WO2022166362A1 - 一种基于隐空间学习和流行约束的无监督特征选择方法 - Google Patents

一种基于隐空间学习和流行约束的无监督特征选择方法 Download PDF

Info

Publication number
WO2022166362A1
WO2022166362A1 PCT/CN2021/135895 CN2021135895W WO2022166362A1 WO 2022166362 A1 WO2022166362 A1 WO 2022166362A1 CN 2021135895 W CN2021135895 W CN 2021135895W WO 2022166362 A1 WO2022166362 A1 WO 2022166362A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
latent space
feature selection
expressed
learning
Prior art date
Application number
PCT/CN2021/135895
Other languages
English (en)
French (fr)
Inventor
朱信忠
徐慧英
郑晓
唐厂
赵建民
Original Assignee
浙江师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江师范大学 filed Critical 浙江师范大学
Priority to US18/275,417 priority Critical patent/US20240126829A1/en
Publication of WO2022166362A1 publication Critical patent/WO2022166362A1/zh
Priority to ZA2023/08289A priority patent/ZA202308289B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning

Definitions

  • the present application relates to the technical fields of signal processing and data analysis, and in particular, to an unsupervised feature selection method based on latent space learning and popular constraints.
  • feature selection methods can generally be divided into three categories: supervised feature selection, unsupervised feature selection, and semi-supervised feature selection. selection).
  • unsupervised feature selection methods can be summarized into three types, namely, Filter, Wrapper and Embedded.
  • the purpose of this application is to provide an unsupervised feature selection method based on latent space learning and prevalence constraints, aiming at the deficiencies of the prior art.
  • An unsupervised feature selection method based on latent space learning and prevalence constraints including:
  • step S2 obtains a feature selection model with latent space learning, which is expressed as:
  • V ⁇ R n ⁇ c denotes the latent space matrix of n data, c denotes the number of latent factors; X ⁇ R n ⁇ d denotes the original data matrix, d denotes the data feature dimension; W ⁇ R d ⁇ c denotes the transformation Coefficient matrix, A represents the adjacency matrix; V T represents the transpose matrix of V; F represents the Frobenius norm; ⁇ and ⁇ represent parameters that balance latent space learning and latent space feature selection.
  • step S2 is specifically:
  • W ⁇ R d ⁇ c represents the conversion coefficient matrix
  • step S3 the objective function is obtained in the step S3, which is expressed as:
  • represents the regularization coefficient of the balanced local popular geometry
  • L represents the Laplacian matrix
  • L DS
  • D represents the diagonal matrix
  • S represents a similarity matrix that measures the similarity between pairs of data instances, expressed as:
  • N k ( xi ) represents the set of nearest neighbors of xi ;
  • represents the width parameter;
  • x i ⁇ R d represents each row in the original data matrix X ⁇ R n ⁇ d samples;
  • x j represents the original data matrix X ⁇ R for each column in the n ⁇ d sample.
  • step S4 is specifically:
  • ⁇ R n ⁇ n represents the diagonal matrix
  • represents allocation
  • V ij represents the element in the i-th row and the j-th column in the matrix V;
  • the latent space matrix V is fixed, and the objective function is expressed as:
  • the diagonal matrix ⁇ is expressed as:
  • 2 represents the 2 norm of the i-th row vector, that is, the feature quantity
  • the objective function F(W) is transformed into a weighted least squares problem, which is expressed as:
  • step S44 the conversion coefficient matrix W is fixed, and the objective function is expressed as:
  • the Lagrangian multiplier ⁇ R n ⁇ c is set, and the Lagrangian function is constructed, which is expressed as:
  • this application proposes an unsupervised feature selection method (LRLMR) based on latent space learning and prevalence constraints, which is compared with other unsupervised feature selection algorithms such as: LS, Baseline, RSR and DSRMR, etc.
  • the LRLMR method performs feature selection in a learned latent latent space that is robust to noise; the latent latent space is modeled by a non-negative matrix factorization of similarity matrices that explicitly reflects the relationships between data instances . Meanwhile, the local manifold structure of the original data space is preserved by the graph-based manifold constraints in the latent latent space.
  • an efficient iterative algorithm is developed to optimize the LRLMR objective function, and at the same time, the convergence of the LRLMR method is theoretically analyzed and proved.
  • Embodiment 1 is a flowchart of an unsupervised feature selection method based on latent space learning and popular constraints provided by Embodiment 1;
  • Fig. 2 is the statistical data schematic diagram of eight databases provided by embodiment two;
  • FIG. 3 is a schematic diagram of the clustering results (ACC% ⁇ std%) of different feature selection methods provided in Embodiment 2 on each database;
  • FIG. 4 is a schematic diagram of the clustering results (NMI% ⁇ std%) of different feature selection methods provided in Embodiment 2 on each database;
  • Embodiment 5 is a schematic diagram of the ACC values of different methods corresponding to different numbers of selected features on different data sets provided by Embodiment 2;
  • FIG. 6 is a schematic diagram of the NMI values of different methods corresponding to different numbers of selected features on different data sets provided by Embodiment 2;
  • FIG. 13 is a schematic diagram of the convergence curves of the algorithm 1 provided in the second embodiment on different data sets.
  • this application provides an unsupervised feature selection method based on latent space learning and prevalence constraints.
  • An unsupervised feature selection method based on latent space learning and popularity constraints provided by this embodiment, as shown in Figure 1, includes:
  • LRLMR latent latent space learning and graph-based manifold constraints
  • traditional similarity graphs are constructed to characterize the interconnection of data samples.
  • Latent space learning is embedded into the framework to reduce the negative effects of noisy connections in similarity graphs.
  • the feature latent space is modeled in the learned latent space, which can not only characterize the intrinsic data structure, but also serve as label information to guide the feature selection stage.
  • this similarity graph is also used to preserve the local manifold structure of the original data in the feature transformation space.
  • step S11 the original data matrix is input to obtain a feature selection model.
  • step S12 the latent space learning is embedded into the feature selection model to obtain a feature selection model with latent space learning. Specifically include:
  • the latent latent spaces of different instances interact and form link information.
  • the latent latent space of link information can be formed through a symmetric non-negative matrix factorization model, which decomposes the adjacency matrix A into a non-negative matrix V and its transpose matrix V T ; the product of V and V T in a low-dimensional latent space, expressed as:
  • the feature selection in the latent space can avoid the influence of noise, and the data transformed by the feature transformation matrix is beneficial to the learning of the latent space.
  • latent factors encode some hidden properties of the instance, which should be related to some features of the data instance. Therefore, with the latent latent space matrix V as the constraint, the content information of the data is modeled by the multiple linear regression model, which is expressed as:
  • W ⁇ R d ⁇ c represents the conversion coefficient matrix
  • W ⁇ R d ⁇ c is the transformation coefficient matrix, and the 2-norm of the i-th row vector
  • the expression for row sparsity is desired. To achieve this goal, for the joint sparsity of all latent factors, add a l 2,1 norm regularization term on , denoted as:
  • V ⁇ R n ⁇ c denotes the latent space matrix of n data, c denotes the number of latent factors; X ⁇ R n ⁇ d denotes the original data matrix, d denotes the data feature dimension; W ⁇ R d ⁇ c denotes the transformation Coefficient matrix, A represents the adjacency matrix; V T represents the transpose matrix of V; F represents the Frobenius norm; ⁇ and ⁇ represent parameters that balance latent space learning and latent space feature selection.
  • step S13 the graph Laplacian regularization term is added to the feature selection model with latent space learning to obtain the objective function.
  • represents the regularization coefficient of the balanced local popular geometry
  • L represents the Laplacian matrix
  • L DS
  • D represents the diagonal matrix
  • S represents a similarity matrix that measures the similarity between pairs of data instances, expressed as:
  • N k ( xi ) represents the set of nearest neighbors of xi ; ⁇ represents the width parameter; x i ⁇ R d represents each row in the original data matrix X ⁇ R n ⁇ d samples; x j represents the original data matrix X ⁇ R for each column in the n ⁇ d sample.
  • the adjacency matrix A is obtained using the above exponential function, the only difference is that A is fully connected, while S is sparse.
  • the transformation coefficient matrix W and the latent space matrix V can be obtained by minimizing the objective function F(W, V). It can be seen from the function that when W is fixed, the latent latent space learning stage is not only related to the adjacency matrix A, but also to the data Matrix X is related. In this case, the learned latent latent space can capture the inherent connections between data instances and is more robust to similarity noise in the initial adjacency matrix. When the latent latent space matrix V is fixed, V can be regarded as label information to guide feature selection.
  • step S14 an alternate iterative optimization strategy is used to solve the objective function. Specifically:
  • F(W) can be transformed into a weighted least squares problem, expressed as:
  • the Lagrangian multiplier ⁇ R n ⁇ c is set, and the Lagrangian function is constructed:
  • represents allocation;
  • V ij represents the element in the i-th row and the j-th column in the matrix V.
  • step S15 each feature in the original matrix is sorted, and the top k features are selected to obtain the optimal feature subset.
  • this embodiment proposes an unsupervised feature selection method (LRLMR) based on latent space learning and popularity constraints, which is compared with other unsupervised feature selection algorithms, such as: LS, Baseline, RSR and DSRMR, etc.
  • LRLMR methods perform feature selection in a learned latent latent space that is robust to noise; the latent latent space is modeled by a non-negative matrix factorization of similarity matrices that explicitly reflects the differences between data instances. relation. Meanwhile, the local manifold structure of the original data space is preserved by the graph-based manifold constraints in the latent latent space.
  • an efficient iterative algorithm is developed to optimize the LRLMR objective function, and at the same time, the convergence of the LRLMR method is theoretically analyzed and proved.
  • Embodiment 1 The difference between an unsupervised feature selection method based on latent space learning and popularity constraints provided in this embodiment and Embodiment 1 is that:
  • This embodiment is to fully verify the validity of the LRLMR method of the present application.
  • RSR Regularized self-representative feature selection, this method uses the norm to calculate the fitting error and promotes sparsity.
  • MFFS Matrix Factorization Feature Selection, a new unsupervised feature selection criterion developed from a subspace learning perspective, which transforms feature selection into a matrix factorization problem.
  • GLoSS Global and local structure preserving sparse subspace learning model for unsupervised feature selection, which can simultaneously achieve feature selection and subspace learning.
  • GSR_SFS Graph self-representation sparse feature selection, using traditional fixed similarity graphs to preserve the local geometry of the data.
  • DSRMR Robust unsupervised feature selection through double self-representation and multiple regularization, using feature self-representation terms for feature reconstruction, while using sample self-representation terms to learn local geometry-preserving similarity maps.
  • the LRLMR method is compared with nine other unsupervised feature selection methods on eight public databases.
  • the eight databases include three face image databases (ORL, orlraws10P and warpPIE10P), one object image database (COIL20), one speech signal database (Isolet), two biological microarray databases (CLL_SUB_111 and Prostate_GE) and one digital image database ( USPS). Statistics for these databases are shown in Figure 2.
  • ACC clustering accuracy
  • NMI normalized mutual information
  • map(q i ) is one of the best mapping functions, and its function is to match the experimentally obtained cluster labels with the real labels of the samples through the Kuhn-Munkres algorithm.
  • NMI NMI
  • H(P) and H(Q) represent the entropy of P and Q, respectively, and I(P, Q) represent the mutual information between P and Q.
  • P is the clustering result of the input samples, and Q is their ground-truth labels.
  • NMI reflects the degree of agreement between the clustering results and the ground-truth labels.
  • the parameters of the LRLMR algorithm and other comparison methods will be set.
  • the Gaussian kernel width of the distance function is set to 1.
  • the remaining parameters of all methods are adjusted from ⁇ 10-3,10-2,10-1,1,10,102,103 ⁇ with a "grid search" strategy. Since the optimal number of selected features is unknown, a "grid search" strategy is used for all databases to set different numbers of selected features from ⁇ 20, 30, ..., 90, 100 ⁇ .
  • K-means algorithm is used to cluster their selected low-dimensional features. Considering that the performance of K-means clustering can be affected by initialization, 20 different random initialization experiments are repeated and their average values are recorded at the end.
  • Figures 3 and 4 present the ACC and NMI values of different methods on the eight databases. It can be seen that in terms of ACC, this application is better than other methods for three reasons: First, unlike previous methods that dealt with each data instance independently, this method exploits the potential difference between data instances through latent space learning. Second, this method performs feature selection in the latent space rather than in the initial data space, which makes the method more robust to noisy features and data instances; third, graph-based popular regularization constraints The local geometry of the data is well preserved.
  • the LRLMR method significantly outperformed other methods on two biological microarray databases (CLL_SUB_111 and Prostate_GE) due to the characteristics of biological genetic data acquisition.
  • the biological microarray database is obtained by detecting different genes under different conditions, the number of detected genes corresponds to the feature dimension, and each detection condition produces a data instance.
  • different data instances are essentially derived from the same gene, so different data instances must depend on each other. Since the latent latent space learning in the LRLMR method can directly exploit this connection between instances of microarray data, the present method significantly outperforms other methods on these two databases.
  • Figure 5 and Figure 6 show the performance of all methods on different databases with different numbers of selected features. It can be seen that this method is always better than other methods for different selected feature numbers. It is worth noting that when the number of features is smaller, the ACC value of the LRLMR method is higher than that of the LS method, which proves that this method can better save the clustering time and improve the clustering accuracy.
  • This application contains three balance parameters ( ⁇ , ⁇ and ⁇ ), in order to study the sensitivity of this application to the parameters, two of them are fixed, and the remaining one is changed.
  • the main time is spent in two parts: solving W and solving V.
  • the main time spent depends on inverting the matrix (X T X+ ⁇ + ⁇ X T LX), and the time complexity of each iteration is ⁇ (d 3 ); for solving the V part, since only the element's The time complexity of multiplication and division can be ignored. Therefore, the total time spent in Algorithm 1 is t t 1 ⁇ (d 3 ), where t 1 is the number of iterations to update W, and t is the number of iterations of the outer loop of Algorithm 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Operations Research (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本申请公开了一种基于隐空间学习和流行约束的无监督特征选择方法,包括:S11.输入原始数据矩阵,得到特征选择模型;S12.将隐空间学习嵌入至特征选择模型,得到具有隐空间学习的特征选择模型;S13.将图拉普拉斯正则化项加入具有隐空间学习的特征选择模型中,得到目标函数;S14.采用交替迭代优化策略求解目标函数;S15.对原始矩阵中的每个特征进行排序,并选择排名前k的特征,得到最优特征子集。本申请在学习的潜在隐空间中进行特征选择,该空间对于噪声是鲁棒的;潜在隐空间通过相似矩阵的非负矩阵分解来建模,该矩阵分解能明确地反映数据实例之间的关系。同时,原始数据空间的局部流形结构由潜在隐空间中基于图的流形约束项保留。

Description

一种基于隐空间学习和流行约束的无监督特征选择方法 技术领域
本申请涉及信号处理、数据分析技术领域,尤其涉及一种基于隐空间学习和流行约束的无监督特征选择方法。
背景技术
随着信息***时代的到来,大量的高纬数据产生,例如图像、文本和医学微阵列等。直接处理这些高维数据不仅会显著增加算法和计算机硬件的计算时间和内存负担,而且由于不相关性、噪声和冗余维度的存在会导致性能不佳。高维数据的内在维度通常很小,并且只有一部分特征可以用来完成任务。作为高维数据的有效预处理,特征选择旨在通过在保留内在数据结构的同时去除一些不相关和冗余的特征来实现降维。
在过去的几十年中,基于不同的数据先验已经提出了许多特征选择方法。根据是否利用了样本数据类别的标签信息,特征选择方法一般可分为三类:有监督特征选择(Supervised feature selection)、无监督特征选择(Unsupervised feature selection)和半监督特征选择(Semi-supervised feature selection)。
通常,无监督特征选择方法可以概括为三种,即,过滤式(Filter)、封装式(Wrapper)和嵌入式(Embedded)。
虽然先前的无监督方法已经取得了不错的表现,但是仍然存在两个问题。首先,真实数据实例不仅与高维特征相关联,也固有地相互连接,这些互连信息并未完全用于特征选择。第二,在原始数据空间中执行特征选择,这些方法的性能通常受到噪声特征和样本的影响。
发明内容
本申请的目的是针对现有技术的缺陷,提供了一种基于隐空间学习和流行约束的无监督特征选择方法。
为了实现以上目的,本申请采用以下技术方案:
一种基于隐空间学习和流行约束的无监督特征选择方法,包括:
S1.输入原始数据矩阵,得到特征选择模型;
S2.将隐空间学习嵌入至特征选择模型,得到具有隐空间学习的特征选择模型;
S3.将图拉普拉斯正则化项加入具有隐空间学习的特征选择模型中,得到目标函数;
S4.采用交替迭代优化策略求解目标函数;
S5.对原始矩阵中的每个特征进行排序,并选择排名前k的特征,得到最优特征子集。
进一步的,所述步骤S2得到具有隐空间学习的特征选择模型,表示为:
Figure PCTCN2021135895-appb-000001
s.t.V≥0
其中,V∈R n×c表示n个数据的隐空间矩阵,c表示潜在因素的个数;X∈R n×d表示原始数据矩阵,d表示数据特征维度;W∈R d×c表示转换系数矩阵,A表示邻接矩阵;V T表示V的转置矩阵;F表示Frobenius范数;α和β表示平衡隐空间学习和潜在空间特征选择的参数。
进一步的,所述步骤S2具体为:
S21.通过对称的非负矩阵分解模型将邻接矩阵A分解为一个隐空间矩阵V和隐空间矩阵V的转置矩阵V T;其中V与V T在低维潜在空间中的乘积,表示为:
Figure PCTCN2021135895-appb-000002
S22.将隐空间矩阵V中的数据进行特征矩阵变换,并通过多元线性回归模型对变换过的数据进行建模,表示为:
Figure PCTCN2021135895-appb-000003
其中,W∈R d×c表示转换系数矩阵;
S23.在转换系数矩阵W上添加l 2,1范数正则化项,表示为:
Figure PCTCN2021135895-appb-000004
S24.将隐空间学习嵌入至特征选择模型,得到具有隐空间学习的特征选择模型。
进一步的,所述步骤S3中得到目标函数,表示为:
Figure PCTCN2021135895-appb-000005
s.t.V≥0
其中,γ表示平衡局部流行几何结构正则化系数;L表示拉普拉斯矩阵,L=D-S;D表示对角矩阵,
Figure PCTCN2021135895-appb-000006
S表示测量数据实例对之间相似度的相似矩阵,表示为:
Figure PCTCN2021135895-appb-000007
其中,N k(x i)表示x i最近邻居的集合;σ表示宽度参数;x i∈R d表示原始数据矩阵X∈R n×d样本中的每一行;x j表示原始数据矩阵X∈R n×d样本中的每一列。
进一步的,所述步骤S4具体为:
S41.初始化隐空间矩阵V,V=rand(n,c),其中,rand()表示随机函数,迭代次数t=0,t 1=0,
Figure PCTCN2021135895-appb-000008
S42.固定隐空间矩阵V,并更新转换系数矩阵W,表示为:
Figure PCTCN2021135895-appb-000009
其中,Λ∈R n×n表示对角矩阵;
S43.将迭代次数设置为t 1=t 1+1;
S44.固定转换系数矩阵W,并更新隐空间矩阵V,表示为:
Figure PCTCN2021135895-appb-000010
其中,←表示分配;V ij表示矩阵V中第i行第j列元素;
S45.将迭代次数设置为t=t+1;
S46.重复执行步骤S42-S45,直至目标函数收敛。
进一步的,所述步骤S42中固定隐空间矩阵V,则目标函数表示为:
Figure PCTCN2021135895-appb-000011
将对角矩阵Λ引入目标函数,对角矩阵Λ表示为:
Figure PCTCN2021135895-appb-000012
其中,||W(i,:)|| 2表示第i行向量的2范数,即特征量;
目标函数F(W)转化为加权最小二乘问题,表示为:
Figure PCTCN2021135895-appb-000013
计算
Figure PCTCN2021135895-appb-000014
关于w的导数,并将计算的导数结果设置为0,表示为:
X T(XW-V)+αΛW+γX TLXW=0。
进一步的,所述步骤S44中固定转换系数矩阵W,则目标函数表示为:
Figure PCTCN2021135895-appb-000015
运用拉格朗日乘数法解决目标函数F(V),为了限制V≥0,设置了拉格朗日乘数Θ∈R n×c,构建拉格朗日函数,表示为:
Figure PCTCN2021135895-appb-000016
计算
Figure PCTCN2021135895-appb-000017
关于V的导数,并将计算的导数结果设置为0,表示为:
-2XW+2V-4βAV+4βVV TV+Θ=0。
与现有技术相比,本申请提出了一种基于隐空间学习和流行约束的无监督特征选择方法(LRLMR),与其他无监督特征选择算法,如:LS、Baseline、RSR和DSRMR等进行比较,LRLMR方法在学习的潜在隐空间中进行特征选择,该空间对于噪声是鲁棒的;潜在隐空间通过相似矩阵的非负矩阵分解来建模,该矩阵分解能明确地反映数据实例之间的关系。同时,原始数据空间的局部流形结构由潜在隐空间中基于图的流形约束项保留。而且,开发了一种有效的迭代算法来优化LRLMR目标函数,同时,在理论上分析与证明了LRLMR方法的收敛性。
附图说明
图1是实施例一提供的一种基于隐空间学习和流行约束的无监督特征选择方法流程图;
图2是实施例二提供的八个数据库的统计资料示意图;
图3是实施例二提供的不同的特征选择方法在各个数据库上的聚类结果(ACC%±std%)示意图;
图4是实施例二提供的不同的特征选择方法在各个数据库上的聚类结果(NMI%±std%)示意图;
图5是实施例二提供的在不同的数据集上,不同方法对应不同数量的选定特征的ACC值示意图;
图6是实施例二提供的在不同的数据集上,不同方法对应不同数量的选定特征的NMI值示意图;
图7是实施例二提供的LRLMR方法在保持参数α=1,β=1,改变γ的值的情况下的 ACC值示意图;
图8是实施例二提供的LRLMR方法在保持参数α=1,β=1,改变γ的值的情况下的NMI值示意图;
图9是实施例二提供的LRLMR方法在保持参数α=1,γ=1,改变β的值的情况下的ACC值示意图;
图10是实施例二提供的LRLMR方法在保持参数α=1,γ=1,改变β的值的情况下的NMI值示意图;
图11是实施例二提供的LRLMR方法在保持参数β=1,γ=1,改变α的值的情况下的ACC值示意图;
图12是实施例二提供的LRLMR方法在保持参数β=1,γ=1,改变α的值的情况下的NMI值示意图;
图13是实施例二提供的算法一在不同的数据集上的收敛曲线示意图。
具体实施方式
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本申请的其他优点与功效。本申请还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
本申请针对现有缺陷,提供了一种基于隐空间学习和流行约束的无监督特征选择方法。
实施例一
本实施例提供的一种基于隐空间学习和流行约束的无监督特征选择方法,如图1所示,包括:
S11.输入原始数据矩阵,得到特征选择模型;
S12.将隐空间学习嵌入至特征选择模型,得到具有隐空间学习的特征选择模型;
S13.将图拉普拉斯正则化项加入具有隐空间学习的特征选择模型中,得到目标函数;
S14.采用交替迭代优化策略求解目标函数;
S15.对原始矩阵中的每个特征进行排序,并选择排名前k的特征,得到最优特征子集。
本实施例提出的基于潜在隐空间学习和基于图的流形约束(LRLMR)的特征选择方法。 具体而言,传统的相似图是为了表征数据样本的互连而构建的。潜在的隐空间学习被嵌入到框架中以减少相似图中噪声连接的消极影响。同时,特征隐空间在学习的潜在空间中建模,不仅可以表征内在数据结构,而且还可以作为标签信息来指导特征选择阶段。此外,该相似图也用于保留特征变换空间中原始数据的局部流形结构。
在步骤S11中,输入原始数据矩阵,得到特征选择模型。
输入原始数据矩阵X∈R n×d,每一行x i∈R d都是一个样本。
在步骤S12中,将隐空间学习嵌入至特征选择模型,得到具有隐空间学习的特征选择模型。具体包括:
S121.通过对称的非负矩阵分解模型将邻接矩阵A分解为一个隐空间矩阵V和隐空间矩阵V的转置矩阵V T
不同实例的潜在隐空间相互作用并形成链接信息,通过对称的非负矩阵分解模型,可以形成链接信息的潜在隐空间,该模型将邻接矩阵A分解为一个非负矩阵V和它的转置矩阵V T;将V与V T在一个低维潜在空间中的乘积,表示为:
Figure PCTCN2021135895-appb-000018
S122.将隐空间矩阵V中的数据进行特征矩阵变换,并通过多元线性回归模型对变换过的数据进行建模;
在潜在的隐空间中进行特征选择可以避免噪声的影响,同时经过特征转换矩阵变换过的数据有利于隐空间的学习。另外,潜在因素编码了实例的一些隐藏属性,它们应该与数据实例的一些特征相关。因此以潜在隐空间矩阵V为约束,通过多元线性回归模型对数据的内容信息进行建模,表示为:
Figure PCTCN2021135895-appb-000019
其中,W∈R d×c表示转换系数矩阵。
S123.在转换系数矩阵W上添加l 2,1范数正则化项;
W∈R d×c是转换系数矩阵,第i行向量的2范数||W(i,:)|| 2可以作为特征量,因为它反映了第i个特征在潜在空间中的重要性。为正则化系数矩阵,希望得到行稀疏性的表达式。为了实现这个目标,对于所有潜在因素的联合稀疏性,在上添加l 2,1范数正则化项,表示为:
Figure PCTCN2021135895-appb-000020
其中,α控制模型的稀疏性。
S124.将隐空间学习嵌入至特征选择模型,得到具有隐空间学习的特征选择模型,表示为:
Figure PCTCN2021135895-appb-000021
s.t.V≥0
其中,V∈R n×c表示n个数据的隐空间矩阵,c表示潜在因素的个数;X∈R n×d表示原始数据矩阵,d表示数据特征维度;W∈R d×c表示转换系数矩阵,A表示邻接矩阵;V T表示V的转置矩阵;F表示Frobenius范数;α和β表示平衡隐空间学习和潜在空间特征选择的参数。
在步骤S13中,将图拉普拉斯正则化项加入具有隐空间学习的特征选择模型中,得到目标函数。
在潜在空间中保留原始数据的局部流行几何结构,因此在上述模型中加入图拉普拉斯正则化项,得到最终的目标函数,表示为:
Figure PCTCN2021135895-appb-000022
s.t.V≥0
其中,γ表示平衡局部流行几何结构正则化系数;L表示拉普拉斯矩阵,L=D-S;D表示对角矩阵,
Figure PCTCN2021135895-appb-000023
S表示测量数据实例对之间相似度的相似矩阵,表示为:
Figure PCTCN2021135895-appb-000024
其中,N k(x i)表示x i最近邻居的集合;σ表示宽度参数;x i∈R d表示原始数据矩阵X∈R n×d样本中的每一行;x j表示原始数据矩阵X∈R n×d样本中的每一列。采用上述指数函数求得邻接矩阵A,唯一的不同在于A是完全连接的,而S是稀疏的。
通过最小化目标函数F(W,V)可以得到转换系数矩阵W和潜在隐空间矩阵V,从函数可以看出,当W固定时,潜在隐空间学习阶段不仅和邻接矩阵A有关,也和数据矩阵X有关。在这种情况下,学习到的潜在隐空间可以捕获到数据实例之间的固有联系,并且对初始邻接矩阵中的相似度噪声更加鲁棒。当潜在隐空间矩阵V被固定时,V可以被视为标签信息引导特征选择。
在步骤S14中,采用交替迭代优化策略求解目标函数。具体为:
S141.初始化隐空间矩阵V,V=rand(n,c),其中,rand()表示随机函数,迭代次数t=0,t 1=0,
Figure PCTCN2021135895-appb-000025
S142.固定隐空间矩阵V,并更新转换系数矩阵;
当V被固定时,目标函数是凸的,表示为:
Figure PCTCN2021135895-appb-000026
上式可由迭代再加权最小二乘法(IRLS)求解,对于IRLS方法,需要引入一个对角矩阵Λ∈R n×n,它的第i个对角元素为,表示为:
Figure PCTCN2021135895-appb-000027
然后,F(W)可以转化为加权最小二乘问题,表示为:
Figure PCTCN2021135895-appb-000028
Figure PCTCN2021135895-appb-000029
关于W的导致,并将它设为0,表示为:
X T(XW-V)+αΛW+γX TLXW=0
求得W的闭合解,表示为:
Figure PCTCN2021135895-appb-000030
S143.将迭代次数设置为t 1=t 1+1;
S144.固定转换系数矩阵W,并更新隐空间矩阵;
当W被固定时,目标函数变为:
Figure PCTCN2021135895-appb-000031
运用拉格朗日乘数法解决上述函数,为了限制V≥0,设置了拉格朗日乘数Θ∈R n×c,构建拉格朗日函数:
Figure PCTCN2021135895-appb-000032
Figure PCTCN2021135895-appb-000033
关于V求导,被设置结果等于0:
-2XW+2V-4βAV+4βVV TV+Θ=0
根据Kuhn-Tucker条件,Θ ijV ij=0,表示为:
Figure PCTCN2021135895-appb-000034
其中,←表示分配;V ij表示矩阵V中第i行第j列元素。
S145.将迭代次数设置为t=t+1;
S146.重复执行步骤S142-S145,直至目标函数收敛。
在步骤S15中,对原始矩阵中的每个特征进行排序,并选择排名前k的特征,得到最优特征子集。
根据||W(i,:)|| 2,(i=1,2,…,d)按降序排序X的每个特征,并选择排名前k的特征形成最优特征子集。
与现有技术相比,本实施例提出了一种基于隐空间学习和流行约束的无监督特征选择方法(LRLMR),与其他无监督特征选择算法,如:LS、Baseline、RSR和DSRMR等进行比较,LRLMR方法在学习的潜在隐空间中进行特征选择,该空间对于噪声是鲁棒的;潜在隐空间通过相似矩阵的非负矩阵分解来建模,该矩阵分解能明确地反映数据实例之间的关系。同时,原始数据空间的局部流形结构由潜在隐空间中基于图的流形约束项保留。而且,开发了一种有效的迭代算法来优化LRLMR目标函数,同时,在理论上分析与证明了LRLMR方法的收敛性。
实施例二
本实施例提供的一种基于隐空间学习和流行约束的无监督特征选择方法与实施例一的不同之处在于:
本实施例是为了充分验证本申请LRLMR方法的有效性。
在八个常用的基本数据库上(ORL、warpPIE10P、orlraws10P、COIL20、Isolet、CLL_SUB_111、Prostate_GE、USPS)测试LRLMR方法的性能,同时与以下九种目前比较流行的无监督特征选择算法进行比较:
(1)Baseline:所有的原始特征都被采用。
(2)LS:拉普拉斯得分特征选择,该方法选取最符合高斯拉普拉斯矩阵的特征。
(3)MCFS:多重聚类特征选择,该方法使用范数将特征选择过程规范化为光谱信息回归问题。
(4)RSR:正则化自表示特征选择,该方法利用范数去计算拟合误差,并促进稀疏。
(5)MFFS:矩阵分解特征选择,一种从子空间学习视角发展而来的新的无监督特征选择准则,它将特征选择转换为矩阵分解问题。
(6)GLoSS:全局和局部结构保持稀疏子空间学习模型的无监督特征选择,可以同时 实现特征选择和子空间学习。
(7)GSR_SFS:图自表示稀疏特征选择,采用传统的固定相似图来保留数据的局部几何结构。
(8)-UFS:通过范数正则化图学习的无监督特征选择,使用范数代替传统的范数来测量选择的特征空间中的样本相似度。
(9)DSRMR:通过双重自表示和多重正则化的鲁棒无监督特征选择,利用特征自表示项进行特征重构,同时利用样本自表示项学习局部几何结构保留的相似图。
实验中,在八个公开的数据库上对LRLMR方法与其他九种无监督特征选择方法进行对比试验。八个数据库包括三个人脸图像数据库(ORL、orlraws10P和warpPIE10P)、一个对象图像数据库(COIL20)、一个语音信号数据库(Isolet)、两个生物微阵列数据库(CLL_SUB_111和Prostate_GE)和一个数字图像数据库(USPS)。这些数据库的统计资料如图2所示。
类似于以往的无监督特征选择方法,使用挑选的特征执行K-means集群,采用两种被广泛应用的评价标准,即聚类的准确率(ACC)和归一化互信息(NMI)。ACC和NMI的值越大,则表示方法性能越好。假设q i是聚类结果,p i是真实标签,那么ACC的定义如下:
Figure PCTCN2021135895-appb-000035
其中,如果x=y时,δ(x,y)=1,否则δ(x,y)=0。map(q i)是一个最好的映射函数,它的功能是通过Kuhn-Munkres算法把实验得到的聚类标签与样本的真实标签进行匹配。
给定两个变量P和Q,NMI定义为:
Figure PCTCN2021135895-appb-000036
其中,H(P)和H(Q)分别表示P和Q的熵,I(P,Q)表示P和Q两者之间的互信息。P是输入样本的聚类结果,Q是它们的真实标签。NMI反映了聚类结果和真实标签之间的一致度。
在实验中将对LRLMR算法与其他对比方法的参数进行设置,对于LS、GLoSS、MCFS、GSR_SFS和本方案的LRLMR,设置所有数据库的近邻参数的大小k=5。对于LRLMR、GLoSS和GSR_SFS,距离函数的高斯核宽度设为1。为了对不同的方法进行公平的比较,用“网格搜索”策略从{10 -3,10 -2,10 -1,1,10,10 2,10 3}中调整所有方法的剩余参数。由于选择的 特征的最优数量是未知的,对于所有数据库用“网格搜索”策略从{20,30,…,90,100}设置不同被选择的特征的数量。
不同特征选择算法完成特征选择之后,采用K-means算法对它们所选的低维特征进行聚类。考虑到K-means聚类的性能会受到初始化的影响,重复执行20次不同的随机初始化实验,最后记录它们的平均值。
结果分析:
图3和图4给出了不同方法在八个数据库上的ACC和NMI值。可以看出,就ACC而言,本申请比其他方法都要好,有三个原因:第一,与以前独立处理每个数据实例的方法不同,本方法通过潜在的隐空间学习利用了数据实例之间的互连信息;第二,本方法在潜在的空间中进行特征选择,而不是在初始数据空间,这使本方法对噪声特征和数据实例更加鲁棒;第三,基于图的流行正则约束项可以很好地保留数据的局部几何结构。
值得注意的是,LRLMR方法在两个生物微阵列数据库(CLL_SUB_111和Prostate_GE)上明显优于其他方法,这是由于生物遗传数据采集的特点。生物微阵列数据库是通过检测不同条件下的不同基因得到的,检测到的基因数对应特征维数,而每个检测条件产生一个数据实例。在这种情况,不同的数据实例本质上来源于相同的基因,因此,不同的数据实例之间必然彼此依赖。由于LRLMR方法中的潜在隐空间学习可以直接利用微阵列数据实例之间的这种联系,所以本方法在这两个数据库上明显优于其他方法。
为了验证特征选择对聚类结果的影响,在图5和图6中展示了所有方法在不同数据库上,被选择特征数不同时的表现。可以看到,对应不同的被选择特征数,本方法总是优于其他方法。值得注意的是,当特征数越小时,相比于LS方法,LRLMR方法的ACC值越高,这就证明了本方法可以更好地节省聚类时间和提高聚类准确度。
参数灵敏度:
本申请中含有三个平衡参数(α、β和γ),为了研究本申请对参数的敏感度,对其中两个参数进行了固定,对剩余的一个参数进行了改变。
固定α=1,β=1,改变γ的值,在不同数据库上的ACC和NMI值如图7、图8所示。可以看出,当选择特征的数量固定,不论γ如何变化,结果都趋于稳定。
固定α=1,γ=1,改变β的值,在不同数据库上的ACC和NMI值如图9、图10所示。可以看出,在数据库ORL、warpPIE10P和COIL20上结果有一点不稳定:对于数据库ORL,当β>1时ACC和NMI值较高;对于数据库warpPIE10P,当0.1<β<100时,结果较好; 对于数据库COIL20,当β=0.1时,可以得到最好的结果,其他情况趋于平稳。
固定β=1,γ=1,改变α的值,在不同数据库上的ACC和NMI值如图11、图12所示。可以看出对于数据库warpPIE10P,当α=1时,结果突然上升到一个峰值;对于数据库COIL20,结果变化较快且当0.001<α<100时,α值越大,结果越好;其他情况则结果趋于平稳。
LRLMR算法的计算时间分析:
优化算法求解目标函数过程中,主要的时间花费在两部分:求解W和求解V。对于更新W部分,主要时间花费取决于对矩阵(X TX+αΛ+γX TLX)求逆,每次迭代的时间复杂度为ο(d 3);对于求解V部分,由于只计算元素的乘法和除法,时间复杂度可以被忽略,因此,算法一的总时间花费是t·t 1·ο(d 3),t 1是更新W的迭代次数,t是算法一的外层循环迭代次数。
LRLMR算法的收敛性分析:
主要分析本犯法提出的优化算法的收敛性,需要指出的是:
Figure PCTCN2021135895-appb-000037
Figure PCTCN2021135895-appb-000038
显然,目标函数F(W,V)关于W是一个二次优化问题,这意味着它的最优值是通过
Figure PCTCN2021135895-appb-000039
得到,结果是:
Figure PCTCN2021135895-appb-000040
当W被固定时,F(V)是具有不等式约束的二次函数。根据Kuhn-Tucker条件,目标函数值随迭代而减小,可以得到V的最优解。因此,综上分析,确保了算法一的收敛性。算法一在不同的数据集上(α=0.001,β=0.001,γ=0.001)的收敛曲线如图13所示。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (7)

  1. 一种基于隐空间学习和流行约束的无监督特征选择方法,其特征在于,包括:
    S1.输入原始数据矩阵,得到特征选择模型;
    S2.将隐空间学习嵌入至特征选择模型,得到具有隐空间学习的特征选择模型;
    S3.将图拉普拉斯正则化项加入具有隐空间学习的特征选择模型中,得到目标函数;
    S4.采用交替迭代优化策略求解目标函数;
    S5.对原始矩阵中的每个特征进行排序,并选择排名前k的特征,得到最优特征子集。
  2. 根据权利要求1所述的一种基于隐空间学习和流行约束的无监督特征选择方法,其特征在于,所述步骤S2得到具有隐空间学习的特征选择模型,表示为:
    Figure PCTCN2021135895-appb-100001
    s.t.V≥0
    其中,V∈R n×c表示n个数据的隐空间矩阵,c表示潜在因素的个数;X∈R n×d表示原始数据矩阵,d表示数据特征维度;W∈R d×c表示转换系数矩阵,A表示邻接矩阵;V T表示V的转置矩阵;F表示Frobenius范数;α和β表示平衡隐空间学习和潜在空间特征选择的参数。
  3. 根据权利要求2所述的一种基于隐空间学习和流行约束的无监督特征选择方法,其特征在于,所述步骤S2具体为:
    S21.通过对称的非负矩阵分解模型将邻接矩阵A分解为一个隐空间矩阵V和隐空间矩阵V的转置矩阵V T;其中V与V T在低维潜在空间中的乘积,表示为:
    Figure PCTCN2021135895-appb-100002
    S22.将隐空间矩阵V中的数据进行特征矩阵变换,并通过多元线性回归模型对变换过的数据进行建模,表示为:
    Figure PCTCN2021135895-appb-100003
    其中,W∈R d×c表示转换系数矩阵;
    S23.在转换系数矩阵W上添加l 2,1范数正则化项,表示为:
    Figure PCTCN2021135895-appb-100004
    S24.将隐空间学习嵌入至特征选择模型,得到具有隐空间学习的特征选择模型。
  4. 根据权利要求2所述的一种基于隐空间学习和流行约束的无监督特征选择方法,其特征在于,所述步骤S3中得到目标函数,表示为:
    Figure PCTCN2021135895-appb-100005
    s.t.V≥0
    其中,γ表示平衡局部流行几何结构正则化系数;L表示拉普拉斯矩阵,L=D-S;D表示对角矩阵,
    Figure PCTCN2021135895-appb-100006
    S表示测量数据实例对之间相似度的相似矩阵,表示为:
    Figure PCTCN2021135895-appb-100007
    其中,N k(x i)表示x i最近邻居的集合;σ表示宽度参数;x i∈R d表示原始数据矩阵X∈R n×d样本中的每一行;x j表示原始数据矩阵X∈R n×d样本中的每一列。
  5. 根据权利要求3所述的一种基于隐空间学习和流行约束的无监督特征选择方法,其特征在于,所述步骤S4具体为:
    S41.初始化隐空间矩阵V,V=rand(n,c),其中,rand()表示随机函数,迭代次数t=0,t 1=0,
    Figure PCTCN2021135895-appb-100008
    S42.固定隐空间矩阵V,并更新转换系数矩阵W,表示为:
    Figure PCTCN2021135895-appb-100009
    其中,Λ∈R n×n表示对角矩阵;
    S43.将迭代次数设置为t 1=t 1+1;
    S44.固定转换系数矩阵W,并更新隐空间矩阵V,表示为:
    Figure PCTCN2021135895-appb-100010
    其中,←表示分配;V ij表示矩阵V中的第i行第j列元素;
    S45.将迭代次数设置为t=t+1;
    S46.重复执行步骤S42-S45,直至目标函数收敛。
  6. 根据权利要求5所述的一种基于隐空间学习和流行约束的无监督特征选择方法,其特征在于,所述步骤S42中固定隐空间矩阵V,则目标函数表示为:
    Figure PCTCN2021135895-appb-100011
    将对角矩阵Λ引入目标函数,对角矩阵Λ表示为:
    Figure PCTCN2021135895-appb-100012
    其中,||W(i,:)|| 2表示第i行向量的2范数,即特征量;
    目标函数F(W)转化为加权最小二乘问题,表示为:
    Figure PCTCN2021135895-appb-100013
    计算
    Figure PCTCN2021135895-appb-100014
    关于w的导数,并将计算的导数结果设置为0,表示为:
    X T(XW-V)+αΛW+γX TLXW=0。
  7. 根据权利要求5所述的一种基于隐空间学习和流行约束的无监督特征选择方法,其特征在于,所述步骤S44中固定转换系数矩阵W,则目标函数表示为:
    Figure PCTCN2021135895-appb-100015
    运用拉格朗日乘数法解决目标函数F(V),为了限制V≥0,设置了拉格朗日乘数Θ∈R n×c,构建拉格朗日函数,表示为:
    Figure PCTCN2021135895-appb-100016
    计算
    Figure PCTCN2021135895-appb-100017
    关于V的导数,并将计算的导数结果设置为0,表示为:
    -2XW+2V-4βAV+4βVV TV+Θ=0。
PCT/CN2021/135895 2021-02-03 2021-12-07 一种基于隐空间学习和流行约束的无监督特征选择方法 WO2022166362A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/275,417 US20240126829A1 (en) 2021-02-03 2021-12-07 Unsupervised feature selection method based on latent space learning and manifold constraints
ZA2023/08289A ZA202308289B (en) 2021-02-03 2023-08-28 Unsupervised feature selection method based on latent space learning and manifold constraints

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110146550.4A CN112906767A (zh) 2021-02-03 2021-02-03 一种基于隐空间学习和流行约束的无监督特征选择方法
CN202110146550.4 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022166362A1 true WO2022166362A1 (zh) 2022-08-11

Family

ID=76121709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135895 WO2022166362A1 (zh) 2021-02-03 2021-12-07 一种基于隐空间学习和流行约束的无监督特征选择方法

Country Status (4)

Country Link
US (1) US20240126829A1 (zh)
CN (1) CN112906767A (zh)
WO (1) WO2022166362A1 (zh)
ZA (1) ZA202308289B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117668611A (zh) * 2023-11-28 2024-03-08 鲁东大学 基于投影矩阵面积特征选择的左心室肥大识别方法及***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906767A (zh) * 2021-02-03 2021-06-04 浙江师范大学 一种基于隐空间学习和流行约束的无监督特征选择方法
CN115239485A (zh) * 2022-08-16 2022-10-25 苏州大学 基于前向迭代约束评分特征选择的信用评估方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160260030A1 (en) * 2013-01-18 2016-09-08 International Business Machines Corporation Transductive lasso for high-dimensional data regression problems
CN110348287A (zh) * 2019-05-24 2019-10-18 中国地质大学(武汉) 一种基于字典和样本相似图的无监督特征选择方法和装置
CN111027636A (zh) * 2019-12-18 2020-04-17 山东师范大学 基于多标签学习的无监督特征选择方法及***
CN112906767A (zh) * 2021-02-03 2021-06-04 浙江师范大学 一种基于隐空间学习和流行约束的无监督特征选择方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160260030A1 (en) * 2013-01-18 2016-09-08 International Business Machines Corporation Transductive lasso for high-dimensional data regression problems
CN110348287A (zh) * 2019-05-24 2019-10-18 中国地质大学(武汉) 一种基于字典和样本相似图的无监督特征选择方法和装置
CN111027636A (zh) * 2019-12-18 2020-04-17 山东师范大学 基于多标签学习的无监督特征选择方法及***
CN112906767A (zh) * 2021-02-03 2021-06-04 浙江师范大学 一种基于隐空间学习和流行约束的无监督特征选择方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117668611A (zh) * 2023-11-28 2024-03-08 鲁东大学 基于投影矩阵面积特征选择的左心室肥大识别方法及***

Also Published As

Publication number Publication date
CN112906767A (zh) 2021-06-04
ZA202308289B (en) 2023-09-27
US20240126829A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
Meng et al. Feature selection based dual-graph sparse non-negative matrix factorization for local discriminative clustering
WO2022166362A1 (zh) 一种基于隐空间学习和流行约束的无监督特征选择方法
Rida et al. A comprehensive overview of feature representation for biometric recognition
Shang et al. Subspace learning-based graph regularized feature selection
Song et al. Multi-layer discriminative dictionary learning with locality constraint for image classification
Shang et al. Dual space latent representation learning for unsupervised feature selection
Li et al. Robust multi-view non-negative matrix factorization with adaptive graph and diversity constraints
Kang et al. Structure learning with similarity preserving
CN109657611B (zh) 一种用于人脸识别的自适应图正则化非负矩阵分解方法
Ding et al. Unsupervised feature selection via adaptive hypergraph regularized latent representation learning
Wang et al. Structured learning for unsupervised feature selection with high-order matrix factorization
Aradnia et al. Adaptive explicit kernel minkowski weighted k-means
Ou et al. Co-regularized multiview nonnegative matrix factorization with correlation constraint for representation learning
Xue et al. Local linear embedding with adaptive neighbors
Huang et al. Improved hypergraph regularized nonnegative matrix factorization with sparse representation
Jahani et al. Unsupervised feature selection guided by orthogonal representation of feature space
Feng et al. Autoencoder based sample selection for self-taught learning
Peng et al. Hyperplane-based nonnegative matrix factorization with label information
Jia et al. Global and local structure preserving nonnegative subspace clustering
Shu et al. Rank-constrained nonnegative matrix factorization for data representation
He et al. Robust adaptive graph regularized non-negative matrix factorization
Wang et al. Projected fuzzy C-means with probabilistic neighbors
Shang et al. Unsupervised feature selection via discrete spectral clustering and feature weights
Guo et al. Data induced masking representation learning for face data analysis
Zhang et al. Fast local representation learning via adaptive anchor graph for image retrieval

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18275417

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924355

Country of ref document: EP

Kind code of ref document: A1