WO2022165972A1 - 一种煤催化气化反应炉及煤催化气化反应*** - Google Patents

一种煤催化气化反应炉及煤催化气化反应*** Download PDF

Info

Publication number
WO2022165972A1
WO2022165972A1 PCT/CN2021/084950 CN2021084950W WO2022165972A1 WO 2022165972 A1 WO2022165972 A1 WO 2022165972A1 CN 2021084950 W CN2021084950 W CN 2021084950W WO 2022165972 A1 WO2022165972 A1 WO 2022165972A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
coal
gasification reaction
conveying device
oxidant
Prior art date
Application number
PCT/CN2021/084950
Other languages
English (en)
French (fr)
Inventor
李克忠
刘雷
王会芳
祖静茹
毛燕东
武恒
李鹏
孙志强
芦涛
Original Assignee
新奥科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥科技发展有限公司 filed Critical 新奥科技发展有限公司
Publication of WO2022165972A1 publication Critical patent/WO2022165972A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the technical field of catalytic gasification, in particular to a coal catalytic gasification reaction furnace and a coal catalytic gasification reaction system.
  • Gasification process refers to the process of converting carbon-containing substances into synthesis gas for power generation and production of chemical raw materials.
  • Coal catalytic gasification to methane is one of the most effective gasification processes.
  • the catalyst can simultaneously catalyze carbon-water reaction and water-gas shift. Reaction and carbon monoxide hydromethanation reaction to achieve endothermic and exothermic coupling, greatly improving the energy efficiency of the system.
  • alkali metal potassium and sodium have the best catalytic performance, but the cost is high.
  • the catalyst in the gasification ash should be recycled and reused, but this will cause the structure of the gasification system to be complicated, so the high cost of the catalyst becomes The key factors restricting the industrialization of coal catalytic gasification technology. Therefore, in order to reduce the catalyst cost and simplify the catalyst recovery process, it is necessary to develop a low-cost catalyst system without recovery.
  • the purpose of the present invention is to provide a coal catalytic gasification reaction furnace and a coal catalytic gasification reaction system, adopting a low-cost recovery-free catalyst to process the raw coal, while the gasification reaction zone and the high-temperature melting zone in the system are provided with
  • the gasification agent conveying device and the oxidizing agent conveying device can not only reduce the control difficulty of the material transfer and energy exchange process, but also improve the environmental protection and operation stability of the overall catalytic gasification.
  • the present invention provides a coal catalytic gasification reactor, comprising: a cylindrical shell; a gasification reaction zone and a high temperature melting zone are formed in the cylindrical shell, and the gasification reaction zone is located in the Above the high temperature melting zone; when the gasification agent conveying device arranged at the bottom of the gasification reaction zone transports the high temperature gasification agent towards the top of the gasification reaction zone, a flow to the high temperature melting zone is formed in the gasification reaction zone When the oxidant conveying device provided at the top of the high-temperature melting zone transports the high-temperature oxidant toward the bottom of the high-temperature melting zone, a swirling flow of the oxidant flowing to the gasification reaction zone is formed in the high-temperature melting zone.
  • the output port of the gasification agent conveying device faces the top of the gasification reaction zone; the output port of the oxidant conveying device faces the bottom of the high temperature melting zone.
  • the gasifying agent conveying device and the oxidizing agent conveying device are arranged on the inner wall of the cylindrical casing; the axial included angle between the output port of the gasifying agent conveying device and the cylindrical casing is greater than the The included angle between the output port of the oxidant conveying device and the cylindrical shell; the included angle between the output port of the gasifying agent conveying device and the section perpendicular to the axial direction is greater than the angle between the output port of the oxidizing agent conveying device and the section perpendicular to the axial direction. The included angle of the section perpendicular to the axial direction.
  • the gasifying agent conveying device and the oxidizing agent conveying device are arranged on the inner wall of the cylindrical casing; the axial included angle between the output port of the gasifying agent conveying device and the cylindrical casing is 45° -90°; the included angle between the output port of the gasification agent conveying device and the section perpendicular to the axial direction is 60°-90°; the output port of the oxidant conveying device and the axial direction of the cylindrical shell The included angle is 15°-50°; the included angle between the output port of the oxidant conveying device and the section perpendicular to the axial direction is 45°-90°.
  • the gasification agent conveying device includes: a plurality of gas distributors, a plurality of jet tubes or a plurality of nozzles;
  • the oxidant conveying device includes: a plurality of gas distributors, a plurality of jet tubes or a plurality of nozzles; each of the The gas distributors are all located on the same level, each of the jet tubes is located on the same level, or each of the nozzles is located on the same level.
  • the gasification agent delivery device includes: four gas distributors, four jet tubes or four nozzles; the oxidant delivery device includes: three gas distributors, three jet tubes or three nozzles; each Each of the gas distributors is located on the same level, each of the jet tubes is located on the same level, or each of the nozzles is located on the same level.
  • each of the gas distributors is symmetrically distributed at the top of the high-temperature melting zone or the bottom of the gasification reaction zone; each of the jet pipes is symmetrically distributed at the top of the high-temperature melting zone or at the bottom of the gasification reaction zone.
  • the bottom of the gasification reaction zone; each of the nozzles is symmetrically spaced and distributed at the top of the high temperature melting zone or the bottom of the gasification reaction zone.
  • the high-temperature gasification agent includes: H 2 O and/or O 2 ; the high-temperature oxidant includes: oxygen or oxygen-enriched steam.
  • a molten liquid surface is formed at the bottom of the high temperature melting zone; the oxidant flows into the gasification reaction zone along the inner wall surface of the cylindrical shell after swirling into a certain depth below the molten liquid surface.
  • the temperature in the gasification reaction zone is 650-750°C; the temperature in the high-temperature melting zone is: 850-1200°C.
  • the cylindrical shell is provided with a feed port near the top edge of the gasification reaction zone, and the coal sample enters the gasification reaction zone from the feed port; the cylindrical shell is close to the gasification reaction zone.
  • An inverted conical slag discharge port is formed at the bottom of the high temperature melting zone for discharging ash and slag.
  • the present invention provides a coal catalytic gasification reaction system, including the coal catalytic gasification reaction furnace set forth above, and further comprising: a coal preparation unit, a gas purification unit and a slag discharge unit; a coal preparation unit
  • the output port of the unit is communicated with the feed port of the coal catalytic gasification reactor, so as to transport the coal sample prepared in the coal preparation unit to the coal catalytic gasification reactor; the exhaust port of the coal catalytic gasification reactor
  • the slag port is communicated with the slag discharge unit, so as to transport the liquid molten slag produced in the coal catalytic gasification reaction furnace to the slag discharge unit for processing; the exhaust port of the coal catalytic gasification reaction furnace is connected to the slag discharge unit.
  • the input port of the gas purification unit is communicated to transport the crude gas into the gas purification unit; the ash outlet of the gas purification unit is communicated with the coal catalytic gasification reactor to transport the fly ash back to the gas purification unit. Circulation treatment is carried out in the high temperature melting zone of the coal catalytic gasification reactor.
  • the coal preparation unit prepares the coal sample by a catalyst loading method;
  • the catalyst includes: alkali metal sulfate, calcium oxide, calcium hydroxide, industrial waste alkali residue or industrial waste alkali liquor;
  • the catalyst loading method includes: Dry blending, impregnation or ion exchange.
  • the slag discharge unit includes a granulator and a heat exchange structure connected in sequence; the granulator is used to granulate the liquid molten slag into a solid state; the heat exchange structure is used to cool down the solid molten slag and recover waste heat.
  • the gas purification unit comprises: a cyclone separator, a filter and a return device connected in sequence; the cyclone separator is used to separate the fly ash carried in the crude gas; the filter is used to collect the fly ash; the return device is used to transport the fly ash back.
  • the cyclone separator is used to separate the fly ash carried in the crude gas; the filter is used to collect the fly ash; the return device is used to transport the fly ash back.
  • a gas separation unit the input port of the gas separation unit is communicated with the output port of the gas purification unit, and is used for membrane separation or cryogenic separation of the crude gas after separation of the fly ash to obtain CO or H 2 ;
  • the first output port of the gas separation unit is in communication with the coal catalytic gasification reactor for delivering all or part of the CO or H 2 back to the In the coal catalytic gasification reactor;
  • the second output port of the gas separation unit is used to output the CO or H 2 .
  • the coal catalytic gasifier provided by the present invention is provided with a gasification reaction zone and a high temperature melting zone.
  • the installation angle of the gasification agent conveying device arranged in the gasification reaction zone, and adjusting the oxidant conveying device arranged in the high temperature melting zone respectively form a gasification agent swirl channel and an oxidant swirl channel, and the gasification agent swirl channel and the oxidant swirl channel cooperate with each other, and the gas generated in the gasification reaction zone is formed.
  • the catalytic gasification ash and slag are transported to the high temperature melting zone, which ensures the sufficient reaction of all carbon residues, provides heat for the gasification reaction and makes the catalytic gasification ash and slag harmless; at the same time, strengthens the gasification reaction zone and high temperature melting. reactions in the area.
  • the coal preparation unit uses low-cost raw materials or industrial waste lye as the catalyst to carry out catalyst loading treatment on the raw coal, thereby eliminating the catalyst recovery section. Reduce the control difficulty of material transfer and energy exchange process, and improve the overall environmental protection and operation stability of catalytic gasification.
  • Fig. 1 is the structural representation of the coal catalytic gasification reactor provided by the present invention
  • FIG. 2 is a schematic diagram of the arrangement position of the gasification agent delivery device provided by the present invention.
  • Fig. 3 is the gas flow schematic diagram of the gasification reaction zone provided by the present invention.
  • FIG. 4 is a schematic diagram of the arrangement position of the oxidant delivery device provided by the present invention.
  • Fig. 5 is the gas flow schematic diagram of the high temperature melting zone provided by the present invention.
  • FIG. 6 is a schematic structural diagram of the coal catalytic gasification system provided by the present invention.
  • 1-cylindrical shell 2-gasification reaction zone; 3-high temperature melting zone; 4-feeding port; 5-gasification agent conveying device; 6-oxidant conveying device; 7-slagging outlet;
  • A-coal preparation unit B-coal catalytic gasification reactor; C-gas purification unit; D-slagging unit; E-gas separation; P-negative pressure area.
  • FIG. 1 is a schematic structural diagram of a coal catalytic gasification reactor provided by the present invention, please refer to FIG. 1 .
  • a coal catalytic gasification reactor includes: a cylindrical shell 1, a gasification reaction zone 2 and a high temperature melting zone 3 are formed in the cylindrical shell 1, and the gasification reaction zone 2 is located in the high temperature melting zone 3 and above.
  • the gasification reaction zone 2 is used for high-temperature gasification and pyrolysis of the coal samples transported to the reactor to generate crude gas rich in methane, and at the same time to obtain catalytic gasification ash; the crude gas can be directly used as product gas after treatment After use, the catalytic gasification ash will fall into the high temperature melting zone 3 below the gasification reaction zone 2 for harmless treatment.
  • a feed port 4 is provided at the top edge of the cylindrical shell 1 , and the coal sample enters the gasification reaction zone 2 from the feed port 4 .
  • the bottom of the cylindrical casing 1 is also formed with an inverted cone-shaped slag discharge port 7 for discharging the catalyzed gasification ash after the harmless treatment.
  • a gasification agent delivery device 5 is arranged on the inner wall of the cylindrical shell 1, and the gasification agent delivery device 5 is located at the bottom of the gasification reaction zone 2, and is used to transport the high temperature gasification agent into the gasification reaction zone 2, so that the high temperature The gasification agent and the coal sample undergo high-temperature gasification reaction and pyrolysis reaction in the gasification reaction zone 2.
  • an oxidant conveying device 6 is arranged on the inner wall of the cylindrical shell 1 , and the oxidant conveying device 6 is located at one end of the high temperature melting zone 3 close to the gasification reaction zone 2 , and is used for conveying the high temperature oxidant into the high temperature melting zone 3 .
  • the gasification agent conveying device 5 conveys the high temperature gasification agent towards the top of the gasification reaction zone 2, a swirling flow of the gasification agent will be formed in the gasification reaction zone 2 and flow to the high temperature melting zone 3; the oxidant conveying device 6 faces the high temperature melting zone When the high temperature oxidant is transported at the bottom of 3, a swirling flow of oxidant flowing to the gasification reaction zone 2 will be formed in the high temperature melting zone 3.
  • the swirling flow of the gasification agent can drive the catalytic gasification ash generated in the gasification reaction zone 2 to fall into the high temperature melting zone 3, and the catalytic gasification ash and slag enter the high temperature melting zone 3 and will be gas-solid mixed with the high temperature oxidant and reaction, and the oxidant swirl will enhance the gas-solid mixing and reaction.
  • a molten liquid surface is also formed at the bottom of the high temperature melting zone 3, and the swirling flow of the oxidant can also stir the molten liquid at the bottom of the high temperature melting zone 3 to form a more uniform molten composition, which is conducive to the formation of a stable composition and is conducive to smooth discharge. scum.
  • the swirling oxidant flows into the gasification reaction zone 2 along the inner wall surface of the cylindrical shell 1 after flowing into a certain depth below the molten liquid surface.
  • the high-temperature combustion products generated by the reaction of the oxidant and the carbon residue will rise along the inner wall of the cylindrical shell 1 and mix with the swirling high-temperature gasification agent to form a negative pressure zone, further causing the catalytic gasification ash to fall to a high temperature Melting zone 3.
  • the product gas produced by the high temperature combustion will be mixed with the high temperature gasification agent at the bottom of the gasification reaction zone 2, and then continue to react upward with the raw coal.
  • the catalytic gasification ash enters the high temperature melting zone 3 and burns with oxygen to generate a high temperature, and the released heat is transferred to the gasification reaction zone 2 through the gas to maintain the heat balance in the gasification reaction zone 2; It is melted, and the high-temperature gasification agent in it is solidified into the catalytic gasification ash to form a vitreous substance, and the harmless treatment is obtained.
  • the temperature at which the high temperature gasification reaction and the pyrolysis reaction are performed in the gasification reaction zone 2 is 650-750°C. Below this temperature range, the purpose of high temperature gasification cannot be achieved, and exceeding this temperature will destroy the gasification reaction.
  • the temperature of high temperature melting in high temperature melting zone 3 is: 850-1200°C, below this temperature range, the purpose of melting will not be achieved, and exceeding this temperature will destroy the gasification reaction.
  • the high temperature gasification agent includes H2O and/or O2 .
  • the coal sample and the high-temperature gasification agent undergo carbon-water reaction, shift reaction and methanation reaction, and under the action of the high-temperature gasification agent, the above reactions can be carried out relatively quickly, and finally methane-rich crude gas and catalytic gasification ash are generated. .
  • the high temperature oxidant includes oxygen or oxygen-enriched steam.
  • the gasification agent delivery device 5 includes multiple gas distributors, multiple jet tubes or multiple nozzles; the oxidant delivery device 6 includes: multiple gas distributors, multiple jet tubes or multiple nozzles; each gas The distributors are all on the same level, each jet tube is on the same level, or each nozzle is on the same level.
  • jet tubes or nozzles are selected as the gasification agent conveying device 5 and the oxidant conveying device 6 to reduce the difficulty of conveying solids and gases.
  • the output port of the gasification agent conveying device 5 faces the top of the gasification reaction zone 2, and the output port of the oxidant conveying device 6 faces the bottom of the high-temperature melting zone 3, that is, the gasification agent conveying device 5 is disposed on the inner wall of the cylindrical shell 1 obliquely upward, The oxidant delivery device 6 is arranged obliquely downward on the inner wall of the cylindrical housing 1 .
  • the included angle between the output port of the gasification agent delivery device 5 and the cylindrical housing 1 is 45°-90°, and at the same time, the output port of the gasification agent delivery device 5 is perpendicular to the axial direction of the cylindrical housing 1 .
  • the included angle of the cross section is 60°-90°; the axial included angle between the output port of the oxidant conveying device 6 and the cylindrical shell 1 is 15°-50°, and at the same time, the output port of the oxidant conveying device 6 is perpendicular to the cylindrical shell. 1
  • the included angle of the axial section is 45°-90°.
  • the axial angle between the gasification agent conveying device 5 and the cylindrical shell 1 needs to be limited, and it is also necessary to limit the axial angle between the gasification agent conveying device 5 and the cylindrical shell 1 Within the space range of 1, the included angle between the gasification agent conveying device 5 and the section perpendicular to the axial direction.
  • the axial angle between the oxidant conveying device 6 and the cylindrical shell 1 needs to be limited, and also needs to be limited within the space range of the cylindrical shell 1. , the angle between the oxidant delivery device 6 and the section perpendicular to the axial direction.
  • both the gasification agent delivery device 5 and the oxidant delivery device 6 are installed obliquely on the inner wall of the cylindrical shell 1; at the same time, in a preferred embodiment of the present invention, the inclination angle of the gasification agent delivery device 5 is greater than that of the oxidant delivery device The inclination angle of the device 6 makes the required gasification agent swirling flow channels and oxidant swirling flow channels respectively formed in the gasification reaction zone 2 and the high temperature melting zone 3 .
  • the axial included angle between the gasification agent conveying device 5 and the cylindrical casing 1 is greater than the axial included angle between the oxidant conveying device 6 and the cylindrical casing 1 .
  • the angle is greater than the angle between the oxidant delivery device 6 and the section perpendicular to the axial direction.
  • Fig. 2 is a schematic diagram of the arrangement position of the gasification agent delivery device provided by the present invention
  • Fig. 4 is a schematic diagram of the arrangement position of the oxidant delivery device provided by the present invention.
  • the agent conveying device 5 is arranged, and the four gasification agent conveying devices 5 are all located on the same plane, and are distributed at the bottom of the gasification reaction zone 2 at symmetrical intervals.
  • At least three oxidant conveying devices 6 are included, and the three oxidant conveying devices 6 are all located on the same plane, and are distributed at the top of the high-temperature melting zone 3 at symmetrical intervals.
  • a uniform combustion reaction space is formed inside the high temperature melting zone 3 .
  • FIG. 3 is a schematic diagram of the gas flow in the gasification reaction zone provided by the present invention. Please refer to FIG. 3 .
  • the arrangement of the gasification agent conveying device 5 in this embodiment is such that when the high temperature gasification agent is input into the gasification reaction zone 2, a gasification agent is formed.
  • the swirling flow forms a negative pressure zone P in the lower part of the gasification reaction zone 2 , and further forms a swirling flow channel for the catalytic gasification ash to fall to the high temperature melting zone 3 , so that the catalytic gasification ash and slag fall to the high temperature melting zone 3 .
  • the high temperature gasification agent is fully mixed with the pulverized coal in the reaction furnace, and the fluidization is uniform, so that the reaction is fully carried out, and the temperature distribution in the gasification reaction zone 2 is uniform.
  • Fig. 5 is a schematic diagram of the gas flow in the high temperature melting zone provided by the present invention. As shown by the dashed arrow in Fig. 5, the arrangement of the oxidant conveying device 6 can also make the airflow ejected from the oxidant conveying device 6 form an oxidant swirling flow along the cylindrical shell. The inner wall of the body 1 faces upward into the gasification reaction zone 2 .
  • FIG. 6 is a schematic structural diagram of the coal catalytic gasification system provided by the present invention, please refer to FIG. 6 .
  • a coal catalytic gasification system including: a coal preparation unit A, a coal catalytic gasification reactor B, a gas purification unit C and a slag discharge unit D.
  • the coal preparation unit A is used to carry out low-cost catalyst loading on the selected raw coal to obtain a coal sample that conforms to the catalytic gasification reaction.
  • Coal catalytic gasification reactor B is used for high temperature gasification of the coal samples transported by coal preparation unit A to generate crude gas and catalytic gasification ash, and the catalytic gasification ash produced by high temperature gasification is melted at high temperature to obtain Harmless treatment.
  • the gas purification unit C is used to separate the crude gas delivered by the coal catalytic gasification reactor B, so that the crude gas can be used as product gas, and at the same time collect the separated fly ash, and transport the fly ash back to the coal catalytic gasification reactor B is subjected to high temperature melting again.
  • the slag discharge unit D is used to collect the liquid molten slag produced by the coal catalytic gasification reactor B, and to discharge the liquid molten slag after processing.
  • a star feeder is connected to the output port of the coal preparation unit A, and the star feeder is communicated with the feed port 4 of the coal catalytic gasification reactor B, so that the prepared coal prepared in the coal preparation unit A is The coal sample is sent to the coal catalytic gasification reactor B.
  • the coal preparation unit A performs low-cost catalyst loading on the raw coal with a diameter of less than 2 mm after crushing and screening, and obtains a coal sample.
  • low-cost catalysts include alkali metal sulfates, calcium oxides, calcium hydroxides, industrial waste caustic soda or industrial waste lye.
  • Alkali metal sulfate includes potassium and sodium;
  • industrial waste alkali residue or industrial waste alkali liquor includes waste water containing alkali metal and organic matter such as papermaking black liquor and high-salt waste water.
  • the method of catalyst loading includes dry mixing, impregnation or ion exchange.
  • the equipment for catalyst loading only needs to be able to fully and uniformly mix the raw coal and the catalyst, including: a high-speed mixer, a belt or a mixer.
  • the raw coal needs to be dried when necessary, so that the raw coal meets the water content requirement of the coal sample feed, and does not affect the coal sample transportation.
  • the slag discharge port 7 of the coal catalytic gasification reactor B is communicated with the slag discharge unit D, and the produced liquid molten slag is transported to the slag discharge unit D.
  • atomized water is introduced into the granulator through the atomizing nozzle, so that the liquid molten slag is granulated into a solid state, and the The atomized water is gasified into steam, which is recycled as a high-temperature gasification agent in the coal catalytic gasification reactor B.
  • the slag discharge unit D is also provided with a water jacket heat exchange structure, which is used to cool the solid slag that has been turned into a solid state and recover the waste heat.
  • the solid ash can be directly discharged or used as building materials.
  • the exhaust port of the coal catalytic gasification reactor B is communicated with the gas purification unit C to transport the crude gas to the gas purification unit C.
  • the gas purification unit C is provided with a cyclone separator, a filter and a return device.
  • the cyclone separator is used to separate a part of the fly ash carried in the crude gas, so that the dust content of the crude gas meets the requirements of the product gas;
  • the filter is used to collect the fly ash separated by the cyclone separator;
  • the return device is used to collect the collected fly ash It is transported back to the high temperature melting zone 3 of the coal catalytic gasification reactor B for recycling.
  • the dedusted crude gas is directly used as product gas after acid gas removal.
  • the coal catalytic gasification system of this embodiment further includes a gas separation E, which is used to separate the dedusted crude gas through membrane separation or cryogenic separation, and return all the obtained CO /H to the coal catalytic gasification reactor B Internal or partial return to coal catalytic gasification reactor B for methanation to further increase the methane concentration, and also to use the exothermic heat of the methanation reaction to provide the endothermic carbon-water reaction to achieve efficient use of energy.
  • a gas separation E which is used to separate the dedusted crude gas through membrane separation or cryogenic separation, and return all the obtained CO /H to the coal catalytic gasification reactor B Internal or partial return to coal catalytic gasification reactor B for methanation to further increase the methane concentration, and also to use the exothermic heat of the methanation reaction to provide the endothermic carbon-water reaction to achieve efficient use of energy.
  • the present invention aims to protect a coal catalytic gasification reaction furnace, including: a cylindrical shell 1 is formed with a gasification reaction zone 2 and a high temperature melting zone 3, the gasification reaction zone 2 is located above the high temperature melting zone 3; the cylindrical shell 1 At least four gasification agent delivery devices 5 are arranged on the inner wall of the gasification agent at intervals, and the gasification agent delivery device 5 is located at the bottom of the gasification reaction zone 2, and the output port of the gasification agent delivery device 5 faces the top of the gasification reaction zone 2, It is used to transport the high-temperature gasification agent to the gasification reaction zone 2; at least three oxidant delivery devices 6 are arranged on the inner wall of the cylindrical shell 1 at intervals, and the oxidant delivery device 6 is located at the top of the high-temperature melting zone 3, and the oxidant delivery device The output port of 6 faces the bottom of the high-temperature melting zone 3 for delivering the high-temperature oxidant to the high-temperature melting zone 3 .
  • coal catalytic gasification reaction system including a coal catalytic gasification reactor B, and also includes: a coal preparation unit A, a gas purification unit C and a slag discharge unit D; the output port of the coal preparation unit A is connected to the coal catalytic gasification unit.
  • the feeding port of the reaction furnace B is connected to transport the coal sample prepared in the coal preparation unit A to the coal catalytic gasification reaction furnace B; the slag discharge port 7 of the coal catalytic gasification reaction furnace B is communicated with the slag discharge unit D , in order to transport the liquid molten slag produced in the coal catalytic gasification reactor B to the slag discharge unit D for processing; the exhaust port of the coal catalytic gasification reactor B is communicated with the input port of the gas purification unit C to remove the crude The gas is transported to the gas purification unit C; the ash outlet of the gas purification unit C is communicated with the coal catalytic gasification reactor B, so that the fly ash is transported back to the high temperature melting zone 3 of the coal catalytic gasification reactor B for circulating treatment .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Industrial Gases (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

一种煤催化气化反应炉及煤催化气化反应***,煤催化气化反应炉包括:柱状壳体内形成有气化反应区和高温熔融区,气化反应区位于高温熔融区之上;气化反应区底部设置的气化剂输送装置朝向气化反应区顶部输送高温气化剂时,在气化反应区内形成流向高温熔融区的气化剂旋流;高温熔融区顶部设置的氧化剂输送装置朝向高温熔融区底部输送高温氧化剂时,在高温熔融区内形成流向气化反应区的氧化剂旋流。通过气化剂输送装置和氧化剂输送装置降低物质传递和能量交换过程的控制难度,提高整体催化气化的环保性和运行稳定性。

Description

一种煤催化气化反应炉及煤催化气化反应*** 技术领域
本发明涉及催化气化技术领域,特别涉及一种煤催化气化反应炉及煤催化气化反应***。
背景技术
气化工艺是指将含碳物质转化成合成气,用于发电和生产化工原料的工艺过程,煤催化气化制甲烷是最有效的气化工艺之一,催化剂可同步催化碳水反应、水煤气变换反应以及一氧化碳加氢甲烷化反应,实现吸放热耦合,大幅提高***能效。
催化剂中,碱金属钾和钠的催化性能最佳,但成本较高,利用后需要对气化灰渣中的催化剂回收循环利用,但这会造成气化***结构复杂,因此催化剂的高成本成为制约煤催化气化技术工业化的关键因素。因此,为了降低催化剂成本,简化催化剂回收流程,需要研发低成本、无需回收的催化剂体系。
现有技术的方案中,通过选用成本较低的碱金属、碱土金属盐类或混合物作为煤气化催化剂,或者将工业废碱渣或废碱液应用于煤催化气化反应中,不仅能有效催化煤气化反应,还能解决废弃物的污染问题。而且,所用催化剂成本低,可以免去催化剂回收工段。但是催化气化灰渣中金属催化剂的溶出会对环境造成污染,因此不能直接排放,必须对灰渣进行无害化处理,才能实现灰渣的资源化利用或直接排放。
现有技术为了实现煤催化气化工艺和灰渣处理流程,通常采用多个反应器构成整个装置,不同的反应器实现不同的功能,但是不同反应器之间的物质输送和能量交换难以实现,很容易造成整个装置的运行不稳定。
发明内容
(一)发明目的
本发明的目的是提供一种煤催化气化反应炉及煤催化气化反应***,采用低成本免回收催化剂对原料煤进行处理,同时该***中的气化反应区和高温熔融区内设置的气化剂输送装置和氧化剂输送装置,不仅能够降低物质传递和能量交换过程的控制难度,还提高了整体催化气化的环保性和运行稳定性。
(二)技术方案
为解决上述问题,根据本发明的一个方面,本发明提供了一种煤催化气化反应炉,包括:柱状壳体;柱状壳体内形成有气化反应区和高温熔融区,气化反应区位于高温熔融区之上;所述气化反应区底部设置的气化剂输送装置朝向所述气化反应区顶部输送高温气化剂时,在所述气化反应区内形成流向所述高温熔融区的气化剂旋流;所述高温熔融区顶部设置的氧化剂输送装置朝向所述高温熔融区底部输送高温氧化剂时,在所述高温熔融区内形成流向所述气化反应区的氧化剂旋流。
进一步的,所述气化剂输送装置的输出口朝向所述气化反应区顶部;所述氧化剂输送装置的输出口朝向所述高温熔融区底部。
进一步的,所述气化剂输送装置和所述氧化剂输送装置设于所述柱状壳体的内壁;所述气化剂输送装置的输出口与所述柱状壳体的轴向夹角大于所述氧化剂输送装置的输出口与所述柱状壳体的轴向夹角;所述气化剂输送装置的输出口与垂直于所述轴向的截面的夹角大于所述氧化剂输送装置的输出口与垂直于所述轴向的截面的夹角。
进一步的,所述气化剂输送装置和所述氧化剂输送装置设于所述柱状壳体的内壁;所述气化剂输送装置的输出口与所述柱状壳体的轴向夹角为45°-90°;所述气化剂输送装置的输出口与垂直于所述轴向的截面的夹角为60°-90°;所述氧化剂输送装置的输出口与所述柱状壳体的轴向夹角为15°-50°;所述氧化剂输送装置的输出口与垂直于所述轴向的截面的夹角为45°-90°。
进一步的,气化剂输送装置包括:多个气体分布器、多个射流管或多个喷嘴;所述氧化剂输送装置包括:多个气体分布器、多个射流管或多个喷嘴;每个所述气体分布器均位于同一水平面、每个所述射流管均位于同一水平面或每个所述喷嘴均位于同一水平面。
进一步的,所述气化剂输送装置包括:四个气体分布器、四个射流管或四个喷嘴;所述氧化剂输送装置包括:三个气体分布器、三个射流管或三个喷嘴;每个所述气体分布器均位于同一水平面、每个所述射流管均位于同一水平面或每个所述喷嘴均位于同一水平面。
进一步的,每个所述气体分布器对称间隔分布在所述高温熔融区的顶部或所述气化反应区的底部;每个所述射流管对称间隔分布在所述高温熔融区的顶部或所述气化反应区的底部;每个所述喷嘴对称间隔分布在所述高温熔融区的顶部或所述气化反应区的底部。
进一步的,高温气化剂包括:H 2O和/或O 2;高温氧化剂包括:氧气或富氧蒸汽。
进一步的,所述高温熔融区底部形成有熔融液面;所述氧化剂旋流流入所述熔融液面以下一定深度后沿所述柱状壳体的内壁面进入所述气化反应区。
进一步的,所述气化反应区中的温度为650-750℃;所述高温熔融区中的温度为:850-1200℃。
进一步的,所述柱状壳体靠近所述气化反应区的顶部边缘处设有进料口,煤样从所述进料口进入所述气化反应区中;所述柱状壳体靠近所述高温熔融区的底部形成有倒锥形的排渣口,用于排出灰渣。
根据本发明的另一个方面,本发明提供了一种煤催化气化反应***,包括以上所阐述的煤催化气化反应炉,还包括:备煤单元、煤气净化单元和排渣单元;备煤单元的输出口与煤催化气化反应炉的进料口连通,以将备煤单元中制备好的煤样输送至所述煤催化气化反应炉中;所述煤催化气化反应炉的排渣口与所述排渣单元连通,以将所述煤催化气化反应炉中产生的液态熔融 渣输送至所述排渣单元中进行处理;所述煤催化气化反应炉的排气口与所述煤气净化单元的输入口连通,以将粗煤气输送至所述煤气净化单元中;所述煤气净化单元的出灰口与所述煤催化气化反应炉连通,以将飞灰重新输送回所述煤催化气化反应炉的高温熔融区中进行循环处理。
进一步的,备煤单元通过催化剂负载的方法制备煤样;催化剂包括:碱金属硫酸盐、钙的氧化物、钙的氢氧化物、工业废碱渣或工业废碱液;催化剂负载的方法包括:干混、浸渍或离子交换。
进一步的,排渣单元包括依次连接的:粒化器和换热结构;粒化器用于将液态熔融渣粒化为固态;换热结构用于对固态的熔融渣进行降温并回收余热。
进一步的,煤气净化单元包括依次连接的:旋风分离器、过滤器和返回装置;旋风分离器用于分离粗煤气中携带的飞灰;过滤器用于收集飞灰;返回装置用于将飞灰输送回煤催化气化反应炉的高温熔融区中。
进一步的,还包括:气体分离单元;所述气体分离单元的输入口与所述煤气净化单元的输出口连通,用于对分离飞灰后的所述粗煤气进行膜分离或深冷分离,得到CO或H 2;所述气体分离单元的第一输出口与所述煤催化气化反应炉连通,用于将全部的所述CO或H 2或部分的所述CO或H 2输送回所述煤催化气化反应炉内;所述气体分离单元的第二输出口用于输出所述CO或H 2
(三)有益效果
本发明的上述技术方案具有如下有益的技术效果:
本发明提供的煤催化气化炉内设置有气化反应区和高温熔融区,通过调整气化反应区内设置的气化剂输送装置的安装角度,和调整高温熔融区内设置的氧化剂输送装置的安装角度,使得气化反应区和高温熔融区内分别形成气化剂旋流通道和氧化剂旋流通道,气化剂旋流通道和氧化剂旋流通道相互配合,将气化反应区内产生的催化气化灰渣输送至高温熔融区,保证了所有残碳的充分反应,为气化反应提供热量的同时使得催化气化灰渣得到无害化处理;同时加强了气化反应区和高温熔融区内的反应。
本发明提供的煤催化气化***中,备煤单元采用低成本原料或工业废碱液作为催化剂对原料煤进行催化剂负载处理,免去了催化剂回收工段。降低物质传递和能量交换过程控制难度,提高整体催化气化环保性和运行稳定性。
附图说明
图1是本发明提供的煤催化气化反应炉的结构示意图;
图2是本发明提供的气化剂输送装置的布置位置示意图;
图3是本发明提供的气化反应区的气体流向示意图;
图4是本发明提供的氧化剂输送装置的布置位置示意图;
图5是本发明提供的高温熔融区的气体流向示意图;
图6是本发明提供的煤催化气化***的结构示意图。
附图标记:
1-柱状壳体;2-气化反应区;3-高温熔融区;4-进料口;5-气化剂输送装置;6-氧化剂输送装置;7-排渣口;
A-备煤单元;B-煤催化气化反应炉;C-煤气净化单元;D-排渣单元;E-气体分离;P-负压区。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
下面结合附图和实施例对本发明进行详细说明。
图1是本发明提供的煤催化气化反应炉的结构示意图,请参看图1。
本发明的一实施例中,一种煤催化气化反应炉包括:柱状壳体1,柱状壳体1内形成有气化反应区2和高温熔融区3,气化反应区2位于高温熔融区3之上。
气化反应区2用于对输送至反应炉中的煤样进行高温气化、热解,生成富含甲烷的粗煤气,同时得到催化气化灰渣;粗煤气经过处理后可直接作为产品气使用,而催化气化灰渣将落入气化反应区2下方的高温熔融区3中进行无害化处理。
具体地,柱状壳体1的顶部边缘处设有进料口4,煤样从进料口4进入气化反应区2中。柱状壳体1的底部还形成有倒锥形的排渣口7,用于将无害化处理后的催化气化灰渣排出。
柱状壳体1的内壁上设置有气化剂输送装置5,且气化剂输送装置5位于气化反应区2的底部,用于将高温气化剂输送至气化反应区2中,使得高温气化剂与煤样在气化反应区2中进行高温气化反应、热解反应。同时,柱状壳体1的内壁上设置有氧化剂输送装置6,且氧化剂输送装置6位于高温熔融区3中靠近气化反应区2的一端,用于向高温熔融区3内输送高温氧化剂。
而气化剂输送装置5朝向气化反应区2顶部输送高温气化剂时,将在气化反应区2内形成流向高温熔融区3的气化剂旋流;氧化剂输送装置6朝向高温熔融区3底部输送高温氧化剂时,将在高温熔融区3内形成流向气化反应区2的氧化剂旋流。
其中,气化剂旋流能够带动在气化反应区2中生成的催化气化灰渣落入高温熔融区3中,催化气化灰渣进入高温熔融区3后将与高温氧化剂发生气固混合与反应,而氧化剂旋流将可以加强气固混合与反应。高温熔融区3底部还形成有熔融液面,氧化剂旋流还能够对高温熔融区3底部的熔融液体进行搅拌,形成更为均一的熔融组分,有利于形成稳定的组成,并有利于顺利排渣。
本实施例中,氧化剂旋流流入熔融液面以下一定深度后将沿柱状壳体1的内壁面进入气化反应区2。具体地,氧化剂与残碳反应生成的高温燃烧产物将沿柱状壳体1的内壁面上升,并与旋流的高温气化剂混合,形成负压区,进一步使得催化气化灰渣下落至高温熔融区3。同时高温燃烧产生的产物气 将在气化反应区2底部与高温气化剂混合,之后继续向上与原料煤反应。
催化气化灰渣进入高温熔融区3与氧气燃烧产生高温,释放出的热量通过气体传递给气化反应区2,维持气化反应区2的热量平衡;同时催化气化灰渣在高温下发生熔融,使其中的高温气化剂固化到催化气化灰渣中,形成玻璃态物质,得到无害化处理。
可选的,气化反应区2中进行高温气化反应、热解反应的温度为650-750℃。低于该温度范围将无法达到高温气化的目的,超过该温度将破坏气化反应。高温熔融区3中高温熔融的温度为:850-1200℃,低于该温度范围将无法达到熔融的目的,超过该温度将破坏气化反应。
可选的,高温气化剂包括H 2O和/或O 2。煤样与高温气化剂发生碳水反应、变换反应和甲烷化反应,且在高温气化剂的作用下,上述反应都能够较快速进行,最终生成富含甲烷的粗煤气和催化气化灰渣。
可选的,高温氧化剂包括氧气或富氧蒸汽。
可选的,气化剂输送装置5包括多个气体分布器、多个射流管或多个喷嘴;氧化剂输送装置6包括:多个气体分布器、多个射流管或多个喷嘴;每个气体分布器均位于同一水平面、每个射流管均位于同一水平面或每个喷嘴均位于同一水平面。
优选的,本实施例选择射流管或喷嘴作为气化剂输送装置5和氧化剂输送装置6,以减小固体和气体的输送难度。
气化剂输送装置5的输出口朝向气化反应区2顶部,氧化剂输送装置6的输出口朝向高温熔融区3底部,即气化剂输送装置5倾斜向上设置在柱状壳体1的内壁上,氧化剂输送装置6倾斜向下设置在柱状壳体1的内壁上。
优选的,气化剂输送装置5的输出口与柱状壳体1的轴向夹角为45°-90°,同时,气化剂输送装置5的输出口与垂直于柱状壳体1轴向的截面的夹角为60°-90°;氧化剂输送装置6的输出口与柱状壳体1的轴向夹角为15°-50°,同时,氧化剂输送装置6的输出口与垂直于柱状壳体1轴向的截面的夹角为45°-90°。
具体地,为在气化反应区2内形成流向高温熔融区3的气化剂旋流,需要限定气化剂输送装置5与柱状壳体1的轴向夹角,还需要限定在柱状壳体1的空间范围内,气化剂输送装置5与垂直于轴向的截面的夹角。同时,为在高温熔融区3内形成流向气化反应区2的氧化剂旋流,需要限定氧化剂输送装置6与柱状壳体1的轴向夹角,还需要限定在柱状壳体1的空间范围内,氧化剂输送装置6与垂直于轴向的截面的夹角。
可以看出,气化剂输送装置5和氧化剂输送装置6都是倾斜安装在柱状壳体1内壁上;同时,在本发明的优选实施例中,气化剂输送装置5的倾斜角度大于氧化剂输送装置6的倾斜角度,使得气化反应区2和高温熔融区3内分别形成所需的气化剂旋流通道和氧化剂旋流通道。
具体地,气化剂输送装置5与柱状壳体1的轴向夹角大于氧化剂输送装置6与柱状壳体1的轴向夹角,气化剂输送装置5与垂直于轴向的截面的夹角大于氧化剂输送装置6与垂直于轴向的截面的夹角。
图2是本发明提供的气化剂输送装置的布置位置示意图,图4是本发明提供的氧化剂输送装置的布置位置示意图,请参看图2和图4,本实施例中至少包括四个气化剂输送装置5,且四个气化剂输送装置5均位于同一平面,对称间隔分布在气化反应区2底部。至少包括三个氧化剂输送装置6,且三个氧化剂输送装置6均位于同一平面,对称间隔分布在高温熔融区3顶部。使得高温熔融区3内部形成均匀的燃烧反应空间。
图3是本发明提供的气化反应区的气体流向示意图,请参看图3,本实施例的气化剂输送装置5的布置方式使得高温气化剂输入气化反应区2时形成气化剂旋流,在气化反应区2下部形成负压区P,进一步形成供催化气化灰渣下落至高温熔融区3的旋流通道,便于催化气化灰渣下落至高温熔融区3。同时促使高温气化剂在反应炉内与煤粉充分混合、流化均匀,促进反应充分进行,且使得气化反应区2内部温度分布均匀。
图5是本发明提供的高温熔融区的气体流向示意图,如图5中虚线箭头所示,氧化剂输送装置6的布置方式也能够使得氧化剂输送装置6喷出的气 流形成氧化剂旋流后沿柱状壳体1的内壁面向上进入气化反应区2。
图6是本发明提供的煤催化气化***的结构示意图,请参看图6。在本发明的另一实施例提供了一种煤催化气化***,包括:备煤单元A、煤催化气化反应炉B、煤气净化单元C和排渣单元D。
备煤单元A用于对已选取好的原料煤进行低成本催化剂负载,得到符合催化气化反应的煤样。
煤催化气化反应炉B用于对备煤单元A输送的煤样进行高温气化,生成粗煤气和催化气化灰渣,并对高温气化产生的催化气化灰渣进行高温熔融,得到无害化处理。
煤气净化单元C用于对煤催化气化反应炉B输送的粗煤气进行分离,使得粗煤气能够作为产品气使用,同时收集分离得到的飞灰,并将飞灰输送回煤催化气化反应炉B进行再一次的高温熔融。
排渣单元D用于收集煤催化气化反应炉B产生的液态熔融渣,并将液态熔融渣进行处理后排放。
本实施例中,备煤单元A的输出口连接有星型给料器,星型给料器与煤催化气化反应炉B的进料口4连通,以将备煤单元A中制备好的煤样输送至煤催化气化反应炉B中。
具体地,备煤单元A将经过破碎筛分后的直径在2mm以下的原料煤进行低成本催化剂负载,得到煤样。
可选的,低成本催化剂包括碱金属硫酸盐、钙的氧化物、钙的氢氧化物、工业废碱渣或工业废碱液。碱金属硫酸盐包括钾、钠;工业废碱渣或工业废碱液包括造纸黑液、高盐废水等含碱金属、有机物的废水。
可选的,进行催化剂负载的方法包括:干混、浸渍或离子交换。
可选的,进行催化剂负载的设备只要能实现原料煤与催化剂的充分均匀混合即可,包括:高速混合机、皮带或搅拌机。
在本实施例中,必要时需要对原料煤进行干燥,使得原料煤满足煤样进料含水量要求,不影响煤样输送。
煤催化气化反应炉B的排渣口7与排渣单元D连通,将产生的液态熔融渣输送至排渣单元D中。排渣单元D中设有粒化器,液态熔融渣进入粒化器后,通过雾化喷嘴向粒化器通入雾化水,使得液态熔融渣粒化为固态,而雾化喷嘴通入的雾化水气化为水蒸气,作为煤催化气化反应炉B中的高温气化剂循环使用。排渣单元D中还设有水夹套换热结构,用于给已化为固态的固渣进行降温,并回收余热。而固体灰渣可直接排放或用作建材。
煤催化气化反应炉B的排气口与煤气净化单元C连通,以将粗煤气输送至煤气净化单元C中,煤气净化单元C内设置有旋风分离器、过滤器和返回装置。旋风分离器用于分离粗煤气中携带的一部分飞灰,使粗煤气的含尘量满足产品气要求;过滤器用于收集被旋风分离器分离出来的飞灰;返回装置用于将收集到的飞灰重新输送回煤催化气化反应炉B的高温熔融区3中进行循环处理。
可选的,除尘后的粗煤气经过酸性气体脱除后直接作为产品气。
优选的,本实施例的煤催化气化***还包括气体分离E,用于将除尘后的粗煤气通过膜分离或者深冷分离,将得到的CO/H 2全部返回煤催化气化反应炉B内或部分返回煤催化气化反应炉B内发生甲烷化,进一步提高甲烷浓度,还能利用甲烷化反应放热提供给吸热的碳水反应,实现能量高效利用。
本发明旨在保护一种煤催化气化反应炉,包括:柱状壳体1内形成有气化反应区2和高温熔融区3,气化反应区2位于高温熔融区3上方;柱状壳体1的内壁上间隔设有至少四个气化剂输送装置5,气化剂输送装置5位于气化反应区2的底部,且气化剂输送装置5的输出口朝向气化反应区2的顶部,用于将高温气化剂输送至气化反应区2中;柱状壳体1的内壁上间隔设有至少三个氧化剂输送装置6,氧化剂输送装置6位于高温熔融区3的顶部,且氧化剂输送装置6的输出口朝向高温熔融区3的底部,用于将高温氧化剂输送至高温熔融区3中。还保护一种煤催化气化反应***,包括煤催化气化反应炉B,还包括:备煤单元A、煤气净化单元C和排渣单元D;备煤单元A的输出口与煤催化气化反应炉B的进料口连通,以将备煤单元A中制备好的 煤样输送至煤催化气化反应炉B中;煤催化气化反应炉B的排渣口7与排渣单元D连通,以将煤催化气化反应炉B中产生的液态熔融渣输送至排渣单元中D进行处理;煤催化气化反应炉B的排气口与煤气净化单元C的输入口连通,以将粗煤气输送至煤气净化单元C中;煤气净化单元C的出灰口与煤催化气化反应炉B连通,以将飞灰重新输送回煤催化气化反应炉B的高温熔融区3中进行循环处理。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (16)

  1. 一种煤催化气化反应炉,其特征在于,包括:
    柱状壳体;
    所述柱状壳体内形成有气化反应区和高温熔融区,所述气化反应区位于所述高温熔融区之上;
    所述气化反应区底部设置的气化剂输送装置朝向所述气化反应区顶部输送高温气化剂时,在所述气化反应区内形成流向所述高温熔融区的气化剂旋流;
    所述高温熔融区顶部设置的氧化剂输送装置朝向所述高温熔融区底部输送高温氧化剂时,在所述高温熔融区内形成流向所述气化反应区的氧化剂旋流。
  2. 根据权利要求1所述的煤催化气化反应炉,其特征在于,
    所述气化剂输送装置的输出口朝向所述气化反应区顶部;
    所述氧化剂输送装置的输出口朝向所述高温熔融区底部。
  3. 根据权利要求2所述的煤催化气化反应炉,其特征在于,
    所述气化剂输送装置和所述氧化剂输送装置设于所述柱状壳体的内壁;
    所述气化剂输送装置的输出口与所述柱状壳体的轴向夹角大于所述氧化剂输送装置的输出口与所述柱状壳体的轴向夹角;
    所述气化剂输送装置的输出口与垂直于所述轴向的截面的夹角大于所述氧化剂输送装置的输出口与垂直于所述轴向的截面的夹角。
  4. 根据权利要求2所述的煤催化气化反应炉,其特征在于,
    所述气化剂输送装置和所述氧化剂输送装置设于所述柱状壳体的内壁;
    所述气化剂输送装置的输出口与所述柱状壳体的轴向夹角为45°-90°;
    所述气化剂输送装置的输出口与垂直于所述轴向的截面的夹角为 60°-90°;
    所述氧化剂输送装置的输出口与所述柱状壳体的轴向夹角为15°-50°;
    所述氧化剂输送装置的输出口与垂直于所述轴向的截面的夹角为45°-90°。
  5. 根据权利要求1所述的煤催化气化反应炉,其特征在于,
    所述气化剂输送装置包括:多个气体分布器、多个射流管或多个喷嘴;
    所述氧化剂输送装置包括:多个气体分布器、多个射流管或多个喷嘴;
    每个所述气体分布器均位于同一水平面、每个所述射流管均位于同一水平面或每个所述喷嘴均位于同一水平面。
  6. 根据权利要求1所述的煤催化气化反应炉,其特征在于,
    所述气化剂输送装置包括:四个气体分布器、四个射流管或四个喷嘴;
    所述氧化剂输送装置包括:三个气体分布器、三个射流管或三个喷嘴;
    每个所述气体分布器均位于同一水平面、每个所述射流管均位于同一水平面或每个所述喷嘴均位于同一水平面。
  7. 根据权利要求5或6所述的煤催化气化反应炉,其特征在于,
    每个所述气体分布器对称间隔分布在所述高温熔融区的顶部或所述气化反应区的底部;
    每个所述射流管对称间隔分布在所述高温熔融区的顶部或所述气化反应区的底部;
    每个所述喷嘴对称间隔分布在所述高温熔融区的顶部或所述气化反应区的底部。
  8. 根据权利要求1所述的煤催化气化反应炉,其特征在于,
    所述高温气化剂包括:H 2O和/或O 2
    所述高温氧化剂包括:氧气或富氧蒸汽。
  9. 根据权利要求1所述的煤催化气化反应炉,其特征在于,
    所述高温熔融区底部形成有熔融液面;
    所述氧化剂旋流流入所述熔融液面以下一定深度后沿所述柱状壳体的内壁面进入所述气化反应区。
  10. 根据权利要求1所述的煤催化气化反应炉,其特征在于,
    所述气化反应区中的温度为650-750℃;
    所述高温熔融区中的温度为:850-1200℃。
  11. 根据权利要求1所述的煤催化气化反应炉,其特征在于,
    所述柱状壳体靠近所述气化反应区的顶部边缘处设有进料口,煤样从所述进料口进入所述气化反应区中;
    所述柱状壳体靠近所述高温熔融区的底部形成有倒锥形的排渣口,用于排出灰渣。
  12. 一种煤催化气化反应***,其特征在于,包括权利要求1-11任一项所述的煤催化气化反应炉,还包括:备煤单元、煤气净化单元和排渣单元;
    所述备煤单元的输出口与所述煤催化气化反应炉的进料口连通,以将所述备煤单元中制备好的煤样输送至所述煤催化气化反应炉中;
    所述煤催化气化反应炉的排渣口与所述排渣单元连通,以将所述煤催化气化反应炉中产生的液态熔融渣输送至所述排渣单元中进行处理;
    所述煤催化气化反应炉的排气口与所述煤气净化单元的输入口连通,以将粗煤气输送至所述煤气净化单元中;
    所述煤气净化单元的出灰口与所述煤催化气化反应炉连通,以将飞灰重新输送回所述煤催化气化反应炉的高温熔融区中进行循环处理。
  13. 根据权利要求12所述的煤催化气化反应***,其特征在于,
    所述备煤单元通过催化剂负载的方法制备煤样;
    所述催化剂包括:碱金属硫酸盐、钙的氧化物、钙的氢氧化物、工业废碱渣或工业废碱液;
    所述催化剂负载的方法包括:干混、浸渍或离子交换。
  14. 根据权利要求12所述的煤催化气化反应***,其特征在于,
    所述排渣单元包括依次连接的:粒化器和换热结构;
    所述粒化器用于将所述液态熔融渣粒化为固态;
    所述换热结构用于对所述固态的熔融渣进行降温并回收余热。
  15. 根据权利要求12所述的煤催化气化反应***,其特征在于,
    所述煤气净化单元包括依次连接的:旋风分离器、过滤器和返回装置;
    所述旋风分离器用于分离粗煤气中携带的飞灰;
    所述过滤器用于收集所述飞灰;
    所述返回装置用于将所述飞灰输送回所述煤催化气化反应炉的高温熔融区中。
  16. 根据权利要求12所述的煤催化气化反应***,其特征在于,还包括:气体分离单元;
    所述气体分离单元的输入口与所述煤气净化单元的输出口连通,用于对分离飞灰后的所述粗煤气进行膜分离或深冷分离,得到CO或H 2
    所述气体分离单元的第一输出口与所述煤催化气化反应炉连通,用于将全部的所述CO或H 2或部分的所述CO或H 2输送回所述煤催化气化反应炉内;
    所述气体分离单元的第二输出口用于输出所述CO或H 2
PCT/CN2021/084950 2021-02-04 2021-04-01 一种煤催化气化反应炉及煤催化气化反应*** WO2022165972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110156643.5A CN112920853B (zh) 2021-02-04 2021-02-04 一种煤催化气化反应炉及煤催化气化反应***
CN202110156643.5 2021-02-04

Publications (1)

Publication Number Publication Date
WO2022165972A1 true WO2022165972A1 (zh) 2022-08-11

Family

ID=76170516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084950 WO2022165972A1 (zh) 2021-02-04 2021-04-01 一种煤催化气化反应炉及煤催化气化反应***

Country Status (2)

Country Link
CN (1) CN112920853B (zh)
WO (1) WO2022165972A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105038860A (zh) * 2015-07-10 2015-11-11 北京柯林斯达科技发展有限公司 一种旋流式气化炉以及旋流式气化工艺
CN107177384A (zh) * 2017-07-11 2017-09-19 新奥科技发展有限公司 一种催化气化装置、***及方法
CN107760385A (zh) * 2016-08-23 2018-03-06 中国石油化工股份有限公司 流化床和熔融床相组合的煤气化装置及其方法
CN107760379A (zh) * 2016-08-23 2018-03-06 中国石油化工股份有限公司 流化床和熔融床组合式煤催化气化反应装置及其方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201167B (zh) * 2007-12-25 2010-06-09 哈尔滨工业大学 垃圾气化及飞灰高温熔融处理装置及方法
CN102831945B (zh) * 2012-08-16 2015-10-21 中国科学院等离子体物理研究所 热等离子体处理低、中水平放射性固体废弃物装置与方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105038860A (zh) * 2015-07-10 2015-11-11 北京柯林斯达科技发展有限公司 一种旋流式气化炉以及旋流式气化工艺
CN107760385A (zh) * 2016-08-23 2018-03-06 中国石油化工股份有限公司 流化床和熔融床相组合的煤气化装置及其方法
CN107760379A (zh) * 2016-08-23 2018-03-06 中国石油化工股份有限公司 流化床和熔融床组合式煤催化气化反应装置及其方法
CN107177384A (zh) * 2017-07-11 2017-09-19 新奥科技发展有限公司 一种催化气化装置、***及方法

Also Published As

Publication number Publication date
CN112920853B (zh) 2022-08-12
CN112920853A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
JP6321375B2 (ja) 炭素質材料のガス化方法およびガス化システム
AU759861B2 (en) Power generation system based on gasification of combustible material
US20130312328A1 (en) Method and apparatus for particle recycling in multiphase chemical reactors
EP3075817A1 (en) Process and system for coupling pressurized pyrolysis of biomasses
US11220642B2 (en) Pulverized coal gasification device and process for producing high heating value coal gas with low carbon residue content
KR101813225B1 (ko) 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기 및 이를 포함하는 가스화 장치
CN101845326B (zh) 旋流式熔融池气化炉
CN113195685A (zh) 处理含碳材料的工艺和用于其的设备
CN111088057A (zh) 一种废塑料制油制氢方法
CN108795505A (zh) 一种煤粉加氢气化方法及***
WO2022165972A1 (zh) 一种煤催化气化反应炉及煤催化气化反应***
CN109054901A (zh) 一种下行床-流化床串联式气化方法及装置
EP0091948A1 (en) Flowing melt layer process for production of sulfides
CN108410506B (zh) 一种无氧催化气化炉、催化气化***及煤甲烷化方法
EP4026886B1 (en) Process for producing synthesis gas through thermochemical conversion of biomass and waste materials
CN214289960U (zh) 一种有机固废气化熔融处理的***
JP2006021069A (ja) 超臨界水反応装置
CN105779020A (zh) 一种粗煤气净化及余热回收利用***及方法
JP4981202B2 (ja) バイオマスガス化炉
JP2004277574A (ja) 合成ガスの冷却・除塵方法及びその装置
CN108946659B (zh) 一种石油焦气化制备氢气的***及方法
CN215667847U (zh) 煤催化气化装置及煤催化气化***
CN112708466B (zh) 有机固废低焦油气化热电联供的***及方法
RU2818558C1 (ru) Газификатор переработки твердого низкосортного углеродсодержащего сырья
CN112480969B (zh) 一种流化床气化炉及气化工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21923981

Country of ref document: EP

Kind code of ref document: A1