WO2022163625A1 - Inkjet head and image formation device - Google Patents

Inkjet head and image formation device Download PDF

Info

Publication number
WO2022163625A1
WO2022163625A1 PCT/JP2022/002591 JP2022002591W WO2022163625A1 WO 2022163625 A1 WO2022163625 A1 WO 2022163625A1 JP 2022002591 W JP2022002591 W JP 2022002591W WO 2022163625 A1 WO2022163625 A1 WO 2022163625A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
inkjet head
flow path
pressure
damper
Prior art date
Application number
PCT/JP2022/002591
Other languages
French (fr)
Japanese (ja)
Inventor
一哉 金城
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2022163625A1 publication Critical patent/WO2022163625A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads

Definitions

  • the present invention relates to an inkjet head and an image forming apparatus.
  • a common channel supply channel
  • a pressure generating chamber communicating with it
  • a nozzle communicating with the pressure generating chamber through an ejection channel
  • pressure applying means for applying pressure to the pressure generating chamber.
  • Patent Literature 1 discloses an inkjet head in which a compliance section (damper section) is provided inside a reservoir section (common flow path).
  • Patent Document 2 discloses an inkjet head having a damper wall arranged between a common flow path and a damper chamber, and a columnar portion (as a reinforcing member) arranged in the damper chamber. As a result, it is possible to suppress excessive vibration of the damper wall by the column portion while absorbing the pressure wave propagated to the common flow path by the damper wall.
  • JP 2009-241579 A Japanese Unexamined Patent Application Publication No. 2013-203062
  • Injection failure due to pressure fluctuations may also occur due to causes other than the above.
  • the inventors of the present invention have found that, when printing with a specific drive pattern that repeats ejection (ON) and non-ejection (OFF) of ink, ejection defects tend to occur in nozzles in non-ejection regions. This ejection defect is considered to be caused by the fact that when the flow rate of ink fluctuates in the common flow path, a proportional pressure wave is generated in the common flow path.
  • Such an ejection defect can be suppressed by, for example, increasing the width (or area) of the damper portion to further enhance the pressure absorption capability of the damper portion.
  • the present invention has been made in view of the above circumstances, and suppresses crosstalk caused by mechanical vibration while highly suppressing injection defects caused by pressure fluctuations when forming an image with a specific drive pattern. It is an object of the present invention to provide an inkjet head and an image forming apparatus including the same.
  • An inkjet head of the present invention includes a common flow path having a damper portion, a plurality of pressure generating chambers communicating with the common flow path, and a communication path formed in the common flow path and communicating with the pressure generating chambers. and a projecting portion that reduces the channel width of the common channel on the wall surface side.
  • the image forming apparatus of the present invention has the inkjet head of the present invention.
  • an inkjet head capable of suppressing crosstalk caused by mechanical vibration while highly suppressing ejection defects caused by pressure fluctuations when forming an image with a specific drive pattern, and an image including the same.
  • a forming apparatus can be provided.
  • FIG. 1 is a schematic perspective view showing an image forming apparatus according to an embodiment of the invention.
  • 2 is a partial bottom view of the inkjet head of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line III--III in FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 5A and 5B are partial plan views of the wall surface of the common channel on the side of the pressure generating chamber.
  • FIG. 6 is a sectional view taken along line IV-IV of an inkjet head according to a modification.
  • FIG. 7 is a sectional view taken along line IV-IV of an inkjet head according to a modification.
  • FIG. 8 is a sectional view taken along line IV-IV of an inkjet head according to a modification.
  • 9A and 9B are diagrams showing an example of pattern missing test results.
  • 10A, B and C are diagrams showing an example of cross leak test results.
  • FIG. 1 is a schematic perspective view showing the configuration of an image forming apparatus 10 according to an embodiment of the invention.
  • FIG. 2 is a partial bottom view of the inkjet head 12 of FIG.
  • FIG. 3 is a cross-sectional view taken along line III--III in FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 5A and 5B are partial plan views of the wall surface 32a of the supply channel 32 (common channel) on the pressure generation chamber side.
  • the image forming apparatus 10 includes a head unit 14 having an inkjet head 12, a guide 16 that reciprocally supports the head unit 14, and a transport mechanism 18 that transports the recording medium R.
  • the head unit 14 includes an inkjet head 12 and a carriage 20 .
  • the inkjet head 12 is supported and fixed to the carriage 20 .
  • the inkjet head 12 is equipped with four ink cartridges 22 each containing black, cyan, magenta, and yellow inks, and ejects the inks onto a recording medium R such as recording paper.
  • the configuration of the inkjet head 12 will be described later in detail.
  • the carriage 20 is guided by a guide (carriage shaft) 16 extending in the main scanning direction (X direction) by a carriage motor (not shown) to reciprocate in that direction.
  • the transport mechanism 18 transports the recording medium R to the inkjet head 12 .
  • the transport mechanism 18 has two transport rollers 18A and 18A rotationally driven by a transport motor (not shown).
  • the recording medium R is sandwiched between two transport rollers 18A that are rotationally driven by a transport motor (not shown), and is positioned below the inkjet head 12 in the sub-scanning direction (Y direction) orthogonal to the main scanning direction. It is supposed to be transported.
  • the main scanning direction is the X direction
  • the sub-scanning direction orthogonal thereto is the Y direction
  • the stacking direction of each unit constituting the inkjet head 12 described later is the Z direction.
  • the inkjet head 12 includes a head body 12A having ink flow paths, and a plurality of actuators 12B (pressure applying means) arranged on the head body 12A (see FIGS. 2 to 4).
  • the head body 12A includes a channel unit 30, a pressure generating chamber unit 40 laminated on one surface (upper surface) of the channel unit 30, and a nozzle unit laminated on the other surface (lower surface) of the channel unit 30. 50 (see FIGS. 3 and 4).
  • the channel unit 30 includes a channel unit main body 31, a supply channel 32 (common channel) formed therein, and a plurality of discharge channels 33 (individual channels) (see FIG. 2).
  • the channel unit 30 includes a communication channel 34 (supply port 34a, orifice 34c) that communicates the supply channel 32 and the pressure generation chamber 42 (of the pressure generation chamber unit 40), a discharge channel 33 (pressure generation It further includes a discharge port 34b that communicates with the pressure generating chamber 42 of the chamber unit 40 (see FIG. 4).
  • the flow path unit main body 31 includes a plurality of flow path plates having through holes for forming the communication path 34, the supply flow path 32, the discharge flow path 33, and the like, and a damper plate (a damper portion 35, which will be described later). It can be spliced.
  • the flow channel unit main body 31 includes a flow channel plate 31a having a through hole for forming the communication channel 34, and a plurality of flow channels having different inner diameters of the through holes for forming the supply flow channel 32. Plates 31b and 31c, etc. may be laminated and joined.
  • the material forming the channel plate is not particularly limited, but can be metal such as stainless steel, for example.
  • the supply channel 32 (common channel) is adapted to introduce ink from the ink cartridge 22, and is arranged along the Y direction (see FIG. 2). At least one supply channel 32 is provided for each color ink.
  • the supply channel 32 has a damper portion 35 (see FIG. 4).
  • the damper part 35 is a member that absorbs pressure fluctuations, and is arranged inside the supply channel 32 along the direction in which the channel 32 extends (the Y direction) (see FIG. 4). Above all, it is preferable that the damper portion 35 is arranged so as to face the wall surface 32a (or the orifice 34c) in which the communication passage 34 leading to the pressure generating chamber 42 is formed (see FIG. 4).
  • the width of the damper portion 35 (the width in the X direction) is usually equivalent to the maximum width of the supply channel 32 (the maximum width in the X direction). Large is preferred.
  • the width of the damper portion 35 can be preferably 3 to 85 times, more preferably 13 to 40 times, the minimum inner diameter of the communicating passage 34 (the inner diameter of the orifice 34c).
  • the ratio a/b between the width a and the thickness b of the damper portion 35 is not particularly limited, it is preferably high from the viewpoint of enhancing pressure absorption (see FIG. 4). Specifically, a/b is preferably 26-200, more preferably 43-200.
  • the compliance of the damper section 35 is preferably 4.5 ⁇ 10 ⁇ 17 to 6.7 ⁇ 10 ⁇ 16 m 3 /Pa per channel, and 3.4 ⁇ 10 ⁇ 16 to 6.7 ⁇ 10 ⁇ 16 m 3 /Pa. It is more preferably m 3 /Pa.
  • the compliance of the damper section 35 can be calculated from the following formula.
  • Poisson's ratio (-) E: Young's modulus (Pa)
  • L Y-direction length of the damper portion 35 (m)
  • a width of damper portion 35 (length in X direction) (m)
  • b Thickness of damper portion 35 (m)
  • Literature values can be used for Poisson's ratio ⁇ and Young's modulus E.
  • stainless steel (SUS304) can have a Poisson's ratio ⁇ of 0.3 and a Young's modulus E of 203 GPa.
  • the damper section 35 is arranged so as to divide the interior of the supply channel 32 into a space through which ink circulates and a space (air chamber 37) through which ink does not circulate (see FIG. 4). ). That is, the channel unit 30 further has an air chamber 37 through which ink does not flow, on the opposite side of the damper section 35 to the supply channel 32 . Thereby, the pressure absorption of the damper portion 35 can be enhanced.
  • the material that constitutes the damper part 35 may be any material that can absorb pressure fluctuations, and may be metal such as stainless steel, ceramics, resin, or the like.
  • the channel unit 30 further includes a protruding portion 36 that reduces the channel width of the supply channel 32 on the side of the wall surface 32a in which the communication channel 34 to the pressure generating chamber 42 is formed.
  • the protruding portion 36 can reinforce the wall surface 32a on which the communication path 34 is formed, and increase the rigidity around the supply channel 32. As shown in FIG.
  • the protruding portion 36 is preferably formed on the wall surface 32a side of the supply channel 32 where the communicating passage 34 to the pressure generating chamber 42 is formed (see FIG. 4).
  • the projecting portion 36 may be formed (continuously) on the entire wall surface 32a of the supply channel 32 (see FIG. 5A), or only near the plurality of communicating passages 34 (non-continuously). may be formed (see FIG. 5B).
  • the projecting portion 36 may be provided integrally with the flow path unit main body 31 or may be provided separately. In the present embodiment, the projecting portion 36 is provided integrally with the passage unit main body 31 (see FIG. 4).
  • the maximum thickness T of the projecting portion 36 is 1/20 of the distance between the wall surface 32a and the damper portion 35 (the height H of the supply channel 32). It is preferably 1/8 or more, more preferably 1/8 or more, and even more preferably 1/3 or more (see FIG. 4).
  • the upper limit of the maximum thickness T of the protruding portion 36 is not particularly limited as long as it is smaller than the distance between the wall surface 32a and the damper portion 35 (height H of the supply channel 32), but may be 1, for example.
  • the maximum thickness T of the protruding portion 36 is preferably 1/3 to 1/2 of the distance between the wall surface 32a and the damper portion 35 (the height H of the supply channel 32) (see FIG. 4). ).
  • the channel width W (the width in the X direction) of the supply channel 32 in the projecting portion 36 may be constant or may vary as it approaches the wall surface 32a. In particular, it is preferable that the channel width of the supply channel 32 at the projecting portion 36 decreases as it approaches the wall surface 32a. This is because ink stagnant portions are less likely to be formed, and the ink flows smoothly. In the present embodiment, the channel width W of the supply channel 32 at the projecting portion 36 decreases stepwise as it approaches the wall surface 32a (see FIG. 4).
  • the minimum value Wmin of the channel width of the supply channel 32 in the projecting portion 36 is preferably larger than the minimum inner diameter of the communication channel 34 (the inner diameter of the orifice 34c). As a result, an excessive increase in flow path resistance when ink flows from the supply flow path 32 to the pressure generating chamber 42 can be suppressed. Further, when the maximum value of the channel width W of the supply channel 32 is Wmax, Wmax/Wmin is preferably 1.3 to 36, more preferably 1.5 to 6.5. . When Wmax/Wmin is equal to or higher than the lower limit, Wmin is not too large, so that the rigidity around the supply channel 32 can be easily increased. Don't be too much.
  • the discharge channel 33 communicates with the pressure generation chamber 42 (of the pressure generation chamber unit 40) through the discharge port 34b, and ink is introduced from the pressure generation chamber 42.
  • the plurality of ejection channels 33 are arranged side by side in the Y direction (see FIG. 2).
  • the pressure generation chamber unit 40 includes a pressure generation chamber plate 41, a plurality of recesses 42A formed therein, and a vibration plate 43 (see FIG. 4).
  • the material forming the pressure generation chamber plate 41 is not particularly limited, and may be, for example, metal such as stainless steel or ceramics such as alumina or zirconia, preferably stainless steel.
  • the opening of the concave portion 42A is closed by the diaphragm 43 and becomes the pressure generating chamber 42.
  • the pressure generating chamber 42 communicates with the supply flow path 32 via the communication path 34 (of the flow path unit 30), and communicates with the discharge flow path 33 via the discharge port 34b.
  • the diaphragm 43 is arranged so as to close the openings of the plurality of recesses 42A.
  • a material forming the diaphragm 43 is not particularly limited, and may be a metal such as Cr, for example.
  • the diaphragm 43 can also function as a common electrode for a plurality of actuators 12B, which will be described later.
  • Nozzle unit 50 includes a nozzle plate 51 and a plurality of nozzles 52 formed therein.
  • the material forming the nozzle plate 51 is not particularly limited, and may be, for example, metal such as stainless steel or resin such as polyimide.
  • the nozzle 52 is a through hole and communicates with the discharge channel 33 (of the channel unit 30). That is, the plurality of nozzles 52 are arranged on the ejection surface (lower surface) of the inkjet head 12 so as to correspond to the plurality of ejection channels 33 (see FIG. 2), and eject the ink supplied from the ejection channels 33. Dispensing is possible.
  • the actuator 12B is arranged on the surface (upper surface) opposite to the ejection surface of the head main body 12A, and applies pressure to the ink introduced into the pressure generating chamber 42. As shown in FIG.
  • the actuator 12B is arranged in a portion corresponding to the pressure generating chamber 42 of the head main body 12A.
  • Such an actuator 12B includes an intermediate layer 61 (made of Cu, for example), a piezoelectric element 62 (made of lead zirconate titanate (PZT), for example), and an intermediate layer 61 (made of Cu, for example). ) and individual electrodes 63 (made of Pt, for example).
  • the actuator 12B applies a drive voltage to the piezoelectric element 62 via the diaphragm 43 and the individual electrode 63, thereby deforming the portion of the diaphragm 43 corresponding to the pressure generating chamber 42.
  • the ink in the pressure generating chamber 42 is ejected from the ejection port 34b or the nozzle 52. As shown in FIG.
  • the actuator 12B may further have a common electrode.
  • Such an inkjet head 12 is formed by laminating and joining the channel unit 30, the pressure generating chamber unit 40 with the actuator 12B on one surface (upper surface), and the nozzle unit 50 on the other surface (lower surface). obtained by
  • Lamination and bonding of each unit can be performed by any method. For example, they may be bonded with an adhesive, or (in the case of metal materials) may be bonded by diffusion bonding. Lamination and bonding of a plurality of channel plates constituting the channel unit 30 can also be performed in a similar manner.
  • the projecting portion 36 can be formed by any method. For example, it may be formed by stacking a plurality of channel plates having through holes with different inner diameters, or may be formed by using channel plates to which the protruding portions 36 are adhered or joined in advance. In the present embodiment, as described above, the channel plates 31b and 31c are stacked such that the inner diameter of the through hole becomes smaller as it approaches the wall surface 32a (see FIG. 4).
  • ink is introduced from the ink cartridge 22 (see FIG. 1) into the supply channel 32 (common channel) (see FIG. 4).
  • the ink introduced into the supply channel 32 passes through the gap surrounded by the protruding portion 36 and is introduced into the pressure generation chamber 42 via the communication path 34 (orifice 34c, supply port 34a).
  • the diaphragm 43 of the actuator 12B when a voltage is applied between the diaphragm 43 of the actuator 12B and the individual electrode 63, the diaphragm 43 together with the piezoelectric element 62 bends and deforms convexly toward the pressure generating chamber 42 side. This bending deformation increases the pressure in the pressure generating chamber 42 , and the ink in the pressure generating chamber 42 is pushed out from the nozzle 52 via the ejection port 34 b and the ejection channel 33 by this pressure.
  • the piezoelectric element 62 expands and the bending deformation of the vibration plate 43 returns to its original state
  • the ink pushed out from the nozzle 52 is ejected onto the recording medium R as ink droplets (eg, 3 pl).
  • the pressure generating chamber 42 is filled with ink from the ink cartridge 22 through the supply channel 32 and the communication channel 34 . be filled.
  • the inkjet head 12 has a damper section 35 inside the supply channel (common channel) 32 . Therefore, pressure fluctuations can be well absorbed, and injection failures caused by pressure fluctuations can be well suppressed.
  • the inkjet head 12 further has a protruding portion 36 inside the supply flow path 32 (specifically, the wall surface 32a in which the communication path 34 to the pressure generating chamber 42 is formed).
  • a protruding portion 36 inside the supply flow path 32 (specifically, the wall surface 32a in which the communication path 34 to the pressure generating chamber 42 is formed).
  • FIG. 6 is a sectional view taken along line IV-IV of an inkjet head 12 according to a modification. As shown in FIG. 6 , the projecting portion 36 may be provided separately from the flow path unit main body 31 .
  • the channel width W of the supply channel 32 in the protruding portion 36 decreases stepwise (in the Z direction) as it approaches the wall surface 32a from the damper portion 35. It is not limited to this.
  • the channel width W of the supply channel 32 in the projecting portion 36 may be constant as it approaches the wall surface 32a from the damper portion 35 (see FIG. 7), or may decrease continuously (see FIG. 7). See Figure 8).
  • the damper portion 35 is arranged so as to face the wall surface 32a (or the orifice 34c) in which the communication passage 34 to the pressure generating chamber 42 is formed was shown, but the present invention is limited to this. Instead, it may be arranged, for example, on the side wall surface of the supply channel 32 .
  • the supply channel 32 and the discharge channel 33 are formed in the same channel unit 30 (in the Z direction, the supply channel 32 and the discharge channel 33
  • the present invention is not limited to this and may be formed in different channel units (in the Z direction, the supply channel 32 and the discharge channel 32 may be arranged on the same side).
  • the channels 33 may be arranged on different sides of the pressure generating chamber 42).
  • a method of ejecting droplets using a piezoelectric element as the pressure generating means is shown, but the present invention is not limited to this, and a heating element is arranged in the pressure generating chamber 42.
  • a method thermal method in which droplets are ejected by bubbles generated by heat generated by a heating element may be used.
  • Image Forming Method and Evaluation (Test 1) The prepared ink was set in the image forming apparatus 10 . Then, ink was ejected from the inkjet head 12 in a pattern of repeating ejection (ON)/non-ejection (OFF) at 360 dpi for main scanning ⁇ 360 dpi for sub-scanning to form an image. Note that dpi represents the number of ink droplets (dots) per 2.54 cm. The ejection frequency was set to 10 kHz.
  • Emission defects pattern defects
  • crosstalk in non-emission regions were evaluated by the following methods.
  • FIG. 9A is an example of the result of ⁇
  • FIG. 9B is an example of the result of ⁇ or more.
  • Table 1 shows the evaluation results of tests 1 to 7.
  • the compliance per channel was calculated based on the above formula (1).
  • Test 4 in which the protrusion 36 is not provided inside the supply flow path 32, pattern omission can be suppressed satisfactorily (because the width of the damper section 35 is made larger than the conventional one). It can be seen that crosstalk occurs.
  • an inkjet head capable of suppressing crosstalk caused by mechanical vibration while highly suppressing ejection defects caused by pressure fluctuations when forming an image with a specific drive pattern, and an image including the same.
  • a forming apparatus can be provided.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

This inkjet head has a shared flow path having a damper part, a plurality of pressure-generating chambers communicating with the shared flow path, and a protruding part that is formed inside the shared flow path and that reduces the flow path width of the shared flow path on the wall-surface side where communication paths to the pressure-generating chamber are formed.

Description

インクジェットヘッドおよび画像形成装置Inkjet head and image forming apparatus
 本発明は、インクジェットヘッドおよび画像形成装置に関する。 The present invention relates to an inkjet head and an image forming apparatus.
 従来より、共通流路(供給用流路)と、それと連通する圧力発生室と、当該圧力発生室と吐出用流路を介して連通するノズルと、圧力発生室に圧力を印加する圧力印加手段とを有するインクジェットヘッドが知られている。このようなインクジェットヘッドでは、共通流路から圧力発生室に導入されたインクに、圧力印加手段によって圧力を印加して、該圧力発生室内のインクをノズルから吐出させる。 Conventionally, a common channel (supply channel), a pressure generating chamber communicating with it, a nozzle communicating with the pressure generating chamber through an ejection channel, and pressure applying means for applying pressure to the pressure generating chamber. is known. In such an inkjet head, pressure is applied by the pressure applying means to the ink introduced into the pressure generating chamber from the common flow path, and the ink in the pressure generating chamber is ejected from the nozzles.
 このようなインクジェットヘッドでは、圧力室内のインクに圧力を付与すると、圧力室内において圧力波が発生する。圧力波は、圧力発生室に連通する共通流路に伝播する。共通流路に伝播した圧力波は、この共通流路に連通する他の圧力発生室に伝播し、他の圧力発生室に連通する他のノズルからインクが吐出されてしまうなど、液滴速度の変化などのインクの射出特性のばらつき(圧力変動に伴う射出不良)を生じるという不都合があった。 In such an inkjet head, when pressure is applied to the ink in the pressure chamber, pressure waves are generated in the pressure chamber. The pressure wave propagates through a common flow path that communicates with the pressure generating chambers. The pressure wave propagated to the common flow path propagates to other pressure generation chambers communicating with the common flow path, and ink is ejected from other nozzles communicating with the other pressure generation chambers. There is a problem that the ink ejection characteristics such as variation (ejection failure due to pressure fluctuation) occur.
 これに対し、共通流路の内部に可撓性を有するダンパー部を設けることで、共通流路まで伝播した圧力波をダンパー部で吸収・消滅し、他の圧力室への圧力波の伝播を抑制することが検討されている。例えば、特許文献1では、リザーバ部(共通流路)の内部に、コンプライアンス部(ダンパー部)を設けたインクジェットヘッドが開示されている。 On the other hand, by providing a flexible damper part inside the common flow path, the pressure wave propagated to the common flow path is absorbed and extinguished by the damper part, and the propagation of the pressure wave to other pressure chambers is prevented. Suppression is being considered. For example, Patent Literature 1 discloses an inkjet head in which a compliance section (damper section) is provided inside a reservoir section (common flow path).
 また、特許文献2では、共通流路とダンパー室との間に配置されたダンパー壁と、ダンパー室に配置された(補強部材としての)柱部とを有するインクジェットヘッドが開示されている。それにより、共通流路に伝播した圧力波をダンパー壁で吸収しつつ、柱部によってダンパー壁の過度な振動を抑制できるとされている。 In addition, Patent Document 2 discloses an inkjet head having a damper wall arranged between a common flow path and a damper chamber, and a columnar portion (as a reinforcing member) arranged in the damper chamber. As a result, it is possible to suppress excessive vibration of the damper wall by the column portion while absorbing the pressure wave propagated to the common flow path by the damper wall.
特開2009-241579号公報JP 2009-241579 A 特開2013-203062号公報Japanese Unexamined Patent Application Publication No. 2013-203062
 圧力変動に伴う射出不良は、上記以外の原因によっても生じることがある。本発明者らは、インクの吐出(ON)・非吐出(OFF)を繰り返す特定の駆動パターンで印刷する際に、非吐出領域のノズルで射出欠が生じやすいことを見出した。この射出欠は、共通流路内でインクの流量が変動する際に、それに比例する圧力波が共通流路に生じることに起因すると考えられる。そのような射出欠は、例えばダンパー部の幅(または面積)を従来よりも大きくしてダンパー部による圧力吸収性をさらに高めることで、抑制することができる。 Injection failure due to pressure fluctuations may also occur due to causes other than the above. The inventors of the present invention have found that, when printing with a specific drive pattern that repeats ejection (ON) and non-ejection (OFF) of ink, ejection defects tend to occur in nozzles in non-ejection regions. This ejection defect is considered to be caused by the fact that when the flow rate of ink fluctuates in the common flow path, a proportional pressure wave is generated in the common flow path. Such an ejection defect can be suppressed by, for example, increasing the width (or area) of the damper portion to further enhance the pressure absorption capability of the damper portion.
 しかしながら、ダンパー部による圧力吸収性を高めると、その副作用として、駆動するノズルのチャネル数によって射出特性が変動しやすいという問題があった。これは、ダンパー部の幅を大きくすることで、共通流路周辺のヘッド本体の剛性が低下することから、ヘッドが揺れやすくなり、機械的な振動に起因するクロストークが生じるためと考えられる。 However, increasing the pressure absorption of the damper part has the side effect of causing the problem that the injection characteristics tend to fluctuate depending on the number of nozzle channels to be driven. This is presumably because increasing the width of the damper section reduces the rigidity of the head body around the common flow path, making the head more likely to sway and causing crosstalk due to mechanical vibration.
 本発明は、上記事情に鑑みてなされたものであり、特定の駆動パターンで画像形成する際の圧力変動に起因する射出不良を高度に抑制しつつ、機械的な振動に起因するクロストークを抑制可能なインクジェットヘッドおよびそれを含む画像形成装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and suppresses crosstalk caused by mechanical vibration while highly suppressing injection defects caused by pressure fluctuations when forming an image with a specific drive pattern. It is an object of the present invention to provide an inkjet head and an image forming apparatus including the same.
 本発明のインクジェットヘッドは、ダンパー部を有する共通流路と、前記共通流路と連通する複数の圧力発生室と、前記共通流路に形成され、前記圧力発生室への連通路が形成された壁面側の前記共通流路の流路幅を減少させる出張り部とを有する。 An inkjet head of the present invention includes a common flow path having a damper portion, a plurality of pressure generating chambers communicating with the common flow path, and a communication path formed in the common flow path and communicating with the pressure generating chambers. and a projecting portion that reduces the channel width of the common channel on the wall surface side.
 本発明の画像形成装置は、本発明のインクジェットヘッドを有する。 The image forming apparatus of the present invention has the inkjet head of the present invention.
 本発明によれば、特定の駆動パターンで画像形成する際の圧力変動に起因する射出不良を高度に抑制しつつ、機械的な振動に起因するクロストークを抑制可能なインクジェットヘッドおよびそれを含む画像形成装置を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, an inkjet head capable of suppressing crosstalk caused by mechanical vibration while highly suppressing ejection defects caused by pressure fluctuations when forming an image with a specific drive pattern, and an image including the same. A forming apparatus can be provided.
図1は、本発明の実施の形態に係る画像形成装置を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an image forming apparatus according to an embodiment of the invention. 図2は、図1のインクジェットヘッドの部分底面図である。2 is a partial bottom view of the inkjet head of FIG. 1. FIG. 図3は、図2のIII-III線断面図である。FIG. 3 is a cross-sectional view taken along line III--III in FIG. 図4は、図2のIV-IV線断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 図5AおよびBは、共通流路の圧力発生室側の壁面の部分平面図である。5A and 5B are partial plan views of the wall surface of the common channel on the side of the pressure generating chamber. 図6は、変形例に係るインクジェットヘッドのIV-IV線断面図である。FIG. 6 is a sectional view taken along line IV-IV of an inkjet head according to a modification. 図7は、変形例に係るインクジェットヘッドのIV-IV線断面図である。FIG. 7 is a sectional view taken along line IV-IV of an inkjet head according to a modification. 図8は、変形例に係るインクジェットヘッドのIV-IV線断面図である。FIG. 8 is a sectional view taken along line IV-IV of an inkjet head according to a modification. 図9AおよびBは、パターン欠試験結果の一例を示す図である。9A and 9B are diagrams showing an example of pattern missing test results. 図10A、BおよびCは、クロスリーク試験結果の一例を示す図である。10A, B and C are diagrams showing an example of cross leak test results.
 [画像形成装置]
 図1は、本発明の実施の形態に係る画像形成装置10の構成を示す概略斜視図である。図2は、図1のインクジェットヘッド12の部分底面図である。図3は、図2のIII-III線断面図である。図4は、図2のIV-IV線断面図である。図5AおよびBは、供給用流路32(共通流路)の圧力発生室側の壁面32aの部分平面図である。
[Image forming apparatus]
FIG. 1 is a schematic perspective view showing the configuration of an image forming apparatus 10 according to an embodiment of the invention. FIG. 2 is a partial bottom view of the inkjet head 12 of FIG. FIG. 3 is a cross-sectional view taken along line III--III in FIG. FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 5A and 5B are partial plan views of the wall surface 32a of the supply channel 32 (common channel) on the pressure generation chamber side.
 画像形成装置10は、インクジェットヘッド12を有するヘッドユニット14と、ヘッドユニット14を往復可能に支持するガイド16と、記録媒体Rを搬送する搬送機構18とを含む。 The image forming apparatus 10 includes a head unit 14 having an inkjet head 12, a guide 16 that reciprocally supports the head unit 14, and a transport mechanism 18 that transports the recording medium R.
 ヘッドユニット14は、インクジェットヘッド12と、キャリッジ20とを含む。 The head unit 14 includes an inkjet head 12 and a carriage 20 .
 インクジェットヘッド12は、キャリッジ20に支持固定されている。インクジェットヘッド12は、ブラック、シアン、マゼンタおよびイエローの各色のインクを有する4つのインクカートリッジ22が装着され、かつ該インクを、記録紙などの記録媒体Rに吐出する。インクジェットヘッド12の構成は、後で詳細に説明する。 The inkjet head 12 is supported and fixed to the carriage 20 . The inkjet head 12 is equipped with four ink cartridges 22 each containing black, cyan, magenta, and yellow inks, and ejects the inks onto a recording medium R such as recording paper. The configuration of the inkjet head 12 will be described later in detail.
 キャリッジ20は、キャリッジモータ(不図示)により主走査方向(X方向)に延びるガイド(キャリッジ軸)16にガイドされて、その方向に往復動するようになっている。 The carriage 20 is guided by a guide (carriage shaft) 16 extending in the main scanning direction (X direction) by a carriage motor (not shown) to reciprocate in that direction.
 搬送機構18は、インクジェットヘッド12に対して記録媒体Rを搬送する。搬送機構18は、搬送モータ(不図示)によって回転駆動される2つの搬送ローラ18Aおよび18Aを有する。そして、記録媒体Rは、搬送モータ(不図示)によって回転駆動される2つの搬送ローラ18Aに挟まれており、インクジェットヘッド12の下側において主走査方向と直交する副走査方向(Y方向)に搬送されるようになっている。以下、主走査方向をX方向、それと直交する副走査方向をY方向、後述するインクジェットヘッド12を構成する各ユニットの積層方向をZ方向とする。 The transport mechanism 18 transports the recording medium R to the inkjet head 12 . The transport mechanism 18 has two transport rollers 18A and 18A rotationally driven by a transport motor (not shown). The recording medium R is sandwiched between two transport rollers 18A that are rotationally driven by a transport motor (not shown), and is positioned below the inkjet head 12 in the sub-scanning direction (Y direction) orthogonal to the main scanning direction. It is supposed to be transported. Hereinafter, the main scanning direction is the X direction, the sub-scanning direction orthogonal thereto is the Y direction, and the stacking direction of each unit constituting the inkjet head 12 described later is the Z direction.
 (インクジェットヘッド12の構成)
 インクジェットヘッド12は、インク流路を有するヘッド本体12Aと、当該ヘッド本体12A上に配置された複数のアクチュエータ12B(圧力印加手段)とを含む(図2~4参照)。
(Structure of inkjet head 12)
The inkjet head 12 includes a head body 12A having ink flow paths, and a plurality of actuators 12B (pressure applying means) arranged on the head body 12A (see FIGS. 2 to 4).
 ヘッド本体12Aについて:
 ヘッド本体12Aは、流路ユニット30と、流路ユニット30の一方の面(上面)に積層された圧力発生室ユニット40と、流路ユニット30の他方の面(下面)に積層されたノズルユニット50とを含む(図3および4参照)。
About the head body 12A:
The head body 12A includes a channel unit 30, a pressure generating chamber unit 40 laminated on one surface (upper surface) of the channel unit 30, and a nozzle unit laminated on the other surface (lower surface) of the channel unit 30. 50 (see FIGS. 3 and 4).
 (流路ユニット30)
 流路ユニット30は、流路ユニット本体31と、それに形成された供給用流路32(共通流路)と、複数の吐出用流路33(個別流路)とを含む(図2参照)。流路ユニット30は、供給用流路32と(圧力発生室ユニット40の)圧力発生室42とを連通する連通路34(供給口34a、オリフィス34c)と、吐出用流路33と(圧力発生室ユニット40の)圧力発生室42とを連通する吐出口34bとをさらに含む(図4参照)。
(Channel unit 30)
The channel unit 30 includes a channel unit main body 31, a supply channel 32 (common channel) formed therein, and a plurality of discharge channels 33 (individual channels) (see FIG. 2). The channel unit 30 includes a communication channel 34 (supply port 34a, orifice 34c) that communicates the supply channel 32 and the pressure generation chamber 42 (of the pressure generation chamber unit 40), a discharge channel 33 (pressure generation It further includes a discharge port 34b that communicates with the pressure generating chamber 42 of the chamber unit 40 (see FIG. 4).
 流路ユニット本体31は、連通路34や供給用流路32、吐出用流路33などを形成するための貫通孔を有する複数の流路プレートおよびダンパープレート(後述するダンパー部35)が積層および接合されたものでありうる。本実施の形態では、流路ユニット本体31は、連通路34を形成するための貫通孔を有する流路プレート31a、供給用流路32を形成するための貫通孔の内径が異なる複数の流路プレート31bおよび31cなどを積層および接合したものでありうる。流路プレートを構成する材料は、特に制限されないが、例えばステンレス鋼などの金属でありうる。 The flow path unit main body 31 includes a plurality of flow path plates having through holes for forming the communication path 34, the supply flow path 32, the discharge flow path 33, and the like, and a damper plate (a damper portion 35, which will be described later). It can be spliced. In the present embodiment, the flow channel unit main body 31 includes a flow channel plate 31a having a through hole for forming the communication channel 34, and a plurality of flow channels having different inner diameters of the through holes for forming the supply flow channel 32. Plates 31b and 31c, etc. may be laminated and joined. The material forming the channel plate is not particularly limited, but can be metal such as stainless steel, for example.
 供給用流路32(共通流路)は、インクカートリッジ22からインクが導入されるようになっており、Y方向に沿って配置されている(図2参照)。供給用流路32は、各色インクごとに少なくとも1以上設けられている。 The supply channel 32 (common channel) is adapted to introduce ink from the ink cartridge 22, and is arranged along the Y direction (see FIG. 2). At least one supply channel 32 is provided for each color ink.
 供給用流路32は、ダンパー部35を有する(図4参照)。 The supply channel 32 has a damper portion 35 (see FIG. 4).
 ダンパー部35は、圧力変動を吸収する部材であり、供給用流路32の内部に、当該流路32が延びる方向(Y方向)に沿って配置されている(図4参照)。中でも、ダンパー部35は、圧力発生室42への連通路34が形成された壁面32a(またはオリフィス34c)と対向するように配置されていることが好ましい(図4参照)。 The damper part 35 is a member that absorbs pressure fluctuations, and is arranged inside the supply channel 32 along the direction in which the channel 32 extends (the Y direction) (see FIG. 4). Above all, it is preferable that the damper portion 35 is arranged so as to face the wall surface 32a (or the orifice 34c) in which the communication passage 34 leading to the pressure generating chamber 42 is formed (see FIG. 4).
 ダンパー部35の幅(X方向の幅)は、通常、供給用流路32の流路幅の最大値(X方向の幅の最大値)と同等であるが、圧力吸収性を高める観点では、大きいことが好ましい。例えば、ダンパー部35の幅は、連通路34の最小内径(オリフィス34cの内径)に対して好ましくは3~85倍、より好ましくは13~40倍としうる。 The width of the damper portion 35 (the width in the X direction) is usually equivalent to the maximum width of the supply channel 32 (the maximum width in the X direction). Large is preferred. For example, the width of the damper portion 35 can be preferably 3 to 85 times, more preferably 13 to 40 times, the minimum inner diameter of the communicating passage 34 (the inner diameter of the orifice 34c).
 ダンパー部35の幅aと厚みbの比a/bは、特に制限されないが、圧力吸収性を高める観点では、高いことが好ましい(図4参照)。具体的には、a/bは、26~200であることが好ましく、43~200であることがより好ましい。 Although the ratio a/b between the width a and the thickness b of the damper portion 35 is not particularly limited, it is preferably high from the viewpoint of enhancing pressure absorption (see FIG. 4). Specifically, a/b is preferably 26-200, more preferably 43-200.
 ダンパー部35のコンプライアンスは、1チャネル当たり4.5×10―17~6.7×10―16/Paであることが好ましく、3.4×10―16~6.7×10―16/Paであることがより好ましい。 The compliance of the damper section 35 is preferably 4.5×10 −17 to 6.7×10 −16 m 3 /Pa per channel, and 3.4×10 −16 to 6.7×10 −16 m 3 /Pa. It is more preferably m 3 /Pa.
 ダンパー部35のコンプライアンスは、下記式から算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ν:ポアソン比(-)
 E:ヤング率(Pa)
 L:ダンパー部35のY方向の長さ(m)
 a:ダンパー部35の幅(X方向の長さ)(m)
 b:ダンパー部35の厚み(m)
 ポアソン比νおよびヤング率Eは、文献値を用いることができる。例えば、ステンレス(SUS304)のポアソン比νは0.3、ヤング率Eは203GPaとしうる。
The compliance of the damper section 35 can be calculated from the following formula.
Figure JPOXMLDOC01-appb-M000001
ν: Poisson's ratio (-)
E: Young's modulus (Pa)
L: Y-direction length of the damper portion 35 (m)
a: width of damper portion 35 (length in X direction) (m)
b: Thickness of damper portion 35 (m)
Literature values can be used for Poisson's ratio ν and Young's modulus E. For example, stainless steel (SUS304) can have a Poisson's ratio ν of 0.3 and a Young's modulus E of 203 GPa.
 本実施の形態では、ダンパー部35は、供給用流路32の内部を、インクが流通する空間とインクが流通しない空間(空気室37)とに区画するように配置されている(図4参照)。すなわち、流路ユニット30は、ダンパー部35の供給用流路32とは反対側に、インクが流通しない空気室37をさらに有している。それにより、ダンパー部35の圧力吸収性を高めうる。 In the present embodiment, the damper section 35 is arranged so as to divide the interior of the supply channel 32 into a space through which ink circulates and a space (air chamber 37) through which ink does not circulate (see FIG. 4). ). That is, the channel unit 30 further has an air chamber 37 through which ink does not flow, on the opposite side of the damper section 35 to the supply channel 32 . Thereby, the pressure absorption of the damper portion 35 can be enhanced.
 ダンパー部35(ダンパープレート)を構成する材料は、圧力変動を吸収可能なものであればよく、例えばステンレス鋼などの金属やセラミックス、樹脂などでありうる。 The material that constitutes the damper part 35 (damper plate) may be any material that can absorb pressure fluctuations, and may be metal such as stainless steel, ceramics, resin, or the like.
 そして、流路ユニット30は、圧力発生室42への連通路34が形成された壁面32a側の供給用流路32の流路幅を減少させる出張り部36をさらに含む。出張り部36は、連通路34が形成された壁面32aを補強し、供給用流路32の周辺の剛性を高めうる。 The channel unit 30 further includes a protruding portion 36 that reduces the channel width of the supply channel 32 on the side of the wall surface 32a in which the communication channel 34 to the pressure generating chamber 42 is formed. The protruding portion 36 can reinforce the wall surface 32a on which the communication path 34 is formed, and increase the rigidity around the supply channel 32. As shown in FIG.
 出張り部36は、供給用流路32の、圧力発生室42への連通路34が形成された壁面32a側に形成されていることが好ましい(図4参照)。 The protruding portion 36 is preferably formed on the wall surface 32a side of the supply channel 32 where the communicating passage 34 to the pressure generating chamber 42 is formed (see FIG. 4).
 出張り部36は、供給用流路32の壁面32aの全体に(連続的に)形成されていてもよいし(図5A参照)、複数の連通路34の近傍のみに(非連続的に)形成されていてもよい(図5B参照)。 The projecting portion 36 may be formed (continuously) on the entire wall surface 32a of the supply channel 32 (see FIG. 5A), or only near the plurality of communicating passages 34 (non-continuously). may be formed (see FIG. 5B).
 また、出張り部36は、流路ユニット本体31と一体的に設けられてもよいし、別体に設けられてもよい。本実施の形態では、出張り部36は、流路ユニット本体31と一体的に設けられている(図4参照)。 Also, the projecting portion 36 may be provided integrally with the flow path unit main body 31 or may be provided separately. In the present embodiment, the projecting portion 36 is provided integrally with the passage unit main body 31 (see FIG. 4).
 壁面32aに対して垂直な方向(Z方向)において、出張り部36の最大厚みTは、壁面32aとダンパー部35との間の距離(供給用流路32の高さH)の1/20以上であることが好ましく、1/8以上であることがより好ましく、1/3以上であることがさらに好ましい(図4参照)。出張り部36の最大厚みTの上限は、壁面32aとダンパー部35の間の距離(供給用流路32の高さH)よりも小さければよく、特に制限されないが、例えば1でありうる。出張り部36の最大厚みTを上記範囲にすることで、インクの流動を妨げることなく、供給用流路32の周辺の流路ユニット本体31の剛性を良好に高めることができる。特に、出張り部36の最大厚みTは、壁面32aとダンパー部35の間の距離(供給用流路32の高さH)の1/3~1/2であることが好ましい(図4参照)。 In the direction (Z direction) perpendicular to the wall surface 32a, the maximum thickness T of the projecting portion 36 is 1/20 of the distance between the wall surface 32a and the damper portion 35 (the height H of the supply channel 32). It is preferably 1/8 or more, more preferably 1/8 or more, and even more preferably 1/3 or more (see FIG. 4). The upper limit of the maximum thickness T of the protruding portion 36 is not particularly limited as long as it is smaller than the distance between the wall surface 32a and the damper portion 35 (height H of the supply channel 32), but may be 1, for example. By setting the maximum thickness T of the projecting portion 36 within the above range, the rigidity of the channel unit main body 31 around the supply channel 32 can be favorably increased without impeding the flow of ink. In particular, the maximum thickness T of the protruding portion 36 is preferably 1/3 to 1/2 of the distance between the wall surface 32a and the damper portion 35 (the height H of the supply channel 32) (see FIG. 4). ).
 出張り部36における供給用流路32の流路幅W(X方向の幅)は、壁面32aに近づくにつれて一定であってもよいし、変化してもよい。中でも、出張り部36における供給用流路32の流路幅は、壁面32aに近づくにつれて減少していることが好ましい。インクの滞留部が形成されにくく、インクの流動がスムーズになるためである。本実施の形態では、出張り部36における供給用流路32の流路幅Wは、壁面32aに近づくにつれて階段状に減少している(図4参照)。 The channel width W (the width in the X direction) of the supply channel 32 in the projecting portion 36 may be constant or may vary as it approaches the wall surface 32a. In particular, it is preferable that the channel width of the supply channel 32 at the projecting portion 36 decreases as it approaches the wall surface 32a. This is because ink stagnant portions are less likely to be formed, and the ink flows smoothly. In the present embodiment, the channel width W of the supply channel 32 at the projecting portion 36 decreases stepwise as it approaches the wall surface 32a (see FIG. 4).
 出張り部36における供給用流路32の流路幅の最小値Wminは、連通路34の最小内径(オリフィス34cの内径)よりも大きいことが好ましい。それにより、供給用流路32から圧力発生室42へインクが流動する際の流路抵抗の過度な増大を抑制しうる。また、供給用流路32の流路幅Wの最大値をWmaxとしたとき、Wmax/Wminは、1.3~36であることが好ましく、1.5~6.5であることがより好ましい。Wmax/Wminが下限値以上であると、Wminが大きすぎないため、供給用流路32の周辺の剛性を高めやすく、上限値以下であると、Wminが小さすぎないため、流路抵抗が大きくなりすぎない。 The minimum value Wmin of the channel width of the supply channel 32 in the projecting portion 36 is preferably larger than the minimum inner diameter of the communication channel 34 (the inner diameter of the orifice 34c). As a result, an excessive increase in flow path resistance when ink flows from the supply flow path 32 to the pressure generating chamber 42 can be suppressed. Further, when the maximum value of the channel width W of the supply channel 32 is Wmax, Wmax/Wmin is preferably 1.3 to 36, more preferably 1.5 to 6.5. . When Wmax/Wmin is equal to or higher than the lower limit, Wmin is not too large, so that the rigidity around the supply channel 32 can be easily increased. Don't be too much.
 吐出用流路33は、上記の通り、(圧力発生室ユニット40の)圧力発生室42と吐出口34bを介して連通し、当該圧力発生室42からインクが導入されるようになっている。複数の吐出用流路33は、Y方向に並んで配置されている(図2参照)。 As described above, the discharge channel 33 communicates with the pressure generation chamber 42 (of the pressure generation chamber unit 40) through the discharge port 34b, and ink is introduced from the pressure generation chamber 42. The plurality of ejection channels 33 are arranged side by side in the Y direction (see FIG. 2).
 (圧力発生室ユニット40)
 圧力発生室ユニット40は、圧力発生室プレート41と、それに形成された複数の凹部42Aと、振動板43とを含む(図4参照)。
(Pressure generating chamber unit 40)
The pressure generation chamber unit 40 includes a pressure generation chamber plate 41, a plurality of recesses 42A formed therein, and a vibration plate 43 (see FIG. 4).
 圧力発生室プレート41を構成する材料は、特に制限されず、例えばステンレス鋼などの金属やアルミナ、ジルコニアなどのセラミックスでありうるが、好ましくはステンレス鋼である。 The material forming the pressure generation chamber plate 41 is not particularly limited, and may be, for example, metal such as stainless steel or ceramics such as alumina or zirconia, preferably stainless steel.
 凹部42Aは、その開口部が振動板43で塞がれて、圧力発生室42となる。圧力発生室42は、(流路ユニット30の)連通路34を介して供給用流路32と連通し、吐出口34bを介して吐出用流路33と連通している。 The opening of the concave portion 42A is closed by the diaphragm 43 and becomes the pressure generating chamber 42. The pressure generating chamber 42 communicates with the supply flow path 32 via the communication path 34 (of the flow path unit 30), and communicates with the discharge flow path 33 via the discharge port 34b.
 振動板43は、複数の凹部42Aの開口部を塞ぐように配置されている。振動板43を構成する材料は、特に制限されず、例えばCrなどの金属製でありうる。振動板43は、後述する複数のアクチュエータ12Bの共通電極としても機能しうる。 The diaphragm 43 is arranged so as to close the openings of the plurality of recesses 42A. A material forming the diaphragm 43 is not particularly limited, and may be a metal such as Cr, for example. The diaphragm 43 can also function as a common electrode for a plurality of actuators 12B, which will be described later.
 (ノズルユニット50)
 ノズルユニット50は、ノズルプレート51およびそれに形成された複数のノズル52を含む。
(Nozzle unit 50)
Nozzle unit 50 includes a nozzle plate 51 and a plurality of nozzles 52 formed therein.
 ノズルプレート51を構成する材料は、特に制限されず、例えばステンレス鋼などの金属やポリイミドなどの樹脂でありうる。 The material forming the nozzle plate 51 is not particularly limited, and may be, for example, metal such as stainless steel or resin such as polyimide.
 ノズル52は、貫通孔であり、(流路ユニット30の)吐出用流路33と連通している。すなわち、複数のノズル52は、インクジェットヘッド12の吐出面(下面)において、複数の吐出用流路33に対応して配置され(図2参照)、当該吐出用流路33から供給されたインクを吐出できるようになっている。 The nozzle 52 is a through hole and communicates with the discharge channel 33 (of the channel unit 30). That is, the plurality of nozzles 52 are arranged on the ejection surface (lower surface) of the inkjet head 12 so as to correspond to the plurality of ejection channels 33 (see FIG. 2), and eject the ink supplied from the ejection channels 33. Dispensing is possible.
 アクチュエータ12Bについて:
 アクチュエータ12Bは、ヘッド本体12Aの吐出面とは反対側の面(上面)に配置されており、圧力発生室42に導入されたインクに圧力を付与するようになっている。
About actuator 12B:
The actuator 12B is arranged on the surface (upper surface) opposite to the ejection surface of the head main body 12A, and applies pressure to the ink introduced into the pressure generating chamber 42. As shown in FIG.
 アクチュエータ12Bは、ヘッド本体12Aの圧力発生室42に対応する部分に配置されている。そのようなアクチュエータ12Bは、振動板43の圧力発生室42とは反対側の面上に配置された、中間層61(例えばCu製)、圧電素子62(例えばチタン酸ジルコン酸鉛(PZT)製)および個別電極63(例えばPt製)を含む。 The actuator 12B is arranged in a portion corresponding to the pressure generating chamber 42 of the head main body 12A. Such an actuator 12B includes an intermediate layer 61 (made of Cu, for example), a piezoelectric element 62 (made of lead zirconate titanate (PZT), for example), and an intermediate layer 61 (made of Cu, for example). ) and individual electrodes 63 (made of Pt, for example).
 アクチュエータ12Bは、振動板43と個別電極63とを介して圧電素子62に駆動電圧を印加することで、振動板43の圧力発生室42に対応する部分を変形させる。それにより、圧力発生室42内のインクを吐出口34bまたはノズル52から吐出させるようになっている。 The actuator 12B applies a drive voltage to the piezoelectric element 62 via the diaphragm 43 and the individual electrode 63, thereby deforming the portion of the diaphragm 43 corresponding to the pressure generating chamber 42. As a result, the ink in the pressure generating chamber 42 is ejected from the ejection port 34b or the nozzle 52. As shown in FIG.
 アクチュエータ12Bは、共通電極をさらに有してもよい。 The actuator 12B may further have a common electrode.
 (インクジェットヘッド12の製造)
 このようなインクジェットヘッド12は、流路ユニット30と、その一方の面(上面)にアクチュエータ12B付き圧力発生室ユニット40と、他方の面(下面)にノズルユニット50とを積層し、接合することによって得られる。
(Manufacture of inkjet head 12)
Such an inkjet head 12 is formed by laminating and joining the channel unit 30, the pressure generating chamber unit 40 with the actuator 12B on one surface (upper surface), and the nozzle unit 50 on the other surface (lower surface). obtained by
 各ユニットの積層および接合は、任意の方法で行うことができ、例えば接着剤で接着して行ってもよいし、(金属材料の場合は)拡散接合で接合して行ってもよい。流路ユニット30を構成する複数の流路プレートの積層および接合も同様の方法で行うことができる。 Lamination and bonding of each unit can be performed by any method. For example, they may be bonded with an adhesive, or (in the case of metal materials) may be bonded by diffusion bonding. Lamination and bonding of a plurality of channel plates constituting the channel unit 30 can also be performed in a similar manner.
 出張り部36は、任意の方法で形成することができる。例えば、貫通孔の内径が異なる複数の流路プレートを積層して形成してもよいし、あらかじめ出張り部36が接着または接合された流路プレートを用いて形成してもよい。本実施の形態では、上記の通り、壁面32aに近づくにつれて、貫通孔の内径が小さくなるように、流路プレート31bおよび31cを積層している(図4参照)。 The projecting portion 36 can be formed by any method. For example, it may be formed by stacking a plurality of channel plates having through holes with different inner diameters, or may be formed by using channel plates to which the protruding portions 36 are adhered or joined in advance. In the present embodiment, as described above, the channel plates 31b and 31c are stacked such that the inner diameter of the through hole becomes smaller as it approaches the wall surface 32a (see FIG. 4).
 (動作)
 このようなインクジェットヘッド12では、インクカートリッジ22(図1参照)から、供給用流路32(共通流路)にインクが導入される(図4参照)。供給用流路32に導入されたインクは、出張り部36で囲まれた隙間を通り、連通路34(オリフィス34c、供給口34a)を介して圧力発生室42に導入される。
(motion)
In such an inkjet head 12, ink is introduced from the ink cartridge 22 (see FIG. 1) into the supply channel 32 (common channel) (see FIG. 4). The ink introduced into the supply channel 32 passes through the gap surrounded by the protruding portion 36 and is introduced into the pressure generation chamber 42 via the communication path 34 (orifice 34c, supply port 34a).
 圧力発生室42では、アクチュエータ12Bの振動板43と個別電極63との間に電圧を印加すると、圧電素子62とともに振動板43が、圧力発生室42側へ凸状に撓んで変形する。この撓み変形により圧力発生室42内の圧力が高まり、この圧力で圧力発生室42内のインクが吐出口34bおよび吐出用流路33を経由してノズル52から押し出される。 In the pressure generating chamber 42, when a voltage is applied between the diaphragm 43 of the actuator 12B and the individual electrode 63, the diaphragm 43 together with the piezoelectric element 62 bends and deforms convexly toward the pressure generating chamber 42 side. This bending deformation increases the pressure in the pressure generating chamber 42 , and the ink in the pressure generating chamber 42 is pushed out from the nozzle 52 via the ejection port 34 b and the ejection channel 33 by this pressure.
 そして、圧電素子62が伸長して振動板43の撓み変形が元の状態に復帰したとき、ノズル52から押し出されていたインクが、インク滴(例えば3pl)として記録媒体Rへ吐出される。また、振動板43が凸状に撓んで変形した状態から元の状態に復帰する際に、圧力発生室42内には、インクカートリッジ22から供給用流路32および連通路34を介してインクが充填される。 Then, when the piezoelectric element 62 expands and the bending deformation of the vibration plate 43 returns to its original state, the ink pushed out from the nozzle 52 is ejected onto the recording medium R as ink droplets (eg, 3 pl). Further, when the vibration plate 43 returns to its original state from the deformed state in which it is bent in a convex shape, the pressure generating chamber 42 is filled with ink from the ink cartridge 22 through the supply channel 32 and the communication channel 34 . be filled.
 (作用)
 本実施の形態に係るインクジェットヘッド12は、供給用流路(共通流路)32の内部にダンパー部35を有する。そのため、良好に圧力変動を吸収することができ、圧力変動に伴う射出不良を良好に抑制することができる。
(action)
The inkjet head 12 according to the present embodiment has a damper section 35 inside the supply channel (common channel) 32 . Therefore, pressure fluctuations can be well absorbed, and injection failures caused by pressure fluctuations can be well suppressed.
 また、インクジェットヘッド12は、供給用流路32の内部(具体的には、圧力発生室42への連通路34が形成された壁面32a)に出張り部36をさらに有する。それにより、ダンパー部35の幅を従来よりも大きくした場合でも、供給用流路32の周辺のヘッド本体の剛性を良好に維持できる。その結果、ヘッド本体の剛性低下に起因する機械的な振動起因のクロストークを抑制することができる。 In addition, the inkjet head 12 further has a protruding portion 36 inside the supply flow path 32 (specifically, the wall surface 32a in which the communication path 34 to the pressure generating chamber 42 is formed). As a result, even when the width of the damper portion 35 is made larger than the conventional one, the rigidity of the head body around the supply flow path 32 can be maintained well. As a result, it is possible to suppress crosstalk caused by mechanical vibration caused by a decrease in rigidity of the head body.
 (変形例)
 なお、上記実施の形態では、出張り部36を、流路ユニット本体31と一体に設ける例を示したが、これに限定されず、流路ユニット本体31と別体に設けてもよい。
(Modification)
In the above-described embodiment, an example in which the projecting portion 36 is provided integrally with the flow path unit main body 31 has been described, but the present invention is not limited to this, and the projecting portion 36 may be provided separately from the flow path unit main body 31 .
 図6は、変形例に係るインクジェットヘッド12のIV-IV線断面図である。図6に示されるように、出張り部36は、流路ユニット本体31と別体に設けられてもよい。 FIG. 6 is a sectional view taken along line IV-IV of an inkjet head 12 according to a modification. As shown in FIG. 6 , the projecting portion 36 may be provided separately from the flow path unit main body 31 .
 また、上記実施の形態では、出張り部36における供給用流路32の流路幅Wが、ダンパー部35から壁面32aに近づくにつれて(Z方向に)階段状に小さくなる例を示したが、これに限定されない。 Further, in the above-described embodiment, an example is shown in which the channel width W of the supply channel 32 in the protruding portion 36 decreases stepwise (in the Z direction) as it approaches the wall surface 32a from the damper portion 35. It is not limited to this.
 図7および8は、変形例に係るインクジェットヘッド12のIV-IV線断面図である。すなわち、出張り部36における供給用流路32の流路幅Wは、ダンパー部35から壁面32aに近づくにつれて一定であってもよいし(図7参照)、連続的に小さくなってもよい(図8参照)。 7 and 8 are sectional views taken along line IV-IV of the inkjet head 12 according to the modification. That is, the channel width W of the supply channel 32 in the projecting portion 36 may be constant as it approaches the wall surface 32a from the damper portion 35 (see FIG. 7), or may decrease continuously (see FIG. 7). See Figure 8).
 また、上記実施の形態では、ダンパー部35が、圧力発生室42への連通路34が形成された壁面32a(またはオリフィス34c)と対向するように配置される例を示したが、これに限定されず、例えば供給用流路32の側壁面に配置されてもよい。 Further, in the above-described embodiment, an example in which the damper portion 35 is arranged so as to face the wall surface 32a (or the orifice 34c) in which the communication passage 34 to the pressure generating chamber 42 is formed was shown, but the present invention is limited to this. Instead, it may be arranged, for example, on the side wall surface of the supply channel 32 .
 また、上記実施の形態では、供給用流路32および吐出用流路33が、同じ流路ユニット30に形成される例(Z方向において、供給用流路32および吐出用流路33が、圧力発生室42に対して同じ側に配置される例)を示したが、これに限定されず、異なる流路ユニットにそれぞれ形成されてもよい(Z方向において、供給用流路32および吐出用流路33が、圧力発生室42を挟んで異なる側に配置されてもよい)。 In the above-described embodiment, the supply channel 32 and the discharge channel 33 are formed in the same channel unit 30 (in the Z direction, the supply channel 32 and the discharge channel 33 However, the present invention is not limited to this and may be formed in different channel units (in the Z direction, the supply channel 32 and the discharge channel 32 may be arranged on the same side). The channels 33 may be arranged on different sides of the pressure generating chamber 42).
 また、上記実施の形態では、圧力発生手段として圧電素子を用いて液滴を吐出させる方式(ピエゾ方式)の例を示したが、これに限定されず、圧力発生室42内に発熱素子を配置し、発熱素子の発熱で発生するバブルによって液滴を吐出する方式(サーマル方式)であってもよい。 Further, in the above-described embodiment, an example of a method of ejecting droplets using a piezoelectric element as the pressure generating means (piezo method) is shown, but the present invention is not limited to this, and a heating element is arranged in the pressure generating chamber 42. Alternatively, a method (thermal method) in which droplets are ejected by bubbles generated by heat generated by a heating element may be used.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
 1.試験の準備
 <画像形成装置>
 まず、図7のインクジェットヘッド12を有する画像形成装置10を準備した。画像形成装置10の構成は、以下の通りとした。
1. Preparation for test <Image forming apparatus>
First, an image forming apparatus 10 having the inkjet head 12 of FIG. 7 was prepared. The configuration of the image forming apparatus 10 is as follows.
 (流路ユニット30)
 ・流路ユニット本体31
  材料:ステンレス(ステンレス製プレートの拡散接合品)
 ・供給用流路32
  流路幅Wの最大値:1.1~1.95mm
  流路高さH:0.24~0.36mm
 ・吐出用流路33(円筒状の流路)
  流路内径:直径0.16mm
 ・ダンパー部35
  材料:ステンレス(SUS304、ポアソン比ν:0.30、ヤング率E:203GPa)
  幅a:1.1~1.95mm(供給用流路32の流路幅Wの最大値と同じ)
  厚みb:0.01mm
 ・出張り部36
  材料:ステンレス
 ・連通路34
  オリフィス34cの開口径:0.07mm
 ・ノズル52の数(駆動チャネル数):200個/列(90dpi)×4列=合計800個(360dpi)
(Channel unit 30)
Channel unit body 31
Material: Stainless steel (diffusion bonded stainless steel plate)
Flow path 32 for supply
Maximum value of channel width W: 1.1 to 1.95 mm
Flow path height H: 0.24 to 0.36 mm
・Discharge channel 33 (cylindrical channel)
Flow path inner diameter: 0.16 mm in diameter
Damper section 35
Material: Stainless steel (SUS304, Poisson's ratio ν: 0.30, Young's modulus E: 203 GPa)
Width a: 1.1 to 1.95 mm (same as the maximum value of the channel width W of the supply channel 32)
Thickness b: 0.01mm
・Protruding portion 36
Material: Stainless steel ・Communicating passage 34
Opening diameter of orifice 34c: 0.07 mm
- Number of nozzles 52 (number of drive channels): 200 per row (90 dpi) x 4 rows = 800 in total (360 dpi)
 (インクジェットヘッド12)
 ・印字方式:スキャン方式
(inkjet head 12)
・Printing method: Scanning method
 <インクの調製>
 インクとして、水系染料インク(粘度6mPa・s、表面張力35mN/m、密度1.1g/cm)を準備した。
<Ink preparation>
A water-based dye ink (viscosity 6 mPa·s, surface tension 35 mN/m, density 1.1 g/cm 3 ) was prepared as the ink.
 2.画像形成方法および評価
 (試験1)
 準備したインクを、画像形成装置10にセットした。そして、主走査360dpi×副走査360dpiにて、インクジェットヘッド12からインクを、吐出(ON)/非吐出(OFF)を繰り返すパターンで吐出させて、画像を形成した。なお、dpiとは、2.54cm当たりのインク液滴(ドット)の数を表す。吐出周波数は、10kHzとした。
2. Image Forming Method and Evaluation (Test 1)
The prepared ink was set in the image forming apparatus 10 . Then, ink was ejected from the inkjet head 12 in a pattern of repeating ejection (ON)/non-ejection (OFF) at 360 dpi for main scanning×360 dpi for sub-scanning to form an image. Note that dpi represents the number of ink droplets (dots) per 2.54 cm. The ejection frequency was set to 10 kHz.
 (試験2~7)
 出張り部36の最大厚みT、供給用流路32の流路幅の最小値Wmin(出張り部36で囲まれた部分の流路幅の最小値)および最大値(ダンパー部35の幅)の少なくとも1つを表1に示されるように変更した以外は試験1と同様にして画像形成を行った。
(Tests 2-7)
Maximum thickness T of projecting portion 36, minimum value Wmin of channel width of supply channel 32 (minimum value of channel width of portion surrounded by projecting portion 36) and maximum value (width of damper portion 35) Image formation was carried out in the same manner as Test 1, except that at least one of was changed as shown in Table 1.
 (評価)
 非射出領域での射出欠(パターン欠)およびクロストークを、以下の方法で評価した。
(evaluation)
Emission defects (pattern defects) and crosstalk in non-emission regions were evaluated by the following methods.
 (1)パターン欠
 射出部と非射出部が切り替わり、かつ射出部においてもノズル列方向に非射出領域を有するパターン(チェック用画像パターン、図9AおよびB参照)を印刷した後、非射出部領域(図9AおよびBの点線で囲んだ部分)で射出欠(パターン欠)が生じるかどうかを目視観察により評価した。また、射出部と非射出部の切り替わり周期は60Hz(20画素周期)~900Hz(300画素周期)の範囲で変化させた。
 上記の評価を、メニスカスにかかる圧力の値(水頭値)を変化させながら繰り返し、結果を以下の基準で評価した。
 ◎:-150mm未満の水頭値でも射出欠(パターン欠)が発生しない
 ○:-150mm以上0mm未満の水頭値で射出欠(パターン欠)が発生する
 ×:0mm以上の水頭値においても射出欠(パターン欠)が発生する
 〇以上であれば良好と判断した。なお、図9Aは、×の結果の一例であり、図9Bは、〇以上の結果の一例である。
(1) Missing pattern After printing a pattern (image pattern for check, see FIGS. 9A and B) in which the injection part and the non-ejection part are switched and which has a non-ejection area in the nozzle row direction even in the injection part, the non-ejection part area is printed. It was evaluated by visual observation whether or not ejection defects (pattern defects) occurred in the portions (enclosed by dotted lines in FIGS. 9A and 9B). Also, the switching cycle between the emitting portion and the non-emitting portion was changed in the range of 60 Hz (20 pixel cycle) to 900 Hz (300 pixel cycle).
The above evaluation was repeated while changing the pressure value (water head value) applied to the meniscus, and the results were evaluated according to the following criteria.
◎: Ejection defects (pattern defects) do not occur even at water head values of less than -150 mm ○: Ejection defects (pattern defects) occur at water head values of -150 mm or more and less than 0 mm ×: Ejection defects (pattern defects) occur even at water head values of 0 mm or more (pattern missing) occurs. In addition, FIG. 9A is an example of the result of ×, and FIG. 9B is an example of the result of ◯ or more.
 (2)クロストーク
 画像内で駆動するチャネル数が変化するパターン(図10A~C参照)を印刷して、主査方向におけるインク液滴のズレ量(着弾ズレ)の平均値を測定し、クロストークを評価した。そして、以下の基準で評価した。
 ◎:主走査方向の着弾ズレが0.5画素未満
 ○:主走査方向の着弾ズレが0.5画素以上1画素未満
 ×:主走査方向の着弾ズレが1画素以上
 〇以上であれば、良好と判断した。なお、図10Aは、×の結果の一例であり、図10Bは、〇の場合の一例であり、図10Cは、◎の結果の一例である。
(2) Crosstalk A pattern (see FIGS. 10A to 10C) in which the number of channels to be driven in the image is printed is printed, and the average value of ink droplet displacement (landing displacement) in the main scan direction is measured. evaluated. And it evaluated by the following references|standards.
◎: Landing deviation in the main scanning direction is less than 0.5 pixel ○: Landing deviation in the main scanning direction is 0.5 pixel or more and less than 1 pixel ×: Landing deviation in the main scanning direction is 1 pixel or more 〇 is good I decided. Note that FIG. 10A is an example of the result of ×, FIG. 10B is an example of the case of ◯, and FIG. 10C is an example of the result of ⊚.
 (3)流路抵抗
 ヘッド内のすべてのチャネルを1分間駆動したときに射出欠が発生するかどうかを、メニスカスにかかる圧力の値(水頭値)を変化させながら繰り返した。そして、以下の基準で評価した。
 ◎:射出欠が発生する水頭値が-650mm未満
 〇:射出欠が発生する水頭値が-650mm以上-600mm未満
 ×:射出欠が発生する水頭値が-600mm以上
 〇以上であれば良好と判断した。
(3) Flow path resistance Whether ejection failure occurs when all the channels in the head are driven for 1 minute was repeated while changing the pressure value (water head value) applied to the meniscus. And it evaluated by the following references|standards.
◎: The water head value at which injection failure occurs is less than -650 mm 〇: The water head value at which injection failure occurs is -650 mm or more and less than -600 mm ×: The water head value at which injection failure occurs is -600 mm or more Judging that it is good if it is 〇 or more did.
 試験1~7の評価結果を表1に示す。なお、1チャネル当たりのコンプライアンスは、前述の式(1)に基づいて算出した。 Table 1 shows the evaluation results of tests 1 to 7. The compliance per channel was calculated based on the above formula (1).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、供給用流路32の内部に出張り部36を設けた試験5~7では、パターン欠を良好に抑制しつつ、(ダンパー部35の幅を従来よりも大きくしても)クロストークを抑制できることがわかる。特にT/Hを大きくすることで、流路幅の最小値Wminを大きくしても、クロストークを効果的に抑制できることがわかる(試験5と6の対比)。 As shown in Table 1, in Tests 5 to 7, in which the protruding portion 36 was provided inside the supply flow path 32, pattern omission was suppressed satisfactorily (the width of the damper portion 35 was increased compared to the conventional one). It can be seen that crosstalk can be suppressed. In particular, by increasing T/H, crosstalk can be effectively suppressed even if the minimum value Wmin of the channel width is increased (comparison between Tests 5 and 6).
 これに対し、供給用流路32の内部に出張り部36を有しない試験4(比較)では、パターン欠は良好に抑制できるが、(ダンパー部35の幅を従来よりも大きくしたことによる)クロストークが生じることがわかる。 On the other hand, in Test 4 (comparison), in which the protrusion 36 is not provided inside the supply flow path 32, pattern omission can be suppressed satisfactorily (because the width of the damper section 35 is made larger than the conventional one). It can be seen that crosstalk occurs.
 本出願は、2021年1月27日出願の特願2021-011195に基づく優先権を主張する。当該出願明細書及び図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2021-011195 filed on January 27, 2021. All contents described in the specification and drawings are incorporated herein by reference.
 本発明によれば、特定の駆動パターンで画像形成する際の圧力変動に起因する射出不良を高度に抑制しつつ、機械的な振動に起因するクロストークを抑制可能なインクジェットヘッドおよびそれを含む画像形成装置を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, an inkjet head capable of suppressing crosstalk caused by mechanical vibration while highly suppressing ejection defects caused by pressure fluctuations when forming an image with a specific drive pattern, and an image including the same. A forming apparatus can be provided.
 10 画像形成装置
 12 インクジェットヘッド
 12A ヘッド本体
 12B アクチュエータ
 14 ヘッドユニット
 16 ガイド
 18 搬送機構
 20 キャリッジ
 22 インクカートリッジ
 30 流路ユニット
 31 流路ユニット本体
 31a、31b、31c 流路プレート
 35 ダンパープレート(ダンパー部)
 32 供給用流路(共通流路)
 33 吐出用流路
 34 連通路
 34a 供給口
 34b 吐出口
 34c オリフィス
 36 出張り部
 37 空気室
 40 圧力発生室ユニット
 41 圧力発生室プレート
 42 圧力発生室
 42A 凹部
 43 振動板
 50 ノズルユニット
 51 ノズルプレート
 52 ノズル
 61 中間層
 62 圧電素子
 63 個別電極
 T: (出張り部36の)最大厚み
 D: 出張り部36とダンパー部35との間の最小間隔
 W: (供給用流路32の)流路幅
REFERENCE SIGNS LIST 10 image forming apparatus 12 inkjet head 12A head body 12B actuator 14 head unit 16 guide 18 transport mechanism 20 carriage 22 ink cartridge 30 channel unit 31 channel unit main body 31a, 31b, 31c channel plate 35 damper plate (damper portion)
32 supply channel (common channel)
33 Discharge channel 34 Communication passage 34a Supply port 34b Discharge port 34c Orifice 36 Protruding portion 37 Air chamber 40 Pressure generation chamber unit 41 Pressure generation chamber plate 42 Pressure generation chamber 42A Concave portion 43 Diaphragm 50 Nozzle unit 51 Nozzle plate 52 Nozzle 61 intermediate layer 62 piezoelectric element 63 individual electrode T: maximum thickness (of projecting portion 36) D: minimum distance between projecting portion 36 and damper portion 35 W: channel width (of supply channel 32)

Claims (8)

  1.  ダンパー部を有する共通流路と、
     前記共通流路と連通する複数の圧力発生室と、
     前記共通流路に形成され、前記圧力発生室への連通路が形成された壁面側の前記共通流路の流路幅を減少させる出張り部とを有する、
     インクジェットヘッド。
    a common flow path having a damper section;
    a plurality of pressure generating chambers communicating with the common channel;
    a protruding portion that is formed in the common flow path and that reduces the flow path width of the common flow path on the wall side where the communication path to the pressure generating chamber is formed;
    inkjet head.
  2.  前記ダンパー部は、前記連通路の開口部と対向している、
     請求項1に記載のインクジェットヘッド。
    The damper section faces the opening of the communication path,
    The inkjet head according to claim 1.
  3.  前記壁面に対して垂直な方向において、
     前記出張り部の最大厚みは、前記壁面と前記ダンパー部との間の距離の1/3以上である、
     請求項2に記載のインクジェットヘッド。
    In a direction perpendicular to the wall surface,
    The maximum thickness of the projecting portion is 1/3 or more of the distance between the wall surface and the damper portion.
    The inkjet head according to claim 2.
  4.  前記出張り部における前記共通流路の流路幅は、前記壁面に近づくにつれて減少している、
     請求項1~3のいずれか一項に記載のインクジェットヘッド。
    A channel width of the common channel in the projecting portion decreases as it approaches the wall surface,
    The inkjet head according to any one of claims 1 to 3.
  5.  前記出張り部における前記共通流路の流路幅は、階段状に減少している、
     請求項4に記載のインクジェットヘッド。
    the width of the common flow path at the protruding portion is reduced stepwise;
    The inkjet head according to claim 4.
  6.  前記出張り部における前記共通流路の流路幅の最小値は、前記連通路の最小内径よりも大きい、
     請求項1~5のいずれか一項に記載のインクジェットヘッド。
    the minimum value of the channel width of the common channel in the projecting portion is larger than the minimum inner diameter of the communicating channel;
    The inkjet head according to any one of claims 1 to 5.
  7.  前記ダンパー部の前記共通流路とは反対側に形成された空気室をさらに有する、
     請求項1~6のいずれか一項に記載のインクジェットヘッド。
    further comprising an air chamber formed on the side of the damper section opposite to the common flow path,
    The inkjet head according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか一項に記載のインクジェットヘッドを有する、
     画像形成装置。
    Having the inkjet head according to any one of claims 1 to 7,
    Image forming device.
PCT/JP2022/002591 2021-01-27 2022-01-25 Inkjet head and image formation device WO2022163625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021011195 2021-01-27
JP2021-011195 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163625A1 true WO2022163625A1 (en) 2022-08-04

Family

ID=82654627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002591 WO2022163625A1 (en) 2021-01-27 2022-01-25 Inkjet head and image formation device

Country Status (1)

Country Link
WO (1) WO2022163625A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087511A (en) * 2015-11-06 2017-05-25 株式会社リコー Liquid discharge head, liquid discharge device and image formation apparatus
JP2017159522A (en) * 2016-03-08 2017-09-14 株式会社リコー Liquid discharge head, liquid discharge unit, and liquid discharging device
JP2018153926A (en) * 2017-03-15 2018-10-04 セイコーエプソン株式会社 Liquid discharge head and liquid discharge device
JP2020196237A (en) * 2019-06-05 2020-12-10 ブラザー工業株式会社 Liquid discharge head
JP2021151707A (en) * 2020-03-24 2021-09-30 セイコーエプソン株式会社 Liquid jet head and liquid jet device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087511A (en) * 2015-11-06 2017-05-25 株式会社リコー Liquid discharge head, liquid discharge device and image formation apparatus
JP2017159522A (en) * 2016-03-08 2017-09-14 株式会社リコー Liquid discharge head, liquid discharge unit, and liquid discharging device
JP2018153926A (en) * 2017-03-15 2018-10-04 セイコーエプソン株式会社 Liquid discharge head and liquid discharge device
JP2020196237A (en) * 2019-06-05 2020-12-10 ブラザー工業株式会社 Liquid discharge head
JP2021151707A (en) * 2020-03-24 2021-09-30 セイコーエプソン株式会社 Liquid jet head and liquid jet device

Similar Documents

Publication Publication Date Title
US6905202B2 (en) Ink-jet head and recording apparatus
US6921149B2 (en) Liquid drop discharging head and liquid drop discharging device
JP5598116B2 (en) Droplet ejector
US7988258B2 (en) Line-type liquid ejecting head and liquid ejecting apparatus including the same
JP5578794B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP5206956B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2003072068A (en) Ink jet recording head and ink jet recorder
CN110293758B (en) Liquid ejection head
JP2018144474A (en) Droplet injector
JP2004148619A (en) Color inkjet printer
JP5004497B2 (en) Liquid ejection head, liquid ejection apparatus, and image forming apparatus
US10343401B2 (en) Droplet ejection apparatus
US10131145B2 (en) Ejection hole plate, liquid ejection head, and liquid ejection apparatus
JP2009178951A (en) Liquid jet head and liquid jet device
WO2022163625A1 (en) Inkjet head and image formation device
US11691418B2 (en) Liquid ejecting head and liquid ejecting apparatus
US8172374B2 (en) Liquid ejecting head, liquid ejecting apparatus, and method for manufacturing liquid ejecting head
JP6264580B2 (en) Liquid jet head
JP2012250492A (en) Liquid jet head unit and liquid jet device
JP6721013B2 (en) Liquid discharge head and flow path structure
JP2023090426A (en) Liquid discharge head
JP2002248759A (en) Ink-jet recording head and ink-jet recording apparatus
JP2022148859A (en) liquid ejection head
JP5568854B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2009220370A (en) Liquid jet head and liquid jet device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP