WO2022158601A1 - Resin molded article production method and resin molded article formation kit - Google Patents

Resin molded article production method and resin molded article formation kit Download PDF

Info

Publication number
WO2022158601A1
WO2022158601A1 PCT/JP2022/002551 JP2022002551W WO2022158601A1 WO 2022158601 A1 WO2022158601 A1 WO 2022158601A1 JP 2022002551 W JP2022002551 W JP 2022002551W WO 2022158601 A1 WO2022158601 A1 WO 2022158601A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
weight
resin composition
less
molding
Prior art date
Application number
PCT/JP2022/002551
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 末永
龍志 松村
Original Assignee
積水テクノ成型株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水テクノ成型株式会社 filed Critical 積水テクノ成型株式会社
Priority to JP2022576777A priority Critical patent/JPWO2022158601A1/ja
Publication of WO2022158601A1 publication Critical patent/WO2022158601A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/14Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles oriented

Definitions

  • the present invention relates to a method for manufacturing a resin molded body and a kit for forming a resin molded body used in the method for manufacturing the resin molded body.
  • Patent Document 1 discloses a molded product obtained by molding a resin compound containing a thermoplastic resin, graphite, and carbon black. Patent Document 1 describes that it is preferable to contain 20 to 80% by weight of graphite with respect to the entire resin compound. Further, it is described that it is preferable to contain 1 to 30% by weight of carbon black with respect to the entire resin compound.
  • An object of the present invention is to provide a method for producing a resin molded body and a kit for forming a resin molded body used in the method for manufacturing the resin molded body, which can achieve both heat dissipation and mechanical strength at a high level. That's what it is.
  • the following resin composition (A) 50% by weight or more and 99% by weight or less and the following resin composition (B) 1% by weight or more and 50% by weight or less are dry blended. and obtaining a resin molding by molding the mixture.
  • Resin composition (A) A resin composition containing 10% by weight or more and 70% by weight or less of thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite.
  • Resin composition (B) A resin composition containing 10% by weight or more and 70% by weight or less of a thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more.
  • the resin composition (A) is a compound obtained by melt-kneading the thermoplastic resin (a) and the plate-like graphite.
  • the resin composition (B) is a compound obtained by impregnating the fibers with the molten thermoplastic resin (b).
  • molding of the mixture is performed by injection molding.
  • the bending strength of the resin molded body measured according to JIS K 7171 is 40 MPa or more, and The in-plane thermal conductivity of the main surface is 5 W/(m ⁇ K) or more.
  • an arbitrary direction is defined as an x direction
  • a direction orthogonal to the x direction is defined as a y direction
  • the resin When the thickness direction of the molded body is the z direction, the thermal conductivity ⁇ x in the x direction, the thermal conductivity ⁇ y in the y direction, and the thermal conductivity ⁇ z in the z direction are given by min( ⁇ x, ⁇ y)/ ⁇ z ⁇ 4 is satisfied.
  • a kit for forming a resin molded body according to the present invention includes the following resin composition (A) and the following resin composition (B).
  • Resin composition (A) A resin composition containing 10% by weight or more and 70% by weight or less of thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite.
  • Resin composition (B) A resin composition containing 10% by weight or more and 70% by weight or less of a thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more.
  • the resin composition (A) is 50% by weight or more and 99% by weight or less, and the resin composition (B) is 1% by weight or more and 50% by weight.
  • the following are dry blended mixtures.
  • thermoplastic resins contained in the resin composition (A) and the resin composition (B) is a polyolefin resin or Nylon resin.
  • the plate-like graphite contained in the resin composition (A) has a volume average particle size of 100 ⁇ m or more.
  • the fibers are oriented in the resin composition (B).
  • the fiber is at least one of glass fiber and carbon fiber.
  • the manufacturing method of the resin molding which can make heat dissipation and mechanical strength compatible at a high level, and the kit for resin molding formation used for the manufacturing method of this resin molding are provided. be able to.
  • FIG. 1 is a schematic perspective view showing a heat dissipation chassis.
  • FIG. 2 is a schematic perspective view showing a heat dissipation housing.
  • FIG. 3 is a schematic perspective view showing the shape of a heat sink.
  • the method for producing a resin molded product according to the present invention includes a step of dry blending a resin composition (A) and a resin composition (B) to obtain a mixture, and molding the mixture to obtain a resin molding. and obtaining a body.
  • the resin composition (A) contains 10% by weight or more and 70% by weight or less of the thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite.
  • the contents of the thermoplastic resin (a) and plate-like graphite are the contents when the entire resin composition (A) is taken as 100% by weight.
  • the content of the thermoplastic resin (a) is preferably 20% by weight or more and preferably 60% by weight or less when the entire resin composition (A) is taken as 100% by weight.
  • the content of plate-like graphite is preferably 40% by weight or more and preferably 80% by weight or less when the entire resin composition (A) is taken as 100% by weight.
  • the resin composition (A) is a compound obtained by melt-kneading 10% by weight or more and 70% by weight or less of the thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite. is preferred.
  • the method of melt-kneading is not particularly limited. For example, a method of kneading under the Among these, the method of melt-kneading using an extruder is preferable.
  • the form of the resin composition (A) is not particularly limited, it can be, for example, a pellet.
  • the shape is not particularly limited, but examples include spherical, cylindrical, and prismatic shapes. Among these, a columnar shape is preferable from the viewpoint of pellet shape stability.
  • the diameter is preferably 0.5 mm or more, more preferably 1 mm or more, and preferably 5 mm or less, more preferably 3 mm or less.
  • the length is preferably 1 mm or more, more preferably 3 mm or more, and preferably 10 mm or less, more preferably 7 mm or less.
  • the size of the pellet can be measured by randomly collecting 100 pellets from the sample and using a vernier caliper.
  • the diameter of the pellets of the resin composition (A) other than cylindrical is preferably 1 mm or more, more preferably 3 mm or more, preferably 10 mm or less, and more preferably 8 mm or less.
  • the pellet diameter can be obtained by randomly extracting 100 pellets from a sample and measuring the diameter at the longest point using a vernier caliper.
  • the resin composition (B) contains 10% by weight or more and 70% by weight or less of the thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more.
  • the content of the thermoplastic resin (b) and fiber is the content when the entire resin composition (B) is 100% by weight.
  • the content of the thermoplastic resin (b) is preferably 20% by weight or more, more preferably 30% by weight or more, when the entire resin composition (B) is taken as 100% by weight.
  • the content of fibers is preferably 80% by weight or less, more preferably 70% by weight or less, when the entire resin composition (B) is taken as 100% by weight.
  • the resin composition (B) is preferably a compound obtained by impregnating fibers with a molten thermoplastic resin (b). Above all, it is a compound manufactured by a pultrusion method in which continuous fibers are impregnated with a thermoplastic resin (b), continuously solidified in a mold, and then continuously pulled out with a drawing machine. more desirable. In this case, the mechanical strength of the obtained resin molding can be further enhanced.
  • the form of the resin composition (B) is not particularly limited, but can be, for example, a pellet.
  • the shape is not particularly limited, but examples include spherical, cylindrical, and prismatic shapes. Among these, a columnar shape is preferable from the viewpoint of pellet shape stability.
  • the diameter is preferably 0.5 mm or more, more preferably 1 mm or more, and preferably 5 mm or less, more preferably 3 mm or less.
  • the length is preferably 1 mm or more, more preferably 3 mm or more, and preferably 10 mm or less, more preferably 7 mm or less.
  • the size of the pellet can be measured by randomly collecting 100 pellets from the sample and using a vernier caliper.
  • the diameter (pellet diameter) of the pellets of the resin composition (B) other than the cylindrical shape is preferably 1 mm or more, more preferably 5 mm or more, preferably 15 mm or less, and more preferably 10 mm or less.
  • the pellet diameter can be obtained by randomly extracting 100 pellets from a sample and measuring the diameter at the longest point using a vernier caliper.
  • the resin composition (A) accounts for 50% by weight or more and 99% by weight or less with respect to 100% by weight of the entire mixture
  • the resin composition (B) is The resin composition (A) and the resin composition (B) are dry blended so that the ratio is 1% by weight or more and 50% by weight or less.
  • the resin composition (A) is preferably 60% by weight or more, more preferably 70% by weight or more, and preferably 95% by weight or less with respect to 100% by weight of the entire mixture. Dry blending is preferred.
  • the resin composition (B) is preferably 5% by weight or more, preferably 40% by weight or less, and more preferably 30% by weight or less with respect to 100% by weight of the entire mixture. Dry blending is preferred.
  • dry blend refers to mixing without melting or addition of a solvent, and without applying an external force such as shearing to change the pellet shape or pulverize.
  • a dry blending method is not particularly limited, and for example, it can be performed by simply mixing the resin composition (A) and the resin composition (B) by hand. Moreover, you may mix using a small tumbler.
  • the method of molding the obtained mixture is not particularly limited, but examples include methods such as pressing, extrusion, extrusion lamination, and injection molding. Among them, it is preferable to mold the mixture by injection molding. In this case, the mechanical strength of the resulting resin molding can be further enhanced.
  • the two types of resin compositions prepared as described above are mixed in advance by dry blending to obtain a mixture, and then the mixture is molded to produce a resin molded product. . Therefore, it is possible to obtain a resin molding that can achieve both high levels of heat dissipation and mechanical strength.
  • thermoplastic resin and the heat dissipating filler when a compound is prepared by blending other fillers such as glass fiber to increase the mechanical strength and melt-kneading, the heat dissipating fillers can be efficiently bonded together. It was difficult to bring them into contact with each other, and in some cases it was not possible to sufficiently improve heat dissipation. Furthermore, there have been cases where other fillers such as fibers are pulverized by melt-kneading and sufficient mechanical strength cannot be obtained. Therefore, there is a problem that it is difficult to achieve both heat dissipation and mechanical strength at high levels.
  • the present invention after separately preparing a resin composition (A) containing plate-like graphite in a specific content and a resin composition (B) containing fibers in a specific content, Mix by blending. Therefore, only the resin composition (A) containing plate-like graphite is melt-kneaded, and the resin composition (B) containing fibers can be obtained by a method other than melt-kneading. Therefore, the fibers in the resin composition (B) are less likely to be pulverized, and the mechanical strength of the obtained resin molding can be efficiently increased. Moreover, the resin composition (A) containing plate-like graphite at a high concentration can be prepared, and the plate-like graphite can be appropriately dispersed by dry blending.
  • plate-like graphite as a heat dissipating filler can be brought into contact with each other efficiently, and heat conduction paths can be efficiently formed based on the percolation theory. Therefore, in the obtained resin molding, both heat dissipation and mechanical strength can be achieved at high levels.
  • the resin molded article obtained by the method for manufacturing a resin molded article according to the present invention will be described below.
  • the resin molding obtained by the production method of the present invention preferably has a bending strength of 40 MPa or higher, more preferably 50 MPa or higher, and still more preferably 60 MPa or higher.
  • the mechanical strength of the resin molding can be further enhanced.
  • the upper limit of the bending strength is not particularly limited, but is, for example, 250 MPa.
  • the bending strength can be measured according to JIS K7171.
  • the in-plane thermal conductivity of the main surface of the resin molding is preferably 5 W/(mK) or more, more preferably 10 W/(mK) or more, and still more preferably 16 W/(mK) or more. , particularly preferably 20 W/(m ⁇ K) or more, most preferably 25 W/(m ⁇ K) or more. In this case, the heat dissipation of the resin molding can be further enhanced.
  • the upper limit value of the thermal conductivity in the in-plane direction is not particularly limited, it can be set to, for example, 50 W/(m ⁇ K).
  • the main surface may be a flat surface or a curved surface.
  • the main surface means a surface having the largest area among a plurality of surfaces on the outer surface of the resin molding, and means a continuous surface.
  • the thermal conductivity in the in-plane direction can be calculated using the following formula (1).
  • the thermal diffusivity can be measured, for example, using Netsch Japan's product number "Xenon Flash Laser Analyzer LFA467 HyperFlash”.
  • the resin molding has a thermal conductivity ⁇ x in the x direction, a thermal conductivity ⁇ y in the y direction, and a thermal conductivity ⁇ z in the z direction satisfying min( ⁇ x, ⁇ y)/ ⁇ z ⁇ 4.
  • the x-direction is an arbitrary direction along the main surface.
  • the y-direction is along the main surface and orthogonal to the x-direction.
  • the z direction is the thickness direction of the resin molding.
  • the thickness direction of the resin molding is a direction perpendicular to the main surface.
  • the z-direction is thus the direction perpendicular to the x- and y-directions.
  • the main surface may be a flat surface or a curved surface.
  • the thermal conductivity in each of the x-direction, y-direction and z-direction can be calculated using the above formula (1).
  • min ( ⁇ x, ⁇ y) means the value of ⁇ x and ⁇ y, whichever has the lower thermal conductivity. Therefore, min( ⁇ x, ⁇ y)/ ⁇ z ⁇ 4 means that the ratio of the lower thermal conductivity of ⁇ x and ⁇ y to ⁇ z is 4 or more.
  • min( ⁇ x, ⁇ y)/ ⁇ z ⁇ 4 the thermal conductivity in the plane direction is higher than the thermal conductivity in the thickness direction. Therefore, in this case, it is possible to further improve the heat dissipation in the surface direction.
  • the upper limit of min( ⁇ x, ⁇ y)/ ⁇ z is not particularly limited, it can be set to 8, for example.
  • the resin molding obtained by the manufacturing method of the present invention is excellent in both heat dissipation and mechanical strength. Therefore, the resin molding can be suitably used for housings of electronic devices such as communication devices used indoors and outdoors, security cameras, smart meters, and the like. Alternatively, it can be suitably used for multi-information displays such as car navigation systems and smart meters, heat sinks for vehicle-mounted cameras, heat sinks such as LED heat sinks, and heat sinks for SoCs and GDCs.
  • the resin molded body obtained by the production method of the present invention preferably has the shape of a heat dissipation chassis, a heat dissipation housing, or a heat sink. Specific examples of the shape of the heat dissipation chassis, the heat dissipation housing, and the heat sink will be described below with reference to FIGS. 1 to 3. FIG.
  • Fig. 1 is a schematic diagram of a heat dissipation chassis.
  • the main surface is the portion indicated by arrow A in FIG.
  • Fig. 2 is a schematic diagram of the heat dissipation housing.
  • the portion indicated by arrow B in FIG. 2 is the main surface.
  • the main surface may have unevenness
  • FIG. 3 is a schematic diagram of the shape of the heat sink.
  • the portion indicated by arrow C in FIG. 3 is the main surface.
  • the main surface on one side of the bottom plate portion and the surface of the fin portion are the main surfaces.
  • multiple principal surfaces may exist.
  • a circuit may be formed on the surface of such a resin molding.
  • a kit for forming a resin molding according to the present invention includes the following resin composition (A) and the following resin composition (B).
  • the resin composition (A) below and the resin composition (B) below may be in separate containers, or the resin composition (A) below and the resin composition (B) below may be contained in separate containers. and may be a dry blended mixture.
  • 50% by weight or more and 99% by weight or less of the resin composition (A) and 1% by weight or more and 50% by weight or less of the resin composition (B) described below are preferably dry-blended.
  • the blending amounts of the resin composition (A) and the resin composition (B) described below may be those described in the section of the production method above.
  • Resin composition (A) A resin composition containing 10% by weight or more and 70% by weight or less of thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite.
  • the contents of the thermoplastic resin (a) and the plate-like graphite may be the contents described in the section of the manufacturing method above.
  • Resin composition (B) A resin composition containing 10% by weight or more and 70% by weight or less of a thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more.
  • the contents of the thermoplastic resin (b) and the fibers may be the contents described in the section of the manufacturing method above.
  • the kit for forming a resin molded body of the present invention can be used, for example, as a resin composition before molding in the method for producing a resin molded body of the present invention described above. It may also be used as a mixture before molding in the method for producing a resin molded article of the present invention.
  • the kit for forming a resin molded body of the present invention can be used in the method for producing a resin molded body of the present invention. It is possible to manufacture a resin molded body that can be compatible with
  • the resin composition (A) contains a thermoplastic resin (a) and plate-like graphite. Moreover, the resin composition (A) may contain other materials such as carbon black and other additives as necessary.
  • thermoplastic resin (a) is not particularly limited, and known thermoplastic resins can be used. Specific examples of the thermoplastic resin (a) include polyolefin, polystyrene, polyacrylate, polymethacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polyethersulfone, polyetherketone, polyimide, polydimethylsiloxane, polycarbonate, or these Examples thereof include copolymers containing at least two of them. These thermoplastic resins (a) may be used alone or in combination.
  • thermoplastic resin (a) is preferably a resin with a high elastic modulus.
  • Polyolefin (olefin-based resin) and polyamide (nylon-based resin) are more preferable because they are inexpensive and easy to mold under heat.
  • the polyolefin is not particularly limited, and known polyolefins can be used.
  • Specific examples of polyolefins include polyethylene, which is an ethylene homopolymer, ethylene- ⁇ -olefin copolymer, ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, ethylene-acetic acid.
  • Examples include polyethylene resins such as vinyl copolymers.
  • the polyolefin is a propylene homopolymer such as polypropylene, a polypropylene-based resin such as a propylene- ⁇ -olefin copolymer, a butene homopolymer such as polybutene, butadiene, or a conjugated diene homopolymer or copolymer such as isoprene. and so on. These polyolefins may be used alone or in combination. From the viewpoint of further increasing the heat resistance and elastic modulus, the polyolefin is preferably polypropylene.
  • the polyolefin (olefin resin) preferably contains an ethylene component.
  • the content of the ethylene component is preferably 5% by mass to 40% by mass. When the content of the ethylene component is within the above range, it is possible to further improve the heat resistance while further improving the impact resistance of the resin molding.
  • the MFR of the thermoplastic resin (a) measured according to JIS K7210 is preferably 10 g/10 minutes or more, more preferably 30 g/10 minutes or more. In this case, the fluidity of the thermoplastic resin (a) can be further enhanced.
  • the upper limit of MFR is not particularly limited, it can be set to 200 g/10 minutes, for example.
  • the plate-like graphite is not particularly limited as long as it is plate-like graphite, and for example, graphite, exfoliated graphite, or graphene can be used.
  • Graphite or exfoliated graphite is preferable from the viewpoint of further enhancing flame retardancy and thermal conductivity. These may be used alone or in combination.
  • flake graphite can be used as the plate-like graphite.
  • Expanded graphite may be used from the viewpoint of further enhancing flame retardancy.
  • Exfoliated graphite is obtained by exfoliating the original graphite, and refers to a graphene sheet laminate that is thinner than the original graphite.
  • the exfoliation treatment for exfoliating graphite is not particularly limited, and either a mechanical exfoliation method using a supercritical fluid or the like or a chemical exfoliation method using an acid may be used.
  • the number of laminated graphene sheets in exfoliated graphite may be less than that of the original graphite, but is preferably 10,000 or less, more preferably 5,000 or less, and even more preferably 2,000 or less.
  • the volume average particle size of plate-like graphite is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, still more preferably 250 ⁇ m or more, preferably 500 ⁇ m or less, and more preferably 350 ⁇ m or less.
  • the volume average particle size of the plate-like graphite is at least the above lower limit, the heat dissipation can be further enhanced. In particular, even when carbon black is not contained, the conductivity and heat dissipation can be adjusted to a more suitable range.
  • the volume average particle size of the plate-like graphite is equal to or less than the above upper limit, the flame retardancy of the resin molding can be further enhanced.
  • two or more types of plate-like graphite having different volume-average particle sizes may be used in combination.
  • the volume average particle size refers to a value calculated from a volume standard distribution by a laser diffraction method using a laser diffraction/scattering particle size distribution analyzer in accordance with JIS Z 8825:2013.
  • volume average particle size for example, plate-shaped graphite is put into a soapy water solution (neutral detergent: containing 0.01%) so that the concentration becomes 2% by weight, and an ultrasonic homogenizer is used at 300 W. for 1 minute to obtain a suspension. Next, the suspension is measured for the volume particle size distribution of the plate-like graphite by a laser diffraction/scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., product name “Microtrac MT3300”). The cumulative 50% value of this volume particle size distribution can be calculated as the volume average particle size of the plate-like graphite.
  • the content of plate-like graphite is preferably 70 parts by weight or more, more preferably 100 parts by weight or more, preferably 300 parts by weight or less, more preferably 250 parts by weight, relative to 100 parts by weight of the thermoplastic resin (a). 200 parts by weight or less, more preferably 200 parts by weight or less.
  • the content of plate-like graphite is equal to or higher than the above lower limit, heat dissipation can be further enhanced.
  • the content of plate-like graphite is too large, the area of the interface, which is the starting point of fracture, becomes large. can.
  • the aspect ratio of the plate-like graphite is preferably 5 or more, more preferably 21 or more, preferably 2000 or less, more preferably 1000 or less, still more preferably 100 or less.
  • the aspect ratio of the plate-like graphite is equal to or higher than the above lower limit, heat dissipation in the planar direction can be further enhanced.
  • the aspect ratio of the plate-like graphite is equal to or less than the above upper limit, the graphite particles themselves are less likely to bend in the thermoplastic resin (a) during injection molding, for example. Therefore, the thermal conductivity in the in-plane direction can be further increased.
  • the aspect ratio refers to the ratio of the maximum dimension of the plate-like graphite in the stacking plane direction to the thickness of the plate-like graphite.
  • the shape and thickness of plate-like graphite can be measured using, for example, a transmission electron microscope (TEM) or a scanning electron microscope (SEM). From the viewpoint of making observation easier, a test piece cut out from the resin composition or resin molded body is heated at 600 ° C. to blow off the resin and observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). It is desirable to In addition, the test piece may be cut out along the direction along the main surface of the resin molded body as long as the thickness of the plate-like graphite can be measured by skipping the resin, or along the direction perpendicular to the main surface of the resin molded body. You can cut it out.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the resin composition (A) may further contain carbon black as long as the effects of the present invention are not impaired.
  • Examples of carbon black that can be used include oil furnace black such as ketjen black, acetylene black, channel black, and thermal black. Among them, oil furnace black is preferable from the viewpoint of further increasing the conductivity of the obtained resin molding.
  • Carbon black may also contain metal impurities such as Fe and Ni.
  • the DBP oil absorption of carbon black is not particularly limited, but is preferably 160 ml/100 g or more, more preferably 200 ml/100 g or more, preferably 800 ml/100 g or less, more preferably 500 ml/100 g or less, and still more preferably 400 ml/100 g or less. 100 g or less.
  • the DBP oil absorption of carbon black is equal to or higher than the above lower limit, the electrical conductivity and flame retardancy of the resulting resin molding can be further enhanced.
  • the DBP oil absorption of carbon black is equal to or less than the above upper limit, aggregation during kneading can be prevented and stability can be further improved.
  • the DBP oil absorption of carbon black can be measured according to JIS K 6217-4.
  • the DBP oil absorption can be measured, for example, using an absorption measuring device (manufactured by Asahi Research Institute, product number “S-500”).
  • the content of carbon black is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, still more preferably 20 parts by weight or more, preferably 100 parts by weight or less, with respect to 100 parts by weight of the thermoplastic resin (a). It is preferably 80 parts by weight or less, more preferably 50 parts by weight or less.
  • the content of carbon black is at least the above lower limit, the electrical conductivity and flame retardancy can be further enhanced.
  • the content of carbon black is equal to or less than the above upper limit, the balance between conductivity, flame retardancy and impact resistance can be further improved.
  • the primary particle size of carbon black is preferably 40 nm or more, preferably 50 nm or less, and more preferably 45 nm or less. When the primary particle size of carbon black is within the above range, even lower carbon black content can provide higher electrical conductivity and flame retardancy.
  • the primary particle size of carbon black is, for example, the average primary particle size obtained using image data of carbon black obtained by a transmission electron microscope.
  • a transmission electron microscope for example, the product name "JEM-2200FS” manufactured by JEOL Ltd. can be used.
  • Additives include, for example, phenol-based, phosphorus-based, amine-based, and sulfur-based antioxidants; benzotriazole-based, hydroxyphenyltriazine-based UV absorbers; metal damage inhibitors; various fillers; stabilizers; pigments; These may be used alone or in combination.
  • the resin composition (B) contains a thermoplastic resin (b) and fibers. Moreover, the resin composition (B) may contain other materials such as carbon black and other additives as necessary.
  • thermoplastic resin (b) As the thermoplastic resin (b), the thermoplastic resins described in the section of the resin composition (A) can be appropriately used. As the thermoplastic resin (b), it is preferable to use the same resin as the thermoplastic resin (a) of the resin composition (A), but it is different from the thermoplastic resin described in the section of the resin composition (A). Resin may be used.
  • fibers examples include metal fibers, carbon fibers, cellulose fibers, aramid fibers, and glass fibers. These may be used alone or in combination.
  • the carbon fiber is not particularly limited, but PAN-based or pitch-based carbon fiber or the like can be used.
  • the fibers are preferably oriented in the resin composition (B). Among them, it is preferably uniaxially oriented.
  • a resin composition (B) can be produced by arranging fibers and bringing them into contact with a molten thermoplastic resin (b). In particular, when it is produced by the pultrusion method, a resin composition (B) in which the thermoplastic resin (b) is impregnated into the fibers can be obtained.
  • the length of the fiber is not particularly limited, it is preferably 3 mm or longer, more preferably 5 mm or longer, preferably 20 mm or shorter, and more preferably 15 mm or shorter. When the fiber length is within the above range, the mechanical strength of the obtained resin molding can be further enhanced.
  • the fiber diameter of the fibers is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the mechanical strength of the resulting resin molding can be further enhanced.
  • the fiber length and fiber diameter can be, for example, an average value of 100 measured using a transmission electron microscope (TEM) or scanning electron microscope (SEM). From the viewpoint of making observation easier, a test piece cut out from the resin composition or resin molded body is heated at 600 ° C. to blow off the resin and observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). It is desirable to
  • the content of the fibers is not particularly limited, it is preferably 50 parts by weight or more and 200 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin (b).
  • the fiber content is within the above range, the mechanical strength of the resulting resin molding can be further enhanced.
  • carbon black and other additives As the carbon black and other additives, the carbon black and other additives described in the section of the resin composition (A) can be appropriately used.
  • polypropylene trade name “MA04A” (MFR: 40 g/10 min (230° C.)) manufactured by Japan Polypropylene Corporation was used.
  • flake graphite trade name “CPB-300” (average particle diameter: 300 ⁇ m) manufactured by Chuetsu Graphite Co., Ltd. was used.
  • Examples 1 to 8 The resin composition (A) and the resin composition (B) of the types shown in Table 1 below are dry-blended for 5 minutes at a rotation speed of 30 rpm using a small tumbler at the ratio shown in Table 1 below. , to obtain a mixture. Using the obtained mixture, test pieces for material physical properties were molded by injection molding. Injection molding was performed under the conditions of a resin temperature of 230° C., a mold temperature of 80° C., and an injection speed of 30 mm/s.
  • polypropylene the trade name "MA04A” (MFR: 40 g/10 min (230°C)) manufactured by Japan Polypropylene Corporation was used.
  • flake graphite trade name “CPB-300” (average particle diameter: 300 ⁇ m) manufactured by Chuetsu Graphite Co., Ltd. was used.
  • roving fiber glass fiber
  • trade name "TUFROV4520” fiber diameter: 16 ⁇ m

Abstract

Provided is a resin molded article production method, whereby it becomes possible to achieve both of heat dissipation properties and mechanical strength at high levels. This resin molded article production method comprises: a step for dry-blending 50 to 99% by weight inclusive of a resin composition (A) as mentioned below with 1 to 50% by weight inclusive of a resin composition (B) as mentioned below to produce a mixture; and a step for molding the mixture to produce a resin molded article. Resin composition (A): a resin composition comprising 10 to 70% by weight inclusive of a thermoplastic resin (a) and 30 to 90% by weigh inclusive of flake graphite. Resin composition (B): a resin composition comprising10 to 70% by weight inclusive of a thermoplastic resin (b) and 30 to 90% by weight inclusive of fibers each having a length of 1 mm or more.

Description

樹脂成形体の製造方法及び樹脂成形体形成用キットMETHOD FOR MANUFACTURING RESIN MOLDED PRODUCT AND KIT FOR FORMING RESIN MOLDED BODY
 本発明は、樹脂成形体の製造方法、及び該樹脂成形体の製造方法に用いられる樹脂成形体形成用キットに関する。 The present invention relates to a method for manufacturing a resin molded body and a kit for forming a resin molded body used in the method for manufacturing the resin molded body.
 従来、屋内外で使用する通信機器や、防犯カメラ又はスマートメータなどの電子機器の筐体、カーナビ、スマートメータなどのマルチインフォメーションディスプレイ、車載カメラの放熱シャーシ、LED放熱ヒートシンク、SoC、あるいはGDC等の放熱板には、金属板や、熱伝導性を有する樹脂成形体などが用いられている。なお、SoCとは「System-on-a-chip」のことをいい、GDCとは「Graphics Display Controller」のことをいう。 Conventionally, communication devices used indoors and outdoors, housings for electronic devices such as security cameras and smart meters, multi-information displays such as car navigation systems and smart meters, heat dissipation chassis for in-vehicle cameras, LED heat dissipation heat sinks, SoCs, GDCs, etc. A metal plate, a heat conductive resin molding, or the like is used for the heat sink. SoC means "System-on-a-chip" and GDC means "Graphics Display Controller".
 下記の特許文献1には、熱可塑性樹脂と、グラファイトと、カーボンブラックとを含有する樹脂コンパウンドを成型することにより得られた成型物が開示されている。特許文献1では、樹脂コンパウンド全体に対し、グラファイトを20~80重量%含有することが好ましいと記載されている。また、樹脂コンパウンド全体に対し、カーボンブラックを1~30重量%含有することが好ましいと記載されている。 Patent Document 1 below discloses a molded product obtained by molding a resin compound containing a thermoplastic resin, graphite, and carbon black. Patent Document 1 describes that it is preferable to contain 20 to 80% by weight of graphite with respect to the entire resin compound. Further, it is described that it is preferable to contain 1 to 30% by weight of carbon black with respect to the entire resin compound.
国際公開第2018/143224号WO2018/143224
 近年、CPUの高速化に伴い、従来よりも高い放熱性を有する樹脂成形体が求められている。また、樹脂成形体においては、高温時における高い機械的強度も求められている。 In recent years, with the speeding up of CPUs, there is a demand for resin moldings with higher heat dissipation than ever before. In addition, high mechanical strength at high temperatures is also required for resin moldings.
 しかしながら、特許文献1のような樹脂成形体においては、放熱性や、機械的強度がなお十分ではなかった。特に、従来の樹脂成形体においては、放熱性を高めるために放熱性フィラーの充填量を増やすと、その一方で高温時の機械的強度が低下し、放熱性と機械的強度を高いレベルで両立することが難しいという問題がある。 However, in the resin molded body as in Patent Document 1, the heat dissipation and mechanical strength were still insufficient. In particular, in conventional resin molded products, increasing the amount of heat-dissipating filler to improve heat dissipation results in a decrease in mechanical strength at high temperatures, resulting in a high level of both heat dissipation and mechanical strength. The problem is that it is difficult to
 本発明の目的は、放熱性と機械的強度とを高いレベルで両立することができる、樹脂成形体の製造方法、及び該樹脂成形体の製造方法に用いられる樹脂成形体形成用キットを提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a resin molded body and a kit for forming a resin molded body used in the method for manufacturing the resin molded body, which can achieve both heat dissipation and mechanical strength at a high level. That's what it is.
 本発明に係る樹脂成形体の製造方法は、下記樹脂組成物(A)50重量%以上、99重量%以下と、下記樹脂組成物(B)1重量%以上、50重量%以下とをドライブレンドすることにより、混合物を得る工程と、前記混合物を成形することにより、樹脂成形体を得る工程と、を備える。 In the method for producing a resin molded product according to the present invention, the following resin composition (A) 50% by weight or more and 99% by weight or less and the following resin composition (B) 1% by weight or more and 50% by weight or less are dry blended. and obtaining a resin molding by molding the mixture.
 樹脂組成物(A):熱可塑性樹脂(a)10重量%以上、70重量%以下と、板状黒鉛30重量%以上、90重量%以下とを含有する、樹脂組成物。 Resin composition (A): A resin composition containing 10% by weight or more and 70% by weight or less of thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite.
 樹脂組成物(B):熱可塑性樹脂(b)10重量%以上、70重量%以下と、長さ1mm以上の繊維30重量%以上、90重量%以下とを含有する、樹脂組成物。 Resin composition (B): A resin composition containing 10% by weight or more and 70% by weight or less of a thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more.
 本発明に係る樹脂成形体の製造方法のある特定の局面では、前記樹脂組成物(A)が、前記熱可塑性樹脂(a)と、前記板状黒鉛とを溶融混練することにより得られたコンパウンドであり、前記樹脂組成物(B)が、溶融した前記熱可塑性樹脂(b)を前記繊維に含浸させることにより得られたコンパウンドである。 In a specific aspect of the method for producing a resin molded article according to the present invention, the resin composition (A) is a compound obtained by melt-kneading the thermoplastic resin (a) and the plate-like graphite. and the resin composition (B) is a compound obtained by impregnating the fibers with the molten thermoplastic resin (b).
 本発明に係る樹脂成形体の製造方法の他の特定の局面では、前記混合物の成形を、射出成形により行なう。 In another specific aspect of the method for producing a resin molded body according to the present invention, molding of the mixture is performed by injection molding.
 本発明に係る樹脂成形体の製造方法のさらに他の特定の局面では、前記樹脂成形体のJIS K 7171に準拠して測定された曲げ強度が、40MPa以上であり、かつ、前記樹脂成形体の主面における面内方向の熱伝導率が、5W/(m・K)以上である。 In still another specific aspect of the method for producing a resin molded body according to the present invention, the bending strength of the resin molded body measured according to JIS K 7171 is 40 MPa or more, and The in-plane thermal conductivity of the main surface is 5 W/(m·K) or more.
 本発明に係る樹脂成形体の製造方法のさらに他の特定の局面では、前記樹脂成形体の主面において、任意の方向をx方向とし、該x方向に直交する方向をy方向とし、前記樹脂成形体の厚み方向をz方向としたときに、前記x方向の熱伝導率λx、前記y方向の熱伝導率λy、及び前記z方向の熱伝導率λzが、min(λx,λy)/λz≧4を満たしている。 In still another specific aspect of the method for producing a resin molded body according to the present invention, in the main surface of the resin molded body, an arbitrary direction is defined as an x direction, a direction orthogonal to the x direction is defined as a y direction, and the resin When the thickness direction of the molded body is the z direction, the thermal conductivity λx in the x direction, the thermal conductivity λy in the y direction, and the thermal conductivity λz in the z direction are given by min(λx, λy)/λz ≧4 is satisfied.
 本発明に係る樹脂成形体形成用キットは、下記樹脂組成物(A)と、下記樹脂組成物(B)とを含む。 A kit for forming a resin molded body according to the present invention includes the following resin composition (A) and the following resin composition (B).
 樹脂組成物(A):熱可塑性樹脂(a)10重量%以上、70重量%以下と、板状黒鉛30重量%以上、90重量%以下とを含有する、樹脂組成物。 Resin composition (A): A resin composition containing 10% by weight or more and 70% by weight or less of thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite.
 樹脂組成物(B):熱可塑性樹脂(b)10重量%以上、70重量%以下と、長さ1mm以上の繊維30重量%以上、90重量%以下とを含有する、樹脂組成物。 Resin composition (B): A resin composition containing 10% by weight or more and 70% by weight or less of a thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more.
 本発明に係る樹脂成形体形成用キットのある特定の局面では、前記樹脂組成物(A)50重量%以上、99重量%以下と、前記樹脂組成物(B)1重量%以上、50重量%以下とが、ドライブレンドされた混合物である。 In a specific aspect of the kit for forming a resin molded body according to the present invention, the resin composition (A) is 50% by weight or more and 99% by weight or less, and the resin composition (B) is 1% by weight or more and 50% by weight. The following are dry blended mixtures.
 本発明に係る樹脂成形体形成用キットの他の特定の局面では、前記樹脂組成物(A)及び前記樹脂組成物(B)に含まれる熱可塑性樹脂のうち、少なくとも一方が、ポリオレフィン系樹脂又はナイロン系樹脂である。 In another specific aspect of the kit for forming a resin molded body according to the present invention, at least one of the thermoplastic resins contained in the resin composition (A) and the resin composition (B) is a polyolefin resin or Nylon resin.
 本発明に係る樹脂成形体形成用キットのさらに他の特定の局面では、前記樹脂組成物(A)中に含まれる前記板状黒鉛の体積平均粒子径が、100μm以上である。 In still another specific aspect of the kit for forming a resin molded body according to the present invention, the plate-like graphite contained in the resin composition (A) has a volume average particle size of 100 μm or more.
 本発明に係る樹脂成形体形成用キットのさらに他の特定の局面では、前記樹脂組成物(B)中において、前記繊維が配向している。 In still another specific aspect of the kit for forming a resin molded body according to the present invention, the fibers are oriented in the resin composition (B).
 本発明に係る樹脂成形体形成用キットのさらに他の特定の局面では、前記繊維が、ガラス繊維及び炭素繊維のうち、少なくとも一方の繊維である。 In still another specific aspect of the kit for forming a resin molded body according to the present invention, the fiber is at least one of glass fiber and carbon fiber.
 本発明によれば、放熱性と機械的強度とを高いレベルで両立することができる、樹脂成形体の製造方法、及び該樹脂成形体の製造方法に用いられる樹脂成形体形成用キットを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the resin molding which can make heat dissipation and mechanical strength compatible at a high level, and the kit for resin molding formation used for the manufacturing method of this resin molding are provided. be able to.
図1は、放熱シャーシを示す模式的斜視図である。FIG. 1 is a schematic perspective view showing a heat dissipation chassis. 図2は、放熱筐体を示す模式的斜視図である。FIG. 2 is a schematic perspective view showing a heat dissipation housing. 図3は、ヒートシンク形状を示す模式的斜視図である。FIG. 3 is a schematic perspective view showing the shape of a heat sink.
 以下、本発明の詳細を説明する。 The details of the present invention will be described below.
 [樹脂成形体の製造方法]
 本発明に係る樹脂成形体の製造方法は、樹脂組成物(A)と、樹脂組成物(B)とをドライブレンドすることにより、混合物を得る工程と、該混合物を成形することにより、樹脂成形体を得る工程とを備える。
[Method for manufacturing resin molding]
The method for producing a resin molded product according to the present invention includes a step of dry blending a resin composition (A) and a resin composition (B) to obtain a mixture, and molding the mixture to obtain a resin molding. and obtaining a body.
 樹脂組成物(A)は、熱可塑性樹脂(a)10重量%以上、70重量%以下と、板状黒鉛30重量%以上、90重量%以下とを含有する。上記熱可塑性樹脂(a)及び板状黒鉛の含有量は、樹脂組成物(A)全体を100重量%としたときの含有量である。なお、熱可塑性樹脂(a)の含有量は、樹脂組成物(A)全体を100重量%としたときに、好ましくは20重量%以上、好ましくは60重量%以下である。また、板状黒鉛の含有量は、樹脂組成物(A)全体を100重量%としたときに、好ましくは40重量%以上、好ましくは80重量%以下である。 The resin composition (A) contains 10% by weight or more and 70% by weight or less of the thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite. The contents of the thermoplastic resin (a) and plate-like graphite are the contents when the entire resin composition (A) is taken as 100% by weight. The content of the thermoplastic resin (a) is preferably 20% by weight or more and preferably 60% by weight or less when the entire resin composition (A) is taken as 100% by weight. Further, the content of plate-like graphite is preferably 40% by weight or more and preferably 80% by weight or less when the entire resin composition (A) is taken as 100% by weight.
 樹脂組成物(A)は、熱可塑性樹脂(a)10重量%以上、70重量%以下と、板状黒鉛30重量%以上、90重量%以下とを溶融混練することにより得られたコンパウンドであることが好ましい。溶融混練の方法については、特に限定されないが、例えば、プラストミルなどの二軸スクリュー混練機、単軸押出機、二軸押出機、バンバリーミキサー、ロール、加圧式ニーダーなどの混練装置を用いて、加熱下において混練する方法などが挙げられる。これらのなかでも、押出機を用いて溶融混練する方法が好ましい。樹脂組成物(A)の形態としては、特に限定されないが、例えば、ペレットとすることができる。 The resin composition (A) is a compound obtained by melt-kneading 10% by weight or more and 70% by weight or less of the thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite. is preferred. The method of melt-kneading is not particularly limited. For example, a method of kneading under the Among these, the method of melt-kneading using an extruder is preferable. Although the form of the resin composition (A) is not particularly limited, it can be, for example, a pellet.
 ペレットとする場合、その形状は特に限定されないが、球形、円柱形、角柱形などが挙げられる。これらの中でもペレット形状の安定性の観点から円柱形が好ましい。また、ペレットのサイズは例えば円柱形の場合は、その直径は、好ましくは0.5mm以上、より好ましくは1mm以上であり、好ましくは5mm以下、より好ましくは3mm以下である。その長さは、好ましくは1mm以上、より好ましくは3mm以上であり、好ましくは10mm以下、より好ましくは7mm以下である。ペレットのサイズは、試料からペレット100粒をランダムに採取し、ノギスを用いて測定することができる。 When pellets are used, the shape is not particularly limited, but examples include spherical, cylindrical, and prismatic shapes. Among these, a columnar shape is preferable from the viewpoint of pellet shape stability. When the size of the pellet is cylindrical, the diameter is preferably 0.5 mm or more, more preferably 1 mm or more, and preferably 5 mm or less, more preferably 3 mm or less. The length is preferably 1 mm or more, more preferably 3 mm or more, and preferably 10 mm or less, more preferably 7 mm or less. The size of the pellet can be measured by randomly collecting 100 pellets from the sample and using a vernier caliper.
 なお、円柱形以外の樹脂組成物(A)のペレットの直径(ペレット径)は、1mm以上が好ましく、3mm以上がより好ましく、10mm以下が好ましく、8mm以下がより好ましい。ペレット径は、試料からペレット100粒をランダムに採取し、ノギスを用いて最長箇所での直径を測定することで求めることができる。 The diameter of the pellets of the resin composition (A) other than cylindrical (pellet diameter) is preferably 1 mm or more, more preferably 3 mm or more, preferably 10 mm or less, and more preferably 8 mm or less. The pellet diameter can be obtained by randomly extracting 100 pellets from a sample and measuring the diameter at the longest point using a vernier caliper.
 樹脂組成物(B)は、熱可塑性樹脂(b)10重量%以上、70重量%以下と、長さ1mm以上の繊維30重量%以上、90重量%以下とを含有する。上記熱可塑性樹脂(b)及び繊維の含有量は、樹脂組成物(B)全体を100重量%としたときの含有量である。なお、熱可塑性樹脂(b)の含有量は、樹脂組成物(B)全体を100重量%としたときに、好ましくは20重量%以上、より好ましくは30重量%以上である。また、繊維の含有量は、樹脂組成物(B)全体を100重量%としたときに、好ましくは80重量%以下、より好ましくは70重量%以下である。 The resin composition (B) contains 10% by weight or more and 70% by weight or less of the thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more. The content of the thermoplastic resin (b) and fiber is the content when the entire resin composition (B) is 100% by weight. The content of the thermoplastic resin (b) is preferably 20% by weight or more, more preferably 30% by weight or more, when the entire resin composition (B) is taken as 100% by weight. The content of fibers is preferably 80% by weight or less, more preferably 70% by weight or less, when the entire resin composition (B) is taken as 100% by weight.
 樹脂組成物(B)は、溶融した熱可塑性樹脂(b)を繊維に含浸させることにより得られたコンパウンドであることが好ましい。なかでも、連続繊維中に熱可塑性樹脂(b)を含浸させ、型の中で連続して固化させた後、引張機で連続的に引抜く、プルトルージョン法で製造されたコンパウンドであることがより望ましい。この場合、得られる樹脂成形体における機械的強度をより一層高めることができる。また、樹脂組成物(B)の形態としては、特に限定されないが、例えば、ペレットとすることができる。 The resin composition (B) is preferably a compound obtained by impregnating fibers with a molten thermoplastic resin (b). Above all, it is a compound manufactured by a pultrusion method in which continuous fibers are impregnated with a thermoplastic resin (b), continuously solidified in a mold, and then continuously pulled out with a drawing machine. more desirable. In this case, the mechanical strength of the obtained resin molding can be further enhanced. Moreover, the form of the resin composition (B) is not particularly limited, but can be, for example, a pellet.
 ペレットとする場合、その形状は特に限定されないが、球形、円柱形、角柱形などが挙げられる。これらの中でもペレット形状の安定性の観点から円柱形が好ましい。また、ペレットのサイズは例えば円柱形の場合は、その直径は、好ましくは0.5mm以上、より好ましくは1mm以上であり、好ましくは5mm以下、より好ましくは3mm以下である。その長さは、好ましくは1mm以上、より好ましくは3mm以上であり、好ましくは10mm以下、より好ましくは7mm以下である。ペレットのサイズは、試料からペレット100粒をランダムに採取し、ノギスを用いて測定することができる。 When pellets are used, the shape is not particularly limited, but examples include spherical, cylindrical, and prismatic shapes. Among these, a columnar shape is preferable from the viewpoint of pellet shape stability. When the size of the pellet is cylindrical, the diameter is preferably 0.5 mm or more, more preferably 1 mm or more, and preferably 5 mm or less, more preferably 3 mm or less. The length is preferably 1 mm or more, more preferably 3 mm or more, and preferably 10 mm or less, more preferably 7 mm or less. The size of the pellet can be measured by randomly collecting 100 pellets from the sample and using a vernier caliper.
 なお、円柱形以外の樹脂組成物(B)のペレットの直径(ペレット径)は、1mm以上が好ましく、5mm以上がより好ましく、15mm以下が好ましく、10mm以下がより好ましい。ペレット径は、試料からペレット100粒をランダムに採取し、ノギスを用いて最長箇所での直径を測定することで求めることができる。 The diameter (pellet diameter) of the pellets of the resin composition (B) other than the cylindrical shape is preferably 1 mm or more, more preferably 5 mm or more, preferably 15 mm or less, and more preferably 10 mm or less. The pellet diameter can be obtained by randomly extracting 100 pellets from a sample and measuring the diameter at the longest point using a vernier caliper.
 本発明においては、上記混合物を得るに際し、混合物全体100%に対して、上記樹脂組成物(A)が、50重量%以上、99重量%以下の割合となり、上記樹脂組成物(B)が、1重量%以上、50重量%以下の割合となるように、樹脂組成物(A)と、樹脂組成物(B)とをドライブレンドする。なお、上記混合物を得るに際し、混合物全体100%に対して、上記樹脂組成物(A)が、好ましくは60重量%以上、より好ましくは70重量%以上、好ましくは95重量%以下の割合となるようにドライブレンドすることが好ましい。また、上記混合物を得るに際し、混合物全体100%に対して、上記樹脂組成物(B)が、好ましくは5重量%以上、好ましくは40重量%以下、より好ましくは30重量%以下の割合となるようにドライブレンドすることが好ましい。 In the present invention, when obtaining the mixture, the resin composition (A) accounts for 50% by weight or more and 99% by weight or less with respect to 100% by weight of the entire mixture, and the resin composition (B) is The resin composition (A) and the resin composition (B) are dry blended so that the ratio is 1% by weight or more and 50% by weight or less. When obtaining the mixture, the resin composition (A) is preferably 60% by weight or more, more preferably 70% by weight or more, and preferably 95% by weight or less with respect to 100% by weight of the entire mixture. Dry blending is preferred. Further, when obtaining the above mixture, the resin composition (B) is preferably 5% by weight or more, preferably 40% by weight or less, and more preferably 30% by weight or less with respect to 100% by weight of the entire mixture. Dry blending is preferred.
 なお、本明細書において、ドライブレンドとは、溶融や溶剤の添加をせずに、ペレット形状を変化させたり、粉砕させたりするような剪断等による外力を加えずに混合することをいう。このようなドライブレンドの方法としては、特に限定されず、例えば、単に樹脂組成物(A)と樹脂組成物(B)とを手で混合することにより行なうことができる。また、小型タンブラーなどを用いて混合してもよい。 In this specification, the term "dry blend" refers to mixing without melting or addition of a solvent, and without applying an external force such as shearing to change the pellet shape or pulverize. Such a dry blending method is not particularly limited, and for example, it can be performed by simply mixing the resin composition (A) and the resin composition (B) by hand. Moreover, you may mix using a small tumbler.
 得られた混合物の成形方法としては、特に限定されないが、例えば、プレス加工、押出加工、押出ラミ加工、又は射出成形などの方法が挙げられる。なかでも、混合物を射出成形により成形することが好ましい。この場合、得られる樹脂成形体の機械的強度をより一層高めることができる。 The method of molding the obtained mixture is not particularly limited, but examples include methods such as pressing, extrusion, extrusion lamination, and injection molding. Among them, it is preferable to mold the mixture by injection molding. In this case, the mechanical strength of the resulting resin molding can be further enhanced.
 本発明の製造方法では、上記のように用意しておいた2種類の樹脂組成物をドライブレンドにより予め混合して混合物を得た後に、該混合物を成形することにより、樹脂成形体を製造する。そのため、放熱性と機械的強度を高いレベルで両立することができる、樹脂成形体を得ることができる。 In the production method of the present invention, the two types of resin compositions prepared as described above are mixed in advance by dry blending to obtain a mixture, and then the mixture is molded to produce a resin molded product. . Therefore, it is possible to obtain a resin molding that can achieve both high levels of heat dissipation and mechanical strength.
 従来、樹脂成形体の製造に際し、放熱性を高めるために放熱性フィラーの充填量を増やすと、その一方で高温時の機械的強度が低下するという問題があった。具体的には、放熱性フィラーの充填量を増やすと、混練性や成形性が低下し、高温時の機械的強度が低下することがあった。 Conventionally, when manufacturing a resin molded product, increasing the amount of heat dissipating filler filled in order to improve heat dissipation has the problem of reducing the mechanical strength at high temperatures. Specifically, when the amount of the heat dissipating filler to be filled is increased, the kneadability and moldability are lowered, and the mechanical strength at high temperatures is sometimes lowered.
 また、熱可塑性樹脂及び放熱性フィラーに加えて、機械的強度を高めるためにガラス繊維などの他のフィラーを配合し、溶融混練することによりコンパウンドを作製した場合、放熱性フィラー同士を効率的に接触させることが難しく、放熱性を十分に高められない場合があった。さらに、溶融混練により繊維などの他のフィラーが粉砕されて十分な機械的強度が得られない場合があった。そのため、放熱性と機械的強度を高いレベルで両立することが難しいという問題があった。 In addition to the thermoplastic resin and the heat dissipating filler, when a compound is prepared by blending other fillers such as glass fiber to increase the mechanical strength and melt-kneading, the heat dissipating fillers can be efficiently bonded together. It was difficult to bring them into contact with each other, and in some cases it was not possible to sufficiently improve heat dissipation. Furthermore, there have been cases where other fillers such as fibers are pulverized by melt-kneading and sufficient mechanical strength cannot be obtained. Therefore, there is a problem that it is difficult to achieve both heat dissipation and mechanical strength at high levels.
 これに対して、本発明では、特定の含有量で板状黒鉛を含む樹脂組成物(A)と、特定の含有量で繊維を含む樹脂組成物(B)とを別々に用意した後に、ドライブレンドにより混合する。そのため、板状黒鉛を含む樹脂組成物(A)のみを溶融混練し、繊維を含む樹脂組成物(B)を溶融混練以外の方法で得ることができる。そのため、樹脂組成物(B)において繊維が粉砕され難く、得られる樹脂成形体において、機械的強度を効率的に高めることができる。また、高濃度で板状黒鉛を含む樹脂組成物(A)を用意することができ、しかもドライブレンドにより適度に板状黒鉛を分散させることができる。そのため、放熱性フィラーとしての板状黒鉛同士を効率的に接触させることができ、パーコレーション理論に基づき、熱伝導経路の効率的な形成が可能となる。よって、得られる樹脂成形体において、放熱性と機械的強度を高いレベルで両立することができる。 On the other hand, in the present invention, after separately preparing a resin composition (A) containing plate-like graphite in a specific content and a resin composition (B) containing fibers in a specific content, Mix by blending. Therefore, only the resin composition (A) containing plate-like graphite is melt-kneaded, and the resin composition (B) containing fibers can be obtained by a method other than melt-kneading. Therefore, the fibers in the resin composition (B) are less likely to be pulverized, and the mechanical strength of the obtained resin molding can be efficiently increased. Moreover, the resin composition (A) containing plate-like graphite at a high concentration can be prepared, and the plate-like graphite can be appropriately dispersed by dry blending. Therefore, plate-like graphite as a heat dissipating filler can be brought into contact with each other efficiently, and heat conduction paths can be efficiently formed based on the percolation theory. Therefore, in the obtained resin molding, both heat dissipation and mechanical strength can be achieved at high levels.
 以下、本発明に係る樹脂成形体の製造方法で得られる樹脂成形体について説明する。 The resin molded article obtained by the method for manufacturing a resin molded article according to the present invention will be described below.
 (樹脂成形体)
 本発明の製造方法で得られる樹脂成形体は、曲げ強度が、好ましくは40MPa以上、より好ましくは50MPa以上、さらに好ましくは60MPa以上である。この場合、樹脂成形体の機械的強度をより一層高めることができる。また、曲げ強度の上限値は、特に限定されないが、例えば、250MPaである。なお、曲げ強度は、JIS K 7171に準拠して測定することができる。
(resin molding)
The resin molding obtained by the production method of the present invention preferably has a bending strength of 40 MPa or higher, more preferably 50 MPa or higher, and still more preferably 60 MPa or higher. In this case, the mechanical strength of the resin molding can be further enhanced. Also, the upper limit of the bending strength is not particularly limited, but is, for example, 250 MPa. The bending strength can be measured according to JIS K7171.
 樹脂成形体の主面における面内方向の熱伝導率は、好ましくは5W/(m・K)以上、より好ましくは10W/(m・K)以上、さらに好ましくは16W/(m・K)以上、特に好ましくは20W/(m・K)以上、最も好ましくは25W/(m・K)以上である。この場合、樹脂成形体の放熱性をより一層高めることができる。また、面内方向の熱伝導率の上限値は、特に限定されないが、例えば、50W/(m・K)とすることができる。 The in-plane thermal conductivity of the main surface of the resin molding is preferably 5 W/(mK) or more, more preferably 10 W/(mK) or more, and still more preferably 16 W/(mK) or more. , particularly preferably 20 W/(m·K) or more, most preferably 25 W/(m·K) or more. In this case, the heat dissipation of the resin molding can be further enhanced. Moreover, although the upper limit value of the thermal conductivity in the in-plane direction is not particularly limited, it can be set to, for example, 50 W/(m·K).
 なお、上記主面は、平面であってもよく、曲面であってもよい。また、本発明において主面とは、樹脂成形体の外表面における複数の面のうち最も面積の大きい面であり、連なっている面をいうものとする。 In addition, the main surface may be a flat surface or a curved surface. Further, in the present invention, the main surface means a surface having the largest area among a plurality of surfaces on the outer surface of the resin molding, and means a continuous surface.
 面内方向の熱伝導率は、下記式(1)を用いて計算することができる。 The thermal conductivity in the in-plane direction can be calculated using the following formula (1).
 熱伝導率(W/(m・K))=比重(g/cm)×比熱(J/g・K)×熱拡散率(mm/s)…式(1) Thermal conductivity (W/(m·K)) = specific gravity (g/cm 3 ) x specific heat (J/g·K) x thermal diffusivity (mm 2 /s) (1)
 熱拡散率は、例えば、ネッチジャパン社製、品番「キセノンフラッシュレーザーアナライザ LFA467 HyperFlash」を用いて測定することができる。 The thermal diffusivity can be measured, for example, using Netsch Japan's product number "Xenon Flash Laser Analyzer LFA467 HyperFlash".
 また、樹脂成形体は、x方向の熱伝導率λx、y方向の熱伝導率λy及びz方向の熱伝導率λzが、min(λx,λy)/λz≧4を満たしていることが好ましい。 In addition, it is preferable that the resin molding has a thermal conductivity λx in the x direction, a thermal conductivity λy in the y direction, and a thermal conductivity λz in the z direction satisfying min(λx, λy)/λz≧4.
 x方向は、上記主面に沿う任意の方向である。y方向は、上記主面に沿い、かつx方向に直交する方向である。また、z方向は、樹脂成形体の厚み方向である。樹脂成形体の厚み方向は、上記主面に直交する方向である。従って、z方向は、x方向及びy方向に直交する方向である。なお、上記主面は、平面であってもよく、曲面であってもよい。 The x-direction is an arbitrary direction along the main surface. The y-direction is along the main surface and orthogonal to the x-direction. The z direction is the thickness direction of the resin molding. The thickness direction of the resin molding is a direction perpendicular to the main surface. The z-direction is thus the direction perpendicular to the x- and y-directions. In addition, the main surface may be a flat surface or a curved surface.
 上記x方向、y方向及びz方向の各方向における熱伝導率は、それぞれ、上記式(1)を用いて計算することができる。 The thermal conductivity in each of the x-direction, y-direction and z-direction can be calculated using the above formula (1).
 上記min(λx,λy)とは、λx及びλyのうち、熱伝導率が低い方の値を意味するものとする。従って、min(λx,λy)/λz≧4は、λx及びλyのうち、低い方の熱伝導率のλzに対する比が、4以上であることを意味している。 The above min (λx, λy) means the value of λx and λy, whichever has the lower thermal conductivity. Therefore, min(λx, λy)/λz≧4 means that the ratio of the lower thermal conductivity of λx and λy to λz is 4 or more.
 min(λx,λy)/λz≧4である場合、面方向の熱伝導率が、厚み方向の熱伝導率より高くなっている。従って、この場合、面方向における放熱性をより一層高めることができる。なお、min(λx,λy)/λzの上限値は、特に限定されないが、例えば、8とすることができる。 When min(λx, λy)/λz≧4, the thermal conductivity in the plane direction is higher than the thermal conductivity in the thickness direction. Therefore, in this case, it is possible to further improve the heat dissipation in the surface direction. Although the upper limit of min(λx, λy)/λz is not particularly limited, it can be set to 8, for example.
 本発明の製造方法で得られる樹脂成形体は、放熱性及び機械的強度の双方に優れている。そのため、樹脂成形体は、例えば、屋内外で使用する通信機器や、防犯カメラ又はスマートメータなどの電子機器の筐体に好適に用いることができる。あるいは、カーナビ、スマートメータなどのマルチインフォメーションディスプレイ、車載カメラの放熱シャーシ、LED放熱ヒートシンク等のヒートシンク、SoC、GDC等の放熱板に好適に用いることができる。 The resin molding obtained by the manufacturing method of the present invention is excellent in both heat dissipation and mechanical strength. Therefore, the resin molding can be suitably used for housings of electronic devices such as communication devices used indoors and outdoors, security cameras, smart meters, and the like. Alternatively, it can be suitably used for multi-information displays such as car navigation systems and smart meters, heat sinks for vehicle-mounted cameras, heat sinks such as LED heat sinks, and heat sinks for SoCs and GDCs.
 本発明の製造方法で得られる樹脂成形体は、放熱シャーシ、放熱筐体、又はヒートシンク形状であることが好ましい。以下、図1~図3を参照して、放熱シャーシ、放熱筐体、及びヒートシンク形状の具体例について説明する。 The resin molded body obtained by the production method of the present invention preferably has the shape of a heat dissipation chassis, a heat dissipation housing, or a heat sink. Specific examples of the shape of the heat dissipation chassis, the heat dissipation housing, and the heat sink will be described below with reference to FIGS. 1 to 3. FIG.
 図1は、放熱シャーシの模式図である。樹脂成形体が放熱シャーシである場合、図1の矢印Aで示す部分が主面である。 Fig. 1 is a schematic diagram of a heat dissipation chassis. When the resin molded body is a heat radiating chassis, the main surface is the portion indicated by arrow A in FIG.
 図2は、放熱筐体の模式図である。樹脂成形体が放熱筐体である場合、図2の矢印Bで示す部分が主面である。なお、図1及び図2に示すように、主面は凹凸を有していてもよい。 Fig. 2 is a schematic diagram of the heat dissipation housing. When the resin molding is a heat dissipation housing, the portion indicated by arrow B in FIG. 2 is the main surface. In addition, as shown in FIG.1 and FIG.2, the main surface may have unevenness|corrugation.
 図3は、ヒートシンク形状の模式図である。樹脂成形体がヒートシンク形状である場合、図3の矢印Cで示す部分が主面である。具体的には、底板部の一方側の主面とフィン部の表面が主面である。このように、複数の主面が存在していてもよい。 FIG. 3 is a schematic diagram of the shape of the heat sink. When the resin molding has a heat sink shape, the portion indicated by arrow C in FIG. 3 is the main surface. Specifically, the main surface on one side of the bottom plate portion and the surface of the fin portion are the main surfaces. Thus, multiple principal surfaces may exist.
 なお、このような樹脂成形体の表面には、回路形成されていてもよい。 A circuit may be formed on the surface of such a resin molding.
 [樹脂成形体形成用キット]
 本発明に係る樹脂成形体形成用キットは、下記樹脂組成物(A)と、下記樹脂組成物(B)とを含む。下記樹脂組成物(A)と、下記樹脂組成物(B)とはそれぞれ別の容器に入っている状態であってもよいし、下記樹脂組成物(A)と、下記樹脂組成物(B)とが、ドライブレンドされた混合物であってもよい。この場合、樹脂組成物(A)50重量%以上、99重量%以下と、下記樹脂組成物(B)1重量%以上、50重量%以下とが、ドライブレンドされた混合物であることが好ましい。また、下記樹脂組成物(A)及び下記樹脂組成物(B)の配合量は、上記製造方法の欄で説明した配合量であってもよい。
[Resin molding kit]
A kit for forming a resin molding according to the present invention includes the following resin composition (A) and the following resin composition (B). The resin composition (A) below and the resin composition (B) below may be in separate containers, or the resin composition (A) below and the resin composition (B) below may be contained in separate containers. and may be a dry blended mixture. In this case, 50% by weight or more and 99% by weight or less of the resin composition (A) and 1% by weight or more and 50% by weight or less of the resin composition (B) described below are preferably dry-blended. Moreover, the blending amounts of the resin composition (A) and the resin composition (B) described below may be those described in the section of the production method above.
 樹脂組成物(A):熱可塑性樹脂(a)10重量%以上、70重量%以下と、板状黒鉛30重量%以上、90重量%以下とを含有する、樹脂組成物。なお、熱可塑性樹脂(a)及び板状黒鉛の含有量は、上記製造方法の欄で説明した含有量であってもよい。 Resin composition (A): A resin composition containing 10% by weight or more and 70% by weight or less of thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite. The contents of the thermoplastic resin (a) and the plate-like graphite may be the contents described in the section of the manufacturing method above.
 樹脂組成物(B):熱可塑性樹脂(b)10重量%以上、70重量%以下と、長さ1mm以上の繊維30重量%以上、90重量%以下とを含有する、樹脂組成物。なお、熱可塑性樹脂(b)及び繊維の含有量は、上記製造方法の欄で説明した含有量であってもよい。 Resin composition (B): A resin composition containing 10% by weight or more and 70% by weight or less of a thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more. The contents of the thermoplastic resin (b) and the fibers may be the contents described in the section of the manufacturing method above.
 本発明の樹脂成形体形成用キットは、例えば、上述した本発明の樹脂成形体の製造方法における成形前の樹脂組成物として用いることができる。また、本発明の樹脂成形体の製造方法における成形前の混合物として用いてもよい。 The kit for forming a resin molded body of the present invention can be used, for example, as a resin composition before molding in the method for producing a resin molded body of the present invention described above. It may also be used as a mixture before molding in the method for producing a resin molded article of the present invention.
 本発明の樹脂成形体形成用キットは、本発明の樹脂成形体の製造方法に用いることができるので、このような樹脂成形体形成用キットを用いて、放熱性と機械的強度とを高いレベルで両立することができる、樹脂成形体を製造することができる。 The kit for forming a resin molded body of the present invention can be used in the method for producing a resin molded body of the present invention. It is possible to manufacture a resin molded body that can be compatible with
 以下、本発明の樹脂成形体の製造方法及び樹脂成形体形成用キットで用いられる各成分の詳細について説明する。 Details of each component used in the method for producing a resin molded body and the kit for forming a resin molded body of the present invention will be described below.
 (樹脂組成物(A))
 樹脂組成物(A)は、熱可塑性樹脂(a)と、板状黒鉛とを含む。また、樹脂組成物(A)は、必要に応じてカーボンブラックやその他添加剤などの他の材料を含んでいてもよい。
(Resin composition (A))
The resin composition (A) contains a thermoplastic resin (a) and plate-like graphite. Moreover, the resin composition (A) may contain other materials such as carbon black and other additives as necessary.
 熱可塑性樹脂(a);
 熱可塑性樹脂(a)としては、特に限定されず、公知の熱可塑性樹脂を用いることができる。熱可塑性樹脂(a)の具体例としては、ポリオレフィン、ポリスチレン、ポリアクリレート、ポリメタクリレート、ポリアクリロニトリル、ポリエステル、ポリアミド、ポリウレタン、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、ポリジメチルシロキサン、ポリカーボネート、又はこれらのうち少なくとも2種を含む共重合体などが挙げられる。これらの熱可塑性樹脂(a)は、単独で用いてもよく、複数を併用してもよい。
thermoplastic resin (a);
The thermoplastic resin (a) is not particularly limited, and known thermoplastic resins can be used. Specific examples of the thermoplastic resin (a) include polyolefin, polystyrene, polyacrylate, polymethacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polyethersulfone, polyetherketone, polyimide, polydimethylsiloxane, polycarbonate, or these Examples thereof include copolymers containing at least two of them. These thermoplastic resins (a) may be used alone or in combination.
 熱可塑性樹脂(a)としては、弾性率の高い樹脂であることが好ましい。安価であり、加熱下での成形が容易であることから、ポリオレフィン(オレフィン系樹脂)及びポリアミド(ナイロン系樹脂)がより好ましい。 The thermoplastic resin (a) is preferably a resin with a high elastic modulus. Polyolefin (olefin-based resin) and polyamide (nylon-based resin) are more preferable because they are inexpensive and easy to mold under heat.
 ポリオレフィンとしては、特に限定されず、公知のポリオレフィンを用いることができる。ポリオレフィンの具体例としては、エチレン単独重合体であるポリエチレン、エチレン-α-オレフィン共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体などのポリエチレン系樹脂が挙げられる。また、ポリオレフィンは、プロピレン単独重合体であるポリプロピレン、プロピレン-α-オレフィン共重合体などのポリプロピレン系樹脂、ブテン単独重合体であるポリブテン、ブタジエン、イソプレンなどの共役ジエンの単独重合体又は共重合体などであってもよい。これらのポリオレフィンは、単独で用いてもよく、複数を併用してもよい。耐熱性や弾性率をより一層高める観点から、ポリオレフィンとしては、ポリプロピレンであることが好ましい。 The polyolefin is not particularly limited, and known polyolefins can be used. Specific examples of polyolefins include polyethylene, which is an ethylene homopolymer, ethylene-α-olefin copolymer, ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, ethylene-acetic acid. Examples include polyethylene resins such as vinyl copolymers. The polyolefin is a propylene homopolymer such as polypropylene, a polypropylene-based resin such as a propylene-α-olefin copolymer, a butene homopolymer such as polybutene, butadiene, or a conjugated diene homopolymer or copolymer such as isoprene. and so on. These polyolefins may be used alone or in combination. From the viewpoint of further increasing the heat resistance and elastic modulus, the polyolefin is preferably polypropylene.
 また、ポリオレフィン(オレフィン系樹脂)は、エチレン成分を含有していることが好ましい。エチレン成分の含有量は、5質量%~40質量%であることが好ましい。エチレン成分の含有量が、上記範囲内にある場合、樹脂成形体の耐衝撃性をより一層高めつつ、耐熱性をより一層高めることができる。 Also, the polyolefin (olefin resin) preferably contains an ethylene component. The content of the ethylene component is preferably 5% by mass to 40% by mass. When the content of the ethylene component is within the above range, it is possible to further improve the heat resistance while further improving the impact resistance of the resin molding.
 熱可塑性樹脂(a)のJIS K7210に準拠して測定されたMFRは、好ましくは10g/10分以上、より好ましくは30g/10分以上である。この場合、熱可塑性樹脂(a)の流動性をより一層高めることができる。なお、MFRの上限値は、特に限定されないが、例えば、200g/10分とすることができる。 The MFR of the thermoplastic resin (a) measured according to JIS K7210 is preferably 10 g/10 minutes or more, more preferably 30 g/10 minutes or more. In this case, the fluidity of the thermoplastic resin (a) can be further enhanced. Although the upper limit of MFR is not particularly limited, it can be set to 200 g/10 minutes, for example.
 板状黒鉛;
 板状黒鉛としては、板状の黒鉛である限りにおいて特に限定されないが、例えば、黒鉛、薄片化黒鉛、又はグラフェンなどを用いることができる。難燃性及び熱伝導性をより一層高める観点から、好ましくは黒鉛又は薄片化黒鉛である。これらは、単独で用いてもよく、複数を併用してもよい。なお、本発明において、板状黒鉛としては、例えば、鱗片状黒鉛を用いることができる。難燃性をより一層高める観点から、膨張黒鉛であってもよい。
tabular graphite;
The plate-like graphite is not particularly limited as long as it is plate-like graphite, and for example, graphite, exfoliated graphite, or graphene can be used. Graphite or exfoliated graphite is preferable from the viewpoint of further enhancing flame retardancy and thermal conductivity. These may be used alone or in combination. In the present invention, for example, flake graphite can be used as the plate-like graphite. Expanded graphite may be used from the viewpoint of further enhancing flame retardancy.
 薄片化黒鉛とは、元の黒鉛を剥離処理して得られるものであり、元の黒鉛よりも薄いグラフェンシート積層体をいう。薄片化黒鉛にするための剥離処理としては、特に限定されず、超臨界流体などを用いた機械的剥離法、あるいは酸を用いた化学的剥離法のいずれを用いてもよい。薄片化黒鉛におけるグラフェンシートの積層数は、元の黒鉛より少なければよいが、10000層以下であることが好ましく、5000層以下であることがより好ましく、2000層以下であることがさらに好ましい。 Exfoliated graphite is obtained by exfoliating the original graphite, and refers to a graphene sheet laminate that is thinner than the original graphite. The exfoliation treatment for exfoliating graphite is not particularly limited, and either a mechanical exfoliation method using a supercritical fluid or the like or a chemical exfoliation method using an acid may be used. The number of laminated graphene sheets in exfoliated graphite may be less than that of the original graphite, but is preferably 10,000 or less, more preferably 5,000 or less, and even more preferably 2,000 or less.
 板状黒鉛の体積平均粒子径は、好ましくは100μm以上、より好ましくは200μm以上、さらに好ましくは250μm以上、好ましくは500μm以下、より好ましくは350μm以下である。板状黒鉛の体積平均粒子径が、上記下限値以上である場合、放熱性をより一層高めることができる。特に、カーボンブラックを含まない場合にも導電性や放熱性をより一層好適な範囲に調整することができる。他方、板状黒鉛の体積平均粒子径が、上記上限値以下である場合、樹脂成形体の難燃性をより一層高めることができる。なお、本発明においては、異なる体積平均粒子径の板状黒鉛を2種類以上組み合わせて使用してもよい。 The volume average particle size of plate-like graphite is preferably 100 µm or more, more preferably 200 µm or more, still more preferably 250 µm or more, preferably 500 µm or less, and more preferably 350 µm or less. When the volume average particle size of the plate-like graphite is at least the above lower limit, the heat dissipation can be further enhanced. In particular, even when carbon black is not contained, the conductivity and heat dissipation can be adjusted to a more suitable range. On the other hand, when the volume average particle size of the plate-like graphite is equal to or less than the above upper limit, the flame retardancy of the resin molding can be further enhanced. In the present invention, two or more types of plate-like graphite having different volume-average particle sizes may be used in combination.
 また、本発明において、体積平均粒子径とは、JIS Z 8825:2013に準拠し、レーザー回折/散乱式粒度分布測定装置を用いて、レーザー回折法により、体積基準分布で算出した値をいう。 In addition, in the present invention, the volume average particle size refers to a value calculated from a volume standard distribution by a laser diffraction method using a laser diffraction/scattering particle size distribution analyzer in accordance with JIS Z 8825:2013.
 体積平均粒子径を測定するに際しては、例えば、板状黒鉛をその濃度が2重量%となるように石鹸水溶液(中性洗剤:0.01%含有)に投入し、超音波ホモジナイザーを用いて300Wの出力で超音波を1分間照射し、懸濁液を得る。次に、懸濁液についてレーザー回折・散乱式の粒度分析測定装置(日機装社製、製品名「マイクロトラックMT3300」)により板状黒鉛の体積粒子径分布を測定する。この体積粒子径分布の累積50%の値を板状黒鉛の体積平均粒子径として算出することができる。 When measuring the volume average particle size, for example, plate-shaped graphite is put into a soapy water solution (neutral detergent: containing 0.01%) so that the concentration becomes 2% by weight, and an ultrasonic homogenizer is used at 300 W. for 1 minute to obtain a suspension. Next, the suspension is measured for the volume particle size distribution of the plate-like graphite by a laser diffraction/scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., product name “Microtrac MT3300”). The cumulative 50% value of this volume particle size distribution can be calculated as the volume average particle size of the plate-like graphite.
 板状黒鉛の含有量は、熱可塑性樹脂(a)100重量部に対し、好ましくは70重量部以上、より好ましくは100重量部以上であり、好ましくは300重量部以下、より好ましくは250重量部以下、さらに好ましくは200重量部以下である。板状黒鉛の含有量が上記下限値以上である場合、放熱性をより一層高めることができる。また、板状黒鉛の含有量が多すぎると破壊の起点となる界面の面積が大きくなることから、板状黒鉛の含有量が上記上限値以下である場合、耐衝撃性をより一層高めることができる。 The content of plate-like graphite is preferably 70 parts by weight or more, more preferably 100 parts by weight or more, preferably 300 parts by weight or less, more preferably 250 parts by weight, relative to 100 parts by weight of the thermoplastic resin (a). 200 parts by weight or less, more preferably 200 parts by weight or less. When the content of plate-like graphite is equal to or higher than the above lower limit, heat dissipation can be further enhanced. In addition, if the content of plate-like graphite is too large, the area of the interface, which is the starting point of fracture, becomes large. can.
 板状黒鉛のアスペクト比は、好ましくは5以上、より好ましくは21以上、好ましくは2000以下、より好ましくは1000以下、さらに好ましくは100以下である。板状黒鉛のアスペクト比が、上記下限値以上である場合、面方向における放熱性をより一層高めることができる。また、板状黒鉛のアスペクト比が上記上限値以下である場合、例えば射出成形時に黒鉛粒子自身が熱可塑性樹脂(a)中で折れ曲がり難い。そのため、面内方向の熱伝導率をより一層高めることができる。なお、本明細書において、アスペクト比とは、板状黒鉛の厚みに対する板状黒鉛の積層面方向における最大寸法の比をいう。 The aspect ratio of the plate-like graphite is preferably 5 or more, more preferably 21 or more, preferably 2000 or less, more preferably 1000 or less, still more preferably 100 or less. When the aspect ratio of the plate-like graphite is equal to or higher than the above lower limit, heat dissipation in the planar direction can be further enhanced. Further, when the aspect ratio of the plate-like graphite is equal to or less than the above upper limit, the graphite particles themselves are less likely to bend in the thermoplastic resin (a) during injection molding, for example. Therefore, the thermal conductivity in the in-plane direction can be further increased. In this specification, the aspect ratio refers to the ratio of the maximum dimension of the plate-like graphite in the stacking plane direction to the thickness of the plate-like graphite.
 なお、板状黒鉛の形状及び厚みは、例えば、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)を用いて測定することができる。より一層観察し易くする観点から、樹脂組成物又は樹脂成形体から切り出した試験片を600℃で加熱することで樹脂を飛ばして透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)で観察することが望ましい。なお、試験片は、樹脂を飛ばして板状黒鉛の厚みを測定できる限り、樹脂成形体の主面に沿う方向に沿って切り出してもよく、樹脂成形体の主面に直交する方向に沿って切り出してもよい。 The shape and thickness of plate-like graphite can be measured using, for example, a transmission electron microscope (TEM) or a scanning electron microscope (SEM). From the viewpoint of making observation easier, a test piece cut out from the resin composition or resin molded body is heated at 600 ° C. to blow off the resin and observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). It is desirable to In addition, the test piece may be cut out along the direction along the main surface of the resin molded body as long as the thickness of the plate-like graphite can be measured by skipping the resin, or along the direction perpendicular to the main surface of the resin molded body. You can cut it out.
 カーボンブラック;
 樹脂組成物(A)は、本発明の効果を阻害しない範囲において、さらにカーボンブラックを含んでいてもよい。カーボンブラックとしては、例えば、ケッチェンブラックなどのオイルファーネスブラック、アセチレンブラック、チャンネルブラック、サーマルブラックなどを用いることができる。なかでも、得られる樹脂成形体の導電性をより一層高める観点から、オイルファーネスブラックであることが好ましい。また、カーボンブラックはFe、Niなどの金属不純物を含有していてもよい。
Carbon black;
The resin composition (A) may further contain carbon black as long as the effects of the present invention are not impaired. Examples of carbon black that can be used include oil furnace black such as ketjen black, acetylene black, channel black, and thermal black. Among them, oil furnace black is preferable from the viewpoint of further increasing the conductivity of the obtained resin molding. Carbon black may also contain metal impurities such as Fe and Ni.
 カーボンブラックのDBP吸油量は、特に限定されないが、好ましくは160ml/100g以上、より好ましくは200ml/100g以上であり、好ましくは800ml/100g以下、より好ましくは500ml/100g以下、さらに好ましくは400ml/100g以下である。カーボンブラックのDBP吸油量が上記下限値以上である場合、得られる樹脂成形体の導電性と難燃性をより一層高めることができる。カーボンブラックのDBP吸油量が上記上限値以下である場合、混錬時の凝集を防ぎ安定性をより一層向上させることができる。 The DBP oil absorption of carbon black is not particularly limited, but is preferably 160 ml/100 g or more, more preferably 200 ml/100 g or more, preferably 800 ml/100 g or less, more preferably 500 ml/100 g or less, and still more preferably 400 ml/100 g or less. 100 g or less. When the DBP oil absorption of carbon black is equal to or higher than the above lower limit, the electrical conductivity and flame retardancy of the resulting resin molding can be further enhanced. When the DBP oil absorption of carbon black is equal to or less than the above upper limit, aggregation during kneading can be prevented and stability can be further improved.
 カーボンブラックのDBP吸油量は、JIS K 6217-4に準拠して測定することができる。DBP吸油量は、例えば、吸収量測定器(あさひ総研社製、品番「S-500」)を用いて測定することができる。 The DBP oil absorption of carbon black can be measured according to JIS K 6217-4. The DBP oil absorption can be measured, for example, using an absorption measuring device (manufactured by Asahi Research Institute, product number “S-500”).
 カーボンブラックの含有量は、熱可塑性樹脂(a)100重量部に対し、好ましくは10重量部以上、より好ましくは15重量部以上、さらに好ましくは20重量部以上、好ましくは100重量部以下、より好ましくは80重量部以下、さらに好ましくは50重量部以下である。カーボンブラックの含有量が上記下限値以上である場合、導電性及び難燃性をより一層高めることができる。また、カーボンブラックの含有量が上記上限値以下である場合、導電性及び難燃性と耐衝撃性のバランスをより一層高めることができる。 The content of carbon black is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, still more preferably 20 parts by weight or more, preferably 100 parts by weight or less, with respect to 100 parts by weight of the thermoplastic resin (a). It is preferably 80 parts by weight or less, more preferably 50 parts by weight or less. When the content of carbon black is at least the above lower limit, the electrical conductivity and flame retardancy can be further enhanced. Moreover, when the content of carbon black is equal to or less than the above upper limit, the balance between conductivity, flame retardancy and impact resistance can be further improved.
 カーボンブラックの一次粒子径は、好ましくは40nm以上、好ましくは50nm以下、より好ましくは45nm以下である。カーボンブラックの一次粒子径が上記範囲内にある場合、より一層低濃度のカーボンブラック含有量でより一層高い導電性と難燃性を得ることができる。 The primary particle size of carbon black is preferably 40 nm or more, preferably 50 nm or less, and more preferably 45 nm or less. When the primary particle size of carbon black is within the above range, even lower carbon black content can provide higher electrical conductivity and flame retardancy.
 なお、カーボンブラックの一次粒子径は、例えば、透過型電子顕微鏡により得られたカーボンブラックの画像データを用いて求めた平均一次粒子径である。透過型電子顕微鏡としては、例えば、日本電子社製、製品名「JEM-2200FS」を用いることができる。 The primary particle size of carbon black is, for example, the average primary particle size obtained using image data of carbon black obtained by a transmission electron microscope. As a transmission electron microscope, for example, the product name "JEM-2200FS" manufactured by JEOL Ltd. can be used.
 その他添加剤;
 樹脂組成物(A)は、本発明の効果を阻害しない範囲において、任意成分として様々なその他添加剤が添加されていてもよい。添加剤としては、例えば、フェノール系、リン系、アミン系、イオウ系などの酸化防止剤;ベンゾトリアゾール系、ヒドロキシフェニルトリアジン系などの紫外線吸収剤;金属害防止剤;各種充填剤;帯電防止剤;安定剤;顔料などが挙げられる。これらは、単独で用いてもよく、複数を併用してもよい。
other additives;
Various other additives may be added as optional components to the resin composition (A) as long as they do not impair the effects of the present invention. Additives include, for example, phenol-based, phosphorus-based, amine-based, and sulfur-based antioxidants; benzotriazole-based, hydroxyphenyltriazine-based UV absorbers; metal damage inhibitors; various fillers; stabilizers; pigments; These may be used alone or in combination.
 (樹脂組成物(B))
 樹脂組成物(B)は、熱可塑性樹脂(b)と、繊維とを含む。また、樹脂組成物(B)は、必要に応じてカーボンブラックやその他添加剤などの他の材料を含んでいてもよい。
(Resin composition (B))
The resin composition (B) contains a thermoplastic resin (b) and fibers. Moreover, the resin composition (B) may contain other materials such as carbon black and other additives as necessary.
 熱可塑性樹脂(b);
 熱可塑性樹脂(b)としては、樹脂組成物(A)の欄で説明した熱可塑性樹脂を適宜用いることができる。なお、熱可塑性樹脂(b)としては、樹脂組成物(A)の熱可塑性樹脂(a)と同じ樹脂を用いることが好ましいが、樹脂組成物(A)の欄で説明した熱可塑性樹脂と異なる樹脂を用いてもよい。
thermoplastic resin (b);
As the thermoplastic resin (b), the thermoplastic resins described in the section of the resin composition (A) can be appropriately used. As the thermoplastic resin (b), it is preferable to use the same resin as the thermoplastic resin (a) of the resin composition (A), but it is different from the thermoplastic resin described in the section of the resin composition (A). Resin may be used.
 繊維;
 繊維としては、例えば、金属繊維、炭素繊維、セルロース繊維、アラミド繊維、又はガラス繊維等を用いることができる。これらは、単独で用いてもよく、複数を併用してもよい。
fiber;
Examples of fibers that can be used include metal fibers, carbon fibers, cellulose fibers, aramid fibers, and glass fibers. These may be used alone or in combination.
 炭素繊維としては、特に限定されないが、PAN系若しくはピッチ系の炭素繊維などを用いることができる。 The carbon fiber is not particularly limited, but PAN-based or pitch-based carbon fiber or the like can be used.
 繊維は、樹脂組成物(B)中において、配向していることが好ましい。なかでも、一軸配向していることが好ましい。このような樹脂組成物(B)は、繊維を引き揃え、溶融した熱可塑性樹脂(b)と接触させることにより製造することができる。特に、プルトリューション法により製造する場合、繊維に熱可塑性樹脂(b)が含浸した樹脂組成物(B)を得ることができる。 The fibers are preferably oriented in the resin composition (B). Among them, it is preferably uniaxially oriented. Such a resin composition (B) can be produced by arranging fibers and bringing them into contact with a molten thermoplastic resin (b). In particular, when it is produced by the pultrusion method, a resin composition (B) in which the thermoplastic resin (b) is impregnated into the fibers can be obtained.
 繊維の長さは、特に限定されないが、好ましくは3mm以上、より好ましくは5mm以上、好ましくは20mm以下、より好ましくは15mm以下である。繊維の長さが上記範囲内にある場合、得られる樹脂成形体の機械的強度をより一層高めることができる。 Although the length of the fiber is not particularly limited, it is preferably 3 mm or longer, more preferably 5 mm or longer, preferably 20 mm or shorter, and more preferably 15 mm or shorter. When the fiber length is within the above range, the mechanical strength of the obtained resin molding can be further enhanced.
 また、繊維の繊維径は、好ましくは5μm以上、より好ましくは10μm以上、好ましくは50μm以下、より好ましくは30μm以下である。繊維の繊維径が上記範囲内にある場合、得られる樹脂成形体の機械的強度をより一層高めることができる。 In addition, the fiber diameter of the fibers is preferably 5 µm or more, more preferably 10 µm or more, preferably 50 µm or less, and more preferably 30 µm or less. When the fiber diameter of the fibers is within the above range, the mechanical strength of the resulting resin molding can be further enhanced.
 なお、繊維の長さ及び繊維径は、例えば、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)を用いて測定した100個の平均値とすることができる。より一層観察し易くする観点から、樹脂組成物又は樹脂成形体から切り出した試験片を600℃で加熱することで樹脂を飛ばして透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)で観察することが望ましい。 The fiber length and fiber diameter can be, for example, an average value of 100 measured using a transmission electron microscope (TEM) or scanning electron microscope (SEM). From the viewpoint of making observation easier, a test piece cut out from the resin composition or resin molded body is heated at 600 ° C. to blow off the resin and observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). It is desirable to
 繊維の含有量は、特に限定されないが、熱可塑性樹脂(b)100重量部に対し、50重量部以上、200重量部以下であることが好ましい。繊維の含有量が上記範囲内にある場合、得られる樹脂成形体の機械的強度をより一層高めることができる。 Although the content of the fibers is not particularly limited, it is preferably 50 parts by weight or more and 200 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin (b). When the fiber content is within the above range, the mechanical strength of the resulting resin molding can be further enhanced.
 カーボンブラック及びその他添加剤;
 カーボンブラック及びその他添加剤としては、樹脂組成物(A)の欄で説明したカーボンブラック及びその他添加剤を適宜用いることができる。
carbon black and other additives;
As the carbon black and other additives, the carbon black and other additives described in the section of the resin composition (A) can be appropriately used.
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明の効果を明らかにする。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the effects of the present invention will be clarified by giving specific examples and comparative examples of the present invention. In addition, the present invention is not limited to the following examples.
 (製造例1)
 樹脂組成物(A-1)の製造;
 熱可塑性樹脂(a)としてのポリプロピレン(PP)50重量%と、板状黒鉛としての鱗片状黒鉛50重量%とを、ラボプラストミル(東洋精機社製、品番「R100」)を用いて、200℃で溶融混練することにより樹脂組成物を得た。なお、得られた樹脂組成物は、ペレット状であり、ペレット径は、5mmであった。ペレット径は、試料からペレット100粒をランダムに採取し、ノギスを用いて最長箇所での直径を測定することで求めた。また、ポリプロピレンとしては、日本ポリプロ社製、商品名「MA04A」(MFR:40g/10min(230℃))を用いた。鱗片状黒鉛としては、中越黒鉛工業所社製、商品名「CPB-300」(平均粒子径:300μm)を用いた。
(Production example 1)
Production of resin composition (A-1);
50% by weight of polypropylene (PP) as the thermoplastic resin (a) and 50% by weight of scaly graphite as plate-like graphite were mixed with Laboplastomill (manufactured by Toyo Seiki Co., Ltd., product number "R100") to 200%. A resin composition was obtained by melt-kneading at °C. The obtained resin composition was in the form of pellets with a pellet diameter of 5 mm. The pellet diameter was determined by randomly extracting 100 pellets from the sample and measuring the diameter at the longest point using a vernier caliper. Moreover, as the polypropylene, trade name “MA04A” (MFR: 40 g/10 min (230° C.)) manufactured by Japan Polypropylene Corporation was used. As flake graphite, trade name “CPB-300” (average particle diameter: 300 μm) manufactured by Chuetsu Graphite Co., Ltd. was used.
 (製造例2)
 樹脂組成物(A-2)の製造;
 熱可塑性樹脂(a)としてのポリプロピレン(PP)30重量%と、板状黒鉛としての鱗片状黒鉛70重量%とを、ラボプラストミル(東洋精機社製、品番「R100」)を用いて、200℃で溶融混練することにより樹脂組成物を得た。なお、得られた樹脂組成物は、ペレット状であり、ペレット径は、5mmであった。また、ポリプロピレンとしては、日本ポリプロ社製、商品名「MA04A」(MFR:40g/10min(230℃))を用いた。鱗片状黒鉛としては、中越黒鉛工業所社製、商品名「CPB-300」(平均粒子径:300μm)を用いた。
(Production example 2)
Production of resin composition (A-2);
30% by weight of polypropylene (PP) as the thermoplastic resin (a) and 70% by weight of scaly graphite as plate-like graphite were mixed with Labo Plastomill (manufactured by Toyo Seiki Co., Ltd., product number "R100") to 200%. A resin composition was obtained by melt-kneading at °C. The obtained resin composition was in the form of pellets with a pellet diameter of 5 mm. Moreover, as the polypropylene, trade name “MA04A” (MFR: 40 g/10 min (230° C.)) manufactured by Japan Polypropylene Corporation was used. As flake graphite, trade name “CPB-300” (average particle diameter: 300 μm) manufactured by Chuetsu Graphite Co., Ltd. was used.
 (製造例3)
 樹脂組成物(B-1)の製造;
 熱可塑性樹脂(b)としてのポリプロピレン(PP)60重量%と、長さ7mmのガラス繊維40重量%とを用い、プルトルージョン法に従い樹脂組成物を得た。なお、得られた樹脂組成物は、ペレット状であり、ペレット径は、7mmであった。また、ポリプロピレンとしては、日本ポリプロ社製、商品名「MA04A」(MFR:40g/10min(230℃))を用いた。ロービング繊維(ガラス繊維)としては、日本電気硝子社製、商品名「TUFROV4520」(繊維径:16μm)を用いた。
(Production example 3)
Production of resin composition (B-1);
Using 60% by weight of polypropylene (PP) as the thermoplastic resin (b) and 40% by weight of glass fiber having a length of 7 mm, a resin composition was obtained according to the pultrusion method. The obtained resin composition was in the form of pellets with a pellet diameter of 7 mm. Moreover, as the polypropylene, trade name “MA04A” (MFR: 40 g/10 min (230° C.)) manufactured by Japan Polypropylene Corporation was used. As the roving fiber (glass fiber), trade name "TUFROV4520" (fiber diameter: 16 µm) manufactured by Nippon Electric Glass Co., Ltd. was used.
 (製造例4)
 樹脂組成物(B-2)の製造;
 熱可塑性樹脂(b)40重量%と、長さ7mmのガラス繊維60重量%とを用い、プルトルージョン法に従い樹脂組成物を得た。なお、得られた樹脂組成物は、ペレット状であり、ペレット径は、7mmであった。また、ポリプロピレンとしては、日本ポリプロ社製、商品名「MA04A」(MFR:40g/10min(230℃))を用いた。ロービング繊維(ガラス繊維)としては、日本電気硝子社製、商品名「TUFROV4520」(繊維径:16μm)を用いた。
(Production example 4)
Production of resin composition (B-2);
Using 40% by weight of thermoplastic resin (b) and 60% by weight of glass fiber having a length of 7 mm, a resin composition was obtained according to the pultrusion method. The obtained resin composition was in the form of pellets with a pellet diameter of 7 mm. Moreover, as the polypropylene, trade name “MA04A” (MFR: 40 g/10 min (230° C.)) manufactured by Japan Polypropylene Corporation was used. As the roving fiber (glass fiber), trade name "TUFROV4520" (fiber diameter: 16 µm) manufactured by Nippon Electric Glass Co., Ltd. was used.
 (実施例1~8)
 下記の表1に示す種類の樹脂組成物(A)と樹脂組成物(B)とを、下記の表1に示す割合で小型タンブラーを用いて、回転数30rpmで、5分間ドライブレンドすることにより、混合物を得た。得られた混合物を用いて、射出成形によって材料物性用試験片を成形した。なお、射出成形は、樹脂温度230℃、金型温度80℃、射出速度30mm/sの条件で行った。
(Examples 1 to 8)
The resin composition (A) and the resin composition (B) of the types shown in Table 1 below are dry-blended for 5 minutes at a rotation speed of 30 rpm using a small tumbler at the ratio shown in Table 1 below. , to obtain a mixture. Using the obtained mixture, test pieces for material physical properties were molded by injection molding. Injection molding was performed under the conditions of a resin temperature of 230° C., a mold temperature of 80° C., and an injection speed of 30 mm/s.
 (比較例1~8)
 熱可塑性樹脂としてのポリプロピレン(PP)と、板状黒鉛としての鱗片状黒鉛と、長さ7mmのガラス繊維とを下記の表1に示す割合で、二軸混練押出機(テクノベル社製、品番「KZW134TW」)を用いて、230℃で二軸押出混練することにより、樹脂組成物を得た。得られた樹脂組成物を用いて、射出成形によって材料物性用試験片を成形した。なお、射出成形は、樹脂温度230℃、金型温度80℃、射出速度30mm/sの条件で行った。なお、ポリプロピレンとしては、日本ポリプロ社製、商品名「MA04A」(MFR:40g/10min(230℃))を用いた。鱗片状黒鉛としては、中越黒鉛工業所社製、商品名「CPB-300」(平均粒子径:300μm)を用いた。ロービング繊維(ガラス繊維)としては、日本電気硝子社製、商品名「TUFROV4520」(繊維径:16μm)を用いた。
(Comparative Examples 1 to 8)
Polypropylene (PP) as a thermoplastic resin, flake graphite as plate-like graphite, and glass fiber with a length of 7 mm are mixed at the ratio shown in Table 1 below, and a twin-screw kneading extruder (manufactured by Technobell, product number "KZW134TW") was used to obtain a resin composition by twin-screw extrusion kneading at 230°C. Using the obtained resin composition, a test piece for material physical properties was molded by injection molding. Injection molding was performed under the conditions of a resin temperature of 230° C., a mold temperature of 80° C., and an injection speed of 30 mm/s. In addition, as polypropylene, the trade name "MA04A" (MFR: 40 g/10 min (230°C)) manufactured by Japan Polypropylene Corporation was used. As flake graphite, trade name “CPB-300” (average particle diameter: 300 μm) manufactured by Chuetsu Graphite Co., Ltd. was used. As the roving fiber (glass fiber), trade name "TUFROV4520" (fiber diameter: 16 µm) manufactured by Nippon Electric Glass Co., Ltd. was used.
 (評価)
 <面内方向の熱伝導率(W/(m・K))>
 面内方向の熱伝導率(面内方向熱伝導率)は、ネッチジャパン社製、品番「キセノンフラッシュレーザーアナライザ LFA467 HyperFlash」を用いて測定した。具体的には実施例及び比較例に記載の方法で縦100mm×横100mm×厚み2mmに成形した樹脂成形体から、縦10mm×横2mm×厚み2mmに打ち抜き、測定サンプルとした。面内方向熱伝導率が測定できる向きで測定サンプルをホルダにはめ込み、30℃における熱拡散率を測定し、以下の式(1)に従って熱伝導率を算出した。
(evaluation)
<In-plane thermal conductivity (W/(mK))>
The thermal conductivity in the in-plane direction (in-plane thermal conductivity) was measured using a product number "Xenon Flash Laser Analyzer LFA467 HyperFlash" manufactured by Netsch Japan. Specifically, a measurement sample was obtained by punching out a 10 mm long, 2 mm wide, and 2 mm thick resin molded body molded into a size of 100 mm long, 100 mm wide, and 2 mm thick by the method described in Examples and Comparative Examples. A measurement sample was fitted into a holder in a direction that allows measurement of in-plane thermal conductivity, thermal diffusivity at 30° C. was measured, and thermal conductivity was calculated according to the following formula (1).
 熱伝導率(W/(m・K))=比重(g/cm)×比熱(J/g・K)×熱拡散率(mm/s)…式(1) Thermal conductivity (W/(m·K)) = specific gravity (g/cm 3 ) x specific heat (J/g·K) x thermal diffusivity (mm 2 /s) (1)
 <曲げ強度>
 JIS K 7171に準拠して曲げ強度を測定した。具体的には実施例及び比較例に記載の方法で射出成形により、長さ80mm、幅b=10mm、厚さh=4mmの短冊状の試験片作製を行い、支点間距離L=64mm、試験速度2mm/minにて、ロードセルを用いて最大曲げ荷重Fを測定した。
 曲げ強度(MPa)=[3×最大曲げ荷重F(N)×支点間距離L(mm)]/(2×試験片幅b×試験片厚さh)
<Bending strength>
Bending strength was measured according to JIS K7171. Specifically, a strip-shaped test piece having a length of 80 mm, a width of b = 10 mm, and a thickness of h = 4 mm was prepared by injection molding by the method described in Examples and Comparative Examples. The maximum bending load F was measured using a load cell at a speed of 2 mm/min.
Bending strength (MPa) = [3 × maximum bending load F (N) × distance between fulcrums L (mm)] / (2 × test piece width b × test piece thickness h)
 <熱変形温度>
 JIS K 7191に準拠して熱変形温度を測定した。具体的には、実施例及び比較例に記載の方法で射出成形により、長さ80mm、幅b=10mm、厚さh=4mmの短冊状の試験片作製を行い、支点間距離L=64mm、油温を120℃/時間として昇温させ、試験片に1.80MPaの曲げ応力を与え、4mmのたわみ量に達した温度を熱変形温度とした。
<Heat distortion temperature>
The heat distortion temperature was measured according to JIS K 7191. Specifically, a strip-shaped test piece having a length of 80 mm, a width of b = 10 mm, and a thickness of h = 4 mm was prepared by injection molding by the method described in Examples and Comparative Examples. The oil temperature was raised at 120° C./hour, a bending stress of 1.80 MPa was applied to the test piece, and the temperature at which the amount of deflection of 4 mm was reached was taken as the heat distortion temperature.
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~8の樹脂成形体は、放熱性及び機械的強度を高いレベルで両立できていることが確認できた。他方、比較例1~8の樹脂成形体では、放熱性及び機械的強度のうち少なくともいずれかが十分でなかった。 As is clear from Table 1, it was confirmed that the resin moldings of Examples 1 to 8 achieved both high levels of heat dissipation and mechanical strength. On the other hand, the resin moldings of Comparative Examples 1 to 8 were insufficient in at least one of heat dissipation and mechanical strength.

Claims (11)

  1.  下記樹脂組成物(A)50重量%以上、99重量%以下と、下記樹脂組成物(B)1重量%以上、50重量%以下とをドライブレンドすることにより、混合物を得る工程と、
     前記混合物を成形することにより、樹脂成形体を得る工程と、
    を備える、樹脂成形体の製造方法。
     樹脂組成物(A):熱可塑性樹脂(a)10重量%以上、70重量%以下と、板状黒鉛30重量%以上、90重量%以下とを含有する、樹脂組成物。
     樹脂組成物(B):熱可塑性樹脂(b)10重量%以上、70重量%以下と、長さ1mm以上の繊維30重量%以上、90重量%以下とを含有する、樹脂組成物。
    obtaining a mixture by dry-blending 50% by weight or more and 99% by weight or less of the following resin composition (A) and 1% by weight or more and 50% by weight or less of the following resin composition (B);
    a step of obtaining a resin molded body by molding the mixture;
    A method for manufacturing a resin molded body.
    Resin composition (A): A resin composition containing 10% by weight or more and 70% by weight or less of thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite.
    Resin composition (B): A resin composition containing 10% by weight or more and 70% by weight or less of a thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more.
  2.  前記樹脂組成物(A)が、前記熱可塑性樹脂(a)と、前記板状黒鉛とを溶融混練することにより得られたコンパウンドであり、
     前記樹脂組成物(B)が、溶融した前記熱可塑性樹脂(b)を前記繊維に含浸させることにより得られたコンパウンドである、請求項1に記載の樹脂成形体の製造方法。
    The resin composition (A) is a compound obtained by melt-kneading the thermoplastic resin (a) and the plate-like graphite,
    2. The method for producing a resin molding according to claim 1, wherein the resin composition (B) is a compound obtained by impregnating the fibers with the molten thermoplastic resin (b).
  3.  前記混合物の成形を、射出成形により行なう、請求項1又は2に記載の樹脂成形体の製造方法。 The method for producing a resin molded product according to claim 1 or 2, wherein molding of the mixture is performed by injection molding.
  4.  前記樹脂成形体のJIS K 7171に準拠して測定された曲げ強度が、40MPa以上であり、かつ、前記樹脂成形体の主面における面内方向の熱伝導率が、5W/(m・K)以上である、請求項1~3のいずれか1項に記載の樹脂成形体の製造方法。 The bending strength of the resin molded body measured in accordance with JIS K 7171 is 40 MPa or more, and the thermal conductivity of the main surface of the resin molded body in the in-plane direction is 5 W/(m K). The method for producing a resin molding according to any one of claims 1 to 3, comprising the above.
  5.  前記樹脂成形体の主面において、任意の方向をx方向とし、該x方向に直交する方向をy方向とし、前記樹脂成形体の厚み方向をz方向としたときに、前記x方向の熱伝導率λx、前記y方向の熱伝導率λy、及び前記z方向の熱伝導率λzが、min(λx,λy)/λz≧4を満たしている、請求項1~4のいずれか1項に記載の樹脂成形体の製造方法。 In the main surface of the resin molded body, when an arbitrary direction is defined as the x direction, a direction orthogonal to the x direction is defined as the y direction, and a thickness direction of the resin molded body is defined as the z direction, heat conduction in the x direction The thermal conductivity λx, the y-direction thermal conductivity λy, and the z-direction thermal conductivity λz satisfy min(λx, λy)/λz≧4. A method for producing a resin molded product.
  6.  下記樹脂組成物(A)と、下記樹脂組成物(B)とを含む、樹脂成形体形成用キット。
     樹脂組成物(A):熱可塑性樹脂(a)10重量%以上、70重量%以下と、板状黒鉛30重量%以上、90重量%以下とを含有する、樹脂組成物。
     樹脂組成物(B):熱可塑性樹脂(b)10重量%以上、70重量%以下と、長さ1mm以上の繊維30重量%以上、90重量%以下とを含有する、樹脂組成物。
    A kit for forming a resin molding, comprising the following resin composition (A) and the following resin composition (B).
    Resin composition (A): A resin composition containing 10% by weight or more and 70% by weight or less of thermoplastic resin (a) and 30% by weight or more and 90% by weight or less of plate-like graphite.
    Resin composition (B): A resin composition containing 10% by weight or more and 70% by weight or less of a thermoplastic resin (b) and 30% by weight or more and 90% by weight or less of fibers having a length of 1 mm or more.
  7.  前記樹脂組成物(A)50重量%以上、99重量%以下と、前記樹脂組成物(B)1重量%以上、50重量%以下とが、ドライブレンドされた混合物である、請求項6に記載の樹脂成形体形成用キット。 7. The mixture according to claim 6, wherein the resin composition (A) of 50% by weight or more and 99% by weight or less and the resin composition (B) of 1% by weight or more and 50% by weight or less are dry-blended. A kit for forming a resin molded body of.
  8.  前記樹脂組成物(A)及び前記樹脂組成物(B)に含まれる熱可塑性樹脂のうち、少なくとも一方が、ポリオレフィン系樹脂又はナイロン系樹脂である、請求項6又は7に記載の樹脂成形体形成用キット。 8. The resin molding formation according to claim 6 or 7, wherein at least one of the thermoplastic resins contained in the resin composition (A) and the resin composition (B) is a polyolefin resin or a nylon resin. Kit for.
  9.  前記樹脂組成物(A)中に含まれる前記板状黒鉛の体積平均粒子径が、100μm以上である、請求項6~8のいずれか1項に記載の樹脂成形体形成用キット。 The resin molding forming kit according to any one of claims 6 to 8, wherein the plate-like graphite contained in the resin composition (A) has a volume average particle size of 100 µm or more.
  10.  前記樹脂組成物(B)中において、前記繊維が配向している、請求項6~9のいずれか1項に記載の樹脂成形体形成用キット。 The resin molding forming kit according to any one of claims 6 to 9, wherein the fibers are oriented in the resin composition (B).
  11.  前記繊維が、ガラス繊維及び炭素繊維のうち、少なくとも一方の繊維である、請求項6~10のいずれか1項に記載の樹脂成形体形成用キット。 The resin molding forming kit according to any one of claims 6 to 10, wherein the fiber is at least one of glass fiber and carbon fiber.
PCT/JP2022/002551 2021-01-25 2022-01-25 Resin molded article production method and resin molded article formation kit WO2022158601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022576777A JPWO2022158601A1 (en) 2021-01-25 2022-01-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-009386 2021-01-25
JP2021009386 2021-01-25

Publications (1)

Publication Number Publication Date
WO2022158601A1 true WO2022158601A1 (en) 2022-07-28

Family

ID=82548726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002551 WO2022158601A1 (en) 2021-01-25 2022-01-25 Resin molded article production method and resin molded article formation kit

Country Status (2)

Country Link
JP (1) JPWO2022158601A1 (en)
WO (1) WO2022158601A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143715A (en) * 1994-11-25 1996-06-04 Idemitsu Petrochem Co Ltd Flame-retardant reinforced resin molding material and molding
JP2007224209A (en) * 2006-02-24 2007-09-06 Mitsubishi Chemicals Corp Conductive thermoplastic resin molded article
KR20120078256A (en) * 2010-12-31 2012-07-10 제일모직주식회사 High thermal conductive resin composition
KR20160083520A (en) * 2014-12-31 2016-07-12 주식회사 삼양사 Long fiber reinforced thermoplastic resin composition with excellent thermal conductivity and EMI shielding effectiveness and article prepared therefrom
JP2017186512A (en) * 2016-04-04 2017-10-12 積水化学工業株式会社 Resin molded body
WO2018199008A1 (en) * 2017-04-26 2018-11-01 積水テクノ成型株式会社 Resin molded body
KR20190079099A (en) * 2017-12-27 2019-07-05 주식회사 삼양사 Long fiber reinforced thermoplastic resin composition with excellent moldability and thermal conductivity
JP2019167521A (en) * 2018-03-23 2019-10-03 積水テクノ成型株式会社 Resin molding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143715A (en) * 1994-11-25 1996-06-04 Idemitsu Petrochem Co Ltd Flame-retardant reinforced resin molding material and molding
JP2007224209A (en) * 2006-02-24 2007-09-06 Mitsubishi Chemicals Corp Conductive thermoplastic resin molded article
KR20120078256A (en) * 2010-12-31 2012-07-10 제일모직주식회사 High thermal conductive resin composition
KR20160083520A (en) * 2014-12-31 2016-07-12 주식회사 삼양사 Long fiber reinforced thermoplastic resin composition with excellent thermal conductivity and EMI shielding effectiveness and article prepared therefrom
JP2017186512A (en) * 2016-04-04 2017-10-12 積水化学工業株式会社 Resin molded body
WO2018199008A1 (en) * 2017-04-26 2018-11-01 積水テクノ成型株式会社 Resin molded body
KR20190079099A (en) * 2017-12-27 2019-07-05 주식회사 삼양사 Long fiber reinforced thermoplastic resin composition with excellent moldability and thermal conductivity
JP2019167521A (en) * 2018-03-23 2019-10-03 積水テクノ成型株式会社 Resin molding

Also Published As

Publication number Publication date
JPWO2022158601A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
Wei et al. Epoxy/graphene nanocomposites–processing and properties: a review
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
Chen et al. Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites
Zhang et al. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites
Kim et al. Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles
JP7255944B2 (en) Resin molding
JP6310618B2 (en) Resin molded body
Yang et al. Highly thermally conductive and superior electrical insulation polymer composites via in situ thermal expansion of expanded graphite and in situ oxidation of aluminum nanoflakes
KR100927702B1 (en) Electrically insulating high thermal conductive resin composition
JP2019094486A (en) Conductive resin composition and method for producing the same
JP2015000937A (en) Heat-conductive resin composition
Kim et al. Mechanical properties and thermal conductivity of epoxy composites containing aluminum-exfoliated graphite nanoplatelets hybrid powder
Zhou et al. Enhanced in-plane thermal conductivity of PP composites with high orientation and rational layered distribution of BNNS
WO2011158907A1 (en) Polyolefin resin composition and process for producing same
WO2022158600A1 (en) Resin composition and resin molded article
Danial et al. Recent advances on the enhanced thermal conductivity of graphene nanoplatelets composites: a short review
WO2022158601A1 (en) Resin molded article production method and resin molded article formation kit
JP6182256B1 (en) Resin molded body
Jaafar Development of hybrid fillers/polymer nanocomposites for electronic applications
JP5536723B2 (en) Epoxy resin composition, molded body and sheet material
CN113462158B (en) Wireless charger shell and wireless charger
JP5664293B2 (en) Thermal conductive sheet and heat dissipation device
CN112918030B (en) Boron nitride film with plane orientation, preparation method thereof, boron nitride composite film containing boron nitride film, thermal interface material and application
WO2023182394A1 (en) Resin composition, and resin molded body
WO2023182395A1 (en) Resin composition and resin molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742720

Country of ref document: EP

Kind code of ref document: A1