WO2022160918A1 - 显示装置、多声道音频设备*** - Google Patents

显示装置、多声道音频设备*** Download PDF

Info

Publication number
WO2022160918A1
WO2022160918A1 PCT/CN2021/134456 CN2021134456W WO2022160918A1 WO 2022160918 A1 WO2022160918 A1 WO 2022160918A1 CN 2021134456 W CN2021134456 W CN 2021134456W WO 2022160918 A1 WO2022160918 A1 WO 2022160918A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio
signal
sound
cavity
speaker
Prior art date
Application number
PCT/CN2021/134456
Other languages
English (en)
French (fr)
Inventor
王海盈
刘少伟
李奎宝
姜元恩
宗敏
宋永刚
肖劲立
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120281353.9U external-priority patent/CN215298806U/zh
Priority claimed from CN202110137533.4A external-priority patent/CN114842771A/zh
Priority claimed from CN202110289943.0A external-priority patent/CN115118901A/zh
Priority claimed from CN202121176787.9U external-priority patent/CN215181954U/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Priority to CN202180092661.XA priority Critical patent/CN116848572A/zh
Publication of WO2022160918A1 publication Critical patent/WO2022160918A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F27/00Combined visual and audible advertising or displaying, e.g. for public address
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the present application relates to display device technology, and in particular, to a display device and a multi-channel audio equipment system.
  • Some embodiments of the present application provide a display device and a multi-channel audio equipment system, wherein the display device includes: a display including a screen configured to present a picture and a casing configured to support the screen, wherein the A hollow area is surrounded by the screen and the casing; a speaker is arranged in the hollow area and includes a vibrating member configured to vibrate and emit sound and a cavity whose bottom is sealedly connected to the vibrating member, wherein the cavity is It includes a first part and a second part which are parallel to the screen and cooperate with each other.
  • the bottom of the first part is sealed with the vibrating element, the first part is in the shape of a straight cylinder, and the second part is configured to The sound propagated by the first part is radiated to the outside of the hollow area; the controller is configured to control the screen to present a picture, and to control the vibrating element to vibrate and emit sound.
  • the second portion gradually expands outward in a horn shape.
  • the second portion gradually expands outward in a horn shape parallel to the screen.
  • the second portion non-linearly and gradually expands outward in a horn shape parallel to the screen.
  • the second portion gradually expands outward perpendicular to the screen in a horn shape.
  • the second portion non-linearly and gradually expands outward in a horn shape perpendicular to the screen.
  • the vibrating member includes a vibrating membrane, and an acute included angle between the vibrating membrane and the sound exit surface of the speaker is greater than or equal to 0° and less than or equal to 20°.
  • the cavity includes a rib that vertically divides the cavity into a first cavity and a second cavity
  • the vibrating member It includes a first vibrating member and a second vibrating member respectively disposed on both sides of the spacer ribs, wherein the bottom of the first cavity is sealed with the first vibrating member, and the bottom of the second cavity is connected to the first vibrating member.
  • the second vibrating element is sealed and connected.
  • the loudspeaker further includes a filler provided in the sound outlet channel of the loudspeaker, configured to compress the sound outlet channel.
  • the cavity is left-right symmetrical with respect to the filler when the sound output direction of the speaker is a vertical direction.
  • the filler includes a water chestnut structure.
  • the lower tip of the water chestnut structure is set on the first part, and the upper tip of the water chestnut structure is set on the second part.
  • the sound output direction of the speaker is the vertical direction, and both the lower tip and the upper tip of the water chestnut structure are disposed on the first part.
  • the cavity is vertically divided into a first cavity and a second cavity
  • the water chestnut structure includes a first water chestnut structure disposed in the first cavity and a water chestnut structure disposed in the second cavity.
  • the second water chestnut structure of the cavity wherein the first cavity is left-right symmetrical with the first water chestnut structure, and the second cavity is left and right symmetrical with the second water chestnut structure.
  • an even number of the speakers are arranged in the hollow area behind the top of the screen, and are symmetrical to the vertical centerline of the screen.
  • the distance between the two speakers symmetrical to the vertical centerline is greater than or equal to half the width of the screen.
  • the sounding directions of the two left-right symmetrical speakers disposed behind the top of the screen intersect with the vertical center line, and the sounds produced by the two left-right symmetrical speakers are far away from each other.
  • the edge of the screen gradually becomes thinner outward in a slope-like shape, and the second part cooperates with the edge of the screen to gradually expand outward in a horn shape.
  • the contact surface of the cavity and the housing is composed of the housing, and the edge of the contact surface is sealed by a seal.
  • the audio device module includes at least two audio devices;
  • the audio distributor includes an audio input interface, an audio processor and a first communication module;
  • the audio input interface is connected to the display device and is configured to receive the display device The audio data of multiple channels is sent;
  • the audio processor is connected to the audio input interface, and is configured to convert the audio data of the multiple channels into at least two sets of audio signals, and each audio signal corresponds to an audio signal.
  • the channels are different;
  • the first communication module is respectively connected with the audio processor and the audio equipment module, and is configured to receive at least two sets of audio signals sent by the audio processor, and to convert the at least two sets of audio signals are sent to the at least two audio devices, respectively.
  • the audio processor includes at least two output interfaces, each of which is used to transmit an audio signal; the at least two output interfaces are connected to the first communication module and are configured to The at least two sets of audio signals are sent to the first communication module.
  • At least one audio device includes: a second communication module and an audio output interface; the second communication module is connected to the first communication module and is configured to receive audio signals; the audio output interface is connected to The second communication module is connected and configured to play an audio signal.
  • the audio distributor further includes a sound collector configured to collect at least two sound signals played by the at least two audio devices.
  • the audio distributor further includes an audio signal distribution module; the audio signal distribution module is connected to the sound collector and is configured to receive at least two sound signals, and, according to the at least two Each sound signal distributes the at least two audio signals to the at least two audio devices, and obtains an audio signal distribution result.
  • the audio signal distribution module is connected to the sound collector and is configured to receive at least two sound signals, and, according to the at least two Each sound signal distributes the at least two audio signals to the at least two audio devices, and obtains an audio signal distribution result.
  • the audio signal distribution module is further configured to: calculate the sound pressure of the at least two sound signals; sort the at least two audio devices according to the sound pressure; The at least two audio signals are distributed to the at least two audio devices.
  • the audio signal distribution module is connected to the first communication module and is configured to send the audio signal distribution result to the first communication module; the first communication module is further configured In order to send the at least two sets of audio signals to the at least two first-type audio devices respectively according to the audio signal distribution result.
  • the multi-channel audio device system further includes a specific audio device configured to play a preset audio signal.
  • the specific audio device is a built-in audio device of the display device.
  • Some embodiments of the present application also provide a display device, including:
  • a second speaker for playing audio signals of a second channel different from the first channel
  • the decoder is used to decode the signal input by the signal source to obtain the decoding result
  • controller respectively connected to the first speaker, the second speaker and the decoder, the controller is configured to:
  • the audio signals of different channels include a first audio signal assigned to the first speaker and a second audio signal assigned to the second speaker;
  • the frequency of the first sub-signal is greater than a preset frequency, and the frequency of the second sub-signal is less than or equal to the preset frequency;
  • the controller in the step of delaying the second sub-signal, is further configured to:
  • Delay processing is performed on the second sub-signal according to the delay time.
  • the controller in the step of determining the delay time according to the first distance and the second distance, is further configured to:
  • the sum of the ratio and the first preset time is determined as the delay time.
  • the controller in the step of delaying the second sub-signal, is further configured to:
  • a second preset time is determined as a delay time, and delay processing is performed on the second sub-signal according to the second preset time.
  • the controller is further configured to:
  • the detection result is that the first audio signal does not include human voice, performing energy detection on the first audio signal;
  • the third preset time is determined as the delay time, and the second sub-signal is processed according to the third preset time. Delay processing.
  • the controller in the step of dividing the first audio signal into a first sub-signal and a second sub-signal, is further configured to:
  • the first audio signal is divided into a new first sub-signal and a new second sub-signal according to the signal valley frequency, and the new The frequency of a sub-signal is greater than the signal valley frequency, and the frequency of the new second sub-signal is less than or equal to the signal valley frequency.
  • the controller in the step of sending the first sub-signal to the first speaker for playback, is further configured to:
  • the second combined signal is sent to the first speaker for playback.
  • the controller is further configured to:
  • the delayed third audio signal is sent to the third speaker for playback.
  • the controller is further configured to:
  • the third combined signal is sent to the first speaker for playback.
  • the controller in the step of dividing the first audio signal into a first sub-signal and a second sub-signal, is further configured to:
  • the first audio signal is respectively input into a high-pass filter and a low-pass filter, the signal output through the high-pass filter is the first sub-signal, and the signal output through the low-pass filter is the second sub-signal sub-signal;
  • the high-pass filter is used for passing signals with frequencies greater than the preset frequency
  • the low-pass filter is used for passing signals with frequencies less than or equal to the preset frequency
  • the first audio signal is a sky channel signal
  • the second audio signal is a main channel signal
  • the first audio signal and the second audio signal have the same left and right channel properties.
  • the third audio signal is a center channel signal.
  • FIG. 1 illustrates a usage scenario of a display device according to some embodiments
  • FIG. 2 shows a block diagram of a hardware configuration of a control device according to some embodiments
  • FIG. 3 shows a block diagram of a hardware configuration of a display device according to some embodiments
  • FIG. 4 shows a software configuration diagram in a display device according to some embodiments
  • FIG. 5 shows a schematic diagram of the installation of a speaker in a display device according to some embodiments
  • Figures 15-16 show the overall structure diagram of a display device according to some embodiments.
  • FIG. 17 shows a schematic diagram of the installation of a speaker in a display device according to some embodiments.
  • FIG. 18 is a schematic diagram illustrating the propagation of sound emitted by a display device according to some embodiments.
  • Figure 19 shows an overall schematic diagram of a multi-channel audio device system according to some embodiments.
  • Figure 20 shows a schematic diagram of an audio distributor in accordance with some embodiments
  • Figure 21 shows a schematic diagram of the connection between the audio processor and the first communication module according to some embodiments
  • Figure 22 shows a schematic structural diagram of an audio device according to some embodiments.
  • Figure 23 shows a placement diagram of an audio device according to some embodiments.
  • Figure 24 shows a location diagram of an audio device according to some embodiments.
  • Figure 25 shows a schematic diagram of a mid-subwoofer enclosure according to some embodiments.
  • Figure 26 shows a schematic diagram of an application scenario according to some embodiments.
  • FIG. 27 shows a schematic diagram of a display device provided with Sky Sound speakers, according to some embodiments.
  • FIG. 28 shows a schematic diagram of a system architecture of a multi-channel display device according to some embodiments.
  • FIG. 29 shows a schematic diagram of the playback effects of different speakers on signals of different frequencies according to some embodiments.
  • Figure 30 shows a schematic diagram of a display device according to some embodiments.
  • Figure 31 shows a schematic diagram of signal processing by a controller according to some embodiments.
  • 32 shows a schematic diagram of a signal chain architecture of a multi-channel display device according to some embodiments.
  • Figure 33 shows another scenario diagram according to some embodiments.
  • Figure 34 shows a schematic diagram of the spectral characteristics of the signals of the first speaker and the second speaker according to some embodiments
  • Figure 35 shows a signal diagram of a human voice according to some embodiments.
  • Figure 36 shows an example graph of a signal according to some embodiments
  • FIG. 41 shows a schematic diagram of an audio signal playback method according to some embodiments.
  • Middle frame B1 sound-transmitting hole B2; back shell B3; screen B4; sealing foam B5; S11-cavity; S11a-first part; S11b-second part; - water chestnut structure; S12-vibration element; S12a-diaphragm; S12b-housing; S12c-magnet assembly; S12 ⁇ -vibration element; S12a ⁇ -diaphragm; channel speaker; S4-right channel speaker; S5-woofer; S6-middle channel speaker; S7-surround sound speaker; S8-surround sound speaker; S81-cavity; S82-vibration element.
  • FIG. 1 shows a usage scenario of a display device according to some embodiments.
  • a user can operate the display device 200 through the mobile terminal 300 and the control device 100 .
  • the control device 100 may be a remote control, and the communication between the remote control and the display device includes infrared protocol communication, Bluetooth protocol communication, wireless or other wired ways to control the display device 200 .
  • the user can control the display device 200 by inputting user instructions through keys on the remote control, voice input, control panel input, and the like.
  • mobile terminals, tablet computers, computers, notebook computers, and other smart devices may also be used to control the display apparatus 200 .
  • the mobile terminal 300 may install a software application with the display device 200 to implement connection communication through a network communication protocol, so as to achieve the purpose of one-to-one control operation and data communication.
  • the audio and video content displayed on the mobile terminal 300 may also be transmitted to the display device 200 to realize a synchronous display function.
  • the display device 200 also performs data communication with the server 400 through various communication methods.
  • the display apparatus 200 may be allowed to be communicatively connected through a local area network (LAN), a wireless local area network (WLAN), and other networks.
  • the server 400 may provide various contents and interactions to the display apparatus 200 .
  • the display device 200 may be a liquid crystal display, an OLED display, or a projection display device.
  • the display device 200 may additionally provide an intelligent network television function that provides a computer-supported function in addition to the function of broadcasting and receiving television.
  • FIG. 2 shows a block diagram of a hardware configuration of a control apparatus according to some embodiments.
  • the control device 100 includes a controller 110 , a communication interface 130 , a user input/output interface 140 , a memory, and a power supply.
  • the control device 100 can receive the user's input operation instruction, and convert the operation instruction into an instruction that the display device 200 can recognize and respond to, so as to play an intermediary role between the user and the display device 200 .
  • the communication interface 130 is used for external communication, and includes at least one of a WIFI chip, a Bluetooth module, NFC or an alternative module.
  • the user input/output interface 140 includes at least one of a microphone, a touchpad, a sensor, a key or an alternative module.
  • FIG. 3 shows a block diagram of a hardware configuration of a display device according to some embodiments.
  • the display device 200 includes a tuner 210 , a communicator 220 , a detector 230 , an external device interface 240 , a controller 250 , a display 260 , an audio output interface 270 , a memory, a power supply, and a user interface 280 .
  • the controller includes a central processing unit, a video processing unit, an audio processing unit, a graphics processing unit, a RAM, a ROM, and a first interface to an nth interface for input/output.
  • the display 260 may be at least one of a liquid crystal display, an OLED display, a touch display, and a projection display, and may also be a projection device and a projection screen.
  • the tuner-demodulator 210 receives broadcast television signals through wired or wireless reception, and demodulates audio and video signals, such as EPG data signals, from a plurality of wireless or wired broadcast television signals.
  • the detector 230 is used to collect external environment or external interaction signals.
  • the controller 250 and the tuner 210 may be located in different separate devices, that is, the tuner 210 may also be located in an external device of the main device where the controller 250 is located, such as an external set-top box.
  • the controller 250 controls the operation of the display device and responds to user operations.
  • the controller 250 controls the overall operation of the display apparatus 200 .
  • a user may input a user command on a graphical user interface (GUI) displayed on the display 260, and the user input interface receives the user input command through the graphical user interface (GUI).
  • GUI graphical user interface
  • the user may input a user command by inputting a specific sound or gesture, and the user input interface recognizes the sound or gesture through a sensor to receive the user input command.
  • a "user interface” is a medium interface for interaction and information exchange between an application program or an operating system and a user, which enables conversion between an internal form of information and a form acceptable to the user.
  • the commonly used form of user interface is Graphical User Interface (GUI), which refers to a user interface related to computer operations displayed in a graphical manner. It can be an icon, window, control and other interface elements displayed on the display screen of the electronic device, wherein the control can include icons, buttons, menus, tabs, text boxes, dialog boxes, status bars, navigation bars, Widgets, etc. at least one of the visual interface elements.
  • GUI Graphical User Interface
  • FIG. 4 shows a software configuration diagram in a display device according to some embodiments.
  • the system is divided into four layers, which are respectively an application layer (referred to as “application layer”) from top to bottom,
  • the Application Framework layer (referred to as the "framework layer")
  • the Android runtime (Android runtime)
  • the system library layer (referred to as the “system runtime layer”)
  • the kernel layer contains at least one of the following drivers: audio driver, display driver, Bluetooth driver, camera driver, WIFI driver, USB driver, HDMI driver, sensor driver (such as fingerprint sensor, temperature sensor, pressure sensor, etc.), and power supply drive etc.
  • the display device proposed in this application includes a display, a speaker and a controller.
  • the display includes a screen and a housing.
  • the screen is used to present the picture under the control of the controller.
  • the housing is used to physically support the screen.
  • the screen and the casing are surrounded by a hollow area, which is mainly used for arranging various electronic components in the hollow area; the electronic components arranged in the hollow area include speakers.
  • thickness refers to the distance of the corresponding main body in the direction perpendicular to the screen (for example, the thickness of the hollow area) Refers to the distance between the screen and the back shell of the casing); “width” refers to the distance of the corresponding subject in the direction parallel to the screen (for example: when the user's viewing angle is used as the reference, the width of the screen refers to the distance from the left border of the screen to the right border of the screen).
  • the speaker includes a vibrating element and a cavity.
  • the vibrating member is used to vibrate and produce sound under the control of the controller, which generally includes a vibrating film, a coil and a magnet member.
  • the cavity is used for sealingly connected with the vibrating element to transmit the sound emitted by the vibrating element to the opening of the cavity; and the cavity opening faces the outside of the hollow area, so as to transmit the sound to the outside of the display.
  • the cavity includes a first part and a second part.
  • the first part and the second part cooperate with each other parallel to the screen: the channel of the first part and the channel of the second part are both parallel to the screen; the bottom of the first part is sealed with the vibrating element; The bottom is closely matched with the top of the first part; the top of the second part is the opening of the cavity, that is, the sound-emitting surface of the speaker.
  • the first part has a straight cylindrical shape. Under the action of the first part, the sound emitted by the vibrating element is concentrated; further, the concentrated sound is radiated outward under the action of the second part.
  • the first portion is prismatic.
  • the prismatic first portion is triangular in cross-section.
  • the prismatic first portion is rectangular in cross-section.
  • the prismatic first portion is pentagonal in cross-section.
  • the first portion is cylindrical.
  • the cylindrical first portion is circular in cross-section.
  • the cross-section of the cylindrical first portion is elliptical.
  • a straight-tube first part is provided in front of the second part for radiating sound, and the vibrating element is sealed with the bottom of the first part
  • the connection makes the sound emitted by the vibrating element concentrated by the first part before being radiated and diffused by the second part, thereby enhancing the directivity of the speaker sound.
  • FIG. 5 shows a schematic diagram of the installation of a speaker in a display device according to some embodiments.
  • a schematic diagram of the installation of the speaker in the display device is shown from a side view.
  • the screen B4 is closely embedded in the middle frame B1, and the rear case B3 is also fixed on the middle frame B1.
  • the edge of the screen B4 becomes thinner as it goes outwards, and the middle frame B1 is attached to the screen B4 and the edge becomes thinner as it goes out.
  • a speaker as shown in the figure is provided in the hollow area surrounded by the screen B4 and the rear shell B3.
  • the cavity of the speaker faces towards the outside of the display, the thickness of the first part close to the inside of the hollow area is uniform, and the second part far from the inside of the hollow area cooperates with the edge of the middle frame to gradually increase its thickness outward, thereby enhancing the directivity of the sound. , and reduce the volume and thickness of the display due to the speaker arrangement.
  • a sound-transmitting hole B2 is left on the rear case at the top of the monitor, so that the sound can be transmitted to the outside of the monitor.
  • the second portion of the speaker gradually expands outward in a horn shape. That is, taking the axial direction of the passage of the second portion as the direction of measuring the length, the passage volume per unit length of the second portion gradually increases as it gradually extends toward the outside of the hollow region.
  • 6-14 show schematic structural diagrams of speakers according to some embodiments.
  • the speaker includes a vibrating element S12 and a cavity S11 .
  • the cavity S11 is divided into a first part S11a and a second part S11b; the vibrating element S12 includes a vibrating film S12a.
  • the first part S11a is a rectangle; the second part S11b is an isosceles trapezoid with a short bottom bottom and a long top bottom.
  • the first part S11a is a rectangle; the second part S11b is a right-angled trapezoid with a short bottom bottom and a long top bottom.
  • the diaphragm S12a is located within the smaller rectangle.
  • the second portion S11b has a horn shape.
  • the second part of the cavity of the speaker is on a plane parallel to the screen, and gradually expands toward the outside of the hollow area in a horn shape. That is, the thickness of the second portion remains unchanged, and the width gradually increases outward parallel to the screen to form a horn shape.
  • the viewing angle perpendicular to the screen is the front view viewing angle.
  • the first part S11a is a rectangle
  • the second part S11b is an isosceles trapezoid with a short bottom bottom and a long top bottom.
  • S11a and S11b together form a rectangle.
  • the thickness of the loudspeaker is uniform, and the second portion only has a horn-like shape by linearly increasing its width outward. That is, the second part only gradually expands outward in a horn shape parallel to the screen.
  • the second portion expands non-linearly and gradually in a horn shape toward the outside of the hollow region on a plane parallel to the screen. That is, the thickness of the second portion is constant, and the width of the second portion is gradually increased non-linearly outward parallel to the screen in a horn shape.
  • the second part is in the shape of a trapezoid with curved sides.
  • the second portion progressively increases in width non-linearly outwards, parallel to the screen, according to an exponential curve.
  • the second portion progressively increases in width non-linearly outwards in accordance with a parabolic curve parallel to the screen.
  • the second portion progressively increases in width non-linearly outwards in a hyperbolic curve parallel to the screen.
  • the second part of the cavity of the speaker is on a plane perpendicular to the screen and gradually expands toward the outside of the hollow area in a horn shape. That is, the width of the second portion remains unchanged, and the thickness of the second portion gradually increases outward perpendicular to the screen in a horn shape.
  • the viewing angle perpendicular to the screen is the front view viewing angle.
  • the first part S11a and the second part S11b together form a rectangle.
  • S11a is a rectangle;
  • S11b is a right-angled trapezoid with a short lower bottom and a long upper bottom.
  • the width of the loudspeaker is uniform, and the second part is horn-shaped only by gradually increasing its thickness outward. That is, the second part is only perpendicular to the screen and gradually expands outward in a horn shape.
  • the second portion expands non-linearly and gradually in a horn shape toward the outside of the hollow region on a plane perpendicular to the screen.
  • the width of the second portion is constant, and the thickness of the second portion is horn-shaped by non-linearly increasing the thickness outward perpendicular to the screen.
  • the second part is a right-angled trapezoid with a straight line away from the screen and a curved side close to the screen.
  • the viewing angle perpendicular to the screen is the front view viewing angle.
  • the first part S11a is a rectangle
  • the second part S11b is an isosceles trapezoid with a curved side surface and a short bottom and a long bottom.
  • S11a is a rectangle
  • the second part S11b is a right-angled trapezoid with a short lower bottom and a long upper bottom.
  • the second portion of the loudspeaker is horn-shaped in such a way that the second portion of the loudspeaker gradually increases the width non-linearly and gradually increases the thickness linearly toward the outside. That is, the second portion expands non-linearly and gradually outward parallel to the screen and linearly and gradually expands outward in a horn shape perpendicular to the screen.
  • the cavity of the speaker includes ribs. Taking the sound output direction of the loudspeaker as the vertical direction, the rib vertically divides the cavity into two sub-cavities: a first cavity and a second cavity. Correspondingly, on both sides of the spacer rib, a first vibrating member sealingly connected to the bottom of the first cavity and a second vibrating member sealingly connected to the bottom of the second cavity are respectively disposed.
  • the first part of the first vibrating member and the first part of the second vibrating member are both uniform in width and thickness, and the second part of the first vibrating member and the second vibrating member are The second part of the piece gradually expands outward in a horn shape.
  • the advantage of this embodiment is that the speaker is configured as a dual-drive speaker with two vibrating parts, which improves the sound power of the speaker; and the arrangement of the ribs prevents the sounds emitted by the two vibrating parts from interfering with each other, reducing the noise of the speaker. phase error.
  • the cavity of the speaker is divided into two left and right cavities: a first cavity and a second cavity by the ribs S11c.
  • the bottom of the first cavity is sealed with a first vibration member S12 ′, and the bottom of the second cavity is sealed with a second vibration member S12 .
  • the first part S11a of the cavity is rectangular, and the second part S11b is an isosceles trapezoid with a short lower bottom and a long upper bottom; the rib S11c vertically separates the cavity, and the first cavity S11a and the The S11a of the second cavity are all rectangular, and the S11b of the first cavity and the S11b of the second cavity are two right-angled trapezoids that are symmetrical to each other.
  • S11a of the first cavity and S11a of the second cavity are both rectangular, and S11b of the first cavity and S11b of the second cavity are both right-angled trapezoids with a short bottom and a long bottom.
  • the diaphragm S12a' of the first vibrating element S12' and the diaphragm S12a of the second vibrating element S12 are symmetrical to each other.
  • the first cavity and the second cavity separated by the ribs S11c shown in FIG. 10 are left-right symmetrical.
  • the second vibrating member S12 includes three parts: a vibrating membrane S12a; a casing S12b; and a magnet assembly S12c.
  • the diaphragm S12a is generally fixed on the casing S12b by gluing
  • the magnet assembly S12c is generally closely matched with the casing S12b through an injection molding process
  • the casing S12b is generally fixed on the speaker cavity S11 by gluing.
  • the fixing of S12a and S12b, the fixing of S12c and S12b, and the fixing of S12b and S11 are all sealed and fixed, and there is no channel for air leakage.
  • the loudspeaker further includes a filler provided in the sound outlet channel (ie, provided in the cavity).
  • the filler is generally a closed three-dimensional structure, and under the action of the filler, the volume of the sound channel is compressed.
  • the advantage of this embodiment is that, through the arrangement of the filling member, a compressed air cavity formed by the co-extrusion of the filling member and the cavity is obtained, thereby improving the loudness of the speaker.
  • the sound output direction of the speaker is the vertical direction
  • the cavity is left-right symmetrical to the filler. That is, the cavity is vertically divided into two parts with the space boundary closed by the filler as the center, and the divided two parts are left-right symmetrical.
  • the advantage of this embodiment is that, by setting the filler as the left-right symmetrical center of the cavity, the sound can pass through the cavity in a uniform left and right direction, which improves the loudness of the speaker's sound and ensures the uniformity of the speaker's sound.
  • the filler is a spherical structure.
  • the filler has a cubic structure.
  • the filler is a water chestnut structure.
  • the sound output direction of the loudspeaker is the vertical direction
  • the lower tip of the water chestnut structure is set on the first part of the cavity
  • the upper tip is set on the second part of the cavity.
  • a water chestnut structure S11d is arranged in the cavity of the speaker.
  • the lower tip of the water chestnut structure S11d is set at the first part of the cavity, and the upper tip is set at the second part of the cavity.
  • the cavity is left-right symmetrical to the water chestnut structure S11d, which is specifically represented by the structure shown in the front view.
  • the first part is a rectangle; the second part is an isosceles trapezoid with a short lower bottom and a long upper bottom; the rhombus structure S11d is a rhombus.
  • the distance from the lower tip of the rhombus to the edge of the first part is d1
  • the width of the section obtained by cutting the cavity through the parallel cavity opening of the lower tip is d2
  • the double of d1 is equal to d2
  • the upper tip of the rhombus to the edge of the second part The distance of d3 is d3
  • the width of the section obtained by cutting the cavity through the upper tip parallel to the cavity is d4
  • the double of d3 is equal to d4.
  • the rhombus structure S11d shown in FIG. 12 is a regular rhombus with left-right symmetry and vertical symmetry in a front view.
  • the sound output direction of the speaker is the vertical direction
  • the lower tip and the upper tip of the water chestnut structure are both disposed on the first part of the cavity. That is, the water chestnut structure is integrally provided in the first part of the cavity.
  • a water chestnut structure S11d is provided in the cavity of the speaker. Both the lower tip and the upper tip of the water chestnut structure S11d are arranged on the first part of the cavity.
  • the cavity is left-right symmetrical to the water chestnut structure S11d, which is specifically represented by the structure shown in the front view.
  • the first part is a rectangle; the second part is an isosceles trapezoid with a short lower bottom and a long upper bottom; the rhombus structure S11d is a rhombus.
  • the distance from the lower tip of the rhombus to the edge of the first part is d1
  • the width of the section obtained by cutting the cavity through the parallel cavity opening of the lower tip is d2
  • the double of d1 is equal to d2
  • the upper tip of the rhombus to the edge of the first part The distance of d3 is d3
  • the width of the section obtained by cutting the cavity through the upper tip parallel to the cavity opening is d2
  • the double of d3 is equal to d2.
  • the cavity is vertically divided into a first cavity located on the left side and a second cavity located on the right side; correspondingly, a water chestnut structure is arranged inside the first cavity, which is called the first cavity.
  • the first cavity is left and right symmetrical with the first water chestnut structure; the second cavity is left and right symmetrical with the second water chestnut structure.
  • the cavity is vertically divided into a first cavity and a second cavity by a partition rib.
  • the inside of the first cavity is provided with a first water chestnut structure S11d', and the interior of the second cavity is provided with a second water chestnut structure S11d.
  • the first cavity is left-right symmetrical to the first water chestnut structure S11d', and the second cavity is left-right symmetrical to the second water chestnut structure S11d.
  • the specific performance is the structure shown in the front view.
  • the first part of the first cavity and the first part of the second cavity are both rectangular, and the second part of the first cavity and the second part of the second cavity are two right angles symmetrical to each other Trapezoid; both the first water chestnut structure S11d ⁇ and the second water chestnut structure S11d are irregular diamond shapes.
  • the distance from the lower tip of the first water chestnut structure S11d' to the first part of the first cavity is d5, and the width of the section obtained by cutting the first cavity through the lower tip of the first water chestnut structure S11d' parallel to the cavity opening is d6, d5 twice equal to d6; the distance from the upper tip of the first water chestnut structure S11d ⁇ to the second part of the first cavity is d7, and the width of the cross section obtained by cutting the first cavity through the upper tip of the first water chestnut structure S11d ⁇ parallel to the cavity opening For d8, the double of d7 is equal to d8.
  • the specific structure of the second cavity symmetrical to the second water chestnut structure S11d will not be repeated.
  • first cavity and the second cavity shown in FIG. 14 are bilaterally symmetric to each other, and at the same time, the first water chestnut structure S11d ′ and the second water chestnut structure S11d are also bilaterally symmetric to each other.
  • the display device includes an even number of loudspeakers whose first parts are uniform in thickness and width, and whose second parts are horn-shaped.
  • the even-numbered speakers are arranged in the hollow area behind the top of the screen, and are symmetrical to the vertical centerline of the screen.
  • the even-numbered speakers are arranged in the hollow area behind the side of the screen, and are symmetrical to the vertical centerline of the screen.
  • the vibrating member includes a vibrating membrane, and an acute included angle between the vibrating membrane and the sound exit surface of the speaker is greater than or equal to 0 and less than or equal to 20°. That is, the angle between the diaphragm and the sound exit surface of the speaker is in the range of -20° to +20° (including -20° and +20°).
  • FIGS. 15-16 show overall structural diagrams of display devices according to some embodiments. As shown in FIG. 15 , in this embodiment, there are 8 speakers: S1 , S2 , S3 , S4 , S5 , S6 , S7 , and S8 in the hollow area behind the rectangular screen of the display device.
  • S1, S2, S7, and S8 are all speakers with a first part having a uniform thickness and a uniform width, and the second part being a horn-shaped speaker.
  • S1 and S2 are located in the hollow area behind the top of the screen, and are mainly used to emit sound to the ceiling, which are called the left sky speaker and right sky speaker respectively.
  • the height of the Sky Sound speakers is d9.
  • the distance between the two sky speakers is the same from the vertical center line of the screen, that is, d10 is equal to d11.
  • S8 and S7 are located in the hollow area behind the screen on both sides, mainly used to emit sound to the walls on both sides, called the left surround speaker and the right surround speaker respectively; the two sky sound speakers are symmetrical to the vertical centerline of the screen; The surround speakers are symmetrical to the vertical centerline of the screen.
  • S1 consists of a cavity S11 and a vibrating member S12, S11 is located above S12, and the diaphragm of S12 is in the horizontal direction or the angle with the horizontal direction is in the range of -20° ⁇ +20° (including -20° and +20° ); for the same reason, the structure of the cavity and diaphragm of S2 will not be repeated.
  • S8 consists of a cavity S81 and a vibrating element S82, S81 is located outside of S82, and the diaphragm of S82 is in the vertical direction or the angle with the vertical direction is in the range of -20° to +20° (including -20° and +20° ); for the same reason, the structure of the cavity and diaphragm of S7 will not be repeated.
  • S3 and S4 are respectively arranged in the hollow area behind the lower two sides of the screen, and are respectively the left channel speaker and the right channel speaker.
  • the S6 is centered in the hollow area behind the lower part of the screen and is a center channel speaker.
  • the S5 is centered in the hollow area behind the lower part of the screen and is a woofer.
  • the distance between the two speakers symmetrical to the vertical centerline is greater than or equal to half the width of the screen. Referring to FIG. 14 , that is, (d10+d11) ⁇ 2 ⁇ d. d is the width of the screen.
  • the advantage of this embodiment is that by arranging the two speakers symmetrical to the vertical center line at a distance greater than or equal to half of the screen width, the sky sound performance effect of the display device is improved.
  • the two loudspeakers disposed behind the top of the screen and symmetrical to the vertical centerline have their sounding directions intersecting with the vertical centerline, and the sounds are far away from each other. That is, the sounding directions of the two left-right symmetrical sky speakers are not on the same straight line, and the sounding directions are opposite.
  • An advantage of this embodiment is that the placement of the sky speaker inside the display generally results in a thicker sky speaker area of the display device than when the sky speaker is not placed inside the display.
  • the left sky sound speaker S1 and the right sky sound speaker S2 are symmetrical about the vertical center line of the screen, and the sounding directions of the two are not parallel to the vertical center line.
  • the included angle ⁇ between the diaphragm of S2 and the vertical centerline is greater than 0°, that is, the included angle ⁇ between the sound emission direction of S2 and the vertical centerline is greater than 0°.
  • the distance between the left sky speaker S1 and the right sky speaker S2 is kept small, and the distance between them inside the display is reduced.
  • the included angle ⁇ between the diaphragm of S2 in FIG. 15 and the vertical centerline is in the range of 0° to 20° (excluding 0°, including 20°).
  • the edge of the screen gradually becomes thinner outward in a slope shape, and the second part cooperates with the edge of the screen to gradually expand outward in a horn shape.
  • the advantage of this embodiment is that the screen with the thin frame is provided with a second horn-shaped part, the structure of the screen is rationally utilized, and the space occupied by the speaker in the display is further reduced.
  • the contact surface between the cavity of the speaker and the housing of the display consists of the housing, and the edge of the contact surface is sealed by a seal. That is, the casing is used for enclosing a hollow area to accommodate the speaker, and also serves as one face of the speaker cavity.
  • the advantage of this embodiment is that by arranging the housing as one face of the cavity, a wall thickness of the speaker and the gap between the speaker and the housing are reduced, thereby further reducing the thickness of the speaker area of the display device.
  • FIG. 17 shows a schematic diagram of the installation of a speaker in a display device according to some embodiments.
  • a schematic diagram of the installation of the speaker is shown from a side view.
  • the loudspeaker's cavity has only three sides: two sides and a front where the trapezoidal sides are located.
  • the rear case acts as the back of the cavity of the speaker, so that the thickness of the display can be reduced by the wall thickness of one back of the cavity.
  • the edge gap between the cavity and the rear case is sealed by the sealing foam B5 to ensure the airtightness of the speaker.
  • FIG. 18 shows a schematic diagram of the propagation of sound emitted by a display device according to some embodiments.
  • a plurality of speakers are provided inside the display of the display device: at least two sky speakers, at least two surround speakers, and at least two main channel speakers.
  • the sound emitted by the sky speaker is reflected from the ceiling and propagated to the user; the sound emitted by the surround speakers is reflected by the walls on both sides and then propagated to the user; the sound emitted by the main channel speaker is propagated to the user. Therefore, the sky sound, surround sound, main sound and screen image together provide users with a three-dimensional and rich immersive experience.
  • At least the first part of the sky sound speaker is set as a horn-shaped structure with a uniform thickness and a uniform width and the second part is a horn-shaped structure that gradually expands outward, which can effectively enhance the directivity of the sky sound and reduce the sky of the display.
  • FIG. 19 shows an overall schematic diagram of a multi-channel audio device system according to some embodiments.
  • the multi-channel audio equipment system can be connected with the display device, and the display device can send audio data to the multi-channel audio equipment system, so as to use the multi-channel audio equipment system to play the audio in the display device.
  • the multi-channel audio device system includes an audio device module and an audio distributor.
  • the audio equipment module can play the audio in the display device to the user.
  • the audio device module includes multiple audio devices.
  • the display device can send audio data of multiple channels to the multi-channel audio equipment system. Each audio device can play audio data of different channels to form a stereo field to improve user experience.
  • the audio distributor includes an audio input interface, an audio processor and a first communication module.
  • Figure 20 shows a schematic diagram of an audio distributor in accordance with some embodiments.
  • the audio input interface is used to connect the display device and the audio distributor to receive audio data sent by the display device, and the audio input interface can be a USB (Universal Serial Bus, Universal Serial Bus) interface.
  • the input end of the audio input interface is connected with the display device, and the output end is connected with the audio processor, so that the audio data of the display device is sent to the audio processor.
  • the audio processor can receive the audio data of various channels sent by the display device through the audio input interface, and can convert the audio data of the various channels into various audio signals, and each audio signal can correspond to a different channel.
  • the number of audio signals can be the same as the number of audio devices, so that each audio signal can be sent to one audio device respectively.
  • the display device may send two channels of audio data: a left channel and a right channel.
  • the audio processor can convert the audio data of each channel into a set of audio signals, wherein the first set of audio signals includes the audio data of the left channel, and the second set of audio signals includes the right channel audio data.
  • the audio device system can include two audio devices, and each audio device plays a set of audio signals respectively.
  • the display device may transmit four channels of audio data, which may include audio data for two front-out channels: left and right channels, and data for two sky channels: Sky front left channel and sky front right channel.
  • Each audio device can play one kind of front channel audio data and one kind of sky channel data at the same time, so the audio processor can convert the audio data of these four channels into two sets of audio signals.
  • the audio processor may convert the left channel and the front left channel of the sky into a group of audio signals, for example, by performing packing processing to obtain the first group of audio signals.
  • the audio processor converts the right channel and the sky front right channel into a set of audio signals to obtain a second set of audio signals.
  • each audio signal corresponds to audio data of two channels, and the channels corresponding to the two sets of audio signals are different.
  • the system may include two audio devices, and the two sets of audio signals are respectively sent to the two audio devices, so that the two audio devices can play audio of different channels and form a sound field.
  • the display device may transmit audio data of eight channels, which may include audio data of four front-out channels: left channel, right channel, surround left channel, and surround right channel channel, and data for four sky channels: sky front left channel, sky front right channel, sky rear left channel, and sky rear right channel.
  • the audio processor can convert the audio data of eight channels into four sets of audio signals. Among them, the left channel and the sky front left channel are converted into the first set of audio signals, the right channel and the sky front right channel are converted into the second set of audio signals, and the surround left channel and the sky rear left channel are converted For the third group of audio signals, the surround right channel and the sky rear right channel are converted into the fourth group of audio signals.
  • the system can include four audio devices, and the four sets of audio signals are respectively sent to the four audio devices, so that the four audio devices can play audio of different channels and form a stereo field.
  • the first communication module is connected to the audio processor.
  • the audio processor may send all the converted audio signals to the first communication module.
  • the first communication module sends the audio signal to each audio device respectively, and each audio device can play a group of audio signals, so as to play audio of different channels.
  • an output interface may be provided in the audio processor.
  • the output interfaces are used for sending audio signals in the audio processor to the first communication module, and each output interface can transmit a group of audio signals.
  • Figure 21 shows a schematic diagram of the connection of the audio processor and the first communication module according to some embodiments.
  • the audio processor can be provided with five output interfaces, which can transmit 5 groups of audio signals.
  • the I2S_SDO1 interface can transmit the first group of audio signals, including the left channel and the sky front left channel.
  • the I2S_SDO2 interface can transmit the second group of audio signals, including the right channel and the sky front right channel.
  • the I2S_SDO3 interface can transmit the third group of audio signals, including the surround left channel and the sky rear left channel.
  • the I2S_SDO4 interface can transmit the fourth group of audio signals, including surround right channel and sky rear right channel.
  • the I2S_SDO5 interface can transmit the fifth audio signal, including the bass channel.
  • the audio device module includes a plurality of audio devices, and each audio device has the same model, which may be a speaker with the same communication protocol and audio amplification capability.
  • the audio device may include a second communication module and an audio output interface.
  • the second communication module is connected to the first communication module, and can receive the audio signal sent by the first communication module.
  • the audio output interface can be connected with the second communication module.
  • the second communication module receives the audio signal, it can further transmit the audio signal to the audio output interface, and the audio signal can be played through the audio output interface.
  • the audio device may further include an audio power amplifier, the audio power amplifier is used to connect the second communication module and the audio output interface, and can amplify the audio signal received by the second communication module, and then the amplified audio The signal is transmitted to the audio output interface for playback.
  • the audio power amplifier is used to connect the second communication module and the audio output interface, and can amplify the audio signal received by the second communication module, and then the amplified audio The signal is transmitted to the audio output interface for playback.
  • the audio device can play two channels of audio data.
  • FIG. 22 shows a schematic structural diagram of an audio device according to some embodiments.
  • the audio device can be provided with two audio output interfaces.
  • the first audio output interface can play the audio data of the front channel, that is, the left channel, the right channel, the surround left channel and the surround right channel.
  • the second audio output interface can play the audio data of the sky channel, that is, the sky front left channel, the sky front right channel, the sky rear left channel, and the sky rear right channel.
  • the audio device further includes two audio power amplifiers, wherein the audio power amplifier P1 amplifies the audio data of the sky channel and sends it to the second audio output interface.
  • the audio power amplifier P2 amplifies the audio data of the front output channel and sends it to the first audio output interface.
  • a wireless communication connection may be employed between the first communication module and the second communication module.
  • the same communication protocol is adopted between the first communication module and the second communication module.
  • the first communication module adopts a 5.8GHz wireless communicator
  • the second communication module also adopts a 5.8GHz wireless communicator, so as to realize data interaction between the audio distributor and the audio device.
  • the number of audio devices may be determined by the channel type of the audio data sent by the display device.
  • the display device may send audio data of 3.1.2 channels, including data of two front channels: left channel and right channel, and data of two sky channels: sky front left channel and The sky front right channel also includes the center channel and the bass channel.
  • the number of audio devices can be set to the number of front outgoing channels, that is, two audio devices are used, one audio device plays the left channel and the sky front left channel, and the other plays the right channel and the sky front right channel. sound.
  • the display device may send audio data of 5.1.4 channels, including data of four front-out channels: left channel, right channel, surround left channel and surround right channel.
  • Data of various sky channels sky front left channel, sky front right channel, sky rear left channel, and sky rear right channel, as well as center channel and bass channel.
  • four audio devices can be set.
  • each audio device may have a unique label, and each label corresponds to a fixed channel and corresponds to a position.
  • 23 shows a placement diagram of an audio device according to some embodiments. As shown in FIG. 23, the user can use the display device at the viewing position, and the display device is placed directly in front of the viewing position.
  • the audio equipment marked A1 is placed in the front left of the viewing position, and is used to play the first group of audio signals, namely, the right channel and the right channel in front of the sky.
  • the audio equipment marked A2 is placed in the right front of the viewing position for playing the second set of audio signals, namely the left channel and the sky front left channel.
  • the audio equipment marked A3 is placed at the left rear of the viewing position, and is used to play the third group of audio signals, namely the surround left channel and the sky rear left channel.
  • the audio equipment marked A4 is placed at the right rear of the viewing position, and is used to play the fourth group of audio signals, namely the surround right channel and the sky rear right channel.
  • the user can place each audio equipment in the corresponding position according to the label, and the first communication module will send all the audio signals to the corresponding audio equipment to obtain a stereo field. At this time, the user does not need to manually connect the data transmission line, and the preparation work is relatively simple.
  • the multi-channel audio device system also has a channel assignment function, that is, the audio data of all channels can be automatically assigned to the audio device, and the user does not need to place the audio device in the corresponding position according to the label.
  • the audio distributor also includes a sound collector and an audio signal distribution module.
  • the sound collector can be a microphone, and is used to collect sound signals from the audio device.
  • the sound collector is connected with the audio signal distribution module, and the collected sound signal can be sent to the audio signal distribution module.
  • the audio signal distribution module can distribute the audio signal to the audio device, so as to obtain the corresponding relationship between the audio signal and the audio device.
  • the audio signal distribution module is connected with the first communication module, and can send the audio signal distribution result to the first communication module.
  • the first communication module can send each audio signal to the corresponding audio device according to the corresponding relationship between the audio signal and the audio device, so as to form a correct sound field.
  • the audio distributor may send a test signal to all audio devices. All audio devices can play the test signal, and at the same time, the sound collector collects the sound signal sent by each audio device.
  • the first audio device may emit a first sound signal and the second audio device may emit a second sound signal.
  • the sound collector sends the first sound signal and the second sound signal to the audio signal distribution module.
  • the audio signal distribution module can calculate the first sound pressure corresponding to the first sound signal and the corresponding second sound pressure of the second sound signal.
  • the size of the sound pressure can reflect the position of the audio equipment relative to the display device.
  • the audio equipment with high sound pressure is located in the front left of the viewing position, and the audio equipment with high sound pressure is located in the front right of the viewing position.
  • the audio devices So sort all audio devices by sound pressure. For example, if it is detected that the first sound pressure is greater than the second sound pressure, the audio devices may be arranged in descending order of the sound pressure, and the audio device sequence is: first audio device, second audio device.
  • the audio signals can be allocated according to the preset correspondence.
  • the preset corresponding relationship may be: sequentially assigning the first group of audio signals and the second group of audio signals according to the order of the audio devices. That is, the sound pressure of the first audio device is relatively high, so the first group of audio signals is allocated to the first audio device, and the first audio device can play the left channel and the sky front left channel.
  • the sound pressure of the second audio device is lower, and the second set of audio signals is distributed to the second audio device, and the second audio device can play the right channel and the sky front right channel.
  • the positions of the audio devices are the front left, front right, rear left, and rear right of the viewing position.
  • the sequence of the obtained audio devices is: the first audio device, the fourth audio device, the third audio device, and the second audio device.
  • the first group of audio signals, the second group of audio signals, the third group of audio signals and the fourth group of audio signals are sequentially allocated according to the order of the audio devices.
  • the first audio device plays the first group of audio signals, that is, the left channel and the sky front left channel.
  • the fourth audio device plays the second set of audio signals, namely the right channel and the sky front right channel.
  • the third audio device plays a third set of audio signals, namely the surround left channel and the sky rear left channel.
  • the second audio device plays the fourth group of audio signals, namely the surround right channel and the sky rear right channel.
  • Figure 24 shows a location diagram of an audio device according to some embodiments. As shown in Figure 24, the multi-channel audio device system can automatically assign audio signals to the audio devices, so that each audio device can play the correct channel to form a stereo field. The user does not need to place the audio equipment in the order of the labels, which improves the degree of intelligence, greatly reduces the preparation work, and improves the user experience.
  • the display device may also transmit center channel audio data.
  • the multi-channel audio device system also includes a specific audio device, which can be used to play the audio data of the center channel.
  • the specific audio device may be an audio device of the same model as the audio device module. Considering that the specific audio device is used to play the audio data of the center channel, the specific audio device may be placed directly below the display device.
  • the specific audio device may be a built-in audio device of the display device.
  • the display device can directly send the audio data of the center channel to the built-in audio device to realize playback.
  • the display device does not need external specific audio equipment, which saves space and cost, and improves user experience.
  • the multi-channel audio device system may further include a subwoofer speaker for playing bass channel audio data.
  • 25 shows a schematic diagram of a mid-subwoofer enclosure in accordance with some embodiments.
  • the subwoofer sound box includes a second communication module, an audio power amplifier, and an audio output interface.
  • the second communication module can receive the low-channel audio data sent by the first communication module, the audio power amplifier can amplify the low-channel audio data, and the audio output interface can play the amplified low-channel audio data.
  • FIG. 26 shows a schematic diagram of an application scenario according to some embodiments.
  • more and more display devices or audio equipment use sky sound speakers to play back a high-sensitivity video. the sound of.
  • the sound of Such as the sound of aircraft flying overhead, thunder, etc.
  • These sounds should have been realized by the speakers or speakers installed on the roof, but since this requirement is not considered in the decoration of the general family living room, no speakers or speakers are installed on the roof, so the display devices in the related art all use reflection.
  • FIG. 27 shows a schematic diagram of a display device provided with Sky Sound speakers, the display device including a display (display screen) and speakers, as shown in FIG. 27 , according to some embodiments.
  • a display includes a screen configured to present a picture and a casing configured to support the screen, wherein a hollow area is surrounded by the screen and the casing; a speaker is arranged in the hollow area, It includes a vibrating member configured to vibrate and emit sound, and a cavity whose bottom is sealedly connected to the vibrating member and faces outside the hollow area, wherein the cavity includes a first part and a second part that cooperate with each other parallel to the screen image, The bottom of the first part is sealingly connected with the vibrating element, and the cross section obtained by cutting the first part axially along the channel of the first part is rectangular, and the second part gradually expands outward to form a horn.
  • the speaker specifically includes a sky-sound speaker arranged on the top of the display, including a left sky-sound speaker S1 and a right sky-sound speaker S2; in addition, the speaker also includes a main channel speaker, including a left-channel speaker S3 and a right-sound speaker S2. channel speaker S4; in addition, the speaker further includes a center channel speaker S5.
  • FIG. 28 shows a schematic diagram of a system architecture of a multi-channel display device according to some embodiments.
  • the system architecture includes a left channel, a right channel, a center channel, a left sky channel and a right channel. sky sound.
  • the left sky sound channel signal is played by the left sky sound speaker S1
  • the right sky sound channel signal is played by the right sky sound speaker S2
  • the left channel signal is played.
  • the left channel speaker S3 is responsible for playing
  • the right channel signal is played by the right channel speaker S4, and the center channel signal is played by the center channel speaker S5.
  • Multi-channel display devices can significantly improve the immersive experience of watching movies, but because of the use of multiple speakers, the thickness of the display devices is relatively thick, especially the top of ordinary display devices are generally ultra-thin designs. Poor aesthetics.
  • the general method of the related art is to adopt an ultra-thin design for the Sky Sound speaker, while other speakers adopt a normal design (ie, the display device in the related art is in the form of upper thin and lower thick).
  • the signal of each channel may contain sound in the full frequency range (20-20kHz).
  • the sky sound signal contains both high-frequency signals such as bird calls, and low-frequency signals such as common thunder and helicopter sounds. After the ultra-thin design is adopted, the playback effect of the Sky Sound speakers for low-frequency signals will be reduced.
  • FIG. 29 is a schematic diagram showing the playback effects of different speakers on signals of different frequencies according to some embodiments, wherein the lower the loudness, the worse the sound playback effect is.
  • the speakers with conventional thickness can be played normally.
  • the sound of the whole range, and the ultra-thin speaker is limited by the width of the diaphragm, resulting in poor low-frequency response, so it cannot play back low-frequency sound.
  • This will cause the low-frequency sounds originally contained in the sky sound, such as the sound of aircraft engines and thunder, to be unable to be played normally, resulting in the sound playback effect of the display device, resulting in poor user experience.
  • the ultra-thin loudspeaker shown in FIG. 29 has better playback effect for signals with frequencies above 1000 Hz, but poor playback effects for signals with frequencies below 1000 Hz.
  • FIG. 30 shows a schematic diagram of a display device according to some embodiments.
  • the display device includes: a first speaker, a second speaker, a decoder, and a first speaker, a second speaker, and a decoder respectively. Two speakers and a decoder are connected to the controller.
  • the first speaker is used to play the audio signal of the first channel;
  • the second speaker is used to play the audio signal of the second channel different from the first channel;
  • the first channel may be the sky channel
  • the second channel may be the main channel, such as the left channel and the right channel
  • the corresponding first speaker is the sky channel speaker
  • the second speaker is the left/right channel. right channel speaker.
  • the left and right channel attributes of the first channel and the second channel are the same. That is to say, when the first channel is the left sky channel, the second channel is the left channel, correspondingly, the first speaker is the left sky channel speaker, and the second speaker is the left channel speaker; When the first channel is the right sky channel, the second channel is the right channel. Correspondingly, the first speaker is the right sky channel speaker, and the second speaker is the right channel speaker, so as to prevent the sound of the left and right channels from being confused. .
  • the decoder is used to decode the signal input by the signal source to obtain the decoding result
  • the signal source is the signal source of the display device, such as HDMI (High Definition Multimedia Interface, high-definition multimedia interface), DTV (Digital Television, digital television), network, and removable storage media.
  • HDMI High Definition Multimedia Interface, high-definition multimedia interface
  • DTV Digital Television, digital television
  • the audio code stream in these signal sources will be decoded by the decoder, and the input format of the decoder is the original format of each signal source, such as 7.1 channel, 5.1 channel, 2.0 channel, etc. These code streams are then sent to the display device controller.
  • controller is configured to perform the following steps:
  • the controller acquires a decoding result sent by the decoder, and acquires audio signals of different channels according to the decoding results, wherein the audio signals of different channels include the first audio signal assigned to the first speaker, and the audio signal assigned to the second speaker.
  • the channel types of the first audio signal and the second audio signal are different;
  • the controller divides the first audio signal into a first sub-signal and a second sub-signal, wherein the frequency of the first sub-signal is greater than the preset frequency, and the frequency of the second sub-signal is less than or equal to the preset frequency, that is, the controller Perform signal separation on the original first audio signal according to the frequency to obtain sub-signals of different frequencies;
  • the controller sends the first sub-signal to the first speaker for playback. Since the first speaker has a poor playback effect on the low-frequency signal, the controller sends the first sub-signal with a higher frequency to the first speaker for playback. , to ensure the sound playback effect of high-frequency signals;
  • the first audio signal allocated to the first speaker may specifically be a sky audio channel signal
  • the second audio signal allocated to the second speaker may specifically be a left/right channel signal
  • the solution adopted in this embodiment is to allocate the part of the low-frequency signal to the second speaker that can play the low-frequency signal normally, so as to ensure that all the sounds in the first audio signal can be played normally.
  • the preset frequency may be specifically set to 1000 Hz.
  • FIG. 31 shows a schematic diagram of signal processing performed by the controller according to some embodiments.
  • the controller first divides the frequency of the first audio signal to obtain a first sub-signal and the second sub-signal, the processing can be implemented by the frequency distribution module in the controller.
  • the frequency of the first sub-signal is greater than the preset frequency, that is, the first sub-signal is a high-frequency signal, indicating that the first sub-signal can be played normally by the first speaker; and the frequency of the second sub-signal is less than or equal to the preset frequency, That is, the second sub-signal is a low-frequency signal, which means that the second sub-signal cannot be played normally by the first speaker, and the second sub-signal needs to be allocated to the second speaker for playback.
  • the first sub-signal and the second sub-signal are obtained, the first sub-signal is sent to the first speaker for playback, and the second sub-signal is sent to the second speaker for playback.
  • the second sub-signal When the second sub-signal is sent to the second speaker for playback, the second sub-signal is firstly delayed by the delay module in the controller to ensure signal synchronization, and then the delayed second sub-signal is processed The signal is combined with the second audio signal to obtain a first combined signal, and then the first combined signal is sent to the second speaker for playback.
  • the first combined signal includes the second sub-signal (ie, the low-frequency signal) in the first audio signal, so all sounds in the first audio signal can be played normally.
  • a power amplifier may be used to amplify the power of the signal, and then the amplified signal is sent to a corresponding speaker.
  • the first sub-signal when the first sub-signal is sent to the first speaker for playback, the first sub-signal can be signal amplified by the first power amplifier, and then the amplified first sub-signal is sent to the first speaker.
  • the first combined signal when the first combined signal is sent to the second speaker for playback, the first combined signal can be signal amplified by the second power amplifier, and then the amplified first combined signal is sent to the second speaker.
  • FIG. 32 shows a schematic diagram of a signal chain architecture of a multi-channel display device according to some embodiments.
  • HDMI, DTV, network, and removable storage media are all signal sources of the display device.
  • the audio stream will be decoded by the decoder, and the input format of the decoder is the original format of each signal source.
  • These code streams then enter the channel mapping module in the display device controller, and the channel mapping module calculates the number of channels into a fixed format, such as 3.0.2 format, and then these signals enter the tone adjustment module in the controller.
  • the tone adjustment module adjusts the algorithm for the signal of each channel, and then the signal flow of 3.0.2 enters the speaker mapping module in the controller.
  • the speaker mapping module remaps and assigns the characteristics of the rear speakers, that is, execute Figure 31 As shown in the signal processing flow, a new 3.0.2 channel signal is formed, which is then output to the speakers for playback.
  • the first audio signal corresponding to the first speaker can be divided to obtain the first sub-frequency of the high-frequency Signal and low-frequency second sub-signal, by assigning the high-frequency sub-signal to the first speaker for playback, and assigning the low-frequency sub-signal to the second speaker for playback, since the second speaker can normally play the low-frequency signal, it can ensure that the first All contents in the audio signal can be played normally, thereby improving the sound playing effect of the display device.
  • the controller in the step of delaying the second sub-signal, is further configured to perform the following steps:
  • the controller acquires the first distance that the sound played by the first speaker propagates to the object, and the second distance that the sound played by the second speaker propagates to the object, wherein the object is specifically the user, the first distance and the second distance is the distance from the sound to the user's ear;
  • the controller determines the delay time according to the first distance and the second distance
  • S430 The controller performs delay processing on the second sub-signal according to the delay time, so as to ensure the synchronization of the second sub-signal and the second audio signal.
  • FIG. 33 shows a schematic diagram of another scenario according to some embodiments.
  • the sound played by the first speaker is reflected by the roof and ceiling and then propagates to the human ear, and the total transmission distance is the first distance D1
  • the sound played by the second speaker is basically transmitted directly to the human ear
  • the transmission distance is the second distance D2 wherein, according to the layout environment of general household facilities, D1 is usually greater than D2, if the second sub-signal is not delayed.
  • D1 is usually greater than D2
  • D1 is usually greater than D2
  • it will cause the second sub-signal assigned to the second speaker to enter the human ear first, and the first sub-signal to enter the human ear later, because the human ear will judge the sound direction based on what it hears first. It will cause the human ear to think that the sound of the first audio signal is emitted from the position of the second speaker, thereby affecting the effect of the sky sound.
  • the controller when the controller performs signal processing, it first needs to perform delay processing on the second sub-signal, so that the time for the sound emitted by the first speaker to reach the human ear is not later than the time for the sound emitted by the second speaker to reach the human ear, It is optimal to ensure that the sound from the first speaker reaches the human ear earlier than the sound from the second speaker reaches the human ear.
  • the controller When performing the delay processing, the controller first obtains the first distance D1 and the second distance D2, and then determines the delay time according to D1 and D2, so as to perform delay processing on the second sub-signal according to the delay time to ensure Sky Tone sound playback effect.
  • the controller in the step of determining the delay time according to the first distance and the second distance, is further configured to perform the following steps:
  • S421 calculate the distance difference between the first distance and the second distance, due to the existence of the distance difference, there is a time interval when the sound played by the first speaker and the second speaker is transmitted to the human ear, that is, there is a delay;
  • the controller first calculates the distance difference d between D1 and D2, and then obtains the ratio of the two according to the distance difference d and the sound propagation speed v.
  • the Hass effect if the time difference between the sound waves of the two sound sources reaching the human ear is within 5-35ms, the person cannot distinguish the two sound sources, and only the leading sound (the leading sound source) gives a sense of azimuth. ), the lag sound does not seem to exist; if the time difference is between 35 and 50ms, the human ear begins to perceive the existence of the lag sound source, but the orientation of the hearing sense is still the leading sound source. And as the time difference becomes longer, the sense of orientation is stronger, but it will cause people to perceive the existence of sound more and more.
  • a first preset time may be added on the basis of 6ms, and the sum of the two is used as the delay time.
  • the delay time is in the range of 22ms ⁇ 8ms, a better sound playback effect can be guaranteed.
  • the delay time is greater than the maximum value of 30ms in the value range, due to the existence of the propagation path D3, for people with sensitive hearing, they will perceive that there is a larger propagation path in the two propagation paths D3 and D2. The sound is delayed, so the sound you hear will have a certain sense of echo, which will affect the sound quality. Therefore, in order to avoid echoes, the upper limit of the delay time is set to 30ms.
  • the characteristics of the electrical signals are explained by testing the electrical signals of the sounds emitted by the first speaker and the second speaker.
  • a spectrum analyzer or other equipment with spectrum analysis capability to detect the sound signal, the spectral characteristics of the sound signal can be obtained.
  • FIG. 34 is a schematic diagram showing the spectral characteristics of the signals of the first speaker and the second speaker according to some embodiments. As shown in FIG. 34 , a full-frequency pink noise signal or a frequency sweep signal is played through the sky audio channel, and the test results The signals from the first speaker and the second speaker do not overlap in frequency (within the 3dB roll-off point). In addition, after the two signals are superimposed on the spectrum, a completed wideband spectrum signal can be formed.
  • an acoustic signal can be used for testing, and the testing position is the position of the person shown in FIG. 5 or FIG. 12 . If the electrical signal is tested, the signals of the first speaker and the second speaker still do not overlap each other in frequency (within the 3dB roll-off point), and can be connected to form a full-band signal, because different types or structures of speakers have different electrical Therefore, the average value of the first speaker may be obviously different from the average value of the second speaker, for example, the voltage of the first speaker is twice that of the second speaker.
  • FIG. 35 shows a schematic diagram of a signal of human voice according to some embodiments.
  • human voice since human voice pronunciation features are composed of a series of harmonics, the arrows in the figure are harmonics.
  • the fundamental frequency of human voice is about 370Hz
  • the second harmonic is 740Hz
  • the third harmonic is 1119Hz. Therefore, the second harmonic is less than 1000Hz and the third harmonic is greater than 1000Hz.
  • the harmonics will reach the human ear first, and then the fundamental frequency will reach the human ear. And if the audience hears the harmonics first, there will be a feeling that the sound breaks.
  • the controller in the step of performing delay processing on the second sub-signal, is further configured to perform the following steps:
  • the controller performs human voice detection on the first audio signal, and obtains a detection result, where the detection result is whether the first audio signal includes human voice, and the human voice detection process can be specifically implemented by an existing detection method;
  • the controller determines that the second preset time is the delay time, and performs delay processing on the second sub-signal according to the second preset time.
  • the controller can reduce the delay time when the sky sound contains human voice.
  • the controller can preset a smaller second preset time, and when a human voice is detected through the human voice detection, the second preset time can be directly set as the delay time, and the delay time is performed. deal with.
  • the second preset time can be determined according to an empirical value. For example, when the first audio signal includes human voice, if the delay time is set to 14ms, a better playback effect can be guaranteed. Therefore, the second preset time can be Set to 14ms.
  • the specific time values involved in this embodiment for example, the first preset time is 16ms, the delay time range is 22ms ⁇ 8ms, the second preset time is 14ms, etc., are all embodiments of the present application
  • the specific numerical values of the above-mentioned times can also be adjusted according to the actual situation, and are not limited to the above-mentioned numerical values.
  • controller is further configured to perform the following steps:
  • the controller when the detection result is that the first audio signal does not include human voice, the controller performs energy detection on the first audio signal to determine the energy distribution of the first audio signal;
  • the controller determines the third preset time as the delay time, and performs delay processing on the second sub-signal according to the third preset time to achieve Signal synchronization.
  • the energy distribution of the signal at different frequencies is determined by performing energy detection on it.
  • FIG. 36 shows an example diagram of a signal according to some embodiments.
  • a preset frequency eg, 1000 Hz
  • the delay time can be increased.
  • the controller may preset a larger third preset time.
  • the third preset time can be directly set as the delay time, and the delay processing can be performed.
  • the third preset time may be determined according to an empirical value, for example, the third preset time may be set to 30ms, so that the height of the sound can be significantly improved.
  • the controller in the step of dividing the first audio signal into the first sub-signal and the second sub-signal, is further configured to perform the following steps:
  • the controller determines the signal valley frequency of the first audio signal, and compares the signal valley frequency with the preset frequency
  • the controller divides the first audio signal into a new first sub-signal and a new second sub-signal according to the signal valley frequency, and the frequency of the new first sub-signal is greater than Signal valley frequency, the frequency of the new second sub-signal is less than or equal to the signal valley frequency.
  • the signal sent by a helicopter includes both the low-frequency signal of the engine and the high-frequency signal of the propeller, and the harmonic frequency of the low-frequency signal may exceed the preset frequency. Therefore, , in order to segment the complete signal as little as possible, the signal valley frequency of the audio signal can be detected, and the magnitude relationship between the signal valley frequency and the preset frequency can be compared.
  • the frequency distribution frequency point is not changed, that is, the preset frequency is 1000Hz.
  • the first sub-signal and the second sub-signal are divided.
  • the signal division strategy can be adjusted, that is, the first sub-signal and the second sub-signal are divided according to the signal valley frequency as the dividing point .
  • the signal valley frequency when the signal valley frequency is 1200Hz, it can be divided according to 1200Hz to obtain a first sub-signal with a frequency greater than 1200Hz and a second sub-signal with a frequency less than or equal to 1200Hz. Therefore, by adjusting the dividing point for signal division The frequency can ensure that the complete signal is divided as little as possible to improve the sound playback effect.
  • the controller in the step of sending the first sub-signal to the first speaker for playback, is further configured to perform the following steps:
  • the controller performs high-pass filtering and signal gain adjustment processing on the second audio signal, and combines the processed second audio signal with the first sub-signal to obtain a second combined signal;
  • the controller sends the second combined signal to the first speaker for playback, so as to ensure that the sound center and the picture center are consistent.
  • the main channel speakers of the display device are usually located at the bottom of the display device, that is, the sound of the left and right main channels and the voice of the dialogue are all emitted from the bottom of the display device.
  • the image of the display device is displayed on the screen of the display device. This will cause the center of the sound to be inconsistent with the center of the picture.
  • the second audio signal and the first sub-signal are further combined and played to ensure that the center of the sound is consistent with the center of the picture.
  • FIGS. 37-40 show schematic diagrams of signal processing performed by a processor according to some embodiments.
  • first high-pass filtering is performed by a high-pass filter, and the high-pass filter is configured as A signal with a frequency higher than the preset frequency, such as 1000Hz, can be passed; in addition, in order to control the impact on the first sub-signal, the gain adjustment process is further performed after high-pass filtering. Since the second audio signal is generally larger than the first audio signal, the gain The adjustment process may specifically be performing negative gain adjustment.
  • controller is further configured to perform the following steps:
  • the controller acquires the third audio signal assigned to the third speaker
  • the controller performs delay processing on the third audio signal, so that the delayed third audio signal is synchronized with the first combined signal, so as to ensure the sound playback effect;
  • the controller sends the delayed third audio signal to a third speaker for playback.
  • the third audio signal may specifically be a center channel signal, and the corresponding third speaker is a center channel speaker.
  • the controller can perform delay processing on it to ensure that the delayed third audio signal is synchronized with the first combined signal and sent to the third speaker Play to ensure the synchronization of all channel signals and ensure the sound playback effect.
  • controller is further configured to perform the following steps:
  • the controller performs high-pass filtering and signal gain adjustment processing on the third audio signal, and combines the processed third audio signal with the first sub-signal to obtain a third combined signal;
  • the controller sends the third combined signal to the first speaker for playback.
  • the controller may also combine the third audio signal with the first sub-signal to improve the sound playback effect.
  • the second audio signal or the third audio signal may be combined with the first sub-signal, that is, either of the two signals is combined with the first sub-signal, or the two signals may be combined with the first sub-signal at the same time.
  • the first sub-signals are combined to improve the sound playback effect.
  • the controller in the step of dividing the first audio signal into the first sub-signal and the second sub-signal, is further configured to perform the following steps:
  • the first audio signal is respectively input to the high-pass filter and the low-pass filter, the signal output via the high-pass filter is the first sub-signal, and the signal output via the low-pass filter is the second sub-signal;
  • the high-pass filter is used to pass signals with a frequency greater than a preset frequency
  • the low-pass filter is used to pass signals with a frequency less than or equal to the preset frequency
  • the first audio signal when dividing the first audio signal, in addition to software implementation, it can also be implemented by hardware, that is, the first audio signal is input into a high-pass filter and a low-pass filter respectively, so as to obtain the first sub-signal and the second sub-signal.
  • the first audio signal may be sent to a power amplifier with a high-pass filter function, thereby reducing the use of high-pass filters and reducing costs.
  • the chip is, for example, DSP (Digital Signal Processing, digital signal processing) or ARM (Advanced RISC Machine) etc., so that the solution of the present application can be applied to low-performance display devices.
  • DSP Digital Signal Processing, digital signal processing
  • ARM Advanced RISC Machine
  • FIG. 41 shows a schematic diagram of a method for playing an audio signal according to some embodiments. As shown in FIG. 41 , the method includes the following steps:
  • This embodiment provides an audio signal playback method.
  • the first audio signal corresponding to the first speaker can be divided to obtain
  • the high-frequency first sub-signal and the low-frequency second sub-signal are played by assigning the high-frequency sub-signal to the first speaker and the low-frequency sub-signal to the second speaker for playback. Since the second speaker can normally play the low-frequency signal, Therefore, it can be ensured that all contents in the first audio signal can be played normally, thereby improving the sound playing effect of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

本申请一些实施方式公开一种显示装置、多声道音频设备***,显示装置包括显示器,其包括配置为呈现画面的屏幕以及配置为支撑所述屏幕的壳体,其中,所述屏幕与所述壳体围设有中空区域;扬声器,其设于所述中空区域,其包括配置为振动发声的振动件以及底部与所述振动件密封连接的腔体,其中,所述腔体包括平行于所述屏幕相互配合的第一部与第二部,所述第一部的底部与所述振动件密封连接且所述第一部呈直筒状,所述第二部配置为将所述第一部所传播声音向所述中空区域外部辐射;控制器,其配置为控制所述屏幕呈现画面,以及控制所述振动件振动发声。

Description

显示装置、多声道音频设备***
本申请要求于2021年2月1日提交的、申请号为202120281353.9;于2021年2月1日提交的、申请号为202110137533.4;于2021年3月18日提交的、申请号为202110289943.0;于2021年5月28日提交的、申请号为202121176787.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示装置技术,具体而言,涉及一种显示装置、多声道音频设备***。
背景技术
在提供音视频播放功能的显示器领域中,为提供音画效果表现更为逼真立体丰富的显示装置,会在显示器的顶部设置用于发射天空音的天空音扬声器,因此,天空音扬声器的发声指向性的研究,成为此领域的热门方向。
发明内容
本申请一些实施例提供一种显示装置、多声道音频设备***,其中,显示装置,包括:显示器,其包括配置为呈现画面的屏幕以及配置为支撑所述屏幕的壳体,其中,所述屏幕与所述壳体围设有中空区域;扬声器,其设于所述中空区域,其包括配置为振动发声的振动件以及底部与所述振动件密封连接的腔体,其中,所述腔体包括平行于所述屏幕相互配合的第一部与第二部,所述第一部的底部与所述振动件密封连接且所述第一部呈直筒状,所述第二部配置为将所述第一部所传播声音向所述中空区域外部辐射;控制器,其配置为控制所述屏幕呈现画面,以及控制所述振动件振动发声。
在一些实施例中,所述第二部向外逐渐扩张呈号角状。
在一些实施例中,所述第二部平行于屏幕向外逐渐扩张呈号角状。
在一些实施例中,所述第二部平行于屏幕非线性地向外逐渐扩张呈号角状。
在一些实施例中,所述第二部垂直于屏幕向外逐渐扩张呈号角状。
在一些实施例中,所述第二部垂直于屏幕非线性地向外逐渐扩张呈号角状。
在一些实施例中,所述振动件包括振膜,所述振膜与所述扬声器的出声面之间的锐角夹角大于等于0°且小于等于20°。
在一些实施例中,以所述扬声器的出声方向为竖直方向,所述腔体包括将所述腔体竖直分隔为第一腔体以及第二腔体的隔筋,所述振动件包括分别设于所述隔筋两侧的第一振动件以及第二振动件,其中,所述第一腔体的底部与所述第一振动件密封连接,所述第二腔体的底部与所述第二振动件密封连接。
在一些实施例中,所述扬声器还包括设于所述扬声器的出声通道的填充件,其配置为压缩所述出声通道。
在一些实施例中,以所述扬声器的出声方向为竖直方向,所述腔体左右对称于所述填充件。
在一些实施例中,所述填充件包括菱角结构。
在一些实施例中,以所述扬声器的出声方向为竖直方向,所述菱角结构的下尖端 设于所述第一部,所述菱角结构的上尖端设于所述第二部。
在一些实施例中,以所述扬声器的出声方向为竖直方向,所述菱角结构的下尖端以及上尖端均设于所述第一部。
在一些实施例中,所述腔体被竖直分隔为第一腔体以及第二腔体,所述菱角结构包括设于所述第一腔体的第一菱角结构以及设于所述第二腔体的第二菱角结构,其中,所述第一腔体左右对称于所述第一菱角结构,所述第二腔体左右对称于所述第二菱角结构。
在一些实施例中,偶数个的所述扬声器设于屏幕顶部后的中空区域,且左右对称于屏幕的竖直中心线。
在一些实施例中,左右对称于竖直中心线的两个扬声器,其距离大于等于屏幕宽度的二分之一。
在一些实施例中,设于屏幕顶部后且左右对称的两个扬声器的发声方向均与所述竖直中心线相交,且所述左右对称的两个扬声器所发声音相互远离。
在一些实施例中,所述屏幕的边缘呈坡状向外逐渐变薄,所述第二部配合所述屏幕的边缘向外逐渐扩张呈号角状。
在一些实施例中,所述腔体与所述壳体的接触面由所述壳体组成,且所述接触面的边缘通过密封件进行密封。
本申请一些实施例提供一种多声道音频设备***,包括音频设备模块和音频分发器。其中,所述音频设备模块包括至少两个音频设备;所述音频分发器包括音频输入接口、音频处理器和第一通信模块;所述音频输入接口与显示装置相连接,被配置为接收显示装置发送的多种声道的音频数据;所述音频处理器与所述音频输入接口相连接,被配置为将多种声道的音频数据转换为至少两组音频信号,每种音频信号对应的声道不同;所述第一通信模块分别与所述音频处理器和所述音频设备模块相连接,被配置为接收所述音频处理器发送的至少两组音频信号,以及,将至少两组音频信号分别发送至所述至少两个音频设备。
在一些实施例中,所述音频处理器包括至少两个输出接口,每个输出接口用于传输一种音频信号;所述至少两个输出接口与所述第一通信模块相连接,被配置为将所述至少两组音频信号发送至所述第一通信模块。
在一些实施例中,至少一个音频设备包括:第二通信模块和音频输出接口;所述第二通信模块与所述第一通信模块相连接,被配置为接收音频信号;所述音频输出接口与所述第二通信模块相连接,被配置为播放音频信号。
在一些实施例中,所述第一通信模块与所述第二通信模块之间为无线通信连接。
在一些实施例中,所述音频分发器还包括声音采集器,所述声音采集器被配置为采集所述至少两个音频设备播放的至少两个声音信号。
在一些实施例中,所述音频分发器还包括音频信号分配模块;所述音频信号分配模块与所述声音采集器相连接,被配置为接收至少两个声音信号,以及,根据所述至少两个声音信号将所述至少两个音频信号分配给所述至少两个音频设备,得到音频信号分配结果。
在一些实施例中,所述音频信号分配模块进一步被配置为:计算所述至少两个声音信号的声压;按照声压大小对所述至少两个音频设备进行排序;根据预设的对应关 系将所述至少两个音频信号分配给所述至少两个音频设备。
在一些实施例中,所述音频信号分配模块与所述第一通信模块相连接,被配置为将所述音频信号分配结果发送至所述第一通信模块;所述第一通信模块进一步被配置为根据所述音频信号分配结果,将所述至少两组音频信号分别发送至所述至少两个第一类音频设备。
在一些实施例中,所述多声道音频设备***还包括特定音频设备,被配置为播放预设的音频信号。
在一些实施例中,所述特定音频设备为显示装置的内置音频设备。
本申请一些实施例还提供一种显示装置,包括:
第一扬声器,用于播放第一声道的音频信号;
第二扬声器,用于播放与所述第一声道不同的第二声道的音频信号;
解码器,用于对信号源输入的信号进行解码,得到解码结果;
分别与所述第一扬声器、所述第二扬声器以及所述解码器连接的控制器,所述控制器被配置为:
根据所述解码结果,获取不同声道的音频信号,所述不同声道的音频信号包括分配至第一扬声器的第一音频信号,以及分配至第二扬声器的第二音频信号;
将所述第一音频信号划分为第一子信号和第二子信号,所述第一子信号的频率大于预设频率,所述第二子信号的频率小于或者等于所述预设频率;
将所述第一子信号发送至所述第一扬声器进行播放;
对所述第二子信号进行延时处理,并将延时后的第二子信号与所述第二音频信号进行合并,得到第一合并信号,并将所述第一合并信号发送至所述第二扬声器进行播放。
在一些实施例中,所述对所述第二子信号进行延时处理的步骤中,所述控制器被进一步配置为:
获取所述第一扬声器所播放的声音传播到对象的第一距离,以及所述第二扬声器所播放的声音传播到所述对象的第二距离;
根据所述第一距离以及所述第二距离,确定延时时间;
根据所述延时时间,对所述第二子信号进行延时处理。
在一些实施例中,所述根据所述第一距离以及所述第二距离,确定延时时间的步骤中,所述控制器被进一步配置为:
计算所述第一距离和所述第二距离的距离差;
计算所述距离差与声音传播速度的比值;
确定所述比值与第一预设时间的和为所述延时时间。
在一些实施例中,所述对所述第二子信号进行延时处理的步骤中,所述控制器被进一步配置为:
对所述第一音频信号进行人声检测,得到检测结果;
在所述检测结果为所述第一音频信号包括人声时,确定第二预设时间为延时时间,并根据所述第二预设时间对所述第二子信号进行延时处理。
在一些实施例中,所述控制器被进一步配置为:
在所述检测结果为所述第一音频信号不包括人声时,对所述第一音频信号进行能 量检测;
若所述第一音频信号在所述预设频率的能量低于预设能量值,确定第三预设时间为延时时间,并根据所述第三预设时间对所述第二子信号进行延时处理。
在一些实施例中,所述将所述第一音频信号划分为第一子信号和第二子信号的步骤中,所述控制器被进一步配置为:
确定所述第一音频信号的信号谷值频率;
在所述信号谷值频率大于所述预设频率时,根据所述信号谷值频率将所述第一音频信号划分为新的第一子信号和新的第二子信号,所述新的第一子信号的频率大于所述信号谷值频率,所述新的第二子信号的频率小于或者等于所述信号谷值频率。
在一些实施例中,所述将所述第一子信号发送至所述第一扬声器进行播放的步骤中,所述控制器被进一步配置为:
对所述第二音频信号进行高通滤波以及信号增益调节处理,并将处理后的第二音频信号与所述第一子信号进行合并,得到第二合并信号;
将所述第二合并信号发送至所述第一扬声器进行播放。
在一些实施例中,所述控制器被进一步配置为:
获取分配至第三扬声器的第三音频信号;
对所述第三音频信号进行延时处理,以使得延时后的第三音频信号与所述第一合并信号同步;
将所述延时后的第三音频信号发送至所述第三扬声器进行播放。
在一些实施例中,所述控制器被进一步配置为:
对所述第三音频信号进行高通滤波以及信号增益调节处理,并将处理后的第三音频信号与第一子信号进行合并,得到第三合并信号;
将所述第三合并信号发送至所述第一扬声器进行播放。
在一些实施例中,所述将所述第一音频信号划分为第一子信号和第二子信号的步骤中,所述控制器被进一步配置为:
将所述第一音频信号分别输入高通滤波器以及低通滤波器,经由所述高通滤波器输出的信号为所述第一子信号,经由所述低通滤波器输出的信号为所述第二子信号;
其中,所述高通滤波器用于通过频率大于所述预设频率的信号,所述低通滤波器用于通过频率小于或者等于所述预设频率的信号。
在一些实施例中,所述第一音频信号为天空音声道信号,所述第二音频信号为主声道信号,所述第一音频信号与所述第二音频信号的左右声道属性相同。
在一些实施例中,所述第三音频信号为中置声道信号。
附图说明
图1示出了根据一些实施例的显示装置的使用场景;
图2示出了根据一些实施例的控制装置的硬件配置框图;
图3示出了根据一些实施例的显示装置的硬件配置框图;
图4示出了根据一些实施例的显示装置中软件配置图;
图5示出了根据一些实施例的显示装置中扬声器的安装示意图;
图6-图14示出了根据一些实施例的扬声器的结构示意图;
图15-图16示出了根据一些实施例的显示装置的整机结构图;
图17示出了根据一些实施例的显示装置中扬声器的安装示意图;
图18示出了根据一些实施例的显示装置所发声音的传播示意图;
图19示出了根据一些实施例的一种多声道音频设备***的整体示意图;
图20示出了根据一些实施例的音频分发器的示意图;
图21示出了根据一些实施例的音频处理器和第一通信模块的连接示意图;
图22示出了根据一些实施例的音频设备的结构示意图;
图23示出了根据一些实施例的音频设备的摆放位置图;
图24示出了根据一些实施例的音频设备的位置图;
图25示出了根据一些实施例的中低音炮音箱的示意图;
图26示出了根据一些实施例的应用场景的示意图;
图27示出了根据一些实施例的设置有天空音扬声器的显示装置的示意图;
图28示出了根据一些实施例的多声道显示装置的***架构的示意图;
图29示出了根据一些实施例的不同扬声器对不同频率的信号的播放效果的示意图;
图30示出了根据一些实施例的显示装置的示意图;
图31示出了根据一些实施例的控制器进行信号处理的示意图;
图32示出了根据一些实施例的多声道显示装置的信号链架构的示意图;
图33示出了根据一些实施例的另一场景示意图;
图34示出了根据一些实施例的第一扬声器以及第二扬声器的信号的频谱特征的示意图;
图35示出了根据一些实施例的人声的信号示意图;
图36示出了根据一些实施例的信号的示例图;
图37-图40示出了根据一些实施例的处理器进行信号处理的示意图;
图41示出了根据一些实施例的音频信号播放方法的示意图。
附图标记说明:
中框B1;透声孔B2;后壳B3;屏幕B4;密封泡棉B5;S11-腔体;S11a-第一部;S11b-第二部;S11c-隔筋;S11d-菱角结构;S11d`-菱角结构;S12-振动件;S12a-振膜;S12b-外壳;S12c-磁铁组件;S12`-振动件;S12a`-振膜;S1-天空音扬声器;S2-天空音扬声器;S3-左声道扬声器;S4-右声道扬声器;S5-低音扬声器;S6-中声道扬声器;S7-环绕音扬声器;S8-环绕音扬声器;S81-腔体;S82-振动件。
具体实施方式
为使本申请的目的、实施方式和优点更加清楚,下面将结合本申请示例性实施例中的附图,对本申请示例性实施方式进行清楚、完整地描述,显然,所描述的示例性实施例仅是本申请一部分实施例,而不是全部的实施例。
基于本申请描述的示例性实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请所附权利要求保护的范围。此外,虽然本申请中公开内容按照示范性一个或几个实例来介绍,但应理解,可以就这些公开内容的各个方面也可以单独构成一个完整实施方式。需要说明的是,本申请中对于术语的简要说明,仅是为了方便理解接下来描述的实施方式,而不是意图限定本申请的实施方式。除非另有说明, 这些术语应当按照其普通和通常的含义理解。
图1示出了根据一些实施例的显示装置的使用场景,如图1所示,用户可通过移动终端300和控制装置100操作显示装置200。控制装置100可以是遥控器,遥控器和显示装置的通信包括红外协议通信、蓝牙协议通信,无线或其他有线方式来控制显示装置200。用户可以通过遥控器上按键,语音输入、控制面板输入等输入用户指令,来控制显示装置200。在一些实施例中,也可以使用移动终端、平板电脑、计算机、笔记本电脑、和其他智能设备以控制显示装置200。
在一些实施例中,移动终端300可与显示装置200安装软件应用,通过网络通信协议实现连接通信,实现一对一控制操作的和数据通信的目的。也可以将移动终端300上显示音视频内容传输到显示装置200上,实现同步显示功能显示装置200还与服务器400通过多种通信方式进行数据通信。可允许显示装置200通过局域网(LAN)、无线局域网(WLAN)和其他网络进行通信连接。服务器400可以向显示装置200提供各种内容和互动。显示装置200,可以液晶显示器、OLED显示器、投影显示装置。显示装置200除了提供广播接收电视功能之外,还可以附加提供计算机支持功能的智能网络电视功能。
图2示出了根据一些实施例的控制装置的硬件配置框图。如图2所示,控制装置100包括控制器110、通信接口130、用户输入/输出接口140、存储器、供电电源。控制装置100可接收用户的输入操作指令,且将操作指令转换为显示装置200可识别和响应的指令,起用用户与显示装置200之间交互中介作用。通信接口130用于和外部通信,包含WIFI芯片,蓝牙模块,NFC或可替代模块中的至少一种。用户输入/输出接口140包含麦克风,触摸板,传感器,按键或可替代模块中的至少一种。
图3示出了根据一些实施例的显示装置的硬件配置框图。如图3所示显示装置200包括调谐解调器210、通信器220、检测器230、外部装置接口240、控制器250、显示器260、音频输出接口270、存储器、供电电源、用户接口280中的至少一种。控制器包括中央处理器,视频处理器,音频处理器,图形处理器,RAM,ROM,用于输入/输出的第一接口至第n接口。显示器260可为液晶显示器、OLED显示器、触控显示器以及投影显示器中的至少一种,还可以为一种投影装置和投影屏幕。调谐解调器210通过有线或无线接收方式接收广播电视信号,以及从多个无线或有线广播电视信号中解调出音视频信号,如以及EPG数据信号。检测器230用于采集外部环境或与外部交互的信号。控制器250和调谐解调器210可以位于不同的分体设备中,即调谐解调器210也可在控制器250所在的主体设备的外置设备中,如外置机顶盒等。
在一些实施例中,控制器250,通过存储在存储器上中各种软件控制程序,来控制显示装置的工作和响应用户的操作。控制器250控制显示装置200的整体操作。用户可在显示器260上显示的图形用户界面(GUI)输入用户命令,则用户输入接口通过图形用户界面(GUI)接收用户输入命令。或者,用户可通过输入特定的声音或手势进行输入用户命令,则用户输入接口通过传感器识别出声音或手势,来接收用户输入命令。
在一些实施例中,“用户界面”,是应用程序或操作***与用户之间进行交互和信息交换的介质接口,它实现信息的内部形式与用户可以接受形式之间的转换。用户界面常用的表现形式是图形用户界面(Graphic User Interface,GUI),是指采用图形方式显示的与计算机操作相关的用户界面。它可以是在电子设备的显示屏中显示的一个图标、窗口、控件等界面元素,其中控件可以包括图标、按钮、菜单、选项卡、文本框、对话框、状态栏、导 航栏、Widget等可视的界面元素中的至少一种。
图4示出了根据一些实施例的显示装置中软件配置图,如图4所示,将***分为四层,从上至下分别为应用程序(Applications)层(简称“应用层”),应用程序框架(Application Framework)层(简称“框架层”),安卓运行时(Android runtime)和***库层(简称“***运行库层”),以及内核层。内核层至少包含以下驱动中的至少一种:音频驱动、显示驱动、蓝牙驱动、摄像头驱动、WIFI驱动、USB驱动、HDMI驱动、传感器驱动(如指纹传感器,温度传感器,压力传感器等)、以及电源驱动等。
本申请所提出的显示装置,包括:显示器、扬声器以及控制器。
显示器包括屏幕以及壳体。屏幕用于在控制器的控制下呈现画面。壳体用于在物理结构上支撑屏幕。屏幕与壳体围设有中空区域,主要用于在该中空区域内设置各类电子元件;该中空区域内所设电子元件包括扬声器。
需要说明的是,出于简要说明的目的,后续实施例的描述中,无特别限制的情况下,“厚度”指的是对应主体在垂直于屏幕的方向上的距离(例如:中空区域的厚度指的是屏幕与壳体后壳之间的距离);“宽度”指的是对应主体在平行于屏幕的方向上的距离(例如:以用户的观看视角为基准时,屏幕的宽度指的是屏幕左边框到屏幕右边框之间的距离)。
扬声器包括振动件以及腔体。振动件用于在控制器的控制下振动发声,其一般包括振膜、线圈以及磁铁件。腔体用于与振动件密封连接以将振动件所发声音向腔体开口方向传播;且该腔体开口朝向中空区域外部,以将声音向显示器外部传播。
其中,腔体包括第一部以及第二部。该第一部与该第二部平行于屏幕相互配合:该第一部的通道以及该第二部的通道均平行于屏幕;该第一部的底部与振动件密封连接;该第二部的底部与该第一部的顶部紧密配合;该第二部的顶部为该腔体的开口,即该扬声器的出声面。
该第一部呈直筒状。在该第一部的作用下,振动件所发声音被集中;进而,被集中的声音在该第二部的作用下向外辐射。
在一些实施例中,该第一部呈棱柱状。
在一些实施例中,棱柱状第一部的横截面呈三角形。
在一些实施例中,棱柱状第一部的横截面呈矩形。
在一些实施例中,棱柱状第一部的横截面呈五边形。
在一些实施例中,该第一部呈圆柱状。
在一些实施例中,圆柱状第一部的横截面呈圆形。
在一些实施例中,圆柱状第一部的横截面呈椭圆形。
本申请实施例所提出的显示装置,针对设于显示器内部空间的扬声器,通过在用于辐射声音的第二部前设置呈直筒状的第一部,并将振动件与第一部的底部密封连接,使得振动件所发声音在被第二部辐射扩散之前已被第一部所集中,从而增强了扬声器发声的指向性。
图5示出了根据一些实施例的显示装置中扬声器的安装示意图。如图5所示,该实施例中,从侧视角度展示了扬声器在显示装置中的安装示意图。显示装置的显示器中,屏幕B4紧密嵌入中框B1,后壳B3也固定在中框B1上。屏幕B4的边缘越往外越薄,中框B1贴合着屏幕B4也同样边缘越往外越薄。在屏幕B4与后壳B3围设的中空区域内设有如图所示的扬声器。
扬声器的腔口朝向显示器外部,其靠近中空区域内部的第一部的厚度均匀,其远离中空区域内部的第二部配合中框的边缘向外逐渐增大其厚度,从而增强了发声的指向性,并减小了显示器因扬声器的设置所增加的体积以及厚度。
在显示器顶端的后壳部位留有透声孔B2,以便声音传播至显示器外部。
在一些实施例中,扬声器的第二部向外逐渐扩张呈号角状。即,以该第二部的通道轴向为衡量长度的方向,随着朝向中空区域外部逐渐延伸,该第二部的每单位长度的通道体积逐渐增大。
图6-图14示出了根据一些实施例的扬声器的结构示意图。
如图6所示,该实施例中,扬声器包括振动件S12以及腔体S11。腔体S11分为第一部S11a以及第二部S11b;振动件S12包括振膜S12a。
以垂直于屏幕的视角为正视图视角。正视图中:第一部S11a为矩形;第二部S11b为下底短上底长的等腰梯形。侧视图中:第一部S11a为矩形;第二部S11b为下底短上底长的直角梯形。顶视图中:振膜S12a位于较小的矩形内。
即,第二部S11b向外线性地逐渐增大宽度的同时也向外线性地逐渐增大厚度,通过这种方式第二部S11b呈号角状。
在一些实施例中,扬声器的腔体的第二部在与屏幕平行的平面上,朝向中空区域外部逐渐扩张呈号角状。即,该第二部的厚度不变,其通过平行于屏幕向外逐渐增大宽度呈号角状。
如图7所示,该实施例中,以垂直于屏幕的视角为正视图视角。正视图中:第一部S11a为矩形;第二部S11b为下底短上底长的等腰梯形。侧视图中:S11a与S11b共同组成矩形。
该实施例中,扬声器的厚度均匀,第二部仅通过向外线性地逐渐增大宽度呈号角状。即,第二部仅平行于屏幕向外逐渐扩张呈号角状。
在一些实施例中,第二部在与屏幕平行的平面上,朝向中空区域外部非线性地逐渐扩张呈号角状。即,该第二部的厚度不变,其通过平行于屏幕向外非线性地逐渐增大宽度呈号角状。正视图中,该第二部呈侧边为曲线的梯形。
在一些实施例中,第二部按照指数型曲线平行于屏幕向外非线性地逐渐增大宽度。
在一些实施例中,第二部按照抛物线型曲线平行于屏幕向外非线性地逐渐增大宽度。
在一些实施例中,第二部按照双曲线型曲线平行于屏幕向外非线性地逐渐增大宽度。
在一些实施例中,扬声器的腔体的第二部在与屏幕垂直的平面上,朝向中空区域外部逐渐扩张呈号角状。即,该第二部的宽度不变,其通过垂直于屏幕向外逐渐增大厚度呈号角状。
如图8所示,该实施例中,以垂直于屏幕的视角为正视图视角。正视图中:第一部S11a与第二部S11b共同组成矩形。侧视图中,S11a为矩形;S11b为下底短上底长的直角梯形。
该实施例中,扬声器的宽度均匀,第二部仅通过向外逐渐增大厚度呈号角状。即,第二部仅垂直于屏幕向外逐渐扩张呈号角状。
在一些实施例中,第二部在与屏幕垂直的平面上,朝向中空区域外部非线性地逐渐扩张呈号角状。
即,该第二部的宽度不变,其通过垂直于屏幕向外非线性地逐渐增大厚度呈号角状。侧视图中,该第二部呈远离屏幕的侧边为直线,靠近屏幕的侧边为曲线的直角梯形。
如图9所示,该实施例中,以垂直于屏幕的视角为正视图视角。正视图中:第一部S11a 呈矩形,第二部S11b呈侧面为曲线的下底短上底长的等腰梯形。侧视图中:S11a呈矩形,第二部S11b呈下底短上底长的直角梯形。
该实施例中,扬声器的第二部向外非线性地逐渐增大宽度的同时线性地逐渐增大厚度,通过这种方式呈号角状。即,第二部既平行于屏幕非线性地向外逐渐扩张又垂直于屏幕线性地向外逐渐扩张呈号角状。
在一些实施例中,扬声器的腔体包括隔筋。以扬声器的出声方向为竖直方向,该隔筋竖直地将腔体分隔为两个子腔体:第一腔体以及第二腔体。相对应的,在该隔筋两侧,分别设置与该第一腔体的底部密封连接的第一振动件以及于该第二腔体的底部密封连接的第二振动件。
其中,以扬声器的出声方向为衡量长度的方向,第一振动件的第一部与第二振动件的第一部均宽度均匀且厚度均匀,第一振动件的第二部与第二振动件的第二部均向外逐渐扩张呈号角状。
该实施例的优点在于,将扬声器配置为具有两个振动件的双驱动扬声器,提高了扬声器的发声功率;而且隔筋的设置使得两个振动件各自发出的声音不会相互干扰,减小扬声器的相位误差。
如图10所示,该实施例中,扬声器的腔体被隔筋S11c分隔为左右两个腔体:第一腔体以及第二腔体。第一腔体的底部密封有第一振动件S12`,第二腔体的底部密封有第二振动件S12。
以垂直于屏幕的视角为正视图视角。正视图中:腔体的第一部S11a呈矩形,第二部S11b呈下底短上底长的等腰梯形;隔筋S11c竖直地将腔体分隔开,第一腔体的S11a与第二腔体的S11a均呈矩形,第一腔体的S11b与第二腔体的S11b呈相互左右对称的两个直角梯形。
侧视图中:第一腔体的S11a与第二腔体的S11a均呈矩形,第一腔体的S11b与第二腔体的S11b均呈下底短上底长的直角梯形。
顶视图中:第一振动件S12`的振膜S12a`与第二振动件S12的振膜S12a相互左右对称。
在一些实施例中,图10所示的被隔筋S11c分隔出的第一腔体以及第二腔体左右对称。
如图11所示,该实施例中,第二振动件S12包括三部分:振膜S12a;外壳S12b;磁铁组件S12c。其中,振膜S12a一般通过胶粘方式固定在外壳S12b上,磁铁组件S12c一般通过注塑工艺与外壳S12b紧密配合,外壳S12b一般通过胶粘方式固定在扬声器的腔体S11上。其中,S12a与S12b的固定、S12c与S12b的固定、S12b与S11的固定,均为密封固定,没有空气泄漏的通道。
在一些实施例中,扬声器还包括设于出声通道(即,设于腔体内部)的填充件。该填充件一般为闭合的立体结构,在该填充件的作用下,出声通道的体积被压缩。
该实施例的优点在于,通过填充件的设置,得到被填充件与腔体共同挤压所形成的压缩空气腔体,从而提高扬声器发声的响度。
在一些实施例中,以扬声器的出声方向为竖直方向,腔体左右对称于该填充件。即,以填充件闭合的空间边界为中心竖直地将腔体划分为两部分,所划分出的两部分左右对称。
该实施例的优点在于,通过将填充件设置为腔体的左右对称中心,使得声音能够左右一致地通过腔体,提高扬声器发声的响度的同时,保证扬声器发声的均匀度。
在一些实施例中,该填充件为球体结构。
在一些实施例中,该填充件为立方体结构。
在一些实施例中,该填充件为菱角结构。
在一些实施例中,以扬声器的出声方向为竖直方向,该菱角结构的下尖端设于腔体的第一部,上尖端设于腔体的第二部。
如图12所示,该实施例中,扬声器的腔体内设有菱角结构S11d。菱角结构S11d的下尖端设于腔体的第一部,上尖端设于腔体的第二部。
腔体左右对称于菱角结构S11d,具体表现为正视图中所示结构。
以垂直于屏幕的视角为正视图视角。正视图中:第一部为矩形;第二部为下底短上底长的等腰梯形;菱角结构S11d呈菱形。
其中,该菱形的下尖端至第一部边缘的距离为d1,通过下尖端平行腔口截取腔体所得截面的宽度为d2,d1的二倍等于d2;该菱形的上尖端至第二部边缘的距离为d3,通过上尖端平行腔口截取腔体所得截面的宽度为d4,d3的二倍等于d4。
在一些实施例中,图12所示的菱角结构S11d在正视图中呈左右对称且上下对称的规则的菱形。
在一些实施例中,以扬声器的出声方向为竖直方向,该菱角结构的下尖端以及上尖端均设于腔体的第一部。即,该菱角结构整体设于腔体的第一部。
如图13所示,该实施例中,扬声器的腔体内设有菱角结构S11d。菱角结构S11d的下尖端以及上尖端均设于腔体的第一部。
腔体左右对称于菱角结构S11d,具体表现为正视图中所示结构。
以垂直于屏幕的视角为正视图视角。正视图中:第一部为矩形;第二部为下底短上底长的等腰梯形;菱角结构S11d呈菱形。
其中,该菱形的下尖端至第一部边缘的距离为d1,通过下尖端平行腔口截取腔体所得截面的宽度为d2,d1的二倍等于d2;该菱形的上尖端至第一部边缘的距离为d3,通过上尖端平行腔口截取腔体所得截面的宽度为d2,d3的二倍等于d2。
在一些实施例中,腔体被竖直分隔为位于左侧的第一腔体以及位于右侧的第二腔体;相应的,在第一腔体内部设置一个菱角结构,称之为第一菱角结构;在第二腔体内部设置一个菱角结构,称之为第二菱角结构。第一腔体左右对称于该第一菱角结构;第二腔体左右对称于该第二菱角结构。
如图14所示,该实施例中,腔体被隔筋竖直分隔为第一腔体以及第二腔体。第一腔体的内部设有第一菱角结构S11d`,第二腔体的内部设有第二菱角结构S11d。
第一腔体左右对称于第一菱角结构S11d`,第二腔体左右对称于第二菱角结构S11d。具体表现为正视图中所示结构。
以垂直于屏幕的视角为正视图视角。正视图中:第一腔体的第一部与第二腔体的第一部均呈矩形,第一腔体的第二部与第二腔体的第二部呈相互左右对称的两个直角梯形;第一菱角结构S11d`以及第二菱角结构S11d均呈不规则的菱形。
其中,第一菱角结构S11d`的下尖端至第一腔体第一部的距离为d5,通过第一菱角结构S11d`的下尖端平行腔口截取第一腔体所得截面的宽度为d6,d5的二倍等于d6;第一菱角结构S11d`的上尖端至第一腔体第二部的距离为d7,通过第一菱角结构S11d`的上尖端平行腔口截取第一腔体所得截面的宽度为d8,d7的二倍等于d8。同理,不再赘述第二腔体左右对称于第二菱角结构S11d的具体结构。
在一些实施例中,图14所示的第一腔体与第二腔体相互左右对称,同时,第一菱角结构S11d`与第二菱角结构S11d也相互左右对称。
在一些实施例中,显示装置包括偶数个第一部厚度均匀且宽度均匀、第二部呈号角状的扬声器。该偶数个的扬声器设于屏幕顶部后的中空区域,且左右对称于屏幕的竖直中心线。
在一些实施例中,该偶数个的扬声器设于屏幕侧边后的中空区域,且左右对称于屏幕的竖直中心线。
在一些实施例中,振动件包括振膜,振膜与扬声器的出声面之间的锐角夹角大于等于0小于等于20°。即,振膜与扬声器的出声面之间的夹角处于-20°~+20°范围内(包括-20°以及+20°)。
图15-图16示出了根据一些实施例的显示装置的整机结构图。如图15所示,该实施例中,显示装置的矩形屏幕后方的中空区域中,设有8个扬声器:S1、S2、S3、S4、S5、S6、S7、S8。
其中,S1、S2、S7、S8均为第一部厚度均匀且宽度均匀、第二部呈号角状的扬声器。
S1与S2设于屏幕顶部后的中空区域,主要用于向天花板发射声音,分别称为左天空音扬声器以及右天空扬声器。天空音扬声器的高度为d9。两个天空音扬声器分别距屏幕竖直中心线的距离相等,即,d10等于d11。
S8与S7设于屏幕两侧后的中空区域,主要用于向两侧墙壁发射声音,分别称为左环绕扬声器以及右环绕扬声器;两个天空音扬声器左右对称于屏幕的竖直中心线;两个环绕扬声器左右对称于屏幕的竖直中心线。
S1由腔体S11和振动件S12组成,S11位于S12上方,且S12的振膜呈水平方向或者与水平方向的夹角处于-20°~+20°范围内(包括-20°以及+20°);同理,S2的腔体与振膜结构不再赘述。
S8由腔体S81和振动件S82组成,S81位于S82外侧,且S82的振膜呈垂直方向或者与垂直方向的夹角处于-20°~+20°范围内(包括-20°以及+20°);同理,S7的腔体与振膜结构不再赘述。
S3以及S4分别设于屏幕下部两侧后的中空区域,分别为左声道扬声器以及右声道扬声器。S6居中设于屏幕下部后的中空区域,为中声道扬声器。
S5居中设于屏幕偏下部后的中空区域,为低音扬声器。
在一些实施例中,左右对称于竖直中心线的两个扬声器,其距离大于等于屏幕宽度的二分之一。参考图14所示,即(d10+d11)×2≥d。d为屏幕的宽度。
该实施例的优点在于,通过将左右对称于竖直中心线的两个扬声器设置为距离大于等于屏幕宽度的二分之一,提高了显示装置的天空音表现效果。
在一些实施例中,设于屏幕顶部后且左右对称于竖直中心线的两个扬声器,其发声方向均与竖直中心线相交,且所发声音相互远离。即,两个左右对称的天空音扬声器的发声方向不处于同一条直线上,且所发声音方向相反。
该实施例的优点在于,在显示器内部设置天空音扬声器的情况,相比于未在显示器内部设置天空音扬声器的情况,其一般会导致显示装置的天空音扬声器区域增厚。通过将天空音扬声器倾斜放置且发声方向相互远离,使得可以在保证两个天空音扬声器腔口距离的同时,缩小这两个天空音扬声器在显示器内部的距离。从而保证显示装置的天空音表现效 果的同时,减小了显示装置的天空音扬声器区域的增厚程度。
如图16所示,该实施例中,左天空音扬声器S1与右天空音扬声器S2左右对称于屏幕的竖直中心线,且二者的发声方向均与竖直中心线不平行。以右天空音扬声器S2为示例,S2的振膜与竖直中心线的夹角θ大于0°,即,S2的发声方向与竖直中心线的夹角θ大于0°。
通过这种结构,使得左天空音扬声器S1与右天空音扬声器S2保持腔口距离的同时,缩小二者在显示器内部的距离。
在一些实施例中,图15中S2的振膜与竖直中心线的夹角θ处于0~20°范围内(不包括0°,包括20°)。
在一些实施例中,屏幕的边缘呈坡状向外逐渐变薄,第二部配合屏幕的边缘向外逐渐扩张呈号角状。
该实施例的优点在于,配合薄边框的屏幕设置呈号角状的第二部,合理利用了屏幕的结构,进一步减小了扬声器在显示器中所占空间。
在一些实施例中,扬声器的腔体与显示器的壳体的接触面由该壳体组成,且该接触面的边缘通过密封件进行密封。即,该壳体用于围设中空区域以容纳扬声器的同时,还用于充当扬声器的腔体的一个面。
该实施例的优点在于,通过将壳体设置为腔体的一个面,减小了扬声器一个壁厚以及扬声器与壳体之间的间隙,从而进一步地减小了显示装置的扬声器区域的厚度。
图17示出了根据一些实施例的显示装置中扬声器的安装示意图。如图17所示,该实施例中,从侧视角度展示了扬声器的安装示意图。扬声器的腔体只有三个面:两个侧面以及梯形边所在的一个正面。后壳充当扬声器的腔体的背面,使得显示器的厚度可以减小腔体的一个背面的壁厚。同时,通过密封泡棉B5对腔体与后壳之间的边缘间隙进行密封,用于保证扬声器的气密性。
图18示出了根据一些实施例的显示装置所发声音的传播示意图。如图18所示,该实施例中,显示装置的显示器内部设有多个扬声器:至少两个天空音扬声器、至少两个环绕音扬声器以及至少两个主声道扬声器。
天空音扬声器所发声音经天花板反射后传播至用户;环绕音扬声器所发声音经两侧墙壁反射后传播至用户;主声道扬声器所发声音正对用户传播。从而天空音、环绕音、主音以及屏幕画面共同提供给用户立体丰富的临场感体验。
该实施例中,通过至少将天空音扬声器设置为第一部厚度均匀宽度均匀且第二部为向外逐渐扩张的号角状的结构,能够有效增强天空音的指向性,并减小显示器的天空音扬声器区域因天空音扬声器的设置所增加的体积以及厚度。
在一些实施例中,图19示出了根据一些实施例的一种多声道音频设备***的整体示意图。如图19所示,多声道音频设备***可以和显示装置连接,显示装置可以将音频数据发送至多声道音频设备***,从而利用多声道音频设备***播放显示装置中的音频。
多声道音频设备***包括音频设备模块和音频分发器。音频设备模块可以将显示装置中的音频播放给用户。音频设备模块中包括多个音频设备。显示装置可以发送多种声道的音频数据至多声道音频设备***中。每个音频设备可以播放不同声道的音频数据,从而形成立体声场,以提高用户的体验性。
音频分发器包括音频输入接口、音频处理器和第一通信模块。图20示出了根据一些 实施例的音频分发器的示意图。如图2所示,音频输入接口用于连接显示装置和音频分发器,以接收显示装置发送的音频数据,音频输入接口可以是USB(Universal Serial Bus,通用串行总线)接口。音频输入接口的输入端和显示装置连接,输出端和音频处理器连接,从而实现将显示装置的音频数据发送至音频处理器。
音频处理器通过音频输入接口可以接收到显示装置发送的多种声道的音频数据,并且可以将多种声道的音频数据转换为多种音频信号,每种音频信号可以对应不同的声道。音频信号的数量可以和音频设备的数量相同,从而实现将每种音频信号分别发送给一个音频设备。
在一些实施例中,显示装置可以发送两种声道的音频数据:左置声道和右置声道。此时音频处理器可以将每种声道的音频数据都转换为一组音频信号,其中,第一组音频信号中包括左置声道的音频数据,第二组音频信号中包括右置声道的音频数据。需要播放的音频信号有两组,因此音频设备***中可以包括两个音频设备,每个音频设备分别播放一组音频信号。
在一些实施例中,显示装置可以发送四种声道的音频数据,其中可以包括两种前出声道的音频数据:左置声道和右置声道,以及两种天空声道的数据:天空前左声道和天空前右声道。每个音频设备可以同时播放出一种前出声道的音频数据和一种天空声道的数据,因此音频处理器可以将这四种声道的音频数据转换为两组音频信号。例如,音频处理器可以将左置声道和天空前左声道转换为一组音频信号,例如进行打包处理,得到第一组音频信号。音频处理器再将右置声道和天空前右声道转换为一组音频信号,得到第二组音频信号。此时每种音频信号对应了两种声道的音频数据,并且两组音频信号对应的声道是不同的。此时***中可以包括两个音频设备,两组音频信号分别发送给两个音频设备,实现两个音频设备播放不同声道的音频,形成声场。
在一些实施例中,显示装置可以发送八种声道的音频数据,其中可以包括四种前出声道的音频数据:左置声道、右置声道、环绕左置声道和环绕右置声道,以及四种天空声道的数据:天空前左声道、天空前右声道、天空后左声道和天空后右声道。此时音频处理器可以将八种声道的音频数据转换为四组音频信号。其中,左置声道和天空前左声道转换为第一组音频信号,右置声道和天空前右声道转换为第二组音频信号,环绕左置声道和天空后左声道转换为第三组音频信号,环绕右置声道和天空后右声道转换为第四组音频信号。此时***中可以包括四个音频设备,四组音频信号分别发送给四个音频设备,实现四个音频设备播放不同声道的音频,形成立体声场。
在一些实施例中,第一通信模块和音频处理器相连接。音频处理器可以将转换后的所有音频信号都发送至第一通信模块。第一通信模块将音频信号分别发送给每个音频设备,每个音频设备可以播放一组音频信号,以实现播放不同声道的音频。
在一些实施例中,音频处理器中可以设置有输出接口。输出接口用于将音频处理器中的音频信号发送至第一通信模块,每个输出接口可以传输一组音频信号。图21示出了根据一些实施例的音频处理器和第一通信模块的连接示意图。如图21所示,其中,音频处理器中可以设置有五个输出接口,可以传输5组音频信号。例如,I2S_SDO1接口可以传输第一组音频信号,包括有左置声道和天空前左声道。I2S_SDO2接口可以传输第二组音频信号,包括右置声道和天空前右声道。I2S_SDO3接口可以传输第三组音频信号,包括环绕左置声道和天空后左声道。I2S_SDO4接口可以传输第四组音频信号,包括环绕右置 声道和天空后右声道。I2S_SDO5接口可以传输第五音频信号,包括低音声道。
音频设备模块中包括多个音频设备,每个音频设备的型号是相同的,可以是具备相同的通信协议并且具备音频放大能力的音箱。
音频设备中可以包括第二通信模块和音频输出接口。第二通信模块和第一通信模块相连接,可以接收第一通信模块发送的音频信号。
音频输出接口可以和第二通信模块相连接,当第二通信模块接收到音频信号时,可以进一步将音频信号传输至音频输出接口,通过音频输出接口可以实现音频信号的播放。
在一些实施例中,音频设备还可以包括音频功率放大器,音频功率放大器用于连接第二通信模块和音频输出接口,可以将第二通信模块接收到的音频信号进行放大,再将放大后的音频信号传输到音频输出接口,实现播放。
在一些实施例中,音频设备可以播放两种声道的音频数据。图22示出了根据一些实施例的音频设备的结构示意图。如图22所示,音频设备可以设有两种音频输出接口。其中,第一音频输出接口可以播放前出声道的音频数据,即左置声道、右置声道、环绕左置声道和环绕右置声道。第二音频输出接口可以播放天空声道的音频数据,即天空前左声道、天空前右声道、天空后左声道和天空后右声道。音频设备还包括两个音频功率放大器,其中,音频功率放大器P1对天空声道的音频数据进行放大后,发送至第二音频输出接口。音频功率放大器P2对前出声道的音频数据进行放大后,发送至第一音频输出接口。
在一些实施例中,第一通信模块与第二通信模块之间可以采用无线通信连接。
第一通信模块与第二通信模块之间采用相同的通信协议。例如,第一通信模块采用5.8GHz无线通信器,第二通信模块也采用5.8GHz无线通信器,从而实现音频分发器和音频设备之间的数据交互。
在一些实施例中,音频设备的数量可以由显示装置发送的音频数据的声道种类来决定。例如,显示装置可以发送3.1.2声道的音频数据,其中包括两种前出声道的数据:左置声道和右置声道,两种天空声道的数据:天空前左声道和天空前右声道,还包括中置声道和低音声道。此时可以将音频设备的数量设置为前出声道的数量,即采用两个音频设备,一个音频设备播放左置声道和天空前左声道,另一个播放右置声道和天空前右声道。
再例如,显示装置可以发送5.1.4声道的音频数据,其中包括四种前出声道的数据:左置声道、右置声道、环绕左置声道和环绕右置声道,四种天空声道的数据:天空前左声道、天空前右声道、天空后左声道和天空后右声道,还包括中置声道和低音声道。此时,可以设置四个音频设备。
在一些实施例中,每个音频设备可以有一个唯一的标号,每个标号会对应固定的声道,并对应一个位置。图23示出了根据一些实施例的音频设备的摆放位置图。如图23所示,其中,用户可以在观影位置使用显示装置,显示装置置于观影位置的正前方。标号A1的音频设备摆放在观影位置的左前方,用于播放第一组音频信号,即右置声道和天空前右声道。标号A2的音频设备摆放在观影位置的右前方,用于播放第二组音频信号,即左置声道和天空前左声道。标号A3的音频设备摆放在观影位置的左后方,用于播放第三组音频信号,即环绕左置声道和天空后左声道。标号A4的音频设备摆放在观影位置的右后方,用于播放第四组音频信号,即环绕右置声道和天空后右声道。
用户在使用多声道音频设备***时,可以根据标号将每个音频设备摆放到相应的位置上,第一通信模块会将所有的音频信号发送至对应的音频设备中,从而得到立体声场。此 时不需要用户手动连接数据传输线路,准备工作较为简洁。
在一些实施例中,多声道音频设备***还具有声道分配功能,即可以将所有声道的音频数据自动分配给音频设备,不需要用户根据标号将音频设备摆放到对应的位置。
音频分发器还包括声音采集器和音频信号分配模块。
声音采集器可以为麦克风,用于采集音频设备发出的声音信号。声音采集器和音频信号分配模块连接,可以将采集的声音信号发送至音频信号分配模块。音频信号分配模块可以将音频信号分配给音频设备,从而得到音频信号和音频设备之间的对应关系。
音频信号分配模块与第一通信模块相连接,可以将音频信号分配结果发送至第一通信模块。第一通信模块可以根据音频信号和音频设备之间的对应关系,将每个音频信号发送至对应的音频设备,从而形成正确的声场。
在一些实施例中,音频分发器可以向所有的音频设备发送一段测试信号。所有的音频设备可以播放该测试信号,同时声音采集器对每个音频设备发出的声音信号进行采集。
例如,当使用两个音频设备时,第一音频设备可以发出第一声音信号,第二音频设备可以发出第二声音信号。声音采集器将第一声音信号和第二声音信号发送至音频信号分配模块。音频信号分配模块可以计算第一声音信号对应的第一声压,以及第二声音信号的对应的第二声压。
声压的大小可以反映出音频设备相对于显示装置的位置。声压大的音频设备位于观影位置的左前方,声压大的音频设备位于观影位置的右前方。
因此按照声压大小对所有的音频设备进行排序。例如如果检测到第一声压比第二声压大,则可以按照声压从大到小的顺序对音频设备进行排列,音频设备顺序为:第一音频设备、第二音频设备。
可以按照预设的对应关系对音频信号进行分配。其中,预设的对应关系可以为:按照音频设备顺序依次分配第一组音频信号和第二组音频信号。即第一音频设备的声压较高,因此将第一组音频信号分配给第一音频设备,第一音频设备可以播放左置声道和天空前左声道。第二音频设备的声压较低,将第二组音频信号分配给第二音频设备,第二音频设备可以播放右置声道和天空前右声道。
再例如,使用四个音频设备时,按照声压从大到小的顺序,音频设备的位置依次为观影位置的左前方、右前方、左后方、右后方。假设按照声压大小的顺序排列,得到音频设备顺序为:第一音频设备、第四音频设备、第三音频设备、第二音频设备。则按照音频设备顺序依次分配第一组音频信号、第二组音频信号、第三组音频信号和第四组音频信号。此时,第一音频设备播放第一组音频信号,即左置声道和天空前左声道。第四音频设备播放第二组音频信号,即右置声道和天空前右声道。第三音频设备播放第三组音频信号,即环绕左置声道和天空后左声道。第二音频设备播放第四组音频信号,即环绕右置声道和天空后右声道。图24示出了根据一些实施例的音频设备的位置图。如图24所示,多声道音频设备***可以对音频设备自动分配音频信号,从而令每个音频设备播放正确的声道,形成立体声场。用户不需要按照标号顺序摆放音频设备,提高了智能化程度,大大缩减了准备工作,提高了用户的体验性。
在一些实施例中,显示装置还可以发送中置声道的音频数据。多声道音频设备***还包括特定音频设备,特定音频设备可以用于播放中置声道的音频数据。
在一些实施例中,特定音频设备可以为与音频设备模块型号相同的音频设备,考虑到 特定音频设备用于播放中置声道的音频数据,可以将特定音频设备摆放在显示装置正下方。
在一些实施例中,特定音频设备可以为显示装置的内置音频设备。此时,显示装置可以直接将中置声道的音频数据发送至内置音频设备,实现播放。同时,显示装置不需要外接特定音频设备,还节省了空间和成本,提高了用户体验性。
在一些实施例中,多声道音频设备***还可以包括低音炮音箱,用于播放低声道音频数据。图25示出了根据一些实施例的中低音炮音箱的示意图。如图25所示,低音炮音箱包括第二通信模块、音频功率放大器以及音频输出接口。其中,第二通信模块可以接收第一通信模块发送的低声道音频数据,音频功率放大器可以将低声道音频数据放大,音频输出接口可以播放放大后的低声道音频数据。
图26示出了根据一些实施例的应用场景的示意图,如图26所示,为了提升显示装置观影的临场感,越来越多的显示装置或音响设备采用了天空音扬声器回放具有高度感的声音。比如头顶飞过的飞机声音、雷声等。这些声音本来应该是由安装在屋顶的扬声器或者音箱来实现的,但是由于一般家庭客厅装修时都没有考虑到这个需求,在屋顶上没有安装扬声器或者音箱,所以相关技术中显示装置都采用了反射式方法实现,即在显示装置顶部安装朝上的天空音扬声器,天空音扬声器发出的声波经过屋顶天花板的反射后,传入人耳。
图27示出了根据一些实施例的设置有天空音扬声器的显示装置的示意图,如图27所示,该显示装置包括显示器(显示屏幕)和扬声器。其中,显示器,其包括配置为呈现画面的屏幕以及配置为支撑所述屏幕的壳体,其中,所述屏幕与所述壳体围设有中空区域;扬声器,其设于所述中空区域,其包括配置为振动发声的振动件以及底部与所述振动件密封连接且朝向所述中空区域外部的腔体,其中,所述腔体包括平行于屏幕画面相互配合的第一部与第二部,所述第一部的底部与所述振动件密封连接且沿所述第一部的通道轴向截取所述第一部所得截面呈矩形,所述第二部向外逐渐扩张呈号角状。
参考图27,扬声器具体包括设置于显示器顶部的天空音扬声器,具体包括左天空音扬声器S1和右天空音扬声器S2;此外,扬声器还包括主声道扬声器,具体包括左声道扬声器S3和右声道扬声器S4;另外,扬声器还包括中置声道扬声器S5。
图28示出了根据一些实施例的多声道显示装置的***架构的示意图,如图28所示,该***架构包含左声道、右声道、中置声道、左天空音声道及右天空音声道。参考图27及图28,对于传统的多声道以及音效处理架构,左天空音声道信号由左天空音扬声器S1负责播放,右天空音声道信号由右天空音扬声器S2负责播放,左声道信号由左声道扬声器S3负责播放,右声道信号由右声道扬声器S4负责播放,中置声道信号由中置声道扬声器S5负责播放。
多声道显示装置可以显著提升观影的临场感体验,但是因为多个扬声器的使用,导致显示装置厚度较厚,尤其是普通显示装置顶部一般都是超薄设计,使用天空音扬声器后,外观美观性差。为了解决这个问题,一般相关技术的手段是对天空音扬声器采用超薄的设计,而其他扬声器均采用正常设计(即相关技术中的显示装置呈现为上薄下厚的形态)。
每个声道的信号都有可能包含全频段(20~20kHz)的声音,比如天空音信号既包含了鸟叫等高频信号,又有常见的雷声、直升机声等低频信号。在采用超薄的设计后,会导致天空音扬声器对于低频信号的播放效果降低。
图29示出了根据一些实施例的不同扬声器对不同频率的信号的播放效果的示意图,其中,响度越低,则表示声音播放效果越差,如图29所示,常规厚度的扬声器可以正常 播放全段的声音,而超薄扬声器受限于振膜宽度导致低频响应较差,从而无法回放出低频的声音。这就会导致天空音中原本包含的低频声音如飞机引擎声、雷声等无法正常播放,导致显示装置的声音播放效果,导致用户体验较差。例如,图29所示的超薄扬声器,对于频率在1000Hz以上的信号的播放效果较好,而对于频率在1000Hz以下的信号的播放效果则较差。
在一些实施例中,图30示出了根据一些实施例的显示装置的示意图,如图30所示,该显示装置包括:第一扬声器、第二扬声器、解码器以及分别与第一扬声器、第二扬声器以及解码器连接的控制器。
其中,第一扬声器用于播放第一声道的音频信号;第二扬声器用于播放与第一声道不同的第二声道的音频信号;
具体的,第一声道可以是天空音声道,第二声道可以是主声道,例如左声道和右声道等,对应的第一扬声器为天空音声道扬声器,第二扬声器为左/右声道扬声器。
另外,在本申请的技术方案中,第一声道与第二声道的左右声道属性相同。也就是说,在第一声道为左天空音声道时,第二声道为左声道,对应的,第一扬声器为左天空音声道扬声器,第二扬声器为左声道扬声器;而在第一声道为右天空音声道时,第二声道为右声道,对应的,第一扬声器为右天空音声道扬声器,第二扬声器为右声道扬声器,以防止左右声道的声音发生混淆。
解码器用于对信号源输入的信号进行解码,得到解码结果;
其中,信号源为显示装置的信号源,例如HDMI(High Definition Multimedia Interface,高清多媒体接口)、DTV(Digital Television,数字电视)、网络以及移动存储介质等。这些信号源中的音频码流会被解码器进行解码,解码器输入的格式为各信号源本来的格式,如7.1声道、5.1声道、2.0声道等,这些码流随后被发送至显示装置的控制器。
本实施例中,控制器被配置为执行以下步骤:
S100、控制器获取解码器发送的解码结果,并根据解码结果,获取不同声道的音频信号,其中,不同声道的音频信号包括分配至第一扬声器的第一音频信号,以及分配至第二扬声器的第二音频信号,第一音频信号和第二音频信号的声道类型不同;
S200、控制器将第一音频信号划分为第一子信号和第二子信号,其中,第一子信号的频率大于预设频率,第二子信号的频率小于或者等于预设频率,即控制器根据频率大小对原始的第一音频信号进行信号分离,以得到不同频率的子信号;
S300、控制器将第一子信号发送至第一扬声器进行播放,由于第一扬声器对低频信号的播放效果较差,因此控制器将频率较高的第一子信号发送至该第一扬声器进行播放,以保证高频信号的声音播放效果;
S400、对第二子信号进行延时处理,并将延时后的第二子信号与第二音频信号进行合并,得到第一合并信号,并将第一合并信号发送至第二扬声器进行播放,由于第二扬声器对低频信号以及高频信号的播放效果均比较好,因此,对与第一音频信号中频率较低的第二子信号,可以分配至第二扬声器进行播放,以保证低频信号的声音播放效果。
其中,分配至第一扬声器的第一音频信号具体可以是天空音声道信号,分配至第二扬声器的第二音频信号具体可以是左/右声道信号。
具体的,对于超薄设计的天空音声道扬声器,即本实施例中的第一扬声器,由于该第一扬声器对于第一音频信号中低频信号的播放效果较差,而第一音频信号中的低频信号同 样需要播放,因此,本实施例采用的方案是将该部分低频信号分配至可以正常播放低频信号的第二扬声器,以保证第一音频信号中的所有声音都可以被正常播放。其中,预设频率具体可以是设定为1000Hz。
图31示出了根据一些实施例的控制器进行信号处理的示意图,如图31所示,对于流入控制器中的音频信号,控制器首先对第一音频信号进行频率划分,得到第一子信号和第二子信号,该处理过程可以由控制器内的频率分配模块实现。
其中,第一子信号的频率大于预设频率,即第一子信号为高频信号,说明第一子信号可以被第一扬声器正常播放;而第二子信号的频率小于或者等于预设频率,即第二子信号为低频信号,说明第二子信号无法被第一扬声器正常播放,该第二子信号需要分配至第二扬声器进行播放。在得到第一子信号和第二子信号后,第一子信号被发送至第一扬声器进行播放,而第二子信号则被发送至第二扬声器进行播放。
在将第二子信号发送至第二扬声器进行播放时,首先通过控制器内的延时模块对第二子信号进行延时处理,以保证信号同步,然后将延时处理后的第二子信号与第二音频信号进行信号合并,得到第一合并信号,再将第一合并信号发送至第二扬声器进行播放。从而,第一合并信号包括第一音频信号中的第二子信号(即低频信号),因此,第一音频信号中的所有声音都可以被正常播放。
在一些实施例中,在将信号发送至扬声器进行播放时,可以通过功率放大器对信号进行功率放大,再将放大后的信号发送至对应的扬声器。
例如,在将第一子信号发送至第一扬声器进行播放时,可以通过第一功率放大器对该第一子信号进行信号放大处理,再将放大后的第一子信号发送至第一扬声器。
同理,在将第一合并信号发送至第二扬声器进行播放时,可以通过第二功率放大器对该第一合并信号进行信号放大处理,再将放大后的第一合并信号发送至第二扬声器。
图32示出了根据一些实施例的多声道显示装置的信号链架构的示意图,如图32所示,HDMI、DTV、网络、移动存储介质都是显示装置的信号源,这些信号源中的音频码流会被解码器进行解码,解码器输入的格式为各信号源本来的格式。这些码流随后进入显示装置控制器内的声道映射模块,由声道映射模块计算成为固定格式的声道数量,比如3.0.2格式,随后这些信号会进入到控制器内的音色调整模块,音色调整模块针对每个声道的信号进行算法调整,而后3.0.2的信号流进入到控制器内的扬声器映射模块,扬声器映射模块针对后端扬声器的特征进行重新映射与分配,即执行图31所示的信号处理流程,形成新的3.0.2声道信号,而后输出到扬声器进行回放。
本实施例中,对于不同声道的扬声器,在第一扬声器无法播放频率小于预设频率的低频信号时,可以将该第一扬声器对应的第一音频信号进行划分,得到高频的第一子信号和低频的第二子信号,通过将高频子信号分配至第一扬声器播放,将低频子信号分配至第二扬声器进行播放,由于第二扬声器可以正常播放低频信号,因此,可以保证第一音频信号中的所有内容均可以被正常播放,从而提高显示装置的声音播放效果。
在一些实施例中,对第二子信号进行延时处理的步骤中,控制器被进一步配置为执行以下步骤:
S410、控制器获取第一扬声器所播放的声音传播到对象的第一距离,以及第二扬声器所播放的声音传播到对象的第二距离,其中,对象具体为用户,第一距离和第二距离为声音传到用户人耳的距离;
S420、控制器根据第一距离以及第二距离,确定延时时间;
S430、控制器根据延时时间,对第二子信号进行延时处理,以保证第二子信号与第二音频信号的同步。
具体的,图33示出了根据一些实施例的另一场景示意图,如图33所示,第一扬声器所播放的声音经过屋顶天花板的反射后传播到人耳,传输的总距离为第一距离D1,第二扬声器所播放的声音基本为直接传播到人耳,传输距离为第二距离D2,其中,按照一般家庭设施的布置环境,D1通常大于D2,如果不对第二子信号进行延时处理,会导致分配至第二扬声器播放的第二子信号先进入人耳,而第一子信号后进入人耳,由于人耳会以先听到的为准来对声音方向做出判断,这样就会导致人耳认为第一音频信号的声音是从第二扬声器的位置发出来,从而影响天空音的效果。
因此,控制器在进行信号处理时,首先需要对第二子信号进行延时处理,以使得第一扬声器发出的声音到达人耳的时间不晚于第二扬声器发出的声音到达人耳的时间,最优的是保证第一扬声器发出的声音到达人耳的时间早于第二扬声器发出的声音到达人耳的时间。
在进行延时处理时,控制器首先获取第一距离D1以及第二距离D2,然后根据D1及D2来确定延时时间,从而根据延时时间来对第二子信号进行延时处理,以保证天空音的声音播放效果。
在一些实施例中,根据第一距离以及第二距离,确定延时时间的步骤中,控制器被进一步配置为执行以下步骤:
S421、计算第一距离和第二距离的距离差,由于该距离差的存在,会导致第一扬声器和第二扬声器播放的声音传播到人耳的时间点存在时间间隔,即存在延迟;
S422、计算距离差与声音传播速度的比值,该比值即为延迟时间;
S423、确定比值与第一预设时间的和为延时时间。
具体的,控制器在得到第一距离D1以及第二距离D2之后,首先计算D1与D2的距离差d,然后根据距离差d与声音传播速度v来得到二者的比值。
例如,假设D1为4.54m,D2为2.5m,声音传播速度v为340m/s,则可以求得距离差d=D1-D2=2.04m,比值t=d/v=0.006s=6ms。
而根据哈斯(Hass)效应,若两个声源的声波到达人耳的时间差在5~35ms以内,人无法区分两个声源,给人以方位听感的只是前导声(超前的声源),滞后声好似并不存在;若时间差在35~50ms时,人耳开始感知滞后声源的存在,但听感做辨别的方位仍是前导声源。并且随着时间差变长,方位感越强,但是会导致人越来越能感知后到声音的存在。
本实施例中,由于比值t为6ms,考虑到哈斯效应,可以在6ms的基础上加上一个第一预设时间,再将二者的和作为延时时间。例如,第一预设时间t1可以是设定为16ms,从而,延时时间T=t+t1=22ms。
总体来说,对于延时时间的设定,根据测试,在延时时间的范围为22ms±8ms时,可以保证较好的声音播放效果。其中,参考图12,若延时时间大于该取值范围的最大值30ms时,由于传播路径D3的存在,对于听觉敏感的人而言,会感知到D3与D2两种传播路径中存在较大的声音延时,从而听到的声音会有一定的回音感,影响音质。因此,为了避免回音,将延时时间的上限设定为30ms。
对于本实施例中的方案,通过测试第一扬声器以及第二扬声器所发出的声音的电信号, 对电信号的特征进行解释说明。通过使用频谱分析仪或者其他具有频谱分析能力的设备对声音信号进行检测,可以到的声音信号的频谱特征。
图34示出了根据一些实施例的第一扬声器以及第二扬声器的信号的频谱特征的示意图,如图34所示,通过天空音声道播放一个全频的粉红噪音信号或者扫频信号,测试到的第一扬声器以及第二扬声器的信号在频率上不重叠(3dB滚降点以内)。另外,两个信号在频谱上叠加后,可以组成一个完成的宽带频谱信号。
具体的,可以采用声信号进行测试,测试位置为图5或者图12所示的人的位置。如果测试电信号,第一扬声器以及第二扬声器的信号在频率上仍然呈现互不重叠(3dB滚降点以内),且可以连接成为一个全频带信号,因不同种类或结构的扬声器具有不同的电声转化效率,因此电信号可能存在第一扬声器的平均值明显与第二扬声器的平均值不相等情况,比如第一扬声器的电压是第二扬声器的两倍。
图35示出了根据一些实施例的人声的信号示意图,如图35所示,对于人声而言,由于人的语音发音特征是由一系列谐波组成的,图中箭头为谐波的各个频率组成部分,人声的基频约为370Hz左右,二次谐波为740Hz,三次谐波为1119Hz,因此会出现二次谐波小于1000Hz,三次谐波大于1000Hz的情况。
此时,如果先把1000Hz以上的信号回放出来,则会出现谐波先到人耳,而基频后达到人耳的情况。而如果观众先听到谐波,则会有声音破音的感觉。
基于上述情况,在一些实施例中,对第二子信号进行延时处理的步骤中,控制器被进一步配置为执行以下步骤:
S440、控制器对第一音频信号进行人声检测,得到检测结果,该检测结果为第一音频信号是否包括人声,人声检测过程具体可以通过现有的检测方法实现;
S450、在检测结果为第一音频信号包括人声时,控制器确定第二预设时间为延时时间,并根据第二预设时间对第二子信号进行延时处理。
具体的,为了防止人声中谐波先到人耳、基频后到人耳的情况发生,控制器可以在天空音中包含人声时,减小延时时间。本实施例中,控制器可以预先设置一个较小的第二预设时间,在通过人声检测检测到人声时,可以直接将该第二预设时间设置为延时时间,并进行延时处理。
第二预设时间可以根据经验值确定,例如,在第一音频信号包括人声时,若将延时时间设定为14ms,则可以保证较好的播放效果,因此,第二预设时间可以设定为14ms。
需要说明的是,本实施例中所涉及的具体时间数值,例如第一预设时间为16ms,延时时间的范围为22ms±8ms,第二预设时间为14ms等,均为本申请实施例方案的示例性说明,在实际应用过程中,也可以根据实际情况对上述各时间的具体数值进行调整,而不仅仅局限于上述数值。
在一些实施例中,控制器被进一步配置为执行以下步骤:
S460、在检测结果为第一音频信号不包括人声时,控制器对第一音频信号进行能量检测,以确定第一音频信号的能量分布;
若第一音频信号在预设频率的能量低于预设能量值,控制器确定第三预设时间为延时时间,并根据第三预设时间对第二子信号进行延时处理,以实现信号同步。
具体的,对于某些特征的声源,在不包括人声时,说明无需减少延时时间,此时,通过对其进行能量检测确定信号在不同频率的能量分布。
图36示出了根据一些实施例的信号的示例图,如图36所示,若检测到信号在预设频率(例如1000Hz)的能量低于预设能量值,则说明信号在1000Hz附近的能量较少,即信号在1000Hz附近不存在较多的谐波成分,此时,如果提升1000Hz以上的声音信号的延时,可以有效提升声音的高度感,因此,可以增加延时时间。
本实施例中,控制器可以预先设置一个较大的第三预设时间,在通过人声检测未检测到人声时,若通过能量检测确定第一音频信号在预设频率的能量低于预设能量值,则可以直接将该第三预设时间设置为延时时间,并进行延时处理。
第三预设时间可以根据经验值确定,例如,可以将第三预设时间可以设定为30ms,从而可以显著提升声音的高度感。
在一些实施例中,将第一音频信号划分为第一子信号和第二子信号的步骤中,控制器被进一步配置为执行以下步骤:
S210、控制器确定第一音频信号的信号谷值频率,并将信号谷值频率与预设频率进行大小比对;
S220、在信号谷值频率大于预设频率时,控制器根据信号谷值频率将第一音频信号划分为新的第一子信号和新的第二子信号,新的第一子信号的频率大于信号谷值频率,新的第二子信号的频率小于或者等于信号谷值频率。
具体的,对于某些特殊的声音信号,例如直升机所发出的信号,既包括发动机的低频信号,又包括螺旋桨的高频信号,且可能出现低频信号的谐波频率超过预设频率的情况,因此,为了尽量少的分割完整的信号,可以对音频信号的信号谷值频率进行检测,并比较信号谷值频率与预设频率的大小关系。
其中,当信号谷值频率小于预设频率,即信号谷值频率出现在1000Hz之前时,由于第一扬声器无法播放1000Hz以下的低频,因此频率分配频点不做改动,即按照预设频率1000Hz来划分第一子信号和第二子信号。
另外,当信号谷值频率大于预设频率,即信号谷值频率出现在1000Hz之后时时,可以调整信号划分的策略,即按照信号谷值频率为分界点来划分第一子信号和第二子信号。
例如,当信号谷值频率为1200Hz时,可以根据1200Hz来进行划分,得到频率大于1200Hz的第一子信号,以及频率小于或等于1200Hz的第二子信号,从而,通过调整进行信号划分的分界点频率,可以保证尽量少的分割完整的信号,以提高声音播放效果。
在一些实施例中,将第一子信号发送至第一扬声器进行播放的步骤中,控制器被进一步配置为执行以下步骤:
S310、控制器对第二音频信号进行高通滤波以及信号增益调节处理,并将处理后的第二音频信号与第一子信号进行合并,得到第二合并信号;
S320、控制器将第二合并信号发送至第一扬声器进行播放,以保证声音中心和画面中心一致。
显示装置的主声道扬声器通常位于显示装置的底部位置,即左右主声道的声音、对话人声都是由显示装置底部发出,然而,显示装置的图像显示却在显示装置的屏幕上,从而会导致声音中心与画面中心不一致的情况。
为了解决上述问题,本实施例进一步将第二音频信号与第一子信号进行合并播放,以保证声音中心与画面中心的一致。
图37-图40示出了根据一些实施例的处理器进行信号处理的示意图,如图37所示, 对于第二音频信号,首先通过一个高通滤波器进行高通滤波,该高通滤波器被配置为可以通过频率高于预设频率的信号,例如1000Hz;另外,为了控制对第一子信号的影响,在高通滤波后进一步进行增益调节处理,由于第二音频信号一般大于第一音频信号,该增益调节处理具体可以是进行负增益调节。
在一些实施例中,控制器被进一步配置为执行以下步骤:
S510、控制器获取分配至第三扬声器的第三音频信号;
S520、控制器对第三音频信号进行延时处理,以使得延时后的第三音频信号与第一合并信号同步,以保证声音播放效果;
S530、控制器将延时后的第三音频信号发送至第三扬声器进行播放。
其中,第三音频信号具体可以为中置声道信号,对应的第三扬声器为中置声道扬声器。
如图38所示,对于中置声道的第三音频信号,控制器可以对其进行延时处理,以保证延时后的第三音频信号与第一合并信号同步,并发送至第三扬声器进行播放,从而保证所有声道信号的同步,保证声音播放效果。
在一些实施例中,控制器被进一步配置为执行以下步骤:
S540、控制器对第三音频信号进行高通滤波以及信号增益调节处理,并将处理后的第三音频信号与第一子信号进行合并,得到第三合并信号;
S550、控制器将第三合并信号发送至第一扬声器进行播放。
具体的,为了提升中置声道信号的高度,控制器也可以将第三音频信号与第一子信号进行合并,以提高声音播放效果。
如图39所示,可以是第二音频信号或者第三音频信号与第一子信号进行合并,即两种信号中的任一种与第一子信号进行合并,也可以是两种信号同时与第一子信号进行合并,从而提高声音的播放效果。
在一些实施例中,将第一音频信号划分为第一子信号和第二子信号的步骤中,控制器被进一步配置为执行以下步骤:
将第一音频信号分别输入高通滤波器以及低通滤波器,经由高通滤波器输出的信号为第一子信号,经由低通滤波器输出的信号为第二子信号;
其中,高通滤波器用于通过频率大于预设频率的信号,低通滤波器用于通过频率小于或者等于预设频率的信号。
具体的,在对第一音频信号进行划分时,除了软件实现方式以外,也可以通过硬件的方式实现,即将第一音频信号分别输入高通滤波器以及低通滤波器,从而得到为第一子信号和第二子信号。
如图40所示,在得到第一子信号时,可以是将第一音频信号发送至具备高通滤波功能的功率放大器实现,从而,可以减少高通滤波器的使用,降低成本。
另外,本实施例中,在进行信号划分时,由于是通过硬件实现,也可以减少对芯片运算能力的要求,其中,芯片例如DSP(Digital Signal Processing,数字信号处理)或者ARM(Advanced RISC Machine)等,从而使得本申请的方案可以应用于低性能的显示装置。
在一些实施例中,提供一种音频信号播放方法,应用于显示装置,图41示出了根据一些实施例的音频信号播放方法的示意图,如图41所示,该方法包括以下步骤:
S100、获取不同声道的音频信号,不同声道的音频信号包括分配至第一扬声器的第一 音频信号,以及分配至第二扬声器的第二音频信号,其中,第一扬声器与第二扬声器播放的音频信号的声道不同;
S200、将第一音频信号划分为第一子信号和第二子信号,第一子信号的频率大于预设频率,第二子信号的频率小于或者等于预设频率;
S300、将第一子信号发送至第一扬声器进行播放;
S400、对第二子信号进行延时处理,并将延时后的第二子信号与第二音频信号进行合并,得到第一合并信号,并将第一合并信号发送至第二扬声器进行播放。
关于音频信号播放方法的限定,可以参考上述实施例中对于显示装置的限定,在此不再赘述。
本实施例提供一种音频信号播放方法,对于不同声道的扬声器,在第一扬声器无法播放频率小于预设频率的低频信号时,可以将该第一扬声器对应的第一音频信号进行划分,得到高频的第一子信号和低频的第二子信号,通过将高频子信号分配至第一扬声器播放,将低频子信号分配至第二扬声器进行播放,由于第二扬声器可以正常播放低频信号,因此,可以保证第一音频信号中的所有内容均可以被正常播放,从而提高显示装置的声音播放效果。
为了方便解释,已经结合具体的实施方式进行了上述说明。但是,上述在一些实施例中讨论不是意图穷尽或者将实施方式限定到上述公开的具体形式。根据上述的教导,可以得到多种修改和变形。上述实施方式的选择和描述是为了更好的解释原理以及实际的应用,从而使得本领域技术人员更好的使用实施方式以及适于具体使用考虑的各种不同的变形的实施方式。

Claims (20)

  1. 一种显示装置,包括:
    显示器,其包括配置为呈现画面的屏幕以及配置为支撑所述屏幕的壳体,其中,所述屏幕与所述壳体围设有中空区域;
    扬声器,其设于所述中空区域,其包括配置为振动发声的振动件以及底部与所述振动件密封连接的腔体,其中,所述腔体包括平行于所述屏幕相互配合的第一部与第二部,所述第一部的底部与所述振动件密封连接且所述第一部呈直筒状,所述第二部配置为将所述第一部所传播声音向所述中空区域外部辐射;
    控制器,其配置为控制所述屏幕呈现画面,以及控制所述振动件振动发声。
  2. 根据权利要求1所述的显示装置,所述第二部向外逐渐扩张呈号角状。
  3. 根据权利要求1所述的显示装置,所述振动件包括振膜,所述振膜与所述扬声器的出声面之间的锐角夹角大于等于0°且小于等于20°。
  4. 根据权利要求1所述的显示装置,以所述扬声器的出声方向为竖直方向,所述腔体包括将所述腔体竖直分隔为第一腔体以及第二腔体的隔筋,所述振动件包括分别设于所述隔筋两侧的第一振动件以及第二振动件,其中,所述第一腔体的底部与所述第一振动件密封连接,所述第二腔体的底部与所述第二振动件密封连接。
  5. 根据权利要求1所述的显示装置,所述扬声器还包括设于所述扬声器的出声通道的填充件,其配置为压缩所述出声通道。
  6. 根据权利要求5所述的显示装置,所述填充件包括菱角结构。
  7. 根据权利要求6所述的显示装置,所述腔体被竖直分隔为第一腔体以及第二腔体,所述菱角结构包括设于所述第一腔体的第一菱角结构以及设于所述第二腔体的第二菱角结构,其中,所述第一腔体左右对称于所述第一菱角结构,所述第二腔体左右对称于所述第二菱角结构。
  8. 根据权利要求1所述的显示装置,偶数个的所述扬声器设于屏幕顶部后的中空区域,且左右对称于屏幕的竖直中心线。
  9. 根据权利要求8所述的显示装置,设于屏幕顶部后且左右对称的两个扬声器的发声方向均与所述竖直中心线相交,且所述左右对称的两个扬声器所发声音相互远离。
  10. 根据权利要求1所述的显示装置,所述腔体与所述壳体的接触面由所述壳体组成,且所述接触面的边缘通过密封件进行密封。
  11. 一种多声道音频设备***,包括:音频设备模块和音频分发器;
    所述音频设备模块包括至少两个音频设备;
    所述音频分发器包括音频输入接口、音频处理器和第一通信模块;
    所述音频输入接口与显示装置相连接,被配置为接收显示装置发送的多种声道的音频数据;
    所述音频处理器与所述音频输入接口相连接,被配置为将多种声道的音频数据转换为至少两组音频信号,每种音频信号对应的声道不同;
    所述第一通信模块分别与所述音频处理器和所述音频设备模块相连接,被配置为接收所述音频处理器发送的至少两组音频信号,以及,将至少两组音频信号分别发送至所述至少两个音频设备。
  12. 根据权利要求11所述的多声道音频设备***,所述音频处理器包括至少两个输 出接口,每个输出接口用于传输一种音频信号;
    所述至少两个输出接口与所述第一通信模块相连接,被配置为将所述至少两组音频信号发送至所述第一通信模块。
  13. 根据权利要求11所述的多声道音频设备***,至少一个音频设备包括:第二通信模块和音频输出接口;
    所述第二通信模块与所述第一通信模块相连接,被配置为接收音频信号;
    所述音频输出接口与所述第二通信模块相连接,被配置为播放音频信号。
  14. 根据权利要求13所述的多声道音频设备***,所述第一通信模块与所述第二通信模块之间为无线通信连接。
  15. 根据权利要求11所述的多声道音频设备***,所述音频分发器还包括声音采集器,所述声音采集器被配置为采集所述至少两个音频设备播放的至少两个声音信号。
  16. 根据权利要求15所述的多声道音频设备***,所述音频分发器还包括音频信号分配模块;
    所述音频信号分配模块与所述声音采集器相连接,被配置为接收至少两个声音信号,以及,根据所述至少两个声音信号将所述至少两个音频信号分配给所述至少两个音频设备,得到音频信号分配结果。
  17. 根据权利要求16所述的多声道音频设备***,所述音频信号分配模块进一步被配置为:
    计算所述至少两个声音信号的声压;按照声压大小对所述至少两个音频设备进行排序;根据预设的对应关系将所述至少两个音频信号分配给所述至少两个音频设备。
  18. 根据权利要求16所述的多声道音频设备***,所述音频信号分配模块与所述第一通信模块相连接,被配置为将所述音频信号分配结果发送至所述第一通信模块;
    所述第一通信模块进一步被配置为根据所述音频信号分配结果,将所述至少两组音频信号分别发送至所述至少两个音频设备。
  19. 根据权利要求11所述的多声道音频设备***,所述多声道音频设备***还包括特定音频设备,被配置为播放预设的音频信号。
  20. 根据权利要求19所述的多声道音频设备***,所述特定音频设备为显示装置的内置音频设备。
PCT/CN2021/134456 2021-02-01 2021-11-30 显示装置、多声道音频设备*** WO2022160918A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180092661.XA CN116848572A (zh) 2021-02-01 2021-11-30 显示装置、多声道音频设备***

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202120281353.9 2021-02-01
CN202120281353.9U CN215298806U (zh) 2021-02-01 2021-02-01 显示设备
CN202110137533.4 2021-02-01
CN202110137533.4A CN114842771A (zh) 2021-02-01 2021-02-01 显示设备
CN202110289943.0 2021-03-18
CN202110289943.0A CN115118901A (zh) 2021-03-18 2021-03-18 显示设备及其音频信号播放方法
CN202121176787.9U CN215181954U (zh) 2021-05-28 2021-05-28 多声道音频设备***
CN202121176787.9 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022160918A1 true WO2022160918A1 (zh) 2022-08-04

Family

ID=82652951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134456 WO2022160918A1 (zh) 2021-02-01 2021-11-30 显示装置、多声道音频设备***

Country Status (1)

Country Link
WO (1) WO2022160918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347320A (zh) * 2022-09-07 2023-06-27 荣耀终端有限公司 音频播放方法及电子设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201069881Y (zh) * 2007-05-29 2008-06-04 广州市浪源音响器材有限公司 声道矫正式号筒
CN102857857A (zh) * 2012-02-17 2013-01-02 东莞耳神电声科技有限公司 多通道无线音响***的音箱通道匹配方法
CN103533480A (zh) * 2012-07-06 2014-01-22 顾康 一种高频声波聚焦器
CN105282668A (zh) * 2015-11-18 2016-01-27 成都旭光光电技术有限责任公司 一种采用铝环固定磁钢的换能器及其制造方法
CN209030416U (zh) * 2018-11-12 2019-06-25 广州杰士莱电子有限公司 一种号角发音单元及设有其的音箱
CN110602614A (zh) * 2019-09-09 2019-12-20 Oppo广东移动通信有限公司 发声装置和电子设备
US20200196046A1 (en) * 2018-12-12 2020-06-18 Samsung Electronics Co., Ltd. Electronic device including acoustic module
CN111757171A (zh) * 2020-07-03 2020-10-09 海信视像科技股份有限公司 一种显示设备及音频播放方法
CN111970613A (zh) * 2020-08-25 2020-11-20 海信视像科技股份有限公司 无线发射装置、控制方法及显示装置
CN112261405A (zh) * 2020-12-02 2021-01-22 福州西德智能科技有限公司 一种电视机/显示器左右喇叭反向自动测试***
CN112637732A (zh) * 2019-10-08 2021-04-09 海信视像科技股份有限公司 显示装置以及音频信号的播放方法
CN213339098U (zh) * 2020-08-25 2021-06-01 海信视像科技股份有限公司 无线发射装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201069881Y (zh) * 2007-05-29 2008-06-04 广州市浪源音响器材有限公司 声道矫正式号筒
CN102857857A (zh) * 2012-02-17 2013-01-02 东莞耳神电声科技有限公司 多通道无线音响***的音箱通道匹配方法
CN103533480A (zh) * 2012-07-06 2014-01-22 顾康 一种高频声波聚焦器
CN105282668A (zh) * 2015-11-18 2016-01-27 成都旭光光电技术有限责任公司 一种采用铝环固定磁钢的换能器及其制造方法
CN209030416U (zh) * 2018-11-12 2019-06-25 广州杰士莱电子有限公司 一种号角发音单元及设有其的音箱
US20200196046A1 (en) * 2018-12-12 2020-06-18 Samsung Electronics Co., Ltd. Electronic device including acoustic module
CN110602614A (zh) * 2019-09-09 2019-12-20 Oppo广东移动通信有限公司 发声装置和电子设备
CN112637732A (zh) * 2019-10-08 2021-04-09 海信视像科技股份有限公司 显示装置以及音频信号的播放方法
CN111757171A (zh) * 2020-07-03 2020-10-09 海信视像科技股份有限公司 一种显示设备及音频播放方法
CN111970613A (zh) * 2020-08-25 2020-11-20 海信视像科技股份有限公司 无线发射装置、控制方法及显示装置
CN213339098U (zh) * 2020-08-25 2021-06-01 海信视像科技股份有限公司 无线发射装置
CN112261405A (zh) * 2020-12-02 2021-01-22 福州西德智能科技有限公司 一种电视机/显示器左右喇叭反向自动测试***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347320A (zh) * 2022-09-07 2023-06-27 荣耀终端有限公司 音频播放方法及电子设备
CN116347320B (zh) * 2022-09-07 2024-05-07 荣耀终端有限公司 音频播放方法及电子设备

Similar Documents

Publication Publication Date Title
US9986338B2 (en) Reflected sound rendering using downward firing drivers
US8150061B2 (en) Sound generating method, sound generating apparatus, sound reproducing method, and sound reproducing apparatus
CN112806024B (zh) 用于非声学屏幕的反射声音
US8630428B2 (en) Display device and audio output device
KR102062260B1 (ko) 귀 개방형 헤드폰을 이용한 다채널 사운드 구현 장치 및 그 방법
US20070296818A1 (en) Audio/visual Apparatus With Ultrasound
JP2001117587A (ja) マイクロホンアレイを有するボイス制御システム
US20120206651A1 (en) Speaker system, video display device, and television receiver
WO2021238550A1 (zh) 音视频播放***及播放方法、播放装置
US10587979B2 (en) Localization of sound in a speaker system
WO2022160918A1 (zh) 显示装置、多声道音频设备***
CN104837090A (zh) 一种音箱
WO2022001204A1 (zh) 显示设备及屏幕发声方法
JPH03169200A (ja) テレビ受信機
WO2019047712A1 (zh) 一种音频播放方法和装置、及终端
WO2021004047A1 (zh) 显示装置、音频播放方法
KR102522567B1 (ko) 전자 장치 및 그 동작 방법
CN116848572A (zh) 显示装置、多声道音频设备***
CN113709535B (zh) 一种显示设备、及基于声道使用的远场语音识别方法
CN211860471U (zh) 智能音箱
CN112788492B (zh) 显示装置及扬声器组件
US20070003030A1 (en) Display device and multimedia output system utilizing the same
US20220217469A1 (en) Display Device, Control Method, And Program
CN204652627U (zh) 音箱
CN115118901A (zh) 显示设备及其音频信号播放方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092661.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922508

Country of ref document: EP

Kind code of ref document: A1