WO2022163643A1 - Laser oscillator and laser processing device provided with same - Google Patents

Laser oscillator and laser processing device provided with same Download PDF

Info

Publication number
WO2022163643A1
WO2022163643A1 PCT/JP2022/002653 JP2022002653W WO2022163643A1 WO 2022163643 A1 WO2022163643 A1 WO 2022163643A1 JP 2022002653 W JP2022002653 W JP 2022002653W WO 2022163643 A1 WO2022163643 A1 WO 2022163643A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
control
bypass switch
bypass
laser diode
Prior art date
Application number
PCT/JP2022/002653
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 黒崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022578404A priority Critical patent/JPWO2022163643A1/ja
Publication of WO2022163643A1 publication Critical patent/WO2022163643A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • the present disclosure relates to a laser oscillator including a laser diode and a bypass switch connected in parallel with the laser diode, and a laser processing apparatus including the same.
  • Patent Document 1 discloses a laser oscillator including a laser diode connected between first and second nodes and a current source for supplying a supply current between the first and second nodes, Disclosed is a bypass switch connected in parallel with the laser diode between first and second nodes. In this laser oscillator, it is possible to switch between the supply current to the laser diode and the bypass switch by switching the bypass switch on and off.
  • Patent Document 1 when the laser diode emits light (laser light) for a predetermined continuous light emission time, the switching operation from on to off and the switching operation from off to on are performed for one bypass switch as described above. It is necessary to perform at time intervals corresponding to the continuous light emission time. However, if one bypass switch is turned on and off at short intervals, the response of the bypass switch or the drive circuit for the bypass switch cannot keep up, and the bypass switch enters a half-on state, resulting in damage due to excessive heat generation. There is fear. Therefore, the continuous light emission time of the laser diode cannot be shortened very much.
  • the present disclosure has been made in view of this point, and its purpose is to make it possible to shorten the continuous emission time of a laser diode.
  • the present disclosure provides a laser diode comprising a laser diode connected between first and second nodes and a current source providing a supply current between said first and second nodes.
  • an oscillator a plurality of bypass switches connected between the first and second nodes, in parallel with the laser diode and in parallel with each other; and at least one first bypass of the plurality of bypass switches.
  • first control for turning on only a switch to stop the laser output of the laser diode
  • second control for turning off all of the plurality of bypass switches and allowing the supply current to flow through the laser diode, and among the plurality of bypass switches a control unit for continuously executing third control in this order to turn on only at least one second bypass switch different from the first bypass switch to stop the laser output of the laser diode; It is characterized by
  • the continuous emission time of the laser diode can be shortened.
  • FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus including a laser oscillator according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a circuit diagram of a laser oscillator according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a timing chart explaining the operation of the laser oscillator according to Embodiment 1 of the present disclosure.
  • FIG. 4 is a timing chart explaining the operation of the controller of the laser oscillator according to the second embodiment of the present disclosure.
  • FIG. 5 is a view corresponding to FIG. 4 of the third embodiment.
  • FIG. 1 shows the configuration of a laser processing apparatus 100. As shown in FIG. This laser processing apparatus 100 is used for cutting a work W, welding processing, and the like.
  • a laser processing apparatus 100 includes a laser processing head 10 , a manipulator 20 , a controller 30 , a laser oscillator 40 according to Embodiment 1 of the present disclosure, and an optical fiber 90 .
  • the laser processing head 10 irradiates the work W with the laser light LB from the optical fiber 90 .
  • the manipulator 20 has the laser processing head 10 attached to its tip and moves the laser processing head 10 .
  • the controller 30 controls operations of the laser processing head 10 , operations of the manipulator 20 , and laser oscillation of the laser oscillator 40 .
  • the laser oscillator 40 emits a laser beam LB to the optical fiber 90 by oscillation.
  • the optical fiber 90 passes the laser beam LB emitted by the laser oscillator 40 and guides it to the laser processing head 10 .
  • the laser processing head 10 emits laser light LB that has passed through an optical fiber 90 .
  • the laser processing apparatus 100 operates the laser processing head 10 and the manipulator 20 to irradiate the workpiece W with the laser beam LB emitted from the laser oscillator 40 along a desired trajectory.
  • the laser oscillator 40 includes a laser diode (LD) 41, a current source 50, three bypass switches 421 to 423, and a controller 43, as shown in FIG.
  • LD laser diode
  • a laser diode 41 is connected between the first and second nodes N1 and N2.
  • the laser diode 41 has its cathode side directed toward the second node N2.
  • a current source 50 supplies a supply current between the first and second nodes N1 and N2.
  • the current source 50 includes an AC power supply 51, a first rectifier circuit 52, an inverter circuit 53, a capacitor 54, an isolation transformer 55, a second rectifier circuit 56, and a reactor 57.
  • the first rectifier circuit 52 converts the power supply voltage output from the AC power supply 51 into a DC voltage and outputs it from a pair of output nodes ON1 and ON2.
  • the first rectifier circuit 52 is composed of, for example, a diode bridge.
  • the inverter circuit 53 generates a first AC voltage according to the voltages of the output nodes ON1 and ON2 of the first rectifier circuit 52 .
  • the inverter circuit 53 includes a first upper arm switching element 53a and a first lower arm switching element 53b connected in series between a pair of output nodes ON1 and ON2 of the first rectifier circuit 52.
  • a second upper arm switching element 53c and a second lower arm switching element 53d connected in series between a pair of output nodes ON1 and ON2 of the first rectifier circuit 52 .
  • a freewheeling diode 53e is connected in parallel to each of the switching elements 53a to 53d.
  • the capacitor 54 is connected between the first rectifier circuit 52 and the inverter circuit 53 in parallel with the first rectifier circuit 52 and the inverter circuit 53 .
  • a capacitor 54 is connected between a pair of output nodes ON1 and ON2 of the first rectifier circuit 52 .
  • the isolation transformer 55 converts the first AC voltage output by the inverter circuit 53 into a second AC voltage.
  • the isolation transformer 55 has a primary coil 55a and a secondary coil 55b.
  • the voltage of the primary coil 55a becomes the first AC voltage
  • the voltage of the secondary coil 55b becomes the second AC voltage.
  • the primary coil 55a connects a connection point between the first upper arm switching element 53a and the first lower arm switching element 53b and a connection point between the second upper arm switching element 53c and the second lower arm switching element 53d. connected between
  • the second rectifier circuit 56 generates a DC supply current based on a second AC voltage based on the first AC voltage.
  • the second rectifier circuit 56 has first and second diodes 56a and 56b.
  • the anode of the first diode 56a is connected to one end of the secondary coil 55b, and the anode of the second diode 56b is connected to the other end of the secondary coil 55b.
  • the cathodes of the first and second diodes 56a, 56b are connected to the first node N1.
  • the inverter circuit 53 and the second rectifier circuit 56 are insulated by the isolation transformer 55 .
  • the reactor 57 is connected between the middle portion of the secondary coil 55b and the second node N2.
  • the three bypass switches 421-423 are connected in parallel with the laser diode 41 and in parallel with each other between the first and second nodes N1 and N2. Freewheeling diodes 421a to 423a are connected in parallel to these bypass switches 421 to 423, respectively.
  • the control unit 43 controls on/off of the bypass switches 421 to 423 based on a pulse instruction indicating a period during which the laser diode 41 emits light (laser emission, laser oscillation (stimulated emission)). Specifically, the control unit 43 performs control A to turn on only the bypass switch 421 among the plurality of bypass switches 421 to 423 and turn off the bypass switches 422 and 423, and control B to turn off all the bypass switches 421 to 423.
  • the control D for turning off the bypass switch 421 and the bypass switch 422 and the control B are continuously and repeatedly executed in this order.
  • the control unit 43 executes control B for a period corresponding to the period indicated by the pulse instruction.
  • the bypass switch 421 is regarded as a first bypass switch
  • the bypass switch 422 constitutes a second bypass switch different from the first bypass switch
  • the control A is the first control
  • the control B is the second control.
  • control C correspond to the third control.
  • bypass switch 422 is regarded as a first bypass switch
  • bypass switch 423 constitutes a second bypass switch
  • control C corresponds to first control
  • control B corresponds to second control
  • control D corresponds to third control. .
  • bypass switches 421 to 423 to be selected are reset when resuming the repetitive control, and the same bypass switches 421 to 423 that were turned on immediately before the interruption may be turned on. good too.
  • control unit 43 controls the supply of current by the current source 50 by switching on and off the four switching elements 53a to 53d of the inverter circuit 53 of the current source 50.
  • the control unit 43 is composed of, for example, a microcomputer or FPGA. Between the control unit 43 and the bypass switches 421 to 423, an isolation circuit (photocoupler, pulse transformer, etc.) is provided to transmit signals from the control unit 43 to the bypass switches 421 to 423 while electrically isolating them from each other. may be provided. Further, in order to switch the bypass switches 421 to 423 at high speed, a drive circuit may be provided between the control unit 43 and the bypass switches 421 to 423 to increase the current supply capability.
  • an isolation circuit photocoupler, pulse transformer, etc.
  • control unit 43 performs the following control based on the pulse instruction indicating the period during which the laser diode 41 emits light (laser light emission).
  • the control unit 43 causes the current source 50 to supply current, turns off all of the bypass switches 421 to 423, and executes control B to supply current mainly to the laser diode 41.
  • the bypass switch 421 is switched from off to on, and execution of control A is started. This causes the supply current to flow through the bypass switch 421 and the current flowing through the laser diode 41 to decrease. Therefore, the laser output of the laser diode 41 stops. It should be noted that the current flowing through the laser diode 41 at this time may be decreased to the extent that the laser output of the laser diode 41 is stopped, that is, less than a predetermined threshold, and does not necessarily have to become 0A.
  • the control unit 43 turns off the bypass switch 421 and starts executing control B again.
  • the supply current mainly flows through the laser diode 41, and the laser diode 41 outputs laser light.
  • the control unit 43 turns on the bypass switch 422 and starts executing control C. This causes the supply current to flow through the bypass switch 422 and the current flowing through the laser diode 41 to decrease. Therefore, the laser output of the laser diode 41 stops. Note that the current flowing through the laser diode 41 at this time may also be decreased to the extent that the laser output of the laser diode 41 is stopped, that is, less than a predetermined threshold, and does not necessarily have to be 0A.
  • the control unit 43 turns off the bypass switch 422 and starts executing control B again.
  • the supply current mainly flows through the laser diode 41, and the laser diode 41 outputs laser light.
  • the control unit 43 turns on the bypass switch 423 and starts executing control D. This causes the supply current to flow through the bypass switch 423 and the current flowing through the laser diode 41 to decrease. Therefore, the laser output (laser emission) of the laser diode 41 stops. Note that the current flowing through the laser diode 41 at this time may also be decreased to the extent that the laser output of the laser diode 41 is stopped, that is, less than a predetermined threshold, and does not necessarily have to be 0A.
  • the control unit 43 turns off the bypass switch 423 and starts executing control B again.
  • the supply current mainly flows through the laser diode 41, and the laser diode 41 outputs laser light.
  • the control unit 43 turns on the bypass switch 421 and starts executing control A again. This causes the supply current to flow through the bypass switch 421 and the current flowing through the laser diode 41 to decrease. Therefore, the laser output of the laser diode 41 stops.
  • the control unit 43 turns off the bypass switch 421 and starts executing control B again.
  • the supply current mainly flows through the laser diode 41, and the laser diode 41 outputs laser light.
  • control unit 43 continuously and repeatedly executes control A, control B, control C, control B, control D, and control B in this order, thereby supplying a pulse current to the laser diode 41 and intermittently supplying the pulse current to the laser diode 41 .
  • light laser light
  • the time for control B can be set shorter and the continuous light emission time of the laser diode 41 can be shortened compared to the case where the switching operation is performed for the common bypass switch.
  • the duration of control B may be shortened, and the waveform of the current flowing through the laser diode 41 during control B may be triangular.
  • the continuous light emission time of the laser diode 41 can be set short, it is possible to finely control the amount of heat applied to the welded portion per unit time.
  • FIG. 4 is a timing chart illustrating the operation of the controller 43 of the laser oscillator 40 according to Embodiment 2 of the present disclosure.
  • the laser oscillator 40 has only two bypass switches 421 and 422 and does not have the bypass switch 423 .
  • the control unit 43 outputs a first clock signal with a duty ratio of 50% for switching the bypass switch 421 on and off.
  • Bypass switch 421 turns on when the first clock signal is at high level, and turns off when the first clock signal is at low level. That is, the control unit 43 switches the bypass switch 421 on and off when switching the level of the first clock signal.
  • control unit 43 further outputs a second clock signal for switching the bypass switch 422 on and off.
  • Bypass switch 422 turns on when the second clock signal is at high level and turns off when the second clock signal is at low level. That is, the control unit 43 switches the bypass switch 422 on and off when switching the level of the second clock signal.
  • the second clock signal is obtained by delaying the phase of the signal obtained by inverting the first clock signal (the signal indicated by the broken line in FIG. 4) by the phase corresponding to the continuous light emission time of the laser diode 41 .
  • the periods and duty ratios of the first and second clock signals are equal to each other.
  • the phases of the first and second clock signals are different from each other.
  • the first and second clock signals are signals that switch (periodically) between high level and low level at a specific cycle.
  • the first and second clock signals are generated by dividing or multiplying a clock signal generated by a timing device such as a crystal oscillator.
  • the first and second clock signals are switched to high level and low level at a specific period by counting the time by the signal generated by dividing or multiplying the clock signal generated by the timing device. may be generated.
  • the clock signal given from the outside of the laser processing apparatus 100 may be directly output by the controller 43 as the first and second clock signals.
  • the first and second clock signals do not include non-periodic signals, eg, signals whose levels are switched when an aperiodically occurring event occurs.
  • the control unit 43 performs first control to turn on the bypass switch 421 and turn off the bypass switch 422 to stop the laser output of the laser diode 41.
  • the control unit 43 performs second control in which both (all) of the bypass switches 421 and 422 are turned off and the supply current is mainly supplied to the laser diode 41.
  • the controller 43 performs third control to turn off the bypass switch 421 and turn on the bypass switch 422 to stop the laser output of the laser diode 41.
  • FIG. The second control time corresponds to the phase difference between the first and second clock signals.
  • control signals used to control the bypass switches 421 and 422 are the first and second clock signals with the same period, the light emission interval of the laser diode 41 can be easily controlled to be constant.
  • FIG. 5 is a timing chart illustrating the operation of the controller 43 of the laser oscillator 40 according to Embodiment 3 of the present disclosure.
  • the laser oscillator 40 has only two bypass switches 421 and 422 and does not have the bypass switch 423 .
  • the control unit 43 outputs a first clock signal that switches the bypass switch 421 on and off.
  • Bypass switch 421 turns on when the first clock signal is at high level, and turns off when the first clock signal is at low level. That is, the control unit 43 switches the bypass switch 421 on and off when switching the level of the first clock signal.
  • control unit 43 further outputs a second clock signal with a duty ratio of 50% for switching the bypass switch 422 on and off.
  • Bypass switch 422 turns on when the second clock signal is at high level and turns off when the second clock signal is at low level. That is, the control unit 43 switches the bypass switch 422 on and off when switching the level of the second clock signal.
  • the first clock signal is a signal obtained by inverting the second clock signal (the signal indicated by the broken line in FIG. 4) with a duty ratio of less than 50%. Therefore, the duty ratios of the first and second clock signals are different from each other. The periods of the first and second clock signals are equal to each other. Also, the fall of the second clock signal coincides with the rise of the first clock signal.
  • the first and second clock signals are signals that switch (periodically) between high level and low level at a specific cycle.
  • the first and second clock signals are generated by dividing or multiplying a clock signal generated by a timing device such as a crystal oscillator.
  • the first and second clock signals are switched to high level and low level at a specific period by counting the time by the signal generated by dividing or multiplying the clock signal generated by the timing device. may be generated.
  • the clock signal given from the outside of the laser processing apparatus 100 may be directly output by the controller 43 as the first and second clock signals.
  • the first and second clock signals do not include non-periodic signals, eg, signals whose levels are switched when an aperiodically occurring event occurs.
  • the control unit 43 performs the first control to turn on the bypass switch 421 and turn off the bypass switch 422 to stop the laser output of the laser diode 41 .
  • the control unit 43 performs second control in which both (all) of the bypass switches 421 and 422 are turned off and the supply current is mainly supplied to the laser diode 41 .
  • the controller 43 performs third control to turn off the bypass switch 421 and turn on the bypass switch 422 to stop the laser output of the laser diode 41 .
  • the second control time corresponds to the difference between the duty ratios of the first and second clock signals.
  • control signals used to control the bypass switches 421 and 422 are the first and second clock signals having the same period, the light emission interval of the laser diode 41 can be easily controlled to be constant.
  • a plurality of laser diodes 41 may be provided in series between the first and second nodes N1 and N2.
  • the laser oscillator 40 is provided with the three bypass switches 421 to 423, and in the second and third embodiments, the laser oscillator 40 is provided with the two bypass switches 421, 422. Four or more bypass switches may be provided.
  • bypass switch 421 to 423 is turned on in the first control and the third control.
  • the first and second bypass switches may be provided if they are different. That is, at least one each of the first and second bypass switches is provided.
  • the first and second clock signals have the same duty ratio of 50%.
  • the first and second clock signals may have different duty ratios. It may be greater than 50% or less than 50%.
  • the laser diode 41 may generate two types of continuous light emission time, which may adversely affect the processing quality, but the sum of the duty ratios of the first and second clock signals may be set to a value smaller than 100%. .
  • the continuous light emission time of the laser diode 41 may be adjusted according to the processing state during processing of the workpiece W with the laser beam LB.
  • the continuous emission time of the laser diode 41 is set to be shorter when the amount of spatter generation equal to or greater than a predetermined amount is detected by the amount of spatter detection means, compared to when the amount of spatter generation less than the predetermined amount is detected.
  • the continuous light emission time of the laser diode 41 can be adjusted by adjusting at least one of the duty ratio and phase of the first and second clock signals.
  • the duty ratio of the second clock signal is 50%. may be adjusted.
  • the falling edge of the second clock signal coincides with the rising edge of the first clock signal. There may be periods during which both the first and second clocks are at high level.
  • the present disclosure has the highly practical effect of shortening the continuous light emission time of the laser diode, so it is extremely useful and highly industrially applicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This laser oscillator 40 is provided with: bypass switches 421-423 provided between first and second nodes N1, N2 and connected in parallel to each other and in parallel to a laser diode 41; and a control unit 43 which continuously executes, in the following order, control A for turning ON only the bypass switch 421 and turning OFF the bypass switches 422, 423, control B for turning OFF all of the bypass switches 421-423 and causing a supply current to flow to a laser diode LD, and control C for turning OFF the bypass switches 421, 423 and turning ON only the bypass switch 422.

Description

レーザ発振器及びそれを備えたレーザ加工装置LASER OSCILLATOR AND LASER PROCESSING APPARATUS INCLUDING THE SAME
 本開示は、レーザダイオードと、前記レーザダイオードと並列に接続されたバイパススイッチとを備えたレーザ発振器及びそれを備えたレーザ加工装置に関する。 The present disclosure relates to a laser oscillator including a laser diode and a bypass switch connected in parallel with the laser diode, and a laser processing apparatus including the same.
 特許文献1には、第1及び第2のノード間に接続されたレーザダイオードと、前記第1及び第2のノード間に供給電流を供給する電流源とを備えたレーザ発振器であって、前記第1及び第2のノード間に、前記レーザダイオードと並列に接続されたバイパススイッチを備えたものが開示されている。このレーザ発振器では、バイパススイッチのオンオフを切り替えることによって、供給電流をレーザダイオードとバイパススイッチのいずれに流すかを切り替えることができる。 Patent Document 1 discloses a laser oscillator including a laser diode connected between first and second nodes and a current source for supplying a supply current between the first and second nodes, Disclosed is a bypass switch connected in parallel with the laser diode between first and second nodes. In this laser oscillator, it is possible to switch between the supply current to the laser diode and the bypass switch by switching the bypass switch on and off.
特許第6577575号公報Japanese Patent No. 6577575
 ところで、特許文献1では、レーザダイオードを所定の連続発光時間だけ発光(レーザ発光)させる場合、1つのバイパススイッチに対し、オンからオフへの切り替え動作とオフからオンへの切り替え動作とを、前記連続発光時間に相当する時間間隔で行う必要がある。しかし、1つのバイパススイッチに対してオンオフの切り替え動作を短い間隔で行うと、バイパススイッチ、又はバイパススイッチの駆動回路の応答が追いつかず、バイパススイッチがハーフオン状態となり、過度の発熱によって破損してしまう虞がある。したがって、レーザダイオードの連続発光時間をあまり短くできない。 By the way, in Patent Document 1, when the laser diode emits light (laser light) for a predetermined continuous light emission time, the switching operation from on to off and the switching operation from off to on are performed for one bypass switch as described above. It is necessary to perform at time intervals corresponding to the continuous light emission time. However, if one bypass switch is turned on and off at short intervals, the response of the bypass switch or the drive circuit for the bypass switch cannot keep up, and the bypass switch enters a half-on state, resulting in damage due to excessive heat generation. There is fear. Therefore, the continuous light emission time of the laser diode cannot be shortened very much.
 本開示は、かかる点に鑑みてなされたものであり、その目的とするところは、レーザダイオードの連続発光時間をより短くできるようにすることにある。 The present disclosure has been made in view of this point, and its purpose is to make it possible to shorten the continuous emission time of a laser diode.
 上記の目的を達成するため、本開示は、第1及び第2のノード間に接続されたレーザダイオードと、前記第1及び第2のノード間に供給電流を供給する電流源とを備えたレーザ発振器であって、前記第1及び第2のノード間に、前記レーザダイオードと並列に、かつ互いに並列に接続された複数のバイパススイッチと、前記複数のバイパススイッチのうち少なくとも1つの第1のバイパススイッチだけをオンして前記レーザダイオードのレーザ出力を停止させる第1制御、前記複数のバイパススイッチを全てオフし、前記レーザダイオードに前記供給電流を流す第2制御、及び前記複数のバイパススイッチのうち前記第1のバイパススイッチとは異なる少なくとも1つの第2のバイパススイッチだけをオンして前記レーザダイオードのレーザ出力を停止させる第3制御をこの順で連続して実行する制御部とをさらに備えたことを特徴とする。 To achieve the above objectives, the present disclosure provides a laser diode comprising a laser diode connected between first and second nodes and a current source providing a supply current between said first and second nodes. an oscillator, a plurality of bypass switches connected between the first and second nodes, in parallel with the laser diode and in parallel with each other; and at least one first bypass of the plurality of bypass switches. first control for turning on only a switch to stop the laser output of the laser diode, second control for turning off all of the plurality of bypass switches and allowing the supply current to flow through the laser diode, and among the plurality of bypass switches a control unit for continuously executing third control in this order to turn on only at least one second bypass switch different from the first bypass switch to stop the laser output of the laser diode; It is characterized by
 これにより、第2制御の開始時及び終了時に異なるバイパススイッチに対してオンオフの切り替え動作を行うので、第2制御の開始時の切り替え動作が完全に終了していない状態でも、第2制御の終了時の切り替え動作を開始できる。したがって、共通のバイパススイッチに対して切り替え動作を行う場合に比べ、第2制御の時間を短く設定し、レーザダイオードの連続発光時間を短くできる。 As a result, different bypass switches are switched on and off at the start and end of the second control. Therefore, even if the switching operation at the start of the second control is not completely finished, the second control is finished. Can start time switching. Therefore, the time for the second control can be set shorter and the continuous light emission time of the laser diode can be shortened compared to the case where the switching operation is performed with respect to the common bypass switch.
 本開示によると、レーザダイオードの連続発光時間を短くできる。 According to the present disclosure, the continuous emission time of the laser diode can be shortened.
図1は、本開示の実施形態1に係るレーザ発振器を備えたレーザ加工装置の構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus including a laser oscillator according to Embodiment 1 of the present disclosure. 図2は、本開示の実施形態1に係るレーザ発振器の回路図である。FIG. 2 is a circuit diagram of a laser oscillator according to Embodiment 1 of the present disclosure. 図3は、本開示の実施形態1に係るレーザ発振器の動作を説明するタイミングチャートである。FIG. 3 is a timing chart explaining the operation of the laser oscillator according to Embodiment 1 of the present disclosure. 図4は、本開示の実施形態2に係るレーザ発振器の制御部の動作を説明するタイミングチャートである。FIG. 4 is a timing chart explaining the operation of the controller of the laser oscillator according to the second embodiment of the present disclosure. 図5は、実施形態3の図4相当図である。FIG. 5 is a view corresponding to FIG. 4 of the third embodiment.
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present disclosure will be described in detail based on the drawings. The following description of preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its applicability or its uses.
 (実施形態1)
 図1は、レーザ加工装置100の構成を示す。このレーザ加工装置100は、ワークWの切断や溶接加工等を行うのに使用される。レーザ加工装置100は、レーザ加工ヘッド10と、マニピュレータ20と、コントローラ30と、本開示の実施形態1に係るレーザ発振器40と、光ファイバ90とを備えている。
(Embodiment 1)
FIG. 1 shows the configuration of a laser processing apparatus 100. As shown in FIG. This laser processing apparatus 100 is used for cutting a work W, welding processing, and the like. A laser processing apparatus 100 includes a laser processing head 10 , a manipulator 20 , a controller 30 , a laser oscillator 40 according to Embodiment 1 of the present disclosure, and an optical fiber 90 .
 レーザ加工ヘッド10は、光ファイバ90からのレーザ光LBをワークWに照射する。マニピュレータ20は、先端にレーザ加工ヘッド10が取り付けられ、レーザ加工ヘッド10を移動させる。コントローラ30は、レーザ加工ヘッド10の動作とマニピュレータ20の動作と、レーザ発振器40のレーザ発振を制御する。レーザ発振器40は、発振によりレーザ光LBを光ファイバ90に出射する。光ファイバ90は、レーザ発振器40により出射されたレーザ光LBを通過させてレーザ加工ヘッド10に導く。レーザ加工ヘッド10は、光ファイバ90を通過したレーザ光LBを出射する。このような構成により、レーザ加工装置100は、レーザ発振器40から出射されたレーザ光LBを、レーザ加工ヘッド10及びマニピュレータ20を動作させてワークWに所望の軌跡で照射させる。 The laser processing head 10 irradiates the work W with the laser light LB from the optical fiber 90 . The manipulator 20 has the laser processing head 10 attached to its tip and moves the laser processing head 10 . The controller 30 controls operations of the laser processing head 10 , operations of the manipulator 20 , and laser oscillation of the laser oscillator 40 . The laser oscillator 40 emits a laser beam LB to the optical fiber 90 by oscillation. The optical fiber 90 passes the laser beam LB emitted by the laser oscillator 40 and guides it to the laser processing head 10 . The laser processing head 10 emits laser light LB that has passed through an optical fiber 90 . With such a configuration, the laser processing apparatus 100 operates the laser processing head 10 and the manipulator 20 to irradiate the workpiece W with the laser beam LB emitted from the laser oscillator 40 along a desired trajectory.
 レーザ発振器40は、図2に示すように、レーザダイオード(LD)41と、電流源50と、3つのバイパススイッチ421~423と、制御部43とを備えている。 The laser oscillator 40 includes a laser diode (LD) 41, a current source 50, three bypass switches 421 to 423, and a controller 43, as shown in FIG.
 レーザダイオード41は、第1及び第2のノードN1,N2間に接続されている。レーザダイオード41は、そのカソード側を第2のノードN2側に向けている。 A laser diode 41 is connected between the first and second nodes N1 and N2. The laser diode 41 has its cathode side directed toward the second node N2.
 電流源50は、第1及び第2のノードN1,N2間に供給電流を供給する。具体的には、電流源50は、交流電源51と、第1整流回路52と、インバータ回路53と、コンデンサ54と、絶縁トランス55と、第2整流回路56と、リアクトル57とを有している。 A current source 50 supplies a supply current between the first and second nodes N1 and N2. Specifically, the current source 50 includes an AC power supply 51, a first rectifier circuit 52, an inverter circuit 53, a capacitor 54, an isolation transformer 55, a second rectifier circuit 56, and a reactor 57. there is
 第1整流回路52は、交流電源51から出力される電源電圧を直流電圧に変換して1対の出力ノードON1,ON2から出力する。第1整流回路52は、例えばダイオードブリッジで構成される。 The first rectifier circuit 52 converts the power supply voltage output from the AC power supply 51 into a DC voltage and outputs it from a pair of output nodes ON1 and ON2. The first rectifier circuit 52 is composed of, for example, a diode bridge.
 インバータ回路53は、第1整流回路52の出力ノードON1,ON2の電圧に応じて第1交流電圧を生成する。具体的には、インバータ回路53は、第1整流回路52の1対の出力ノードON1,ON2間に互いに直列に接続された第1の上アームスイッチング素子53a、及び第1の下アームスイッチング素子53bと、第1整流回路52の1対の出力ノードON1,ON2間に互いに直列に接続された第2の上アームスイッチング素子53c、及び第2の下アームスイッチング素子53dとを有している。各スイッチング素子53a~53dには、還流ダイオード53eが並列に接続されている。 The inverter circuit 53 generates a first AC voltage according to the voltages of the output nodes ON1 and ON2 of the first rectifier circuit 52 . Specifically, the inverter circuit 53 includes a first upper arm switching element 53a and a first lower arm switching element 53b connected in series between a pair of output nodes ON1 and ON2 of the first rectifier circuit 52. , and a second upper arm switching element 53c and a second lower arm switching element 53d connected in series between a pair of output nodes ON1 and ON2 of the first rectifier circuit 52 . A freewheeling diode 53e is connected in parallel to each of the switching elements 53a to 53d.
 コンデンサ54は、第1整流回路52とインバータ回路53との間に、これら第1整流回路52とインバータ回路53と並列に接続されている。コンデンサ54は、第1整流回路52の1対の出力ノードON1,ON2間に接続されている。 The capacitor 54 is connected between the first rectifier circuit 52 and the inverter circuit 53 in parallel with the first rectifier circuit 52 and the inverter circuit 53 . A capacitor 54 is connected between a pair of output nodes ON1 and ON2 of the first rectifier circuit 52 .
 絶縁トランス55は、インバータ回路53により出力される第1交流電圧を第2交流電圧に変換する。絶縁トランス55は、一次コイル55aと、二次コイル55bとを有している。一次コイル55aの電圧が、第1交流電圧となり、二次コイル55bの電圧が、第2交流電圧となる。一次コイル55aは、第1の上アームスイッチング素子53a、及び第1の下アームスイッチング素子53bの接続点と、第2の上アームスイッチング素子53c、及び第2の下アームスイッチング素子53dの接続点との間に接続されている。 The isolation transformer 55 converts the first AC voltage output by the inverter circuit 53 into a second AC voltage. The isolation transformer 55 has a primary coil 55a and a secondary coil 55b. The voltage of the primary coil 55a becomes the first AC voltage, and the voltage of the secondary coil 55b becomes the second AC voltage. The primary coil 55a connects a connection point between the first upper arm switching element 53a and the first lower arm switching element 53b and a connection point between the second upper arm switching element 53c and the second lower arm switching element 53d. connected between
 第2整流回路56は、第1交流電圧に基づく第2交流電圧に基づいて、直流の供給電流を生成する。具体的には、第2整流回路56は、第1及び第2のダイオード56a,56bを有している。第1のダイオード56aのアノードは、二次コイル55bの一端部に接続され、第2のダイオード56bのアノードは、二次コイル55bの他端部に接続されている。第1及び第2のダイオード56a,56bのカソードは、第1のノードN1に接続されている。 The second rectifier circuit 56 generates a DC supply current based on a second AC voltage based on the first AC voltage. Specifically, the second rectifier circuit 56 has first and second diodes 56a and 56b. The anode of the first diode 56a is connected to one end of the secondary coil 55b, and the anode of the second diode 56b is connected to the other end of the secondary coil 55b. The cathodes of the first and second diodes 56a, 56b are connected to the first node N1.
 このように、インバータ回路53と、第2整流回路56とは、絶縁トランス55により絶縁されている。 Thus, the inverter circuit 53 and the second rectifier circuit 56 are insulated by the isolation transformer 55 .
 リアクトル57は、二次コイル55bの中途部と第2のノードN2との間に接続されている。 The reactor 57 is connected between the middle portion of the secondary coil 55b and the second node N2.
 3つのバイパススイッチ421~423は、第1及び第2のノードN1,N2間に、レーザダイオード41と並列に、かつ互いに並列に接続されている。これらのバイパススイッチ421~423には、還流ダイオード421a~423aがそれぞれ並列に接続されている。 The three bypass switches 421-423 are connected in parallel with the laser diode 41 and in parallel with each other between the first and second nodes N1 and N2. Freewheeling diodes 421a to 423a are connected in parallel to these bypass switches 421 to 423, respectively.
 制御部43は、レーザダイオード41を発光(レーザ発光、レーザ発振(誘導放出))させる期間を示すパルス指示に基づいて、バイパススイッチ421~423のオンオフを制御する。詳しくは、制御部43は、複数のバイパススイッチ421~423のうちバイパススイッチ421だけをオンし、かつバイパススイッチ422及びバイパススイッチ423をオフする制御A、バイパススイッチ421~423を全てオフする制御B、バイパススイッチ421~423のうちバイパススイッチ422だけをオンし、かつバイパススイッチ421及びバイパススイッチ423をオフする制御C、前記制御B、バイパススイッチ421~423のうちバイパススイッチ423だけをオンし、かつバイパススイッチ421及びバイパススイッチ422をオフする制御D、及び前記制御Bをこの順で連続して繰り返し実行する。制御部43は、パルス指示に示される期間に応じた期間に、制御Bを実行する。バイパススイッチ421を、第1のバイパススイッチとみなした場合、バイパススイッチ422が、第1のバイパススイッチとは異なる第2のバイパススイッチを構成し、制御Aが第1制御、制御Bが第2制御、制御Cが第3制御に相当する。バイパススイッチ422を第1のバイパススイッチとみなした場合、バイパススイッチ423が第2のバイパススイッチを構成し、制御Cが第1制御、制御Bが第2制御、制御Dが第3制御に相当する。 The control unit 43 controls on/off of the bypass switches 421 to 423 based on a pulse instruction indicating a period during which the laser diode 41 emits light (laser emission, laser oscillation (stimulated emission)). Specifically, the control unit 43 performs control A to turn on only the bypass switch 421 among the plurality of bypass switches 421 to 423 and turn off the bypass switches 422 and 423, and control B to turn off all the bypass switches 421 to 423. , a control C for turning on only the bypass switch 422 out of the bypass switches 421 to 423 and turning off the bypass switches 421 and 423, the control B, turning on only the bypass switch 423 out of the bypass switches 421 to 423, and The control D for turning off the bypass switch 421 and the bypass switch 422 and the control B are continuously and repeatedly executed in this order. The control unit 43 executes control B for a period corresponding to the period indicated by the pulse instruction. When the bypass switch 421 is regarded as a first bypass switch, the bypass switch 422 constitutes a second bypass switch different from the first bypass switch, the control A is the first control, and the control B is the second control. , and control C correspond to the third control. When bypass switch 422 is regarded as a first bypass switch, bypass switch 423 constitutes a second bypass switch, control C corresponds to first control, control B corresponds to second control, and control D corresponds to third control. .
 なお、制御A、制御B、制御C、制御B、制御D、及び制御Bを繰り返す繰り返し制御を、電流源50による電流供給の停止、又はパルス電流出力の直流出力への移行の理由で中断させた場合には、繰り返し制御に再開するときに、選択するバイパススイッチ421~423がリセットされ、中断直前にオンしていたバイパススイッチ421~423と同じバイパススイッチ421~423をオンさせることがあってもよい。 It should be noted that the repeated control that repeats control A, control B, control C, control B, control D, and control B is interrupted for the reason of stopping the current supply by the current source 50 or switching the pulse current output to the DC output. In this case, the bypass switches 421 to 423 to be selected are reset when resuming the repetitive control, and the same bypass switches 421 to 423 that were turned on immediately before the interruption may be turned on. good too.
 また、制御部43は、電流源50による電流の供給を、電流源50のインバータ回路53の4つのスイッチング素子53a~53dのオンオフを切り替えることによって制御する。 In addition, the control unit 43 controls the supply of current by the current source 50 by switching on and off the four switching elements 53a to 53d of the inverter circuit 53 of the current source 50.
 制御部43は例えばマイクロコンピュータやFPGAで構成される。制御部43とバイパススイッチ421~423との間には、両者を互いに電気的に絶縁した状態で、制御部43からバイパススイッチ421~423に信号を伝達する絶縁回路(フォトカプラ、パルストランス等)を設けてもよい。また、バイパススイッチ421~423を高速に切り替えるために、制御部43とバイパススイッチ421~423との間に、電流供給能力を高めるための駆動回路を設けてもよい。 The control unit 43 is composed of, for example, a microcomputer or FPGA. Between the control unit 43 and the bypass switches 421 to 423, an isolation circuit (photocoupler, pulse transformer, etc.) is provided to transmit signals from the control unit 43 to the bypass switches 421 to 423 while electrically isolating them from each other. may be provided. Further, in order to switch the bypass switches 421 to 423 at high speed, a drive circuit may be provided between the control unit 43 and the bypass switches 421 to 423 to increase the current supply capability.
 次に、上述のように構成されたレーザ発振器40の動作について、図3を参照して説明する。図3の例では、制御部43は、レーザダイオード41を発光(レーザ発光)させる期間を示すパルス指示に基づいて、以下の制御を行う。 Next, the operation of the laser oscillator 40 configured as described above will be described with reference to FIG. In the example of FIG. 3, the control unit 43 performs the following control based on the pulse instruction indicating the period during which the laser diode 41 emits light (laser light emission).
 まず、制御部43は、電流源50に電流の供給をさせ、かつバイパススイッチ421~423を全てオフし、主にレーザダイオード41に供給電流を流す制御Bを実行している状態で、タイミングt1において、バイパススイッチ421をオフからオンに切り替え、制御Aの実行を開始する。これにより、供給電流がバイパススイッチ421に流れ、レーザダイオード41に流れる電流が減少する。したがって、レーザダイオード41のレーザ出力が停止する。なお、このときレーザダイオード41に流れる電流は、レーザダイオード41のレーザ出力を停止させる程度、すなわち所定の閾値未満に減少すればよく、必ずしも0Aにならなくてもよい。 First, the control unit 43 causes the current source 50 to supply current, turns off all of the bypass switches 421 to 423, and executes control B to supply current mainly to the laser diode 41. At timing t1 , the bypass switch 421 is switched from off to on, and execution of control A is started. This causes the supply current to flow through the bypass switch 421 and the current flowing through the laser diode 41 to decrease. Therefore, the laser output of the laser diode 41 stops. It should be noted that the current flowing through the laser diode 41 at this time may be decreased to the extent that the laser output of the laser diode 41 is stopped, that is, less than a predetermined threshold, and does not necessarily have to become 0A.
 次に、タイミングt1から期間T11が経過したタイミングt2において、制御部43は、バイパススイッチ421をオフし、制御Bの実行を再度開始する。これにより、主にレーザダイオード41に供給電流が流れ、レーザダイオード41がレーザ光を出力する。 Next, at timing t2 after the period T11 has elapsed from timing t1, the control unit 43 turns off the bypass switch 421 and starts executing control B again. As a result, the supply current mainly flows through the laser diode 41, and the laser diode 41 outputs laser light.
 その後、タイミングt3において、制御部43は、バイパススイッチ422をオンし、制御Cの実行を開始する。これにより、供給電流がバイパススイッチ422に流れ、レーザダイオード41に流れる電流が減少する。したがって、レーザダイオード41のレーザ出力が停止する。なお、このときレーザダイオード41に流れる電流も、レーザダイオード41のレーザ出力を停止させる程度、すなわち所定の閾値未満に減少すればよく、必ずしも0Aにならなくてもよい。 After that, at timing t3, the control unit 43 turns on the bypass switch 422 and starts executing control C. This causes the supply current to flow through the bypass switch 422 and the current flowing through the laser diode 41 to decrease. Therefore, the laser output of the laser diode 41 stops. Note that the current flowing through the laser diode 41 at this time may also be decreased to the extent that the laser output of the laser diode 41 is stopped, that is, less than a predetermined threshold, and does not necessarily have to be 0A.
 次いで、タイミングt3から期間T12が経過したタイミングt4において、制御部43は、バイパススイッチ422をオフし、制御Bの実行を再度開始する。これにより、主にレーザダイオード41に供給電流が流れ、レーザダイオード41がレーザ光を出力する。 Next, at timing t4 when period T12 has passed from timing t3, the control unit 43 turns off the bypass switch 422 and starts executing control B again. As a result, the supply current mainly flows through the laser diode 41, and the laser diode 41 outputs laser light.
 その後、タイミングt5において、制御部43は、バイパススイッチ423をオンし、制御Dの実行を開始する。これにより、供給電流がバイパススイッチ423に流れ、レーザダイオード41に流れる電流が減少する。したがって、レーザダイオード41のレーザ出力(レーザ発光)が停止する。なお、このときレーザダイオード41に流れる電流も、レーザダイオード41のレーザ出力を停止させる程度、すなわち所定の閾値未満に減少すればよく、必ずしも0Aにならなくてもよい。 After that, at timing t5, the control unit 43 turns on the bypass switch 423 and starts executing control D. This causes the supply current to flow through the bypass switch 423 and the current flowing through the laser diode 41 to decrease. Therefore, the laser output (laser emission) of the laser diode 41 stops. Note that the current flowing through the laser diode 41 at this time may also be decreased to the extent that the laser output of the laser diode 41 is stopped, that is, less than a predetermined threshold, and does not necessarily have to be 0A.
 さらに、タイミングt5から期間T13が経過したタイミングt6において、制御部43は、バイパススイッチ423をオフし、制御Bの実行を再度開始する。これにより、主にレーザダイオード41に供給電流が流れ、レーザダイオード41がレーザ光を出力する。 Further, at timing t6 after the period T13 has passed from timing t5, the control unit 43 turns off the bypass switch 423 and starts executing control B again. As a result, the supply current mainly flows through the laser diode 41, and the laser diode 41 outputs laser light.
 その後、タイミングt7において、制御部43は、バイパススイッチ421をオンし、制御Aの実行を再び開始する。これにより、供給電流がバイパススイッチ421に流れ、レーザダイオード41に流れる電流が減少する。したがって、レーザダイオード41のレーザ出力が停止する。 After that, at timing t7, the control unit 43 turns on the bypass switch 421 and starts executing control A again. This causes the supply current to flow through the bypass switch 421 and the current flowing through the laser diode 41 to decrease. Therefore, the laser output of the laser diode 41 stops.
 さらに、タイミングt7から期間T14が経過したタイミングt8において、制御部43は、バイパススイッチ421をオフし、制御Bの実行を再度開始する。これにより、主にレーザダイオード41に供給電流が流れ、レーザダイオード41がレーザ光を出力する。 Furthermore, at timing t8 when period T14 has passed from timing t7, the control unit 43 turns off the bypass switch 421 and starts executing control B again. As a result, the supply current mainly flows through the laser diode 41, and the laser diode 41 outputs laser light.
 このように、制御部43は、制御A、制御B、制御C、制御B、制御D、及び制御Bをこの順で連続して繰り返し実行することにより、レーザダイオード41にパルス電流を流し、断続的に発光(レーザ発光)させることができる。 In this manner, the control unit 43 continuously and repeatedly executes control A, control B, control C, control B, control D, and control B in this order, thereby supplying a pulse current to the laser diode 41 and intermittently supplying the pulse current to the laser diode 41 . light (laser light).
 また、制御Bの開始時及び終了時に異なるバイパススイッチ421~423に対してオンオフの切り替え動作を行うので、制御Bの開始時の切り替え動作が完全に終了していない状態でも、制御Bの終了時の切り替え動作を開始できる。したがって、共通のバイパススイッチに対して切り替え動作を行う場合に比べ、制御Bの時間を短く設定し、レーザダイオード41の連続発光時間を短くできる。例えば、制御Bの時間を短くし、制御Bの期間にレーザダイオード41に流れる電流の波形を三角波形状にしてもよい。また、レーザダイオード41の連続発光時間を短く設定できるので、単位時間あたりに溶接部に与える熱量を微細に制御できるようになり、その結果、ワークWの精密な加工が可能になる。 In addition, since the bypass switches 421 to 423 are switched on and off differently at the start and end of the control B, even if the switching operation at the start of the control B is not completely completed, switching operation can be initiated. Therefore, the time for control B can be set shorter and the continuous light emission time of the laser diode 41 can be shortened compared to the case where the switching operation is performed for the common bypass switch. For example, the duration of control B may be shortened, and the waveform of the current flowing through the laser diode 41 during control B may be triangular. In addition, since the continuous light emission time of the laser diode 41 can be set short, it is possible to finely control the amount of heat applied to the welded portion per unit time.
 (実施形態2)
 図4は、本開示の実施形態2に係るレーザ発振器40の制御部43の動作を説明するタイミングチャートである。本実施形態2では、レーザ発振器40が、2つのバイパススイッチ421,422だけを備え、バイパススイッチ423を備えていない。
(Embodiment 2)
FIG. 4 is a timing chart illustrating the operation of the controller 43 of the laser oscillator 40 according to Embodiment 2 of the present disclosure. In Embodiment 2, the laser oscillator 40 has only two bypass switches 421 and 422 and does not have the bypass switch 423 .
 制御部43は、バイパススイッチ421のオンオフを切り替えるデューティ比50%の第1のクロック信号を出力する。バイパススイッチ421は、第1のクロック信号がハイレベルであるときにオンし、第1のクロック信号がローレベルであるときにオフする。つまり、制御部43は、第1のクロック信号のレベル切替時にバイパススイッチ421のオンオフを切り替える。 The control unit 43 outputs a first clock signal with a duty ratio of 50% for switching the bypass switch 421 on and off. Bypass switch 421 turns on when the first clock signal is at high level, and turns off when the first clock signal is at low level. That is, the control unit 43 switches the bypass switch 421 on and off when switching the level of the first clock signal.
 また、制御部43は、バイパススイッチ422のオンオフを切り替える第2のクロック信号をさらに出力する。バイパススイッチ422は、第2のクロック信号がハイレベルであるときにオンし、第2のクロック信号がローレベルであるときにオフする。つまり、制御部43は、第2のクロック信号のレベル切替時にバイパススイッチ422のオンオフを切り替える。第2のクロック信号は、第1のクロック信号を反転させた信号(図4中破線で示す信号)の位相を、レーザダイオード41の連続発光時間に相当する位相分遅らせた信号である。第1及び第2のクロック信号の周期及びデューティ比は互いに等しい。第1及び第2のクロック信号の位相は、互いに異なっている。 In addition, the control unit 43 further outputs a second clock signal for switching the bypass switch 422 on and off. Bypass switch 422 turns on when the second clock signal is at high level and turns off when the second clock signal is at low level. That is, the control unit 43 switches the bypass switch 422 on and off when switching the level of the second clock signal. The second clock signal is obtained by delaying the phase of the signal obtained by inverting the first clock signal (the signal indicated by the broken line in FIG. 4) by the phase corresponding to the continuous light emission time of the laser diode 41 . The periods and duty ratios of the first and second clock signals are equal to each other. The phases of the first and second clock signals are different from each other.
 第1及び第2のクロック信号は、ハイレベルとローレベルとに特定の周期で(周期的に)切り替わる信号とする。第1及び第2のクロック信号は、例えば水晶発振子のようなタイミングデバイスによって生成されたクロック信号を分周又は逓倍することにより生成される。あるいは、第1及び第2のクロック信号は、タイミングデバイスによって生成されたクロック信号を分周又は逓倍することにより生成された信号による時間のカウントにより、特定周期でハイレベルとローレベルに切り替わるように生成してもよい。あるいは、レーザ加工装置100の外部から与えられたクロック信号を、制御部43が第1及び第2のクロック信号としてそのまま出力してもよい。第1及び第2のクロック信号には、非周期的な信号は含まれず、例えば、非周期的に発生する事象が発生したときにレベルが切り替えられる信号は含まれない。 The first and second clock signals are signals that switch (periodically) between high level and low level at a specific cycle. The first and second clock signals are generated by dividing or multiplying a clock signal generated by a timing device such as a crystal oscillator. Alternatively, the first and second clock signals are switched to high level and low level at a specific period by counting the time by the signal generated by dividing or multiplying the clock signal generated by the timing device. may be generated. Alternatively, the clock signal given from the outside of the laser processing apparatus 100 may be directly output by the controller 43 as the first and second clock signals. The first and second clock signals do not include non-periodic signals, eg, signals whose levels are switched when an aperiodically occurring event occurs.
 図4の例では、期間T21において、制御部43は、バイパススイッチ421をオンし、かつバイパススイッチ422をオフしてレーザダイオード41のレーザ出力を停止させる第1制御を行う。次いで、期間T21と連続する期間T22において、制御部43は、バイパススイッチ421,422を両方(全て)オフして主にレーザダイオード41に供給電流を流す第2制御を行う。次いで、期間T22と連続する期間T23において、制御部43は、バイパススイッチ421をオフし、かつバイパススイッチ422をオンしてレーザダイオード41のレーザ出力を停止させる第3制御を行う。第2制御の時間は、第1及び第2のクロック信号の位相差に応じた時間となる。 In the example of FIG. 4, in period T21, the control unit 43 performs first control to turn on the bypass switch 421 and turn off the bypass switch 422 to stop the laser output of the laser diode 41. FIG. Next, in a period T22 that continues from the period T21, the control unit 43 performs second control in which both (all) of the bypass switches 421 and 422 are turned off and the supply current is mainly supplied to the laser diode 41. FIG. Next, in a period T23 that continues from the period T22, the controller 43 performs third control to turn off the bypass switch 421 and turn on the bypass switch 422 to stop the laser output of the laser diode 41. FIG. The second control time corresponds to the phase difference between the first and second clock signals.
 その他の構成は、実施形態1と同じであるので、その詳細な説明を省略する。 Other configurations are the same as in Embodiment 1, so detailed description thereof will be omitted.
 したがって、本実施形態2によれば、バイパススイッチ421,422の制御に用いる制御信号が互いに周期が等しい第1及び第2のクロック信号なので、レーザダイオード41の発光間隔を容易に一定に制御できる。 Therefore, according to the second embodiment, since the control signals used to control the bypass switches 421 and 422 are the first and second clock signals with the same period, the light emission interval of the laser diode 41 can be easily controlled to be constant.
 また、バイパススイッチ421,422の制御に、周期が等しく、かつ位相が異なる2つのクロック信号を用いるので、当該2つのクロック信号を出力する機能を有し、当該2つのクロック信号の位相差をユーザにより設定可能なマイクロコンピュータを制御部43の信号発生源として採用した場合には、クロック信号の位相を設定するだけで、レーザダイオード41の連続発光時間を容易に調節できる。 Since two clock signals with the same cycle and different phases are used to control the bypass switches 421 and 422, the function of outputting the two clock signals is provided, and the phase difference between the two clock signals can be detected by the user. When a microcomputer that can be set by the control unit 43 is employed as the signal generation source of the control unit 43, the continuous light emission time of the laser diode 41 can be easily adjusted simply by setting the phase of the clock signal.
 (実施形態3)
 図5は、本開示の実施形態3に係るレーザ発振器40の制御部43の動作を説明するタイミングチャートである。本実施形態3では、レーザ発振器40が、2つのバイパススイッチ421,422だけを備え、バイパススイッチ423を備えていない。
(Embodiment 3)
FIG. 5 is a timing chart illustrating the operation of the controller 43 of the laser oscillator 40 according to Embodiment 3 of the present disclosure. In Embodiment 3, the laser oscillator 40 has only two bypass switches 421 and 422 and does not have the bypass switch 423 .
 制御部43は、バイパススイッチ421のオンオフを切り替える第1のクロック信号を出力する。バイパススイッチ421は、第1のクロック信号がハイレベルであるときにオンし、第1のクロック信号がローレベルであるときにオフする。つまり、制御部43は、第1のクロック信号のレベル切替時にバイパススイッチ421のオンオフを切り替える。 The control unit 43 outputs a first clock signal that switches the bypass switch 421 on and off. Bypass switch 421 turns on when the first clock signal is at high level, and turns off when the first clock signal is at low level. That is, the control unit 43 switches the bypass switch 421 on and off when switching the level of the first clock signal.
 また、制御部43は、バイパススイッチ422のオンオフを切り替えるデューティ比が50%の第2のクロック信号をさらに出力する。バイパススイッチ422は、第2のクロック信号がハイレベルであるときにオンし、第2のクロック信号がローレベルであるときにオフする。つまり、制御部43は、第2のクロック信号のレベル切替時にバイパススイッチ422のオンオフを切り替える。 In addition, the control unit 43 further outputs a second clock signal with a duty ratio of 50% for switching the bypass switch 422 on and off. Bypass switch 422 turns on when the second clock signal is at high level and turns off when the second clock signal is at low level. That is, the control unit 43 switches the bypass switch 422 on and off when switching the level of the second clock signal.
 ここで、第1のクロック信号は、第2のクロック信号を反転させた信号(図4中破線で示す信号)のデューティ比を、50%未満にした信号である。したがって、第1及び第2のクロック信号のデューティ比は、互いに異なっている。第1及び第2のクロック信号の周期は、互いに等しい。また、第2のクロック信号の立ち下がりは、第1のクロック信号の立ち上がりと一致している。 Here, the first clock signal is a signal obtained by inverting the second clock signal (the signal indicated by the broken line in FIG. 4) with a duty ratio of less than 50%. Therefore, the duty ratios of the first and second clock signals are different from each other. The periods of the first and second clock signals are equal to each other. Also, the fall of the second clock signal coincides with the rise of the first clock signal.
 第1及び第2のクロック信号は、ハイレベルとローレベルとに特定の周期で(周期的に)切り替わる信号とする。第1及び第2のクロック信号は、例えば水晶発振子のようなタイミングデバイスによって生成されたクロック信号を分周又は逓倍することにより生成される。あるいは、第1及び第2のクロック信号は、タイミングデバイスによって生成されたクロック信号を分周又は逓倍することにより生成された信号による時間のカウントにより、特定周期でハイレベルとローレベルに切り替わるように生成してもよい。あるいは、レーザ加工装置100の外部から与えられたクロック信号を、制御部43が第1及び第2のクロック信号としてそのまま出力してもよい。第1及び第2のクロック信号には、非周期的な信号は含まれず、例えば、非周期的に発生する事象が発生したときにレベルが切り替えられる信号は含まれない。 The first and second clock signals are signals that switch (periodically) between high level and low level at a specific cycle. The first and second clock signals are generated by dividing or multiplying a clock signal generated by a timing device such as a crystal oscillator. Alternatively, the first and second clock signals are switched to high level and low level at a specific period by counting the time by the signal generated by dividing or multiplying the clock signal generated by the timing device. may be generated. Alternatively, the clock signal given from the outside of the laser processing apparatus 100 may be directly output by the controller 43 as the first and second clock signals. The first and second clock signals do not include non-periodic signals, eg, signals whose levels are switched when an aperiodically occurring event occurs.
 図5の例では、期間T31において、制御部43は、バイパススイッチ421をオンし、かつバイパススイッチ422をオフしてレーザダイオード41のレーザ出力を停止させる第1制御を行う。次いで、期間T31と連続する期間T32において、制御部43は、バイパススイッチ421,422を両方(全て)オフして主にレーザダイオード41に供給電流を流す第2制御を行う。次いで、期間T32と連続する期間T33において、制御部43は、バイパススイッチ421をオフし、かつバイパススイッチ422をオンしてレーザダイオード41のレーザ出力を停止させる第3制御を行う。第2制御の時間は、第1及び第2のクロック信号のデューティ比の差に応じた時間となる。 In the example of FIG. 5, in period T31, the control unit 43 performs the first control to turn on the bypass switch 421 and turn off the bypass switch 422 to stop the laser output of the laser diode 41 . Next, in a period T32 that follows the period T31, the control unit 43 performs second control in which both (all) of the bypass switches 421 and 422 are turned off and the supply current is mainly supplied to the laser diode 41. FIG. Next, in a period T33 that continues from the period T32, the controller 43 performs third control to turn off the bypass switch 421 and turn on the bypass switch 422 to stop the laser output of the laser diode 41 . The second control time corresponds to the difference between the duty ratios of the first and second clock signals.
 その他の構成は、実施形態1と同じであるので、その詳細な説明を省略する。 Other configurations are the same as in Embodiment 1, so detailed description thereof will be omitted.
 したがって、本実施形態3によれば、バイパススイッチ421,422の制御に用いる制御信号が互いに周期が等しい第1及び第2のクロック信号なので、レーザダイオード41の発光間隔を容易に一定に制御できる。 Therefore, according to the third embodiment, since the control signals used to control the bypass switches 421 and 422 are the first and second clock signals having the same period, the light emission interval of the laser diode 41 can be easily controlled to be constant.
 また、バイパススイッチ421,422の制御に、周期が等しく、かつデューティ比が異なる2つのクロック信号を用いるので、クロック信号を出力する機能を有し、当該クロック信号のデューティ比をユーザにより設定可能なマイクロコンピュータを制御部43の信号発生源として採用した場合には、クロック信号のデューティ比を設定するだけで、レーザダイオード41の連続発光時間を容易に調節できる。 In addition, since two clock signals having the same cycle and different duty ratios are used to control the bypass switches 421 and 422, it has a function of outputting the clock signals, and the duty ratio of the clock signals can be set by the user. When a microcomputer is employed as the signal generation source of the control section 43, the continuous emission time of the laser diode 41 can be easily adjusted simply by setting the duty ratio of the clock signal.
 なお、上記実施形態1~3では、レーザダイオード41を1つだけ設けたが、第1及び第2のノードN1,N2間に互いに直列に複数設けてもよい。 Although only one laser diode 41 is provided in the first to third embodiments, a plurality of laser diodes 41 may be provided in series between the first and second nodes N1 and N2.
 また、上記実施形態1では、レーザ発振器40に3つのバイパススイッチ421~423を設け、上記実施形態2,3では、レーザ発振器40に2つのバイパススイッチ421,422を設けたが、レーザ発振器40に4つ以上のバイパススイッチを設けてもよい。 In the first embodiment, the laser oscillator 40 is provided with the three bypass switches 421 to 423, and in the second and third embodiments, the laser oscillator 40 is provided with the two bypass switches 421, 422. Four or more bypass switches may be provided.
 また、上記実施形態1~3では、第1制御及び第3制御において、それぞれ1つのバイパススイッチ421~423だけをオンしたが、並列又は直列に接続された複数のバイパススイッチを同時にオンするようにしてもよい。つまり、第1及び第2のバイパススイッチが重複していなければ(異なっていれば)、第1及び第2のバイパススイッチを、それぞれ1つだけではなく、複数設けてもよい。つまり、第1及び第2のバイパススイッチは、それぞれ少なくとも1つ設けられる。 In the first to third embodiments, only one bypass switch 421 to 423 is turned on in the first control and the third control. may That is, if the first and second bypass switches do not overlap (if they are different), not only one but also a plurality of first and second bypass switches may be provided. That is, at least one each of the first and second bypass switches is provided.
 また、上記実施形態2では、第1及び第2のクロック信号のデューティ比を互いに等しい50%としたが、第1及び第2のクロック信号のデューティ比を互いに異なるようにしてもよいし、それぞれ50%より大きくしたり50%未満にしてもよい。また、レーザダイオード41の連続発光時間が2種類生じ、加工品質に悪影響を及ぼす可能性はあるが、第1及び第2のクロック信号のデューティ比の和を、100%よりも小さい値としてもよい。 In the second embodiment, the first and second clock signals have the same duty ratio of 50%. However, the first and second clock signals may have different duty ratios. It may be greater than 50% or less than 50%. In addition, the laser diode 41 may generate two types of continuous light emission time, which may adversely affect the processing quality, but the sum of the duty ratios of the first and second clock signals may be set to a value smaller than 100%. .
 また、上記実施形態1~3において、レーザ光LBによるワークWの加工中、加工状態に応じてレーザダイオード41の連続発光時間が調整されるようにしてもよい。例えば、スパッタ発生量の検出手段により所定量以上のスパッタ発生量が検出された場合に、所定量未満のスパッタ発生量が検出された場合に比べ、レーザダイオード41の連続発光時間が短くされるようにしてもよい。実施形態2,3において、レーザダイオード41の連続発光時間の調整は、第1及び第2のクロック信号のデューティ比及び位相の少なくとも一方の調整により行える。 Further, in Embodiments 1 to 3 described above, the continuous light emission time of the laser diode 41 may be adjusted according to the processing state during processing of the workpiece W with the laser beam LB. For example, the continuous emission time of the laser diode 41 is set to be shorter when the amount of spatter generation equal to or greater than a predetermined amount is detected by the amount of spatter detection means, compared to when the amount of spatter generation less than the predetermined amount is detected. may In Embodiments 2 and 3, the continuous light emission time of the laser diode 41 can be adjusted by adjusting at least one of the duty ratio and phase of the first and second clock signals.
 また、上記実施形態3において、第2のクロック信号のデューティ比を50%としたが、第2のクロック信号のデューティ比を50%よりも大きくした状態で初期に第1及び第2のクロック信号の位相を調整するようにしてもよい。 Further, in the third embodiment, the duty ratio of the second clock signal is 50%. may be adjusted.
 また、上記実施形態3において、第2のクロック信号の立ち下がりを、第1のクロック信号の立ち上がりと一致させたが、第2のクロック信号が立ち下がる前に第1のクロック信号が立ち上がり、第1及び第2のクロックの両方がハイレベルの期間が存在するようにしてもよい。 In the third embodiment, the falling edge of the second clock signal coincides with the rising edge of the first clock signal. There may be periods during which both the first and second clocks are at high level.
 以上説明したように、本開示は、レーザダイオードの連続発光時間を短くできるという実用性の高い効果が得られることから、きわめて有用で産業上の利用性は高い。 As described above, the present disclosure has the highly practical effect of shortening the continuous light emission time of the laser diode, so it is extremely useful and highly industrially applicable.
10   レーザ加工ヘッド 
40   レーザ発振器 
41   レーザダイオード 
50   電流源 
90   光ファイバ 
N1,N2   第2のノード 
100   レーザ加工装置 
421~423  バイパススイッチ 
LB   レーザ光
10 laser processing head
40 laser oscillator
41 laser diode
50 current source
90 optical fiber
N1, N2 second node
100 laser processing equipment
421-423 bypass switch
LB laser light

Claims (4)

  1.  第1及び第2のノード間に接続されたレーザダイオードと、
     前記第1及び第2のノード間に供給電流を供給する電流源とを備えたレーザ発振器であって、
     前記第1及び第2のノード間に、前記レーザダイオードと並列に、かつ互いに並列に接続された複数のバイパススイッチと、
     前記複数のバイパススイッチのうち少なくとも1つの第1のバイパススイッチだけをオンして前記レーザダイオードのレーザ出力を停止させる第1制御、前記複数のバイパススイッチを全てオフし、前記レーザダイオードに前記供給電流を流す第2制御、及び前記複数のバイパススイッチのうち前記第1のバイパススイッチとは異なる少なくとも1つの第2のバイパススイッチだけをオンして前記レーザダイオードのレーザ出力を停止させる第3制御をこの順で連続して実行する制御部とをさらに備えたことを特徴とするレーザ発振器。
    a laser diode connected between the first and second nodes;
    a current source that supplies a supply current between the first and second nodes,
    a plurality of bypass switches connected in parallel with the laser diode and in parallel with each other between the first and second nodes;
    a first control for turning on at least one first bypass switch among the plurality of bypass switches to stop the laser output of the laser diode; turning off all the plurality of bypass switches to supply the current to the laser diode; and third control for turning on at least one second bypass switch different from the first bypass switch among the plurality of bypass switches to stop the laser output from the laser diode. A laser oscillator, further comprising: a control section for sequentially executing the laser oscillator.
  2.  請求項1に記載のレーザ発振器において、
     前記制御部は、ハイレベルとローレベルとに周期的に切り替わる第1のクロック信号のレベル切替時に前記第1のバイパススイッチのオンオフを切り替えるとともに、ハイレベルとローレベルとに周期的に切り替わる第2のクロック信号のレベル切替時に前記第2のバイパススイッチのオンオフを切り替え、
     前記第1及び第2のクロック信号の周期は、互いに等しく、前記第1及び第2のクロック信号の位相は、互いに異なり、
     前記第2制御の時間は、前記第1及び第2のクロック信号の位相差に応じた時間となることを特徴とするレーザ発振器。
    The laser oscillator according to claim 1,
    The control unit switches on and off the first bypass switch when the level of a first clock signal that periodically switches between a high level and a low level is switched, and the second bypass switch that periodically switches between a high level and a low level. switching on and off the second bypass switch when switching the level of the clock signal of
    the periods of the first and second clock signals are equal to each other, and the phases of the first and second clock signals are different from each other;
    The laser oscillator, wherein the second control time is a time corresponding to the phase difference between the first and second clock signals.
  3.  請求項1に記載のレーザ発振器において、
     前記制御部は、ハイレベルとローレベルとに周期的に切り替わる第1のクロック信号のレベル切替時に前記第1のバイパススイッチのオンオフを切り替えるとともに、ハイレベルとローレベルとに周期的に切り替わる第2のクロック信号のレベル切替時に前記第2のバイパススイッチのオンオフを切り替え、
     前記第1及び第2のクロック信号の周期は、互いに等しく、前記第1及び第2のクロック信号のデューティ比は、互いに異なり、
     前記第2制御の時間は、前記第1及び第2のクロック信号のデューティ比の差に応じた時間となることを特徴とするレーザ発振器。
    The laser oscillator according to claim 1,
    The control unit switches on and off the first bypass switch when the level of a first clock signal that periodically switches between a high level and a low level is switched, and the second bypass switch that periodically switches between a high level and a low level. switching on and off the second bypass switch when switching the level of the clock signal of
    the periods of the first and second clock signals are equal to each other, and the duty ratios of the first and second clock signals are different from each other;
    The laser oscillator, wherein the time for the second control is a time corresponding to a difference in duty ratio between the first and second clock signals.
  4.  請求項1~3のいずれか1項に記載のレーザ発振器と、
     前記レーザ発振器により出射されたレーザ光を通過させる光ファイバと、
     前記光ファイバを通過したレーザ光を出射するレーザ加工ヘッドとを備えたレーザ加工装置。
    a laser oscillator according to any one of claims 1 to 3;
    an optical fiber through which the laser beam emitted by the laser oscillator passes;
    and a laser processing head that emits a laser beam that has passed through the optical fiber.
PCT/JP2022/002653 2021-01-28 2022-01-25 Laser oscillator and laser processing device provided with same WO2022163643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578404A JPWO2022163643A1 (en) 2021-01-28 2022-01-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-011912 2021-01-28
JP2021011912 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022163643A1 true WO2022163643A1 (en) 2022-08-04

Family

ID=82654534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002653 WO2022163643A1 (en) 2021-01-28 2022-01-25 Laser oscillator and laser processing device provided with same

Country Status (2)

Country Link
JP (1) JPWO2022163643A1 (en)
WO (1) WO2022163643A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249591A (en) * 2003-02-20 2004-09-09 Canon Inc Exposure device and its laser power correction method
JP2008034479A (en) * 2006-07-26 2008-02-14 Sumitomo Electric Ind Ltd Laser diode drive circuit
JP2009295681A (en) * 2008-06-03 2009-12-17 Sumitomo Electric Ind Ltd Laser diode driving circuit
JP2011249413A (en) * 2010-05-24 2011-12-08 Sumitomo Electric Ind Ltd Laser diode driving circuit
US20120319615A1 (en) * 2011-06-16 2012-12-20 Samsung Electronics Co., Ltd. Led driver circuit and method of driving led
JP2014096405A (en) * 2012-11-07 2014-05-22 Sumitomo Electric Ind Ltd Optical transmission circuit
JP2016096221A (en) * 2014-11-13 2016-05-26 住友電気工業株式会社 Drive circuit
JP2016122898A (en) * 2014-12-24 2016-07-07 日本電信電話株式会社 Dml driver and transmission front end
WO2016167019A1 (en) * 2015-04-15 2016-10-20 三菱電機株式会社 Power supply device for driving laser diodes
US20170085057A1 (en) * 2015-09-22 2017-03-23 Analog Devices, Inc. Pulsed laser diode driver
WO2018074410A1 (en) * 2016-10-20 2018-04-26 日本電信電話株式会社 Directly modulated laser drive circuit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249591A (en) * 2003-02-20 2004-09-09 Canon Inc Exposure device and its laser power correction method
JP2008034479A (en) * 2006-07-26 2008-02-14 Sumitomo Electric Ind Ltd Laser diode drive circuit
JP2009295681A (en) * 2008-06-03 2009-12-17 Sumitomo Electric Ind Ltd Laser diode driving circuit
JP2011249413A (en) * 2010-05-24 2011-12-08 Sumitomo Electric Ind Ltd Laser diode driving circuit
US20120319615A1 (en) * 2011-06-16 2012-12-20 Samsung Electronics Co., Ltd. Led driver circuit and method of driving led
JP2014096405A (en) * 2012-11-07 2014-05-22 Sumitomo Electric Ind Ltd Optical transmission circuit
JP2016096221A (en) * 2014-11-13 2016-05-26 住友電気工業株式会社 Drive circuit
JP2016122898A (en) * 2014-12-24 2016-07-07 日本電信電話株式会社 Dml driver and transmission front end
WO2016167019A1 (en) * 2015-04-15 2016-10-20 三菱電機株式会社 Power supply device for driving laser diodes
US20170085057A1 (en) * 2015-09-22 2017-03-23 Analog Devices, Inc. Pulsed laser diode driver
WO2018074410A1 (en) * 2016-10-20 2018-04-26 日本電信電話株式会社 Directly modulated laser drive circuit

Also Published As

Publication number Publication date
JPWO2022163643A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP5574846B2 (en) Switching power supply
KR20160070710A (en) Modulation mode control circuit, switch control circuit comprising the same, and power supply device comprising the switch control circuit
JP2011177023A (en) Inverter control device
JP6252231B2 (en) LED lighting device
KR20140094632A (en) Power supply device and power supply switching method
CN110088996B (en) Power supply device for driving laser diode and laser processing device
WO2022163643A1 (en) Laser oscillator and laser processing device provided with same
JP3846573B2 (en) Laser processing apparatus and control method of the processing apparatus
US9333584B2 (en) Modified phase shifted gate drive
TWI744619B (en) Laser processing machine and its power supply device
JP2002136125A (en) Flyback switching power source
JP4805205B2 (en) Power supply for discharge load
TWI644751B (en) Laser source and laser processing device using laser source
JP4643113B2 (en) Welding method and power supply device for welding
JP2013078217A (en) Soft start circuit
JP2010284709A (en) Power source device
JP2012099353A (en) Lighting device of discharge lamp and lighting control method thereof
TWI691373B (en) Laser processing device
JP5353663B2 (en) Inverter control method and inverter control processing apparatus
JP2014136250A (en) Power-supply unit and power-supply unit for arc processing
JP7482358B2 (en) Laser oscillator and laser processing device equipped with same
EP3479946B1 (en) Non-consumable electrode arc-welding method
US20230283200A1 (en) Variable pwm frequency responsive to power increase event in welding system
JP2013106403A (en) Power supply unit and power supply unit for arc processing
JP2002208747A (en) Power source for laser oscillators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745863

Country of ref document: EP

Kind code of ref document: A1