling screw drive.
  • the forward and reverse motion of the motor is converted into a rotary output within a certain range.
  • This structure is set in the rolling screw drive.
  • the thread lead of the primary rolling screw drive is smaller than the thread lead of the secondary rolling screw drive, and when the smaller lead with faster rotation speed is transmitted to the output of the larger lead, it can reflect the deceleration in the output. effect, to achieve the role of the reducer.
  • the transmission ratio of the reducer of the present invention only depends on the lead size of the two-stage rolling screw drive, which also provides a theoretical basis for designing the transmission ratio of the reducer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Transmission Devices (AREA)

Abstract

一种基于滚动螺旋的实训机器人***精密减速器,包括输入杆(1)、保持架(2)、一级螺纹滚柱(3)、左旋螺母(4)、右旋螺母(5)、直线导轨结构(8)、二级螺纹滚柱(6)和输出螺母(7);输入杆(1)上设有左旋丝杠段(11)和右旋丝杠段(12);左旋螺母(4)对应左旋丝杠段(11)套在输入杆(1)外,右旋螺母(5)对应右旋丝杠段(12)套在输入杆(1)外;一级螺纹滚柱(3)在左旋螺母(4)与左旋丝杠段(11)及右旋螺母(5)与右旋丝杠段(12)之间布设,直线导轨结构(8)设置左旋螺母(4)与保持架(2)及右旋螺母(5)与保持架(2)之间,输出螺母(7)对应左旋螺母(4)和右旋螺母(5)活动套设在外,输出螺母(7)的内侧壁上设有左旋内螺纹段(71)和右旋内螺纹段(72),二级螺纹滚柱(6)在左旋螺母(4)、右旋螺母(5)与左旋内螺纹段(71)、右旋内螺纹段(72)之间布设。

Description

一种基于滚动螺旋的实训机器人***精密减速器 技术领域
本发明涉及应用于工业机器人的减速器领域,具体是涉及一种基于滚动螺旋传动的减速器。
背景技术
随着科技的发展,人们对工业机器人的传动精度、承载能力等性能指标的要求越来越高。机器人用的减速器作为机械传动部件主要位于关节处,通常机器人各关节的转动范围是固定的,机器人工作质量的好坏主要取决于关节减速器。目前,机器人关节减速器应用最多的是谐波减速器和RV减速器。其中谐波减速器主要应用于机器人的腕关节,肘关节和小臂关节,而RV减速器主要应用在腰和大臂等承载能力要求高的关节。
滚动螺旋传动原理与滚珠丝杠类似,其典型应用是行星滚柱丝杠,它能将旋转运动转化为直线移动,也能将直线移动转化为旋转运动,其传动方式与众不同,在主螺纹丝杠的周围行星分布数个螺纹滚柱,当丝杠相对螺母转动时螺纹滚柱在丝杠和螺母之间滚动,以滚动摩擦代替滑动摩擦,其传动效率与滚珠丝杠的效率相当。滚动螺旋传动与滚珠丝杠相比具有如下特点:1、由于滚动螺旋传动是线接触,相同尺寸条件下滚柱的接触曲率半径比滚珠丝杠大,因此滚动螺旋传动的接触变形更小,轴向刚度高,承载能力大且结构紧凑;2、传动速度快,由于滚珠丝杠的滚珠有循环装置,滚珠之间会前后追击,当速度达到一定值时,滚珠容易产生自旋滑动而增大摩擦,使效率下降,同时滚珠球之间容易发生碰撞,产生噪音,所以滚珠丝杠的最大转速不能太高,而对于滚动螺旋传动来说,滚柱之间不会发生前后干涉和碰撞,并且容易保证纯滚动,形成滚动摩擦,噪音低,效率高,转速更快;3、滚动螺旋传动在安装或维修时操作方便,因为多个滚柱总是与保持架成为整体,当丝杠旋出时,滚柱不会散落,安装时仍能满足精度要求,但是滚珠丝杠拆装时,滚珠容易掉落,并且很难达到原来的传动精度。
技术问题
现有的机器人关节使用的减速器不能够提升机器人关节动作的灵活性能。
技术解决方案
本发明的技术方案是:一种基于滚动螺旋的实训机器人***精密减速器,包括输入杆、保持架、一级螺纹滚柱、左旋螺母、右旋螺母、直线导轨结构、二级螺纹滚柱和输出螺母;所述输入杆上设有两段不同螺旋方向的丝杠段,分别为左旋丝杠段和右旋丝杠段;所述保持架在减速器工作时为不动的部件;所述左旋螺母和右旋螺母分别包括有内螺纹和外螺纹,所述左旋螺母对应左旋丝杠段活动套设在输入杆外,所述右旋螺母对应右旋丝杆段活动套设在输入杆外;所述一级螺纹滚柱分别在左旋螺母与左旋丝杠段以及右旋螺母与右旋丝杆段之间周向布设若干个,所述一级螺纹滚柱分别与左旋螺母或右旋螺母上的内螺纹以及左旋丝杠段或右旋丝杆段的螺纹对应啮合可达到滚动螺旋和轴向移动;所述直线导轨结构设置左旋螺母与保持架及右旋螺母与保持架之间用于左旋螺母或右旋螺母直线活动导向;所述输出螺母对应左旋螺母和右旋螺母活动套设在外,所述输出螺母的内侧壁上设有两段不同螺旋方向的内螺纹段,分别为左旋内螺纹段和右旋内螺纹段,所述二级螺纹滚柱分别在左旋螺母与输出螺母的左旋内螺纹段以及右旋螺母与输出螺母的右旋内螺纹段之间周向布设若干个,所述二级螺纹滚柱分别与左旋螺母或右旋螺母上的外螺纹以及输出螺母的左旋螺纹段或右旋内螺纹段螺纹对应啮合可达到滚动螺旋和轴向移动;所述左旋丝杠段、左旋螺母的内螺纹及两者之间的一级螺纹滚柱,以及右旋丝杠段、右旋螺母的内螺纹及两者之间的一级螺纹滚柱构成一级滚动螺旋传动;所述左旋螺母的外螺纹、输出螺母及两者之间的二级螺纹滚柱,以及右旋螺母的外螺纹、输出螺母及两者之间的二级螺纹滚柱构成二级滚动螺旋传动;所述一级滚动螺旋传动的螺纹导程小于二级滚动螺旋传动的螺纹导程。
所述直线导轨结构为所述左旋螺母和右旋螺母上分别在内螺纹与外螺纹之间轴向开设有导向孔,所述保持架设置有穿设在导向孔内的导轨,所述导轨与导向孔之间通过圆柱滚子滚动实现相对移动。
所述一级螺纹滚柱与输入杆的左旋丝杠段或右旋丝杠段之间还设有限位安装套,所述限位安装套为管段状结构,所述限位安装套上沿轴向间隔布设有若干个供各一级螺纹滚柱可滚动嵌入在内的条形传动通孔。
上述一种基于滚动螺旋的实训机器人***精密减速器,其传动比计算方法是,设减速器的一级滚动螺旋传动的螺纹导程为 q 1,二级滚动螺旋传动的螺纹导程为 q 2,左旋螺母、右旋螺母的移动速度为ν,输入杆的转速为 n 1,输出螺母的转速为 n 2,传动比为 i,则有 i= n 1n 2,由滚动螺旋的传动特点可知 2π/ q 1 =π n 1/30ν, 2π/ q 2 =π n 2/30ν,通过上述两公式可得到传动比为 i= q 2q 1
有益效果
本发明的有益效果是:上述机器人精密减速器当输入丝杠正转或反转时左旋螺母、右旋螺母做低速相向或背向移动,左旋螺母和右旋螺母受与保持架之间的直线导轨结构约束,各一级螺纹滚柱做行星滚动传动至左旋螺母、右旋螺母,左旋螺母、右旋螺母只能做直线运动形成直线滚动导轨传动,在左旋螺母和右旋螺母与输出螺母之间的各二级螺纹滚柱形成滚动螺旋传动,传动至左旋螺母和右旋螺母做相向和背向移动,当左旋螺母和右旋螺母做相向和背向移动时通过与输出螺母的左旋螺纹段或右旋内螺纹段传动从而在输出螺母上实现正转和反转,由于一级滚动螺旋传动的螺纹导程小于二级滚动螺旋传动的螺纹导程,也就是经过左旋螺母和右旋螺母的转换实现减速的目的。
综上本发明是基于滚动螺旋研制的一种新型机器人关节减速器,它的结构特点是将两级滚动螺旋在径向串联,实现的功能是把电机的正反转运动转化为在一定范围内的回转输出,同时具有滚动螺旋传动的优越性能,在某些特定场合可替代机器人关节RV减速器使用。
附图说明
图1是本发明涉及的一种基于滚动螺旋的实训机器人***精密减速器的传动原理图。
本发明的最佳实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
一种基于滚动螺旋的实训机器人***精密减速器,如图1所示,包括输入杆1、保持架2、一级螺纹滚柱3、左旋螺母4、右旋螺母5、二级螺纹滚柱6、输出螺母7和直线导轨结构8,下面结合附图详细描述各部件的结构位置连接关系。
所述保持架2在减速器使用工作时为不动部件。
所述输入杆1的端部供与电机输出轴连接,如图中所示,所述输入杆1上设有两段不同螺旋方向的丝杠段,分别为左旋丝杠段11和右旋丝杠段12。
所述左旋螺母4和右旋螺母5分别包括有内螺纹和外螺纹,所述左旋螺母4对应左旋丝杠段11活动套设在输入杆1外,所述右旋螺母5对应右旋丝杆段12活动套设在输入杆12外。
所述一级螺纹滚柱3分别在左旋螺母4与左旋丝杠段11以及右旋螺母5与右旋丝杆段12之间周向布设若干个,所述一级螺纹滚柱3分别与左旋螺母4或右旋螺母5上的内螺纹以及左旋丝杠段11或右旋丝杆段12的螺纹对应啮合达到滚动螺旋和轴向移动;本实施例中所述一级螺纹滚柱3与输入杆1的左旋丝杠段11或右旋丝杠段12之间还可设有限位安装套,所述限位安装套为管段状结构,所述限位安装套上沿轴向间隔布设有若干个供各一级螺纹滚柱3可滚动嵌入在内的条形传动通孔,该结构设置可使得一级螺纹滚柱3一一对应嵌设在各条形传动通孔内保持一定距离互不干涉。
所述直线导轨结构8设置左旋螺母4与保持架2及右旋螺母5与保持架2之间用于左旋螺母4或右旋螺母5直线活动导向,本实施例中所述直线导轨结构8的结构可为所述左旋螺母4和右旋螺母5上分别在其内螺纹与外螺纹之间轴向开设有导向孔(图中未明示),所述保持架2设置有穿设在导向孔内的导轨(图中未明示),所述导轨与导向孔之间通过圆柱滚子81滚动实现相对移动,即构成直线滚动导轨结构,可降低左旋螺母4和右旋螺母5与保持架2之间直线移动的摩擦阻力。
所述输出螺母7对应左旋螺母4和右旋螺母5活动套设在外,所述输出螺母7的内侧壁上设有两段不同螺旋方向的内螺纹段,分别为左旋内螺纹段71和右旋内螺纹段72。
所述二级螺纹滚柱6分别在左旋螺母4与输出螺母7的左旋内螺纹段71以及右旋螺母5与输出螺母7的右旋内螺纹段72之间周向布设若干个,所述二级螺纹滚柱6分别与左旋螺母4或右旋螺母5上的外螺纹以及输出螺母7的左旋内螺纹段71和右旋内螺纹段72的螺纹对应啮合达到滚动螺旋和轴向移动。
上述结构中丝杠段的螺纹头数可以根据需要确定,一级螺纹滚柱3在左旋螺母4和右旋螺母5及输入杆1之间设置的个数以及二级螺纹滚柱6在左旋螺母4、右旋螺母5与输出螺母7之间设置的个数由承载能力和几何空间决定,上述结构中一级螺纹滚柱3和二级螺纹滚柱6的螺纹旋转方向为与其相啮合配合传动部件的螺纹为相应配合的螺纹旋转方向,这是螺纹传动实现的基础结构,本实施例中就不再详细描述和限定各螺纹啮合部件中螺纹结构的螺旋方向。由于保持架2在使用工作时不动的,一级螺纹滚柱3在左旋螺母4、右旋螺母5与输入杆1之间作行星滚动,传动至左旋螺母4和右旋螺母5时,两者在直线导轨结构的约束下只能做直线运动,传动形成直线滚动导轨传动的方式。
上述左旋丝杠段11、左旋螺母4的内螺纹及两者之间的一级螺纹滚柱3,以及右旋丝杠段12、右旋螺母5的内螺纹及两者之间的一级螺纹滚柱3构成一级滚动螺旋传动;所述左旋螺母4的外螺纹、输出螺母7及两者之间的二级螺纹滚柱6,以及右旋螺母5的外螺纹、输出螺母7及两者之间的二级螺纹滚柱6构成二级滚动螺旋传动,从上述结构及附图可看出这两级的螺旋传动是径向串联传动的,通过这两级的传动且在本发明结构设置中左旋螺母4和右旋螺母5的动作传动方式下,把电机的正反转运动转化为在一定范围内的回转输出,这种结构设置在滚动螺旋传动中是一种新型的传动实现的结构设置,且本发明中一级滚动螺旋传动的螺纹导程小于二级滚动螺旋传动的螺纹导程,转速快的较小导程传动至较大导程输出时,则能够在输出体现出减速的效果,实现减速器的作用。
上述一种基于滚动螺旋的实训机器人***精密减速器,其传动比计算方法是,设减速器的一级滚动螺旋传动的螺纹导程为 q 1,二级滚动螺旋传动的螺纹导程为 q 2,左旋螺母、右旋螺母的移动速度为ν,输入杆的转速为 n 1,输出螺母的转速为 n 2,传动比为 i,则有 i= n 1n 2,由滚动螺旋的传动特点可知 2π/ q 1 =π n 1/30ν , 2π/ q 2 =π n 2/30ν,通过上述两公式可得到传动比为 i= q 2q 1
通过上述传速比计算方法,可以看出本发明的减速器的传动比仅仅取决于两级滚动螺旋传动的导程大小,这也为设计减速器的传动比提供了理论依据。

Claims (4)

  1. 一种基于滚动螺旋的实训机器人***精密减速器,其特征在于:包括输入杆、保持架、一级螺纹滚柱、左旋螺母、右旋螺母、直线导轨结构、二级螺纹滚柱和输出螺母;所述输入杆上设有两段不同螺旋方向的丝杠段,分别为左旋丝杠段和右旋丝杠段;所述保持架在减速器工作时为不动的部件;所述左旋螺母和右旋螺母分别包括有内螺纹和外螺纹,所述左旋螺母对应左旋丝杠段活动套设在输入杆外,所述右旋螺母对应右旋丝杆段活动套设在输入杆外;所述一级螺纹滚柱分别在左旋螺母与左旋丝杠段以及右旋螺母与右旋丝杆段之间周向布设若干个,所述一级螺纹滚柱分别与左旋螺母或右旋螺母上的内螺纹以及左旋丝杠段或右旋丝杆段的螺纹对应啮合可达到滚动螺旋和轴向移动;所述直线导轨结构设置左旋螺母与保持架及右旋螺母与保持架之间用于左旋螺母或右旋螺母直线活动导向;所述输出螺母对应左旋螺母和右旋螺母活动套设在外,所述输出螺母的内侧壁上设有两段不同螺旋方向的内螺纹段,分别为左旋内螺纹段和右旋内螺纹段,所述二级螺纹滚柱分别在左旋螺母与输出螺母的左旋螺纹段以及右旋螺母与输出螺母的右旋内螺纹段之间周向布设若干个,所述二级螺纹滚柱分别与左旋螺母或右旋螺母上的外螺纹以及输出螺母的左旋内螺纹段或右旋内螺纹段螺纹对应啮合可达到滚动螺旋和轴向移动;所述左旋丝杠段、左旋螺母的内螺纹及两者之间的一级螺纹滚柱,以及右旋丝杠段、右旋螺母的内螺纹及两者之间的一级螺纹滚柱构成一级滚动螺旋传动;所述左旋螺母的外螺纹、输出螺母及两者之间的二级螺纹滚柱,以及右旋螺母的外螺纹、输出螺母及两者之间的二级螺纹滚柱构成二级滚动螺旋传动;所述一级滚动螺旋传动的螺纹导程小于二级滚动螺旋传动的螺纹导程。
  2. 如权利要求1所述的一种基于滚动螺旋的实训机器人***精密减速器,其特征在于,所述直线导轨结构为所述左旋螺母和右旋螺母上分别在内螺纹与外螺纹之间轴向开设有导向孔,所述保持架设置有穿设在导向孔内的导轨,所述导轨与导向孔之间通过圆柱滚子滚动实现相对移动。
  3. 如权利要求1所述的一种基于滚动螺旋的实训机器人***精密减速器,其特征在于,所述一级螺纹滚柱与输入杆的左旋丝杠段或右旋丝杠段之间还设有限位安装套,所述限位安装套为管段状结构,所述限位安装套上沿轴向间隔布设有若干个供各一级螺纹滚柱可滚动嵌入在内的条形传动通孔。
  4. 如权利要求1、2或3所述的一种基于滚动螺旋的实训机器人***精密减速器,其特征在于,其传动比计算方法是,设减速器的一级滚动螺旋传动的螺纹导程为 q 1,二级滚动螺旋传动的螺纹导程为 q 1,左旋螺母、右旋螺母的移动速度为ν,输入杆的转速为 n 1,输出螺母的转速为 n 2,传动比为 i,则有 i= n 1n 2,由滚动螺旋的传动特点可知 2π/ q 1 =π n 1/30ν,  2π/ q 2 =π n 2/30ν,通过上述两公式可得到传动比为 i= q 2q 1
PCT/CN2021/137366 2021-02-02 2021-12-13 一种基于滚动螺旋的实训机器人***精密减速器 WO2022166402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110145603.0 2021-02-02
CN202110145603.0A CN112797130A (zh) 2021-02-02 2021-02-02 一种基于滚动螺旋传动的机器人精密减速器

Publications (1)

Publication Number Publication Date
WO2022166402A1 true WO2022166402A1 (zh) 2022-08-11

Family

ID=75813750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137366 WO2022166402A1 (zh) 2021-02-02 2021-12-13 一种基于滚动螺旋的实训机器人***精密减速器

Country Status (2)

Country Link
CN (1) CN112797130A (zh)
WO (1) WO2022166402A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112797130A (zh) * 2021-02-02 2021-05-14 哈尔滨工业大学 一种基于滚动螺旋传动的机器人精密减速器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105736662A (zh) * 2016-03-21 2016-07-06 富莱茵汽车部件有限公司 一种两级滚柱丝杠减速器
CN109854698A (zh) * 2019-01-16 2019-06-07 杭州新剑机器人技术股份有限公司 行星滚柱丝杠副传动机构
WO2020164653A1 (de) * 2019-02-12 2020-08-20 Schaeffler Technologies AG & Co. KG Planetenwälzgewindetrieb
CN112797130A (zh) * 2021-02-02 2021-05-14 哈尔滨工业大学 一种基于滚动螺旋传动的机器人精密减速器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080252B2 (ja) * 1991-10-21 2000-08-21 日本精工株式会社 直線作動ユニット
US8367232B2 (en) * 2008-04-16 2013-02-05 Clear View Enclosures, Inc. Venting system for an underground enclosure
JPWO2013108638A1 (ja) * 2012-01-19 2015-05-11 日本精工株式会社 自己潤滑性複合材料、並びにそれを用いた転がり軸受、直動装置、ボールねじ装置、直動案内装置、及び搬送装置
CN108556832A (zh) * 2018-04-08 2018-09-21 南京航空航天大学 一种智能电子助力制动装置及其工作方法
CN112161030A (zh) * 2020-09-17 2021-01-01 西北工业大学 一种双向重载二级行星滚柱丝杠副
CN214534328U (zh) * 2021-02-02 2021-10-29 哈尔滨工业大学 一种基于滚动螺旋传动的机器人精密减速器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105736662A (zh) * 2016-03-21 2016-07-06 富莱茵汽车部件有限公司 一种两级滚柱丝杠减速器
CN109854698A (zh) * 2019-01-16 2019-06-07 杭州新剑机器人技术股份有限公司 行星滚柱丝杠副传动机构
WO2020164653A1 (de) * 2019-02-12 2020-08-20 Schaeffler Technologies AG & Co. KG Planetenwälzgewindetrieb
CN112797130A (zh) * 2021-02-02 2021-05-14 哈尔滨工业大学 一种基于滚动螺旋传动的机器人精密减速器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN, DAYI: "RESEARCH ON A ROBOT PRECISE REDUCER BASED ON PLANETARY ROLLER SCREW", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 02, 1 July 2014 (2014-07-01), CN , pages 1 - 83, XP055956658, ISSN: 1674-0246 *
SUN, DONGXU: " RESEARCH ON DECELERATOR BASED ON TWO-STAGE PLANETARY ROLLER SCREW", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY II, no. 02, 1 July 2015 (2015-07-01), pages 1 - 76, XP055956653 *

Also Published As

Publication number Publication date
CN112797130A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN106286763B (zh) 一种谐波减速器及其输入传动结构
US20150300554A1 (en) Actively driven spiral pipeline robot
CN106903712B (zh) 基于差动绳传动的两自由度共线机械臂关节
CN110107664B (zh) 一种大长径比螺母反向式行星滚柱丝杠
US9145919B2 (en) Speed-reduction transmission bearing
WO2022166402A1 (zh) 一种基于滚动螺旋的实训机器人***精密减速器
CN108818528B (zh) 一种机器人关节传动机构及其运行方法
US20220128138A1 (en) Transmission
CN105864381A (zh) 一种改进的软轴螺旋传动装置
CN110671482A (zh) 双波复波式活齿减速器
CN104179911B (zh) 一种长螺母反向式行星滚柱丝杠
KR20230107546A (ko) 기어쌍 및 장동 감속기
CN214534328U (zh) 一种基于滚动螺旋传动的机器人精密减速器
CN109630649B (zh) 一种行星减速装置
CN108843746B (zh) 一种用于机械人的精密减速器
CN110103018A (zh) Pwg型差动式行星滚柱丝杠装配工具及其装配方法
CN216715140U (zh) 一种双向伸缩机构
CN106884961B (zh) 轴承减速机
CN107906176B (zh) 一种行星滚柱丝杠
CN213655628U (zh) 一种新型滚柱结构的行星滚柱丝杠
CN211951366U (zh) 柔轮及谐波减速器
CN108006185B (zh) 直线和/或旋转运动执行机构
CN206211753U (zh) 压旋机
CN112128328A (zh) 一种新型螺旋传动机构
CN206175601U (zh) 直线和/或旋转运动执行机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924395

Country of ref document: EP

Kind code of ref document: A1