WO2022163799A1 - Heater - Google Patents

Heater Download PDF

Info

Publication number
WO2022163799A1
WO2022163799A1 PCT/JP2022/003247 JP2022003247W WO2022163799A1 WO 2022163799 A1 WO2022163799 A1 WO 2022163799A1 JP 2022003247 W JP2022003247 W JP 2022003247W WO 2022163799 A1 WO2022163799 A1 WO 2022163799A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow portion
heating element
view
space
sectional
Prior art date
Application number
PCT/JP2022/003247
Other languages
French (fr)
Japanese (ja)
Inventor
美紀 ▲濱▼田
裕作 石峯
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2022578506A priority Critical patent/JP7483952B2/en
Publication of WO2022163799A1 publication Critical patent/WO2022163799A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits

Definitions

  • the present disclosure relates to heaters.
  • heaters for heating substrates such as semiconductor wafers are known, for example, in the manufacturing process of semiconductors.
  • a heater for example, a heater having a disc-shaped substrate made of ceramics and a resistance heating element embedded in the substrate is known (see Patent Document 1).
  • a heater has a base, a resistive heating element, and a cavity.
  • the substrate is made of ceramics and has an upper surface which is a heating surface and a lower surface which is a surface opposite to the upper surface.
  • a resistive heating element is located inside the substrate.
  • At least a portion of the cavity is located inside the base between the resistive heating element and the side surface of the base.
  • the hollow portion has an outer wall surface located on the side surface and an inner wall surface facing the outer wall surface in a cross-sectional view of the base body in a direction perpendicular to the upper surface, and at least a part of the inner wall surface extends from the lower surface to the upper surface. , the distance from the central axis of the substrate in the direction perpendicular to the upper surface is increased.
  • FIG. 1 is a schematic perspective view of the heater system according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the heater according to the first embodiment.
  • 3 is a schematic cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a schematic side cross-sectional view of the periphery of the cavity in the heater according to the second embodiment.
  • FIG. 5 is an example of a schematic enlarged view of the H section shown in FIG.
  • FIG. 6 is another example of a schematic enlarged view of the H section shown in FIG.
  • FIG. 7 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the third embodiment.
  • FIG. 8 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the fourth embodiment.
  • FIG. 9 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the fifth embodiment.
  • FIG. 10 is a schematic cross-sectional view of a heater according to the sixth embodiment.
  • the vertically upward direction is defined as the Z-axis direction in order to make the description easier to understand.
  • a heater having a disc-shaped base made of ceramics and a resistance heating element embedded in the base is known. This type of heater has room for further improvement in terms of increasing thermal efficiency.
  • FIG. 1 is a schematic perspective view of a heater system 1 according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the heater 2 according to the first embodiment.
  • 3 is a schematic cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 2 shows a schematic cross-sectional view taken along line II-II shown in FIG. In FIG. 2, the shaft 20 is omitted and only the cross section of the base 10 is shown.
  • the heater system 1 heats semiconductor wafers, crystal wafers, and other wafers (hereinafter simply referred to as "wafers").
  • the heater system 1 is installed in a substrate processing apparatus that performs plasma processing or the like on wafers.
  • the heater system 1 has a heater 2, power supply units 5a and 5b, and a control unit 6.
  • the heater 2 has a base 10, a shaft 20, a resistance heating element 30, an electrode layer 40, and a plurality of power supply lines 45a and 45b.
  • the base 10 has a disk shape with a thickness in the vertical direction (Z direction). Specifically, the base 10 has an upper surface 101 and a lower surface 102 which are circular in plan view, and a side surface 103 connecting the upper surface 101 and the lower surface 102 . The upper surface 101 and the lower surface 102 of the substrate 10 are substantially parallel.
  • a wafer W (see FIG. 2) as an example of an object to be heated is placed on the upper surface 101 of the substrate 10 . That is, the upper surface 101 of the substrate 10 corresponds to a heating surface.
  • the planar shape and various dimensions of the substrate 10 may be appropriately set in consideration of the shape and dimensions of the object to be heated.
  • Substrate 10 is made of, for example, ceramics and has insulating properties.
  • the ceramics constituting the base 10 is a sintered body whose main component is, for example, aluminum nitride (AlN), aluminum oxide ( Al2O3 , alumina), silicon carbide (SiC), silicon nitride ( Si3N4 ), or the like. is.
  • the main component is, for example, a material that accounts for 50% by mass or more or 80% by mass or more of the material.
  • the substrate 10 may contain a compound of yttrium (Y). Examples of Y compounds include YAG (Y 3 Al 5 O 12 ) and Y 2 O 3 .
  • the shape of the substrate 10 is arbitrary.
  • the shape of the base 10 is circular in plan view, but it is not limited to this, and may be elliptical, rectangular, trapezoidal, or the like in plan view.
  • the upper surface 101 of the substrate 10 is a uniform flat surface is shown here, grooves, steps, and the like may be positioned on the upper surface 101 of the substrate 10, for example.
  • the shaft 20 has a cylindrical shape with both ends open. Shaft 20 is connected to lower surface 102 of substrate 10 . In one aspect, the shaft 20 is joined (bonded) to the lower surface 102 of the base 10 with an adhesive. Alternatively, the shaft 20 may be joined to the base 10 by solid phase joining.
  • the shape of the shaft 20 is arbitrary. As one aspect, the shape of the shaft 20 is cylindrical. As another aspect, the shape of the shaft 20 may be, for example, a square tube shape.
  • the material of shaft 20 is arbitrary.
  • the material of the shaft 20 is insulating ceramics.
  • the material of shaft 20 may be, for example, a conductive material (metal).
  • the ceramics constituting the shaft 20 is, for example, a sintered body whose main component is aluminum nitride (AlN), aluminum oxide (Al 2 O 3 , alumina), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), or the like. is.
  • the resistance heating element 30 and the electrode layer 40 are located inside the base 10. Specifically, the resistance heating element 30 is positioned between the upper surface 101 and the lower surface 102 of the base 10 , and the electrode layer 40 is positioned between the upper surface 101 of the base 10 and the resistance heating element 30 . In other words, the resistance heating element 30 and the electrode layer 40 are positioned in the order of the electrode layer 40 and the resistance heating element 30 from the upper surface 101 toward the lower surface 102 of the substrate 10 .
  • the resistance heating element 30 is made of, for example, metals such as Ni, W, Mo and Pt, or alloys containing at least one of the above metals.
  • the electrode layer 40 is similar, and is made of, for example, metals such as Ni, W, Mo and Pt, or alloys containing at least one of the above metals.
  • the resistance heating element 30 and the electrode layer 40 extend along the upper surface 101 .
  • the resistance heating element 30 is stretched around in a predetermined pattern, such as a spiral shape or a meandering shape, so as to have a circular outer shape in a plan view.
  • the electrode layer 40 has, for example, a disc shape in plan view.
  • the resistance heating element 30 generates heat by Joule heat generated by power supplied from the power supply unit 5a described later via the power supply line 45a. Thereby, the heater 2 can heat the wafer W placed on the upper surface 101 of the substrate 10 .
  • the first embodiment shows an example in which the heater 2 is a so-called single zone heater.
  • the heater 2 has one resistance heating element 30 that is circularly stretched in a range narrower than the upper surface 101 .
  • the heater 2 is not limited to this, and may be a multi-zone heater capable of individually controlling a plurality of regions on the upper surface 101 of the substrate 10 .
  • the heater 2 in this case may have a plurality of resistance heating elements 30 that are spread over different regions of the upper surface 101 of the substrate 10 .
  • the number of power supply lines 45a increases according to the number of areas to be individually controlled.
  • the electrode layer 40 is an electrostatic attraction electrode for attracting the wafer W to the upper surface 101 of the substrate 10, for example.
  • the electrode layer 40 generates electrostatic force by power supplied from a power supply section 5b, which will be described later.
  • the heater 2 can attract the wafer W to the upper surface 101 of the substrate 10 using such electrostatic force.
  • the electrode layer 40 is not limited to the above example, and may be an RF (radio frequency) electrode for generating plasma, for example. Also, the heater 2 may not include the electrode layer 40 . That is, it is sufficient that at least the resistance heating element 30 is positioned inside the base 10 .
  • the power supply line 45 a electrically connects the resistance heating element 30 located inside the base 10 to the power supply section 5 a located outside the base 10 .
  • the power supply line 45 b electrically connects the electrode layer 40 located inside the base 10 to the power supply section 5 b located outside the base 10 .
  • the heater 2 has a terminal 41 for connecting the resistance heating element 30 and the power supply line 45a.
  • the heater 2 has a terminal for connecting the electrode layer 40 and the power supply line 45b.
  • the terminal 41 is, for example, metal having a certain length in the vertical direction.
  • the terminal 41 has an upper end located inside the base 10 and a lower end located outside the base 10 .
  • the terminal 41 is electrically connected to the resistance heating element 30 .
  • the shape of the terminal 41 is arbitrary. In one aspect, the terminal 41 has a cylindrical shape.
  • Terminal 41 is made of, for example, a metal such as Ni, W, Mo and Pt, or an alloy containing at least one of the above metals.
  • the power supply unit 5a is electrically connected to the resistance heating element 30 via the power supply line 45a, and supplies electric power to the resistance heating element 30 via the power supply line 45a.
  • power supply unit 5a includes a power supply circuit that converts power supplied from a power supply (not shown) into an appropriate voltage.
  • the power supply unit 5b is electrically connected to the electrode layer 40 via the power supply line 45b, and supplies power to the electrode layer 40 via the power supply line 45b.
  • the control unit 6 controls power supply in the power supply units 5a and 5b. It should be noted that the number of feeder lines 45a and 45b, power supply units 5a and 5b, and control unit 6 shown in FIG. 1 is an example.
  • the heater system 1 may have a first control section for controlling the power supply section 5a and a second control section for controlling the power supply section 5b.
  • the power supply units 5a and 5b are shown separately in FIG. 1, the power supply units 5a and 5b may be integrated.
  • the heater system 1 is configured as described above, and heats the resistance heating element 30 inside the substrate 10 using the power supplied from the power supply unit 5a, thereby heating the wafer W placed on the upper surface 101. heat up.
  • the resistance heating element 30 and the electrode layer 40 are arranged with a certain distance from the side surface 103 of the substrate 10 .
  • the resistance heating element 30 and the electrode layer 40 are smaller in diameter than the upper surface 101 of the substrate 10 .
  • the resistance heating element 30 and the electrode layer 40 are smaller in diameter than the wafer W placed on the upper surface 101 of the substrate 10 .
  • the heat generated from the resistance heating element 30 is transmitted not only to the upper surface 101 of the substrate 10 on which the wafer W to be heated is placed, but also to the side surface 103 of the substrate 10 .
  • the heater 2 has a hollow portion 50 inside the base 10 .
  • the cavity 50 is positioned at least between the resistance heating element 30 and the side surface 103 of the substrate 10 .
  • a gas such as air exists inside the cavity 50 .
  • the air inside the cavity 50 has a lower thermal conductivity than the base 10 . Therefore, by providing the hollow portion 50 between the resistance heating element 30 and the side surface 103 of the base 10, heat conduction from the resistance heating element 30 to the side surface 103 of the base 10 can be suppressed.
  • the gas existing inside the cavity 50 is not limited to air, and may be, for example, an inert gas.
  • inert gases examples include argon, helium, nitrogen, and the like.
  • the inside of the hollow portion 50 may be in a vacuum state or may be in a decompressed state.
  • a decompressed state means a state in which the pressure inside the cavity 50 is lower than the atmospheric pressure.
  • the resistance heating element 30 is perpendicular to the upper surface 101 and A virtual line passing through the outer peripheral edge 31 is defined as a "first virtual line L1".
  • a virtual line extending from the outer peripheral end 31 of the resistance heating element 30 and inclined toward the outside of the base 10 from the first virtual line L1 is defined as a "second virtual line L2.” do.
  • the hollow portion 50 according to the first embodiment obliquely extends along the second imaginary line L2 in the cross-sectional view shown in FIG. 2 (hereinafter referred to as "side cross-sectional view").
  • the hollow portion 50 has a first space 50a, a second space 50b, and a third space 50c that are partitioned from each other in a side sectional view.
  • the 1st space 50a, the 2nd space 50b, and the 3rd space 50c are located in a line along the 2nd imaginary line L2.
  • the first space 50a, the second space 50b, and the third space 50c are arranged in the order of the first space 50a, the second space 50b, and the third space 50c in order of proximity to the outer peripheral edge 31 of the resistance heating element 30. They are arranged along the second virtual line L2.
  • the positions of the ceiling surfaces of the first space 50a, the second space 50b and the third space 50c are higher in the order of the first space 50a, the second space 50b and the third space 50c. That is, the positions of the ceiling surfaces of the first space 50a, the second space 50b, and the third space 50c are lowest in the first space 50a closest to the outer peripheral edge 31 of the resistance heating element 30, and is highest in the third space 50c furthest from (closest to the side surface 103 of the substrate 10).
  • the wafer W When the wafer W, which is an object to be heated, and the resistance heating element 30 are compared, the wafer W has a larger diameter. Assuming that the hollow portion extends along the first imaginary line L1 from the vicinity of the outer peripheral edge 31 of the resistance heating element 30 (for example, the position of the first space 50a), the heat conduction to the outer peripheral portion of the wafer W is reduced. Since it is suppressed, it is difficult to heat the wafer W uniformly. For this reason, one idea is to position the cavity extending along the first imaginary line L ⁇ b>1 outside the outer peripheral edge of the wafer W. FIG. However, in this case, the thermal efficiency is low because more heat is transferred to a region that contributes less to heat transfer to the wafer W, which is the object to be heated.
  • the regions that contribute less to heat conduction to the object to be heated include, for example, the upper surface of the resistance heating element 30, the lower surface of the wafer W, the outer peripheral edge 31 of the resistance heating element 30, and the outer peripheral edge of the wafer W.
  • the hollow portion 50 according to the first embodiment obliquely extends along the second imaginary line L2 as described above. Therefore, according to the heater 2 having such a hollow portion 50, the thermal efficiency can be improved. That is, it is possible to uniformly heat the wafer W while suppressing heat conduction to a region that contributes less to heat conduction with respect to the wafer W, which is an object to be heated.
  • each of the spaces 50a to 50c of the hollow portion 50 has an outer wall surface 511 located on the side surface 103 side of the base 10 and an inner wall surface 512 facing the outer wall surface 511 .
  • the distance from the central axis L0 of the base 10 to the inner wall surface 512 of the first space 50a is "distance D1”
  • the distance from the central axis L0 to the inner wall surface 512 of the second space 50b is “distance D2”
  • the distance from L0 to the inner wall surface 512 of the third space 50c is defined as "distance D3”.
  • the distance D1 is the shortest
  • the distance D2 is the second longest
  • the distance D3 is the longest.
  • FIG. 2 shows an example in which the distance D1 is the shortest, the distance D2 is the second longest, and the distance D3 is the longest. from the center axis L0 toward the upper surface 101. That is, for example, the distance D3 may be the longest, and the distance D1 and the distance D2 may be the same length. Further, the distance D1 may be the shortest, and the distance D2 and the distance D3 may be the same length.
  • the inner wall surface 512 of the hollow portion 50 is positioned in a region defined by the first virtual line L1, the second virtual line L2, the side surface 103 of the base 10, and the lower surface 102 of the base 10 in a side sectional view. It's fine if you do. That is, the hollow portion 50 does not necessarily need to be along the second imaginary line L2.
  • the second virtual line L2 is a virtual line extending from the outer peripheral end 31 of the resistance heating element 30 toward the outer edge 104 of the upper surface 101. According to the heater 2 having the hollow portion 50 extending along the second virtual line L2, it is possible to appropriately improve the thermal efficiency.
  • the second virtual line L2 is not limited to this, and may be a virtual line connecting the outer peripheral edge 31 of the resistance heating element 30 and the outer peripheral edge of the wafer W, for example.
  • a second imaginary line L2 connects the upper surface 101 positioned between the outer peripheral edge of the wafer W and the outer edge 104 (in other words, the upper surface 101 exposed from the wafer W) and the outer peripheral edge 31 of the resistance heating element 30. It can be a line.
  • the "peripheral edge of the wafer W" as used herein refers to the edge of the wafer W when it is assumed that the wafer W is properly mounted on the upper surface 101 (so that the center of the wafer W coincides with the center of the upper surface 101). It means the assumed position of the outer edge.
  • part of the hollow portion 50 (here, the first space 50a) is located on the side of the outer peripheral end 31 of the resistance heating element 30. As shown in FIG. That is, the hollow portion 50 overlaps the third imaginary line L3 horizontally extending from the outer peripheral end 31 of the resistance heating element 30 toward the side surface 103 of the base 10 in a side sectional view. Since a part of the hollow portion 50 is positioned on the side of the outer peripheral end 31 of the resistance heating element 30 in this manner, the heat conduction from the resistance heating element 30 to the side surface 103 of the base 10 is more reliably suppressed. be able to.
  • the third space 50c is , extending circumferentially.
  • the first space 50a and the second space 50b also extend circumferentially in plan cross-sectional view. With such a configuration, the thermal efficiency can be improved over the entire circumference of the substrate 10 .
  • one or more supporting ceiling portions of the first space 50a, the second space 50b, and the third space 50c are provided inside the first space 50a, the second space 50b, and the third space 50c.
  • the wall may be partially located.
  • first space 50a, the second space 50b and the third space 50c are partitioned in the side cross-sectional view shown in FIG. 2, they may be connected in other side cross-sectional views. Thus, the first space 50a, the second space 50b and the third space 50c are not necessarily independent spaces.
  • the first space 50a, the second space 50b and the third space 50c may have different lateral cross-sectional areas.
  • the lateral cross-sectional area of the first space 50a, the second space 50b, and the third space 50c is the largest in the third space 50c closest to the resistance heating element 30, and the largest in the first space 50a farthest from the resistance heating element 30. It can be small.
  • heat conduction to the side surface 103 of the base 10 can be further suppressed.
  • the hollow portion 50 extends so as to contact the second virtual line L2, but the hollow portion 50 does not necessarily need to contact the second virtual line L2, and the hollow portion 50 extends from the second virtual line L2. You can stay away. That is, it is sufficient that the cavity 50 extends at least parallel to the second imaginary line L2.
  • the hollow portion 50 is provided at a position in contact with the second virtual line L2 or at a position overlapping with the second virtual line L2.
  • FIG. 4 is a schematic side cross-sectional view of the periphery of the cavity in the heater according to the second embodiment.
  • the base 10A has a hollow portion 50A extending along the second virtual line L2 and the third virtual line L3.
  • the hollow portion 50A is divided into fourth to ninth spaces 50d to 50i in a side sectional view.
  • the fourth to ninth spaces 50d to 50i are arranged in a grid pattern at intervals.
  • the fourth space 50d, the fifth space 50e, and the seventh space 50g are close to the resistance heating element 30 along the third imaginary line L3 on the sides of the resistance heating element 30. are placed in this order from top to bottom.
  • a sixth space 50f is arranged with a gap from the fifth space 50e
  • an eighth space 50h is arranged with a gap from the seventh space 50g. are placed apart.
  • a ninth space 50i is arranged with a gap from the eighth space 50h.
  • the fourth to ninth spaces 50d to 50i the fourth space 50d, the sixth space 50f and the ninth space 50i are arranged along the second imaginary line L2. Note that each of the fourth to ninth spaces 50d to 50i extends circumferentially in plan cross-sectional view, like the third space 50c shown in FIG. 3, for example.
  • the hollow portion 50A may spread along the second virtual line L2 and the third virtual line L3.
  • heat conduction from the outer peripheral end 31 of the resistance heating element 30 to the side surface 103 of the base 10A that is, heat conduction to a region having a small degree of contribution to heat conduction to the wafer W, which is the object to be heated, is reduced. can be suppressed further.
  • the substrate 10A above the cavity 50A (the ninth space 50i) is denser than the substrate 10A below the cavity 50A (the fourth space 50d, the fifth space 50e, and the seventh space 50g). Therefore, the strength against thermal stress caused by thermal cycles can be increased.
  • the hollow portion 50A rather than forming the hollow portion 50A into one large space, by dividing it into a plurality of spaces (here, the fourth to ninth spaces 50d to 50i) in a grid pattern, a decrease in the strength of the base 10A is suppressed. be able to.
  • the fourth to ninth spaces 50d to 50i do not necessarily need to be partitioned over the entire circumference of the base 10A. That is, two adjacent cavities among the fourth to ninth spaces 50d to 50i may communicate with each other in a side sectional view different from the side sectional view shown in FIG.
  • the fourth space 50d and the fifth space 50e may communicate with each other in a side sectional view different from the side sectional view shown in FIG.
  • the fifth space 50e and the sixth space 50f may communicate with each other in a side sectional view different from the side sectional view shown in FIG.
  • FIG. 5 is an example of a schematic enlarged view of the H section shown in FIG.
  • the cavity 50A (here, the sixth space 50f and the fifth space 50e) includes, for example, a plurality of (here, four) corners 501 and adjacent corners 501 in a side sectional view. It has a plurality of (here, four) sides 502 connecting them. At least the central portions of the plurality of sides 502 of the hollow portion 50A may be positioned further inside the hollow portion 50A than the plurality of corner portions 501 .
  • FIG. 6 is another example of a schematic enlarged view of the H section shown in FIG.
  • the substrate 10A has a lower height between two adjacent spaces (here, as an example, a sixth space 50f and a fifth space 50e) in a side sectional view. It has an air gap 55 .
  • the gap 55 does not necessarily need to be positioned over the entire circumference of the substrate 10A.
  • the gap 55 is positioned between two adjacent spaces in the hollow portion 50A in this way, the heat generated in the resistance heating element 30 passes between the two spaces to the side surface 103 ( (see FIG. 4) can be further suppressed.
  • FIG. 7 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the third embodiment.
  • the base 10B has a hollow portion 50B extending along the second virtual line L2 and the third virtual line L3.
  • the hollow portion 50B according to the third embodiment has a triangular shape in a side cross-sectional view, one of three sides is along the second imaginary line L2, and the other is It is along the third imaginary line L3.
  • the hollow portion 50B may have a triangular shape in a side cross-sectional view. Such a configuration can further suppress heat conduction from the outer peripheral end 31 of the resistance heating element 30 to the side surface 103 of the base 10B.
  • the substrate 10B above the cavity 50B is denser than the substrate 10B below the cavity 50B, the strength against thermal stress caused by thermal cycles can be increased.
  • the side of the hollow portion 50B along the second virtual line L2 is separated from the second virtual line L2, but the side of the hollow portion 50B along the second virtual line L2 may be in contact with the second virtual line L2 or may overlap the second virtual line L2.
  • FIG. 8 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the fourth embodiment.
  • the base 10C has a hollow portion 50C extending along the second virtual line L2 and the third virtual line L3.
  • a hollow portion 50C according to the fourth embodiment has a stepped shape in a side cross-sectional view. Specifically, of the three sides of the hollow portion 50B shown in FIG. Specifically, it corresponds to a shape in which straight lines along the first virtual line L1 and straight lines along the third virtual line L3 are alternately arranged.
  • the hollow portion 50C may have a stepped shape in a side cross-sectional view. Also in this case, the same effect as the heater 2B according to the third embodiment can be obtained. That is, heat conduction from the outer peripheral end 31 of the resistance heating element 30 to the side surface 103 of the base 10C can be further suppressed. Moreover, since the substrate 10C above the cavity 50C is denser than the substrate 10C below the cavity 50C, the strength against thermal stress caused by thermal cycles can be increased.
  • FIG. 9 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the fifth embodiment.
  • a base 10D has a hollow portion 50D.
  • a hollow portion 50D according to the fifth embodiment has a shape in which, for example, the hollow portion 50C according to the fourth embodiment is partitioned by a plurality of (here, two) wall portions 105 in a side sectional view.
  • the wall portion 105 extends along the first imaginary line L1, and in a side sectional view, the first end (lower end) of both ends is positioned on the bottom surface of the hollow portion 50D, and the second end ( upper end) is positioned on the ceiling surface of the hollow portion 50D.
  • the walls 105 partition the cavity 50D into a tenth space 50j, an eleventh space 50k and a twelfth space 50m in a side sectional view.
  • the wall portion 105 does not necessarily need to be provided over the entire circumference of the base 10D, and may be provided partially in the circumferential direction of the base 10D. That is, for example, the tenth space 50j and the eleventh space 50k may communicate with each other in another cross-sectional side view. Similarly, the eleventh space 50k and the twelfth space 50m may communicate with each other in another side cross-sectional view.
  • the hollow portion 50D may have the wall portion 105. According to such a configuration, it is possible to form a wider cavity portion 50D while maintaining the strength of the base 10D.
  • FIG. 10 is a schematic cross-sectional view of a heater according to the sixth embodiment. As shown in FIG. 10, in the heater 2E according to the sixth embodiment, the base 10E has a hollow portion 50E.
  • a cavity portion 50E according to the sixth embodiment has a first cavity portion 51 and a second cavity portion 52 .
  • the first cavity 51 is a cavity located between the resistance heating element 30 and the side surface 103 of the base 10E.
  • an example in which the shape of the first hollow portion 51 in a side cross-sectional view is the same as that of the hollow portion 50D according to the fifth embodiment is shown. It may be the same as the cavities 50, 50A to 50C according to the fourth embodiment.
  • the second cavity 52 is a cavity located between the surface of the substrate 10E opposite to the heating surface, that is, the lower surface 102 of the substrate 10E and the resistance heating element 30.
  • the second hollow portion 52 extends along the upper surface 101 of the base 10E and is connected to the first hollow portion 51 at both ends.
  • the cavity 50E may have the second cavity 52 located between the lower surface 102 of the base 10E and the resistance heating element 30.
  • the cavity 50E may have a plurality of walls 105 in the second cavity 52 as well. According to such a configuration, it is possible to form a wider cavity portion 50E while maintaining the strength of the base 10E.
  • the cavities 50, 50A to 50E may be used as flow paths for gas to be supplied to the wafer W placed on the upper surface 101, in addition to functioning as a heat insulating layer.
  • the cavities 50, 50A to 50E only need to further have an introduction path through which the gas is introduced and a discharge path communicating with the upper surface 101.
  • the gas introduced into the cavities 50, 50A to 50E include inert gases such as helium gas.
  • the cavities 50, 50A to 50E may be used as gas flow paths. In this case, there is no need to provide a separate gas flow path.
  • the bases 10, 10A to 10E may be integrally formed instead of joining a plurality of members. According to such a configuration, it is not necessary to provide a bonding layer, for example, so reliability against thermal cycles can be enhanced.
  • Method for manufacturing heater Next, a method for manufacturing a heater according to the present disclosure will be described.
  • the substrate, shaft and feed line are made separately. These members are then secured together.
  • the base body and the shaft may be partially or wholly formed integrally.
  • the method of manufacturing the shaft and the feed line may be similar to various known methods, for example.
  • the base is formed by laminating multiple ceramic green sheets. Specifically, a ceramic green sheet that forms the base, a metal sheet that forms the resistance heating element, and a metal sheet that forms the electrode layer are prepared. Then, the prepared sheets are laminated. Here, a plurality of types of ceramic green sheets having different shapes are prepared in order to form the cavity. For example, like the third space 50c shown in FIG. 3, in the case of forming a circular hollow portion in the substrate in plan view, in addition to the circular first ceramic green sheet having substantially the same diameter as the upper surface of the substrate, and a third annular ceramic green sheet having an inner diameter larger than that of the second ceramic green sheet and an outer diameter equal to that of the first ceramic green sheet. prepare.
  • a second ceramic green sheet and a third ceramic green sheet are laminated on the first ceramic green sheet.
  • the second ceramic green sheet is arranged inside the annular third ceramic green sheet.
  • the first ceramic green sheets are laminated on the second ceramic green sheets and the third ceramic green sheets.
  • the laminate of ceramic green sheets and metal sheets is degreased and fired.
  • the firing temperature is, for example, 1700° C. or higher and 1850° C. or lower.
  • gas can be discharged from the communication holes of the ceramic green sheet generated during degreasing, and the cavity can be brought into a vacuum state.
  • a metal paste or a wire may be used instead of the metal sheet.
  • the bonding layer for example, a metallized layer using an Ag--Ti--Cu alloy can be used.
  • the bonding layer may be formed by sintering a paste of a conductive material such as platinum by heat treatment.
  • the tip of the terminal is previously coated with a paste of a conductive material such as platinum.
  • the conductive material is sintered by heat-treating the laminate to which the terminals are attached in a vacuum.
  • the processing temperature at this time is, for example, 1250.degree. This results in a substrate according to the present disclosure.
  • a first sintered body having a bottomed cylindrical shape (concave shape when viewed from the side), a cylindrical upper portion, and an inverted truncated conical lower portion are used as a method for manufacturing the base body 10B according to the third embodiment.
  • a method of preparing a second sintered body and bonding them using a bonding material such as a brazing material may also be used.
  • the first sintered body and the second sintered body can be obtained, for example, by cutting a cylindrical sintered body.
  • first molded body having a cylindrical shape with a bottom (concave when viewed in cross section) and a second molded body having a cylindrical upper portion and an inverted truncated cone-shaped lower portion are prepared, and the same material as these is prepared.
  • a method of bonding using a slurry paste and sintering may also be used.
  • the heater according to the embodiment includes bases (bases 10, 10A to 10E as an example) and resistance heating elements (resistance heating element 30 as an example). and cavities (eg cavities 50, 50A to 50E).
  • the substrate is made of ceramics and has a heating surface (upper surface 101 as an example).
  • a resistive heating element is located inside the substrate. At least a portion of the cavity is located inside the base between the resistive heating element and the side surface of the base.
  • the hollow portion is an imaginary line extending from the outer peripheral edge of the resistance heating element (for example, the outer peripheral edge 31) in a cross-sectional view of the base body in a direction perpendicular to the heating surface, and extends from the outer peripheral edge of the resistance heating element to the heating surface. It extends along a second imaginary line (as an example, a second imaginary line L2) inclined outward from the base body relative to a first imaginary line (as an example, a first imaginary line L1) extending vertically toward the substrate.
  • a second imaginary line as an example, a second imaginary line L2
  • first imaginary line as an example, a first imaginary line L1
  • the heater according to the embodiment it is possible to improve the thermal efficiency.
  • Reference Signs List 1 Heater system 2: Heaters 5a, 5b: Power supply unit 6: Control unit 10: Substrate 20: Shaft 30: Resistance heating element 31: Outer peripheral edge 40: Electrode layer 41: Terminals 45a, 45b: Power supply line 50: Cavity 51 : first cavity 52 : second cavity 55 : gap 101 : upper surface 102 : lower surface 103 : side surface 104 : outer edge 105 : wall portion L0 : center axis L1 : first virtual line L2 : second virtual line L3 : third 3 virtual line W: wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Resistance Heating (AREA)

Abstract

This heater has a base body, a resistance heating body, and a cavity part. The base body comprises a ceramic and has an upper surface that is a heating surface and a lower surface that is the surface on the reverse side from the upper surface. The resistance heating body is positioned inside the base body. At least a portion of the cavity part is positioned inside the base body between the resistance heating body and a side surface of the base body. In a cross-section of the base body taken in the direction orthogonal to the upper surface, the cavity part has an outside wall surface that is positioned on the side surface side and an inside wall surface that is opposite the outside wall surface, and, from the lower surface toward the upper surface, at least a portion of the inside wall surface separates from the center axis of the base body for the direction orthogonal to the upper surface.

Description

ヒータheater
 本開示は、ヒータに関する。 The present disclosure relates to heaters.
 従来、たとえば半導体の製造工程において半導体ウエハ等の基板を加熱するヒータが知られている。このようなヒータとして、たとえば、セラミックスからなる円板状の基体と、基体に埋設される抵抗発熱体とを有するヒータが知られている(特許文献1参照)。 Conventionally, heaters for heating substrates such as semiconductor wafers are known, for example, in the manufacturing process of semiconductors. As such a heater, for example, a heater having a disc-shaped substrate made of ceramics and a resistance heating element embedded in the substrate is known (see Patent Document 1).
特表2015-529969号公報Japanese Patent Publication No. 2015-529969
 本開示の一態様によるヒータは、基体と、抵抗発熱体と、空洞部とを有する。基体は、セラミックスからなり、加熱面である上面と、該上面とは反対側の面である下面とを有する。抵抗発熱体は、基体の内部に位置する。空洞部は、基体の内部において、抵抗発熱体と基体の側面との間に少なくとも一部が位置する。また、空洞部は、上面と直交する方向における基体の断面視において、側面側に位置する外側壁面と、外側壁面と対向する内側壁面とを有し、内側壁面の少なくとも一部は、下面から上面に向かうほど、上面と直交する方向における基体の中心軸から離れる。 A heater according to one aspect of the present disclosure has a base, a resistive heating element, and a cavity. The substrate is made of ceramics and has an upper surface which is a heating surface and a lower surface which is a surface opposite to the upper surface. A resistive heating element is located inside the substrate. At least a portion of the cavity is located inside the base between the resistive heating element and the side surface of the base. Further, the hollow portion has an outer wall surface located on the side surface and an inner wall surface facing the outer wall surface in a cross-sectional view of the base body in a direction perpendicular to the upper surface, and at least a part of the inner wall surface extends from the lower surface to the upper surface. , the distance from the central axis of the substrate in the direction perpendicular to the upper surface is increased.
図1は、第1実施形態に係るヒータシステムの模式的な斜視図である。FIG. 1 is a schematic perspective view of the heater system according to the first embodiment. 図2は、第1実施形態に係るヒータの模式的な断面図である。FIG. 2 is a schematic cross-sectional view of the heater according to the first embodiment. 図3は、図2におけるIII-III線矢視における模式的な断面図である。3 is a schematic cross-sectional view taken along line III-III in FIG. 2. FIG. 図4は、第2実施形態に係るヒータにおける空洞部周辺の模式的な側断面図である。FIG. 4 is a schematic side cross-sectional view of the periphery of the cavity in the heater according to the second embodiment. 図5は、図4に示すH部の模式的な拡大図の一例である。FIG. 5 is an example of a schematic enlarged view of the H section shown in FIG. 図6は、図4に示すH部の模式的な拡大図の他の一例である。FIG. 6 is another example of a schematic enlarged view of the H section shown in FIG. 図7は、第3実施形態に係るヒータにおける空洞部周辺の模式的な側断面図である。FIG. 7 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the third embodiment. 図8は、第4実施形態に係るヒータにおける空洞部周辺の模式的な側断面図である。FIG. 8 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the fourth embodiment. 図9は、第5実施形態に係るヒータにおける空洞部周辺の模式的な側断面図である。FIG. 9 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the fifth embodiment. 図10は、第6実施形態に係るヒータの模式的な断面図である。FIG. 10 is a schematic cross-sectional view of a heater according to the sixth embodiment.
 以下に、本開示によるヒータを実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。なお、この実施形態により本開示によるヒータが限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。 Hereinafter, a form for implementing a heater according to the present disclosure (hereinafter referred to as "embodiment") will be described in detail with reference to the drawings. Note that this embodiment does not limit the heater according to the present disclosure. Further, each embodiment can be appropriately combined within a range that does not contradict the processing contents. Also, in each of the following embodiments, the same parts are denoted by the same reference numerals, and overlapping descriptions are omitted.
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、たとえば製造精度、設置精度などのずれを許容するものとする。 Further, in the embodiments described below, expressions such as "constant", "perpendicular", "perpendicular" or "parallel" may be used, but these expressions are strictly "constant", "perpendicular", " It does not have to be "perpendicular" or "parallel". That is, each of the expressions described above allows deviations in, for example, manufacturing accuracy and installation accuracy.
 また、以下で参照する各図は、説明の便宜上の模式的なものである。したがって、細部は省略されることがあり、また、寸法比率は必ずしも現実のものとは一致していない。 In addition, each figure referred to below is a schematic for the convenience of explanation. Accordingly, details may be omitted, and dimensional proportions may not always match reality.
 また、以下参照する各図面では、説明を分かりやすくするために、鉛直上向き方向をZ軸方向として規定する。 Also, in each drawing referred to below, the vertically upward direction is defined as the Z-axis direction in order to make the description easier to understand.
 セラミックスからなる円板状の基体と、基体に埋設される抵抗発熱体とを有するヒータが知られている。この種のヒータには、熱効率を向上させるという点で更なる改善の余地がある。 A heater having a disc-shaped base made of ceramics and a resistance heating element embedded in the base is known. This type of heater has room for further improvement in terms of increasing thermal efficiency.
 そこで、熱効率を向上させることができるヒータの提供が期待されている。 Therefore, the provision of heaters that can improve thermal efficiency is expected.
(第1実施形態)
 まず、第1実施形態に係るヒータシステムの構成について図1~図3を参照して説明する。図1は、第1実施形態に係るヒータシステム1の模式的な斜視図である。図2は、第1実施形態に係るヒータ2の模式的な断面図である。図3は、図2におけるIII-III線矢視における模式的な断面図である。なお、図2には、図1に示すII-II線矢視における模式的な断面図を示している。図2においては、シャフト20を省略し、基体10の断面のみを示している。
(First embodiment)
First, the configuration of the heater system according to the first embodiment will be described with reference to FIGS. 1 to 3. FIG. FIG. 1 is a schematic perspective view of a heater system 1 according to the first embodiment. FIG. 2 is a schematic cross-sectional view of the heater 2 according to the first embodiment. 3 is a schematic cross-sectional view taken along line III-III in FIG. 2. FIG. 2 shows a schematic cross-sectional view taken along line II-II shown in FIG. In FIG. 2, the shaft 20 is omitted and only the cross section of the base 10 is shown.
 図1に示す第1実施形態に係るヒータシステム1は、半導体ウエハ、水晶ウエハその他のウエハ(以下、単に「ウエハ」と記載する)を加熱する。たとえば、ヒータシステム1は、ウエハに対してプラズマ処理等を行う基板処理装置に搭載される。 The heater system 1 according to the first embodiment shown in FIG. 1 heats semiconductor wafers, crystal wafers, and other wafers (hereinafter simply referred to as "wafers"). For example, the heater system 1 is installed in a substrate processing apparatus that performs plasma processing or the like on wafers.
 図1に示すように、ヒータシステム1は、ヒータ2と、電力供給部5a,5bと、制御部6とを有する。 As shown in FIG. 1, the heater system 1 has a heater 2, power supply units 5a and 5b, and a control unit 6.
 図1および図2に示すように、ヒータ2は、基体10と、シャフト20と、抵抗発熱体30と、電極層40と、複数の給電線45a,45bとを有する。 As shown in FIGS. 1 and 2, the heater 2 has a base 10, a shaft 20, a resistance heating element 30, an electrode layer 40, and a plurality of power supply lines 45a and 45b.
 基体10は、上下(Z方向)に厚みがある円板形状を有する。具体的には、基体10は、平面視円形の上面101および下面102と、これら上面101および下面102をつなぐ側面103とを有する。基体10の上面101と下面102とは、略平行である。基体10の上面101には、加熱対象物の一例としてのウエハW(図2参照)が載置される。すなわち、基体10の上面101は加熱面に相当する。基体10の平面形状及び各種の寸法は、加熱対象物の形状および寸法等を考慮して適宜に設定されてよい。 The base 10 has a disk shape with a thickness in the vertical direction (Z direction). Specifically, the base 10 has an upper surface 101 and a lower surface 102 which are circular in plan view, and a side surface 103 connecting the upper surface 101 and the lower surface 102 . The upper surface 101 and the lower surface 102 of the substrate 10 are substantially parallel. A wafer W (see FIG. 2) as an example of an object to be heated is placed on the upper surface 101 of the substrate 10 . That is, the upper surface 101 of the substrate 10 corresponds to a heating surface. The planar shape and various dimensions of the substrate 10 may be appropriately set in consideration of the shape and dimensions of the object to be heated.
 基体10は、たとえばセラミックスからなり、絶縁性を有する。基体10を構成するセラミックスは、たとえば、窒化アルミニウム(AlN)、酸化アルミニウム(Al、アルミナ)、炭化珪素(SiC)、窒化珪素(Si)等を主成分とする焼結体である。なお、主成分は、たとえば、その材料の50質量%以上または80質量%以上を占める材料である。基体10の主成分が窒化アルミニウムである場合、基体10は、イットリウム(Y)の化合物を含んでいてもよい。Y化合物としては、たとえば、YAG(YAl12)およびYを挙げることができる。 Substrate 10 is made of, for example, ceramics and has insulating properties. The ceramics constituting the base 10 is a sintered body whose main component is, for example, aluminum nitride (AlN), aluminum oxide ( Al2O3 , alumina), silicon carbide (SiC), silicon nitride ( Si3N4 ), or the like. is. In addition, the main component is, for example, a material that accounts for 50% by mass or more or 80% by mass or more of the material. When the main component of the substrate 10 is aluminum nitride, the substrate 10 may contain a compound of yttrium (Y). Examples of Y compounds include YAG (Y 3 Al 5 O 12 ) and Y 2 O 3 .
 なお、基体10の形状は任意である。たとえば、第1実施形態において、基体10の形状は、平面視円形状であるが、これに限らず、平面視において楕円形状、矩形状、台形状などであってもよい。また、ここでは、基体10の上面101が一様な平坦面である場合の例を示すが、基体10の上面101には、たとえば溝部および段差等が位置していてもよい。 The shape of the substrate 10 is arbitrary. For example, in the first embodiment, the shape of the base 10 is circular in plan view, but it is not limited to this, and may be elliptical, rectangular, trapezoidal, or the like in plan view. Moreover, although an example in which the upper surface 101 of the substrate 10 is a uniform flat surface is shown here, grooves, steps, and the like may be positioned on the upper surface 101 of the substrate 10, for example.
 シャフト20は、両端が開放された筒形状を有する。シャフト20は、基体10の下面102に接続される。1つの態様として、シャフト20は、接着材によって基体10の下面102に接合(接着)される。その他の態様として、シャフト20は、固相接合によって基体10に接合されてもよい。シャフト20の形状は任意である。1つの態様として、シャフト20の形状は、円筒形状を呈している。その他の態様として、シャフト20の形状は、たとえば、角筒などの形状を呈していてもよい。 The shaft 20 has a cylindrical shape with both ends open. Shaft 20 is connected to lower surface 102 of substrate 10 . In one aspect, the shaft 20 is joined (bonded) to the lower surface 102 of the base 10 with an adhesive. Alternatively, the shaft 20 may be joined to the base 10 by solid phase joining. The shape of the shaft 20 is arbitrary. As one aspect, the shape of the shaft 20 is cylindrical. As another aspect, the shape of the shaft 20 may be, for example, a square tube shape.
 シャフト20の材料は、任意である。1つの態様として、シャフト20の材料は絶縁性のセラミックスである。その他の態様として、シャフト20の材料は、たとえば、導電性の材料(金属)であってもよい。シャフト20を構成するセラミックスは、たとえば、窒化アルミニウム(AlN)、酸化アルミニウム(Al、アルミナ)、炭化珪素(SiC)、窒化珪素(Si)等を主成分とする焼結体である。 The material of shaft 20 is arbitrary. As one aspect, the material of the shaft 20 is insulating ceramics. Alternatively, the material of shaft 20 may be, for example, a conductive material (metal). The ceramics constituting the shaft 20 is, for example, a sintered body whose main component is aluminum nitride (AlN), aluminum oxide (Al 2 O 3 , alumina), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), or the like. is.
 図2に示すように、抵抗発熱体30および電極層40は、基体10の内部に位置する。具体的には、抵抗発熱体30は、基体10の上面101と下面102との間に位置し、電極層40は、基体10の上面101と抵抗発熱体30との間に位置する。言い換えれば、抵抗発熱体30および電極層40は、基体10の上面101から下面102に向かって、電極層40および抵抗発熱体30の順番で位置している。 As shown in FIG. 2, the resistance heating element 30 and the electrode layer 40 are located inside the base 10. Specifically, the resistance heating element 30 is positioned between the upper surface 101 and the lower surface 102 of the base 10 , and the electrode layer 40 is positioned between the upper surface 101 of the base 10 and the resistance heating element 30 . In other words, the resistance heating element 30 and the electrode layer 40 are positioned in the order of the electrode layer 40 and the resistance heating element 30 from the upper surface 101 toward the lower surface 102 of the substrate 10 .
 抵抗発熱体30は、たとえば、Ni、W、MoおよびPt等の金属、または、上記金属の少なくとも1つを含む合金からなる。電極層40も同様であり、たとえば、Ni、W、MoおよびPt等の金属、または、上記金属の少なくとも1つを含む合金からなる。 The resistance heating element 30 is made of, for example, metals such as Ni, W, Mo and Pt, or alloys containing at least one of the above metals. The electrode layer 40 is similar, and is made of, for example, metals such as Ni, W, Mo and Pt, or alloys containing at least one of the above metals.
 抵抗発熱体30および電極層40は、上面101に沿って延在している。抵抗発熱体30は、たとえば渦巻き状やミアンダ状などの所定のパターンを描きながら平面視における外形が円形状となるように張り巡らされている。また、電極層40は、たとえば平面視において円板形状を有する。 The resistance heating element 30 and the electrode layer 40 extend along the upper surface 101 . The resistance heating element 30 is stretched around in a predetermined pattern, such as a spiral shape or a meandering shape, so as to have a circular outer shape in a plan view. Moreover, the electrode layer 40 has, for example, a disc shape in plan view.
 抵抗発熱体30は、後述する電力供給部5aから給電線45aを介して供給される電力によって生じるジュール熱により発熱する。これにより、ヒータ2は、基体10の上面101に載置されたウエハWを加熱することができる。 The resistance heating element 30 generates heat by Joule heat generated by power supplied from the power supply unit 5a described later via the power supply line 45a. Thereby, the heater 2 can heat the wafer W placed on the upper surface 101 of the substrate 10 .
 第1実施形態では、ヒータ2が所謂シングルゾーンヒータである場合の例を示している。かかるヒータ2は、上面101よりも狭い範囲で円形状に張り巡らされた1つの抵抗発熱体30を有する。なお、これに限らず、ヒータ2は、基体10の上面101における複数の領域を個別に制御可能なマルチゾーンヒータであってもよい。この場合のヒータ2は、基体10の上面101のそれぞれ異なる領域に張り巡らされた複数の抵抗発熱体30を有していればよい。ヒータ2がマルチゾーンヒータである場合、給電線45aの本数は、個別制御される領域の数に応じて増加する。 The first embodiment shows an example in which the heater 2 is a so-called single zone heater. The heater 2 has one resistance heating element 30 that is circularly stretched in a range narrower than the upper surface 101 . Note that the heater 2 is not limited to this, and may be a multi-zone heater capable of individually controlling a plurality of regions on the upper surface 101 of the substrate 10 . The heater 2 in this case may have a plurality of resistance heating elements 30 that are spread over different regions of the upper surface 101 of the substrate 10 . When the heater 2 is a multi-zone heater, the number of power supply lines 45a increases according to the number of areas to be individually controlled.
 第1実施形態において電極層40は、たとえば基体10の上面101にウエハWを吸着させるための静電吸着電極である。かかる電極層40は、後述する電力供給部5bから供給される電力によって静電気力を発生させる。ヒータ2は、かかる静電気力を用いて、ウエハWを基体10の上面101に吸着させることができる。 In the first embodiment, the electrode layer 40 is an electrostatic attraction electrode for attracting the wafer W to the upper surface 101 of the substrate 10, for example. The electrode layer 40 generates electrostatic force by power supplied from a power supply section 5b, which will be described later. The heater 2 can attract the wafer W to the upper surface 101 of the substrate 10 using such electrostatic force.
 なお、電極層40は、上記の例に限らず、たとえばプラズマを発生させるためのRF(高周波)電極であってもよい。また、ヒータ2は、電極層40を備えていなくてもよい。すなわち、基体10の内部には、少なくとも抵抗発熱体30が位置していればよい。 Note that the electrode layer 40 is not limited to the above example, and may be an RF (radio frequency) electrode for generating plasma, for example. Also, the heater 2 may not include the electrode layer 40 . That is, it is sufficient that at least the resistance heating element 30 is positioned inside the base 10 .
 給電線45aは、基体10の内部に位置する抵抗発熱体30を基体10の外部に位置する電力供給部5aと電気的に接続する。また、給電線45bは、基体10の内部に位置する電極層40を基体10の外部に位置する電力供給部5bと電気的に接続する。図2に示すように、ヒータ2は、抵抗発熱体30と給電線45aとを接続するための端子41を有する。また、ここでは図示を省略するが、ヒータ2は、電極層40と給電線45bとを接続するための端子を有する。 The power supply line 45 a electrically connects the resistance heating element 30 located inside the base 10 to the power supply section 5 a located outside the base 10 . The power supply line 45 b electrically connects the electrode layer 40 located inside the base 10 to the power supply section 5 b located outside the base 10 . As shown in FIG. 2, the heater 2 has a terminal 41 for connecting the resistance heating element 30 and the power supply line 45a. Although not shown here, the heater 2 has a terminal for connecting the electrode layer 40 and the power supply line 45b.
 端子41は、たとえば、上下方向にある程度の長さを有する金属である。端子41は、上端側が基体10内に位置し、下端側が基体10外に位置する。図示の例において、端子41は、抵抗発熱体30に電気的に接続されている。端子41の形状は任意である。1つの態様では、端子41の形状は、円柱状を呈している。端子41は、たとえば、Ni、W、MoおよびPt等の金属、または、上記金属の少なくとも1つを含む合金からなる。 The terminal 41 is, for example, metal having a certain length in the vertical direction. The terminal 41 has an upper end located inside the base 10 and a lower end located outside the base 10 . In the illustrated example, the terminal 41 is electrically connected to the resistance heating element 30 . The shape of the terminal 41 is arbitrary. In one aspect, the terminal 41 has a cylindrical shape. Terminal 41 is made of, for example, a metal such as Ni, W, Mo and Pt, or an alloy containing at least one of the above metals.
 電力供給部5aは、給電線45aを介して抵抗発熱体30と電気的に接続され、給電線45aを介して抵抗発熱体30に電力を供給する。たとえば、電力供給部5aは、図示しない電源から給電された電力を適切な電圧に変換する電源回路を含む。また、電力供給部5bは、給電線45bを介して電極層40と電気的に接続され、給電線45bを介して電極層40に電力を供給する。制御部6は、電力供給部5a,5bにおける電力の供給を制御する。なお、図1に示した給電線45a,45b、電力供給部5a,5bおよび制御部6の個数は一例である。たとえば、ヒータシステム1は、電力供給部5aを制御するための第1制御部と、電力供給部5bを制御するための第2制御部とを有していてもよい。また、図1では、電力供給部5a,5bを別体として示したが、電力供給部5a,5bは一体であってもよい。 The power supply unit 5a is electrically connected to the resistance heating element 30 via the power supply line 45a, and supplies electric power to the resistance heating element 30 via the power supply line 45a. For example, power supply unit 5a includes a power supply circuit that converts power supplied from a power supply (not shown) into an appropriate voltage. Moreover, the power supply unit 5b is electrically connected to the electrode layer 40 via the power supply line 45b, and supplies power to the electrode layer 40 via the power supply line 45b. The control unit 6 controls power supply in the power supply units 5a and 5b. It should be noted that the number of feeder lines 45a and 45b, power supply units 5a and 5b, and control unit 6 shown in FIG. 1 is an example. For example, the heater system 1 may have a first control section for controlling the power supply section 5a and a second control section for controlling the power supply section 5b. Moreover, although the power supply units 5a and 5b are shown separately in FIG. 1, the power supply units 5a and 5b may be integrated.
 ヒータシステム1は、上記のように構成されており、電力供給部5aから供給される電力を用いて基体10内部の抵抗発熱体30を発熱させることにより、上面101に載置されたウエハWを加熱する。 The heater system 1 is configured as described above, and heats the resistance heating element 30 inside the substrate 10 using the power supplied from the power supply unit 5a, thereby heating the wafer W placed on the upper surface 101. heat up.
 ここで、抵抗発熱体30および電極層40は、基体10の側面103の近傍まで延ばすことが難しい。これは、抵抗発熱体30および電極層40を基体10の側面103の近傍まで延ばすと、基体10に層間剥離(デラミネーション)が発生するおそれがあるためである。このため、抵抗発熱体30および電極層40は、基体10の側面103とある程度の間隔をあけて配置される。言い換えれば、抵抗発熱体30および電極層40は、基体10の上面101よりも小径である。なお、抵抗発熱体30および電極層40は、基体10の上面101に載置されるウエハWよりも小径である。 Here, it is difficult to extend the resistance heating element 30 and the electrode layer 40 to the vicinity of the side surface 103 of the substrate 10 . This is because if the resistive heating element 30 and the electrode layer 40 are extended to the vicinity of the side surface 103 of the substrate 10, delamination may occur in the substrate 10. FIG. Therefore, the resistance heating element 30 and the electrode layer 40 are arranged with a certain distance from the side surface 103 of the substrate 10 . In other words, the resistance heating element 30 and the electrode layer 40 are smaller in diameter than the upper surface 101 of the substrate 10 . The resistance heating element 30 and the electrode layer 40 are smaller in diameter than the wafer W placed on the upper surface 101 of the substrate 10 .
 抵抗発熱体30から発せられた熱は、加熱対象物であるウエハWが載置される基体10の上面101だけでなく、基体10の側面103にも伝えられる。ヒータ2の熱効率を向上させるためには、加熱対象物が位置しない、すなわち、加熱する必要がない基体10の側面103への熱伝導を抑えることが望ましい。 The heat generated from the resistance heating element 30 is transmitted not only to the upper surface 101 of the substrate 10 on which the wafer W to be heated is placed, but also to the side surface 103 of the substrate 10 . In order to improve the thermal efficiency of the heater 2, it is desirable to suppress heat conduction to the side surface 103 of the substrate 10 where the object to be heated is not located, that is, does not need to be heated.
 これに対し、第1実施形態に係るヒータ2は、基体10の内部に空洞部50を有する。空洞部50は、少なくとも抵抗発熱体30と基体10の側面103との間に位置している。 On the other hand, the heater 2 according to the first embodiment has a hollow portion 50 inside the base 10 . The cavity 50 is positioned at least between the resistance heating element 30 and the side surface 103 of the substrate 10 .
 空洞部50の内部には、気体、たとえば空気が存在する。空洞部50内の空気は、基体10よりも熱伝導率が低い。したがって、抵抗発熱体30と基体10の側面103との間に空洞部50を設けることで、抵抗発熱体30から基体10の側面103への熱伝導を抑制することができる。 A gas such as air exists inside the cavity 50 . The air inside the cavity 50 has a lower thermal conductivity than the base 10 . Therefore, by providing the hollow portion 50 between the resistance heating element 30 and the side surface 103 of the base 10, heat conduction from the resistance heating element 30 to the side surface 103 of the base 10 can be suppressed.
 空洞部50の内部に存在する気体は、空気に限らず、たとえば不活性ガスであってもよい。不活性ガスとしては、たとえば、アルゴン、ヘリウム、窒素等が用いられ得る。また、空洞部50の内部は真空状態であってもよいし、減圧状態であってもよい。減圧状態とは、空洞部50の内部の圧力が大気圧よりも低い状態のことをいう。空洞部50の内部を真空状態または減圧状態とすることで、空洞部50の内部が閉空間である場合に、気体の熱膨張によって基体10に負荷がかかることを抑制することができる。 The gas existing inside the cavity 50 is not limited to air, and may be, for example, an inert gas. Examples of inert gases that can be used include argon, helium, nitrogen, and the like. Further, the inside of the hollow portion 50 may be in a vacuum state or may be in a decompressed state. A decompressed state means a state in which the pressure inside the cavity 50 is lower than the atmospheric pressure. By keeping the inside of the hollow portion 50 in a vacuum state or a decompressed state, it is possible to suppress a load from being applied to the substrate 10 due to the thermal expansion of the gas when the inside of the hollow portion 50 is a closed space.
 図2に示す断面視、すなわち、上面101の中心を通る断面であって、上面101と直交する方向(Z軸方向)における基体10の断面視において、上面101と直交し且つ抵抗発熱体30の外周端31を通過する仮想線を「第1仮想線L1」と規定する。また、断面視において、抵抗発熱体30の外周端31から延びる仮想線であって第1仮想線L1よりも基体10の外方に向かって傾斜した仮想線を「第2仮想線L2」と規定する。第1実施形態に係る空洞部50は、図2に示す断面視(以下、「側断面視」と記載する)において、第2仮想線L2に沿って斜めに延びている。 In the cross-sectional view shown in FIG. 2, that is, the cross-sectional view of the substrate 10 in the direction (Z-axis direction) perpendicular to the upper surface 101 and passing through the center of the upper surface 101, the resistance heating element 30 is perpendicular to the upper surface 101 and A virtual line passing through the outer peripheral edge 31 is defined as a "first virtual line L1". Further, in a cross-sectional view, a virtual line extending from the outer peripheral end 31 of the resistance heating element 30 and inclined toward the outside of the base 10 from the first virtual line L1 is defined as a "second virtual line L2." do. The hollow portion 50 according to the first embodiment obliquely extends along the second imaginary line L2 in the cross-sectional view shown in FIG. 2 (hereinafter referred to as "side cross-sectional view").
 具体的には、第1実施形態に係る空洞部50は、側断面視において互いに区画された第1空間50a、第2空間50bおよび第3空間50cを有する。そして、第1空間50a、第2空間50bおよび第3空間50cは、第2仮想線L2に沿って並んでいる。具体的には、第1空間50a、第2空間50bおよび第3空間50cは、抵抗発熱体30の外周端31に近い順に第1空間50a、第2空間50bおよび第3空間50cの順番で、第2仮想線L2に沿って並んでいる。 Specifically, the hollow portion 50 according to the first embodiment has a first space 50a, a second space 50b, and a third space 50c that are partitioned from each other in a side sectional view. And the 1st space 50a, the 2nd space 50b, and the 3rd space 50c are located in a line along the 2nd imaginary line L2. Specifically, the first space 50a, the second space 50b, and the third space 50c are arranged in the order of the first space 50a, the second space 50b, and the third space 50c in order of proximity to the outer peripheral edge 31 of the resistance heating element 30. They are arranged along the second virtual line L2.
 別の観点によれば、第1空間50a、第2空間50bおよび第3空間50cの天井面の位置は、第1空間50a、第2空間50bおよび第3空間50cの順番で高くなる。すなわち、第1空間50a、第2空間50bおよび第3空間50cの天井面の位置は、抵抗発熱体30の外周端31に最も近い第1空間50aにおいて最も低く、抵抗発熱体30の外周端31から最も遠い(基体10の側面103に最も近い)第3空間50cにおいて最も高い。 From another point of view, the positions of the ceiling surfaces of the first space 50a, the second space 50b and the third space 50c are higher in the order of the first space 50a, the second space 50b and the third space 50c. That is, the positions of the ceiling surfaces of the first space 50a, the second space 50b, and the third space 50c are lowest in the first space 50a closest to the outer peripheral edge 31 of the resistance heating element 30, and is highest in the third space 50c furthest from (closest to the side surface 103 of the substrate 10).
 加熱対象物であるウエハWと抵抗発熱体30とを比較した場合、ウエハWの方が大径である。仮に、空洞部が、抵抗発熱体30の外周端31の近傍(たとえば第1空間50aの位置)から第1仮想線L1に沿って延びているとすると、ウエハWの外周部への熱伝導が抑制されてしまうことから、ウエハWを均一に加熱することが難しい。このため、第1仮想線L1に沿って延びる空洞部をウエハWの外周端よりも外方に位置させることが一案として考えられる。しかしながら、この場合、加熱対象物であるウエハWに対する熱伝導への寄与度が低い領域への熱伝導が多くなるため、熱効率が低い。ここで、加熱対象物に対する熱伝導への寄与度が低い領域とは、たとえば、抵抗発熱体30の上面と、ウエハWの下面と、抵抗発熱体30の外周端31およびウエハWの外周端を結ぶ仮想線とによって囲まれる領域以外の領域のことをいう。 When the wafer W, which is an object to be heated, and the resistance heating element 30 are compared, the wafer W has a larger diameter. Assuming that the hollow portion extends along the first imaginary line L1 from the vicinity of the outer peripheral edge 31 of the resistance heating element 30 (for example, the position of the first space 50a), the heat conduction to the outer peripheral portion of the wafer W is reduced. Since it is suppressed, it is difficult to heat the wafer W uniformly. For this reason, one idea is to position the cavity extending along the first imaginary line L<b>1 outside the outer peripheral edge of the wafer W. FIG. However, in this case, the thermal efficiency is low because more heat is transferred to a region that contributes less to heat transfer to the wafer W, which is the object to be heated. Here, the regions that contribute less to heat conduction to the object to be heated include, for example, the upper surface of the resistance heating element 30, the lower surface of the wafer W, the outer peripheral edge 31 of the resistance heating element 30, and the outer peripheral edge of the wafer W. The area other than the area surrounded by the connecting virtual line.
 これに対し、第1実施形態に係る空洞部50は、上述したように第2仮想線L2に沿って斜めに延びている。このため、かかる空洞部50を有するヒータ2によれば、熱効率を向上させることができる。すなわち、加熱対象物であるウエハWに対する熱伝導への寄与度が小さい領域への熱伝導を抑制しつつ、ウエハWを均一に加熱することができる。 On the other hand, the hollow portion 50 according to the first embodiment obliquely extends along the second imaginary line L2 as described above. Therefore, according to the heater 2 having such a hollow portion 50, the thermal efficiency can be improved. That is, it is possible to uniformly heat the wafer W while suppressing heat conduction to a region that contributes less to heat conduction with respect to the wafer W, which is an object to be heated.
 別の観点によれば、空洞部50の内側壁面512は、基体10の下面102から上面101に向かうほど、上面101と直交する方向における基体10の中心軸L0から離れる。具体的には、空洞部50が有する各空間50a~50cは、基体10の側面103側に位置する外側壁面511と、この外側壁面511と対向する内側壁面512とを有する。 From another point of view, the inner wall surface 512 of the hollow portion 50 separates from the central axis L0 of the base body 10 in the direction perpendicular to the top face 101 as it goes from the bottom face 102 to the top face 101 of the base body 10 . Specifically, each of the spaces 50a to 50c of the hollow portion 50 has an outer wall surface 511 located on the side surface 103 side of the base 10 and an inner wall surface 512 facing the outer wall surface 511 .
 ここで、基体10の中心軸L0から第1空間50aの内側壁面512までの距離を「距離D1」、中心軸L0から第2空間50bの内側壁面512までの距離を「距離D2」、中心軸L0から第3空間50cの内側壁面512までの距離を「距離D3」と規定する。この場合、距離D1~D3のうち、距離D1が最も短く、次いで距離D2が長く、距離D3が最も長い。かかる構成とすることにより、熱効率を向上させることができる。すなわち、加熱対象物であるウエハWに対する熱伝導への寄与度が小さい領域への熱伝導を抑制しつつ、ウエハWを均一に加熱することができる。 Here, the distance from the central axis L0 of the base 10 to the inner wall surface 512 of the first space 50a is "distance D1", the distance from the central axis L0 to the inner wall surface 512 of the second space 50b is "distance D2", and the central axis The distance from L0 to the inner wall surface 512 of the third space 50c is defined as "distance D3". In this case, among the distances D1 to D3, the distance D1 is the shortest, the distance D2 is the second longest, and the distance D3 is the longest. With such a configuration, thermal efficiency can be improved. That is, it is possible to uniformly heat the wafer W while suppressing heat conduction to a region that contributes less to heat conduction with respect to the wafer W, which is an object to be heated.
 なお、図2では、距離D1が最も短く、次いで距離D2が長く、距離D3が最も長い場合の例を示したが、空洞部50は、内側壁面512の少なくとも一部が、基体10の下面102から上面101に向かうほど中心軸L0から離れていればよい。すなわち、たとえば、距離D3が最も長く、距離D1と距離D2とが同じ長さであってもよい。また、距離D1が最も短く、距離D2と距離D3とが同じ長さであってもよい。 Note that FIG. 2 shows an example in which the distance D1 is the shortest, the distance D2 is the second longest, and the distance D3 is the longest. from the center axis L0 toward the upper surface 101. That is, for example, the distance D3 may be the longest, and the distance D1 and the distance D2 may be the same length. Further, the distance D1 may be the shortest, and the distance D2 and the distance D3 may be the same length.
 また、空洞部50の内側壁面512は、側断面視において、第1仮想線L1と、第2仮想線L2と、基体10の側面103と、基体10の下面102とによって区画される領域に位置していればよい。すなわち、空洞部50は、必ずしも第2仮想線L2に沿っていることを要しない。 In addition, the inner wall surface 512 of the hollow portion 50 is positioned in a region defined by the first virtual line L1, the second virtual line L2, the side surface 103 of the base 10, and the lower surface 102 of the base 10 in a side sectional view. It's fine if you do. That is, the hollow portion 50 does not necessarily need to be along the second imaginary line L2.
 第1実施形態において、第2仮想線L2は、抵抗発熱体30の外周端31から上面101の外縁104に向かって延びる仮想線である。かかる第2仮想線L2に沿って延びる空洞部50を有するヒータ2によれば、熱効率を適切に向上させることができる。 In the first embodiment, the second virtual line L2 is a virtual line extending from the outer peripheral end 31 of the resistance heating element 30 toward the outer edge 104 of the upper surface 101. According to the heater 2 having the hollow portion 50 extending along the second virtual line L2, it is possible to appropriately improve the thermal efficiency.
 これに限らず、第2仮想線L2は、たとえば抵抗発熱体30の外周端31とウエハWの外周端とを結ぶ仮想線であってもよい。また、第2仮想線L2は、ウエハWの外周端と外縁104との間に位置する上面101(言い換えれば、ウエハWから露出する上面101)と抵抗発熱体30の外周端31とを結ぶ仮想線であってもよい。なお、ここでいう「ウエハWの外周端」とは、ウエハWが上面101に適切に(ウエハWの中心が上面101の中心と一致するように)載置されたと仮定した場合におけるウエハWの外周端の想定位置を意味する。 The second virtual line L2 is not limited to this, and may be a virtual line connecting the outer peripheral edge 31 of the resistance heating element 30 and the outer peripheral edge of the wafer W, for example. A second imaginary line L2 connects the upper surface 101 positioned between the outer peripheral edge of the wafer W and the outer edge 104 (in other words, the upper surface 101 exposed from the wafer W) and the outer peripheral edge 31 of the resistance heating element 30. It can be a line. It should be noted that the "peripheral edge of the wafer W" as used herein refers to the edge of the wafer W when it is assumed that the wafer W is properly mounted on the upper surface 101 (so that the center of the wafer W coincides with the center of the upper surface 101). It means the assumed position of the outer edge.
 第1実施形態において、空洞部50の一部(ここでは、第1空間50a)は、抵抗発熱体30の外周端31の側方に位置している。すなわち、空洞部50は、側断面視において、抵抗発熱体30の外周端31から基体10の側面103に向かって水平に延びる第3仮想線L3と重なる。このように、空洞部50の一部が抵抗発熱体30の外周端31の側方に位置していることにより、抵抗発熱体30から基体10の側面103への熱伝導をより確実に抑制することができる。 In the first embodiment, part of the hollow portion 50 (here, the first space 50a) is located on the side of the outer peripheral end 31 of the resistance heating element 30. As shown in FIG. That is, the hollow portion 50 overlaps the third imaginary line L3 horizontally extending from the outer peripheral end 31 of the resistance heating element 30 toward the side surface 103 of the base 10 in a side sectional view. Since a part of the hollow portion 50 is positioned on the side of the outer peripheral end 31 of the resistance heating element 30 in this manner, the heat conduction from the resistance heating element 30 to the side surface 103 of the base 10 is more reliably suppressed. be able to.
 図3に示す断面視、すなわち、空洞部50を通る断面であって、上面101と平行な方向における基体10の断面視(以下、「平断面視」と記載する)において、第3空間50cは、周状に延びている。ここでは図示を省略するが、第1空間50aおよび第2空間50bも同様に、平断面視において周状に延びている。かかる構成とすることにより、基体10の全周に亘って熱効率を向上させることができる。なお、後述するように、第1空間50a、第2空間50bおよび第3空間50cの内部には、第1空間50a、第2空間50bおよび第3空間50cの天井部を支持する1または複数の壁部が部分的に位置していてもよい。 In the cross-sectional view shown in FIG. 3, that is, the cross-sectional view of the base 10 in the direction parallel to the upper surface 101 and passing through the hollow portion 50 (hereinafter referred to as "planar cross-sectional view"), the third space 50c is , extending circumferentially. Although illustration is omitted here, the first space 50a and the second space 50b also extend circumferentially in plan cross-sectional view. With such a configuration, the thermal efficiency can be improved over the entire circumference of the substrate 10 . As will be described later, inside the first space 50a, the second space 50b, and the third space 50c, one or more supporting ceiling portions of the first space 50a, the second space 50b, and the third space 50c are provided. The wall may be partially located.
 また、第1空間50a、第2空間50bおよび第3空間50cは、図2に示す側断面視において区画されているが、他の側断面視においては繋がっていてもよい。このように、第1空間50a、第2空間50bおよび第3空間50cは、必ずしも独立した空間であることを要しない。 Also, although the first space 50a, the second space 50b and the third space 50c are partitioned in the side cross-sectional view shown in FIG. 2, they may be connected in other side cross-sectional views. Thus, the first space 50a, the second space 50b and the third space 50c are not necessarily independent spaces.
 また、ここでは、第1空間50a、第2空間50bおよび第3空間50cの側断面積が同一である場合の例を示しているが、第1空間50a、第2空間50bおよび第3空間50cの側断面積は異なっていてもよい。たとえば、第1空間50a、第2空間50bおよび第3空間50cの側断面積は、抵抗発熱体30に最も近い第3空間50cが最も大きく、抵抗発熱体30から最も遠い第1空間50aが最も小さくてもよい。抵抗発熱体30に最も近い第3空間50cの側断面積を相対的に大きくすることで、基体10の側面103への熱伝導をさらに抑制することができる。また、抵抗発熱体30から最も遠い第1空間50aの側断面積を相対的に小さくすることで、基体10の強度低下を抑制することができる。 Also, here, an example in which the lateral cross-sectional areas of the first space 50a, the second space 50b and the third space 50c are the same is shown, but the first space 50a, the second space 50b and the third space 50c may have different lateral cross-sectional areas. For example, the lateral cross-sectional area of the first space 50a, the second space 50b, and the third space 50c is the largest in the third space 50c closest to the resistance heating element 30, and the largest in the first space 50a farthest from the resistance heating element 30. It can be small. By relatively increasing the lateral cross-sectional area of the third space 50c closest to the resistance heating element 30, heat conduction to the side surface 103 of the base 10 can be further suppressed. Further, by relatively reducing the lateral cross-sectional area of the first space 50a farthest from the resistance heating element 30, it is possible to suppress a decrease in the strength of the substrate 10. FIG.
 第1実施形態において、空洞部50は、第2仮想線L2と接するように延びているが、空洞部50は、必ずしも第2仮想線L2と接することを要さず、第2仮想線L2から離れていてもよい。すなわち、空洞部50は、少なくとも第2仮想線L2と平行に延びていればよい。なお、好ましくは、空洞部50は、第2仮想線L2と接する位置または第2仮想線L2と重なる位置に設けられるとよい。 In the first embodiment, the hollow portion 50 extends so as to contact the second virtual line L2, but the hollow portion 50 does not necessarily need to contact the second virtual line L2, and the hollow portion 50 extends from the second virtual line L2. You can stay away. That is, it is sufficient that the cavity 50 extends at least parallel to the second imaginary line L2. Preferably, the hollow portion 50 is provided at a position in contact with the second virtual line L2 or at a position overlapping with the second virtual line L2.
(第2実施形態)
 図4は、第2実施形態に係るヒータにおける空洞部周辺の模式的な側断面図である。図4に示すように、第2実施形態に係るヒータ2Aにおいて、基体10Aは、第2仮想線L2および第3仮想線L3に沿って広がる空洞部50Aを有する。
(Second embodiment)
FIG. 4 is a schematic side cross-sectional view of the periphery of the cavity in the heater according to the second embodiment. As shown in FIG. 4, in the heater 2A according to the second embodiment, the base 10A has a hollow portion 50A extending along the second virtual line L2 and the third virtual line L3.
 具体的には、空洞部50Aは、側断面視において、第4~第9空間50d~50iに区画されている。第4~第9空間50d~50iは、互いに間隔をあけて格子状に配列されている。第4~第9空間50d~50iのうち、第4空間50d、第5空間50eおよび第7空間50gが、抵抗発熱体30の側方において第3仮想線L3に沿って抵抗発熱体30に近い方からこの順番で配置される。また、第5空間50eの上方には、第6空間50fが第5空間50eと間隔をあけて配置されるとともに、第7空間50gの上方には、第8空間50hが第7空間50gと間隔をあけて配置される。さらに、第8空間50hの上方には、第9空間50iが第8空間50hと間隔をあけて配置される。第4~第9空間50d~50iのうち、第4空間50d、第6空間50fおよび第9空間50iは、第2仮想線L2に沿って配置される。なお、第4~第9空間50d~50iの各々は、たとえば図3に示した第3空間50cと同様に、平断面視において周状に延びている。 Specifically, the hollow portion 50A is divided into fourth to ninth spaces 50d to 50i in a side sectional view. The fourth to ninth spaces 50d to 50i are arranged in a grid pattern at intervals. Of the fourth to ninth spaces 50d to 50i, the fourth space 50d, the fifth space 50e, and the seventh space 50g are close to the resistance heating element 30 along the third imaginary line L3 on the sides of the resistance heating element 30. are placed in this order from top to bottom. Above the fifth space 50e, a sixth space 50f is arranged with a gap from the fifth space 50e, and above the seventh space 50g, an eighth space 50h is arranged with a gap from the seventh space 50g. are placed apart. Furthermore, above the eighth space 50h, a ninth space 50i is arranged with a gap from the eighth space 50h. Of the fourth to ninth spaces 50d to 50i, the fourth space 50d, the sixth space 50f and the ninth space 50i are arranged along the second imaginary line L2. Note that each of the fourth to ninth spaces 50d to 50i extends circumferentially in plan cross-sectional view, like the third space 50c shown in FIG. 3, for example.
 このように、空洞部50Aは、第2仮想線L2および第3仮想線L3に沿って広がっていてもよい。かかる構成とすることにより、抵抗発熱体30の外周端31から基体10Aの側面103へ向かう熱伝導、すなわち、加熱対象物であるウエハWに対する熱伝導への寄与度が小さい領域への熱伝導をさらに抑制することができる。また、空洞部50Aの下部(第4空間50d、第5空間50eおよび第7空間50g)における基体10Aと比較して、空洞部50Aの上部(第9空間50i)における基体10Aの方が緻密であるため、熱サイクルによって生じる熱応力に対する強度を高めることができる。 Thus, the hollow portion 50A may spread along the second virtual line L2 and the third virtual line L3. With such a configuration, heat conduction from the outer peripheral end 31 of the resistance heating element 30 to the side surface 103 of the base 10A, that is, heat conduction to a region having a small degree of contribution to heat conduction to the wafer W, which is the object to be heated, is reduced. can be suppressed further. In addition, the substrate 10A above the cavity 50A (the ninth space 50i) is denser than the substrate 10A below the cavity 50A (the fourth space 50d, the fifth space 50e, and the seventh space 50g). Therefore, the strength against thermal stress caused by thermal cycles can be increased.
 また、空洞部50Aを1つの大きな空間とするのではなく、複数の空間(ここでは、第4~第9空間50d~50i)に格子状に区画することで、基体10Aの強度低下を抑制することができる。 In addition, rather than forming the hollow portion 50A into one large space, by dividing it into a plurality of spaces (here, the fourth to ninth spaces 50d to 50i) in a grid pattern, a decrease in the strength of the base 10A is suppressed. be able to.
 なお、第4~第9空間50d~50iは、必ずしも基体10Aの全周に亘って区画されていることを要しない。すなわち、第4~第9空間50d~50iのうち隣り合う2つの空洞部は、図4に示す側断面とは異なる別の側断面視において連通していてもよい。たとえば、第4空間50dと第5空間50eとは、図4に示す側断面とは異なる別の側断面視において連通していてもよい。同様に、第5空間50eと第6空間50fとは、図4に示す側断面とは異なる別の側断面視において連通していてもよい。 It should be noted that the fourth to ninth spaces 50d to 50i do not necessarily need to be partitioned over the entire circumference of the base 10A. That is, two adjacent cavities among the fourth to ninth spaces 50d to 50i may communicate with each other in a side sectional view different from the side sectional view shown in FIG. For example, the fourth space 50d and the fifth space 50e may communicate with each other in a side sectional view different from the side sectional view shown in FIG. Similarly, the fifth space 50e and the sixth space 50f may communicate with each other in a side sectional view different from the side sectional view shown in FIG.
 図5は、図4に示すH部の模式的な拡大図の一例である。図5に示すように、空洞部50A(ここでは、第6空間50fおよび第5空間50e)は、側断面視において、たとえば複数(ここでは4つ)の角部501と、隣り合う角部501同士を結ぶ複数(ここでは4つ)の辺502とを有する。空洞部50Aは、複数の辺502の少なくとも中央部が複数の角部501よりも空洞部50Aのより内側に位置していてもよい。 FIG. 5 is an example of a schematic enlarged view of the H section shown in FIG. As shown in FIG. 5, the cavity 50A (here, the sixth space 50f and the fifth space 50e) includes, for example, a plurality of (here, four) corners 501 and adjacent corners 501 in a side sectional view. It has a plurality of (here, four) sides 502 connecting them. At least the central portions of the plurality of sides 502 of the hollow portion 50A may be positioned further inside the hollow portion 50A than the plurality of corner portions 501 .
 図6は、図4に示すH部の模式的な拡大図の他の一例である。図6に示すように、基体10Aは、側断面視において、隣接する2つの空間(ここでは一例として、第6空間50fおよび第5空間50e)の間に、これらの空間よりも高さが低い空隙55を有する。空隙55は、必ずしも基体10Aの全周に亘って位置していることを要しない。 FIG. 6 is another example of a schematic enlarged view of the H section shown in FIG. As shown in FIG. 6, the substrate 10A has a lower height between two adjacent spaces (here, as an example, a sixth space 50f and a fifth space 50e) in a side sectional view. It has an air gap 55 . The gap 55 does not necessarily need to be positioned over the entire circumference of the substrate 10A.
 このように、空洞部50Aにおける隣接する2つの空間の間に空隙55が位置していることにより、抵抗発熱体30において発生した熱が上記2つの空間の間を通って基体10Aの側面103(図4参照)に伝わることをさらに抑制することができる。 Since the gap 55 is positioned between two adjacent spaces in the hollow portion 50A in this way, the heat generated in the resistance heating element 30 passes between the two spaces to the side surface 103 ( (see FIG. 4) can be further suppressed.
(第3実施形態)
 図7は、第3実施形態に係るヒータにおける空洞部周辺の模式的な側断面図である。図7に示すように、第3実施形態に係るヒータ2Bにおいて、基体10Bは、第2仮想線L2および第3仮想線L3に沿って広がる空洞部50Bを有する。
(Third Embodiment)
FIG. 7 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the third embodiment. As shown in FIG. 7, in the heater 2B according to the third embodiment, the base 10B has a hollow portion 50B extending along the second virtual line L2 and the third virtual line L3.
 具体的には、第3実施形態に係る空洞部50Bは、側断面視において三角形状を有しており、3つ辺のうちの1つが第2仮想線L2に沿っており、他の1つが第3仮想線L3に沿っている。 Specifically, the hollow portion 50B according to the third embodiment has a triangular shape in a side cross-sectional view, one of three sides is along the second imaginary line L2, and the other is It is along the third imaginary line L3.
 このように、空洞部50Bは、側断面視において三角形状を有していてもよい。かかる構成とすることにより、抵抗発熱体30の外周端31から基体10Bの側面103へ向かう熱伝導をさらに抑制することができる。また、空洞部50Bの下部における基体10Bと比較して、空洞部50Bの上部における基体10Bの方が緻密であるため、熱サイクルによって生じる熱応力に対する強度を高めることができる。 Thus, the hollow portion 50B may have a triangular shape in a side cross-sectional view. Such a configuration can further suppress heat conduction from the outer peripheral end 31 of the resistance heating element 30 to the side surface 103 of the base 10B. In addition, since the substrate 10B above the cavity 50B is denser than the substrate 10B below the cavity 50B, the strength against thermal stress caused by thermal cycles can be increased.
 なお、図7に示す例では、空洞部50Bのうち第2仮想線L2に沿った辺が、第2仮想線L2から離れているが、空洞部50Bのうち第2仮想線L2に沿った辺は、第2仮想線L2に接していてもよいし、第2仮想線L2と重なっていてもよい。 In the example shown in FIG. 7, the side of the hollow portion 50B along the second virtual line L2 is separated from the second virtual line L2, but the side of the hollow portion 50B along the second virtual line L2 may be in contact with the second virtual line L2 or may overlap the second virtual line L2.
(第4実施形態)
 図8は、第4実施形態に係るヒータにおける空洞部周辺の模式的な側断面図である。図8に示すように、第4実施形態に係るヒータ2Cにおいて、基体10Cは、第2仮想線L2および第3仮想線L3に沿って広がる空洞部50Cを有する。
(Fourth embodiment)
FIG. 8 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the fourth embodiment. As shown in FIG. 8, in the heater 2C according to the fourth embodiment, the base 10C has a hollow portion 50C extending along the second virtual line L2 and the third virtual line L3.
 第4実施形態に係る空洞部50Cは、側断面視において段差状を呈している。具体的には、空洞部50Cは、たとえば図7に示した空洞部50Bが有する3つの辺のうち、第2仮想線L2に沿った辺の形状を第2仮想線L2に沿った段差状、具体的には、第1仮想線L1に沿った直線と第3仮想線L3に沿った直線とが交互に並んだ形状に代えたものに相当する。 A hollow portion 50C according to the fourth embodiment has a stepped shape in a side cross-sectional view. Specifically, of the three sides of the hollow portion 50B shown in FIG. Specifically, it corresponds to a shape in which straight lines along the first virtual line L1 and straight lines along the third virtual line L3 are alternately arranged.
 このように、空洞部50Cは、側断面視において段差形状を有していてもよい。この場合も、第3実施形態に係るヒータ2Bと同様の効果を得ることができる。すなわち、抵抗発熱体30の外周端31から基体10Cの側面103へ向かう熱伝導をさらに抑制することができる。また、空洞部50Cの下部における基体10Cと比較して、空洞部50Cの上部における基体10Cの方が緻密であるため、熱サイクルによって生じる熱応力に対する強度を高めることができる。 Thus, the hollow portion 50C may have a stepped shape in a side cross-sectional view. Also in this case, the same effect as the heater 2B according to the third embodiment can be obtained. That is, heat conduction from the outer peripheral end 31 of the resistance heating element 30 to the side surface 103 of the base 10C can be further suppressed. Moreover, since the substrate 10C above the cavity 50C is denser than the substrate 10C below the cavity 50C, the strength against thermal stress caused by thermal cycles can be increased.
(第5実施形態)
 図9は、第5実施形態に係るヒータにおける空洞部周辺の模式的な側断面図である。図9に示すように、第5実施形態に係るヒータ2Dにおいて、基体10Dは、空洞部50Dを有する。第5実施形態に係る空洞部50Dは、側断面視において、たとえば第4実施形態に係る空洞部50Cを複数(ここでは2つ)の壁部105によって区切った形状を有する。壁部105は、第1仮想線L1に沿って延びており、側断面視において、両端のうちの第一端(下端)が空洞部50Dの底面に位置し、両端のうちの第二端(上端)が空洞部50Dの天井面に位置する。
(Fifth embodiment)
FIG. 9 is a schematic side cross-sectional view of the periphery of the hollow portion in the heater according to the fifth embodiment. As shown in FIG. 9, in a heater 2D according to the fifth embodiment, a base 10D has a hollow portion 50D. A hollow portion 50D according to the fifth embodiment has a shape in which, for example, the hollow portion 50C according to the fourth embodiment is partitioned by a plurality of (here, two) wall portions 105 in a side sectional view. The wall portion 105 extends along the first imaginary line L1, and in a side sectional view, the first end (lower end) of both ends is positioned on the bottom surface of the hollow portion 50D, and the second end ( upper end) is positioned on the ceiling surface of the hollow portion 50D.
 かかる壁部105により、空洞部50Dは、側断面視において、第10空間50j、第11空間50kおよび第12空間50mに区画される。なお、壁部105は、必ずしも基体10Dの全周に亘って設けられることを要さず、基体10Dの周方向に部分的に設けられてもよい。すなわち、たとえば第10空間50jと第11空間50kとは、他の側断面視において連通していてもよい。同様に、第11空間50kと第12空間50mとは、他の側断面視において連通していてもよい。 The walls 105 partition the cavity 50D into a tenth space 50j, an eleventh space 50k and a twelfth space 50m in a side sectional view. Note that the wall portion 105 does not necessarily need to be provided over the entire circumference of the base 10D, and may be provided partially in the circumferential direction of the base 10D. That is, for example, the tenth space 50j and the eleventh space 50k may communicate with each other in another cross-sectional side view. Similarly, the eleventh space 50k and the twelfth space 50m may communicate with each other in another side cross-sectional view.
 このように、空洞部50Dは壁部105を有していてもよい。かかる構成によれば、基体10Dの強度を維持しつつ、空洞部50Dをより広く形成することができる。 Thus, the hollow portion 50D may have the wall portion 105. According to such a configuration, it is possible to form a wider cavity portion 50D while maintaining the strength of the base 10D.
(第6実施形態)
 図10は、第6実施形態に係るヒータの模式的な断面図である。図10に示すように、第6実施形態に係るヒータ2Eにおいて、基体10Eは、空洞部50Eを有する。
(Sixth embodiment)
FIG. 10 is a schematic cross-sectional view of a heater according to the sixth embodiment. As shown in FIG. 10, in the heater 2E according to the sixth embodiment, the base 10E has a hollow portion 50E.
 第6実施形態に係る空洞部50Eは、第1空洞部51と、第2空洞部52とを有する。第1空洞部51は、抵抗発熱体30と基体10Eの側面103との間に位置する空洞部である。ここでは、側断面視における第1空洞部51の形状が、第5実施形態に係る空洞部50Dと同一である場合の例を示しているが、第1空洞部51の形状は、第1~第4実施形態に係る空洞部50,50A~50Cと同一であってもよい。 A cavity portion 50E according to the sixth embodiment has a first cavity portion 51 and a second cavity portion 52 . The first cavity 51 is a cavity located between the resistance heating element 30 and the side surface 103 of the base 10E. Here, an example in which the shape of the first hollow portion 51 in a side cross-sectional view is the same as that of the hollow portion 50D according to the fifth embodiment is shown. It may be the same as the cavities 50, 50A to 50C according to the fourth embodiment.
 第2空洞部52は、基体10Eにおける加熱面とは反対側の面、すなわち、基体10Eの下面102と抵抗発熱体30との間に位置する空洞部である。第2空洞部52は、基体10Eの上面101に沿って延びており、両端部において第1空洞部51とつながっている。 The second cavity 52 is a cavity located between the surface of the substrate 10E opposite to the heating surface, that is, the lower surface 102 of the substrate 10E and the resistance heating element 30. The second hollow portion 52 extends along the upper surface 101 of the base 10E and is connected to the first hollow portion 51 at both ends.
 このように、空洞部50Eは、基体10Eの下面102と抵抗発熱体30との間に位置する第2空洞部52を有していてもよい。かかる構成によれば、基体10Eの側面103に加えて、基体10Eの下面102への熱伝導を抑制することができるため、熱効率をさらに高めることができる。 Thus, the cavity 50E may have the second cavity 52 located between the lower surface 102 of the base 10E and the resistance heating element 30. With such a configuration, it is possible to suppress heat conduction to the bottom surface 102 of the base 10E in addition to the side surface 103 of the base 10E, so that the heat efficiency can be further improved.
 また、図10に示すように、空洞部50Eは、第2空洞部52にも複数の壁部105を有していてもよい。かかる構成によれば、基体10Eの強度を維持しつつ、空洞部50Eをより広く形成することができる。 Further, as shown in FIG. 10, the cavity 50E may have a plurality of walls 105 in the second cavity 52 as well. According to such a configuration, it is possible to form a wider cavity portion 50E while maintaining the strength of the base 10E.
(その他の実施形態)
 上述した各実施形態において、空洞部50,50A~50Eは、断熱層としての機能に加え、たとえば上面101に載置されたウエハWに供給する気体の流路として用いられてもよい。この場合、空洞部50,50A~50Eは、気体が導入される導入路と、上面101に連通する導出路とをさらに有していればよい。空洞部50,50A~50Eに導入される気体としては、たとえばヘリウムガス等の不活性ガスが挙げられる。
(Other embodiments)
In each of the above-described embodiments, the cavities 50, 50A to 50E may be used as flow paths for gas to be supplied to the wafer W placed on the upper surface 101, in addition to functioning as a heat insulating layer. In this case, the cavities 50, 50A to 50E only need to further have an introduction path through which the gas is introduced and a discharge path communicating with the upper surface 101. As shown in FIG. Examples of the gas introduced into the cavities 50, 50A to 50E include inert gases such as helium gas.
 このように、空洞部50,50A~50Eは、気体の流路として用いられてもよい。この場合、気体の流路を別途設ける必要がない。 In this way, the cavities 50, 50A to 50E may be used as gas flow paths. In this case, there is no need to provide a separate gas flow path.
 また、上述した各実施形態において、基体10,10A~10Eは、複数の部材を接合してなるものでなく、一体形成されたものであってもよい。かかる構成によれば、たとえば接合層などを設ける必要がないため、熱サイクルに対する信頼性を高めることができる。 Further, in each of the above-described embodiments, the bases 10, 10A to 10E may be integrally formed instead of joining a plurality of members. According to such a configuration, it is not necessary to provide a bonding layer, for example, so reliability against thermal cycles can be enhanced.
(ヒータの製造方法)
 次に、本開示によるヒータの製造方法について説明する。ヒータの製造方法においては、たとえば、基体、シャフトおよび給電線が個別に作成される。その後、これらの部材が互いに固定される。なお、基体とシャフトは一部または全部が一体的に作成されてもよい。シャフトおよび給電線の製造方法は、たとえば、公知の種々の方法と同様とされてよい。
(Method for manufacturing heater)
Next, a method for manufacturing a heater according to the present disclosure will be described. In the method of manufacturing the heater, for example, the substrate, shaft and feed line are made separately. These members are then secured together. Note that the base body and the shaft may be partially or wholly formed integrally. The method of manufacturing the shaft and the feed line may be similar to various known methods, for example.
 基体は、複数のセラミックグリーンシートを積層することによって成形される。具体的には、基体を構成するセラミックグリーンシートと、抵抗発熱体を構成する金属シートと、電極層を構成する金属シートとを用意する。そして、用意したシートを積層する。ここで、空洞部を形成するために、形状が異なる複数種類のセラミックグリーンシートが用意される。たとえば図3に示す第3空間50cのように、平断面視において周状の空洞部を基体に形成する場合、基体の上面と略同径の円形の第1セラミックグリーンシートの他、基体の上面よりも径が小さい円形の第2セラミックグリーンシートと、内径が第2セラミックグリーンシートよりも大径であり、外径が第1セラミックグリーンシートと同径である環状の第3セラミックグリーンシートとを用意する。そして、第1セラミックグリーンシートの上に第2セラミックグリーンシートおよび第3セラミックグリーンシートを積層する。このとき、第2セラミックグリーンシートは、環状の第3セラミックグリーンシートの内側に配置される。そして、第2セラミックグリーンシートおよび第3セラミックグリーンシートの上に第1セラミックグリーンシートを積層する。 The base is formed by laminating multiple ceramic green sheets. Specifically, a ceramic green sheet that forms the base, a metal sheet that forms the resistance heating element, and a metal sheet that forms the electrode layer are prepared. Then, the prepared sheets are laminated. Here, a plurality of types of ceramic green sheets having different shapes are prepared in order to form the cavity. For example, like the third space 50c shown in FIG. 3, in the case of forming a circular hollow portion in the substrate in plan view, in addition to the circular first ceramic green sheet having substantially the same diameter as the upper surface of the substrate, and a third annular ceramic green sheet having an inner diameter larger than that of the second ceramic green sheet and an outer diameter equal to that of the first ceramic green sheet. prepare. Then, a second ceramic green sheet and a third ceramic green sheet are laminated on the first ceramic green sheet. At this time, the second ceramic green sheet is arranged inside the annular third ceramic green sheet. Then, the first ceramic green sheets are laminated on the second ceramic green sheets and the third ceramic green sheets.
 つづいて、セラミックグリーンシートおよび金属シートの積層体を脱脂および焼成する。焼成温度は、例えば1700℃以上1850℃以下の温度である。ここで、空洞部が閉空間である場合、焼成時の焼成雰囲気を真空とすることによって、脱脂時に生じたセラミックグリーンシートの連通孔から気体が排出され、空洞部を真空状態にすることもできる。また、金属シートに代えて、金属ペーストやワイヤを用いても良い。 Subsequently, the laminate of ceramic green sheets and metal sheets is degreased and fired. The firing temperature is, for example, 1700° C. or higher and 1850° C. or lower. Here, when the cavity is a closed space, by setting the firing atmosphere to a vacuum during firing, gas can be discharged from the communication holes of the ceramic green sheet generated during degreasing, and the cavity can be brought into a vacuum state. . Also, a metal paste or a wire may be used instead of the metal sheet.
 その後、焼成後の積層体に対し、端子を挿入するための穴をたとえばドリル加工等によって形成した後、形成した穴に端子を挿入し、端子と積層体とを接合層を介して接合する。接合層としては、たとえば、Ag-Ti-Cu合金を用いたメタライズ層を用いることができる。なお、接合層は、たとえば白金等の導電性材料のペーストを熱処理によって焼結させたものであってもよい。この場合、端子の先端に白金等の導電性材料のペーストを予め塗っておく。つづいて、端子が取り付けられた積層体を真空中で熱処理することによって導電性材料を焼結させる。このときの処理温度は、たとえば1250℃である。これにより、本開示による基体が得られる。 After that, holes for inserting terminals are formed in the fired laminate by, for example, drilling, and then the terminals are inserted into the formed holes and the terminals and the laminate are joined via the joining layer. As the bonding layer, for example, a metallized layer using an Ag--Ti--Cu alloy can be used. The bonding layer may be formed by sintering a paste of a conductive material such as platinum by heat treatment. In this case, the tip of the terminal is previously coated with a paste of a conductive material such as platinum. Subsequently, the conductive material is sintered by heat-treating the laminate to which the terminals are attached in a vacuum. The processing temperature at this time is, for example, 1250.degree. This results in a substrate according to the present disclosure.
 なお、第3実施形態に係る基体10Bの製造方法としては、たとえば有底筒状(側断面視凹状)の第1焼結体と、上部が円柱状であり、下部が逆円錐台状である第2焼結体とを用意し、これらをロウ材等の接合材を用いて接合する方法であってもよい。第1焼結体および第2焼結体は、たとえば円柱状の焼結体を切削加工することにより得ることができる。または、有底筒状(側断面視凹状)の第1成形体と、上部が円柱状であり、下部が逆円錐台状である第2成形体とを用意し、これらと同じ材質を含んだスラリー状のペーストを用いて接合し、焼結する方法であってもよい。 In addition, as a method for manufacturing the base body 10B according to the third embodiment, for example, a first sintered body having a bottomed cylindrical shape (concave shape when viewed from the side), a cylindrical upper portion, and an inverted truncated conical lower portion are used. A method of preparing a second sintered body and bonding them using a bonding material such as a brazing material may also be used. The first sintered body and the second sintered body can be obtained, for example, by cutting a cylindrical sintered body. Alternatively, a first molded body having a cylindrical shape with a bottom (concave when viewed in cross section) and a second molded body having a cylindrical upper portion and an inverted truncated cone-shaped lower portion are prepared, and the same material as these is prepared. A method of bonding using a slurry paste and sintering may also be used.
 上述してきたように、実施形態に係るヒータ(一例として、ヒータ2,2A~2E)は、基体(一例として、基体10,10A~10E)と、抵抗発熱体(一例として、抵抗発熱体30)と、空洞部(一例として、空洞部50,50A~50E)とを有する。基体は、セラミックスからなり、加熱面(一例として、上面101)を有する。抵抗発熱体は、基体の内部に位置する。空洞部は、基体の内部において、抵抗発熱体と基体の側面との間に少なくとも一部が位置する。また、空洞部は、加熱面と直交する方向における基体の断面視において、抵抗発熱体の外周端(一例として、外周端31)から延びる仮想線であって、抵抗発熱体の外周端から加熱面に向かって垂直に延びる第1仮想線(一例として、第1仮想線L1)よりも基体の外方に傾斜した第2仮想線(一例として、第2仮想線L2)に沿って延びる。 As described above, the heater according to the embodiment ( heaters 2, 2A to 2E as an example) includes bases ( bases 10, 10A to 10E as an example) and resistance heating elements (resistance heating element 30 as an example). and cavities (eg cavities 50, 50A to 50E). The substrate is made of ceramics and has a heating surface (upper surface 101 as an example). A resistive heating element is located inside the substrate. At least a portion of the cavity is located inside the base between the resistive heating element and the side surface of the base. Further, the hollow portion is an imaginary line extending from the outer peripheral edge of the resistance heating element (for example, the outer peripheral edge 31) in a cross-sectional view of the base body in a direction perpendicular to the heating surface, and extends from the outer peripheral edge of the resistance heating element to the heating surface. It extends along a second imaginary line (as an example, a second imaginary line L2) inclined outward from the base body relative to a first imaginary line (as an example, a first imaginary line L1) extending vertically toward the substrate.
 したがって、実施形態に係るヒータによれば、熱効率を向上させることができる。 Therefore, according to the heater according to the embodiment, it is possible to improve the thermal efficiency.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments so shown and described. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.
1   :ヒータシステム
2   :ヒータ
5a,5b :電力供給部
6   :制御部
10  :基体
20  :シャフト
30  :抵抗発熱体
31  :外周端
40  :電極層
41  :端子
45a,45b :給電線
50  :空洞部
51  :第1空洞部
52  :第2空洞部
55  :空隙
101 :上面
102 :下面
103 :側面
104 :外縁
105 :壁部
L0  :中心軸
L1  :第1仮想線
L2  :第2仮想線
L3  :第3仮想線
W   :ウエハ
Reference Signs List 1: Heater system 2: Heaters 5a, 5b: Power supply unit 6: Control unit 10: Substrate 20: Shaft 30: Resistance heating element 31: Outer peripheral edge 40: Electrode layer 41: Terminals 45a, 45b: Power supply line 50: Cavity 51 : first cavity 52 : second cavity 55 : gap 101 : upper surface 102 : lower surface 103 : side surface 104 : outer edge 105 : wall portion L0 : center axis L1 : first virtual line L2 : second virtual line L3 : third 3 virtual line W: wafer

Claims (9)

  1.  セラミックスからなり、加熱面である上面と、該上面とは反対側の面である下面とを有する基体と、
     前記基体の内部に位置する抵抗発熱体と、
     前記基体の内部において、前記抵抗発熱体と前記基体の側面との間に少なくとも一部が位置する空洞部と
     を有し、
     前記空洞部は、前記上面と直交する方向における前記基体の断面視において、前記側面側に位置する外側壁面と、該外側壁面と対向する内側壁面とを有し、
     前記内側壁面の少なくとも一部は、前記下面から前記上面に向かうほど、前記上面と直交する方向における前記基体の中心軸から離れる、ヒータ。
    a substrate made of ceramics and having an upper surface as a heating surface and a lower surface as a surface opposite to the upper surface;
    a resistive heating element located inside the base;
    a hollow portion at least partly located between the resistance heating element and the side surface of the substrate inside the substrate;
    The hollow portion has an outer wall surface located on the side surface side and an inner wall surface facing the outer wall surface in a cross-sectional view of the base body in a direction orthogonal to the upper surface,
    At least part of the inner wall surface is a heater, wherein the distance from the central axis of the base body in the direction perpendicular to the upper surface increases from the lower surface toward the upper surface.
  2.  前記内側壁面は、前記断面視において、前記上面と直交し且つ前記抵抗発熱体の外周端を通過する第1仮想線と、前記外周端から延びる仮想線であって前記第1仮想線よりも前記基体の外方に向かって傾斜した第2仮想線と、前記側面と、前記下面とによって区画される領域に位置する、請求項1に記載のヒータ。 In the cross-sectional view, the inner wall surface has a first imaginary line orthogonal to the upper surface and passing through the outer peripheral edge of the resistance heating element, and a virtual line extending from the outer peripheral edge and extending from the first imaginary line. 2. The heater according to claim 1, located in a region defined by a second imaginary line sloping outwardly of the base, the side surface, and the bottom surface.
  3.  前記第2仮想線は、前記外周端から前記上面の外縁に向かって延びる、請求項2に記載のヒータ。 The heater according to claim 2, wherein said second imaginary line extends from said outer peripheral edge toward the outer edge of said upper surface.
  4.  前記空洞部は、前記断面視において、前記外周端から前記側面に向かって水平に延びる第3仮想線と交わる、請求項2または3に記載のヒータ。 4. The heater according to claim 2 or 3, wherein said hollow portion intersects with a third imaginary line extending horizontally from said outer peripheral end toward said side surface in said cross-sectional view.
  5.  前記空洞部は、前記断面視において、前記第2仮想線および前記第3仮想線に沿って広がる、請求項4に記載のヒータ。 5. The heater according to claim 4, wherein said cavity extends along said second virtual line and said third virtual line in said cross-sectional view.
  6.  前記空洞部は、前記断面視において、両端のうちの第一端が前記空洞部の底面に位置し、前記両端のうちの第二端が前記空洞部の天井面に位置する壁部を有する、請求項5に記載のヒータ。 The hollow portion has a wall portion in which, in the cross-sectional view, a first end of both ends is positioned on the bottom surface of the hollow portion, and a second end of the both ends is positioned on the ceiling surface of the hollow portion. A heater according to claim 5.
  7.  前記空洞部は、前記断面視において、格子状に配列された複数の空間を有する、請求項5に記載のヒータ。 The heater according to claim 5, wherein the hollow portion has a plurality of spaces arranged in a grid pattern in the cross-sectional view.
  8.  前記基体は、前記断面視において、隣接する2つの前記空間の間に、前記空間よりも高さが低い空隙を有する、請求項7に記載のヒータ。 8. The heater according to claim 7, wherein said substrate has a gap between said two adjacent spaces in said cross-sectional view, the height of which is lower than said space.
  9.  前記空洞部は、
     前記抵抗発熱体と前記側面との間に位置する第1空洞部と、
     前記基体における前記下面と前記抵抗発熱体との間に位置する第2空洞部と
     を有し、
     前記第1空洞部と前記第2空洞部とはつながっている、請求項1~8のいずれか一つに記載のヒータ。
    The cavity is
    a first cavity located between the resistive heating element and the side surface;
    a second cavity located between the lower surface of the base and the resistance heating element;
    The heater according to any one of claims 1 to 8, wherein said first cavity and said second cavity are connected.
PCT/JP2022/003247 2021-01-29 2022-01-28 Heater WO2022163799A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578506A JP7483952B2 (en) 2021-01-29 2022-01-28 heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021013836 2021-01-29
JP2021-013836 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163799A1 true WO2022163799A1 (en) 2022-08-04

Family

ID=82653547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003247 WO2022163799A1 (en) 2021-01-29 2022-01-28 Heater

Country Status (2)

Country Link
JP (1) JP7483952B2 (en)
WO (1) WO2022163799A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134776A (en) * 1995-11-08 1997-05-20 Nippon Dennetsu Co Ltd Heating device
JP2015159186A (en) * 2014-02-24 2015-09-03 日本特殊陶業株式会社 heating device
JP2015529969A (en) * 2012-07-18 2015-10-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pedestal with multi-zone temperature control and multiple purge function
JP2016072478A (en) * 2014-09-30 2016-05-09 日本特殊陶業株式会社 Electrostatic chuck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134776A (en) * 1995-11-08 1997-05-20 Nippon Dennetsu Co Ltd Heating device
JP2015529969A (en) * 2012-07-18 2015-10-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pedestal with multi-zone temperature control and multiple purge function
JP2015159186A (en) * 2014-02-24 2015-09-03 日本特殊陶業株式会社 heating device
JP2016072478A (en) * 2014-09-30 2016-05-09 日本特殊陶業株式会社 Electrostatic chuck

Also Published As

Publication number Publication date
JP7483952B2 (en) 2024-05-15
JPWO2022163799A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
US9984912B2 (en) Locally heated multi-zone substrate support
JP6001402B2 (en) Electrostatic chuck
US11631597B2 (en) Holding apparatus
WO2020153079A1 (en) Ceramic heater
KR20170045105A (en) Heating Member, Electrostatic Chuck, and Ceramic Heater
JP2017228360A (en) Heating member and electrostatic chuck
KR20230017735A (en) Electrostatic chuck, substrate fixing device and manufacturing method of electrostatic chuck
TWI713408B (en) Ceramic heater
JPWO2019082821A1 (en) Wafer mounting table and manufacturing method thereof
JP2006013256A (en) Electrostatic chuck
WO2022163799A1 (en) Heater
JP6664660B2 (en) Heater divided into multiple zones
WO2020153086A1 (en) Ceramic heater
JP2001007189A (en) Electrostatic chuck and its manufacture
JP3602908B2 (en) Wafer holding member
JP2004071647A (en) Complex heater
JP4069875B2 (en) Wafer holding member
US11937345B2 (en) Ceramic heater
TWI837264B (en) ceramic heater
US20240131534A1 (en) Shower plate
JP7448060B1 (en) electrostatic chuck
WO2022215722A1 (en) Shower plate
WO2022260042A1 (en) Shower plate
TWI769707B (en) Ceramic heater
JP2004071182A (en) Composite heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22746018

Country of ref document: EP

Kind code of ref document: A1