WO2022160388A1 - 一种装配式混凝土梁柱节点及其施工方法 - Google Patents

一种装配式混凝土梁柱节点及其施工方法 Download PDF

Info

Publication number
WO2022160388A1
WO2022160388A1 PCT/CN2021/076428 CN2021076428W WO2022160388A1 WO 2022160388 A1 WO2022160388 A1 WO 2022160388A1 CN 2021076428 W CN2021076428 W CN 2021076428W WO 2022160388 A1 WO2022160388 A1 WO 2022160388A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete beam
column
node
steel plate
corbel
Prior art date
Application number
PCT/CN2021/076428
Other languages
English (en)
French (fr)
Inventor
陈云
张琦俊
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Priority to US17/624,274 priority Critical patent/US11686084B2/en
Publication of WO2022160388A1 publication Critical patent/WO2022160388A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • E04B1/21Connections specially adapted therefor
    • E04B1/215Connections specially adapted therefor comprising metallic plates or parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2406Connection nodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2415Brackets, gussets, joining plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2427Connection details of the elongated load-supporting parts using adhesives or hardening masses

Definitions

  • the invention relates to the technical field of construction, and more particularly, to a construction method for a prefabricated concrete beam-column joint.
  • the present invention also discloses a prefabricated concrete beam-column joint used in the above-mentioned prefabricated concrete beam-column joint construction method.
  • the on-site construction method has the characteristics of "factory production of components and assembly of construction operations".
  • the prefabricated building In order to ensure that the prefabricated building can exert its overall mechanical performance, it is necessary to connect the components through nodes so that they can be jointly stressed under the load state. Due to the complex stress mechanism of the building structure, the nodes are often not in a single stress state, and the nodes need to have sufficient strength and stiffness to bear and transmit complex stress while ensuring small deformation.
  • the cost of building a prefabricated building with a single steel structure is too high, and it is difficult to promote it in civil buildings.
  • Concrete prefabricated buildings are economical and practical, but the construction conditions are complex and the operation is cumbersome.
  • the existing connection methods of concrete prefabricated buildings mainly include dry connection and wet connection. Dry connection is welding or bolted connection. The welding construction steps are more complicated, and the welding quality is easily affected by materials and operation techniques.
  • Bolted connection needs to open multiple rows of bolt holes on the components, and the construction speed is slow; wet connection is to pass concrete after pouring. To achieve the connection, concrete pouring requires formwork, the construction process is complex, the operation is cumbersome, and the construction requirements are high, so the construction speed is slow.
  • the purpose of the present invention is to provide a construction method for prefabricated concrete beam-column joints, which simplifies welding connections and performs step-by-step pouring of concrete beams, which greatly simplifies construction procedures and reduces construction difficulty.
  • the present invention also provides a prefabricated concrete beam-column joint for the construction method of the prefabricated concrete beam-column joint.
  • the present invention provides the following technical solutions:
  • a construction method for a prefabricated concrete beam-column joint comprising:
  • a circumferential reinforcing plate provided with a slot hole in the middle and rear sections of the node connecting piece is welded;
  • the concrete beams are cast between the hoop stiffeners and the structural columns.
  • the installation of the peg on the node connector includes:
  • the overlapping of the node connector and the dark corbel includes:
  • the dark corbel is overlapped with the node connecting piece through the dark corbel mounting hole on the node connecting piece;
  • the casting of the concrete beam between the two annular reinforcing plates includes:
  • a pair of the node connecting pieces after the installation of the longitudinal reinforcement of the steel bar is put into the formwork, and the concrete beam is poured between the two annular reinforcing plates.
  • the casting of the concrete beam between the annular reinforcing plate and the structural column includes:
  • a mold is sleeved at the connection between the structural column and the node connector
  • Concrete is poured using the grouting openings of the node connectors.
  • a prefabricated concrete beam-column joint comprising a structural column, a concrete beam, and a node connector connecting the structural column and the concrete beam, the node connector is horizontally arranged at both ends of the concrete beam, and the node
  • the upper surface of the connector is provided with a grouting port;
  • An annular reinforcing plate is arranged in the node connecting piece, and a through groove is arranged on the annular reinforcing plate;
  • the side flanges of the structural columns are welded with corbels, the corbels are pre-buried in the concrete beams, and the corbels and the structural columns are welded with the node connectors.
  • the annular reinforcing plate is provided with a plurality of reserved reinforcement holes for installing longitudinal reinforcement bars, and the longitudinal reinforcement reinforcement is used to connect the concrete beams on both sides of the annular reinforcement plate.
  • the node connector includes an upper flange steel plate in contact with the upper flange of the concrete beam, a lower flange steel plate in contact with the lower flange of the concrete beam, and a side steel plate, and the side steel plate is connected to the The upper flange steel plate and the lower flange steel plate;
  • the front end of the upper flange steel plate is provided with the grouting port.
  • the structural column comprises a steel column or a concrete column, and the outer periphery of the concrete column is provided with a hoop plate.
  • the side flanges of the structural column are welded with dark corbels, and the dark corbels can play a certain supporting role on the upper end face of the node connecting piece, and because the dark corbels are connected with the structural columns and nodes
  • the connectors are all connected, and the setting of the dark corbel increases the connection strength between the node connector and the structural column and the bending resistance of both ends of the concrete beam.
  • the concrete beam can be divided into the middle section between the two annular reinforcing plates and the connecting section between the annular reinforcing plate and the adjacent structural column.
  • the middle section and the connecting section are constructed step by step.
  • the shape is regular, which reduces the construction difficulty of pouring.
  • the prefabricated concrete beam-column construction method provided by the present invention is economical, effective and convenient for construction while ensuring the structural strength of the concrete beam-column joint.
  • the present invention also provides a prefabricated concrete beam-column joint used in the above-mentioned prefabricated concrete beam-column joint construction method.
  • Fig. 1 is the structural schematic diagram of the specific embodiment 1 of the prefabricated concrete beam-column joint provided by the present invention
  • Fig. 2 is the sectional schematic diagram on the A-A section in Fig. 1;
  • Fig. 3 is the structural schematic diagram of the specific embodiment 2 of the prefabricated concrete beam-column joint provided by the present invention.
  • FIG. 4 is a schematic structural diagram of Embodiment 3 of the fabricated concrete beam-column joint provided by the present invention.
  • 1 is a structural column
  • 11 is a steel column
  • 12 is a concrete column
  • 121 is a hoop plate
  • 2 is a concrete beam
  • 3 is a node connector
  • 31 is an upper flange steel plate
  • 311 is a grouting port
  • 32 is a lower flange steel plate
  • 33 is the side steel plate
  • 4 is the annular reinforcing plate
  • 5 is the dark corbel
  • 6 is the steel longitudinal bar
  • 7 is the corbel.
  • the core of the present invention is to provide a construction method for prefabricated concrete beam-column joints, which simplifies welding connections and performs step-by-step pouring of concrete beams, which greatly simplifies construction procedures and reduces construction difficulty.
  • the invention also provides a prefabricated concrete beam-column joint for the construction method of the prefabricated concrete beam-column joint.
  • FIG. 1 is a schematic structural diagram of a specific embodiment of a prefabricated concrete beam-column joint provided by the present invention
  • FIG. 2 is a schematic cross-sectional view on section A-A in FIG. 1
  • Provided is a schematic structural diagram of the second embodiment of the fabricated concrete beam-column joint
  • FIG. 4 is a structural schematic diagram of the third embodiment of the fabricated concrete beam-column joint provided by the present invention.
  • end mentioned in this application document refers to the end relatively close to the concrete beam 2
  • front end refers to the end relatively close to the structural column 1 .
  • the prefabricated concrete beam-column joint construction method provided by the present invention includes:
  • Step S1 assembling the node connector 3, and installing a stud on the node connector 3;
  • Step S2 welding a circumferential reinforcing plate 4 with a slot in the center of the middle and rear sections of the node connector 3;
  • Step S3 install longitudinal reinforcement bars 6 on the annular reinforcing plate 4;
  • Step S4 pouring the concrete beam 2 between the two annular reinforcing plates 4;
  • Step S5 welding the dark corbel 5 on the side flange of the structural column 1;
  • Step S6 hoisting the concrete beam 2, and connecting the joint connecting piece 3 and the dark corbel 5;
  • Step S7 welding the node connector 3 and the structural column 1;
  • step S8 the concrete beam 2 is poured between the hoop reinforcement plate 4 and the structural column 1 .
  • step S1 the studs are welded on the inner wall of the node connector 3, so as to be embedded in the concrete beam 2 through the subsequent pouring process of the concrete beam 2, so as to increase the distance between the node connector 3 and the concrete beam 2.
  • connection strength The length of the stud can be determined according to the design height of the concrete beam 2 in the actual construction process, so as to avoid that the length of the stud is too short to affect the connection strength or the length of the stud is too long to affect the structural strength of the concrete beam 2 .
  • the lengths of the node connectors 3 at both ends of the concrete beam 2 can be the same or different.
  • the lengths of the node connectors 3 at both ends of the concrete beam 2 can be set to be the same to facilitate design calculations during processing.
  • the studs are evenly distributed in the length direction of the concrete beam 2, so that the stress is relatively uniform everywhere on the node connection 3.
  • installing the pegs on the node connector 3 may include:
  • Step S11 install a stud at the end of the upper flange steel plate 31 of the node connector 3;
  • Step S12 install studs on the lower flange steel plate 32 of the node connector 3;
  • step S13 studs are installed on the side steel plates 33 on both sides of the node connector 3 .
  • step S11 considering that the front end of the upper flange steel plate 31 has a grouting port 311 for pouring the concrete column 2 , only the end of the upper flange steel plate 31 is provided with studs.
  • the studs are welded to the inner wall surface of the upper flange steel plate 31, the inner wall surface of the lower flange steel plate 32 and the inner wall surface of the side steel plate 33.
  • the spacing of the studs on the upper flange steel plate 31, the lower flange steel plate 32 The spacing of the upper pegs and the spacing of the pegs on the side steel plates 33 are the same.
  • step S2 is that the circumferential reinforcing plate 4 is welded between the upper flange steel plate 31 and the lower flange steel plate 32 of the node connector 3 through fillet welding.
  • the specific position of the hoop reinforcement plate 4 on the node connector 3 is determined according to actual construction requirements, such as the design length of the concrete beam 2 and the length of the pouring formwork.
  • the circumferential reinforcing plates 4 of the node connectors 3 at both ends of the concrete beam 2 can be set to have the same length from the end of the node connectors 3 away from the structural column 1 .
  • step S3 the longitudinal reinforcement bars 6 are used to connect the concrete beams 2 on both sides of the annular reinforcement plate 4 and improve the tensile and flexural strength of the concrete beams 2 at the cross-section of the annular reinforcement plate 4 .
  • step S3 may include:
  • Step S31 combine the longitudinal reinforcement 6 and the stirrup according to the reinforcement ratio
  • step S31 the end of the combined longitudinal reinforcement bar 6 is inserted into the reserved reinforcement hole of the circumferential reinforcing plate 4 and fixed.
  • the reserved reinforcement holes are evenly distributed on the section of the annular reinforcing plate 4 .
  • step S5 is that the dark corbel 5 is vertically welded to the side flange of the structural column 1 through the fillet weld, so that the dark corbel 5 supports the node connector 3 and increases the connection between the structural column 1 and the node connector 3. connection strength.
  • the size and shape of the dark corbel 5 are determined with reference to the prior art according to actual building requirements, and will not be repeated here.
  • Structural column 1 mainly includes steel column 11 and concrete column 12.
  • dark corbel 5 can be directly welded to the side flange of steel column 11; for concrete column 12, a hoop is provided on the side flange of concrete column 12.
  • the plate 121 since the hoop plate 121 is a steel plate, the dark corbel 5 can be directly welded and connected with the dark corbel 5 .
  • the dark corbel 5 can also be replaced with a corbel 7, and the corbel 7 is welded between the lower flange of the concrete beam 2 and the side flange of the structural column 1, as shown in FIG. 4 .
  • step S6 is that the concrete beam 2 is lifted by a lifting device such as a crane, and the standard for hoisting in place is that the node connectors 3 on both sides of the concrete beam 2 are in contact with the side flanges of the structural column 1 and the upper wing of the node connector 3 is in contact.
  • the lower surface of the edge steel plate 31 is in contact with the upper surface of the dark corbel 5 .
  • the dark corbel 5 is arranged in the symmetrical plane of the node connecting member 3, and the dark corbel 5 has the best supporting effect on the upper flange steel plate 31.
  • step S6 may include:
  • Step S61 the hidden corbel 5 is overlapped with the node connector 3 through the hidden corbel mounting hole on the node connector 3;
  • Step S62 repair welding to block the mounting hole of the dark corbel.
  • the mounting holes of the hidden corbels can be arranged on the lower flange steel plate 32 of the node connector 3, and can be arranged on the side steel plates 33;
  • step S7 is that the node connector 3 and the structural column 1 are connected by fillet welding.
  • the inner wall surface of the upper flange steel plate 31 in the node connector 3 is connected with the upper end surface of the dark corbel 5 by welding, and the side surface of the upper flange steel plate 31 and the side surface of the lower flange steel plate 32 are connected with the side of the structural column 1 .
  • Edge welding connection many connection points, high connection strength.
  • a corbel may be provided between the side flange of the structural column 1 and the lower end surface of the upper flange steel plate 32 .
  • the welding process is only used at the connection between the node connector 3, the node connector 3 and the structural column 1, which not only reduces the number of structures that need to be welded, but also simplifies the structure of the welded part and reduces the welding operation time.
  • Construction difficulty for wet connections with complex construction conditions, cumbersome procedures, and long construction periods, a step-by-step method is used to pour the concrete beam 2 between the two circumferential reinforcing plates 4 first, and then pour the circumferential reinforcing plates 4 and the structural columns.
  • the concrete beam 2 between 1 compared with the overall pouring, the concrete volume of single pouring is reduced and the shape is regular, which greatly reduces the construction difficulty. Therefore, the prefabricated concrete beam-column construction method provided in this embodiment is economical, effective, and convenient for construction while ensuring the structural strength of the concrete beam-column joint.
  • step S4 may include:
  • Step S41 blocking the groove on the annular reinforcing plate 4;
  • step S42 a pair of node connectors 3 are put into the formwork, and the concrete beam 2 is poured between the two annular reinforcing plates 4 .
  • step S41 the grooves on the annular reinforcing plate 4 are blocked with a blocking material
  • the blocking material may specifically be a common building construction material such as foam plastic.
  • step S42 the formwork is used for pouring the concrete beam 2 in the middle section between the two annular reinforcing plates 4.
  • the two annular reinforcing plates 4 are respectively arranged at both ends of the length of the formwork.
  • step S9 may include:
  • Step S91 removing the blocking material in the groove
  • Step S92 a mold is set at the connection between the structural column 1 and the node connector 3;
  • Step S93 using the grouting port 311 of the node connector 3 to perform concrete pouring.
  • the purpose of removing the blocking material in the groove is to pour concrete into the groove to fill the space in the groove, so as to avoid the interruption of the concrete beam 2 at the groove and seriously affect the concrete beam 2 and the beam-column. Structural strength at nodes.
  • the present invention also provides a prefabricated concrete beam-column joint applying the construction method of the prefabricated concrete beam-column joint disclosed in the above embodiments, and the prefabricated concrete beam-column joint includes a structural column 1 , the concrete beam 2, the node connector 3 connecting the structural column 1 and the concrete beam 2, the node connector 3 is horizontally arranged at both ends of the concrete beam 2, and the upper surface of the node connector 3 is provided with a grouting port 311; There is a circumferential reinforcing plate 4 inside, and the circumferential reinforcing plate 4 is provided with a through slot; the side flange of the structural column 1 is welded with a corbel 5, and the corbel 5 is pre-buried in the concrete beam 2, and the corbel 5 is embedded in the concrete beam 2. The legs 5 and the structural column 1 are welded to the node connector 3 .
  • the structural column 1 may include a steel column 11 or a concrete column 12, and the side flanges of the concrete column 12 are provided with a hoop plate 121.
  • the hoop plate 121 is a steel plate arranged around the outer periphery of the concrete column 12 , so the dark corbel 5 or the corbel 7 can be connected to the hoop plate 121 by welding.
  • the concrete column 12 can include hollow concrete column and solid concrete column; according to the pouring method, the concrete column 12 can include cast-in-place column, prefabricated column and prefabricated column shown in FIG. 3 and FIG. 4 .
  • the specific type and size of the concrete column 12 are determined according to actual construction requirements with reference to the prior art, and details are not described herein again.
  • the structural column 1 is set as a hollow steel pipe column, and the specific cross-sectional shape of the steel pipe column is designed according to the strength requirements of architectural design with reference to the prior art, which will not be repeated here.
  • the corbel 5 is provided with several stud holes for installing studs, and the corbel 5 and the concrete beam 2 are connected by studs, so as to enhance the connection between the corbel 5 and the concrete beam 2 connection strength.
  • the circumferential reinforcing plate 4 is provided with a number of reserved reinforced holes for installing the longitudinal reinforcing bars 6 , and the longitudinal reinforcing bars 6 are used to connect the concrete beams 2 on both sides of the circumferential reinforcing plate 4 .
  • the extension direction of the reinforced longitudinal bars 6 is the same as the length direction of the concrete beam 2 , which enhances the tensile strength of the concrete beam 2 .
  • the concrete beams 2 on both sides of the annular reinforcing plate 4 are not only bonded at the interface between the two pourings, but also connected by the steel longitudinal bars 6, which greatly reduces the risk of the concrete beam 2 breaking at the pouring interface.
  • the node connector 3 includes an upper flange steel plate 31 in contact with the upper surface of the concrete beam 2, a lower flange steel plate 32 in contact with the lower surface of the concrete beam 2, and a side steel plate 33.
  • the side steel plate 33 The upper flange steel plate 31 and the lower flange steel plate 32 are connected; the front end of the upper flange steel plate 31 is provided with a grouting port 311 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

装配式混凝土梁柱节点施工方法包括:组合节点连接件(3),并在节点连接件(3)上安装栓钉;在节点连接件(3)的中后段焊接中央设有槽洞的环向加强板(4);在环向加强板(4)上安装钢筋纵筋(6);在两块环向加强板(4)之间浇筑混凝土梁(2);在结构柱(1)的侧翼缘焊接暗牛腿(5);吊装混凝土梁(2),搭接节点连接件(3)与暗牛腿(5);焊接节点连接件(3)与结构柱(1);在环向加强板(4)与结构柱(1)之间浇筑混凝土梁(2)。

Description

一种装配式混凝土梁柱节点及其施工方法
本申请要求于2021年01月27日提交中国专利局、申请号为202110113801.9、发明名称为“一种装配式混凝土梁柱节点及其施工方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及建筑技术领域,更具体地说,涉及一种装配式混凝土梁柱节点施工方法。此外,本发明还公开了一种用于上述装配式混凝土梁柱节点施工方法的装配式混凝土梁柱节点。
背景技术
由于现场建造施工方法具有生产效率低、资源浪费严重、品质控制差、对环境的负面影响大等特点,以“构件生产工厂化,施工运作装配化”为特点的装配式建筑应运而生。
为了保证装配式建筑能够发挥整体受力性能,需要通过节点连接构件、使其在载荷状态下共同受力。由于建筑结构受力机理复杂,节点处往往非单一受力状态,需要节点具有足够的强度和刚度,在保证小变形的同时承担并传递复杂的受力。
单一采用钢结构件搭建装配式建筑,成本过高,难以在民用建筑中推广。混凝土装配式建筑经济实用,但在施工条件复杂,操作繁琐。现有的混凝土装配式建筑的连接方式主要包括干连接和湿连接两种。干连接为焊接或螺栓连接,焊接施工步骤较为复杂,且焊接质量易受到材料和操作技术的影响,螺栓连接需要在构件上开设多排螺栓孔,施工速度较慢;湿连接为通过后浇混凝土实现连接,混凝土浇筑需要模板,施工工序复杂、操作繁琐、施工要求高,因此施工速度慢。
综上所述,如何简化混凝土装配式建筑的施工方法,是目前本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明的目的是提供一种装配式混凝土梁柱节点施工方法,简化焊接连接并对混凝土梁进行分步浇筑,极大地简化了施工程序,降低了施工难度。
此外,本发明还提供了一种用于装配式混凝土梁柱节点施工方法的装配式混凝土梁柱节点。
为了实现上述目的,本发明提供如下技术方案:
一种装配式混凝土梁柱节点施工方法,包括:
组合节点连接件,并在所述节点连接件上安装栓钉;
在所述节点连接件的中后段焊接中央设有槽洞的环向加强板;
在所述环向加强板上安装钢筋纵筋;
在两块所述环向加强板之间浇筑混凝土梁;
在结构柱的侧翼缘焊接暗牛腿;
吊装所述混凝土梁,搭接所述节点连接件与所述暗牛腿;
焊接所述节点连接件与所述结构柱;
在所述环向加强板与所述结构柱之间浇筑所述混凝土梁。
优选的,所述在所述节点连接件上安装栓钉,包括:
在所述节点连接件的上翼缘钢板的末端安装栓钉;
在所述节点连接件的下翼缘钢板安装栓钉;
在所述节点连接件两侧的侧钢板安装栓钉。
优选的,所述搭接所述节点连接件与所述暗牛腿包括:
所述暗牛腿通过所述节点连接件上的暗牛腿安装孔与所述节点连接件搭接;
补焊封堵所述暗牛腿安装孔。
优选的,所述在两块所述环向加强板之间浇筑混凝土梁,包括:
封堵所述环向加强板上的所述槽洞;
将一对完成所述钢筋纵筋安装的所述节点连接件放入模板中,在两块所述环向加强板之间浇筑所述混凝土梁。
优选的,所述在所述环向加强板与所述结构柱之间浇筑所述混凝土梁, 包括:
拆除所述槽洞内的封堵材料;
在所述结构柱与所述节点连接件连接处套设模具;
利用所述节点连接件的灌浆口进行混凝土浇筑。
一种装配式混凝土梁柱节点,包括结构柱、混凝土梁、连接所述结构柱与所述混凝土梁的节点连接件,所述节点连接件水平设置于所述混凝土梁的两端,所述节点连接件的上表面设有灌浆口;
所述节点连接件内设有环向加强板,且所述环向加强板上设有贯通的槽洞;
所述结构柱的侧翼缘焊接暗牛腿,所述暗牛腿预埋于所述混凝土梁内,且所述暗牛腿、所述结构柱均与所述节点连接件焊接。
优选的,所述环向加强板上设有若干个用于安装钢筋纵筋的预留钢筋孔,所述钢筋纵筋用于连接所述环向加强板两侧的所述混凝土梁。
优选的,所述节点连接件包括与所述混凝土梁的上翼缘接触的上翼缘钢板、与所述混凝土梁的下翼缘接触的下翼缘钢板以及侧钢板,所述侧钢板连接所述上翼缘钢板和所述下翼缘钢板;
所述上翼缘钢板的前端设有所述灌浆口。
优选的,所述结构柱包括钢柱或混凝土柱,所述混凝土柱的外周设有箍板。
本发明提供的装配式混凝土梁柱施工方法中结构柱的侧翼缘焊接暗牛腿,暗牛腿可对节点连接件的上端面起到一定的支撑作用,又由于暗牛腿与结构柱、节点连接件均连接,暗牛腿的设置增大了节点连接件与结构柱之间的连接强度以及混凝土梁两端的抗弯能力。
混凝土梁可分为两块环向加强板之间的中间段以及环向加强板与相邻的结构柱之间的连接段,中间段与连接段分步施工,需要浇筑的混凝土体积小且浇筑形状规则,降低了浇筑的施工难度。
由于仅在节点连接件、节点连接件与结构柱的连接处使用焊接工艺,不仅焊接位置减少,还简化了焊接部分的结构,从而降低了焊接操作的施工难度;对于施工条件复杂、程序繁琐、施工周期长的湿连接,采用分布 浇筑的方式施工,相比于整体浇筑,单次浇筑体积小且浇筑形状规则,极大地降低了施工难度。
因此,本发明提供的装配式混凝土梁柱施工方法在保证混凝土梁柱节点的结构强度的同时经济有效、施工便捷。
此外,本发明还提供了一种用于上述装配式混凝土梁柱节点施工方法的装配式混凝土梁柱节点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明所提供的装配式混凝土梁柱节点的具体实施例一的结构示意图;
图2为图1中A-A截面上的剖视示意图;
图3为本发明所提供的装配式混凝土梁柱节点的具体实施例二的结构示意图;
图4为本发明所提供的装配式混凝土梁柱节点的具体实施例三的结构示意图。
图1-图4中:
1为结构柱、11为钢柱、12为混凝土柱、121为箍板、2为混凝土梁、3为节点连接件、31为上翼缘钢板、311为灌浆口、32为下翼缘钢板、33为侧钢板、4为环向加强板、5为暗牛腿、6为钢筋纵筋、7为牛腿。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的核心是提供一种装配式混凝土梁柱节点施工方法,简化焊接连接并对混凝土梁进行分步浇筑,极大地简化了施工程序,降低了施工难度。
本发明还提供了一种用于装配式混凝土梁柱节点施工方法的装配式混凝土梁柱节点。
请参考图1-图4,图1为本发明所提供的装配式混凝土梁柱节点的具体实施例的结构示意图;图2为图1中A-A截面上的剖视示意图;图3为本发明所提供的装配式混凝土梁柱节点的具体实施例二的结构示意图;图4为本发明所提供的装配式混凝土梁柱节点的具体实施例三的结构示意图。
需要进行说明的是,本申请文件中提到的末端指相对靠近混凝土梁2的一端,前端指相对靠近结构柱1的一端。
本发明提供的装配式混凝土梁柱节点施工方法,包括:
步骤S1,组合节点连接件3,并在节点连接件3上安装栓钉;
步骤S2,在节点连接件3的中后段焊接中央设有槽洞的环向加强板4;
步骤S3,在环向加强板4上安装钢筋纵筋6;
步骤S4,在两块环向加强板4之间浇筑混凝土梁2;
步骤S5,在结构柱1的侧翼缘焊接暗牛腿5;
步骤S6,吊装混凝土梁2,搭接节点连接件3与暗牛腿5;
步骤S7,焊接节点连接件3与结构柱1;
步骤S8,在环向加强板4与结构柱1之间浇筑混凝土梁2。
需要对步骤S1进行说明的是,栓钉焊接于节点连接件3的内壁上,以便通过后续的混凝土梁2的浇筑过程预埋于混凝土梁2中,增大节点连接件3与混凝土梁2的连接强度。栓钉的长度可根据实际建造过程中混凝土梁2的设计高度等确定,避免栓钉长度过短影响连接强度或栓钉长度过长影响混凝土梁2的结构强度。
混凝土梁2两端的节点连接件3的长度可以相同也可以不同,优选的, 可以设置混凝土梁2两端的节点连接件3的长度相同,以方便加工过程中的设计计算。
优选的,栓钉在混凝土梁2的长度方向上均匀分布,以便节点连接处3上各处受力相对均匀。
优选的,在节点连接件3上安装栓钉可以包括:
步骤S11,在节点连接件3的上翼缘钢板31的末端安装栓钉;
步骤S12,在节点连接件3的下翼缘钢板32安装栓钉;
步骤S13,在节点连接件3两侧的侧钢板33安装栓钉。
需要对步骤S11需要进行说明的是,考虑到上翼缘钢板31的前端留有用于浇筑混凝土柱2的灌浆口311,仅在上翼缘钢板31的末端设置栓钉。
栓钉焊接于上翼缘钢板31的内壁面、下翼缘钢板32的内壁面以及侧钢板33的内壁面,优选的,可以设置上翼缘钢板31上栓钉的间距、下翼缘钢板32上栓钉的间距以及侧钢板33上栓钉的间距均相同。
需要对步骤S2进行说明的是,环向加强板4通过角焊缝焊接于节点连接件3的上翼缘钢板31和下翼缘钢板32之间。环向加强板4在节点连接件3上的具***置根据实际建筑需求如混凝土梁2的设计长度、浇筑模板的长度等确定。优选的,可以设置混凝土梁2两端的节点连接件3的环向加强板4距节点连接件3远离结构柱1的一端的长度相同。
需要对步骤S3进行说明的是,钢筋纵筋6用于连接环向加强板4两侧的混凝土梁2,并提高混凝土梁2在环向加强板4截面处的抗拉和抗弯强度。
优选的,步骤S3可以包括:
步骤S31,根据配筋率组合钢筋纵筋6和箍筋;
步骤S31,将组合后的钢筋纵筋6的端部穿入环向加强板4的预留钢筋孔内并固定。
优选的,预留钢筋孔在环向加强板4的截面上均匀分布。
需要对步骤S5进行说明的是,暗牛腿5通过角焊缝垂直焊接于结构柱1的侧翼缘,以便暗牛腿5支撑节点连接件3并增大结构柱1与节点连接件3连接处的连接强度。暗牛腿5的尺寸及形状根据实际建筑需求参考现 有技术确定,在此不再赘述。
结构柱1主要包括钢柱11和混凝土柱12两类,对于钢柱11,暗牛腿5可以直接焊接于钢柱11的侧翼缘;对于混凝土柱12,在混凝土柱12的侧翼缘设有箍板121,由于箍板121为钢板,因此暗牛腿5可与暗牛腿5直接焊接连接。
此外,也可以将暗牛腿5替换为牛腿7,牛腿7焊接于混凝土梁2的下翼缘与结构柱1的侧翼缘之间,如图4所示。
需要对步骤S6进行说明的是,混凝土梁2通过吊车等起吊装置起吊,吊装到位的标准为混凝土梁2两侧的节点连接件3与结构柱1的侧翼缘接触且节点连接件3的上翼缘钢板31的下表面与暗牛腿5的上表面接触。
优选的,暗牛腿5设置于节点连接件3的对称面内,暗牛腿5对上翼缘钢板31的支撑效果最好。
优选的,步骤S6可以包括:
步骤S61,暗牛腿5通过节点连接件3上的暗牛腿安装孔与节点连接件3搭接;
步骤S62,补焊封堵暗牛腿安装孔。
暗牛腿安装孔可以设置于节点连接件3的下翼缘钢板32,可以设置于侧钢板33;暗牛腿安装孔的尺寸应当满足暗牛腿5安装的操作空间要求。
需要对步骤S7进行说明的是,节点连接件3和结构柱1之间通过角焊缝焊接连接。请参考图2,节点连接件3内上翼缘钢板31的内壁面与暗牛腿5的上端面焊接连接,上翼缘钢板31的侧面、下翼缘钢板32的侧面与结构柱1的侧翼缘焊接连接,连接点多,连接强度大。
优选的,为了进一步增强节点连接件3与结构柱1之间的连接强度,可以在结构柱1的侧翼缘与上翼缘钢板32的下端面之间设置牛腿。
在本实施例中,仅在节点连接件3、节点连接件3与结构柱1的连接处使用焊接工艺,不仅减少了需要焊接的结构数量,还简化了焊接部分的结构,降低了焊接操作的施工难度;对于施工条件复杂、程序繁琐、施工周期长的湿连接,采用分步浇筑的方法,先浇筑两环向加强板4之间的混凝土梁2,再浇筑环向加强板4与结构柱1之间的混凝土梁2,相比于整体 浇筑,单次浇筑的混凝土体积减小且形状规则,极大地降低了施工难度。因此,本实施例提供的装配式混凝土梁柱施工方法在保证混凝土梁柱节点的结构强度的同时经济有效、施工便捷。
在上述实施例的基础上,步骤S4可以包括:
步骤S41,封堵环向加强板4上的槽洞;
步骤S42,将一对节点连接件3放入模板中,在两块环向加强板4之间浇筑混凝土梁2。
需要对步骤S41进行说明的是,利用封堵材料封堵环向加强板4上的槽洞,封堵材料具体可以选择泡沫塑料等常见的建筑施工材料。
需要对步骤S42进行说明的是,模板用于浇筑混凝土梁2位于两块环向加强板4之间的中间段,组装浇筑模板时,两块环向加强板4分别设置于模板长度的两端;待混凝土完全干燥后,拆除模板,节点连接件3由于内壁面预留的栓钉仍与混凝土梁2连接,从而实现了混凝土梁2中间段的浇筑以及中间段与节点连接件3的连接。
在上述实施例的基础上,步骤S9可以包括:
步骤S91,拆除槽洞内的封堵材料;
步骤S92,在结构柱1与节点连接件3连接处套设模具;
步骤S93,利用节点连接件3的灌浆口311进行混凝土浇筑。
需要进行说明的是,拆除槽洞内的封堵材料的目的是,向槽洞内灌注混凝土以填充槽洞内的空间,避免混凝土梁2在槽洞处中断、严重影响混凝土梁2以及梁柱节点处的结构强度。
除了上述装配式混凝土梁柱节点施工方法,本发明还提供一种应用上述实施例公开的装配式混凝土梁柱节点施工方法的装配式混凝土梁柱节点,该装配式混凝土梁柱节点包括结构柱1、混凝土梁2、连接结构柱1与混凝土梁2的节点连接件3,节点连接件3水平设置于混凝土梁2的两端,节点连接件3的上表面设有灌浆口311;节点连接件3内设有环向加强板4,且环向加强板4上设有贯通的槽洞;结构柱1的侧翼缘焊接暗牛腿5,暗牛腿5预埋于混凝土梁2内,且暗牛腿5、结构柱1均与节点连接件3焊接。
优选的,结构柱1可以包括钢柱11或混凝土柱12,混凝土柱12的侧翼缘设有箍板121。箍板121为环绕混凝土柱12的外周设置的钢板,因此暗牛腿5或牛腿7能够与箍板121焊接连接。
按照混凝土柱12的截面形状,混凝土柱12可以包括空心混凝土柱和实心混凝土柱;按照浇筑方法,混凝土柱12可以包括现浇柱、预制柱以及图3和图4所示的装配式预制柱。混凝土柱12的具体种类和尺寸根据实际施工需求参考现有技术确定,在此不再赘述。
为了减轻结构柱1的建造成本和质量,结构柱1设置为空心的钢管柱,钢管柱的具体截面形状根据建筑设计的强度要求参考现有技术进行设计,在此不再赘述。
优选的,请参考图2,暗牛腿5设有若干个安装栓钉的栓钉孔洞,暗牛腿5和混凝土梁2通过栓钉连接,以便增强暗牛腿5与混凝土梁2之间的连接强度。
优选的,环向加强板4上设有若干个用于安装钢筋纵筋6的预留钢筋孔,钢筋纵筋6用于连接环向加强板4两侧的混凝土梁2。钢筋纵筋6的延伸方向与混凝土梁2的长度方向相同,增强了混凝土梁2的抗拉强度。环向加强板4两侧的混凝土梁2除在两次浇筑的分界面处粘接,还可通过钢筋纵筋6连接,极大地降低了混凝土梁2在浇筑分界面断裂的风险。
优选的,请参考图2,节点连接件3包括与混凝土梁2的上表面接触的上翼缘钢板31、与混凝土梁2的下表面接触的下翼缘钢板32以及侧钢板33,侧钢板33连接上翼缘钢板31和下翼缘钢板32;上翼缘钢板31的前端设有灌浆口311。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上对本发明所提供的装配式混凝土梁柱节点及其施工方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下, 还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (9)

  1. 一种装配式混凝土梁柱节点施工方法,其特征在于,包括:
    组合节点连接件(3),并在所述节点连接件(3)上安装栓钉;
    在所述节点连接件(3)的中后段焊接中央设有槽洞的环向加强板(4);
    在所述环向加强板(4)上安装钢筋纵筋(6);
    在两块所述环向加强板(4)之间浇筑混凝土梁(2);
    在结构柱(1)的侧翼缘焊接暗牛腿(5);
    吊装所述混凝土梁(2),搭接所述节点连接件(3)与所述暗牛腿(5);
    焊接所述节点连接件(3)与所述结构柱(1);
    在所述环向加强板(4)与所述结构柱(1)之间浇筑所述混凝土梁(2)。
  2. 根据权利要求1所述的装配式混凝土梁柱节点施工方法,其特征在于,所述在所述节点连接件(3)上安装栓钉,包括:
    在所述节点连接件(3)的上翼缘钢板(31)的安装栓钉;
    在所述节点连接件(3)的下翼缘钢板(32)安装栓钉;
    在所述节点连接件(3)两侧的侧钢板(33)安装栓钉。
  3. 根据权利要求1所述的装配式混凝土梁柱节点施工方法,其特征在于,所述搭接所述节点连接件(3)与所述暗牛腿(5)包括:
    所述暗牛腿(5)通过所述节点连接件(3)上的暗牛腿安装孔与所述节点连接件(3)搭接;
    补焊封堵所述暗牛腿安装孔。
  4. 根据权利要求1所述的装配式混凝土梁柱节点施工方法,其特征在于,所述在两块所述环向加强板(4)之间浇筑混凝土梁(2),包括:
    封堵所述环向加强板(4)上的所述槽洞;
    将一对完成所述钢筋纵筋安装的所述节点连接件(3)放入模板中,在两块所述环向加强板(4)之间浇筑所述混凝土梁(2)。
  5. 根据权利要求1-4任一项所述的装配式混凝土梁柱节点施工方法,其特征在于,所述在所述环向加强板(4)与所述结构柱(1)之间浇筑所述混凝土梁(2),包括:
    拆除所述槽洞内的封堵材料;
    利用所述节点连接件(3)的灌浆口(311)进行混凝土浇筑。
  6. 一种装配式混凝土梁柱节点,其特征在于,包括结构柱(1)、混凝土梁(2)、连接所述结构柱(1)与所述混凝土梁(2)的节点连接件(3),所述节点连接件(3)水平设置于所述混凝土梁(2)的两端,所述节点连接件(3)的上表面设有灌浆口(311);
    所述节点连接件(3)内设有环向加强板(4),且所述环向加强板(4)上设有贯通的槽洞;
    所述结构柱(1)的侧翼缘焊接暗牛腿(5),所述暗牛腿(5)在灌浆后预埋于所述混凝土梁(2)内,且所述结构柱(1)与所述节点连接件(3)焊接。
  7. 根据权利要求6所述的装配式混凝土梁柱节点,其特征在于,所述环向加强板(4)上设有若干个用于安装钢筋纵筋(6)的预留钢筋孔。
  8. 根据权利要求6-7任一项所述的装配式混凝土梁柱节点,其特征在于,所述节点连接件(3)包括与所述混凝土梁(2)的上表面接触的上翼缘钢板(31)、与所述混凝土梁(2)的下表面接触的下翼缘钢板(32)以及侧钢板(33),所述侧钢板(33)连接所述上翼缘钢板(31)和所述下翼缘钢板(32);
    所述上翼缘钢板(31)的前端设有所述灌浆口(311)。
  9. 根据权利要求8所述的装配式混凝土梁柱节点,其特征在于,所述结构柱(1)包括钢柱(11)或混凝土柱(12),所述混凝土柱(12)的侧翼缘设有箍板(121)。
PCT/CN2021/076428 2021-01-27 2021-02-10 一种装配式混凝土梁柱节点及其施工方法 WO2022160388A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/624,274 US11686084B2 (en) 2021-01-27 2021-02-10 Prefabricated concrete beam-column node and construction method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110113801.9 2021-01-27
CN202110113801.9A CN112900619B (zh) 2021-01-27 2021-01-27 一种装配式混凝土梁柱节点及其施工方法

Publications (1)

Publication Number Publication Date
WO2022160388A1 true WO2022160388A1 (zh) 2022-08-04

Family

ID=76119187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076428 WO2022160388A1 (zh) 2021-01-27 2021-02-10 一种装配式混凝土梁柱节点及其施工方法

Country Status (3)

Country Link
US (1) US11686084B2 (zh)
CN (1) CN112900619B (zh)
WO (1) WO2022160388A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110185140A (zh) * 2019-05-27 2019-08-30 广西建筑材料科学研究设计院有限公司 一种限位自锁、解锁及钢筋连接的预制混凝土柱对接全断面连接盒装置
CN110185139A (zh) * 2019-05-27 2019-08-30 广西建筑材料科学研究设计院有限公司 一种限位自锁、解锁及钢筋连接的预制混凝土梁柱全断面连接盒装置
CN116411517A (zh) * 2023-02-18 2023-07-11 中国铁建港航局集团有限公司 一种混凝土横梁无支架整体提升施工方法
CN116771037A (zh) * 2023-06-16 2023-09-19 中铁广州工程局集团有限公司 一种装配式钢结构门楼一体化快速安装施工方法
CN117386005A (zh) * 2023-12-12 2024-01-12 中铁房地产集团设计咨询有限公司 一种基于贯通式梁柱节点的预制低碳结构体系及施工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110825A (zh) * 2022-04-20 2022-09-27 重庆大学 一种可拆卸的预制钢筋混凝土梁-钢柱连接节点及其修复方法
US20230407636A1 (en) * 2022-06-16 2023-12-21 ICF Building Systems LLC Concrete form systems, devices, and related methods
CN115341714A (zh) * 2022-08-03 2022-11-15 浙江大学建筑设计研究院有限公司 以钢管混凝土结构作为连接节点的装配式混合梁及方法
CN117027251B (zh) * 2023-09-21 2024-04-09 北京市第三建筑工程有限公司 一种跨变形缝位置幕墙连接点构造及其施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864604B1 (ko) * 2008-05-19 2008-10-22 (주)크로스구조연구소기술사사무소 철근콘크리트 빔 단부연결용 보강재 및 이를 이용한 구조물시공방법
CN107905363A (zh) * 2017-11-13 2018-04-13 湖南大学 一种基于耗能件与抗剪件的全装配式混凝土梁柱连接器及梁柱连接方法
CN208293758U (zh) * 2018-05-29 2018-12-28 福州大学 装配式混凝土梁柱节点
CN209244091U (zh) * 2018-09-27 2019-08-13 贺州通号装配式建筑有限公司 一种预制空心梁
CN110820954A (zh) * 2019-11-28 2020-02-21 浙江大东吴建筑科技有限公司 适用于装配式pec的梁柱或梁梁连接节点结构及其施工方法
CN210216720U (zh) * 2019-06-06 2020-03-31 深汕特别合作区盛腾科技工业园有限公司 一种装配式梁柱节点的连接结构
CN210421404U (zh) * 2019-06-20 2020-04-28 重庆中科建设(集团)有限公司 暗牛腿、连接座及干法连接节点

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1163537A (en) * 1966-02-26 1969-09-10 Trent Concrete Ltd Improvements in and relating to precast reinforced, concrete structural members
US3562979A (en) * 1967-10-23 1971-02-16 Componoform Inc Building construction
US3594971A (en) * 1969-06-26 1971-07-27 John K Hughes Building construction and components thereof
US3971179A (en) * 1969-08-13 1976-07-27 Andrew Bodocsi Non-bonded framing system
US3600863A (en) * 1969-09-08 1971-08-24 Nat Parking Corp Concrete slab with improved fastening means
US3733757A (en) * 1971-07-30 1973-05-22 Flexicore Co Concrete building frame construction
US3999735A (en) * 1973-09-06 1976-12-28 Brownlee Robert O Concrete pouring forms for uniting building units
US4104844A (en) * 1973-09-06 1978-08-08 William Clinton Reid Method of erecting a building construction
US4211045A (en) * 1977-01-20 1980-07-08 Kajima Kensetsu Kabushiki Kaisha Building structure
PH13116A (en) * 1979-08-06 1979-11-29 Pilar Dev Corp An improve system for constructing a building
US4295310A (en) * 1979-08-22 1981-10-20 Mcmanus Ira J Precast concrete joist composite system
US4330970A (en) * 1979-10-23 1982-05-25 Copreal S.A. Building structure and steel parts for same
US4819394A (en) * 1987-11-02 1989-04-11 M & J Operations Corporation Quick-connect lateral force coupling
GB2252142B (en) * 1990-12-12 1994-11-09 Kajima Corp Junction structure between a steel beam and a column
US5279093A (en) * 1991-12-11 1994-01-18 Mulach Parking Structures Corp. Composite girder with apparatus and method for forming the same
US5634308A (en) * 1992-11-05 1997-06-03 Doolan; Terence F. Module combined girder and deck construction
US6474902B1 (en) * 1997-01-22 2002-11-05 Icf Kaiser Engineers, Inc. Connector for connecting beams to columns
CA2440765C (en) * 2000-12-08 2007-08-28 Diversakore Llc Composite structural framing system
KR100747661B1 (ko) * 2005-12-07 2007-08-08 (주)엠씨에스공법 거푸집-콘크리트 복합보 및 이를 이용한 건축물 시공 방법
US9096999B2 (en) * 2007-06-22 2015-08-04 Diversakore Llc Framing structure
KR100918974B1 (ko) * 2007-10-24 2009-09-25 최진욱 콘크리트 충전 강관 기둥 및 이의 제조방법
KR101018824B1 (ko) * 2009-01-12 2011-03-04 (주)네오크로스구조엔지니어링 티형 강재를 이용한 합성보 제작방법 및 이를 이용한 구조물 시공방법
US8453406B2 (en) * 2010-05-04 2013-06-04 Plattforms, Inc. Precast composite structural girder and floor system
US8671634B2 (en) * 2011-03-29 2014-03-18 Board Of Regents Of The University Of Nebraska Shallow flat soffit precast concrete floor system
WO2016051387A1 (en) * 2014-10-02 2016-04-07 Gruppo Piccini S.P.A. Building system for a multi-story building and method
KR101520002B1 (ko) * 2015-01-05 2015-05-14 (주)세종알앤디 조립식 플레이트와 정착 채널을 구비한 프리캐스트 콘크리트 부재
CN106481023B (zh) * 2016-10-27 2019-10-15 绍兴文理学院 装配式钢混结合梁结构及其实施方法
US11105084B1 (en) * 2017-07-24 2021-08-31 Bing Cui Dry connection prefabricated assembly steel-concrete composite beam
TWI680220B (zh) * 2018-01-25 2019-12-21 潤弘精密工程事業股份有限公司 梁柱接頭結構及梁柱接合方法
KR101989167B1 (ko) * 2018-11-23 2019-09-30 한국건설기술연구원 이중웨브를 이용한 중공형 합성보 및 그 시공방법
US10597864B1 (en) * 2019-05-01 2020-03-24 Storage Structures, Inc. Structural member assemblies, beams, and support structures comprising same
JP6749673B1 (ja) * 2019-12-25 2020-09-02 黒沢建設株式会社 コンクリート製柱と鉄骨梁との接合構造
CN111173341B (zh) * 2020-01-14 2021-02-19 西南交通大学 一种基于牛腿的干法连接耗能型梁柱节点

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864604B1 (ko) * 2008-05-19 2008-10-22 (주)크로스구조연구소기술사사무소 철근콘크리트 빔 단부연결용 보강재 및 이를 이용한 구조물시공방법
CN107905363A (zh) * 2017-11-13 2018-04-13 湖南大学 一种基于耗能件与抗剪件的全装配式混凝土梁柱连接器及梁柱连接方法
CN208293758U (zh) * 2018-05-29 2018-12-28 福州大学 装配式混凝土梁柱节点
CN209244091U (zh) * 2018-09-27 2019-08-13 贺州通号装配式建筑有限公司 一种预制空心梁
CN210216720U (zh) * 2019-06-06 2020-03-31 深汕特别合作区盛腾科技工业园有限公司 一种装配式梁柱节点的连接结构
CN210421404U (zh) * 2019-06-20 2020-04-28 重庆中科建设(集团)有限公司 暗牛腿、连接座及干法连接节点
CN110820954A (zh) * 2019-11-28 2020-02-21 浙江大东吴建筑科技有限公司 适用于装配式pec的梁柱或梁梁连接节点结构及其施工方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110185140A (zh) * 2019-05-27 2019-08-30 广西建筑材料科学研究设计院有限公司 一种限位自锁、解锁及钢筋连接的预制混凝土柱对接全断面连接盒装置
CN110185139A (zh) * 2019-05-27 2019-08-30 广西建筑材料科学研究设计院有限公司 一种限位自锁、解锁及钢筋连接的预制混凝土梁柱全断面连接盒装置
CN110185140B (zh) * 2019-05-27 2024-05-14 广西建筑材料科学研究设计院有限公司 一种限位自锁、解锁及钢筋连接的预制混凝土柱对接全断面连接盒装置
CN110185139B (zh) * 2019-05-27 2024-05-17 广西建筑材料科学研究设计院有限公司 一种限位自锁、解锁及钢筋连接的预制混凝土梁柱全断面连接盒装置
CN116411517A (zh) * 2023-02-18 2023-07-11 中国铁建港航局集团有限公司 一种混凝土横梁无支架整体提升施工方法
CN116771037A (zh) * 2023-06-16 2023-09-19 中铁广州工程局集团有限公司 一种装配式钢结构门楼一体化快速安装施工方法
CN117386005A (zh) * 2023-12-12 2024-01-12 中铁房地产集团设计咨询有限公司 一种基于贯通式梁柱节点的预制低碳结构体系及施工方法
CN117386005B (zh) * 2023-12-12 2024-02-09 中铁房地产集团设计咨询有限公司 一种基于贯通式梁柱节点的预制低碳结构体系及施工方法

Also Published As

Publication number Publication date
CN112900619B (zh) 2021-12-03
CN112900619A (zh) 2021-06-04
US11686084B2 (en) 2023-06-27
US20220349171A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2022160388A1 (zh) 一种装配式混凝土梁柱节点及其施工方法
WO2022160386A1 (zh) 一种预制装配式框架、梁柱节点及施工方法
WO2019206193A1 (zh) 一种预制墙板及其连接结构及其施工方法
WO2022161084A1 (zh) 一种装配式混凝土梁柱节点及其施工方法
CN109339229B (zh) 一种穿孔浆锚预制装配式钢管混凝土框架结构
CN105569224A (zh) 钢管混凝土边缘约束叠合整体式剪力墙及制备和安装方法
CN113719029A (zh) 一种基于暗牛腿的装配式梁柱连接节点及其施工方法
CN110821022A (zh) 一种可以快速安装的钢结构中的全预制高强度pc楼板
CN104294920A (zh) 一种u形钢混凝土组合梁与异形钢管混凝土柱的节点组件及制备方法
CN109537741B (zh) 套筒式钢-混凝土梁节点连接结构及其安装方法
WO2022161085A1 (zh) 一种等效型钢混凝土预制柱及其施工方法
CN103883053A (zh) 钢筋桁架楼承板空心楼板及其施工方法
CN107447873B (zh) 连接预制叠合连梁与预制剪力墙的装置与安装方法
CN110424534B (zh) 一种预制装配式无筋混凝土框架及其施工方法
CN112922227B (zh) 一种装配式混凝土主梁与次梁节点及其施工方法
CN101302778B (zh) 完全分离式挫屈束制斜撑
CN103572891B (zh) 一种预制槽形板
CN106032705A (zh) 一种钢筋混凝土楼盖的一体式浇筑成型施工方法
CN212957612U (zh) 装配式免拆模结构体模壳及现浇筑免拆模结构体
CN112922233A (zh) 一种钢筋混凝土预制柱及其施工方法
CN108978860B (zh) 一种钢管混凝土柱-钢管混凝土梁节点连接结构
WO2022160387A1 (zh) 一种混凝土预制柱的梁柱节点及其施工方法
CN210767257U (zh) 一种外挂板与现浇剪力墙的连接节点
CN211775107U (zh) 一种装配式预制柱构造
CN217734445U (zh) 装配式钢-预制混凝土组合剪力墙

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921987

Country of ref document: EP

Kind code of ref document: A1