WO2022165901A1 - 一种单片集成波导装置及其集成半导体芯片 - Google Patents

一种单片集成波导装置及其集成半导体芯片 Download PDF

Info

Publication number
WO2022165901A1
WO2022165901A1 PCT/CN2021/079322 CN2021079322W WO2022165901A1 WO 2022165901 A1 WO2022165901 A1 WO 2022165901A1 CN 2021079322 W CN2021079322 W CN 2021079322W WO 2022165901 A1 WO2022165901 A1 WO 2022165901A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
modulator
segment
waveguide
monolithic integrated
Prior art date
Application number
PCT/CN2021/079322
Other languages
English (en)
French (fr)
Inventor
陈伯庄
Original Assignee
桂林雷光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林雷光科技有限公司 filed Critical 桂林雷光科技有限公司
Publication of WO2022165901A1 publication Critical patent/WO2022165901A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium

Definitions

  • the present invention relates to the field of semiconductor components and chips, in particular to a monolithic integrated waveguide device and its integrated semiconductor chip.
  • the wavelength chirp during current modulation affects all semiconductor lasers to varying degrees, even for lasers such as DFB, DBR lasers whose internal wavelength selective elements are prescribed to emit at a single wavelength.
  • the combination of laser chirp and dielectric dispersion can result in increased signal distortion for analog signals, or increased bit error rate for digital signals, when the chirped light output from the laser is passed through a dispersive medium such as fiber. These undesirable effects limit transmission distance and signal speed.
  • EMLs electroabsorption modulated lasers
  • the laser segment is CW biased to emit light of constant intensity. Since the laser is not modulated, the emission has little or no chirp.
  • the RF voltage applied to the integrated modulator changes the absorption of the laser light to form the modulated signal.
  • EML is not suitable for analog signals due to the highly nonlinear nature of the electroabsorption effect.
  • the object of the present invention is to provide a monolithic integrated waveguide device, comprising a laser segment 1 and a modulator segment 2, wherein the laser segment 1 includes a wavelength selective element 11, and the laser segment 1 and the modulator segment 2 respectively include a laser waveguide 12 and a modulator waveguide 22, in which optical modes propagate both within the laser waveguide 12 and the modulator waveguide 22, and the modulator segment 2 is used to modulate phase and/or amplitude.
  • the wavelength selection element 11 is a built-in laser grating.
  • the laser waveguide 12 and the modulator waveguide 22 are formed based on strained or unstrained multiple quantum wells or bulk semiconductors, and the laser waveguide 12 and the modulation of the laser segment 1 and the modulator segment 2
  • the device waveguide 22 and the active region share some common layers, or are constructed from entirely different layers using epitaxial growth techniques such as selected area epitaxy or butt-joint epitaxy.
  • the laser waveguide 12 and the modulator waveguide 22 are physically aligned so that the light output of the laser segment 1 enters the modulator segment 2 with minimal loss, the modulator waveguide 22 having an active A region with a higher band gap, the modulator waveguide 22 is a buried heterostructure or a ridge waveguide structure.
  • an electrical isolation element 3 is arranged between the modulator segment 2 and the laser segment 1 , and the electrical isolation element 3 is electrically isolated by using a process of ion bombardment or trench etching.
  • the facet at the end of the modulator section 2 is the front facet 22 of the anti-reflection and anti-reflection coating, which is the position where the optical signal is emitted and has an anti-reflection coating, and the modulator waveguide 21 is located in the modulator
  • the end of segment 2 is at a certain angle; the facet at the end of the laser segment 1 is the rear facet 13 of the high-reflection anti-reflection coating, and the rear facet 13 of the high-reflection anti-reflection coating is subjected to high reflection coating, no coating or use Anti-reflection film.
  • the laser segment 1 and the modulator segment 2 are constructed in a material system composed of indium phosphide gallium arsenide material on an indium phosphide substrate, and the laser segment 1 is arranged on an ITU grid to emit at discrete wavelengths.
  • the modulator section 2 has a phase adjustment contact pad, and the wavelength chirp of the laser is eliminated by sending an appropriate signal to the phase adjustment contact pad in the modulator section 2, and the signal is transmitted from the external signal conditioning circuit 4 from derived from the input RF signal; alternatively, by injecting the RF signal into the phase-adjusted contact pads, adding substantial phase information to the intensity modulation.
  • the single-chip integrated waveguide device adopts a single-chip device, which is composed of multiple laser segments 1, each laser segment 1 has an independent laser bar, and the light from the multiple laser segments 1 adopts the multiple laser waveguides.
  • the 12 combined combiners combine into a single modulator waveguide 21 containing modulator segments 2 for phase modulation, each laser segment 1 operating at a different wavelength, producing an output containing multiple ITU wavelength channels.
  • the monolithic integrated waveguide device adopts a monolithic device, and the monolithic device is composed of a plurality of laser segments 1 and a plurality of modulator segments 2 for modulating the phase, and formed together on the same chip, from the Lights from multiple laser segments 1 and multiple modulator segments 2 are combined into one output waveguide by a waveguide combiner, each laser segment 1 and modulator segment 2 operate at different wavelengths, and the resulting output contains multiple ITU wavelength channels.
  • Another object of the present invention is to provide an integrated semiconductor chip, comprising: a monolithic integrated waveguide device and a front and rear view mirror, wherein the monolithic integrated waveguide device has a plurality of segments, which form a certain angle with the front and rear view mirrors, and the plurality of segments include laser segments 1 and modulator segment 2, the monolithic integrated waveguide device further includes a laser waveguide 12 possessed by laser segment 1 and a modulator waveguide 21 possessed by modulator segment 2, and the laser light emitted by laser segment 1 is directly coupled to modulator segment 2.
  • the direct modulation signal is injected into the laser segment 1
  • the individual signal is injected into the modulator segment 2
  • the modulation signal from the direct modulation signal to the laser segment 1 is injected into the phase modulator of the modulator segment 2, thereby generating no
  • the light output is chirped in wavelength, and due to the compensation effect of the operating phase, and the phase modulator has low distortion characteristics after propagating in a longer length of fiber.
  • the integrated device used with accompanying circuitry, produces a wavelength-free optical output while introducing a compensation effect of the operating phase, allowing the phase modulator to have low distortion characteristics after propagation over longer lengths of fiber.
  • FIG. 1 is a schematic structural diagram of a monolithic integrated waveguide device according to an embodiment of the present invention.
  • the basic idea of this embodiment is a monolithic integrated waveguide device comprising a plurality of segments and electrodes, which can be used to generate an amplitude and phase modulated laser output. Depending on how the electrical signal is applied to each electrode, this device can only produce an intensity-modulated (zero-chirp) signal. Alternatively, in other preferred embodiments, the device may be caused to generate a signal that transmits information encoded by amplitude and phase.
  • FIG. 1 An exemplary apparatus according to a first embodiment of the present invention is shown in FIG. 1 . It includes a laser segment 1 and a modulator segment 2.
  • the laser segment 1 includes a wavelength selection element 11.
  • a built-in laser grating is used as the wavelength selection element 11.
  • the laser section 1 and the modulator section 2 respectively include a laser waveguide 12 and a modulator waveguide 22 , and optical modes both propagate in the laser waveguide 12 and the modulator waveguide 22 .
  • the laser waveguide 12 and the modulator waveguide 22 are formed based on strained or unstrained multiple quantum wells or bulk semiconductors.
  • the laser waveguides 12 and modulator waveguides 22 and active regions of laser segment 1 and modulator segment 2 share some common layers, or are constructed from entirely different layers using epitaxial growth techniques such as selected area epitaxy or butt-joint epitaxy.
  • Laser waveguide 12 and modulator waveguide 22 are physically aligned so that the light output of laser segment 1 enters modulator segment 2 with minimal loss.
  • Modulator section 2 is used to modulate the phase.
  • an electrical isolation element 3 is provided between the modulator segment 2 and the laser segment 1 to prevent crosstalk between the two segments.
  • the electrical isolation element 3 is electrically isolated using a process such as ion bombardment or trench etching.
  • the modulator waveguide 22 of modulator segment 2 has a significantly higher band gap than the active region of laser segment 1. This is in contrast to EML devices, where the bandgap of the electroabsorption part is designed to be close to the laser wavelength and operates in absorption mode.
  • the modulator waveguide 22 is further formed in a suitable structure, such as a buried heterostructure or a ridge waveguide structure. Of course, those skilled in the art can also use other reasonable structural forms of the waveguide.
  • the facet at the end of the modulator is the AR Coated Front Facet 22AR Coated Front Facet, which is where the light signal is emitted and has an anti-reflection coating.
  • the modulator waveguide 21 is angled at the end of the modulator to further reduce reflections from the front facet 22 of the AR coating. Light emanating from the front facet 22 of the anti-reflection coating is suitable for coupling into a single mode fiber.
  • the facet at the end of the laser segment is the 13HR Coated Back Facet with a high-reflection anti-reflection coating.
  • This facet is coated with a high-reflection coating to increase the output power. It can also be uncoated, or an anti-reflection coating can be used.
  • the modulator segment 2 is biased to induce a refractive index change in the modulator waveguide 22, primarily through electro-optic effects. As the signal propagates in the modulator waveguide 22, the change in refractive index causes a phase delay of the signal. This is in stark contrast to EML.
  • the modulator segment 2 in the device of this embodiment is designed not to absorb the emitted light from the laser segment 1, while the modulator in the EML is designed to absorb the emitted light from the laser part.
  • the laser segment 1 and the modulator segment 2 are constructed on a suitable material system, such as a material system of indium phosphide gallium arsenide material on an indium phosphide substrate.
  • the laser wavelength can cover the optical fiber communication range from 1100nm to 1650nm.
  • Laser segment 1 can be designed to emit at discrete wavelengths on the ITU grid.
  • the laser segment 1 is directly modulated by an analog radio frequency signal.
  • the laser light from the laser passes through the modulator waveguide 21 of the modulator section 2 phase adjustment part.
  • Modulator segment 2 has phase adjustment contact pads.
  • the wavelength chirp of the laser can be canceled by sending an appropriate signal to the phase adjustment contact pads in the modulator segment 2.
  • Appropriate signals can be derived from the incoming radio frequency signal by means of an external signal conditioning circuit 4 .
  • the elimination of chirp results in a chirp-free optical output, which is exactly what is required in fiber optic networks designed to transmit analog RF signals.
  • phase information can be added to the intensity modulation by injecting RF signals into the phase adjustment contact pads.
  • This function can increase the amount of information transmitted, which is required for other special optical fiber network systems that require more signal input.
  • features such as individual segments and contacts, matched waveguides, etc., can be achieved by standard processing techniques. However, it is the monolithic integration of the laser segment 1 and the phaser modulation segment 2, and the way in which the integrated devices are used together with the accompanying circuits, that make this embodiment unique and achieve effective technical results.
  • a second preferred embodiment of the present invention consists in using a monolithic device consisting of a plurality of laser segments 1, each laser segment 1 having an independent laser bar. Light from multiple laser segments 1 is combined using a combiner that combines multiple laser waveguides 12 into a single modulator waveguide 21 containing modulator segments 2 for phase modulation. Each laser segment 1 operates at a different wavelength, so the resulting output contains multiple ITU wavelength channels.
  • the third preferred embodiment of the present invention adopts a monolithic device, and the monolithic device is composed of a plurality of laser segments 1 and a plurality of modulator segments 2 for phase modulation, which are jointly formed on the same chip.
  • Light from multiple laser segments 1 and multiple modulator segments 2 respectively have waveguides, and light is combined into one output waveguide by a waveguide combiner.
  • Each laser segment 1 and modulator segment 2 operate at different wavelengths, so the resulting output contains multiple ITU wavelength channels.
  • the integrated semiconductor chip formed according to the above embodiment includes: a monolithic integrated waveguide device and a front and rear view mirror, wherein the monolithic integrated waveguide device has a plurality of segments, which form a certain angle with the front and rear view mirrors, and the plurality of segments include a laser segment 1 and a modulation In the device section 2, the monolithic integrated waveguide device further includes the laser waveguide 12 of the laser section 1 and the modulator waveguide 21 of the modulator section 2. The laser light emitted by the laser section 1 is directly coupled to the modulator section 2.
  • the direct modulation signal is injected into the laser segment 1 , and the individual signal is injected into the modulator segment 2 . It works as follows: the modulation signal from the direct modulation signal to the laser segment 1 is injected into the phase modulator of the modulator segment 2, resulting in a light output without wavelength chirp, and due to the compensation effect of the operating phase, and the phase modulator Low distortion characteristics after propagation in longer lengths of fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供了一种单片集成波导装置,包括激光段以及调制器段,激光段包含波长选择元件,激光段和调制器段分别包含光模在其中传播的激光波导和调制器波导,调制器段用于调制相位和/或振幅。单片集成波导装置采用一个单片装置,由多个激光器段组成,每个激光器段都具有独立的激光条;或者采用由多个激光器段和多个用于调制相位的调制器段组成dev单片器件,并共同形成在同一个芯片上。一种集成半导体芯片,包括:单片集成波导装置以及前后视镜,单片集成波导装置具有多个段,与前后视镜成一定角度,激光器段发射的激光直接耦合到调制器段。

Description

一种单片集成波导装置及其集成半导体芯片 技术领域
本发明涉及半导体零部件以及芯片领域,特别是涉及一种单片集成波导装置及其集成半导体芯片。
背景技术
众所周知,半导体激光二极管的直流调制主要导致光输出强度的变化。通过直接调制半导体激光二极管,可以轻松实现高达数Gbs或GHz的数字和模拟格式的光纤信号传输。各种非线性效应限制了光纤信号的传输,其中之一就是波长啁啾。
在电流调制期间的波长线性调频脉冲以不同程度影响所有半导体激光器,即使对于诸如DFB,DBR激光器的激光器,其内部波长选择元件也规定以单一波长发射。当来自激光器的该波长线性调频光输出通过诸如光纤之类的色散介质时,激光线性调频和介质色散的组合会导致模拟信号的信号失真增加,或者数字信号的误码率增加。这些不良影响限制了传输距离和信号速度。
单片集成器件,例如电吸收调制激光器(EML),解决了部分波长啁啾问题。在此设备中,激光段被CW偏压以发射恒定强度的光。由于未调制激光,因此发射几乎没有或没有啁啾。施加到集成调制器的RF电压会改变激光的吸收程度,以形成调制信号。但是,由于电吸收效应的高度非线性,EML不适合模拟信号。
为了在光纤中传输模拟信号,直接调制的激光仍然是最常用的。当激射波长接近光纤的零色散时,传输的信号将保持其保真度。但是,如果激 光波长远离零色散点,则由于激光啁啾和光纤色散的相互作用,传输的信号会失真。
已经提出了各种补偿色散引起的失真的方案,例如使用色散补偿光纤,预失真补偿电路和外部相位调制器。例如,Iannelli等人在申请11/080721中提出了使用离散相位调制器和控制电子设备来消除源半导体激光器的啁啾的方法。Ramachandran等人在申请号11/800,063中提出了一种WDM***,在此***中,将多个激光器发出的wavelength声输出进行组合,然后由分立的相位调制器进行补偿。这两个***都依赖于组合常用的离散组件并以新颖的方式使用它们。然而,目前的离散组件构成集成器件无法与伴随电路一起使用,因此无法在产生无波长啁啾的光输出的同时,引入操作相位的补偿效应,无法使得相位调制器在较长一段长度光纤内传播后仍具有低失真的特性。
发明内容
本发明的目的在于提供一种单片集成波导装置,包括激光段1以及调制器段2,其中激光段1包含波长选择元件11,所述激光段1和所述调制器段2分别包含激光波导12和调制器波导22,光模均在所述激光波导12和所述调制器波导22内传播,所述调制器段2用于调制相位和/或振幅。
优选的,所述波长选择元件11为内置的激光光栅。
优选的,所述激光波导12和所述调制器波导22基于应变或非应变的多个量子阱或体半导体形成,所述激光段1和调制器段2的所述激光波导12和所述调制器波导22以及有源区共享部分公共层,或者使用选择区域外延或对接接合外延之类的外延生长技术从完全不同的层构建。所述激光波导12和所述调制器波导22在实体上对齐,以便所述激光段1的光输出以最小的损耗进入调制器段2,所述调制器波导22具有比激光段1的有源区 域更高的带隙,所述调制器波导22为掩埋异质结构或脊形波导结构。
优选的,所述调制器段2与激光段1之间设置电隔离元件3,所述电隔离元件3使用离子轰击或沟槽蚀刻的工艺来实现电隔离。
优选的,所述调制器段2末端的小平面为抗反射增透膜前部小平面22,该小平面为光信号发射的位置,具有抗反射涂层,调制器波导21在所述调制器段2末端成一定角度;所述激光器段1末端的小平面为高反射增透膜后部小平面13,对所述高反射增透膜后部小平面13进行高反射镀膜、不镀膜或使用抗反射膜。
优选的,所述激光器段1和调制器段2构建在磷化铟衬底上的磷化铟砷化镓材料构成的材料***,所述激光器段1设置在ITU网格上以离散波长发射。
优选的,所述调制器段2具有相位调整接触垫,通过向调制器段2中的相位调整接触垫发送适当的信号,消除激光的波长啁啾,所述信号通过外部的信号调节电路4从输入射频信号中导出;或者,通过向相位调整接触垫内注入RF信号,从而将大量的相位信息添加到强度调制中。
优选的,所述单片集成波导装置采用一个单片装置,由多个激光器段1组成,每个激光器段1都具有独立的激光条,来自多个激光器段1的光采用将多个激光器波导12组合的组合器组合成包含用于相位调制的调制器段2的单个调制器波导21,每个激光器段1在不同的波长下工作,产生的输出包含多个ITU波长通道。
优选的,所述单片集成波导装置采用单片器件,单片器件由多个激光 器段1和多个用于调制相位的调制器段2组成,并共同形成在同一个芯片上,来自所述多个激光器段1和多个调制器段2的光通过波导组合器组合成一个输出波导,每个激光器段1和调制器段2在不同波长下工作,产生的输出包含多个ITU波长信道。
本发明的目的还在于提供一种集成半导体芯片,包括:单片集成波导装置以及前后视镜,其中单片集成波导装置具有多个段,与前后视镜成一定角度,多个段包括激光器段1以及调制器段2,单片集成波导装置还包括激光器段1所具有的激光器波导12以及调制器段2所具有的调制器波导21,激光器段1发射的激光直接耦合到调制器段2。
其工作原理为:直接调制信号注入所述激光器段1,单独信号注入所述调制器段2,从直接调制信号到激光器段1的调节信号被注入调制器段2的相位调制器,从而产生无波长啁啾的光输出,并且由于操作相位的补偿效应,并且该相位调制器在较长一段长度光纤内传播后仍具有低失真的特性。
本发明的有益效果:
集成器件与伴随电路一起使用,在产生无波长啁啾的光输出的同时,引入操作相位的补偿效应,使得相位调制器在较长一段长度光纤内传播后仍具有低失真的特性。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具 体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。本发明的目标及特征考虑到如下结合附图的描述将更加明显,附图中:
附图1为根据本发明实施例的单片集成波导装置结构示意图。
具体实施方式
本实施例基本的构思在于包括多个段和电极的单片集成波导装置,其可用于产生振幅和相位调制的激光输出。根据将电信号施加到各个电极的方式,此设备只能产生强度调制(零啁啾)信号。可替代地,其他优选实施方式中,可以使该设备产生信号,该信号传输由幅度和相位编码的信息。
图1中示出了根据本发明第一实施例的示例性装置。包括激光段1以及调制器段2,其中激光段1包含波长选择元件11,本实施例中采用内置的激光光栅作为波长选择元件11,当然本领域技术人员也可以选择其他方式的常见的波长选择元件11。激光段1和调制器段2分别包含激光波导12和调制器波导22,光模均在激光波导12和调制器波导22内传播。作为优选实施例,激光波导12和调制器波导22基于应变或非应变的多个量子阱或体半导体形成。激光段1和调制器段2的激光波导12和调制器波导22以及有源区共享部分公共层,或者使用诸如选择区域外延或对接接合外延之类的外延生长技术从完全不同的层构建。激光波导12和调制器波导22在实体上对齐,以便激光段1的光输出以最小的损耗进入调制器段2。调制器段2用于调制相位。此外,调制器段2与激光段1之间设置电隔离元件3,以防止两段之间发生串扰。本实施例中,电隔离元件3使用诸如离子轰击或沟槽蚀刻之类的工艺来实现电隔离。
调制器段2的调制器波导22具有比激光段1的有源区域明显更高的带 隙。这与EML设备相反,在EML设备中,电吸收部分的带隙设计为接近激光波长,并以吸收模式工作。调制器波导22进一步以适当的结构形成,例如掩埋异质结构或脊形波导结构。当然本领域技术人员还可以使用其他合理结构形式的波导。
调制器末端的小平面为抗反射增透膜前部小平面22AR Coated Front Facet,该小平面为光信号发射的位置,具有抗反射涂层。调制器波导21在调制器末端成一定角度,以进一步减少抗反射增透膜前部小平面22的反射。从抗反射增透膜前部小平面22发出的光适合耦合到单模光纤中。
激光段末端的小平面为高反射增透膜后部小平面13HR Coated Back Facet,对该小平面进行高反射镀膜以增加输出功率,也可以不镀膜,或者使用抗反射膜。
调制器段2被偏置,以主要通过电光效应引起调制器波导22中的折射率变化。当信号在调制器波导22中传播时,折射率的变化会导致信号的相位延迟。这与EML形成了鲜明的对比。本实施例设备中的调制器段2设计为不吸收来自激光器段1的发射光,而EML中的调制器设计为吸收来自激光部分的发射光。
在第一个示例性装置中,激光器段1和调制器段2构建在适当的材料***上,例如磷化铟衬底上的磷化铟砷化镓材料构成的材料***。激光波长可以覆盖1100nm到1650nm的光纤通信范围。激光器段1可以设计成在ITU网格上以离散波长发射。
在本发明的另一个实施例中,激光器段1由模拟射频信号直接调制。来自激光器的激光通过调制器段2相位调节部分调制器波导21。调制器段2具有相位调整接触垫。通过向调制器段2中的相位调整接触垫发送适当的信号,可以消除激光的波长啁啾。
适当的信号可以通过外部的信号调节电路4从输入射频信号中导出。啁啾的消除导致无啁啾的光输出,这正是为传输模拟射频信号而设计的光纤网络所需要的。
或者,通过向相位调整接触垫内注入RF信号,从而将大量的相位信息添加到强度调制中。此功能可以增加传输的信息量,为其他特殊的需要更多的信号输入的光纤网络***所需要。本实施例的设备中,单独的段和触点、匹配的波导等特性可以通过标准的处理技术来实现。然而,正是激光器段1和相位器调制段2的单片集成,以及集成器件与伴随电路一起使用的方法使得本实施例具有独特的特性,并获得了有效的技术效果。
本发明的第二优选实施方式在于采用一个单片装置,由多个激光器段1组成,每个激光器段1都具有独立的激光条。来自多个激光器段1的光采用将多个激光器波导12组合的组合器组合成包含用于相位调制的调制器段2的单个调制器波导21。每个激光器段1在不同的波长下工作,因此产生的输出包含多个ITU波长通道。
本发明的第三优选实施例为采用单片器件,单片器件由多个激光器段1和多个用于调制相位的调制器段2组成,并共同形成在同一个芯片上。来自多个激光器段1和多个调制器段2分别具有波导,光通过波导组合器组 合成一个输出波导。每个激光器段1和调制器段2在不同波长下工作,因此产生的输出包含多个ITU波长信道。根据以上实施例形成的集成半导体芯片,包括:单片集成波导装置以及前后视镜,其中单片集成波导装置具有多个段,与前后视镜成一定角度,多个段包括激光器段1以及调制器段2,单片集成波导装置还包括激光器段1所具有的激光器波导12以及调制器段2所具有的调制器波导21,激光器段1发射的激光直接耦合到调制器段2。
作为优选的实施方式,直接调制信号注入激光器段1,单独信号注入调制器段2。其工作原理为:从直接调制信号到激光器段1的调节信号被注入调制器段2的相位调制器,从而产生无波长啁啾的光输出,并且由于操作相位的补偿效应,并且该相位调制器在较长一段长度光纤内传播后仍具有低失真的特性。
虽然本发明已经参考特定的说明性实施例进行了描述,但是不会受到这些实施例的限定而仅仅受到附加权利要求的限定。本领域技术人员应当理解可以在不偏离本发明的保护范围和精神的情况下对本发明的实施例能够进行改动和修改。

Claims (10)

  1. 一种单片集成波导装置,其特征在于:包括激光段(1)以及调制器段(2),其中激光段(1)包含波长选择元件(11),所述激光段(1)和所述调制器段(2)分别包含激光波导(12)和调制器波导(22),光模均在所述激光波导(12)和所述调制器波导(22)内传播,所述调制器段(2)用于调制相位和/或振幅。
  2. 根据权利要求1所述的一种单片集成波导装置,其特征在于:所述波长选择元件(11)为内置的激光光栅。
  3. 根据权利要求1所述的一种单片集成波导装置,其特征在于:所述激光波导(12)和所述调制器波导(22)基于应变或非应变的多个量子阱或体半导体形成,所述激光段(1)和调制器段(2)的所述激光波导(12)和所述调制器波导(22)以及有源区共享部分公共层,或者使用选择区域外延或对接接合外延之类的外延生长技术从完全不同的层构建。所述激光波导(12)和所述调制器波导(22)在实体上对齐,以便所述激光段(1)的光输出以最小的损耗进入调制器段(2),所述调制器波导(22)具有比激光段(1)的有源区域更高的带隙,所述调制器波导(22)为掩埋异质结构或脊形波导结构。
  4. 根据权利要求1所述的一种单片集成波导装置,其特征在于:所述调制器段(2)与激光段(1)之间设置电隔离元件(3),所述电隔离元件(3)使用离子轰击或沟槽蚀刻的工艺来实现电隔离。
  5. 根据权利要求1所述的一种单片集成波导装置,其特征在于:所述调制器段(2)末端的小平面为抗反射增透膜前部小平面(22),该小平面为光信号发射的位置,具有抗反射涂层,调制器波导(21)在所述调制器段(2)末端成一定角度;所述激光器段(1)末端的小平面为高反射增透膜后部小平面(13),对所述高反射增透膜后部小平面(13)进行高反射镀膜、不镀膜或使用抗反射膜。
  6. 根据权利要求1所述的一种单片集成波导装置,其特征在于:所述激光器段(1)和调制器段(2)构建在磷化铟衬底上的磷化铟砷化镓材料构成的材料***,所述激光器段(1)设置在ITU网格上以离散波长发射。
  7. 根据权利要求1所述的一种单片集成波导装置,其特征在于:所述调制器段(2)具有相位调整接触垫,通过向调制器段(2)中的相位调整接触垫发送适当的信号,消除激光的波长啁啾,所述信号通过外部的信号调节电路(4)从输入射频信号中导出;或者,通过向相位调整接触垫内注入RF信号,从而将大量的相位信息添加到强度调制中。
  8. 根据权利要求1所述的一种单片集成波导装置,其特征在于:所述单片集成波导装置采用一个单片装置,由多个激光器段(1)组成,每个激光器段(1)都具有独立的激光条,来自多个激光器段(1)的光采用将多个激光器波导(12)组合的组合器组合成包含用于相位调制的调制器段(2)的单个调制器波导(21),每个激光器段(1)在不同的波长下工作,产生的输出包含多个ITU波长通道。
  9. 根据权利要求1所述的一种单片集成波导装置,其特征在于:所述单片集成波导装置采用单片器件,单片器件由多个激光器段(1)和多个用于调制相位的调制器段(2)组成,并共同形成在同一个芯片上,来自所述多个激光器段(1)和多个调制器段(2)的光通过波导组合器组合成一个输出波导,每个激光器段(1)和调制器段(2)在不同波长下工作,产生的输出包含多个ITU波长信道。
  10. 一种集成半导体芯片,包括:如权利要求1-9任一所述的单片集成波导装置以及前后视镜,其中单片集成波导装置具有多个段,与前后视镜成一定角度,多个段包括激光器段(1)以及调制器段(2),单片集成波导装置还包括激光器段(1)所具有的激光器波导(12)以及调制器段(2)所具有的调制器波导(21),激光器段(1)发射的激光直接耦合到调制器 段(2)。
PCT/CN2021/079322 2021-02-07 2021-03-05 一种单片集成波导装置及其集成半导体芯片 WO2022165901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110176830.XA CN112993753B (zh) 2021-02-07 2021-02-07 一种单片集成波导装置及其集成半导体芯片
CN202110176830.X 2021-02-07

Publications (1)

Publication Number Publication Date
WO2022165901A1 true WO2022165901A1 (zh) 2022-08-11

Family

ID=76392482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079322 WO2022165901A1 (zh) 2021-02-07 2021-03-05 一种单片集成波导装置及其集成半导体芯片

Country Status (2)

Country Link
CN (1) CN112993753B (zh)
WO (1) WO2022165901A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527535B (zh) * 2022-01-13 2022-08-30 之江实验室 一种基于电光预失真器的高线性硅基调制器芯片和高线性方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060104321A1 (en) * 2004-11-15 2006-05-18 Lightip Technologies Inc. Q-modulated semiconductor laser with electro-absorptive grating structures
CN102393593A (zh) * 2011-06-30 2012-03-28 北京邮电大学 超短脉冲光源产生装置
CN103956652A (zh) * 2014-04-25 2014-07-30 南京威宁锐克信息技术有限公司 集成调制器的低成本可调谐dfb半导体激光器及制备方法
CN104412468A (zh) * 2012-06-25 2015-03-11 韩国科学技术院 波长保持法布里-珀罗激光二极管以及包括该激光二极管的光发送器
CN105846312A (zh) * 2015-01-12 2016-08-10 南京大学(苏州)高新技术研究院 一种单片集成两段式dfb半导体激光器及阵列
CN110911948A (zh) * 2019-11-29 2020-03-24 西安奇芯光电科技有限公司 一种基于混合集成技术的啁啾管理激光器
CN112038888A (zh) * 2020-08-05 2020-12-04 南京大学 一种集成波导光栅调制器的半导体激光器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9523731D0 (en) * 1995-11-20 1996-01-24 British Telecomm Optical transmitter
JP2003509851A (ja) * 1999-09-03 2003-03-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 一体型光学変調器を有する波長可変レーザソース
GB0206204D0 (en) * 2002-03-15 2002-05-01 Denselight Semiconductors Pte Direct modulation of laser diode with chirp control
US7502394B2 (en) * 2004-12-03 2009-03-10 Corning Incorporated System and method for modulating a semiconductor laser
CN100570969C (zh) * 2008-01-18 2009-12-16 清华大学 基于fp激光器注入锁定的光生微波单片光子集成器件
US9306672B2 (en) * 2013-03-14 2016-04-05 Encore Corporation Method of fabricating and operating an optical modulator
US9762028B2 (en) * 2015-01-06 2017-09-12 Applied Optoelectronics, Inc. Two-section semiconductor laser with modulation-independent grating section to reduce chirp
CN104993375A (zh) * 2015-06-24 2015-10-21 华中科技大学 一种短腔长的分布反馈激光器
JP6470127B2 (ja) * 2015-06-24 2019-02-13 日本電信電話株式会社 光変調信号生成装置
CN108649427B (zh) * 2018-05-10 2020-09-01 常州工学院 高效激射输出dfb半导体激光器装置及光子集成发射芯片
CN111245520A (zh) * 2020-02-17 2020-06-05 北京理工大学 一种基于声光调制器的复合光锁相环的线性相干接收***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060104321A1 (en) * 2004-11-15 2006-05-18 Lightip Technologies Inc. Q-modulated semiconductor laser with electro-absorptive grating structures
CN102393593A (zh) * 2011-06-30 2012-03-28 北京邮电大学 超短脉冲光源产生装置
CN104412468A (zh) * 2012-06-25 2015-03-11 韩国科学技术院 波长保持法布里-珀罗激光二极管以及包括该激光二极管的光发送器
CN103956652A (zh) * 2014-04-25 2014-07-30 南京威宁锐克信息技术有限公司 集成调制器的低成本可调谐dfb半导体激光器及制备方法
CN105846312A (zh) * 2015-01-12 2016-08-10 南京大学(苏州)高新技术研究院 一种单片集成两段式dfb半导体激光器及阵列
CN110911948A (zh) * 2019-11-29 2020-03-24 西安奇芯光电科技有限公司 一种基于混合集成技术的啁啾管理激光器
CN112038888A (zh) * 2020-08-05 2020-12-04 南京大学 一种集成波导光栅调制器的半导体激光器

Also Published As

Publication number Publication date
CN112993753B (zh) 2022-03-08
CN112993753A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
US7609977B2 (en) Optical transmission using semiconductor optical amplifier (SOA)
JP4860608B2 (ja) 電界吸収変調型ファブリーペローレーザ及びその製作方法
US7269358B2 (en) Optical transmitter for increased effective modal bandwidth transmission
KR100244821B1 (ko) 발광소자와 외부변조기의 집적소자
US20060251425A1 (en) Suppression of fiber-induced noise caused by narrow linewidth lasers
US8420993B2 (en) Optical signal generator and method for adjusting the same having a reflecting mirror to define another cavity different from the cavity of a single mode laser
US7778552B2 (en) Directly modulated laser with integrated optical filter
US6014390A (en) Tunable transmitter with Mach-Zehnder modulator
US20110261845A1 (en) Chirp compensation and SBS suppression using a multi-section laser
CA2221445A1 (en) Method and apparatus for transmitting signals in an optical fibre
WO2022165901A1 (zh) 一种单片集成波导装置及其集成半导体芯片
JP6454256B2 (ja) 波長多重光送信器
JP6320192B2 (ja) 波長可変光源および波長可変光源モジュール
JP2022506323A (ja) 外部反射戻り光耐性レーザ
US20150381279A1 (en) Optical transceiver and communication system
JP6173206B2 (ja) 光集積素子
US7747174B2 (en) Multi-channel fabry-perot laser transmitters and methods of generating multiple modulated optical signals
JP7077549B2 (ja) 多波長光源
Ohno et al. A 240-GHz active mode-locked laser diode for ultra-broadband fiber-radio transmission systems
JP2000349713A (ja) 波長可変型光送信器
JP2010050135A (ja) 半導体光集積素子および光通信装置
JP6761391B2 (ja) 半導体光集積素子
EP3903146A1 (en) Interferometric enhancement of an electroabsorptive modulated laser
JP2001290114A (ja) 光送信モジュール
KR100492480B1 (ko) 파장가변 전광 nor 논리소자의 구현방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923911

Country of ref document: EP

Kind code of ref document: A1