WO2022158076A1 - Component mounting device and component mounting method - Google Patents

Component mounting device and component mounting method Download PDF

Info

Publication number
WO2022158076A1
WO2022158076A1 PCT/JP2021/039694 JP2021039694W WO2022158076A1 WO 2022158076 A1 WO2022158076 A1 WO 2022158076A1 JP 2021039694 W JP2021039694 W JP 2021039694W WO 2022158076 A1 WO2022158076 A1 WO 2022158076A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
component
nozzles
nozzle
height
Prior art date
Application number
PCT/JP2021/039694
Other languages
French (fr)
Japanese (ja)
Inventor
昭博 秋山
忠士 遠藤
憲一郎 石本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022576985A priority Critical patent/JPWO2022158076A1/ja
Publication of WO2022158076A1 publication Critical patent/WO2022158076A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to a component mounting device and a component mounting method.
  • a component mounting device that mounts components such as electronic components on a board (for example, Patent Document 1).
  • an object of the present invention is to solve the above-mentioned problems and to provide a component mounting apparatus and a component mounting method capable of realizing component mounting with higher quality.
  • a component mounting apparatus of the present invention is a component mounting apparatus for picking up components from a component supply unit and mounting them on a board, comprising: a relay stage on which a plurality of components can be placed; A first component transfer unit that picks up a component from a unit and transfers it to the relay stage, a relay stage camera that captures a plurality of components on the relay stage to obtain a first image, and a mounting nozzle that holds the component.
  • a pickup operation for picking up a component in alignment with an upper component is sequentially performed for each of the mounting nozzles, a carrying operation is performed for moving the mounting nozzle that has picked up the component above the substrate, and the mounting nozzle holds the component.
  • a mounting operation for mounting the component on the mounting point of the substrate is sequentially performed for each of the mounting nozzles.
  • a component mounting method of the present invention is a component mounting method for picking up a component from a component supply unit and mounting it on a substrate, wherein the control unit controls the first component transfer unit to remove the component from the component supply unit. is taken out and transferred to the relay stage, the control unit controls the relay stage camera to image a plurality of components on the relay stage to acquire a first image, and the control unit controls the first a first component recognition for recognizing a plurality of components on the intermediate stage using the image of the intermediate stage, and the control unit controls a second component transfer unit having a plurality of mounting nozzles to perform the first component recognition.
  • a pickup operation for aligning the mounting nozzles with the components on the relay stage and picking up the components using the result of component recognition is sequentially performed for each mounting nozzle, and the mounting nozzles that have picked up the components are moved above the board. , and a mounting operation for mounting the components held by the mounting nozzles on the mounting points of the board is sequentially executed for each of the mounting nozzles.
  • FIG. 2 Schematic plan view of the component mounting apparatus of Embodiment 1
  • FIG. 2 is a bottom perspective view of the take-out head of Embodiment 1
  • 2 is a bottom perspective view of the mounting head of Embodiment 1.
  • Schematic cross-sectional view showing the tip of the extraction nozzle of Embodiment 1 4 is a schematic perspective view showing the tip of the mounting nozzle of Embodiment 1.
  • FIG. 4 is a schematic perspective view showing the tip of the mounting nozzle of Embodiment 1.
  • FIG. 4 is a vertical cross-sectional view showing the internal structure of the main body of the mounting head of the first embodiment;
  • FIG. 4 is a cross-sectional view showing the internal structure of the main body of the mounting head of the first embodiment;
  • FIG. 4 is a vertical cross-sectional view showing the internal structure of the main body of the take-out head of the first embodiment;
  • Schematic perspective view of relay stage of embodiment 1 Schematic vertical cross-sectional view of a relay stage of Embodiment 1
  • Schematic plan view of relay stage of embodiment 1 Schematic diagram showing the peripheral configuration of the brush drive mechanism of the first embodiment
  • FIG. 4 is a schematic vertical cross-sectional view of the substrate transfer unit before the substrate is lifted according to the first embodiment;
  • FIG. 4 is a schematic vertical cross-sectional view of the substrate transfer unit after the substrate is lifted according to the first embodiment;
  • FIG. 2 is a block diagram of a control system of the component mounting apparatus of Embodiment 1;
  • 3 is a block diagram showing the internal configuration of the head unit control section of the first embodiment;
  • 4 is a flowchart showing first reference height setting processing according to the first embodiment; The figure which shows the state where the lower end surface of the mounting nozzle touched the mounting surface. The figure which shows the state where the mounting nozzle rises from the mounting surface.
  • 10 is a flowchart showing second reference height setting processing according to the first embodiment; Schematic diagram for explaining the flow of processing according to the flowchart of FIG.
  • FIG. 4 Schematic diagram for explaining the flow of processing according to the flowchart of FIG.
  • FIG. 4 is a diagram for explaining a method of calculating a target position by a target position calculation unit according to the first embodiment
  • 4 is a diagram showing the flow of a series of component mounting operations by the component mounting apparatus of Embodiment 1
  • FIG. Flowchart relating to component pick-up processing of the first embodiment Schematic diagram for explaining the flow of processing according to the flowchart of FIG. Schematic diagram for explaining the flow of processing according to the flowchart of FIG.
  • Schematic diagram for explaining the flow of processing according to the flowchart of FIG. Graph showing how the output value of the height detection unit changes when the mounted nozzle is lowered according to the command from the operation command unit.
  • FIG. 4 is a schematic plan view showing a state in which nine designated mounting points are designated from among a plurality of mounting points on the board of the first embodiment; 4 is a schematic plan view showing an example in which the substrate of Embodiment 1 has a plurality of divided substrates; FIG. FIG. 3 is a cross-sectional view showing a state in which the component mounting apparatus of the first embodiment performs narrow adjacent mounting; FIG.
  • FIG. 3 is a cross-sectional view showing a state in which the component mounting apparatus of the first embodiment performs narrow adjacent mounting;
  • Flowchart relating to component mounting processing of the second embodiment Flowchart relating to mounting point height estimation processing of the second embodiment
  • Schematic plan view of a component mounting device according to a modified example Schematic plan view of a component mounting apparatus according to another modified example
  • Schematic plan view of a component mounting apparatus according to still another modification A lower perspective view showing a mounting head according to yet another modified example.
  • a component mounting apparatus that picks up components from a component supply unit and mounts them on a board, comprising: a relay stage on which a plurality of components can be placed; a first component transfer unit for transferring to the relay stage; a relay stage camera for capturing a first image by imaging a plurality of components on the relay stage; and a plurality of mounting nozzles for holding the components, a second component transfer unit that picks up a component on the relay stage with the mounting nozzle and mounts it on the substrate; executing first component recognition for recognizing a plurality of components, controlling the second component transfer unit, and using the result of the first component recognition to align the mounting nozzle with the components on the relay stage; a pick-up operation for picking up the components by the mounting nozzles, a carrying operation for moving the mounting nozzles that have picked up the components above the board, and moving the components held by the mounting nozzles to mounting points on the board
  • a component mounting apparatus for sequentially executing
  • the relay stage has a temporary placement section on which a component is placed, the temporary placement section allows the component to be seen through from below, and the relay stage camera is the temporary placement section.
  • the component mounting apparatus according to the first aspect is provided below the part.
  • the component mounting apparatus according to the first aspect or the second aspect, wherein a plurality of relay stage cameras are provided, and the first image is acquired by the plurality of relay stage cameras. do.
  • control unit further controls the relay stage camera to image the component held by the mounting nozzle to obtain a second image.
  • a component mounting apparatus according to any one of the third aspects is provided.
  • control unit further uses the second image to perform second component recognition for recognizing the component held by the mounting nozzle, and performs the second component recognition.
  • a component mounting apparatus according to a fourth aspect, wherein the result of (1) is used to calculate a target position for mounting a component on the mounting point in the mounting operation.
  • the controller moves the plurality of mounting nozzles holding the respective components above the substrate to collectively convey the plurality of components from the first aspect.
  • a component mounting apparatus according to any one of the fifth aspects is provided.
  • the first component transfer section includes a plurality of take-out nozzles, and the control section controls the first component transfer section to supply the components with the take-out nozzles.
  • a retrieving operation for retrieving a component from a unit is sequentially performed for each of the retrieving nozzles, and a carrying operation is performed for transporting a plurality of the retrieving nozzles upward to the intermediate stage while a plurality of the components are held by the plurality of the retrieving nozzles. and sequentially executing the placement operation of placing the component held by the take-out nozzle on the relay stage for each of the take-out nozzles. do.
  • the component mounting apparatus according to the seventh aspect, wherein the number of the take-out nozzles in the first component transfer section is greater than the number of the mounting nozzles in the second component transfer section. offer.
  • the arrangement pitch of the take-out nozzles in the first component transfer section is the same as or 1/n (n is 1 or more) than the arrangement pitch of the mounting nozzles in the second component transfer section. (integer).
  • the eighth aspect or the ninth aspect wherein the number of the take-out nozzles in the first component transfer section is at least twice the number of the mounting nozzles in the second component transfer section.
  • a component mounting method for picking up a component from a component supply unit and mounting it on a substrate, wherein a control unit controls a first component transfer unit to remove the component from the component supply unit. is taken out and transferred to the relay stage, the control unit controls the relay stage camera to image a plurality of components on the relay stage to acquire a first image, and the control unit controls the first a first component recognition for recognizing a plurality of components on the intermediate stage using the image of the intermediate stage, and the control unit controls a second component transfer unit having a plurality of mounting nozzles to perform the first component recognition.
  • a pickup operation for aligning the mounting nozzles with the components on the relay stage and picking up the components using the result of component recognition is sequentially performed for each mounting nozzle, and the mounting nozzles that have picked up the components are moved above the board.
  • the relay stage is provided with a temporary placement section on which the component is placed, the temporary placement section allows the component to be seen through from below, and the relay stage camera There is provided the component mounting method according to the eleventh mode, wherein the component is imaged from below the temporary placement section.
  • the component mounting method according to the eleventh aspect or the twelfth aspect wherein a plurality of the relay stage cameras are provided and the first image is acquired by the plurality of the relay stage cameras. do.
  • the eleventh aspect is further characterized in that the control unit controls the relay stage camera to capture an image of the component held by the mounting nozzle to obtain a second image.
  • a component mounting method according to any one of the thirteenth aspects from the above is provided.
  • control unit further executes second component recognition using the second image to recognize a component held by the mounting nozzle, and the control unit and calculating a target position for mounting the component on the mounting point in the mounting operation by using the result of the second component recognition.
  • the plurality of mounting nozzles each holding the component is moved above the substrate to collectively carry the plurality of components. or provides the component mounting method according to one of the above.
  • the first component transfer section is provided with a plurality of take-out nozzles, and the control section controls the first component transfer section to A retrieving operation of retrieving components from the component supply unit by the retrieving nozzles is sequentially performed for each of the retrieving nozzles, and the plurality of retrieving nozzles are moved upwardly of the intermediate stage while a plurality of components are held by the plurality of retrieving nozzles.
  • a carrying operation of carrying is executed, and a placing operation of placing the component held by the extraction nozzle on the intermediate stage is sequentially carried out for each of the extraction nozzles.
  • the component mounting method according to the seventeenth aspect wherein the number of the take-out nozzles in the first component transfer section is greater than the number of the mounting nozzles in the second component transfer section. offer.
  • the arrangement pitch of the take-out nozzles in the first component transfer section is the same as or 1/n (n is 1 or greater) than the arrangement pitch of the mounting nozzles in the second component transfer section. integer).
  • the eighteenth aspect or the nineteenth aspect wherein the number of the take-out nozzles in the first component transfer section is at least twice the number of the mounting nozzles in the second component transfer section. to provide a component mounting method according to .
  • FIG. 1 is a schematic plan view of a component mounting apparatus 1 of Embodiment 1.
  • FIG. 1 is a schematic plan view of a component mounting apparatus 1 of Embodiment 1.
  • the component mounting device 1 of Embodiment 1 is a device for mounting/mounting components such as electronic components on the substrate 2 positioned in the work area A.
  • the component mounting apparatus 1 shown in FIG. 1 includes a board transfer unit 4, a first component supply unit 6, a second component supply unit 8, a third component supply unit 10, a pick-up head 12, a mounting head 14, Head camera 16, XY table 17 (X-axis beams 18, 20 and Y-axis tables 22, 24), relay stage 26, relay stage camera 28, first parts disposal box 30, parts camera 32, A two-component disposal box 34 and a control unit 35 are provided.
  • the substrate transport unit 4 is a unit for holding and transporting the substrate 2 and positioning it in the work area A.
  • the substrate transport unit 4 has a transport conveyor 5 that transports the substrate 2 in the X direction, and FIG. 1 mainly shows the transport conveyor 5 .
  • the work area A is an area for performing the component mounting work on the board 2 and is set on the transport conveyor 5 .
  • the component supply units 6, 8, and 10 are units for supplying components such as electronic components.
  • the component supply units 6, 8, and 10 of Embodiment 1 are each composed of a tape feeder, and have a function of conveying a carrier tape containing components to a predetermined component pick-up position.
  • the first component supply unit 6 is arranged on one side (FRONT) of the work area A, and the second component supply unit 8 and the third component supply unit 10 are arranged on the other side (REAR). are placed in
  • the component supply units 6, 8, and 10 of Embodiment 1 supply components of different sizes. Specifically, the first component supply unit 6 supplies minute components, the second component supply unit 8 supplies small components, and the third component supply unit 10 supplies medium-sized components.
  • the size of a minute part is, for example, 0.4 mm ⁇ 0.2 mm or less in horizontal and vertical dimensions in plan view, and the size of a small part is, for example, 0.6 mm ⁇ 0.3 mm to 1.0 mm ⁇ 0.5 mm.
  • a medium-sized part is, for example, a part whose length and width dimensions are 1.6 mm ⁇ 0.8 mm or more and which is accommodated in a carrier tape with a width of 8 mm to 32 mm and supplied from a tape feeder.
  • the take-out head 12 is a component transfer section (first component transfer section) for picking up micro-components supplied by the first component supply unit 6 and transferring them to the relay stage 26 .
  • the take-out head 12 is provided corresponding to the first component supply unit 6 and not corresponding to the second component supply unit 8 and the third component supply unit 10 . That is, the take-out head 12 is controlled so as not to take out the components supplied by the second component supply unit 8 and the third component supply unit 10 .
  • the mounting head 14 is a component transfer section (second component transfer section) for picking up a component and transferring/mounting it onto the substrate 2 .
  • the mounting head 14 is provided corresponding to each of the component supply units 6, 8, and 10, and has a function of picking up a minute component placed on the relay stage 26 and mounting it on the board 2, and a component supply unit. It also has a function of directly picking up small-sized or medium-sized parts from 8 and 10 and mounting them on the board 2 .
  • the head camera 16 is a camera provided on the mounting head 14 .
  • the head camera 16 is attached to the mounting head 14 with its imaging direction directed downward, and moves together with the movement of the mounting head 14 .
  • the head camera 16 is controlled so as to capture an image of the board 2 placed in the work area A and the like.
  • the XY table 17 is a member that supports each of the pick-up head 12 and the mounting head 14 so as to be movable in the XY directions.
  • the XY table 17 comprises a first X-axis beam 18, a second X-axis beam 20, and Y-axis beams 22,24.
  • the first X-axis beam 18 is provided between the Y-axis beams 22 and 24, extending along the X direction, and supports the take-out head 12 so as to be movable in the X direction.
  • the second X-axis beam 20 is provided between the Y-axis beams 22 and 24 to extend along the X direction and supports the mounting head 14 so as to be movable in the X direction.
  • Y-axis beams 22 and 24 respectively support first X-axis beam 18 and second X-axis beam 20 for movement in the Y direction.
  • the relay stage 26 is a stage for temporarily placing minute components supplied from the first component supply unit 6 .
  • a relay stage camera 28 is provided on the relay stage 26 .
  • the relay stage camera 28 is a camera for capturing images of minute parts placed on the relay stage 26 . Based on the image captured by the relay stage camera 28, the position and orientation of the minute component can be recognized, and the nozzle and the component can be aligned when the mounting head 14 picks up the component. By aligning the parts, even if the parts are minute parts, they can be picked up and held with high accuracy, and the mounting accuracy on the substrate 2 is improved. Furthermore, it is also suitable for "narrow adjacent mounting" in which components are mounted on the substrate 2 at narrow intervals (see FIGS. 34A and 34B).
  • the first parts disposal box 30 is a box for parts disposal provided adjacent to the relay stage 26 . A part of the minute components placed on the relay stage 26 is selectively discarded in the first component discard box 30 .
  • the parts camera 32 is a camera for imaging the parts held by the mounting head 14 .
  • the component camera 32 is fixed with its imaging direction directed upward.
  • the second parts disposal box 34 is a box for parts disposal similar to the first parts disposal box 30 . Some of the small-sized components or medium-sized components held by the mounting head 14 are selectively discarded in the second component discard box 34 .
  • FIG. 2 is a bottom perspective view of pick head 12 and FIG. 3 is a bottom perspective view of load head 14.
  • FIG. 2 is a bottom perspective view of pick head 12 and FIG. 3 is a bottom perspective view of load head 14.
  • the extraction head 12 includes a plurality of extraction nozzles 36 and a body portion 38. As shown in FIG. 2, the extraction head 12 includes a plurality of extraction nozzles 36 and a body portion 38. As shown in FIG. 2, the extraction head 12 includes a plurality of extraction nozzles 36 and a body portion 38. As shown in FIG.
  • the take-out nozzle 36 is a holding nozzle for transferring the minute parts mentioned above.
  • the extraction nozzles 36 are regularly spaced in the X and Y directions.
  • the pitch of the extraction nozzles 36 is set at equal intervals, with a pitch X1 in the X direction and a pitch Y1 in the Y direction.
  • a total of 16 extraction nozzles 36 are provided, four in the X direction and four in the Y direction.
  • the body part 38 is a member that supports the plurality of extraction nozzles 36 .
  • the body portion 38 supports the plurality of extraction nozzles 36 and internally includes a drive mechanism for driving the plurality of extraction nozzles 36 .
  • the drive mechanism performs lifting operation of the extraction nozzle 36 and suction operation of the component by the extraction nozzle 36 . Details will be described later.
  • the mounting head 14 includes a head camera 16, a plurality of mounting nozzles 40, a plurality of shafts 42, and a body portion 44.
  • the mounting nozzle 40 is a holding nozzle for transferring the above-mentioned minute parts, small parts or medium-sized parts.
  • the mounted nozzles 40 are regularly spaced in the X and Y directions.
  • the pitch of the mounted nozzles 40 is set at equal intervals with a pitch X2 in the X direction and a pitch Y2 in the Y direction.
  • a total of eight mounting nozzles 40 are provided, four in the X direction and two in the Y direction. That is, the number of extraction nozzles 36 is doubled with respect to the number of mounting nozzles 40 .
  • the pitch X1 of the extraction nozzles 36 in the X direction and the pitch X2 of the mounting nozzles 40 in the X direction are set to be the same, and the pitch Y1 of the extraction nozzles 36 in the Y direction is the same as the pitch in the Y direction of the mounting nozzles 40. It is set to 1/2 of Y2.
  • the relationship between the pitches Y1 and Y2 in the Y direction is not limited to being set to 1/2, but may be set to 1/n (n is an integer equal to or greater than 1).
  • the shaft 42 is a member for attaching the mounting nozzle 40 in a replaceable manner.
  • One mounting nozzle 40 is attached to one shaft 42 as shown in FIG.
  • the body part 44 is a member that supports the head camera 16 and the plurality of shafts 42 .
  • a driving mechanism for driving the plurality of shafts 42 is provided inside the body portion 44 .
  • the drive mechanism performs an integral lifting operation of the shaft 42 and the mounting nozzle 40 attached to the shaft 42 and an operation of picking up a component by the mounting nozzle 40 . Details will be described later.
  • FIG. 4 and 5 are schematic diagrams showing the tip of the extraction nozzle 36.
  • FIG. 4 and 5 are schematic diagrams showing the tip of the extraction nozzle 36.
  • FIG. 4 shows an enlarged cross-sectional view of the tip of the extraction nozzle 36, and (b) shows a bottom view of the tip of the extraction nozzle 36. As shown in FIG.
  • a porous member 46 having air permeability is arranged at the tip of the ejection nozzle 36 .
  • the porous member 46 is fitted into a recess provided at the tip of the take-out nozzle 36 and arranged to face the suction hole 48 inside.
  • the suction hole 48 is connected to a suction source (not shown) to generate negative pressure for sucking the component.
  • the porous member 46 attracts components to its bottom surface 46A by the negative pressure generated by the suction holes 48 .
  • a bottom surface 46 ⁇ /b>A of the porous member 46 corresponds to the lower end surface of the ejection nozzle 36 .
  • the material of the porous member 46 may be any material as long as it transmits the negative pressure generated by the suction holes 48 to the bottom surface 46A.
  • FIG. 5 shows the state immediately before picking up the component P by the take-out nozzle 36, and (b) shows the state immediately after picking up the component P.
  • the pocket 52 of the carrier tape 50 of the first component supply unit 6 contains a component P as a minute component.
  • the tip of the take-out nozzle 36 is brought close to the part P to suck the part P.
  • the part P is taken out from the pocket 52 of the carrier tape 50 by raising the take-out nozzle 36 as shown in FIG. 5(b).
  • FIG. 6 and 7 are bottom perspective views showing the tip of the mounting nozzle 40.
  • FIG. 6 and 7 are bottom perspective views showing the tip of the mounting nozzle 40.
  • the mounting nozzle 40 has a suction hole 54 formed in its lower end surface.
  • the suction hole 54 is connected to a suction source (not shown) to generate a negative pressure for sucking the component P.
  • the shape of the suction hole 54 is not limited to the shape shown in FIG. 6, and may be any shape.
  • the lower end surface of the mounting nozzle 40 is brought close to the component P (micro component, small component, or medium-sized component) to pick up the component P.
  • the component P micro component, small component, or medium-sized component
  • FIG. 8A, 8B, and 9 the drive mechanism of the mounting nozzle 40 and the extraction nozzle 36 will be described using FIGS. 8A, 8B, and 9.
  • 8A and 8B are a vertical cross-sectional view and a cross-sectional view showing the internal structure of the body portion 44 of the mounting head 14, respectively.
  • the drive mechanism for the mounting nozzle 40 includes a plurality of servomotors 56, a plurality of pulleys 57, a toothed belt 58, a .theta.-axis motor 59, and a pulley 60.
  • the servomotor 56 is a motor that vertically moves the shaft 42 and the mounting nozzle 40 in the Z direction.
  • One servomotor 56 is provided for the combination of the shaft 42 and the mounted nozzle 40, and a total of eight servomotors 56 are provided in the example shown in FIGS. 8A and 8B.
  • Each servo motor 56 has a linear motor 61 and an encoder 62 .
  • the linear motor 61 is a motor unit that raises and lowers the shaft 42 inserted in the vertical direction.
  • the encoder 62 is a member that outputs encoder pulses (position signals) indicating the moving distance and direction of the shaft 42 as the shaft 42 moves.
  • the encoder pulse output by the encoder 62 is used as height information of the mounted nozzle 40 .
  • the pulley 57 is a pulley arranged to surround the shaft 42 .
  • the pulley 57 and the shaft 42 are connected so that the vertical movement of the shaft 42 is not transmitted to the pulley 57 while meshing so that the rotational force in the rotation direction R ⁇ b>1 is transmitted.
  • a total of eight pulleys 57 are provided like the servo motors 56 , and all of the plurality of pulleys 57 are meshed with the toothed belt 58 .
  • the toothed belt 58 is a belt for synchronously rotating a plurality of pulleys 57 .
  • the toothed belt 58 is connected to the ⁇ -axis motor 59 via pulleys 60 .
  • the ⁇ -axis motor 59 is a motor for rotating the toothed belt 58 .
  • the ⁇ -axis motor 59 has an output shaft 59A, and the output shaft 59A is engaged with the pulley 60. As shown in FIG. The rotational force of the ⁇ -axis motor 59 is transmitted to the pulley 60 and the toothed belt 58 via the output shaft 59A.
  • the plurality of mounting nozzles 40 can be integrally rotated in the rotation direction R1 by being driven by the ⁇ -axis motor 59, and can be mounted by being driven by the respective servo motors 56.
  • the nozzles 40 can be individually driven up and down in the vertical direction D1.
  • FIG. 9 is a plan view showing the internal structure of the body portion 38 of the take-out head 12. As shown in FIG.
  • the drive mechanism for the extraction nozzle 36 includes a plurality of servomotors 63, a plurality of pulleys 64, a toothed belt 65, a .theta.-axis motor 66 having an output shaft 66A, and a pulley 67.
  • Each servo motor 63 has a linear motor 68 and an encoder 69 .
  • the functions and connection relationships of these configurations are the same as the driving mechanism of the mounted nozzle 40 described with reference to FIGS. 8A and 8B, so description thereof will be omitted.
  • the extraction nozzles 36 can be driven up and down individually in the vertical direction D2.
  • FIG. 10 the configuration of the relay stage 26 will be explained using FIGS. 10 to 16.
  • FIG. 10 the configuration of the relay stage 26 will be explained using FIGS. 10 to 16.
  • FIG. 10 is a schematic perspective view of the relay stage 26
  • FIG. 11 is a schematic longitudinal sectional view of the relay stage 26
  • FIG. 12 is a schematic plan view of the relay stage 26.
  • the relay stage 26 includes a relay stage camera 28, a first component disposal box 30, a temporary placement section 70, a housing 74, a component removing brush 76, and a brush driving mechanism 78. and
  • the temporary placement section 70 is a member for temporarily placing a component P as a minute component.
  • the upper surface of the temporary placement portion 70 is a placement surface 71 for placing the component P thereon.
  • the placement surface 71 has a size that allows a plurality of components P to be placed thereon. It has an area in which the part P can be arranged. 10 and 11 illustrate a state in which a total of 16 parts P are placed on the placement surface 71.
  • the height position of the mounting surface 71 is set at a reference height (first reference height H1) with respect to the relay stage 26.
  • the temporary placement portion 70 is used as a reference member (first reference member) for setting the first reference height H1.
  • the temporary placement portion 70 of Embodiment 1 is composed of a transparent plate-like member.
  • the temporary placement section 70 can be seen through in the thickness direction by the relay stage camera 28 provided below the temporary placement section 70 .
  • the relay stage camera 28 images a plurality of parts P placed on the temporary placement section 70 .
  • the relay stage camera 28 is arranged in a space surrounded by a housing 74 below the temporary placement section 70 with its imaging direction facing upward. In Embodiment 1, two relay stage cameras 28 are provided.
  • the relay stage camera 28 has a predetermined imaging range B.
  • the imaging range B is set to a range in which a plurality of (16 in total) components P placed on the placement surface 71 can be imaged.
  • the housing 74 is a housing portion of the relay stage 26 and supports members such as the temporary placement section 70 and the relay stage camera 28 .
  • a plurality of lights 80 and a plurality of diffusion plates 82 are provided inside the housing 74 .
  • the lighting 80 is a member that irradiates light toward the imaging range B of the relay stage camera 28
  • the diffusion plate 82 is a member that diffuses the light irradiated by the lighting 80 .
  • the component removing brush 76 is a brush for removing the component P remaining on the mounting surface 71 . As shown in FIG. 10 and the like, the component removing brush 76 is composed of a large number of brushes protruding downward. The component removing brush 76 is configured to be linearly movable in the X direction, and pushes out the component P left behind on the placement surface 71 toward the first component removing box 30 to discard the component P. The parts P discarded in the first part removal box 30 become discarded parts Pz (FIGS. 11 and 12).
  • the brush driving mechanism 78 is a mechanism for driving the component removing brush 76.
  • the brush driving mechanism 78 includes a motor 84 and a belt cover 86. As shown in FIG.
  • FIGS. 13 and 14 are schematic cross-sectional views showing the peripheral configuration of the brush driving mechanism 78.
  • FIG. 13 and 14 are schematic cross-sectional views showing the peripheral configuration of the brush driving mechanism 78.
  • the brush driving mechanism 78 includes a belt 88, a connecting portion 90, a slider 92, and a guide 94 in addition to the motor 84 and the belt cover 86.
  • the motor 84 rotates the belt 88 .
  • Motor 84 and belt 88 are housed inside belt cover 86 .
  • a connecting portion 90 is attached to the belt 88 , and the belt 88 is connected to the slider 92 by the connecting portion 90 .
  • the slider 92 is a member that linearly moves in the X direction along the guide 94, and is integrally attached with the component removing brush 76 described above.
  • the guide 94 is mounted horizontally on the side surface of the housing 74 and extends along the X direction.
  • the motor 84 is driven to rotate the belt 88 to move the component removal brush 76 in the X direction, thereby removing the component P placed on the placement surface 71 from the first component. It can be pushed out to the disposal box 30 and removed from the temporary placement section 70 .
  • FIG. 15 is a schematic longitudinal sectional view of the substrate transport unit 4 before the substrate 2 is lifted
  • FIG. 16 is a schematic longitudinal sectional view of the substrate transport unit 4 after the substrate 2 is lifted. .
  • the substrate transport unit 4 includes a pair of transport conveyors 5 and backup pins 98. Further, each transport conveyor 5 has a board pressing member 95 , a board guide 96 and a transport belt 97 .
  • the substrate pressing members 95 are plate-shaped members for pressing the substrate 2 from above, and are provided as a pair above the transport belt 97 .
  • the substrate guide 96 is a member that supports the conveying belt 97, the substrate pressing member 95, and the like.
  • the backup pin 98 is a rod-shaped member that can move up and down below the work area A, and a plurality of backup pins 98 are provided so as to be able to contact the lower surface of the substrate 2 .
  • the substrate 2 supported by the conveyor belt 97 is lifted by the backup pins 98 as shown in FIG.
  • the lifted substrate 2 contacts the lower surface 95B of the substrate holding member 95 and is held down by the substrate holding member 95 from above. Thereby, the substrate 2 is positioned in the work area A.
  • the backup pins 98 and the transport conveyor 5 constitute a substrate holding portion 99 that holds the substrate 2 .
  • At least one first measurement point 95M (see FIG. 1) for setting a reference height (second reference height H2) for the work area A is set on the upper surface 95A of each substrate holding member 95.
  • first measurement points 95M are provided on one substrate pressing member 95, for a total of four points.
  • the substrate pressing member 95 is used as a reference member (second reference member) for setting the second reference height H2.
  • the reference height (second reference height H2) for the work area A is set to match the height position of the lower surface 95B (FIG. 15) of the substrate holding member 95.
  • the reference height (second reference height H2) can be set from the height position of the first measurement point 95M and the known dimension (thickness) of the substrate holding member 95.
  • control unit 35 is a member that controls the component mounting apparatus 1 as a whole.
  • the control unit 35 includes, for example, a microcomputer. A detailed configuration of the control unit 35 will be described with reference to FIG. 17 .
  • FIG. 17 is a block diagram of the control system of the component mounting apparatus 1.
  • the controller 35 has a head unit controller 100 and a main body controller 102 .
  • the head unit control section 100 has a function of controlling the up-and-down operation and suction operation of the extraction nozzle 36 of the extraction head 12 and the up-and-down operation and suction operation of the mounting nozzle 40 of the mounting head 14 .
  • the body control section 102 has a function of controlling the transportation of the board 2 in the component mounting apparatus 1 and the imaging operation of the camera, and transmitting a control command to the head unit control section 100 .
  • the head unit control section 100 and the main body control section 102 are electrically connected via a wiring connector (not shown) or the like.
  • the head unit control section 100 has an extraction head control section 104 for controlling the extraction head 12 and a mounting head control section 106 for controlling the mounting head 14 .
  • the internal configuration of the head unit control section 100 including the picking head control section 104 and the mounting head control section 106 is shown in FIG.
  • the mounting head control unit 106 has the servo motors 56 (#1 to #1) of the mounting nozzles 40 for each of the plurality of mounting nozzles 40 (here, eight nozzles) arranged on the mounting head 14 . 8) is provided with a motor control unit 112 (#1 to #8).
  • the mounting head control unit 106 is further provided with a ⁇ -axis motor control unit 114 that controls the ⁇ -axis motor 59 arranged on the mounting head 14 .
  • Each of the motor control units 112 includes a motor driver 116, a contact detection unit 118, a height detection unit 120 (installed nozzle height detection unit), a lowest point storage unit 122, and an operation command unit 124.
  • the motor driver 116 supplies power to the servomotor 56 to drive it according to the motion command from the motion command unit 124 . Specifically, the motor driver 116 detects the deviation between the target values such as position and speed based on the position command and speed command from the motion command unit 124 and the current values such as position and speed detected by the pulse signal sent from the encoder 62. The servo motor 56 is driven by servo control that feeds back the .
  • the contact detection unit 118 detects that the mounting nozzle 40 has come into contact with an object such as the relay stage 26 or a component, or that the component P held by the mounting nozzle 40 has landed (contacted) a mounting point on the board 26 .
  • the detection is performed based on the torque (current) output by the motor driver 116 or encoder pulses from the encoder 62 .
  • the torque (current) supplied from the motor driver 116 to the servomotor 56 increases when the mounted nozzle 40 comes into contact with an object and cannot move down and the deviation from the target value increases.
  • contact is detected by detecting an increase in this torque (current).
  • the contact is detected based on the encoder pulse, the contact is detected when the period of the encoder pulse becomes longer, when the encoder pulse is not detected, or when the encoder pulse indicating the change from descent to rise is received.
  • the height detection unit 120 counts encoder pulses from the encoder 62 of the servomotor 56 . This count value serves as height information indicating the position of the mounting nozzle 40 in the height direction. That is, the height detection section 120 has a height detection function of detecting the height of the mounted nozzle 40 based on the position signal from the servomotor 56 (extraction nozzle height detection section). Mounting point height measurement, which will be described later, is performed using the height detection function of the height detection unit 120 .
  • the lowest point storage unit 122 stores the minimum value of the values output by the height detection unit 120 during a predetermined period when the contact detection unit 118 detects the contact of the mounting nozzle 40, that is, the lowest point of the mounting nozzle 40 during the predetermined period. Temporarily stores the value indicating the height (lowest point). In this embodiment, as the position of the mounting nozzle 40 becomes lower, the value output by the height detection unit 120 also becomes smaller. However, if the value output by the height detection unit 120 increases as the position of the mounted nozzle 40 becomes lower, the “maximum value” may be stored in the lowest point storage unit 122 . The value stored in the lowest point storage unit 122 is used as height information of the mounted nozzle 40 .
  • the operation command unit 124 issues an operation command for raising and lowering the mounting nozzle 40 .
  • the motion command unit 124 transmits to the motor driver 116 signals as position commands and speed commands based on preset motion patterns.
  • the motor control unit 112 and the ⁇ -axis motor control unit 114 are realized, for example, by a processing circuit executing a computer program, by a processing circuit alone, or by a memory alone. The same applies to other control units.
  • the extraction head control unit 104 controls the servo motors 63 (#1 to #16) of the extraction nozzles 36 for each of the plurality of extraction nozzles 36 (here, 16 nozzles) arranged in the extraction head 12.
  • a motor control unit 108 is provided (#1 to #16).
  • the take-out head control unit 104 is further provided with a ⁇ -axis motor control unit 110 that controls the ⁇ -axis motor 66 arranged on the take-out head 12 .
  • Each of the motor control units 108 includes a motor driver 160 and an operation command unit 168.
  • the motor driver 160 and the motion commander 168 have the same functions as the motor driver 116 and the motion commander 124 described above, respectively, so description thereof will be omitted.
  • the main body control section 102 is connected to each component of the component mounting apparatus 1 .
  • the body control unit 102 includes, for example, the head camera 16, the XY table 17, the substrate transport unit 4, the component camera 32, the two relay stage cameras 28, the motor 84, the first component supply unit 6, the second component It is connected to the supply unit 8 and the third component supply unit 10 .
  • the body control unit 102 includes a mounting work executing unit 126, a component thickness measuring unit 128, a reference height setting unit 130, a mounting point height measuring unit 132, a mounting point height measuring unit 132, and a mounting point height measuring unit 132. It has a measurement unit 134 and a target position calculation unit 136 .
  • the mounting work executing unit 126 operates the XY table 17, the board transfer unit 4, the component supply units 6, 8, 10, the picking head 12, the mounting head 14, the head camera 16, the component camera 32, It controls the relay stage camera 28 and the like. Thus, a series of operations for mounting the component P on the substrate 2 are executed.
  • the mounting work execution unit 126 repeats the operation of moving the mounting head 14 from the component supply units 6, 8, 10 or the relay stage 26 to the work area A (hereinafter, this operation is referred to as a "turn") a plurality of times to mount the component P to the substrate 2 is executed. Further, the mounting work executing section 126 executes the work of picking up the minute components supplied from the component supply unit 6 by the picking head 12 and transferring them to the relay stage 26 before the turn is started or between turns. Let
  • the component thickness measurement unit 128 controls the mounting head 14 to pick up the component P placed on the relay stage 26 based on the height information of the mounting nozzle 40 output by the height detection unit 120. Measure the thickness of the part P. To measure the thickness of the component P, a first reference height H1 with respect to the reference plane of the relay stage 26 is used.
  • the reference height setting unit 130 controls the mounting head 14 to bring the lower end surface of the mounting nozzle 40 into contact with the mounting surface 71, which is the reference surface of the relay stage 26, and the height detection unit 120 outputs A first reference height H1 for the relay stage 26 is set based on the height information of the mounting nozzle 40 .
  • the reference height setting unit 130 further controls the mounting head 14 to cause the lower end surface of the mounting nozzle 40 to contact the upper surface 95A of the substrate holding member 95 in the work area A, and the height detection unit 120 outputs A second reference height H2 for the work area A is set based on the height information of the mounted nozzle 40 .
  • the mounting point height measuring unit 132 controls the mounting head 14 to mount the component P on the mounting point of the substrate 2 based on the height information of the mounting nozzle 40 output by the height detecting unit 120. Measure the height of a point. In order to measure the height of the mounting point, the second reference height H2 of the work area A and the thickness information of the component are used.
  • the mounting point height estimation unit 134 calculates the estimated heights of other mounting points whose heights have not been measured, based on the height data of the plurality of mounting points obtained by the mounting point height measurement unit 132 .
  • the mounting point other estimating unit 134 of the first embodiment uses "surface correction" for estimating the mounting point height.
  • the target position calculation unit 136 calculates a target position for moving the mounting nozzle 40 holding the component P when mounting the component P on the board 2 . A specific calculation method will be described later with reference to FIG. 20 and the like.
  • the body control unit 102 further stores a mounting program 138, a target position 140, component data 142, board data 144, reference height data 146, mounting point data 148, component thickness ( measurement value) 150 and mounting point height (measurement value) 152 .
  • the mounting program 138 is a program that defines the mounting order and mounting positions of the parts P.
  • An example of the loading program 138 is shown in FIG.
  • the mounting program 138 shown in FIG. 19 includes “mounting No.”, “turn No.”, “component type”, “mounting point”, “X”, “Y”, “ ⁇ ”, and “Z” as a plurality of types of information. It stores information about each of "take-out nozzle”, “mounted nozzle”, “relay”, and "specified mounting point”.
  • “Mounting No.” is identification information indicating the mounting order of the component P.
  • “Turn No.” is identification information indicating in what turn the part P is to be mounted on the board 2 .
  • “Component” is identification information indicating a component P to be mounted.
  • the “mounting point” is identification information indicating the mounting point where the component P to be mounted is to be mounted.
  • “X” and “Y” are numerical information indicating the X coordinate and Y coordinate of the mounting point where the target component P is mounted, respectively.
  • “ ⁇ ” is numerical information indicating the orientation of the component P to be mounted on the board 2 .
  • “Z” is numerical value information indicating the height of the mounting point of the board 2 held by the board holding portion 99 in an ideal state by the height difference from the second reference height H2.
  • the “extraction nozzle” is identification information indicating which extraction nozzle 36 holds the component P to be mounted.
  • “Mounting nozzle” is identification information indicating which mounting nozzle 40 holds the component P to be mounted.
  • “Relay” is identification information indicating whether or not the component P to be mounted passes through the relay stage 26 . In the example of FIG. 19, when the “relay” identification information is “1”, it indicates that the relay stage 26 is passed, and when it is “0”, it indicates that the relay stage 26 is not passed.
  • the 'designated mounting point' is identification information indicating which of the plurality of mounting points is designated as the 'designated mounting point' for estimating the height of another mounting point. In the example of FIG. 19, when the identification information of the "designated mounting point" is "1”, it indicates that the mounting point is designated as the designated mounting point. indicates that it is not specified in
  • the target position 140 is information indicating the target position to which the mounting nozzle 40 holding the component P is moved when mounting the component P on the substrate 2 .
  • Target position 140 is calculated by target position calculator 136 .
  • the part data 142 is data related to the part P.
  • the part data 142 includes, for example, information (for example, catalog data) on dimensions, shapes, types, etc. of the parts P.
  • information for example, catalog data
  • the board data 144 is data relating to the board 2 .
  • the board data 144 includes, for example, information such as a relative positional relationship between a reference mark for recognizing the position of the board 2 (see reference mark 174 in FIG. 32) and each mounting point.
  • the reference height data 146 is data including the first reference height H1 and the second reference height H2 set by the reference height setting unit 130.
  • the mounting point data 148 is data relating to the mounting points of the board 2 carried in.
  • the mounting point data 148 includes, for example, the X-coordinate, Y-coordinate, and Z-coordinate of the mounting point, and the orientation ⁇ of the component P to be mounted at the mounting point.
  • the mounting point data 148 is a mounting point height storage unit that stores the height of the mounting point.
  • the part thickness (measured value) 150 stores the thickness of the part P measured by the part thickness measuring unit 128.
  • the mounting point height (measurement value) 152 stores the height of the mounting point measured by the mounting point height measurement unit 132 .
  • the body control unit 102 further includes a first recognition unit 154, a second recognition unit 156, and a third recognition unit 158.
  • the first recognition unit 154 is a board recognition unit that recognizes the board 2 using the captured image of the head camera 16 .
  • the second recognition unit 156 is a component recognition unit that recognizes the component P placed on the relay stage 26 using the captured image of the relay stage camera 28 .
  • the third component recognition section 158 is a component recognition section that recognizes the component P held by the mounting head 14 using the captured image of the component camera 32 .
  • reference height setting processing reference height H1 and H2 setting processing
  • FIG. 20 is a flow chart showing the setting process of the first reference height H1. Each process of the flow shown in FIG. 20 is executed by the control unit 35 including the reference height setting unit 130.
  • FIG. 20 is a flow chart showing the setting process of the first reference height H1. Each process of the flow shown in FIG. 20 is executed by the control unit 35 including the reference height setting unit 130.
  • the control unit 35 moves the mounting nozzle 40 to the relay stage 26 (S1). Specifically, the XY table 7 that supports the mounting head 14 is controlled by the reference height setting unit 130 of the main body control unit 102, and the mounting head having the plurality of mounting nozzles 40 in a state in which the component P is not held is adjusted. 14 is moved above the relay stage 26 . Note that this flow is executed in a state where the component P is not placed on the placement surface 71 of the relay stage 26 .
  • the control unit 35 starts lowering the mounting nozzle 40 (S2). Specifically, the motor driver 116 controls the servo motor 56 corresponding to one mounting nozzle 40 among the plurality of mounting nozzles 40 in accordance with a command from the operation command section 124 of the mounting head control section 106, The mounting nozzle 40 is lowered toward the mounting surface 71 .
  • the control unit 35 waits for the contact detection unit 118 to detect that the mounting nozzle 40 has come into contact with the mounting surface 71 (S3).
  • FIG. 21 shows a state in which the lower end surface of the mounting nozzle 40 is in contact with the mounting surface 71.
  • FIG. 21 when it is detected that the lower end surface of the mounting nozzle 40 has come into contact with the placement surface 71 (YES in S3), the process proceeds to step S4.
  • the control unit 35 controls the servomotor 56 to stop the mounting nozzle 40 from descending (S4), and sets the first reference height H1 by the reference height setting unit 130 (S5).
  • the reference height setting unit 130 acquires the height information of the mounting nozzle 40 in contact with the mounting surface 71 from the height detection unit 120 or the lowest point storage unit 122 . Then, the reference height setting unit 130 stores the acquired height information in the storage unit 103 as the reference height H1, that is, the reference height data 146. FIG. This completes the setting of the reference height H1 for this mounting nozzle 40 .
  • the reference height setting unit 130 sets the average value of the acquired height information as the reference height H1. . Also, when the lower end surface of the same mounting nozzle 40 is brought into contact with a plurality of places on the mounting surface 71, the reference height setting unit 130 sets a surface function obtained from the obtained plurality of height information as the reference height H1. do.
  • the control unit 35 controls the servomotor 56 to raise the mounting nozzle 40 as shown in FIG. 22 (S6).
  • the mounted nozzle 40 that has risen is returned to the same height position as the other mounted nozzles 40 .
  • the control unit 35 determines whether or not all mounted nozzles 40 have been completed (S7). In step S7, the control unit 35 determines whether or not the processes of steps S1 to S6 have been executed for all of the plurality of mounting nozzles 40 (#1 to #8) provided in the mounting head . If there are mounted nozzles 40 that have not been subjected to the processing of steps S1 to S6, it is determined that all mounted nozzles 40 have not been completed (NO in S7), and the other mounted nozzles 40 are also subjected to step S1.
  • the processing of S6 is executed. That is, the processes of steps S1 to S6 are executed for each of the plurality of mounting nozzles 40, and the first reference height H1 is set for each mounting nozzle 40. FIG. Thereby, the first reference height H ⁇ b>1 can be set without being affected by individual differences among the plurality of mounting nozzles 40 .
  • each of the mounting nozzles 40 is replaceably attached to the shaft 42, and the first reference height H1 can be set for each combination of the mounting nozzle 40 and the shaft 42. This makes it possible to set the first reference height H1 with higher accuracy.
  • step S7 When the processing of steps S1 to S6 for all mounting nozzles 40 is completed, it is determined that all mounting nozzles 40 have been completed (YES in step S7), and the setting processing for the first reference height H1 ends.
  • FIG. 23 is a flowchart showing the setting process of the second reference height H2
  • FIGS. 24A and 24B are schematic diagrams for explaining the flow of the process according to the flowchart of FIG.
  • Each process according to the flowchart of FIG. 23 is executed by the control section 35 including the reference height setting section 130 .
  • the description of the content that overlaps with the first reference height setting process described above will be omitted as appropriate.
  • the control unit 35 moves the mounting nozzle 40 to the work area A (S8).
  • the XY table 7 that supports the mounting head 14 is controlled by the reference height setting unit 130 of the main body control unit 102, and the mounting head having the plurality of mounting nozzles 40 in a state in which the component P is not held is adjusted. 14 is moved above the substrate transfer unit 4 in the work area A. As shown in FIG. This flow is executed in a state where the substrate 2 is not arranged in the work area A.
  • the control unit 35 starts lowering the mounting nozzle 40 (S9).
  • the motor driver 116 controls the servo motor 56 corresponding to one mounting nozzle 40 among the plurality of mounting nozzles 40 in accordance with a command from the operation command section 124 of the mounting head control section 106, As shown in FIG. 24A , the mounting nozzle 40 is lowered toward the substrate holding member 95 of the substrate transfer unit 4 .
  • a pair of substrate pressing members 95 are provided, and the mounting nozzle 40 is lowered toward one substrate pressing member 95 (on the left side of the drawing).
  • the control unit 35 waits for the contact detection unit 118 to detect that the mounting nozzle 40 has come into contact with the upper surface 95A (first measurement point 95M) of the substrate pressing member 95 (S10).
  • the mounting nozzle 40 stops descending (S11), and the mounting height obtained by the height detection unit 120 is The height information of the nozzle 40 or the height information stored in the lowest point storage unit 122 is acquired and stored (S12). Thereby, the height of the upper surface 95A (first measurement point 95M) is measured.
  • the control unit 35 raises the mounting nozzle 40 (S13) and determines whether or not height measurement has been completed at all measurement points (S14). In the first embodiment, there are four first measurement points 95M, so if height measurements at all measurement points have not been completed (NO in S14), steps S8 to S14 are executed again.
  • the mounting nozzle 40 is directed toward the upper surface of the other substrate holding member 95 as shown in FIG. 24B. It is lowered (S8-S9), and the remaining first measurement points 95M are measured (S10-S13).
  • the second reference height H2 is set (S15).
  • the average value of the heights of the four first measurement points 95M is set as the second reference height H2.
  • FIG. 25 is a block diagram for explaining a target position calculation method by the target position calculator 136.
  • FIG. 26 is a diagram showing the flow of a series of component mounting operations by the component mounting apparatus 1. As shown in FIG.
  • the substrate 2 is first carried into the work area A. As shown in FIG. Specifically, the substrate 2 is transported by the transport conveyor 5 of the substrate transport unit 4 and positioned in the work area A. As shown in FIG.
  • the board 2 positioned in the work area A is recognized. Specifically, the mounting head 14 having the head camera 16 is moved in the XY directions, and the head camera 16 is arranged above the substrate 2 to image the substrate 2 .
  • the first recognition unit 154 recognizes the position of the board 2 based on the image captured by the head camera 16 .
  • the recognition result of the board 2 by the first recognition section 154 is transmitted to the target position calculation section 136 .
  • the target position calculation unit 136 reads information on all mounting points scheduled for the component mounting apparatus 1 from the mounting program 138 .
  • the information to be read is the information of X, Y, ⁇ , and Z in the installation program 138 shown in FIG.
  • the target position calculation unit 136 corrects the read X, Y, and ⁇ based on the board recognition result by the first recognition unit 154 to obtain the mounting point after correction.
  • Data 148 (X1, Y1, ⁇ 1) are calculated and stored in the storage section 103 . If there is an estimated value for the mounting point by the mounting point height estimating unit 134, the target position calculating unit 136 stores the value as Z1, but if there is no estimated value, stores the Z of the mounting program 138 as Z1. At the start of the first turn, there is no estimated value by the mounting point height estimator 134 for the mounting point, so Z in the mounting program 138 is set as Z1.
  • (X1, Y1, ⁇ 1) of the mounting point data 148 is a temporary target position of each mounting nozzle 40 in the component mounting process.
  • the pick-up head 12 is moved to the intermediate stage 26 while the plurality of pick-up nozzles 36 are holding the component P.
  • a plurality of (for example, 16) components P are collectively transported from the first component supply unit 6 to the relay stage 26 .
  • the component P held by the extraction nozzle 36 is placed on the temporary placement portion 70 of the relay stage 26 .
  • the plurality of take-out nozzles 36 are simultaneously lowered to release the suction of the component P near the placement surface 71 of the temporary placement portion 70 , and the component P is placed on the placement surface 71 .
  • a plurality of (for example, 16) parts P are arranged on the placement surface 71 as shown in FIG.
  • the take-out nozzle 36 collectively conveys 16 components P mounted on the substrate 2 in the first turn and the second turn, in other words, a plurality of components P for multiple turns to the relay stage 26 .
  • the take-out head 12 returns to the component supply unit 6.
  • component recognition is performed for the component P placed on the relay stage 26 .
  • the relay stage camera 28 shown in FIG. 10 and the like is used to image the component P placed on the temporary placement section 70 from below.
  • two relay stage cameras 28 are provided, and 16 parts P arranged on the temporary placement section 70 can be imaged simultaneously.
  • Each component P is recognized by the second recognition section 156 of the control section 35 based on the captured image (first image).
  • Recognition of the component P at this timing is “pre-pickup component recognition” (first component recognition) performed before the component P is picked up by the mounting head 14 .
  • pre-pickup component recognition is executed for all components P placed in the temporary placement section 70 .
  • the component P is picked up by the mounting head 14 .
  • the mounting head 14 moves from the work area A to the relay stage 26 during pre-pickup component recognition (FIG. 26). Further, when the pre-pickup component recognition is completed while the mounting head 14 is moving, the main body control unit 102 starts the component pick-up process.
  • Fig. 27 shows the flow of parts pick-up processing. Each process of the flowchart shown in FIG. 27 is executed by the mounting work execution unit 126 of the control unit 35 .
  • the mounting work execution unit 126 acquires the result of pre-pickup component recognition (S16). Specifically, mounting work execution unit 126 of main body control unit 102 reads data temporarily stored in second recognition unit 156 as a result of pre-pickup component recognition.
  • the result of pre-pickup component recognition includes position information of each component P placed on the relay stage 26 .
  • the mounting work execution unit 126 transmits the position information of one or more (maximum eight) components P scheduled to be mounted on the board 2 in the turn started to the second recognition unit 156. Get from
  • the mounting work execution unit 126 aligns the mounting nozzle 40 with the component P (S17). Specifically, the mounting work execution unit 126 aligns the mounting nozzle 40 assigned by the mounting program 138 to one component P among the plurality of components P recognized in the pre-pickup component recognition in the XY directions. do. In the first embodiment, as shown in FIG. 28A, alignment is performed so that the center of the lower end surface of the mounting nozzle 40 in the XY direction is aligned with the center of the component P in the XY direction.
  • the mounting work execution unit 126 starts lowering the mounting nozzle 40 in parallel with the alignment of the mounting nozzle 40 (S18). Specifically, the mounting work execution unit 126 transmits a command to the motor control unit 112 , and the motor control unit 112 controls the servo motor 56 to lower the mounting nozzle 40 . As a result, the part P can be moved obliquely downward as shown in FIG. 28A, and the work time can be shortened to improve productivity.
  • the mounting work execution unit 126 causes the mounting nozzle 40 to start suctioning after a predetermined timing from when the mounting nozzle 40 starts to descend (S19). Specifically, a valve (not shown) connected through a pipe to the suction hole 54 (see FIG. 6) of the mounting nozzle 40 is driven to connect the suction hole 54 and a negative pressure source, thereby generating a negative pressure in the suction hole 54. state. When the mounting nozzle 40 continues to descend in this state, it contacts the component P placed on the relay stage 26 (FIG. 28B).
  • the mounting work execution unit 126 determines whether or not the mounting nozzle 40 has come into contact (S20). A specific method will be described with reference to FIG. 28D.
  • FIG. 28D is a graph showing how the output value of the height detection unit 120 changes when the mounting nozzle 40 is lowered according to the command from the operation command unit 124.
  • FIG. 28D is a graph showing how the output value of the height detection unit 120 changes when the mounting nozzle 40 is lowered according to the command from the operation command unit 124.
  • the output value of the height detection section 120 fluctuates.
  • the contact detection unit 118 determines that the lower end surface of the mounting nozzle 40 has come into contact with the mounting surface 71. .
  • the mounting work execution unit 126 When the mounting work execution unit 126 detects that the lower end surface of the mounting nozzle 40 has come into contact with the component P (YES in S20), it stores the minimum height of the mounting nozzle 40 (S21). Specifically, the lowest point storage unit 122 stores the minimum output value of the height detection unit 120 during a predetermined period after the lower end surface of the mounting nozzle 40 contacts the component P.
  • FIG. 1 A block diagram illustrating an a height of the mounting nozzle 40 .
  • a "buffer period” is defined from the detection of the contact of the mounted nozzle 40 to the start of the upward movement of the mounted nozzle 40. ”. This makes it possible to acquire the minimum value during the period when the output value is stable without adopting the output value of the height detection unit 120 during the unstable period immediately after the contact is detected.
  • the mounting work execution unit 126 raises the mounting nozzle 40 (S22). Specifically, the mounting work execution unit 126 transmits a command to the motor control unit 112 , and the motor control unit 112 controls the servomotor 56 to raise the mounting nozzle 40 . In the first embodiment, as shown in FIG. 28C, the mounted nozzle 40 is moved obliquely upward.
  • the mounting work execution unit 126 commands post-pickup component recognition (S23). Specifically, the mounting work execution unit 126 transmits a command to the relay stage camera 28 , images the component P held by the mounting nozzle 40 , and outputs the image to the second recognition unit 156 . As shown in FIG. 28C , the intermediate stage camera 28 arranged below picks up an image of the part P that has moved obliquely upward and is lifted from the temporary placement section 70 . The part P is recognized by the second recognition section 156 of the control section 35 based on the captured image (second image). Recognition of the component P at this timing is “post-pickup component recognition (second component recognition)” performed after the component P is picked up by the mounting head 14 .
  • the second recognition unit 156 recognizes positional deviation between the component P held by the mounting nozzle 40 and the mounting nozzle 40 . Specifically, the deviation ( ⁇ X, ⁇ Y) between the center of the mounting nozzle 40 and the center of the component P and the angular difference ( ⁇ ) between the orientation of the mounting nozzle 40 and the orientation of the component P are determined using a well-known image recognition technique. Ask. These deviations and angular differences are output to the target position calculator 136 as the post-pickup component recognition result (arrow (B) in FIG. 25).
  • the component thickness measurement unit 128 acquires the minimum height of the mounting nozzle 40 (S24). Specifically, the component thickness measurement unit 128 of the main body control unit 102 reads and acquires the minimum height value of the mounting nozzle 40 stored in the lowest point storage unit 122 of the motor control unit 112 in step S21. do.
  • the part thickness measurement unit 128 calculates the thickness of the part P (S25). Specifically, the component thickness measurement unit 128 calculates the minimum value of the height of the mounting nozzle 40 acquired in step S24 and the first reference height H1 of the relay stage 26 stored in the reference height storage unit 146. and the thickness of the part P is calculated. The minimum value of the height of the mounting nozzle 40 corresponds to the height of the lower end surface of the mounting nozzle 40 when the mounting nozzle 40 contacts the component P as shown in FIG. The thickness of the part P can be calculated by obtaining the difference from the thickness H1. The calculated thickness of the component P is stored in the storage unit of the main body control unit 102 as the component thickness (measured value) 150 .
  • the mounting work execution unit 126 determines whether or not there is an incomplete mounting nozzle 40 that has not finished picking up the component P (S26).
  • steps S17 to S25 are performed among the plurality of mounted nozzles 40 for one turn. If there is a mounted nozzle 40 for which steps S17 to S25 have not been executed among the plurality of mounted nozzles 40 for one turn, it is determined that there is a mounted nozzle 40 for which steps S17 to S25 have not been completed (YES in S26), and steps S17 to S26 are performed. again. That is, the process of picking up the component P and the calculation of the thickness of the component P are executed for each of the plurality of mounting nozzles 40 (#1 to #8) provided in the mounting head 14.
  • steps S17 to S25 are executed for all of the plurality of mounted nozzles 40 for one turn, it is determined that there is no unfinished mounted nozzle 40 (NO in S26), and the processing of the flowchart shown in FIG. 27 ends.
  • the component mounting apparatus 1 of Embodiment 1 repeatedly executes the processing of the flowchart shown in FIG. 27 for each turn. As a result, according to the mounting order of the mounting program 138, the pick-up processing and thickness calculation of the component P by the mounting nozzle 40 are sequentially performed for each turn.
  • the mounting head 14 moves to the work area A with the multiple mounting nozzles 40 picking up the component P.
  • the target position calculator 136 obtains the target positions (X2, Y2, ⁇ 2, Z2) of the respective mounting nozzles 40 when the component P is mounted on the substrate 2 during this collective transportation.
  • a method of calculating the target position (X2, Y2, ⁇ 2, Z2) by the target position calculator 136 will be described with reference to FIG.
  • the first calculation unit 136A of the target position calculation unit 136 calculates the target position based on (A) the mounting point data 148 (X1, Y1, ⁇ 1) and (B) the post-pickup part recognition result. Calculate the position (X2, Y2, ⁇ 2). Specifically, the post-pickup component recognition results ( ⁇ X, ⁇ Y, ⁇ ) are used to correct the provisional target position indicated by the mounting point data 148 (X1, Y1, ⁇ 1) to obtain the target position (X2, Y2). , ⁇ 2).
  • the component P is recognized. is performed by component recognition in which the third recognition unit 158 processes an image captured by the component camera 32 (FIG. 1).
  • the mounting point data 148 (X1, Y1, ⁇ 1) is corrected using (C) the component recognition result by the third recognition unit 158 instead of the (B) post-pickup component recognition result, and the target position ( X2, Y2, ⁇ 2) are calculated.
  • the third recognition unit 158 recognizes the components. Obtained by recognizing P.
  • the target position (X2, Y2, ⁇ 2) calculated by the first calculation unit 136A and (5) the target height (Z2) calculated by the second calculation unit 136B are set as the target position 140 by the main body control unit.
  • 102 is stored in the storage unit 103 .
  • FIG. 29 shows a flow of processing for mounting the component P by the mounting head 14 .
  • Each process of the flowchart shown in FIG. 29 is executed by the mounting work execution unit 126 .
  • the mounting work execution unit 126 acquires the target position (X2, Y2, ⁇ 2, Z2) (S27). Specifically, the mounting work execution unit 126 acquires the target position (X2, Y2, ⁇ 2, Z2) calculated by the target position calculation unit 136 .
  • the mounting work execution unit 126 positions the mounting nozzle 40 at the mounting point (S28). Specifically, the mounting nozzle 40 holding the component P to be mounted on the board 2 is positioned in the XY direction and the ⁇ direction according to the mounting order of the mounting program 138 under the control of the mounting work execution unit 126 . During positioning, the mounted nozzle 40 is moved toward the target position (X2, Y2, ⁇ 2) acquired in step S27. In the first embodiment, as shown in FIG. 30A, the mounting nozzle 40 is positioned by moving it obliquely downward while lowering it in the Z direction.
  • the mounting work execution unit 126 determines whether or not the mounting point is the designated mounting point (S29). Specifically, the mounting work execution unit 126 determines whether or not the mounting point of the board 2 on which the component P is to be mounted is designated as the designated mounting point in the mounting program 138 . In the example of the mounting program 138 shown in FIG. 19, the mounting points corresponding to the first to ninth parts P in the mounting order of the parts P are designated as the designated mounting points. not specified. Therefore, all mounting points where components are mounted in the first turn are designated mounting points.
  • step S30 it is determined whether or not the mounting nozzle 40 holding the component P has come into contact with the mounting point of the substrate 2 using the same contact detection method as in step S20 described above.
  • the mounting nozzle 40 continues to descend. On the other hand, as shown in FIG. 30B, when the component P held by the mounting nozzle 40 contacts the upper surface of the substrate 2, the contact of the mounting nozzle 40 is detected (YES in S31).
  • the mounting work executing section 126 cancels the suction by the mounting nozzle 40 (vacuum breaking) and raises the mounting nozzle 40 (S34).
  • the mounting nozzle 40 is moved upward and obliquely raised.
  • the mounting work execution unit 126 acquires the minimum value (S35). Specifically, in the same manner as in step S21 described above, the lowest point storage unit 122 stores the output value for a predetermined period immediately before the mounting nozzle 40 is lifted after contact is detected (YES in S31). The minimum value of the height of the mounted nozzle 40 is read and acquired. This minimum value is the height position of the mounting nozzle 40 when the component P is mounted on the substrate 2 .
  • the mounting work execution unit 126 instructs the mounting point height measurement unit 132 to calculate the mounting point height (S36).
  • the mounting point height measuring unit 132 that has received this command calculates the height of the mounting point. Specifically, since the minimum value of the mounting nozzle 40 obtained in step S35 corresponds to the height Z3 of the mounting nozzle 40 that holds the component P in contact with the mounting point of the substrate 2 as shown in FIG. By subtracting the thickness (measured value) 150, the mounting point height Z4, which is the height of the mounting point of the substrate 2, can be calculated.
  • the calculated mounting point height Z4 is stored in the storage unit 103 of the main body control unit 102 as the mounting point height (measured value) 152 .
  • the thickness of the component used to calculate the height of the mounting point is not the catalog value but the accurate value measured for the component P actually mounted at the mounting point. so you can get the exact mounting point height.
  • the mounting work execution unit 126 determines whether or not there is an unfinished mounting nozzle 40 (S37). Specifically, determination is made based on whether or not there is a mounting nozzle 40 for which steps S28 to S36 have not been executed among the plurality of mounting nozzles 40 for one turn according to the mounting order of the mounting program 138 .
  • steps S28 to S36 are performed. again.
  • steps S28 to S36 have been executed for all of the plurality of mounting nozzles 40 for one turn, it is determined that there is no unfinished mounting nozzle 40 (NO in S37), and the component mounting process ends. This completes the component mounting process for the first turn.
  • the component mounting apparatus 1 repeatedly executes a series of processes from the setting of the mounting data 148 by the target position calculation unit 136 to the component mounting process (FIG. 29) for each turn.
  • the mounting of the component P by the mounting nozzle 40 after the second turn and the calculation of the mounting point height Z4 of the board 2 on which the component P is mounted are sequentially performed.
  • the mounting points corresponding to the first to ninth parts P in the mounting order are designated as the designated mounting points.
  • the parts P whose mounting order is 1st to 6th are programmed to be mounted in the first turn, and the parts P whose mounting order is 7th to 9th are mounted in the second turn. Therefore, when the flow shown in FIG. 29 is executed for the parts P in the first and second turns, all mounting points (first to ninth in the mounting order) are determined to be designated mounting points. (YES in S29), each process of steps S30, S31, and S34 to S36 is executed for each mounting point. As a result, the mounting point height H4 is calculated for all nine designated mounting points.
  • the mounting point height estimation unit 134 performs height estimation processing for mounting points other than the designated mounting points.
  • Fig. 31 shows the flow of the mounting point height estimation process. Each process of the flowchart shown in FIG. 31 is executed by the mounting point height estimation unit 134 .
  • the mounting point height estimation unit 134 determines whether or not the turn has ended (S38). Specifically, it is determined whether or not the component mounting process (FIG. 29) has ended.
  • the mounting point height estimation unit 134 determines whether or not the heights of all designated mounting points have been acquired (S39). In the example shown in FIG. 19, when the mounting point heights (measurement values) 152 for the mounting points 1st to 9th in the mounting order are obtained, it is determined that the heights of all the mounting points have been obtained (S39). Yes), the process proceeds to step S40.
  • the processing after S40 is not executed. After that, when the second turn ends and the first to ninth mounting point heights (measured values) 152 are obtained (YES in S39), the processing from S40 onwards is executed.
  • the mounting point height estimation unit 134 calculates the board shape (S40). Specifically, mounting point heights (measured values) 152 for a plurality of designated mounting points are obtained (arrow (G) in FIG. 25), and based on the obtained mounting point heights (measured values) 152, the substrate 2 Calculate the overall shape of .
  • "surface correction" is used when calculating the substrate shape.
  • the surface correction method for example, any method disclosed in Japanese Patent Laid-Open No. 2006-203020 may be used. Any calculation method capable of calculating the overall shape of the substrate 2 may be used without being limited to the surface correction. By calculating the overall shape of the substrate 2, the height at any position of the substrate 2 can be calculated.
  • FIG. 32 is a schematic front view showing a state in which nine designated mounting points 172 are designated from a plurality of mounting points 170 on the substrate 2.
  • FIG. 32 a plurality of reference marks 174 are provided at corners of the substrate 2, and the first recognition unit 154 recognizes the position of the substrate 2 based on the image captured by the head camera 16 described above. used for
  • a plurality of designated mounting points 172 are evenly distributed. As a result, it is possible to improve the calculation accuracy when calculating the substrate shape by surface correction. As the number of designated mounting points 172 increases, the accuracy of board shape calculation improves. Therefore, by providing a total of nine designated mounting points 172, the calculation accuracy can be further improved.
  • FIG. 33 is a schematic front view showing an example in which the substrate 176 has a plurality of split substrates 178.
  • the substrate 176 has four divided substrates 178, and nine designated mounting points 180 are designated on each of the divided substrates 178.
  • the overall shape of the substrate 176 can be calculated with higher accuracy.
  • the mounting point height estimation unit 134 calculates the heights of other mounting points (S41). Specifically, the mounting point height estimator 134 calculates the estimated heights of the other mounting points not designated as the designated mounting points based on the shape of the substrate 2 calculated in step S40. That is, the height of the mounting point where the component P is not mounted is estimated.
  • the mounting point height estimation unit 134 updates the mounting point data (Z1) (S42). Specifically, the mounting point height estimation unit 134 updates the value of Z1 in the mounting point data 148 based on the estimated height of the mounting point calculated in step S41 (arrow (6) in FIG. 25). After that, the flow shown in FIG. 31 ends. In the first embodiment, after the end of the second turn, the mounting point height estimation unit 134 executes height estimation processing for mounting points other than the designated mounting points, and updates the mounting point data (Z1). That is, the value is updated to reflect the actual deformation of the substrate 2 . Therefore, for the third and subsequent turns, the updated mounting point data (Z1) is used to calculate the target height (Z2). It is possible to realize high-quality component mounting with less component P mounting mistakes and positional deviation after mounting.
  • step S32 the mounting work execution unit 126 lowers the mounting nozzle 40 (S32), and determines whether or not the mounting nozzle 40 has reached the target height (Z2) (S33).
  • steps S32 and S33 are passed through, the contact detection of the component P (S31) is not performed unlike when it is determined to be the designated mounting point, so the mounting nozzle 40 is lowered toward the target height (Z2) at high speed can be made That is, after the mounting point height estimation process is performed, the mounting nozzle 40 can be lowered at high speed to mount the component P, and productivity can be improved.
  • the mounting nozzle 40 is lowered at a low speed (S30) in order to detect contact between the component P and the board 2 (S31).
  • the target height (Z2) of the mounting point has been calculated by the mounting point height estimation process, so the mounting point is mounted toward the target height (Z2).
  • the nozzle 40 can be lowered at high speed (S32, S33). In either case, the mounting nozzle 40 can be lowered to a position where the component P contacts the board 2 as shown in FIG.
  • the mounting of the component P on the board 2 by the mounting head 14 is performed for each turn.
  • the mounting nozzle 40 is lowered at a low speed in order to mount the component P with contact detection. Therefore, the mounting nozzle 40 can be lowered at high speed to improve the processing speed.
  • the calculation of the target position (X2, Y2, Z2, ⁇ 2) by the target position calculator 136 described above can be performed while the mounting head 14 picks up the component P on the relay stage 26 and moves to the work area A. can. Thereby, working efficiency can be improved.
  • the take-out head 12 performs a take-out operation for picking up minute components from the first component supply unit 6, a transport operation for collectively transporting the taken-out minute components to the relay stage 26, and a transport operation for transferring the minute components to the relay stage 26.
  • a placement operation to place the component and a return operation to return to the first component supply unit 6 are repeatedly performed.
  • the mounting head 14 also moves from the work area A to the relay stage 26, picks up minute parts placed on the relay stage 26, and collectively transports the picked-up minute parts to the work area A.
  • a carrying operation and a mounting operation for mounting a minute component on the board 2 in the work area A are repeatedly executed for each turn.
  • the number of extraction nozzles 36 in the extraction head 12 is greater than the number of mounting nozzles 40 in the mounting head 14, so that the number of minute components that can be batch-conveyed to the relay stage 26 can be increased.
  • the number (16) of the extraction nozzles 36 is double the number (8) of the mounting nozzles 40.
  • the loading head 14 can be controlled to perform two turns of work. Thereby, working efficiency can be improved.
  • the component P ( It includes a turn for picking up small or medium-sized parts and mounting them on the substrate 2 .
  • the mounting head 14 picks up the component P from the component supply units 8 and 10, moves above the component camera 32, performs imaging and component recognition of the component P by the component camera 32, and then moves to the work area A.
  • the mounting operation of mounting the component P on the mounting point of the substrate 2 is sequentially performed for each mounting nozzle 40, as in the case of the minute component.
  • the values of the mounting point data 148 based on the initial values of the mounting program 138 are used to lower the mounting nozzle 40 at high speed to mount the component P on the board 2 .
  • component mounting can be performed while switching the component supply units 6, 8, and 10 that supply the component P on a turn-by-turn basis.
  • the component mounting apparatus 1 of Embodiment 1 is a component mounting apparatus that picks up components P from the first component supply unit 6 and mounts them on the substrate 2, and is a relay stage on which a plurality of components P can be mounted.
  • a pick-up head 12 (first component transfer section) that picks up a component P from the first component supply unit 6 and transfers it to the relay stage 26
  • a plurality of components P on the relay stage 26 are imaged to obtain a first It has a relay stage camera 28 that acquires an image and a plurality of mounting nozzles 40 that hold the component P.
  • the control unit 35 executes pre-pickup part recognition (first part recognition) for recognizing a plurality of parts P on the relay stage 26 using the first image, and controls the mounting head 14 to perform pre-pickup part recognition.
  • pre-pickup part recognition first part recognition
  • the mounting nozzles 40 are aligned with the components P on the relay stage 26, and the picking up operation of picking up the components P is sequentially performed for each mounting nozzle 40, and the mounting nozzles 40 picking up the components P are placed on the substrate 2.
  • the mounting operation of mounting the components P held by the mounting nozzles 40 on the mounting points of the board 2 is sequentially executed for each mounting nozzle 40 .
  • the component mounting method of the first embodiment is a component mounting method in which the component P is picked up from the first component supply unit 6 and mounted on the substrate 2.
  • the control unit 35 controls the pickup head 12 to A component P is picked up from the component supply unit 6 and transferred to the relay stage 26, and the control unit 35 controls the relay stage camera 28 to image the plurality of components P on the relay stage 26 to obtain a first image.
  • the controller 35 executes pre-pickup component recognition for recognizing a plurality of components P on the relay stage 26 using the first image, and the controller 35 controls the mounting head 14 having a plurality of mounting nozzles 40 .
  • the component P is mounted on the substrate 2 in a state where the attitude of the component P is stabilized. It is possible to achieve higher quality component mounting. Also, even when a minute component is held as the component P, the area where the component P protrudes from the holding surface of the mounting nozzle 40 can be reduced. It is suitable for "narrow adjacent mounting" to be mounted on the substrate 2. Furthermore, since a plurality of components P on the relay stage 26 are collectively imaged and recognized, the operation of picking up the components P by a plurality of mounting nozzles 40 can be efficiently executed.
  • the control unit 35 activates the second recognition unit 156 (component recognition unit) that recognizes the component P based on the image captured by the relay stage camera 28. Further, the control unit 35 controls the mounting nozzle 40 to align the center of the lower end surface of the mounting nozzle 40 toward the center of the component P recognized by the second recognition unit 156, thereby locating the component P. to pick up. As a result, the component P is picked up by aligning the center of the lower end surface of the mounting nozzle 40 with the center of the component P, so that the component P can be held in a stable posture by the mounting nozzle 40, and the mounting nozzle 40 can be moved. , the component P can be mounted in an appropriate posture at the mounting point. In particular, it exerts a remarkable effect when mounting minute parts.
  • the relay stage 26 has the temporary placement section 70 on which the component P is placed, and the temporary placement section 70 allows the component P to be seen through from below.
  • the relay stage camera 28 is arranged below the temporary placement section 70 . Accordingly, the relay stage camera 28 can be arranged below the temporary placement section 70 to image the component P without interfering with the movement of the pick-up head 12 . In addition, the pickup head 12 does not interfere with the imaging of the component P.
  • a plurality of relay stage cameras 28 are provided, and the plurality of relay stage cameras 28 acquire the first image.
  • the area of the temporary placement portion 70 can be widened, and the work of mounting many parts P can be efficiently performed.
  • the control unit 35 further controls the relay stage camera 28 to image the component P held by the mounting nozzle 40 to generate the second image. to get As a result, by using the same relay stage camera 28 to image the picked-up component P, there is no need to photograph the picked-up component P with a component recognition camera separate from the relay stage camera 28. does not need to move above the component camera 32 . As a result, wasteful operations can be eliminated, and highly productive component mounting can be realized.
  • the control unit 35 further uses the second image to perform post-pickup component recognition for recognizing the component P held by the mounting nozzle 40. Then, using the result of component recognition after pickup, a target position for mounting the component P at the mounting point in the mounting operation is calculated. As a result, the mounting accuracy of the component P can be improved, and component mounting with few mounting errors and narrow adjacent mounting can be realized.
  • the control unit 35 moves the plurality of mounting nozzles 40 holding the respective components P above the substrate 2 in the conveying operation so that the plurality of components P are mounted. are collectively transported. Accordingly, by collectively transporting a plurality of components P from the relay stage 26 to above the substrate 2, the working efficiency of component mounting can be improved.
  • the take-out head 12 has a plurality of take-out nozzles 36, and the control unit 35 controls the take-out head 12 so that the take-out nozzles 36 mount the first component.
  • a take-out operation for taking out the parts P from the supply unit 6 is sequentially performed for each take-out nozzle 36, and the plurality of take-out nozzles 36 are conveyed above the intermediate stage 26 while holding the plurality of parts P by the plurality of take-out nozzles 36.
  • a carrying operation is performed, and a placement operation for placing the component P held by the ejection nozzle 36 on the intermediate stage 26 is sequentially performed for each ejection nozzle 36 . Accordingly, by batch-conveying a plurality of components P from the first component supply unit 6 to the relay stage 26, the working efficiency of component mounting can be improved.
  • the number of extraction nozzles 36 in the extraction head 12 is greater than the number of mounting nozzles 40 in the mounting head 14 .
  • a larger number of components P can be transferred to the intermediate stage 26 than one batch transfer of the mounting head 14 by one batch transfer of the pick-up head 12, and the work efficiency of component mounting is improved. can be done.
  • the arrangement pitch of the extraction nozzles 36 in the extraction head 12 is the same as or 1/n (where n is 1 or more) the arrangement pitch of the mounting nozzles 40 in the mounting head 14. integer).
  • the number of extraction nozzles 36 in the extraction head 12 (16) is twice the number of mounting nozzles 40 in the mounting head 14 (8).
  • the parts P by two or more batch transports of the mounting head can be transferred to the relay stage 26, so that the working efficiency of component mounting can be improved.
  • the number of extraction nozzles 36 is not limited to twice the number of mounting nozzles 40, but may be more than twice.
  • the component mounting apparatus 1 of Embodiment 1 is a component mounting apparatus that mounts a component P on a mounting point of a substrate 2, and includes a mounting nozzle 40 that holds the component P and mounts it on the substrate 2;
  • a relay having a servo motor 56 (motor) for raising and lowering the nozzle 40, a height detection unit 120 (mounted nozzle height detection unit) for detecting the height of the mounted nozzle 40, and a mounting surface 71 (first reference surface).
  • a control unit 35 is provided.
  • the control unit 35 sets the first reference height H1 based on the height detected by the height detection unit 120 when the lower end surface of the mounting nozzle 40 is brought into contact with the mounting surface 71 of the relay stage 26, and the substrate a reference height setting unit 130 for setting the second reference height H2 based on the height detected by the height detection unit 120 when the lower end surface of the mounting nozzle 40 is brought into contact with the upper surface 95A of the pressing member 95;
  • the thickness of the component P is measured based on the first reference height H1 and the height detected by the height detection unit 120 when the component P is sandwiched between the placement surface 71 and the lower end surface of the mounting nozzle 40.
  • a target position calculation unit 136 that calculates the height (Z2) and a motor control unit 112 that controls the servo motor 56 based on the target height (Z2) are provided.
  • the component mounting method of the first embodiment is a component mounting method for mounting the component P on the mounting point of the substrate 2.
  • the lower end surface of the mounting nozzle 40 is brought into contact with the mounting surface 71 of the mounting nozzle 40, and the first reference height H1 is set from the height detected by the height detection unit 120 capable of detecting the height of the mounting nozzle 40, and the control unit 35 controls the mounting nozzle 40 to bring the lower end surface of the mounting nozzle 40 into contact with the upper surface 95A of the substrate pressing member 95 provided in the work area A of the substrate 2, and the height detected by the height detection unit 120 is reached.
  • the control unit 35 controls the mounting nozzle 40 to sandwich the component P between the mounting surface 71 and the lower end surface of the mounting nozzle 40, and the height detection unit 120
  • the thickness of the component P is calculated based on the height detected by and the first reference height H1.
  • a target height (Z2) for lowering the mounting nozzle 40 holding the component P toward the mounting point is calculated.
  • the servo motor 56 for raising and lowering the mounting nozzle 40 is controlled to lower the mounting nozzle 40 toward the mounting point.
  • the thickness of the component P can be measured using the height detection function of the mounting nozzle 40, there is no need for a dedicated measuring device for measuring the thickness of the component. can be reduced in size and weight, and the component mounting apparatus 1 with high productivity can be realized.
  • the mounting nozzle 40 is replaceably attached to the shaft 42 that is driven up and down by the servomotor 56, and the reference height setting section 130 is configured so that the mounting nozzle 40 Separately, a first reference height H1 and a second reference height H2 are set. Accordingly, by setting the first reference height H1 and the second reference height H2 for each mounting nozzle 40, the component thickness measurement and component mounting can be performed without being affected by the individual difference of the mounting nozzles 40. can.
  • a plurality of mounting nozzles 40 are provided, and are replaceably attached to each of a plurality of shafts 42 driven up and down by a servomotor 56.
  • the setting unit 130 sets the first reference height H1 and the second reference height H2 for each combination of the mounting nozzle 40 and the shaft 42 . Accordingly, by setting the first reference height H1 and the second reference height H2 for each combination of the mounting nozzle 40 and the shaft 42, the part thickness can be measured without being affected by the individual differences of the mounting nozzle 40 and the shaft 42. Part mounting can be performed.
  • the component thickness measurement unit 128 detects the height detection unit 120 when the component P placed on the mounting surface 71 is picked up by the mounting nozzle 40 .
  • the thickness of the component P is measured based on the height detected by the target position calculation unit 136, and the target position calculation unit 136 calculates the target height (Z2) while the mounting nozzle 40 picks up the component P and moves to the work area A. calculate. This makes it possible to measure the thickness of the component P and calculate the target height (Z2) in a series of operations from picking up the component P to mounting it.
  • the component thickness measurement unit 128 detects the height detection unit 120 during a predetermined period immediately before the mounting nozzle 40 picking up the component P leaves the mounting surface 71 .
  • the thickness of the part P is measured based on the value (minimum value) indicating the lowest point among the values detected by .
  • the thickness of the component P can be measured more accurately by using the minimum value of the period during which the influence of the impact during picking up is less likely to occur.
  • the relay stage camera 28 that captures the image of the component P placed on the mounting surface 71 is further provided, and the control unit 35 controls the relay stage camera 28 to It further has a second recognition unit 156 (component recognition unit) that recognizes the component P based on the captured image.
  • the center of the lower end face of the mounting nozzle 40 is aligned toward the center of the component P to pick up the component P.
  • the center of the lower end face of the mounting nozzle 40 is aligned with the center of the component P to pick up the component P, so the thickness of the component P can be measured more accurately.
  • the first reference member having the first reference surface is a relay stage on which the component P supplied from the first component supply unit 6 is temporarily placed. 26. Accordingly, provision of the intermediate stage 26 allows the component P to be temporarily placed before being mounted on the board 2 .
  • the second reference member having the second reference surface is a substrate pressing member that presses and positions the substrate 2 supported from below by the backup pins 98 from above. 95. Accordingly, the substrate pressing member 95 can be used as a reference member for setting the second reference height H2.
  • the component mounting apparatus 1 of Embodiment 1 is a component mounting apparatus that mounts a component P at the mounting point of the board 2 carried into the work area A, holds the component P, and mounts it on the board 2.
  • a servo motor 56 that raises and lowers the mounted nozzle 40
  • a height detector 120 mounted nozzle height detector
  • the control unit 35 determines the mounting point based on the height of the mounting nozzle 40 detected by the height detection unit 120 when the mounting nozzle 40 holding the component P mounts the component P at the mounting point and the thickness of the component P.
  • the mounting point height measuring unit 132 Based on the mounting point height measuring unit 132 that measures the height of the mounting point height measuring unit 132 and the heights of the plurality of mounting points measured by the mounting point height measuring unit 132, the estimated height of the mounting point where the component P is not mounted is calculated. Based on the calculated mounting point height estimator 134 and the estimated height of the mounting point and the thickness of the component P mounted at the mounting point, the mounting nozzle 40 holding the component P is lowered toward the mounting point.
  • a target position calculation unit that calculates the target height (Z2) and a motor control unit 112 that controls the servo motor 56 based on the target height (Z2) are provided.
  • the component mounting method of the first embodiment is a component mounting method for mounting the component P on the mounting point of the board 2 carried into the work area A, and the control unit 35 controls the mounting nozzle 40 holding the component P.
  • the component P is mounted on the mounting point of the substrate 2 under control, and the mounting nozzle 40 mounts the component P on the mounting point using the height detection unit 120 that detects the height of the mounting nozzle 40 by the control unit 35.
  • the height of the mounting point is measured based on the height of the mounting nozzle 40 detected by the height detection unit 120 and the thickness of the component P when the mounting nozzle 40 is mounted, and the control unit 35 controls the measured heights of the plurality of mounting points.
  • the control unit 35 calculates the component P based on the estimated height of the mounting point and the thickness of the component P mounted at the mounting point.
  • a target height (Z2) for lowering the held mounting nozzle 40 toward the mounting point is calculated, and the control unit 35 operates the servo motor 56 for raising and lowering the mounting nozzle 40 based on the target height (Z2). Control to lower the mounting nozzle 40 toward the mounting point.
  • the height information of the mounting point measured when the mounting nozzle 40 mounts the component P on the mounting point is used to determine the height of other mounting points where the component P is not mounted.
  • the component can be mounted using the estimated height, and a dedicated measuring device for measuring the height of the mounting point becomes unnecessary. As a result, work efficiency can be improved while simplifying the component mounting apparatus 1 .
  • the relay stage 26 having the mounting surface 71 as the reference surface is further provided.
  • the control unit 35 further includes a reference height setting unit that sets the first reference height H1 based on the height detected by the height detection unit 120 when the lower end surface of the mounting nozzle 40 is brought into contact with the mounting surface 71. 130, the thickness of the component P is measured based on the height detected by the height detection unit 120 when the component P is sandwiched between the mounting surface 71 and the lower end surface of the mounting nozzle 40, and the reference height.
  • a component thickness measuring unit 128 is provided, and a mounting point height measuring unit 132 measures the height of the mounting point using the thickness of the component P measured by the component thickness measuring unit 128 .
  • the height of the mounting point can be accurately measured even if the thickness of the component P varies. can.
  • the reliability of the estimated mounting point height calculated by the mounting point height estimating unit 134 is improved, and highly reliable component mounting can be realized.
  • the component thickness measurement unit 128 detects the height detection unit 120 when the component P placed on the mounting surface 71 is picked up by the mounting nozzle 40 . calculates the thickness of the part P based on the height detected by . As a result, part thickness measurement and target height calculation can be executed in a series of operations from picking up the part P to mounting it.
  • some of the mounting points 170 are designated as a plurality of designated mounting points 172 for the mounting point height estimator 134 to calculate the estimated height.
  • the mounting point height estimation unit 134 calculates the estimated height of the mounting point 170 where the component P is not mounted, based on the heights obtained from the plurality of designated mounting points 172 . Accordingly, by setting the designated mounting point 172 in advance, the optimum mounting point 170 can be set as the designated mounting point 172, and the estimated height of the mounting point 170 calculated by the mounting point height estimation unit 134 can be calculated. reliability is improved.
  • the motor control unit 112 has the contact detection unit 118 that detects that the component P or the mounting nozzle 40 has come into contact with the mounting point 170, and the control unit
  • the control unit 35 controls the mounting nozzle 40 to descend until the contact detection unit 118 detects contact.
  • the mounting nozzle 40 is controlled to descend until reaching the target height (Z2) calculated by the target position calculation unit 136 .
  • the component P is mounted on the mounting points 170 other than the designated mounting point 172 without contact detection, so that the mounting time of the component P can be shortened and the productivity can be improved.
  • the substrate 176 includes a plurality of divided substrates 178, and a plurality of designated mounting points 180 are set for each divided substrate 178.
  • the substrate 176 includes a plurality of divided substrates 178, by setting a plurality of designated mounting points 180 for each divided substrate 178, the estimated height of the mounting points on the entire substrate 176 can be calculated with high accuracy. can be done.
  • the designated mounting points 172 and 204 are set to nine or more mounting points. As a result, the estimated height of the mounting point can be calculated with high accuracy.
  • Embodiment 2 A component mounting apparatus according to Embodiment 2 of the present invention and a component mounting method using the same will be described.
  • differences from the first embodiment will be mainly described, and descriptions overlapping with the first embodiment will be omitted.
  • Embodiment 2 is different from Embodiment 1 in that height measurement is also performed for mounting points other than the designated mounting points, and the estimated height of the board 2 is updated using newly obtained height information of the mounting points. .
  • FIG. 35 is a flowchart relating to component mounting processing according to the second embodiment.
  • step S27 and S28 are executed in the same manner as in the first embodiment, component mounting with contact detection is performed without determining whether or not the mounting point is the designated mounting point (S29). (S130, S131). Regardless of whether or not the mounting point is the designated mounting point, the control unit 35 starts lowering the mounting nozzle 40 (S130), and determines whether contact of the mounting nozzle 40 is detected (S131). Steps S130 and S131 are the same processes as steps S30 and S31 of the first embodiment, respectively.
  • FIG. 36 is a flowchart relating to mounting point height estimation processing according to the second embodiment.
  • step S143 is executed. Specifically, the control unit 35 determines whether or not to update the next turn (S143). If it is determined to update the next turn (YES in S143), steps S38 to S42 are executed again, and the mounting point data 148 (Z1) is updated also for the next turn (S42).
  • step S143 for example, a threshold is set for the number of updates, and if the number of updates is equal to or less than the threshold, it is determined that the next turn will be updated (YES in S143). may be determined not to update the next turn either (NO in S143). Alternatively, if the component P is not mounted at all the mounting points that the component mounting apparatus 1 takes charge of, it is determined that the next turn will be updated (YES in S143), and all the mounting points that the component mounting apparatus 1 takes charge of have the components. If P is mounted, it may be determined not to update the next turn either (NO in S143).
  • step S143 the mounting point height newly obtained in step S36 of FIG. Calculation can be performed (S41), and the mounting point data (Z1) can be continuously updated (S42).
  • the number of mounted parts P increases, the amount of original data for estimating the mounting point height increases. can be improved.
  • the flow shown in FIG. 36 ends.
  • the same processes as steps S32 and S33 of the flow shown in FIG. 29 may be performed instead of the processes of steps S130 and S131.
  • the mounting nozzle 40 can be lowered at high speed toward the target height (Z2) while calculating the target height (Z2) based on the more accurate estimated height of the mounting point. Processing can be performed accurately and at high speed.
  • the mounting point height measuring unit 132 also measures the height of mounting points other than the designated mounting point, and the mounting point height estimating unit 134 measures the height of the designated mounting point. and the newly measured height of the mounting point is used to calculate the estimated height of the other mounting point.
  • the mounting point height (measured value) 152 includes the measured value of the height of the designated mounting point as well as the measured value of the height of the mounting points other than the designated mounting point.
  • the mounting point height estimation unit 134 uses the height of the new mounting point obtained by the mounting point height measurement unit 132 to , calculate the estimated height of the mounting point where the component P is not mounted, and update the already calculated estimated height of the mounting point. Thereby, the accuracy of the estimated height can be improved.
  • FIG. 37 is a diagrammatic representation of FIG. 37 to 41.
  • FIG. 37 is a schematic plan view of a component mounting device 200 according to a modification.
  • a component mounting apparatus 200 shown in FIG. 37 is mainly different from Embodiments 1 and 2 in that it includes two relay stages 228A and 228B, two picking heads 212A and 212B, and two mounting heads 214A and 214B.
  • the XY table 217 comprises a first X-axis beam 218A, a second X-axis beam 218B, a third X-axis beam 220A and a fourth X-axis beam 220B.
  • a first X-axis beam 218A supports the first pick head 212A
  • a second X-axis beam 218B supports the second pick head 212B
  • a third X-axis beam 220A supports the first mounting head 214A
  • a fourth X-axis beam 220B supports the second mounting head 214B.
  • the first take-out head 212A, the first relay stage 228A and the first mounting head 214A are provided corresponding to the first component supply unit 6.
  • the second take-out head 212B, the second relay stage 228B and the second mounting head 214B are provided corresponding to the second component supply unit 8. As shown in FIG. According to such a configuration, it is possible to cope with the case where the second component supply unit 8 supplies minute components in the same way as the first component supply unit 6 does.
  • FIG. 38 is a schematic plan view of a component mounting device 300 according to another modified example.
  • a component mounting apparatus 300 shown in FIG. 38 mainly differs from the modified example shown in FIG. 37 in that only one mounting head 314 is provided.
  • the XY table 317 includes a first X-axis beam 218A, a second X-axis beam 218B, and a third X-axis beam 320 that supports the mounting head 314. As shown in FIG.
  • the first pick-up head 212A, the first relay stage 228A and the mounting head 314 are provided corresponding to the first component supply unit 6, and the second pick-up head 212B, the second relay stage 228B and the mounting head 314 are provided for the first component supply unit 6. It is provided corresponding to the two-component supply unit 8 .
  • the mounting head 314 can also be used for the two component supply units 6 and 8 .
  • FIG. 39 is a schematic plan view of a component mounting apparatus 400 according to still another modification.
  • a component mounting apparatus 400 shown in FIG. 39 is mainly different from the modified example shown in FIG. 38 in that it does not have a pick-up head and has only one mounting head 314 .
  • the XY table 417 has a third X-axis beam 320 that supports the mounting head 314 .
  • one mounting head 314 is used to take out the component P from the component supply units 6 and 8, place the component P on the relay stages 228A and 228B, and load the component P from the relay stages 228A and 228B. Picking up the component P and mounting the component P on the substrate 2 are all performed. Thereby, the structure of the component mounting apparatus 400 can be simplified.
  • FIG. 40 is a perspective view showing a mounting head 514 according to yet another modified example.
  • a mounting head 514 shown in FIG. 40 includes a head camera 516 , a plurality of mounting nozzles 540 , a plurality of shafts 542 and a body portion 544 .
  • the plurality of mounted nozzles 540 and the plurality of shafts 542 are each arranged in an annular shape and configured to be rotatable around a rotation axis G extending in the Z direction.
  • the rotary type mounting head 514 in which the plurality of mounting nozzles 540 are arranged in an annular shape may be used instead of the mounting head 14 .
  • the take-out head 12 may likewise be of the rotary type.
  • FIG. 41 is a schematic longitudinal sectional view showing a relay stage 626 according to yet another modified example.
  • a relay stage 626 shown in FIG. 41 includes a relay stage camera 628 , a temporary placement section 670 , a housing 674 , lighting 680 and a diffusion plate 682 .
  • the relay stage camera 628 is provided above the temporary placement section 670 instead of below the temporary placement section 670 .
  • the relay stage camera 628 is fixed with its imaging direction directed downward.
  • the temporary placement portion 670 is made of a transparent plate, and the light emitted by the illumination 680 can be diffused by the diffusion plate 682 and pass through the temporary placement portion 670 to illuminate the component P.
  • FIG. The relay stage camera 628 captures an image of the component P on the temporary placement section 670 located below the temporary placement section 670 at a timing when the picking head 12 or the mounting head 14 is not above the temporary placement section 670 .
  • the present invention is applicable to any component mounting device and component mounting method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This component mounting device (1) for removing a component (P) from a component supply unit (6) and mounting the same on a substrate (2) is provided with: a relay stage (26), a first component transfer unit (12), a relay stage camera (28), a second component transfer unit (14), and a control unit (35), wherein the control unit (35) performs: first component recognition, in which a first image is used to recognizing multiple component (P) on the relay stage (26); pickup operations, sequentially by mounting nozzle (40), in which the second component transfer unit (14) is controlled and results of the first component recognition are utilized to position a mounting nozzle (40) on a component (P) on the relay stage (26) and to pick up the component (P); conveyance operations in which the mounting nozzle (40) that has picked up the component (P) is moved to above the substrate (2); and mounting operations, sequentially by mounting nozzle (40), in which the component (P) held by the mounting nozzle (40) is mounted on a mounting point on the substrate (2).

Description

部品搭載装置および部品搭載方法Component mounting device and component mounting method
 本発明は、部品搭載装置および部品搭載方法に関する。 The present invention relates to a component mounting device and a component mounting method.
 例えば、電子部品などの部品を基板に搭載する部品搭載装置がある(例えば、特許文献1)。 For example, there is a component mounting device that mounts components such as electronic components on a board (for example, Patent Document 1).
特開2019-61989号公報JP 2019-61989 A
 昨今、部品搭載装置および部品搭載方法において、より質の高い部品搭載を実現することが求められる。 In recent years, there has been a demand for higher quality component mounting in component mounting devices and component mounting methods.
 従って、本発明の目的は、前記問題を解決することにあって、より質の高い部品搭載を実現することができる部品搭載装置および部品搭載方法を提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a component mounting apparatus and a component mounting method capable of realizing component mounting with higher quality.
 前記目的を達成するために、本発明の部品搭載装置は、部品供給ユニットから部品を取り出して基板に搭載する部品搭載装置であって、複数の部品を載置可能な中継ステージと、前記部品供給ユニットから部品を取り出して前記中継ステージに移送する第1の部品移送部と、前記中継ステージ上の複数の部品を撮像して第1の画像を取得する中継ステージカメラと、部品を保持する搭載ノズルを複数有し、前記中継ステージ上の部品を前記搭載ノズルでピックアップして基板に搭載する第2の部品移送部と、制御部と、を備え、前記制御部は、前記第1の画像を用いて前記中継ステージ上の複数の部品を認識する第1部品認識を実行し、前記第2の部品移送部を制御して、前記第1部品認識の結果を利用して前記搭載ノズルを前記中継ステージ上の部品に位置合わせして部品をピックアップするピックアップ動作を、前記搭載ノズル別に順次実行し、部品をピックアップした前記搭載ノズルを基板の上方に移動させる搬送動作を実行し、前記搭載ノズルが保持する部品を基板の実装点に搭載する搭載動作を、前記搭載ノズル別に順次実行する。 In order to achieve the above object, a component mounting apparatus of the present invention is a component mounting apparatus for picking up components from a component supply unit and mounting them on a board, comprising: a relay stage on which a plurality of components can be placed; A first component transfer unit that picks up a component from a unit and transfers it to the relay stage, a relay stage camera that captures a plurality of components on the relay stage to obtain a first image, and a mounting nozzle that holds the component. and a second component transfer unit that picks up the component on the relay stage with the mounting nozzle and mounts it on the substrate, and a control unit, the control unit using the first image performs first component recognition for recognizing a plurality of components on the relay stage, controls the second component transfer unit, and uses the result of the first component recognition to move the mounting nozzle to the relay stage. A pickup operation for picking up a component in alignment with an upper component is sequentially performed for each of the mounting nozzles, a carrying operation is performed for moving the mounting nozzle that has picked up the component above the substrate, and the mounting nozzle holds the component. A mounting operation for mounting the component on the mounting point of the substrate is sequentially performed for each of the mounting nozzles.
 また、本発明の部品搭載方法は、部品供給ユニットから部品を取り出して基板に搭載する部品搭載方法であって、制御部により、第1の部品移送部を制御して、前記部品供給ユニットから部品を取り出して中継ステージに移送し、前記制御部により、中継ステージカメラを制御して、前記中継ステージ上の複数の部品を撮像して第1の画像を取得し、前記制御部により、前記第1の画像を用いて、前記中継ステージ上の複数の部品を認識する第1部品認識を実行し、前記制御部により、複数の搭載ノズルを有する第2の部品移送部を制御して、前記第1部品認識の結果を利用して前記搭載ノズルを前記中継ステージ上の部品に位置合わせして部品をピックアップするピックアップ動作を、前記搭載ノズル別に順次実行し、部品をピックアップした前記搭載ノズルを基板の上方に移動させる搬送動作を実行し、前記搭載ノズルが保持する部品を基板の実装点に搭載する搭載動作を、前記搭載ノズル別に順次実行する。 Further, a component mounting method of the present invention is a component mounting method for picking up a component from a component supply unit and mounting it on a substrate, wherein the control unit controls the first component transfer unit to remove the component from the component supply unit. is taken out and transferred to the relay stage, the control unit controls the relay stage camera to image a plurality of components on the relay stage to acquire a first image, and the control unit controls the first a first component recognition for recognizing a plurality of components on the intermediate stage using the image of the intermediate stage, and the control unit controls a second component transfer unit having a plurality of mounting nozzles to perform the first component recognition. A pickup operation for aligning the mounting nozzles with the components on the relay stage and picking up the components using the result of component recognition is sequentially performed for each mounting nozzle, and the mounting nozzles that have picked up the components are moved above the board. , and a mounting operation for mounting the components held by the mounting nozzles on the mounting points of the board is sequentially executed for each of the mounting nozzles.
 本発明によれば、より質の高い部品搭載を実現することができる。 According to the present invention, higher quality component mounting can be achieved.
実施形態1の部品搭載装置の概略平面図Schematic plan view of the component mounting apparatus of Embodiment 1 実施形態1の取出ヘッドの下方斜視図FIG. 2 is a bottom perspective view of the take-out head of Embodiment 1; 実施形態1の搭載ヘッドの下方斜視図2 is a bottom perspective view of the mounting head of Embodiment 1. FIG. 実施形態1の取出ノズルの先端部を示す概略図Schematic diagram showing the tip of the take-out nozzle of the first embodiment 実施形態1の取出ノズルの先端部を示す概略断面図Schematic cross-sectional view showing the tip of the extraction nozzle of Embodiment 1 実施形態1の搭載ノズルの先端部を示す概略斜視図4 is a schematic perspective view showing the tip of the mounting nozzle of Embodiment 1. FIG. 実施形態1の搭載ノズルの先端部を示す概略斜視図4 is a schematic perspective view showing the tip of the mounting nozzle of Embodiment 1. FIG. 実施形態1の搭載ヘッドの本体部の内部構造を示す縦断面図FIG. 4 is a vertical cross-sectional view showing the internal structure of the main body of the mounting head of the first embodiment; 実施形態1の搭載ヘッドの本体部の内部構造を示す横断面図FIG. 4 is a cross-sectional view showing the internal structure of the main body of the mounting head of the first embodiment; 実施形態1の取出ヘッドの本体部の内部構造を示す縦断面図FIG. 4 is a vertical cross-sectional view showing the internal structure of the main body of the take-out head of the first embodiment; 実施形態1の中継ステージの概略斜視図Schematic perspective view of relay stage of embodiment 1 実施形態1の中継ステージの概略縦断面図Schematic vertical cross-sectional view of a relay stage of Embodiment 1 実施形態1の中継ステージの概略平面図Schematic plan view of relay stage of embodiment 1 実施形態1のブラシ駆動機構の周辺構成を示す概略図Schematic diagram showing the peripheral configuration of the brush drive mechanism of the first embodiment 実施形態1のブラシ駆動機構の周辺構成を示す概略断面図Schematic cross-sectional view showing the peripheral configuration of the brush drive mechanism of Embodiment 1 実施形態1の基板を上昇させる前の状態の基板搬送ユニットの概略縦断面図FIG. 4 is a schematic vertical cross-sectional view of the substrate transfer unit before the substrate is lifted according to the first embodiment; 実施形態1の基板を上昇させた後の状態の基板搬送ユニットの概略縦断面図FIG. 4 is a schematic vertical cross-sectional view of the substrate transfer unit after the substrate is lifted according to the first embodiment; 実施形態1の部品搭載装置の制御系に関するブロック図FIG. 2 is a block diagram of a control system of the component mounting apparatus of Embodiment 1; 実施形態1のヘッドユニット制御部の内部構成を示すブロック図3 is a block diagram showing the internal configuration of the head unit control section of the first embodiment; FIG. 実施形態1の搭載プログラムの一例を示す図A diagram showing an example of an installation program according to the first embodiment. 実施形態1の第1基準高さ設定処理を示すフローチャート4 is a flowchart showing first reference height setting processing according to the first embodiment; 搭載ノズルの下端面が載置面に接触した状態を示す図The figure which shows the state where the lower end surface of the mounting nozzle touched the mounting surface. 搭載ノズルが載置面から上昇する状態を示す図The figure which shows the state where the mounting nozzle rises from the mounting surface. 実施形態1の第2基準高さ設定処理を示すフローチャート10 is a flowchart showing second reference height setting processing according to the first embodiment; 図23のフローチャートによる処理の流れを説明するための概略図Schematic diagram for explaining the flow of processing according to the flowchart of FIG. 図23のフローチャートによる処理の流れを説明するための概略図Schematic diagram for explaining the flow of processing according to the flowchart of FIG. 実施形態1の目標位置演算部による目標位置の演算方法を説明するための図FIG. 4 is a diagram for explaining a method of calculating a target position by a target position calculation unit according to the first embodiment; 実施形態1の部品搭載装置による一連の部品搭載作業の流れを示す図4 is a diagram showing the flow of a series of component mounting operations by the component mounting apparatus of Embodiment 1; FIG. 実施形態1の部品ピックアップ処理に関するフローチャートFlowchart relating to component pick-up processing of the first embodiment 図27のフローチャートによる処理の流れを説明するための概略図Schematic diagram for explaining the flow of processing according to the flowchart of FIG. 図27のフローチャートによる処理の流れを説明するための概略図Schematic diagram for explaining the flow of processing according to the flowchart of FIG. 図27のフローチャートによる処理の流れを説明するための概略図Schematic diagram for explaining the flow of processing according to the flowchart of FIG. 動作司令部の指令に応じて搭載ノズルを下降させたときに、高さ検出部の出力値が変化する様子を示すグラフGraph showing how the output value of the height detection unit changes when the mounted nozzle is lowered according to the command from the operation command unit. 実施形態1の部品搭載処理に関するフローチャートFlowchart relating to component mounting processing of the first embodiment 図29のフローチャートによる処理の流れを説明するための概略図Schematic diagram for explaining the flow of processing according to the flowchart of FIG. 図29のフローチャートによる処理の流れを説明するための概略図Schematic diagram for explaining the flow of processing according to the flowchart of FIG. 図29のフローチャートによる処理の流れを説明するための概略図Schematic diagram for explaining the flow of processing according to the flowchart of FIG. 実施形態1の実装点高さ推定処理に関するフローチャートFlowchart relating to mounting point height estimation processing according to the first embodiment 実施形態1の基板における複数の実装点の中から9つの指定実装点が指定されている状態を示す概略平面図FIG. 4 is a schematic plan view showing a state in which nine designated mounting points are designated from among a plurality of mounting points on the board of the first embodiment; 実施形態1の基板が複数の分割基板を有する例を示す概略平面図4 is a schematic plan view showing an example in which the substrate of Embodiment 1 has a plurality of divided substrates; FIG. 実施形態1の部品搭載装置が狭隣接実装を実行する状態を示す断面図FIG. 3 is a cross-sectional view showing a state in which the component mounting apparatus of the first embodiment performs narrow adjacent mounting; 実施形態1の部品搭載装置が狭隣接実装を実行する状態を示す断面図FIG. 3 is a cross-sectional view showing a state in which the component mounting apparatus of the first embodiment performs narrow adjacent mounting; 実施形態2の部品搭載処理に関するフローチャートFlowchart relating to component mounting processing of the second embodiment 実施形態2の実装点高さ推定処理に関するフローチャートFlowchart relating to mounting point height estimation processing of the second embodiment 変形例に係る部品搭載装置の概略平面図Schematic plan view of a component mounting device according to a modified example 別の変形例に係る部品搭載装置の概略平面図Schematic plan view of a component mounting apparatus according to another modified example さらに別の変形例に係る部品搭載装置の概略平面図Schematic plan view of a component mounting apparatus according to still another modification さらに別の変形例にかかる搭載ヘッドを示す下方斜視図A lower perspective view showing a mounting head according to yet another modified example. さらに別の変形例にかかる中継ステージを示す概略縦断面図A schematic longitudinal sectional view showing a relay stage according to yet another modified example
 本発明の第1態様によれば、部品供給ユニットから部品を取り出して基板に搭載する部品搭載装置であって、複数の部品を載置可能な中継ステージと、前記部品供給ユニットから部品を取り出して前記中継ステージに移送する第1の部品移送部と、前記中継ステージ上の複数の部品を撮像して第1の画像を取得する中継ステージカメラと、部品を保持する搭載ノズルを複数有し、前記中継ステージ上の部品を前記搭載ノズルでピックアップして基板に搭載する第2の部品移送部と、制御部と、を備え、前記制御部は、前記第1の画像を用いて前記中継ステージ上の複数の部品を認識する第1部品認識を実行し、前記第2の部品移送部を制御して、前記第1部品認識の結果を利用して前記搭載ノズルを前記中継ステージ上の部品に位置合わせして部品をピックアップするピックアップ動作を、前記搭載ノズル別に順次実行し、部品をピックアップした前記搭載ノズルを基板の上方に移動させる搬送動作を実行し、前記搭載ノズルが保持する部品を基板の実装点に搭載する搭載動作を、前記搭載ノズル別に順次実行する、部品搭載装置を提供する。 According to a first aspect of the present invention, there is provided a component mounting apparatus that picks up components from a component supply unit and mounts them on a board, comprising: a relay stage on which a plurality of components can be placed; a first component transfer unit for transferring to the relay stage; a relay stage camera for capturing a first image by imaging a plurality of components on the relay stage; and a plurality of mounting nozzles for holding the components, a second component transfer unit that picks up a component on the relay stage with the mounting nozzle and mounts it on the substrate; executing first component recognition for recognizing a plurality of components, controlling the second component transfer unit, and using the result of the first component recognition to align the mounting nozzle with the components on the relay stage; a pick-up operation for picking up the components by the mounting nozzles, a carrying operation for moving the mounting nozzles that have picked up the components above the board, and moving the components held by the mounting nozzles to mounting points on the board To provide a component mounting apparatus for sequentially executing a mounting operation for mounting a component on a part for each of the mounting nozzles.
 本発明の第2態様によれば、前記中継ステージは、部品が載置される仮置部を有し、前記仮置部は下方から部品を透視可能であり、前記中継ステージカメラは前記仮置部の下方に配置される、第1態様に記載の部品搭載装置を提供する。 According to the second aspect of the present invention, the relay stage has a temporary placement section on which a component is placed, the temporary placement section allows the component to be seen through from below, and the relay stage camera is the temporary placement section. The component mounting apparatus according to the first aspect is provided below the part.
 本発明の第3態様によれば、前記中継ステージカメラは複数設けられ、複数の前記中継ステージカメラによって前記第1の画像を取得する、第1態様又は第2態様に記載の部品搭載装置を提供する。 According to a third aspect of the present invention, there is provided the component mounting apparatus according to the first aspect or the second aspect, wherein a plurality of relay stage cameras are provided, and the first image is acquired by the plurality of relay stage cameras. do.
 本発明の第4態様によれば、前記制御部はさらに、前記中継ステージカメラを制御して、前記搭載ノズルに保持されている部品を撮像して第2の画像を取得する、第1態様から第3態様のいずれか1つに記載の部品搭載装置を提供する。 According to the fourth aspect of the present invention, from the first aspect, the control unit further controls the relay stage camera to image the component held by the mounting nozzle to obtain a second image. A component mounting apparatus according to any one of the third aspects is provided.
 本発明の第5態様によれば、前記制御部はさらに、前記第2の画像を用いて、前記搭載ノズルに保持されている部品を認識する第2部品認識を実行し、前記第2部品認識の結果を利用して、前記搭載動作において前記実装点に部品を搭載する際の目標位置を算出する、第4態様に記載の部品搭載装置を提供する。 According to the fifth aspect of the present invention, the control unit further uses the second image to perform second component recognition for recognizing the component held by the mounting nozzle, and performs the second component recognition. A component mounting apparatus according to a fourth aspect, wherein the result of (1) is used to calculate a target position for mounting a component on the mounting point in the mounting operation.
 本発明の第6態様によれば、前記制御部は、前記搬送動作において、部品をそれぞれ保持した複数の前記搭載ノズルを基板の上方に移動させて複数の部品を一括搬送する、第1態様から第5態様のいずれか1つに記載の部品搭載装置を提供する。 According to the sixth aspect of the present invention, in the conveying operation, the controller moves the plurality of mounting nozzles holding the respective components above the substrate to collectively convey the plurality of components from the first aspect. A component mounting apparatus according to any one of the fifth aspects is provided.
 本発明の第7態様によれば、前記第1の部品移送部は、複数の取出ノズルを備え、前記制御部は、前記第1の部品移送部を制御して、前記取出ノズルで前記部品供給ユニットから部品を取り出す取出動作を、前記取出ノズル別に順次実行し、複数の前記取出ノズルによって複数の部品を保持した状態で、複数の前記取出ノズルを前記中継ステージの上方へ搬送する搬送動作を実行し、前記取出ノズルが保持する部品を前記中継ステージに載置する載置動作を、前記取出ノズル別に順次実行する、第1態様から第6態様のいずれか1つに記載の部品搭載装置を提供する。 According to the seventh aspect of the present invention, the first component transfer section includes a plurality of take-out nozzles, and the control section controls the first component transfer section to supply the components with the take-out nozzles. A retrieving operation for retrieving a component from a unit is sequentially performed for each of the retrieving nozzles, and a carrying operation is performed for transporting a plurality of the retrieving nozzles upward to the intermediate stage while a plurality of the components are held by the plurality of the retrieving nozzles. and sequentially executing the placement operation of placing the component held by the take-out nozzle on the relay stage for each of the take-out nozzles. do.
 本発明の第8態様によれば、前記第1部品移送部における前記取出ノズルの本数は、前記第2部品移送部における前記搭載ノズルの本数よりも多い、第7態様に記載の部品搭載装置を提供する。 According to an eighth aspect of the present invention, the component mounting apparatus according to the seventh aspect, wherein the number of the take-out nozzles in the first component transfer section is greater than the number of the mounting nozzles in the second component transfer section. offer.
 本発明の第9態様によれば、前記第1部品移送部における前記取出ノズルの配列ピッチは、前記第2部品移送部における前記搭載ノズルの配列ピッチと同じまたは1/n(nは1以上の整数)である、第8態様に記載の部品搭載装置を提供する。 According to the ninth aspect of the present invention, the arrangement pitch of the take-out nozzles in the first component transfer section is the same as or 1/n (n is 1 or more) than the arrangement pitch of the mounting nozzles in the second component transfer section. (integer).
 本発明の第10態様によれば、前記第1部品移送部における前記取出ノズルの本数は、前記第2部品移送部における前記搭載ノズルの本数の2倍以上である、第8態様又は第9態様に記載の部品搭載装置を提供する。 According to the tenth aspect of the present invention, the eighth aspect or the ninth aspect, wherein the number of the take-out nozzles in the first component transfer section is at least twice the number of the mounting nozzles in the second component transfer section. To provide the component mounting apparatus described in .
 本発明の第11様によれば、部品供給ユニットから部品を取り出して基板に搭載する部品搭載方法であって、制御部により、第1の部品移送部を制御して、前記部品供給ユニットから部品を取り出して中継ステージに移送し、前記制御部により、中継ステージカメラを制御して、前記中継ステージ上の複数の部品を撮像して第1の画像を取得し、前記制御部により、前記第1の画像を用いて、前記中継ステージ上の複数の部品を認識する第1部品認識を実行し、前記制御部により、複数の搭載ノズルを有する第2の部品移送部を制御して、前記第1部品認識の結果を利用して前記搭載ノズルを前記中継ステージ上の部品に位置合わせして部品をピックアップするピックアップ動作を、前記搭載ノズル別に順次実行し、部品をピックアップした前記搭載ノズルを基板の上方に移動させる搬送動作を実行し、前記搭載ノズルが保持する部品を基板の実装点に搭載する搭載動作を、前記搭載ノズル別に順次実行する、部品搭載方法を提供する。 According to the eleventh aspect of the present invention, there is provided a component mounting method for picking up a component from a component supply unit and mounting it on a substrate, wherein a control unit controls a first component transfer unit to remove the component from the component supply unit. is taken out and transferred to the relay stage, the control unit controls the relay stage camera to image a plurality of components on the relay stage to acquire a first image, and the control unit controls the first a first component recognition for recognizing a plurality of components on the intermediate stage using the image of the intermediate stage, and the control unit controls a second component transfer unit having a plurality of mounting nozzles to perform the first component recognition. A pickup operation for aligning the mounting nozzles with the components on the relay stage and picking up the components using the result of component recognition is sequentially performed for each mounting nozzle, and the mounting nozzles that have picked up the components are moved above the board. To provide a component mounting method for sequentially executing a carrying operation for moving a component held by the mounting nozzle to a mounting point on a substrate for each mounting nozzle.
 本発明の第12態様によれば、前記中継ステージには、部品が載置される仮置部が設けられており、前記仮置部は下方から部品を透視可能であり、前記中継ステージカメラは前記仮置部の下方から部品を撮像する、第11態様に記載の部品搭載方法を提供する。 According to the twelfth aspect of the present invention, the relay stage is provided with a temporary placement section on which the component is placed, the temporary placement section allows the component to be seen through from below, and the relay stage camera There is provided the component mounting method according to the eleventh mode, wherein the component is imaged from below the temporary placement section.
 本発明の第13態様によれば、前記中継ステージカメラを複数設けて、複数の前記中継ステージカメラによって前記第1の画像を取得する、第11態様又は第12態様に記載の部品搭載方法を提供する。 According to a thirteenth aspect of the present invention, there is provided the component mounting method according to the eleventh aspect or the twelfth aspect, wherein a plurality of the relay stage cameras are provided and the first image is acquired by the plurality of the relay stage cameras. do.
 本発明の第14態様によれば、さらに、前記制御部により、前記中継ステージカメラを制御して、前記搭載ノズルに保持されている部品を撮像して第2の画像を取得する、第11態様から第13態様のいずれか1つに記載の部品搭載方法を提供する。 According to the 14th aspect of the present invention, the eleventh aspect is further characterized in that the control unit controls the relay stage camera to capture an image of the component held by the mounting nozzle to obtain a second image. A component mounting method according to any one of the thirteenth aspects from the above is provided.
 本発明の第15態様によれば、さらに、前記制御部により、前記第2の画像を用いて、前記搭載ノズルに保持されている部品を認識する第2部品認識を実行し、前記制御部により、前記第2部品認識の結果を利用して、前記搭載動作において前記実装点に部品を搭載する際の目標位置を算出する、第14態様に記載の部品搭載方法を提供する。 According to the fifteenth aspect of the present invention, the control unit further executes second component recognition using the second image to recognize a component held by the mounting nozzle, and the control unit and calculating a target position for mounting the component on the mounting point in the mounting operation by using the result of the second component recognition.
 本発明の第16態様によれば、前記搬送動作において、部品をそれぞれ保持した複数の前記搭載ノズルを基板の上方に移動させて複数の部品を一括搬送する、第11態様から第15態様のいずれか1つに記載の部品搭載方法を提供する。 According to the 16th aspect of the present invention, in the carrying operation, the plurality of mounting nozzles each holding the component is moved above the substrate to collectively carry the plurality of components. or provides the component mounting method according to one of the above.
 本発明の第17態様によれば、前記第1の部品移送部には、複数の取出ノズルが設けられており、さらに、前記制御部により、前記第1の部品移送部を制御して、前記取出ノズルで前記部品供給ユニットから部品を取り出す取出動作を、前記取出ノズル別に順次実行し、複数の前記取出ノズルによって複数の部品を保持した状態で、複数の前記取出ノズルを前記中継ステージの上方へ搬送する搬送動作を実行し、前記取出ノズルが保持する部品を前記中継ステージに載置する載置動作を、前記取出ノズル別に順次実行する、第11態様から第16態様のいずれか1つに記載の部品搭載方法を提供する。 According to the seventeenth aspect of the present invention, the first component transfer section is provided with a plurality of take-out nozzles, and the control section controls the first component transfer section to A retrieving operation of retrieving components from the component supply unit by the retrieving nozzles is sequentially performed for each of the retrieving nozzles, and the plurality of retrieving nozzles are moved upwardly of the intermediate stage while a plurality of components are held by the plurality of retrieving nozzles. According to any one of the eleventh to sixteenth aspects, wherein a carrying operation of carrying is executed, and a placing operation of placing the component held by the extraction nozzle on the intermediate stage is sequentially carried out for each of the extraction nozzles. to provide a component mounting method for
 本発明の第18態様によれば、前記第1部品移送部における前記取出ノズルの本数は、前記第2部品移送部における前記搭載ノズルの本数よりも多い、第17態様に記載の部品搭載方法を提供する。 According to an eighteenth aspect of the present invention, the component mounting method according to the seventeenth aspect, wherein the number of the take-out nozzles in the first component transfer section is greater than the number of the mounting nozzles in the second component transfer section. offer.
 本発明の第19態様によれば、前記第1部品移送部における前記取出ノズルの配列ピッチは、前記第2部品移送部における前記搭載ノズルの配列ピッチと同じまたは1/n(nは1以上の整数)である、第18態様に記載の部品搭載方法を提供する。 According to the nineteenth aspect of the present invention, the arrangement pitch of the take-out nozzles in the first component transfer section is the same as or 1/n (n is 1 or greater) than the arrangement pitch of the mounting nozzles in the second component transfer section. integer).
 本発明の第20態様によれば、前記第1部品移送部における前記取出ノズルの本数は、前記第2部品移送部における前記搭載ノズルの本数の2倍以上である、第18態様又は第19態様に記載の部品搭載方法を提供する。 According to the twentieth aspect of the present invention, the eighteenth aspect or the nineteenth aspect, wherein the number of the take-out nozzles in the first component transfer section is at least twice the number of the mounting nozzles in the second component transfer section. to provide a component mounting method according to .
 以下、本発明に係る部品搭載装置およびそれを用いた部品搭載方法の例示的な実施形態について、添付の図面を参照しながら説明する。本発明は、以下の実施形態の具体的な構成に限定されるものではなく、同様の技術的思想に基づく構成が本発明に含まれる。 Exemplary embodiments of a component mounting apparatus according to the present invention and a component mounting method using the same will be described below with reference to the accompanying drawings. The present invention is not limited to the specific configurations of the following embodiments, and includes configurations based on similar technical ideas.
(実施形態1)
 まず、図1を参照して部品搭載装置1の構成を説明する。図1は、実施形態1の部品搭載装置1の概略平面図である。
(Embodiment 1)
First, the configuration of the component mounting apparatus 1 will be described with reference to FIG. FIG. 1 is a schematic plan view of a component mounting apparatus 1 of Embodiment 1. FIG.
 実施形態1の部品搭載装置1は、作業エリアAに位置決めされた基板2に電子部品などの部品を搭載・実装するための装置である。 The component mounting device 1 of Embodiment 1 is a device for mounting/mounting components such as electronic components on the substrate 2 positioned in the work area A.
 図1に示す部品搭載装置1は、基板搬送ユニット4と、第1部品供給ユニット6と、第2部品供給ユニット8と、第3部品供給ユニット10と、取出ヘッド12と、搭載ヘッド14と、ヘッドカメラ16と、XYテーブル17(X軸ビーム18、20およびY軸テーブル22、24)と、中継ステージ26と、中継ステージカメラ28と、第1部品廃棄ボックス30と、部品カメラ32と、第2部品廃棄ボックス34と、制御部35とを備える。 The component mounting apparatus 1 shown in FIG. 1 includes a board transfer unit 4, a first component supply unit 6, a second component supply unit 8, a third component supply unit 10, a pick-up head 12, a mounting head 14, Head camera 16, XY table 17 (X-axis beams 18, 20 and Y-axis tables 22, 24), relay stage 26, relay stage camera 28, first parts disposal box 30, parts camera 32, A two-component disposal box 34 and a control unit 35 are provided.
 基板搬送ユニット4は、基板2を保持・搬送して作業エリアAに位置決めするためのユニットである。基板搬送ユニット4は、基板2をX方向に搬送する搬送コンベア5を有し、図1では主に搬送コンベア5を図示している。作業エリアAは、基板2に対して部品の搭載作業を実行するための領域であり、搬送コンベア5上に設定される。 The substrate transport unit 4 is a unit for holding and transporting the substrate 2 and positioning it in the work area A. The substrate transport unit 4 has a transport conveyor 5 that transports the substrate 2 in the X direction, and FIG. 1 mainly shows the transport conveyor 5 . The work area A is an area for performing the component mounting work on the board 2 and is set on the transport conveyor 5 .
 部品供給ユニット6、8、10はそれぞれ、電子部品などの部品を供給するためのユニットである。実施形態1の部品供給ユニット6、8、10はテープフィーダでそれぞれ構成されており、部品を収容したキャリアテープを所定の部品取り出し位置まで搬送する機能を有する。 The component supply units 6, 8, and 10 are units for supplying components such as electronic components. The component supply units 6, 8, and 10 of Embodiment 1 are each composed of a tape feeder, and have a function of conveying a carrier tape containing components to a predetermined component pick-up position.
 図1に示すように、第1部品供給ユニット6は作業エリアAに対して一方側(FRONT)に配置されており、第2部品供給ユニット8および第3部品供給ユニット10は他方側(REAR)に配置されている。 As shown in FIG. 1, the first component supply unit 6 is arranged on one side (FRONT) of the work area A, and the second component supply unit 8 and the third component supply unit 10 are arranged on the other side (REAR). are placed in
 実施形態1の部品供給ユニット6、8、10は、それぞれ異なる大きさの部品を供給する。具体的には、第1部品供給ユニット6は微小部品を供給し、第2部品供給ユニット8は小型部品を供給し、第3部品供給ユニット10は中型部品を供給する。微小部品のサイズは例えば、平面視における縦横の寸法が0.4mm×0.2mm以下であり、小型部品のサイズは例えば、0.6mm×0.3mm~1.0mm×0.5mmである。中型部品は例えば、縦横の寸法が1.6mm×0.8mm以上であって、8mm~32mm幅のキャリアテープに収容されてテープフィーダから供給される部品である。 The component supply units 6, 8, and 10 of Embodiment 1 supply components of different sizes. Specifically, the first component supply unit 6 supplies minute components, the second component supply unit 8 supplies small components, and the third component supply unit 10 supplies medium-sized components. The size of a minute part is, for example, 0.4 mm×0.2 mm or less in horizontal and vertical dimensions in plan view, and the size of a small part is, for example, 0.6 mm×0.3 mm to 1.0 mm×0.5 mm. A medium-sized part is, for example, a part whose length and width dimensions are 1.6 mm×0.8 mm or more and which is accommodated in a carrier tape with a width of 8 mm to 32 mm and supplied from a tape feeder.
 取出ヘッド12は、第1部品供給ユニット6が供給する微小部品を取り出して、中継ステージ26に移送するための部品移送部(第1の部品移送部)である。取出ヘッド12は、第1部品供給ユニット6に対応して設けられており、第2部品供給ユニット8および第3部品供給ユニット10には対応しない。すなわち、取出ヘッド12は、第2部品供給ユニット8および第3部品供給ユニット10が供給する部品の取り出しを行わないように制御される。 The take-out head 12 is a component transfer section (first component transfer section) for picking up micro-components supplied by the first component supply unit 6 and transferring them to the relay stage 26 . The take-out head 12 is provided corresponding to the first component supply unit 6 and not corresponding to the second component supply unit 8 and the third component supply unit 10 . That is, the take-out head 12 is controlled so as not to take out the components supplied by the second component supply unit 8 and the third component supply unit 10 .
 搭載ヘッド14は、部品をピックアップして基板2に移送・搭載するための部品移送部(第2の部品移送部)である。搭載ヘッド14は、部品供給ユニット6、8、10のいずれにも対応して設けられており、中継ステージ26に載置された微小部品をピックアップして基板2に搭載する機能と、部品供給ユニット8、10から小型部品あるいは中型部品を直接ピックアップして基板2に搭載する機能とを有する。 The mounting head 14 is a component transfer section (second component transfer section) for picking up a component and transferring/mounting it onto the substrate 2 . The mounting head 14 is provided corresponding to each of the component supply units 6, 8, and 10, and has a function of picking up a minute component placed on the relay stage 26 and mounting it on the board 2, and a component supply unit. It also has a function of directly picking up small-sized or medium-sized parts from 8 and 10 and mounting them on the board 2 .
 ヘッドカメラ16は、搭載ヘッド14に設けられたカメラである。ヘッドカメラ16は、撮像方向が下方に向けられた状態で搭載ヘッド14に取り付けられており、搭載ヘッド14の移動に伴って一体的に移動する。ヘッドカメラ16は、作業エリアAに配置された基板2などを撮像するように制御される。 The head camera 16 is a camera provided on the mounting head 14 . The head camera 16 is attached to the mounting head 14 with its imaging direction directed downward, and moves together with the movement of the mounting head 14 . The head camera 16 is controlled so as to capture an image of the board 2 placed in the work area A and the like.
 XYテーブル17は、取出ヘッド12および搭載ヘッド14のそれぞれをXY方向に移動可能に支持する部材である。XYテーブル17は、第1X軸ビーム18と、第2X軸ビーム20と、Y軸ビーム22、24とを備える。 The XY table 17 is a member that supports each of the pick-up head 12 and the mounting head 14 so as to be movable in the XY directions. The XY table 17 comprises a first X-axis beam 18, a second X-axis beam 20, and Y- axis beams 22,24.
 第1X軸ビーム18は、Y軸ビーム22、24の間にX方向に沿って延びた状態で設けられ、取出ヘッド12をX方向に移動可能に支持する。同様に、第2X軸ビーム20は、Y軸ビーム22、24の間にX方向に沿って延びた状態で設けられ、搭載ヘッド14をX方向に移動可能に支持する。Y軸ビーム22、24はそれぞれ、第1X軸ビーム18および第2X軸ビーム20をY方向に移動可能に支持する。 The first X-axis beam 18 is provided between the Y- axis beams 22 and 24, extending along the X direction, and supports the take-out head 12 so as to be movable in the X direction. Similarly, the second X-axis beam 20 is provided between the Y- axis beams 22 and 24 to extend along the X direction and supports the mounting head 14 so as to be movable in the X direction. Y- axis beams 22 and 24 respectively support first X-axis beam 18 and second X-axis beam 20 for movement in the Y direction.
 中継ステージ26は、第1部品供給ユニット6から供給される微小部品を仮置きするためのステージである。中継ステージ26には中継ステージカメラ28が設けられる。 The relay stage 26 is a stage for temporarily placing minute components supplied from the first component supply unit 6 . A relay stage camera 28 is provided on the relay stage 26 .
 中継ステージカメラ28は、中継ステージ26に載置された微小部品を撮像するためのカメラである。中継ステージカメラ28が撮像する画像に基づいて、微小部品の位置や向きを認識し、搭載ヘッド14がピックアップする際にノズルと部品の位置合わせを行うことができる。位置合わせを行うことで、部品が微小部品であっても精度良くピックアップして保持することができ、基板2に対する搭載精度が向上する。さらには、部品同士を狭い間隔で基板2に搭載する「狭隣接実装」にも適している(図34A、図34B参照)。 The relay stage camera 28 is a camera for capturing images of minute parts placed on the relay stage 26 . Based on the image captured by the relay stage camera 28, the position and orientation of the minute component can be recognized, and the nozzle and the component can be aligned when the mounting head 14 picks up the component. By aligning the parts, even if the parts are minute parts, they can be picked up and held with high accuracy, and the mounting accuracy on the substrate 2 is improved. Furthermore, it is also suitable for "narrow adjacent mounting" in which components are mounted on the substrate 2 at narrow intervals (see FIGS. 34A and 34B).
 第1部品廃棄ボックス30は、中継ステージ26に隣接して設けられた部品廃棄用のボックスである。中継ステージ26に載置された微小部品の一部が、第1部品廃棄ボックス30に選択的に廃棄される。 The first parts disposal box 30 is a box for parts disposal provided adjacent to the relay stage 26 . A part of the minute components placed on the relay stage 26 is selectively discarded in the first component discard box 30 .
 部品カメラ32は、搭載ヘッド14が保持する部品を撮像するためのカメラである。部品カメラ32は、撮像方向が上方に向けられた状態で固定されている。 The parts camera 32 is a camera for imaging the parts held by the mounting head 14 . The component camera 32 is fixed with its imaging direction directed upward.
 第2部品廃棄ボックス34は、第1部品廃棄ボックス30と同様の部品廃棄用のボックスである。搭載ヘッド14が保持する小型部品あるいは中型部品の一部が、第2部品廃棄ボックス34に選択的に廃棄される。 The second parts disposal box 34 is a box for parts disposal similar to the first parts disposal box 30 . Some of the small-sized components or medium-sized components held by the mounting head 14 are selectively discarded in the second component discard box 34 .
 図2~図8を用いて、取出ヘッド12および搭載ヘッド14の構成・機能について説明する。図2は、取出ヘッド12の下方斜視図であり、図3は、搭載ヘッド14の下方斜視図である。 The configurations and functions of the take-out head 12 and the mounting head 14 will be described with reference to FIGS. 2 to 8. FIG. 2 is a bottom perspective view of pick head 12 and FIG. 3 is a bottom perspective view of load head 14. FIG.
 図2に示すように、取出ヘッド12は、複数の取出ノズル36と、本体部38とを備える。 As shown in FIG. 2, the extraction head 12 includes a plurality of extraction nozzles 36 and a body portion 38. As shown in FIG.
 取出ノズル36は、前述した微小部品を移送するための保持ノズルである。取出ノズル36はX方向およびY方向に規則的に間隔を空けて配置されている。取出ノズル36のピッチは、X方向がピッチX1、Y方向がピッチY1で等間隔に設定されている。実施形態1ではX方向に4本ずつ、Y方向に4本ずつの計16本の取出ノズル36を設けている。 The take-out nozzle 36 is a holding nozzle for transferring the minute parts mentioned above. The extraction nozzles 36 are regularly spaced in the X and Y directions. The pitch of the extraction nozzles 36 is set at equal intervals, with a pitch X1 in the X direction and a pitch Y1 in the Y direction. In Embodiment 1, a total of 16 extraction nozzles 36 are provided, four in the X direction and four in the Y direction.
 本体部38は、複数の取出ノズル36を支持する部材である。本体部38は、複数の取出ノズル36を支持するとともに、複数の取出ノズル36を駆動するための駆動機構を内部に備えている。当該駆動機構は、取出ノズル36の昇降動作や、取出ノズル36による部品の吸着動作を実行する。詳細については後述する。 The body part 38 is a member that supports the plurality of extraction nozzles 36 . The body portion 38 supports the plurality of extraction nozzles 36 and internally includes a drive mechanism for driving the plurality of extraction nozzles 36 . The drive mechanism performs lifting operation of the extraction nozzle 36 and suction operation of the component by the extraction nozzle 36 . Details will be described later.
 図3に示すように、搭載ヘッド14は、ヘッドカメラ16と、複数の搭載ノズル40と、複数のシャフト42と、本体部44とを備える。 As shown in FIG. 3, the mounting head 14 includes a head camera 16, a plurality of mounting nozzles 40, a plurality of shafts 42, and a body portion 44.
 搭載ノズル40は、前述した微小部品、小型部品あるいは中型部品を移送するための保持ノズルである。搭載ノズル40はX方向およびY方向に規則的に間隔を空けて配置されている。搭載ノズル40のピッチは、X方向がピッチX2、Y方向がピッチY2で等間隔に設定されている。実施形態1ではX方向に4本ずつ、Y方向に2本ずつの合計8本の搭載ノズル40を設けている。すなわち、搭載ノズル40の本数に対して、取出ノズル36の本数を2倍にしている。 The mounting nozzle 40 is a holding nozzle for transferring the above-mentioned minute parts, small parts or medium-sized parts. The mounted nozzles 40 are regularly spaced in the X and Y directions. The pitch of the mounted nozzles 40 is set at equal intervals with a pitch X2 in the X direction and a pitch Y2 in the Y direction. In the first embodiment, a total of eight mounting nozzles 40 are provided, four in the X direction and two in the Y direction. That is, the number of extraction nozzles 36 is doubled with respect to the number of mounting nozzles 40 .
 実施形態1では、取出ノズル36のX方向のピッチX1と、搭載ノズル40のX方向のピッチX2を同じに設定し、取出ノズル36のY方向のピッチY1を、搭載ノズル40のY方向のピッチY2の1/2に設定している。Y方向のピッチY1、Y2の関係は1/2に設定する場合に限らず、1/n(nは1以上の整数)に設定してもよい。 In the first embodiment, the pitch X1 of the extraction nozzles 36 in the X direction and the pitch X2 of the mounting nozzles 40 in the X direction are set to be the same, and the pitch Y1 of the extraction nozzles 36 in the Y direction is the same as the pitch in the Y direction of the mounting nozzles 40. It is set to 1/2 of Y2. The relationship between the pitches Y1 and Y2 in the Y direction is not limited to being set to 1/2, but may be set to 1/n (n is an integer equal to or greater than 1).
 シャフト42は、搭載ノズル40を交換可能に取り付けるための部材である。図3に示すように1つのシャフト42に1つの搭載ノズル40が取り付けられる。 The shaft 42 is a member for attaching the mounting nozzle 40 in a replaceable manner. One mounting nozzle 40 is attached to one shaft 42 as shown in FIG.
 本体部44は、ヘッドカメラ16および複数のシャフト42を支持する部材である。本体部44の内部には、複数のシャフト42を駆動するための駆動機構が設けられている。当該駆動機構は、シャフト42およびシャフト42に取り付けられた搭載ノズル40の一体的な昇降動作や、搭載ノズル40による部品の吸着動作を実行する。詳細については後述する。 The body part 44 is a member that supports the head camera 16 and the plurality of shafts 42 . A driving mechanism for driving the plurality of shafts 42 is provided inside the body portion 44 . The drive mechanism performs an integral lifting operation of the shaft 42 and the mounting nozzle 40 attached to the shaft 42 and an operation of picking up a component by the mounting nozzle 40 . Details will be described later.
 図4、図5は、取出ノズル36の先端部を示す概略図である。 4 and 5 are schematic diagrams showing the tip of the extraction nozzle 36. FIG.
 図4では、(a)に取出ノズル36の先端部の拡大断面図を示し、(b)に取出ノズル36の先端部の底面図を示す。 4, (a) shows an enlarged cross-sectional view of the tip of the extraction nozzle 36, and (b) shows a bottom view of the tip of the extraction nozzle 36. As shown in FIG.
 図4に示すように、取出ノズル36の先端部には通気性を有する多孔質部材46が配置されている。多孔質部材46は、取出ノズル36の先端部に設けられた凹部に嵌め込まれるとともに、内部の吸引孔48に面するように配置される。吸引孔48は図示しない吸引源に接続されており、部品を吸着するための負圧を発生させる。多孔質部材46は吸引孔48が発生させる負圧によって、その底面46Aに部品を吸着する。多孔質部材46の底面46Aは、取出ノズル36の下端面に相当する。多孔質部材46の材質は、吸引孔48が発生させる負圧を底面46Aに伝えるものであれば任意の材質であってもよい。 As shown in FIG. 4, a porous member 46 having air permeability is arranged at the tip of the ejection nozzle 36 . The porous member 46 is fitted into a recess provided at the tip of the take-out nozzle 36 and arranged to face the suction hole 48 inside. The suction hole 48 is connected to a suction source (not shown) to generate negative pressure for sucking the component. The porous member 46 attracts components to its bottom surface 46A by the negative pressure generated by the suction holes 48 . A bottom surface 46</b>A of the porous member 46 corresponds to the lower end surface of the ejection nozzle 36 . The material of the porous member 46 may be any material as long as it transmits the negative pressure generated by the suction holes 48 to the bottom surface 46A.
 図5では、(a)に取出ノズル36によって部品Pをピックアップする直前の状態を示し、(b)に部品Pをピックアップした直後の状態を示す。 In FIG. 5, (a) shows the state immediately before picking up the component P by the take-out nozzle 36, and (b) shows the state immediately after picking up the component P.
 図5の(a)に示すように、第1部品供給ユニット6が有するキャリアテープ50のポケット52には、微小部品としての部品Pが収容されている。取出ノズル36の多孔質部材46を介して負圧を発生させた状態で、取出ノズル36の先端部を部品Pに近付けて部品Pを吸着する。図5の(b)に示すように取出ノズル36を上昇させることで、キャリアテープ50のポケット52から部品Pが取り出される。 As shown in (a) of FIG. 5, the pocket 52 of the carrier tape 50 of the first component supply unit 6 contains a component P as a minute component. In a state in which negative pressure is generated through the porous member 46 of the take-out nozzle 36, the tip of the take-out nozzle 36 is brought close to the part P to suck the part P. The part P is taken out from the pocket 52 of the carrier tape 50 by raising the take-out nozzle 36 as shown in FIG. 5(b).
 図6、図7は、搭載ノズル40の先端部を示す下方斜視図である。 6 and 7 are bottom perspective views showing the tip of the mounting nozzle 40. FIG.
 図6に示すように、搭載ノズル40はその下端面に吸引孔54を形成している。吸引孔54は図示しない吸引源に接続されており、部品Pを吸着するための負圧を発生させる。吸引孔54の形状は図6に示すような形状に限らず、任意の形状であってもよい。図7に示すように、搭載ノズル40の下端面を部品P(微小部品、小型部品あるいは中型部品)に近付けて部品Pを吸着する。 As shown in FIG. 6, the mounting nozzle 40 has a suction hole 54 formed in its lower end surface. The suction hole 54 is connected to a suction source (not shown) to generate a negative pressure for sucking the component P. The shape of the suction hole 54 is not limited to the shape shown in FIG. 6, and may be any shape. As shown in FIG. 7, the lower end surface of the mounting nozzle 40 is brought close to the component P (micro component, small component, or medium-sized component) to pick up the component P. As shown in FIG.
 次に、搭載ノズル40および取出ノズル36の駆動機構について、図8A、図8B、図9を用いて説明する。 Next, the drive mechanism of the mounting nozzle 40 and the extraction nozzle 36 will be described using FIGS. 8A, 8B, and 9. FIG.
 図8A、図8Bはそれぞれ、搭載ヘッド14の本体部44の内部構造を示す縦断面図、横断面図である。 8A and 8B are a vertical cross-sectional view and a cross-sectional view showing the internal structure of the body portion 44 of the mounting head 14, respectively.
 図8A、図8Bに示すように、搭載ノズル40の駆動機構として、複数のサーボモータ56と、複数のプーリ57と、歯付きベルト58と、θ軸モータ59と、プーリ60とを備える。 As shown in FIGS. 8A and 8B, the drive mechanism for the mounting nozzle 40 includes a plurality of servomotors 56, a plurality of pulleys 57, a toothed belt 58, a .theta.-axis motor 59, and a pulley 60.
 サーボモータ56は、シャフト42および搭載ノズル40をZ方向に上下動させるモータである。サーボモータ56は、シャフト42および搭載ノズル40の組合せに対して1つ設けられており、図8A、図8Bに示す例では計8個のサーボモータ56が設けられている。それぞれのサーボモータ56は、リニアモータ61と、エンコーダ62とを備える。 The servomotor 56 is a motor that vertically moves the shaft 42 and the mounting nozzle 40 in the Z direction. One servomotor 56 is provided for the combination of the shaft 42 and the mounted nozzle 40, and a total of eight servomotors 56 are provided in the example shown in FIGS. 8A and 8B. Each servo motor 56 has a linear motor 61 and an encoder 62 .
 リニアモータ61は、上下方向に挿通したシャフト42を昇降させるモータ部である。エンコーダ62は、シャフト42の移動に伴ってシャフト42の移動距離と方向を示すエンコーダパルス(位置信号)を出力する部材である。エンコーダ62が出力するエンコーダパルスは、搭載ノズル40の高さ情報として利用される。 The linear motor 61 is a motor unit that raises and lowers the shaft 42 inserted in the vertical direction. The encoder 62 is a member that outputs encoder pulses (position signals) indicating the moving distance and direction of the shaft 42 as the shaft 42 moves. The encoder pulse output by the encoder 62 is used as height information of the mounted nozzle 40 .
 プーリ57は、シャフト42を囲むように配置されるプーリである。プーリ57とシャフト42は回転方向R1への回転力が伝達されるように噛み合いながら、シャフト42の上下動はプーリ57に伝達されないように接続される。実施形態1では、サーボモータ56と同様に計8個のプーリ57が設けられており、複数のプーリ57はいずれも歯付きベルト58に噛み合っている。 The pulley 57 is a pulley arranged to surround the shaft 42 . The pulley 57 and the shaft 42 are connected so that the vertical movement of the shaft 42 is not transmitted to the pulley 57 while meshing so that the rotational force in the rotation direction R<b>1 is transmitted. In Embodiment 1, a total of eight pulleys 57 are provided like the servo motors 56 , and all of the plurality of pulleys 57 are meshed with the toothed belt 58 .
 歯付きベルト58は、複数のプーリ57を同期して回転させるためのベルトである。歯付きベルト58は、θ軸モータ59に対してプーリ60を介して接続されている。 The toothed belt 58 is a belt for synchronously rotating a plurality of pulleys 57 . The toothed belt 58 is connected to the θ-axis motor 59 via pulleys 60 .
 θ軸モータ59は、歯付きベルト58を回転させるためのモータである。θ軸モータ59は出力軸59Aを有し、出力軸59Aはプーリ60に係合する。θ軸モータ59の回転力は、出力軸59Aを介してプーリ60および歯付きベルト58に伝達される。 The θ-axis motor 59 is a motor for rotating the toothed belt 58 . The θ-axis motor 59 has an output shaft 59A, and the output shaft 59A is engaged with the pulley 60. As shown in FIG. The rotational force of the θ-axis motor 59 is transmitted to the pulley 60 and the toothed belt 58 via the output shaft 59A.
 上述した搭載ノズル40の駆動機構によれば、θ軸モータ59による駆動によって、複数の搭載ノズル40を回転方向R1に一体的に回転駆動可能であり、且つ、それぞれのサーボモータ56による駆動によって搭載ノズル40を上下方向D1に個別に昇降駆動可能である。 According to the drive mechanism of the mounting nozzles 40 described above, the plurality of mounting nozzles 40 can be integrally rotated in the rotation direction R1 by being driven by the θ-axis motor 59, and can be mounted by being driven by the respective servo motors 56. The nozzles 40 can be individually driven up and down in the vertical direction D1.
 搭載ノズル40の上記動作は、取出ヘッド12の取出ノズル36についても同様である。取出ノズル36の駆動機構について、図9を用いて説明する。図9は、取出ヘッド12の本体部38の内部構造を示す平面図である。 The above operation of the mounting nozzle 40 is the same for the extraction nozzle 36 of the extraction head 12 . A drive mechanism for the extraction nozzle 36 will be described with reference to FIG. FIG. 9 is a plan view showing the internal structure of the body portion 38 of the take-out head 12. As shown in FIG.
 図9に示すように、取出ノズル36の駆動機構として、複数のサーボモータ63と、複数のプーリ64と、歯付きベルト65と、出力軸66Aを有するθ軸モータ66と、プーリ67とを備える。それぞれのサーボモータ63は、リニアモータ68と、エンコーダ69とを備える。これらの構成の機能や接続関係については、図8A、図8Bで説明した搭載ノズル40の駆動機構と同様であるため、説明を省略する。 As shown in FIG. 9, the drive mechanism for the extraction nozzle 36 includes a plurality of servomotors 63, a plurality of pulleys 64, a toothed belt 65, a .theta.-axis motor 66 having an output shaft 66A, and a pulley 67. . Each servo motor 63 has a linear motor 68 and an encoder 69 . The functions and connection relationships of these configurations are the same as the driving mechanism of the mounted nozzle 40 described with reference to FIGS. 8A and 8B, so description thereof will be omitted.
 図9に示した取出ノズル36の駆動機構によれば、θ軸モータ66による駆動によって複数の取出ノズル36を回転方向R2に一体的に回転駆動可能であり、且つ、それぞれのサーボモータ63による駆動によって取出ノズル36を上下方向D2に個々に昇降駆動可能である。 According to the drive mechanism of the extraction nozzles 36 shown in FIG. , the extraction nozzles 36 can be driven up and down individually in the vertical direction D2.
 次に、中継ステージ26の構成について、図10~図16を用いて説明する。 Next, the configuration of the relay stage 26 will be explained using FIGS. 10 to 16. FIG.
 図10は、中継ステージ26の概略斜視図であり、図11は、中継ステージ26の概略縦断面図であり、図12は、中継ステージ26の概略平面図である。 10 is a schematic perspective view of the relay stage 26, FIG. 11 is a schematic longitudinal sectional view of the relay stage 26, and FIG. 12 is a schematic plan view of the relay stage 26. FIG.
 図10~図12に示すように、中継ステージ26は、中継ステージカメラ28と、第1部品廃棄ボックス30と、仮置部70と、筐体74と、部品除去ブラシ76と、ブラシ駆動機構78とを備える。 As shown in FIGS. 10 to 12, the relay stage 26 includes a relay stage camera 28, a first component disposal box 30, a temporary placement section 70, a housing 74, a component removing brush 76, and a brush driving mechanism 78. and
 仮置部70は、微小部品としての部品Pを仮置きするための部材である。仮置部70の上面は、部品Pを載置するための載置面71である。載置面71は、複数の部品Pを載置可能な広さを有し、実施形態1では、前述した取出ヘッド12あるいは搭載ヘッド14が複数の部品Pを一括して移送する際に全ての部品Pを配置可能な広さを有する。図10、図11では、載置面71に計16個の部品Pが載置された状態を例示する。 The temporary placement section 70 is a member for temporarily placing a component P as a minute component. The upper surface of the temporary placement portion 70 is a placement surface 71 for placing the component P thereon. The placement surface 71 has a size that allows a plurality of components P to be placed thereon. It has an area in which the part P can be arranged. 10 and 11 illustrate a state in which a total of 16 parts P are placed on the placement surface 71. FIG.
 図11に示すように、載置面71の高さ位置は、中継ステージ26に関する基準高さ(第1基準高さH1)に設定される。仮置部70は、第1基準高さH1を設定するための基準部材(第1基準部材)として用いられる。 As shown in FIG. 11, the height position of the mounting surface 71 is set at a reference height (first reference height H1) with respect to the relay stage 26. As shown in FIG. The temporary placement portion 70 is used as a reference member (first reference member) for setting the first reference height H1.
 実施形態1の仮置部70は透明な板状の部材で構成されている。仮置部70の下方に設けられた中継ステージカメラ28によって仮置部70を厚み方向に透視可能である。 The temporary placement portion 70 of Embodiment 1 is composed of a transparent plate-like member. The temporary placement section 70 can be seen through in the thickness direction by the relay stage camera 28 provided below the temporary placement section 70 .
 中継ステージカメラ28は、仮置部70に載置された複数の部品Pを撮像する。中継ステージカメラ28は、仮置部70の下方において撮像方向が上方に向けられた状態で筐体74に囲まれた空間に配置されている。実施形態1では2台の中継ステージカメラ28を設けている。 The relay stage camera 28 images a plurality of parts P placed on the temporary placement section 70 . The relay stage camera 28 is arranged in a space surrounded by a housing 74 below the temporary placement section 70 with its imaging direction facing upward. In Embodiment 1, two relay stage cameras 28 are provided.
 図11、図12の点線で示すように、中継ステージカメラ28は所定の撮像範囲Bを有する。撮像範囲Bは、載置面71に載置された複数(計16個)の部品Pを撮像可能な範囲に設定される。 As indicated by dotted lines in FIGS. 11 and 12, the relay stage camera 28 has a predetermined imaging range B. The imaging range B is set to a range in which a plurality of (16 in total) components P placed on the placement surface 71 can be imaged.
 筐体74は、中継ステージ26の筐体部分であって、仮置部70や中継ステージカメラ28などの部材を支持する。筐体74の内部には、複数の照明80および複数の拡散板82が設けられる。照明80は、中継ステージカメラ28の撮像範囲Bに向けて光を照射する部材であり、拡散板82は、照明80が照射する光を拡散させる部材である。 The housing 74 is a housing portion of the relay stage 26 and supports members such as the temporary placement section 70 and the relay stage camera 28 . A plurality of lights 80 and a plurality of diffusion plates 82 are provided inside the housing 74 . The lighting 80 is a member that irradiates light toward the imaging range B of the relay stage camera 28 , and the diffusion plate 82 is a member that diffuses the light irradiated by the lighting 80 .
 部品除去ブラシ76は、載置面71に残存する部品Pを除去するためのブラシである。図10などに示すように、部品除去ブラシ76は下方に突出した多数のブラシで構成される。部品除去ブラシ76はX方向に直線移動可能に構成されており、載置面71に取り残された部品Pを第1部品除去ボックス30に向けて押し出して部品Pを廃棄する。第1部品除去ボックス30に廃棄された部品Pは、廃棄部品Pz(図11、図12)となる。 The component removing brush 76 is a brush for removing the component P remaining on the mounting surface 71 . As shown in FIG. 10 and the like, the component removing brush 76 is composed of a large number of brushes protruding downward. The component removing brush 76 is configured to be linearly movable in the X direction, and pushes out the component P left behind on the placement surface 71 toward the first component removing box 30 to discard the component P. The parts P discarded in the first part removal box 30 become discarded parts Pz (FIGS. 11 and 12).
 ブラシ駆動機構78は、部品除去ブラシ76を駆動するための機構である。ブラシ駆動機構78は、モータ84と、ベルトカバー86とを含んで構成される。 The brush driving mechanism 78 is a mechanism for driving the component removing brush 76. The brush driving mechanism 78 includes a motor 84 and a belt cover 86. As shown in FIG.
 ブラシ駆動機構78の詳細な構成について、図13、図14とあわせて説明する。図13、図14は、ブラシ駆動機構78の周辺構成を示す概略断面図である。 A detailed configuration of the brush drive mechanism 78 will be described in conjunction with FIGS. 13 and 14. FIG. 13 and 14 are schematic cross-sectional views showing the peripheral configuration of the brush driving mechanism 78. FIG.
 図13、図14に示すように、ブラシ駆動機構78は、モータ84およびベルトカバー86に加えて、ベルト88と、連結部90と、スライダー92と、ガイド94とを備える。 As shown in FIGS. 13 and 14, the brush driving mechanism 78 includes a belt 88, a connecting portion 90, a slider 92, and a guide 94 in addition to the motor 84 and the belt cover 86.
 モータ84は、ベルト88を回転駆動する。モータ84およびベルト88は、ベルトカバー86の内部に収容されている。ベルト88には連結部90が取り付けられており、連結部90によってベルト88がスライダー92に連結される。スライダー92はガイド94に沿ってX方向に直線移動する部材であり、前述した部品除去ブラシ76が一体的に取り付けられている。ガイド94は、筐体74の側面に水平な姿勢で装着されており、X方向に沿って延在する。 The motor 84 rotates the belt 88 . Motor 84 and belt 88 are housed inside belt cover 86 . A connecting portion 90 is attached to the belt 88 , and the belt 88 is connected to the slider 92 by the connecting portion 90 . The slider 92 is a member that linearly moves in the X direction along the guide 94, and is integrally attached with the component removing brush 76 described above. The guide 94 is mounted horizontally on the side surface of the housing 74 and extends along the X direction.
 上述したブラシ駆動機構78によれば、モータ84の駆動によってベルト88を回転させて、部品除去ブラシ76をX方向に移動させることで、載置面71に載置された部品Pを第1部品廃棄ボックス30に押し出して仮置部70から除去することができる。 According to the brush drive mechanism 78 described above, the motor 84 is driven to rotate the belt 88 to move the component removal brush 76 in the X direction, thereby removing the component P placed on the placement surface 71 from the first component. It can be pushed out to the disposal box 30 and removed from the temporary placement section 70 .
 次に、基板搬送ユニット4の構成および機能について、図15、図16を用いて説明する。図15は、基板2を上昇させる前の状態の基板搬送ユニット4の概略縦断面図であり、図16は、基板2を上昇させた後の状態の基板搬送ユニット4の概略縦断面図である。 Next, the configuration and functions of the substrate transfer unit 4 will be explained using FIGS. 15 and 16. FIG. 15 is a schematic longitudinal sectional view of the substrate transport unit 4 before the substrate 2 is lifted, and FIG. 16 is a schematic longitudinal sectional view of the substrate transport unit 4 after the substrate 2 is lifted. .
 図15に示すように、基板搬送ユニット4は、一対の搬送コンベア5と、バックアップピン98とを備える。さらに各々の搬送コンベア5は、基板押さえ部材95と、基板ガイド96と、搬送ベルト97を有している。 As shown in FIG. 15, the substrate transport unit 4 includes a pair of transport conveyors 5 and backup pins 98. Further, each transport conveyor 5 has a board pressing member 95 , a board guide 96 and a transport belt 97 .
 基板押さえ部材95は、基板2を上方から押さえるための板状の部材であり、搬送ベルト97の上方に一対設けられる。基板ガイド96は、搬送ベルト97および基板押さえ部材95などを支持する部材である。バックアップピン98は、作業エリアAの下方で上下動可能に構成された棒状の部材であり、基板2の下面に当接可能に複数本設けられている。 The substrate pressing members 95 are plate-shaped members for pressing the substrate 2 from above, and are provided as a pair above the transport belt 97 . The substrate guide 96 is a member that supports the conveying belt 97, the substrate pressing member 95, and the like. The backup pin 98 is a rod-shaped member that can move up and down below the work area A, and a plurality of backup pins 98 are provided so as to be able to contact the lower surface of the substrate 2 .
 図15に示す状態から、複数のバックアップピン98を一体的に上昇させると、搬送ベルト97に支持されている基板2が、図16に示すようにバックアップピン98によって持ち上げられる。持ち上げられた基板2は基板押さえ部材95の下面95Bに接触し、基板押さえ部材95によって上方から押さえられる。これにより、基板2が作業エリアAに位置決めされる。バックアップピン98および搬送コンベア5は、基板2を保持する基板保持部99を構成している。 When the plurality of backup pins 98 are integrally lifted from the state shown in FIG. 15, the substrate 2 supported by the conveyor belt 97 is lifted by the backup pins 98 as shown in FIG. The lifted substrate 2 contacts the lower surface 95B of the substrate holding member 95 and is held down by the substrate holding member 95 from above. Thereby, the substrate 2 is positioned in the work area A. As shown in FIG. The backup pins 98 and the transport conveyor 5 constitute a substrate holding portion 99 that holds the substrate 2 .
 各々の基板押さえ部材95の上面95Aには、作業エリアAに関する基準高さ(第2基準高さH2)を設定するための第1計測点95M(図1参照)が少なくとも1か所設定されている。実施形態1では、第1計測点95Mを1つの基板押さえ部材95に2か所、合計4か所設けている。基板押さえ部材95は、第2基準高さH2を設定するための基準部材(第2基準部材)として用いられる。 At least one first measurement point 95M (see FIG. 1) for setting a reference height (second reference height H2) for the work area A is set on the upper surface 95A of each substrate holding member 95. there is In the first embodiment, two first measurement points 95M are provided on one substrate pressing member 95, for a total of four points. The substrate pressing member 95 is used as a reference member (second reference member) for setting the second reference height H2.
 基板2は、その上面を基板押さえ部材95の下面に押さえつけられるとともにバックアップピン98によって下から支持され、水平な状態で作業エリアAに保持される。このため、作業エリアAに関する基準高さ(第2基準高さH2)は、基板押さえ部材95の下面95B(図15)の高さ位置に一致するよう設定される。よって、基準高さ(第2基準高さH2)は、第1計測点95Mの高さ位置と基板押さえ部材95の既知の寸法(厚さ)から設定することができる。 The upper surface of the substrate 2 is pressed against the lower surface of the substrate pressing member 95, and is supported from below by the backup pins 98, so that the substrate 2 is held in the work area A in a horizontal state. Therefore, the reference height (second reference height H2) for the work area A is set to match the height position of the lower surface 95B (FIG. 15) of the substrate holding member 95. FIG. Therefore, the reference height (second reference height H2) can be set from the height position of the first measurement point 95M and the known dimension (thickness) of the substrate holding member 95. FIG.
 図1に戻ると、制御部35は、部品搭載装置1の全体を制御する部材である。制御部35は例えば、マイクロコンピュータを含んで構成される。制御部35の詳細構成について、図17を用いて説明する。 Returning to FIG. 1, the control unit 35 is a member that controls the component mounting apparatus 1 as a whole. The control unit 35 includes, for example, a microcomputer. A detailed configuration of the control unit 35 will be described with reference to FIG. 17 .
 図17は、部品搭載装置1の制御系に関するブロック図である。図17に示すように、制御部35は、ヘッドユニット制御部100と、本体制御部102とを有する。 FIG. 17 is a block diagram of the control system of the component mounting apparatus 1. FIG. As shown in FIG. 17, the controller 35 has a head unit controller 100 and a main body controller 102 .
 ヘッドユニット制御部100は、取出ヘッド12の取出ノズル36の昇降動作・吸着動作、および、搭載ヘッド14の搭載ノズル40の昇降動作・吸着動作などを制御する機能を有する。一方、本体制御部102は、部品搭載装置1における基板2の搬送や、カメラによる撮像動作などを制御するとともに、ヘッドユニット制御部100に対して制御指令を送信する機能を有している。ヘッドユニット制御部100と本体制御部102は、配線コネクタ(図示せず)等を介して電気的に接続されている。 The head unit control section 100 has a function of controlling the up-and-down operation and suction operation of the extraction nozzle 36 of the extraction head 12 and the up-and-down operation and suction operation of the mounting nozzle 40 of the mounting head 14 . On the other hand, the body control section 102 has a function of controlling the transportation of the board 2 in the component mounting apparatus 1 and the imaging operation of the camera, and transmitting a control command to the head unit control section 100 . The head unit control section 100 and the main body control section 102 are electrically connected via a wiring connector (not shown) or the like.
 ヘッドユニット制御部100は、取出ヘッド12を制御するための取出ヘッド制御部104と、搭載ヘッド14を制御するための搭載ヘッド制御部106とを有する。 The head unit control section 100 has an extraction head control section 104 for controlling the extraction head 12 and a mounting head control section 106 for controlling the mounting head 14 .
 取出ヘッド制御部104および搭載ヘッド制御部106を含むヘッドユニット制御部100の内部構成を図18に示す。 The internal configuration of the head unit control section 100 including the picking head control section 104 and the mounting head control section 106 is shown in FIG.
 図18に示すように、搭載ヘッド制御部106には、搭載ヘッド14に配置された複数基(ここでは8基)の搭載ノズル40毎に、当該搭載ノズル40のサーボモータ56(#1~#8)を制御するモータ制御部112が設けられている(#1~#8)。搭載ヘッド制御部106にはさらに、搭載ヘッド14に配置されたθ軸モータ59を制御するθ軸モータ制御部114が設けられている。 As shown in FIG. 18 , the mounting head control unit 106 has the servo motors 56 (#1 to #1) of the mounting nozzles 40 for each of the plurality of mounting nozzles 40 (here, eight nozzles) arranged on the mounting head 14 . 8) is provided with a motor control unit 112 (#1 to #8). The mounting head control unit 106 is further provided with a θ-axis motor control unit 114 that controls the θ-axis motor 59 arranged on the mounting head 14 .
 モータ制御部112のそれぞれは、モータドライバ116と、接触検出部118と、高さ検出部120(搭載ノズル高さ検出部)と、最下点記憶部122と、動作司令部124とを備える。 Each of the motor control units 112 includes a motor driver 116, a contact detection unit 118, a height detection unit 120 (installed nozzle height detection unit), a lowest point storage unit 122, and an operation command unit 124.
 モータドライバ116は、動作司令部124からの動作司令に従ってサーボモータ56に電力を供給して駆動する。具体的には、モータドライバ116は、動作司令部124からの位置指令や速度指令による位置や速度等の目標値とエンコーダ62から送られるパルス信号によって検出した位置や速度等の現在値との偏差をフィードバックするサーボ制御によってサーボータ56を駆動する。 The motor driver 116 supplies power to the servomotor 56 to drive it according to the motion command from the motion command unit 124 . Specifically, the motor driver 116 detects the deviation between the target values such as position and speed based on the position command and speed command from the motion command unit 124 and the current values such as position and speed detected by the pulse signal sent from the encoder 62. The servo motor 56 is driven by servo control that feeds back the .
 接触検出部118は、搭載ノズル40が中継ステージ26や部品等の物体に接触したこと、あるいは搭載ノズル40に保持された部品Pが基板26の実装点に着地(接触)したことを検出する。当該検出は、モータドライバ116が出力するトルク(電流)またはエンコーダ62からのエンコーダパルスに基づいて行われる。トルクを利用する場合は、搭載ノズル40が物体に接触して下降できなくなって目標値からの偏差が増大すると、モータドライバ116からサーボモータ56へ供給されるトルク(電流)が大きくなる。トルクを利用する場合はこのトルク(電流)の増加を検出して接触したことを検出する。またエンコーダパルスに基づいて接触を検出する場合は、エンコーダパルスの周期が長くなるあるいは検出されなくなる、あるいは下降から上昇を示すエンコーダパルスを受信することで接触したことを検出する。 The contact detection unit 118 detects that the mounting nozzle 40 has come into contact with an object such as the relay stage 26 or a component, or that the component P held by the mounting nozzle 40 has landed (contacted) a mounting point on the board 26 . The detection is performed based on the torque (current) output by the motor driver 116 or encoder pulses from the encoder 62 . When the torque is used, the torque (current) supplied from the motor driver 116 to the servomotor 56 increases when the mounted nozzle 40 comes into contact with an object and cannot move down and the deviation from the target value increases. When torque is used, contact is detected by detecting an increase in this torque (current). When the contact is detected based on the encoder pulse, the contact is detected when the period of the encoder pulse becomes longer, when the encoder pulse is not detected, or when the encoder pulse indicating the change from descent to rise is received.
 高さ検出部120は、サーボモータ56のエンコーダ62からのエンコーダパルスをカウントする。このカウント値は、搭載ノズル40の高さ方向の位置を示す高さ情報となる。すなわち、高さ検出部120は、サーボモータ56からの位置信号に基づいて搭載ノズル40の高さを検出する高さ検出機能を有する(取出ノズル高さ検出部)。後述する実装点高さ計測は、高さ検出部120の高さ検出機能を用いて行われる。 The height detection unit 120 counts encoder pulses from the encoder 62 of the servomotor 56 . This count value serves as height information indicating the position of the mounting nozzle 40 in the height direction. That is, the height detection section 120 has a height detection function of detecting the height of the mounted nozzle 40 based on the position signal from the servomotor 56 (extraction nozzle height detection section). Mounting point height measurement, which will be described later, is performed using the height detection function of the height detection unit 120 .
 最下点記憶部122は、接触検出部118により搭載ノズル40の接触を検出したときの所定期間に高さ検出部120が出力する値の最小値、すなわち所定期間に搭載ノズル40が最も下降した高さ(最下点)を示す値を一時記憶する。なお、本実施形態では搭載ノズル40の位置が低くなるにつれて高さ検出部120が出力する値も小さくなるので、最下点を示す値として「最小値」を最下点記憶部122に記憶しているが、搭載ノズル40の位置が低くなるにつれて高さ検出部120が出力する値が大きくなる場合は「最大値」を最下点記憶部122に記憶してもよい。最下点記憶部122に記憶された値は、搭載ノズル40の高さ情報として用いられる。 The lowest point storage unit 122 stores the minimum value of the values output by the height detection unit 120 during a predetermined period when the contact detection unit 118 detects the contact of the mounting nozzle 40, that is, the lowest point of the mounting nozzle 40 during the predetermined period. Temporarily stores the value indicating the height (lowest point). In this embodiment, as the position of the mounting nozzle 40 becomes lower, the value output by the height detection unit 120 also becomes smaller. However, if the value output by the height detection unit 120 increases as the position of the mounted nozzle 40 becomes lower, the “maximum value” may be stored in the lowest point storage unit 122 . The value stored in the lowest point storage unit 122 is used as height information of the mounted nozzle 40 .
 動作司令部124は、搭載ノズル40を昇降動作させるための動作司令を行う。具体的には、動作司令部124は、予め設定された動作パターンに基づく位置指令や速度指令としての信号をモータドライバ116に送信する。 The operation command unit 124 issues an operation command for raising and lowering the mounting nozzle 40 . Specifically, the motion command unit 124 transmits to the motor driver 116 signals as position commands and speed commands based on preset motion patterns.
 それぞれのモータ制御部112およびθ軸モータ制御部114は、例えば処理回路がコンピュータプログラムを実行することによって、または、処理回路単独で、またはメモリ単独で実現される。その他の制御部についても同様である。 The motor control unit 112 and the θ-axis motor control unit 114 are realized, for example, by a processing circuit executing a computer program, by a processing circuit alone, or by a memory alone. The same applies to other control units.
 取出ヘッド制御部104にも同様に、取出ヘッド12に配置された複数基(ここでは16基)の取出ノズル36毎に、当該取出ノズル36のサーボモータ63(#1~#16)を制御するモータ制御部108が設けられている(#1~#16)。取出ヘッド制御部104にはさらに、取出ヘッド12に配置されたθ軸モータ66を制御するθ軸モータ制御部110が設けられている。 Similarly, the extraction head control unit 104 controls the servo motors 63 (#1 to #16) of the extraction nozzles 36 for each of the plurality of extraction nozzles 36 (here, 16 nozzles) arranged in the extraction head 12. A motor control unit 108 is provided (#1 to #16). The take-out head control unit 104 is further provided with a θ-axis motor control unit 110 that controls the θ-axis motor 66 arranged on the take-out head 12 .
 モータ制御部108のそれぞれは、モータドライバ160と、動作司令部168を備える。モータドライバ160および動作司令部168のそれぞれは、前述したモータドライバ116および動作司令部124と同様の機能を有するため、説明を省略する。 Each of the motor control units 108 includes a motor driver 160 and an operation command unit 168. The motor driver 160 and the motion commander 168 have the same functions as the motor driver 116 and the motion commander 124 described above, respectively, so description thereof will be omitted.
 図17に戻ると、本体制御部102は、部品搭載装置1の各構成要素に接続されている。具体的には、本体制御部102は例えば、ヘッドカメラ16、XYテーブル17、基板搬送ユニット4、部品カメラ32、2台の中継ステージカメラ28、モータ84、第1部品供給ユニット6、第2部品供給ユニット8、第3部品供給ユニット10に接続されている。 Returning to FIG. 17, the main body control section 102 is connected to each component of the component mounting apparatus 1 . Specifically, the body control unit 102 includes, for example, the head camera 16, the XY table 17, the substrate transport unit 4, the component camera 32, the two relay stage cameras 28, the motor 84, the first component supply unit 6, the second component It is connected to the supply unit 8 and the third component supply unit 10 .
 本体制御部102は、内部の処理部101としての、実装作業実行部126と、部品厚さ計測部128と、基準高さ設定部130と、実装点高さ計測部132と、実装点高さ計測部134と、目標位置演算部136とを有する。 The body control unit 102 includes a mounting work executing unit 126, a component thickness measuring unit 128, a reference height setting unit 130, a mounting point height measuring unit 132, a mounting point height measuring unit 132, and a mounting point height measuring unit 132. It has a measurement unit 134 and a target position calculation unit 136 .
 実装作業実行部126は、後述する搭載プログラム138等に基づき、XYテーブル17、基板搬送ユニット4、部品供給部6、8、10、取出ヘッド12、搭載ヘッド14、ヘッドカメラ16、部品カメラ32、中継ステージカメラ28などを制御する。これにより、基板2に部品Pを搭載するための一連の作業が実行される。実装作業実行部126は、搭載ヘッド14を部品供給ユニット6、8、10または中継ステージ26から作業エリアAへ移動させる動作(以下、この動作を「ターン」と称する)を複数回繰り返して部品Pを基板2へ搭載する作業を実行させる。また、実装作業実行部126は、前述のターンが開始される前やターンとターンの合間に取出ヘッド12によって部品供給ユニット6から供給された微小部品を取り出して中継ステージ26へ移送する作業を実行させる。 The mounting work executing unit 126 operates the XY table 17, the board transfer unit 4, the component supply units 6, 8, 10, the picking head 12, the mounting head 14, the head camera 16, the component camera 32, It controls the relay stage camera 28 and the like. Thus, a series of operations for mounting the component P on the substrate 2 are executed. The mounting work execution unit 126 repeats the operation of moving the mounting head 14 from the component supply units 6, 8, 10 or the relay stage 26 to the work area A (hereinafter, this operation is referred to as a "turn") a plurality of times to mount the component P to the substrate 2 is executed. Further, the mounting work executing section 126 executes the work of picking up the minute components supplied from the component supply unit 6 by the picking head 12 and transferring them to the relay stage 26 before the turn is started or between turns. Let
 部品厚さ計測部128は、搭載ヘッド14を制御して、中継ステージ26に載置された部品Pをピックアップする際に、高さ検出部120が出力する搭載ノズル40の高さ情報に基づいて部品Pの厚さを計測する。部品Pの厚さを計測するために、中継ステージ26の基準面に関する第1基準高さH1が用いられる。 The component thickness measurement unit 128 controls the mounting head 14 to pick up the component P placed on the relay stage 26 based on the height information of the mounting nozzle 40 output by the height detection unit 120. Measure the thickness of the part P. To measure the thickness of the component P, a first reference height H1 with respect to the reference plane of the relay stage 26 is used.
 基準高さ設定部130は、搭載ヘッド14を制御して、中継ステージ26の基準面である載置面71に搭載ノズル40の下端面を接触させたときに、高さ検出部120が出力する搭載ノズル40の高さ情報に基づいて、中継ステージ26に関する第1基準高さH1を設定する。基準高さ設定部130はさらに、搭載ヘッド14を制御して、作業エリアAの基板押さえ部材95の上面95Aに搭載ノズル40の下端面を接触させたときに、高さ検出部120が出力する搭載ノズル40の高さ情報に基づいて、作業エリアAに関する第2基準高さH2を設定する。 The reference height setting unit 130 controls the mounting head 14 to bring the lower end surface of the mounting nozzle 40 into contact with the mounting surface 71, which is the reference surface of the relay stage 26, and the height detection unit 120 outputs A first reference height H1 for the relay stage 26 is set based on the height information of the mounting nozzle 40 . The reference height setting unit 130 further controls the mounting head 14 to cause the lower end surface of the mounting nozzle 40 to contact the upper surface 95A of the substrate holding member 95 in the work area A, and the height detection unit 120 outputs A second reference height H2 for the work area A is set based on the height information of the mounted nozzle 40 .
 実装点高さ計測部132は、搭載ヘッド14を制御して、部品Pを基板2の実装点に実装したときに、高さ検出部120が出力する搭載ノズル40の高さ情報に基づいて実装点の高さを計測する。実装点の高さを計測するために、作業エリアAの第2基準高さH2と、部品の厚さ情報とが用いられる。 The mounting point height measuring unit 132 controls the mounting head 14 to mount the component P on the mounting point of the substrate 2 based on the height information of the mounting nozzle 40 output by the height detecting unit 120. Measure the height of a point. In order to measure the height of the mounting point, the second reference height H2 of the work area A and the thickness information of the component are used.
 実装点高さ推定部134は、実装点高さ計測部132による複数の実装点の高さデータに基づいて、高さが計測されていない他の実装点の推定高さを算出する。実施形態1の実装点他推定部134は、実装点高さの推定処理のために「面補正」を用いる。 The mounting point height estimation unit 134 calculates the estimated heights of other mounting points whose heights have not been measured, based on the height data of the plurality of mounting points obtained by the mounting point height measurement unit 132 . The mounting point other estimating unit 134 of the first embodiment uses "surface correction" for estimating the mounting point height.
 目標位置演算部136は、基板2に部品Pを搭載する際に部品Pを保持した搭載ノズル40を移動させる目標位置を演算する。具体的な演算方法については、図20などを用いて後述する。 The target position calculation unit 136 calculates a target position for moving the mounting nozzle 40 holding the component P when mounting the component P on the board 2 . A specific calculation method will be described later with reference to FIG. 20 and the like.
 本体制御部102はさらに、内部記憶部としての、搭載プログラム138と、目標位置140と、部品データ142と、基板データ144と、基準高さデータ146と、実装点データ148と、部品厚さ(計測値)150と、実装点高さ(計測値)152とを有する。 The body control unit 102 further stores a mounting program 138, a target position 140, component data 142, board data 144, reference height data 146, mounting point data 148, component thickness ( measurement value) 150 and mounting point height (measurement value) 152 .
 搭載プログラム138は、部品Pの搭載順序や搭載位置を定めたプログラムである。搭載プログラム138の一例を図19に示す。 The mounting program 138 is a program that defines the mounting order and mounting positions of the parts P. An example of the loading program 138 is shown in FIG.
 図19に示す搭載プログラム138は、複数種類の情報として、「搭載No」、「ターンNo」、「部品種類」、「実装点」、「X」、「Y」、「θ」、「Z」「取出ノズル」、「搭載ノズル」、「中継」、「指定実装点」のそれぞれに関する情報を記憶している。 The mounting program 138 shown in FIG. 19 includes “mounting No.”, “turn No.”, “component type”, “mounting point”, “X”, “Y”, “θ”, and “Z” as a plurality of types of information. It stores information about each of "take-out nozzle", "mounted nozzle", "relay", and "specified mounting point".
 「搭載No」は、部品Pの搭載順序を示す識別情報である。「ターンNo」は、部品Pを何回目のターンで基板2に搭載するかを示す識別情報である。「部品」は、搭載対象の部品Pを示す識別情報である。「実装点」は、搭載対象の部品Pを実装すべき実装点を示す識別情報である。「X」、「Y」はそれぞれ、対象の部品Pを実装する実装点のX座標、Y座標を示す数値情報である。「θ」は、基板2における搭載対象の部品Pの向きを示す数値情報である。「Z」は、理想的な状態で基板保持部99に保持された基板2の実装点の高さを第2基準高さH2からの高低差で示した数値情報である。「取出ノズル」は、搭載対象の部品Pをどの取出ノズル36で保持するかを示す識別情報である。「搭載ノズル」は、搭載対象の部品Pをどの搭載ノズル40で保持するかを示す識別情報である。「中継」は、搭載対象の部品Pが中継ステージ26を経由するか否かを示す識別情報である。図19の例では、「中継」の識別情報が「1」である場合は中継ステージ26を経由することを示し、「0」である場合は中継ステージ26を経由しないことを示す。「指定実装点」は、複数の実装点のうち、どの実装点が他の実装点の高さの推定処理を行うための「指定実装点」に指定されているかを示す識別情報である。図19の例では、「指定実装点」の識別情報が「1」である場合は実装点が指定実装点に指定されていることを示し、「0」である場合は実装点が指定実装点に指定されていないことを示す。 "Mounting No." is identification information indicating the mounting order of the component P. “Turn No.” is identification information indicating in what turn the part P is to be mounted on the board 2 . "Component" is identification information indicating a component P to be mounted. The “mounting point” is identification information indicating the mounting point where the component P to be mounted is to be mounted. “X” and “Y” are numerical information indicating the X coordinate and Y coordinate of the mounting point where the target component P is mounted, respectively. “θ” is numerical information indicating the orientation of the component P to be mounted on the board 2 . "Z" is numerical value information indicating the height of the mounting point of the board 2 held by the board holding portion 99 in an ideal state by the height difference from the second reference height H2. The “extraction nozzle” is identification information indicating which extraction nozzle 36 holds the component P to be mounted. “Mounting nozzle” is identification information indicating which mounting nozzle 40 holds the component P to be mounted. “Relay” is identification information indicating whether or not the component P to be mounted passes through the relay stage 26 . In the example of FIG. 19, when the “relay” identification information is “1”, it indicates that the relay stage 26 is passed, and when it is “0”, it indicates that the relay stage 26 is not passed. The 'designated mounting point' is identification information indicating which of the plurality of mounting points is designated as the 'designated mounting point' for estimating the height of another mounting point. In the example of FIG. 19, when the identification information of the "designated mounting point" is "1", it indicates that the mounting point is designated as the designated mounting point. indicates that it is not specified in
 図17に戻ると、目標位置140は、基板2に部品Pを搭載する際に部品Pを保持した搭載ノズル40を移動させる目標位置を示す情報である。目標位置140は、目標位置演算部136によって計算される。 Returning to FIG. 17, the target position 140 is information indicating the target position to which the mounting nozzle 40 holding the component P is moved when mounting the component P on the substrate 2 . Target position 140 is calculated by target position calculator 136 .
 部品データ142は、部品Pに関するデータである。部品データ142は例えば、部品Pに関する寸法、形状、種類などの情報(例えばカタログデータ)を含む。 The part data 142 is data related to the part P. The part data 142 includes, for example, information (for example, catalog data) on dimensions, shapes, types, etc. of the parts P. FIG.
 基板データ144は、基板2に関するデータである。基板データ144は例えば、基板2の位置を認識するための基準マーク(図32の基準マーク174参照)と各実装点との相対的な位置関係などの情報を含む。 The board data 144 is data relating to the board 2 . The board data 144 includes, for example, information such as a relative positional relationship between a reference mark for recognizing the position of the board 2 (see reference mark 174 in FIG. 32) and each mounting point.
 基準高さデータ146は、基準高さ設定部130によって設定される第1基準高さH1と第2基準高さH2とを含むデータである。 The reference height data 146 is data including the first reference height H1 and the second reference height H2 set by the reference height setting unit 130.
 実装点データ148は、搬入された基板2の実装点に関するデータである。実装点データ148は例えば、実装点のX座標、Y座標、Z座標と、その実装点に実装される部品Pの向きθとを含む。実装点データ148は、実装点の高さを記憶する実装点高さ記憶部である。 The mounting point data 148 is data relating to the mounting points of the board 2 carried in. The mounting point data 148 includes, for example, the X-coordinate, Y-coordinate, and Z-coordinate of the mounting point, and the orientation θ of the component P to be mounted at the mounting point. The mounting point data 148 is a mounting point height storage unit that stores the height of the mounting point.
 部品厚さ(計測値)150は、部品厚さ計測部128によって計測される部品Pの厚さを記憶する。 The part thickness (measured value) 150 stores the thickness of the part P measured by the part thickness measuring unit 128.
 実装点高さ(計測値)152は、実装点高さ計測部132によって計測される実装点の高さを記憶する。 The mounting point height (measurement value) 152 stores the height of the mounting point measured by the mounting point height measurement unit 132 .
 本体制御部102はさらに、第1の認識部154と、第2の認識部156と、第3の認識部158とを備える。 The body control unit 102 further includes a first recognition unit 154, a second recognition unit 156, and a third recognition unit 158.
 第1の認識部154は、ヘッドカメラ16の撮像画像を用いて基板2を認識する基板認識部である。第2の認識部156は、中継ステージカメラ28の撮像画像を用いて、中継ステージ26に載置された部品Pを認識する部品認識部である。第3の部品認識部158は、部品カメラ32の撮像画像を用いて、搭載ヘッド14に保持された部品Pを認識する部品認識部である。 The first recognition unit 154 is a board recognition unit that recognizes the board 2 using the captured image of the head camera 16 . The second recognition unit 156 is a component recognition unit that recognizes the component P placed on the relay stage 26 using the captured image of the relay stage camera 28 . The third component recognition section 158 is a component recognition section that recognizes the component P held by the mounting head 14 using the captured image of the component camera 32 .
 上述した構成を有する実施形態1の部品搭載装置1の動作について、図20~図34Bを用いて説明する。実施形態1の部品搭載装置1は、基板2への部品搭載作業に先立ち、中継ステージ26と基板保持部99のそれぞれの基準高さを計測して記憶する基準高さの設定処理(基準高さH1、H2の設定処理)を実行する。 The operation of the component mounting apparatus 1 of Embodiment 1 having the above configuration will be described with reference to FIGS. 20 to 34B. In the component mounting apparatus 1 of the first embodiment, prior to component mounting work on the substrate 2, reference height setting processing (reference height H1 and H2 setting processing) is executed.
 まず、基準高さH1、H2の設定処理について、図20~図24Bを用いて説明する。 First, the setting processing of the reference heights H1 and H2 will be explained using FIGS. 20 to 24B.
 図20は、第1基準高さH1の設定処理を示すフローチャートである。図20に示すフローの各処理は、基準高さ設定部130を含む制御部35により実行される。 FIG. 20 is a flow chart showing the setting process of the first reference height H1. Each process of the flow shown in FIG. 20 is executed by the control unit 35 including the reference height setting unit 130. FIG.
 まず、制御部35は、搭載ノズル40を中継ステージ26へ移動させる(S1)。具体的には、本体制御部102の基準高さ設定部130により、搭載ヘッド14を支持するXYテーブル7を制御して、部品Pを保持していない状態の複数の搭載ノズル40を有する搭載ヘッド14を、中継ステージ26の上方へ移動させる。なお、中継ステージ26の載置面71には部品Pが載置されていない状態で本フローを実行する。 First, the control unit 35 moves the mounting nozzle 40 to the relay stage 26 (S1). Specifically, the XY table 7 that supports the mounting head 14 is controlled by the reference height setting unit 130 of the main body control unit 102, and the mounting head having the plurality of mounting nozzles 40 in a state in which the component P is not held is adjusted. 14 is moved above the relay stage 26 . Note that this flow is executed in a state where the component P is not placed on the placement surface 71 of the relay stage 26 .
 制御部35は、搭載ノズル40の下降を開始する(S2)。具体的には、搭載ヘッド制御部106の動作司令部124の指令に応じて、モータドライバ116により、複数の搭載ノズル40のうちの1つの搭載ノズル40に対応するサーボモータ56を制御して、搭載ノズル40を載置面71に向けて下降させる。 The control unit 35 starts lowering the mounting nozzle 40 (S2). Specifically, the motor driver 116 controls the servo motor 56 corresponding to one mounting nozzle 40 among the plurality of mounting nozzles 40 in accordance with a command from the operation command section 124 of the mounting head control section 106, The mounting nozzle 40 is lowered toward the mounting surface 71 .
 制御部35は、搭載ノズル40が載置面71に接触したことを接触検出部118が検出するのを待つ(S3)。 The control unit 35 waits for the contact detection unit 118 to detect that the mounting nozzle 40 has come into contact with the mounting surface 71 (S3).
 図21は、搭載ノズル40の下端面が載置面71に接触した状態を示す。図21に示すように、搭載ノズル40の下端面が載置面71に接触したことが検出されると(S3でYES)、ステップS4に移行する。 21 shows a state in which the lower end surface of the mounting nozzle 40 is in contact with the mounting surface 71. FIG. As shown in FIG. 21, when it is detected that the lower end surface of the mounting nozzle 40 has come into contact with the placement surface 71 (YES in S3), the process proceeds to step S4.
 制御部35は、サーボモータ56を制御して搭載ノズル40の下降を停止し(S4)、基準高さ設定部130により第1基準高さH1を設定する(S5)。基準高さ設定部130は、載置面71に接触した搭載ノズル40の高さ情報を高さ検出部120または最下点記憶部122から取得する。そして、基準高さ設定部130は、取得した高さ情報を基準高さH1、すなわち基準高さデータ146として記憶部103に記憶する。これにより、この搭載ノズル40についての基準高さH1の設定が完了する。なお、同じ搭載ノズル40の下端面を載置面71の同じ場所に複数回接触させた場合、基準高さ設定部130は取得した複数の高さ情報の平均値を基準高さH1として設定する。また、同じ搭載ノズル40の下端面を載置面71の複数個所に接触させた場合、基準高さ設定部130は取得した複数の高さ情報より得られる面の関数を基準高さH1として設定する。 The control unit 35 controls the servomotor 56 to stop the mounting nozzle 40 from descending (S4), and sets the first reference height H1 by the reference height setting unit 130 (S5). The reference height setting unit 130 acquires the height information of the mounting nozzle 40 in contact with the mounting surface 71 from the height detection unit 120 or the lowest point storage unit 122 . Then, the reference height setting unit 130 stores the acquired height information in the storage unit 103 as the reference height H1, that is, the reference height data 146. FIG. This completes the setting of the reference height H1 for this mounting nozzle 40 . Note that when the lower end surface of the same mounting nozzle 40 is brought into contact with the same place on the mounting surface 71 multiple times, the reference height setting unit 130 sets the average value of the acquired height information as the reference height H1. . Also, when the lower end surface of the same mounting nozzle 40 is brought into contact with a plurality of places on the mounting surface 71, the reference height setting unit 130 sets a surface function obtained from the obtained plurality of height information as the reference height H1. do.
 制御部35は、サーボモータ56を制御して、図22に示すように搭載ノズル40を上昇させる(S6)。上昇した搭載ノズル40は、他の搭載ノズル40と同じ高さ位置へ戻される。 The control unit 35 controls the servomotor 56 to raise the mounting nozzle 40 as shown in FIG. 22 (S6). The mounted nozzle 40 that has risen is returned to the same height position as the other mounted nozzles 40 .
 制御部35は、全ての搭載ノズル40で完了したか否かを判定する(S7)。ステップS7において、制御部35は、搭載ヘッド14に設けられた複数基(#1~#8)の搭載ノズル40の全てに対してステップS1~S6の処理を実行したか否かを判定する。ステップS1~S6の処理を実行していない搭載ノズル40が残っている場合、全ての搭載ノズル40で完了していないと判定し(S7でNO)、他の搭載ノズル40に対してもステップS1~S6の処理を実行する。すなわち、複数の搭載ノズル40のそれぞれにステップS1~S6の処理を実行し、搭載ノズル40別に第1基準高さH1を設定する。これにより、複数の搭載ノズル40の個体差の影響を受けることなく、第1基準高さH1を設定できる。 The control unit 35 determines whether or not all mounted nozzles 40 have been completed (S7). In step S7, the control unit 35 determines whether or not the processes of steps S1 to S6 have been executed for all of the plurality of mounting nozzles 40 (#1 to #8) provided in the mounting head . If there are mounted nozzles 40 that have not been subjected to the processing of steps S1 to S6, it is determined that all mounted nozzles 40 have not been completed (NO in S7), and the other mounted nozzles 40 are also subjected to step S1. The processing of S6 is executed. That is, the processes of steps S1 to S6 are executed for each of the plurality of mounting nozzles 40, and the first reference height H1 is set for each mounting nozzle 40. FIG. Thereby, the first reference height H<b>1 can be set without being affected by individual differences among the plurality of mounting nozzles 40 .
 実施形態1では、搭載ノズル40のそれぞれがシャフト42に交換可能に装着されており、搭載ノズル40とシャフト42の組合せのそれぞれに対して第1基準高さH1を設定することができる。これにより、第1基準高さH1をより精度良く設定することができる。 In Embodiment 1, each of the mounting nozzles 40 is replaceably attached to the shaft 42, and the first reference height H1 can be set for each combination of the mounting nozzle 40 and the shaft 42. This makes it possible to set the first reference height H1 with higher accuracy.
 全ての搭載ノズル40に対するステップS1~S6の処理が完了すると、全ての搭載ノズル40で完了したと判定され(ステップS7でYES)、第1基準高さH1の設定処理を終了する。 When the processing of steps S1 to S6 for all mounting nozzles 40 is completed, it is determined that all mounting nozzles 40 have been completed (YES in step S7), and the setting processing for the first reference height H1 ends.
 図23は、第2基準高さH2の設定処理を示すフローチャートであり、図24A、図24Bは、図23のフローチャートによる処理の流れを説明するための概略図である。図23のフローチャートによる各処理は、基準高さ設定部130を含む制御部35により実行される。前述した第1基準高さ設定処理と重複する内容については適宜、記載を省略する。 FIG. 23 is a flowchart showing the setting process of the second reference height H2, and FIGS. 24A and 24B are schematic diagrams for explaining the flow of the process according to the flowchart of FIG. Each process according to the flowchart of FIG. 23 is executed by the control section 35 including the reference height setting section 130 . The description of the content that overlaps with the first reference height setting process described above will be omitted as appropriate.
 まず、制御部35は、搭載ノズル40を作業エリアAに移動させる(S8)。具体的には、本体制御部102の基準高さ設定部130により、搭載ヘッド14を支持するXYテーブル7を制御して、部品Pを保持していない状態の複数の搭載ノズル40を有する搭載ヘッド14を、作業エリアAにおける基板搬送ユニット4の上方へ移動させる。作業エリアAには基板2が配置されていない状態で本フローを実行する。 First, the control unit 35 moves the mounting nozzle 40 to the work area A (S8). Specifically, the XY table 7 that supports the mounting head 14 is controlled by the reference height setting unit 130 of the main body control unit 102, and the mounting head having the plurality of mounting nozzles 40 in a state in which the component P is not held is adjusted. 14 is moved above the substrate transfer unit 4 in the work area A. As shown in FIG. This flow is executed in a state where the substrate 2 is not arranged in the work area A.
 制御部35は、搭載ノズル40の下降を開始する(S9)。具体的には、搭載ヘッド制御部106の動作司令部124の指令に応じて、モータドライバ116により、複数の搭載ノズル40のうちの1つの搭載ノズル40に対応するサーボモータ56を制御して、図24Aに示すように、搭載ノズル40を基板搬送ユニット4の基板押さえ部材95に向けて下降させる。実施形態1では、基板押さえ部材95が一対設けられており、そのうちの一方(紙面左側)の基板押さえ部材95に向けて搭載ノズル40を下降させる。 The control unit 35 starts lowering the mounting nozzle 40 (S9). Specifically, the motor driver 116 controls the servo motor 56 corresponding to one mounting nozzle 40 among the plurality of mounting nozzles 40 in accordance with a command from the operation command section 124 of the mounting head control section 106, As shown in FIG. 24A , the mounting nozzle 40 is lowered toward the substrate holding member 95 of the substrate transfer unit 4 . In the first embodiment, a pair of substrate pressing members 95 are provided, and the mounting nozzle 40 is lowered toward one substrate pressing member 95 (on the left side of the drawing).
 制御部35は、搭載ノズル40が基板押え部材95の上面95A(第1計測点95M)に接触したことを接触検出部118が検出するのを待つ(S10)。 The control unit 35 waits for the contact detection unit 118 to detect that the mounting nozzle 40 has come into contact with the upper surface 95A (first measurement point 95M) of the substrate pressing member 95 (S10).
 図24Aに示すように搭載ノズル40が基板押さえ部材95に接触したことを検出した場合(S10でYES)、搭載ノズル40の下降を停止し(S11)、高さ検出部120で得られた搭載ノズル40の高さ情報または最下点記憶部122に記憶された高さ情報を取得して記憶する(S12)。これにより、上面95A(第1計測点95M)の高さが計測される。 As shown in FIG. 24A , when it is detected that the mounting nozzle 40 is in contact with the substrate holding member 95 (YES in S10), the mounting nozzle 40 stops descending (S11), and the mounting height obtained by the height detection unit 120 is The height information of the nozzle 40 or the height information stored in the lowest point storage unit 122 is acquired and stored (S12). Thereby, the height of the upper surface 95A (first measurement point 95M) is measured.
 制御部35は、搭載ノズル40を上昇させて(S13)、全ての計測点で高さ計測が完了したか否かを判定する(S14)。実施形態1では、第1計測点95Mが4か所存在するため、全ての計測点の高さ計測が完了していない場合(S14でNO)は、ステップS8~S14を再度実行する。 The control unit 35 raises the mounting nozzle 40 (S13) and determines whether or not height measurement has been completed at all measurement points (S14). In the first embodiment, there are four first measurement points 95M, so if height measurements at all measurement points have not been completed (NO in S14), steps S8 to S14 are executed again.
 図24Aに示すように、一方の基板押さえ部材95の第1計測点95Mの高さ計測が完了すると、図24Bに示すように、搭載ノズル40をもう一方の基板押さえ部材95の上面に向けて下降させ(S8~S9)、残りの第1計測点95Mの計測を行う(S10~S13)。 As shown in FIG. 24A, when the height measurement of the first measurement point 95M of one substrate holding member 95 is completed, the mounting nozzle 40 is directed toward the upper surface of the other substrate holding member 95 as shown in FIG. 24B. It is lowered (S8-S9), and the remaining first measurement points 95M are measured (S10-S13).
 そして、全ての第1計測点95Mの高さ計測が完了すると(S14でYES)、第2基準高さH2を設定する(S15)。実施形態1では、4か所の第1計測点95Mの高さの平均値を第2基準高さH2としている。 Then, when the height measurement of all the first measurement points 95M is completed (YES in S14), the second reference height H2 is set (S15). In Embodiment 1, the average value of the heights of the four first measurement points 95M is set as the second reference height H2.
 なお、4か所の計測点を設定する場合に限らず、1か所、3か所又は5か所以上の計測点を設定する場合であってもよい。また、第2基準高さH2として、基板搬送ユニット4の上下方向の傾きを考慮する場合は、その傾きを定義した関数としてもよい。 It should be noted that it is not limited to the case of setting four measurement points, but may be the case of setting one, three, or five or more measurement points. Further, when considering the inclination of the substrate transport unit 4 in the vertical direction as the second reference height H2, a function defining the inclination may be used.
 部品搭載装置1は、基準高さH1、H2の設定処理を含む準備作業が終わると基板2への部品搭載作業を開始する。次に、基板2への部品搭載作業を図25~図34Bを用いて説明する。図25は、目標位置演算部136による目標位置の演算方法を説明するためのブロック図である。図26は、部品搭載装置1による一連の部品搭載作業の流れを示す図である。 The component mounting apparatus 1 starts the component mounting work on the board 2 after the preparatory work including the setting processing of the reference heights H1 and H2 is completed. Next, the work of mounting components on the board 2 will be described with reference to FIGS. 25 to 34B. FIG. 25 is a block diagram for explaining a target position calculation method by the target position calculator 136. As shown in FIG. FIG. 26 is a diagram showing the flow of a series of component mounting operations by the component mounting apparatus 1. As shown in FIG.
(基板搬入)
 図26に示すように、まず、基板2を作業エリアAに搬入する。具体的には、基板搬送ユニット4の搬送コンベア5により基板2を搬送して作業エリアAに位置決めする。
(substrate loading)
As shown in FIG. 26, the substrate 2 is first carried into the work area A. As shown in FIG. Specifically, the substrate 2 is transported by the transport conveyor 5 of the substrate transport unit 4 and positioned in the work area A. As shown in FIG.
(基板認識)
 作業エリアAに位置決めされた基板2の認識を行う。具体的には、ヘッドカメラ16を有する搭載ヘッド14をXY方向に移動させて、ヘッドカメラ16を基板2の上方に配置して基板2を撮像する。ヘッドカメラ16の撮像画像に基づいて、第1の認識部154が基板2の位置を認識する。第1の認識部154による基板2の認識結果は、目標位置演算部136に送信される。
(board recognition)
The board 2 positioned in the work area A is recognized. Specifically, the mounting head 14 having the head camera 16 is moved in the XY directions, and the head camera 16 is arranged above the substrate 2 to image the substrate 2 . The first recognition unit 154 recognizes the position of the board 2 based on the image captured by the head camera 16 . The recognition result of the board 2 by the first recognition section 154 is transmitted to the target position calculation section 136 .
(実装データの設定)
 図25の(2)に示すように、目標位置演算部136は、部品搭載装置1で予定されている全ての実装点の情報を搭載プログラム138から読み取る。読み取る情報は、図19に示す搭載プログラム138におけるX、Y、θ、Zの情報である。
(Setting of mounting data)
As shown in ( 2 ) of FIG. 25 , the target position calculation unit 136 reads information on all mounting points scheduled for the component mounting apparatus 1 from the mounting program 138 . The information to be read is the information of X, Y, θ, and Z in the installation program 138 shown in FIG.
 図25の(3)に示すように、目標位置演算部136は、第1の認識部154による基板認識結果に基づいて、読み取ったX、Y、θを補正することで、補正後の実装点データ148(X1、Y1、θ1)を計算して記憶部103に記憶する。目標位置演算部136は、当該実装点について実装点高さ推定部134による推定値があればその値をZ1として記憶するが、推定値がない場合は搭載プログラム138のZをZ1として記憶する。第1ターン開始時点では、当該実装点について実装点高さ推定部134による推定値は存在しないので搭載プログラム138のZがZ1として設定される。実装点データ148のうち(X1,Y1,θ1)は、部品搭載処理における各搭載ノズル40の仮の目標位置となる。 As shown in (3) of FIG. 25 , the target position calculation unit 136 corrects the read X, Y, and θ based on the board recognition result by the first recognition unit 154 to obtain the mounting point after correction. Data 148 (X1, Y1, θ1) are calculated and stored in the storage section 103 . If there is an estimated value for the mounting point by the mounting point height estimating unit 134, the target position calculating unit 136 stores the value as Z1, but if there is no estimated value, stores the Z of the mounting program 138 as Z1. At the start of the first turn, there is no estimated value by the mounting point height estimator 134 for the mounting point, so Z in the mounting program 138 is set as Z1. (X1, Y1, θ1) of the mounting point data 148 is a temporary target position of each mounting nozzle 40 in the component mounting process.
(部品取り出し)
 上述した基板搬入および基板認識と並行して、図26に示すように、取出ヘッド12による部品Pの取出しおよび中継ステージ26への載置を行う。取出ヘッド12による部品Pの取出しは、図1に示す第1部品供給部6の上方へ取出ヘッド12が移動し、取出ヘッド12の取出ノズル36により、第1部品供給部6のキャリアテープに収容されている部品Pを吸着して取り出す。取出ノズル36の昇降動作は個別に行われ、取出ノズル36毎に部品Pの吸着動作を順次行う。実施形態1では、計16本の取出ノズル36を設けており、最大16本の取出ノズル36が部品Pを吸着するまで部品Pの取り出しを行う。
(Remove parts)
In parallel with the board loading and board recognition described above, as shown in FIG. When the component P is taken out by the take-out head 12, the take-out head 12 moves above the first component supply section 6 shown in FIG. The attached part P is sucked and taken out. The lifting operation of the take-out nozzles 36 is performed individually, and the pick-up operation of the component P is sequentially performed for each take-out nozzle 36 . In the first embodiment, a total of 16 take-out nozzles 36 are provided, and the component P is taken out until a maximum of 16 take-out nozzles 36 pick up the component P. FIG.
(部品載置)
 複数の取出ノズル36が部品Pを保持した状態で取出ヘッド12を中継ステージ26へ移動させる。これにより、複数(例えば16個)の部品Pを第1部品供給ユニット6から中継ステージ26へ一括搬送する。その後、取出ノズル36が保持する部品Pを中継ステージ26の仮置部70に載置する。具体的には、複数の取出ノズル36を同時に下降させて仮置部70の載置面71の間近で部品Pの吸着を解除し、載置面71に部品Pを配置する。これにより、図10に示すように載置面71に複数(例えば16個)の部品Pが配置された状態となる。実施形態1では、取出ノズル36は第1ターンと第2ターンで基板2に搭載される16個の部品P、言い換えれば複数ターン分の複数の部品Pを中継ステージ26に一括搬送する。
(Part placement)
The pick-up head 12 is moved to the intermediate stage 26 while the plurality of pick-up nozzles 36 are holding the component P. As a result, a plurality of (for example, 16) components P are collectively transported from the first component supply unit 6 to the relay stage 26 . After that, the component P held by the extraction nozzle 36 is placed on the temporary placement portion 70 of the relay stage 26 . Specifically, the plurality of take-out nozzles 36 are simultaneously lowered to release the suction of the component P near the placement surface 71 of the temporary placement portion 70 , and the component P is placed on the placement surface 71 . As a result, a plurality of (for example, 16) parts P are arranged on the placement surface 71 as shown in FIG. In the first embodiment, the take-out nozzle 36 collectively conveys 16 components P mounted on the substrate 2 in the first turn and the second turn, in other words, a plurality of components P for multiple turns to the relay stage 26 .
 部品Pの載置が完了すると、取出ヘッド12は部品供給ユニット6へ戻る。 When the placement of the component P is completed, the take-out head 12 returns to the component supply unit 6.
(部品認識)
 その後、中継ステージ26に配置された部品Pに対して部品認識を行う。具体的には、図10などに示した中継ステージカメラ28を用いて、仮置部70に配置された部品Pを下方から撮像する。実施形態1では2台の中継ステージカメラ28を設け、仮置部70に配置された16個の部品Pを同時に撮像することができる。その撮像画像(第1の画像)に基づいて、制御部35の第2の認識部156により、それぞれの部品Pを認識する。このタイミングでの部品Pの認識は、搭載ヘッド14による部品Pのピックアップ前に行う「ピックアップ前部品認識」(第1部品認識)である。実施形態1では、仮置部70に配置された全ての部品Pに対してピックアップ前部品認識が実行される。
(component recognition)
After that, component recognition is performed for the component P placed on the relay stage 26 . Specifically, the relay stage camera 28 shown in FIG. 10 and the like is used to image the component P placed on the temporary placement section 70 from below. In Embodiment 1, two relay stage cameras 28 are provided, and 16 parts P arranged on the temporary placement section 70 can be imaged simultaneously. Each component P is recognized by the second recognition section 156 of the control section 35 based on the captured image (first image). Recognition of the component P at this timing is “pre-pickup component recognition” (first component recognition) performed before the component P is picked up by the mounting head 14 . In the first embodiment, pre-pickup component recognition is executed for all components P placed in the temporary placement section 70 .
 このピックアップ前部品認識を利用して、搭載ヘッド14による部品Pのピックアップ処理を行う。なお、ピックアップ前部品認識中に搭載ヘッド14は作業エリアAから中継ステージ26へ移動する(図26)。また本体制御部102は、搭載ヘッド14の移動中にピックアップ前部品認識が終わると部品ピックアップ処理を開始する。 Using this pre-pickup component recognition, the component P is picked up by the mounting head 14 . Note that the mounting head 14 moves from the work area A to the relay stage 26 during pre-pickup component recognition (FIG. 26). Further, when the pre-pickup component recognition is completed while the mounting head 14 is moving, the main body control unit 102 starts the component pick-up process.
 部品ピックアップ処理のフローを図27に示す。図27に示すフローチャートの各処理は、制御部35の実装作業実行部126により実行される。 Fig. 27 shows the flow of parts pick-up processing. Each process of the flowchart shown in FIG. 27 is executed by the mounting work execution unit 126 of the control unit 35 .
 実装作業実行部126は、ピックアップ前部品認識の結果を取得する(S16)。具体的には、本体制御部102の実装作業実行部126により、ピックアップ前部品認識の結果として第2の認識部156に一時的に記憶されているデータを読み出す。ピックアップ前部品認識の結果には、中継ステージ26に載置されている部品Pのそれぞれの位置情報が含まれる。実施形態1では、実装作業実行部126が、開始されたターンで基板2への搭載が予定されている1個または複数個(最大8個)の部品Pの位置情報を第2の認識部156から取得する。 The mounting work execution unit 126 acquires the result of pre-pickup component recognition (S16). Specifically, mounting work execution unit 126 of main body control unit 102 reads data temporarily stored in second recognition unit 156 as a result of pre-pickup component recognition. The result of pre-pickup component recognition includes position information of each component P placed on the relay stage 26 . In the first embodiment, the mounting work execution unit 126 transmits the position information of one or more (maximum eight) components P scheduled to be mounted on the board 2 in the turn started to the second recognition unit 156. Get from
 実装作業実行部126は、搭載ノズル40を部品Pに対して位置合わせする(S17)。具体的には、実装作業実行部126により、ピックアップ前部品認識で認識した複数の部品Pのうちの1つの部品Pに対して搭載プログラム138で割り当てられている搭載ノズル40をXY方向に位置合わせする。実施形態1では、図28Aに示すように、部品PのXY方向の中心に対して搭載ノズル40の下端面のXY方向の中心を一致させるように位置合わせを行う。 The mounting work execution unit 126 aligns the mounting nozzle 40 with the component P (S17). Specifically, the mounting work execution unit 126 aligns the mounting nozzle 40 assigned by the mounting program 138 to one component P among the plurality of components P recognized in the pre-pickup component recognition in the XY directions. do. In the first embodiment, as shown in FIG. 28A, alignment is performed so that the center of the lower end surface of the mounting nozzle 40 in the XY direction is aligned with the center of the component P in the XY direction.
 実装作業実行部126は、搭載ノズル40の位置合わせと並行して搭載ノズル40の下降を開始する(S18)。具体的には、実装作業実行部126がモータ制御部112へ指令を送信し、モータ制御部112がサーボモータ56を制御して、搭載ノズル40を下降させる。これにより、図28Aに示すように部品Pを斜め下方に移動させることができ、作業時間を短縮して生産性を高めることができる。 The mounting work execution unit 126 starts lowering the mounting nozzle 40 in parallel with the alignment of the mounting nozzle 40 (S18). Specifically, the mounting work execution unit 126 transmits a command to the motor control unit 112 , and the motor control unit 112 controls the servo motor 56 to lower the mounting nozzle 40 . As a result, the part P can be moved obliquely downward as shown in FIG. 28A, and the work time can be shortened to improve productivity.
 実装作業実行部126は、搭載ノズル40の下降を開始させてから所定タイミング後に搭載ノズル40による吸引を開始させる(S19)。具体的には、搭載ノズル40の吸引孔54(図6参照)に配管を通じて接続された図示しないバルブを駆動して吸引孔54と負圧源を接続し、吸引孔54に負圧を発生させた状態とする。この状態で搭載ノズル40が下降を継続すると、中継ステージ26に載置されている部品Pに接触する(図28B)。 The mounting work execution unit 126 causes the mounting nozzle 40 to start suctioning after a predetermined timing from when the mounting nozzle 40 starts to descend (S19). Specifically, a valve (not shown) connected through a pipe to the suction hole 54 (see FIG. 6) of the mounting nozzle 40 is driven to connect the suction hole 54 and a negative pressure source, thereby generating a negative pressure in the suction hole 54. state. When the mounting nozzle 40 continues to descend in this state, it contacts the component P placed on the relay stage 26 (FIG. 28B).
 実装作業実行部126は、搭載ノズル40が接触したか否かを判定する(S20)。具体的な方法を、図28Dを用いて説明する。 The mounting work execution unit 126 determines whether or not the mounting nozzle 40 has come into contact (S20). A specific method will be described with reference to FIG. 28D.
 図28Dは、動作司令部124の指令に応じて搭載ノズル40を下降させたときに、高さ検出部120の出力値が変化する様子を示すグラフである。 FIG. 28D is a graph showing how the output value of the height detection unit 120 changes when the mounting nozzle 40 is lowered according to the command from the operation command unit 124. FIG.
 図28DのA部に示すように、搭載ノズル40の下端面が載置面71に接触すると、高さ検出部120の出力値の変動が生じる。高さ検出部120の出力値に関して、このような動作司令部124の指令に比例しない変動を検出したとき、接触検出部118は搭載ノズル40の下端面が載置面71に接触したと判断する。 As shown in part A of FIG. 28D, when the lower end surface of the mounting nozzle 40 contacts the mounting surface 71, the output value of the height detection section 120 fluctuates. When the output value of the height detection unit 120 detects such a variation that is not proportional to the command from the operation command unit 124, the contact detection unit 118 determines that the lower end surface of the mounting nozzle 40 has come into contact with the mounting surface 71. .
 実装作業実行部126は、搭載ノズル40の下端面が部品Pに接触したことを検出すると(S20でYES)、搭載ノズル40の高さの最小値を記憶する(S21)。具体的には、搭載ノズル40の下端面が部品Pに接触した後の所定期間の間における高さ検出部120の出力値の最小値を最下点記憶部122に記憶する。 When the mounting work execution unit 126 detects that the lower end surface of the mounting nozzle 40 has come into contact with the component P (YES in S20), it stores the minimum height of the mounting nozzle 40 (S21). Specifically, the lowest point storage unit 122 stores the minimum output value of the height detection unit 120 during a predetermined period after the lower end surface of the mounting nozzle 40 contacts the component P. FIG.
 図28Dに示すように、搭載ノズル40の接触を検出してから搭載ノズル40の上昇を開始するまでの「バッファ期間」を定めており、当該バッファ期間の後半の所定範囲を「最小値取得期間」に定めている。これにより、接触を検出した直後の不安定な期間の高さ検出部120の出力値を採用せず、出力値が安定している期間の最小値を取得することができる。 As shown in FIG. 28D, a "buffer period" is defined from the detection of the contact of the mounted nozzle 40 to the start of the upward movement of the mounted nozzle 40. ”. This makes it possible to acquire the minimum value during the period when the output value is stable without adopting the output value of the height detection unit 120 during the unstable period immediately after the contact is detected.
 実装作業実行部126は、搭載ノズル40を上昇させる(S22)。具体的には、実装作業実行部126がモータ制御部112へ指令を送信し、モータ制御部112がサーボモータ56を制御して、搭載ノズル40を上昇させる。実施形態1では、図28Cに示すように、搭載ノズル40を斜め上方に移動させる。 The mounting work execution unit 126 raises the mounting nozzle 40 (S22). Specifically, the mounting work execution unit 126 transmits a command to the motor control unit 112 , and the motor control unit 112 controls the servomotor 56 to raise the mounting nozzle 40 . In the first embodiment, as shown in FIG. 28C, the mounted nozzle 40 is moved obliquely upward.
 実装作業実行部126は、ピックアップ後部品認識を指令する(S23)。具体的には、実装作業実行部126が中継ステージカメラ28に指令を送信し、搭載ノズル40に保持されている部品Pを撮像して第2の認識部156へ出力する。図28Cに示すように、斜め上方に移動して仮置部70から持ち上げられた部品Pに対して、下方に配置された中継ステージカメラ28を用いて撮像する。その撮像画像(第2の画像)に基づいて、制御部35の第2の認識部156により、部品Pを認識する。このタイミングでの部品Pの認識は、搭載ヘッド14による部品Pのピックアップ後に行う「ピックアップ後部品認識(第2部品認識)」である。第2の認識部156は、搭載ノズル40に保持された部品Pと搭載ノズル40の位置ずれを認識する。具体的には、周知の画像認識技術を利用して搭載ノズル40の中心と部品Pの中心との偏差(ΔX、ΔY)並びに搭載ノズル40の向きと部品Pの向きの角度差(Δθ)を求める。これらの偏差および角度差をピックアップ後部品認識結果として目標位置演算部136へ出力する(図25の矢印(B))。 The mounting work execution unit 126 commands post-pickup component recognition (S23). Specifically, the mounting work execution unit 126 transmits a command to the relay stage camera 28 , images the component P held by the mounting nozzle 40 , and outputs the image to the second recognition unit 156 . As shown in FIG. 28C , the intermediate stage camera 28 arranged below picks up an image of the part P that has moved obliquely upward and is lifted from the temporary placement section 70 . The part P is recognized by the second recognition section 156 of the control section 35 based on the captured image (second image). Recognition of the component P at this timing is “post-pickup component recognition (second component recognition)” performed after the component P is picked up by the mounting head 14 . The second recognition unit 156 recognizes positional deviation between the component P held by the mounting nozzle 40 and the mounting nozzle 40 . Specifically, the deviation (ΔX, ΔY) between the center of the mounting nozzle 40 and the center of the component P and the angular difference (Δθ) between the orientation of the mounting nozzle 40 and the orientation of the component P are determined using a well-known image recognition technique. Ask. These deviations and angular differences are output to the target position calculator 136 as the post-pickup component recognition result (arrow (B) in FIG. 25).
 部品厚さ計測部128は、搭載ノズル40の高さの最小値を取得する(S24)。具体的には、本体制御部102の部品厚さ計測部128が、ステップS21によってモータ制御部112の最下点記憶部122に記憶されている搭載ノズル40の高さの最小値を読み出して取得する。 The component thickness measurement unit 128 acquires the minimum height of the mounting nozzle 40 (S24). Specifically, the component thickness measurement unit 128 of the main body control unit 102 reads and acquires the minimum height value of the mounting nozzle 40 stored in the lowest point storage unit 122 of the motor control unit 112 in step S21. do.
 部品厚さ計測部128は、部品Pの厚さを計算する(S25)。具体的には、部品厚さ計測部128が、ステップS24で取得した搭載ノズル40の高さの最小値と、基準高さ記憶部146に記憶されている中継ステージ26の第1基準高さH1とに基づいて、部品Pの厚さを計算する。搭載ノズル40の高さの最小値は、図28Bに示すように搭載ノズル40が部品Pに接触したときの搭載ノズル40の下端面の高さに相当するため、中継ステージ26の第1基準高さH1との差分を求めることで、部品Pの厚さを計算することができる。計算された部品Pの厚さは、部品厚さ(計測値)150として本体制御部102の記憶部に記憶される。 The part thickness measurement unit 128 calculates the thickness of the part P (S25). Specifically, the component thickness measurement unit 128 calculates the minimum value of the height of the mounting nozzle 40 acquired in step S24 and the first reference height H1 of the relay stage 26 stored in the reference height storage unit 146. and the thickness of the part P is calculated. The minimum value of the height of the mounting nozzle 40 corresponds to the height of the lower end surface of the mounting nozzle 40 when the mounting nozzle 40 contacts the component P as shown in FIG. The thickness of the part P can be calculated by obtaining the difference from the thickness H1. The calculated thickness of the component P is stored in the storage unit of the main body control unit 102 as the component thickness (measured value) 150 .
 実装作業実行部126は、部品Pのピックアップを終えていない未完了の搭載ノズル40があるか否かを判定する(S26)。 The mounting work execution unit 126 determines whether or not there is an incomplete mounting nozzle 40 that has not finished picking up the component P (S26).
 1ターン分の複数の搭載ノズル40のうち、ステップS17~S25を実行していない搭載ノズル40が存在する場合、未完了の搭載ノズル40があると判定し(S26でYES)、ステップS17~S26を再度実行する。すなわち、搭載ヘッド14に設けられている複数基(#1~#8)の搭載ノズル40毎に部品Pのピックアップ処理および部品Pの厚さの計算を実行する。 If there is a mounted nozzle 40 for which steps S17 to S25 have not been executed among the plurality of mounted nozzles 40 for one turn, it is determined that there is a mounted nozzle 40 for which steps S17 to S25 have not been completed (YES in S26), and steps S17 to S26 are performed. again. That is, the process of picking up the component P and the calculation of the thickness of the component P are executed for each of the plurality of mounting nozzles 40 (#1 to #8) provided in the mounting head 14. FIG.
 1ターン分の複数の搭載ノズル40の全てに対してステップS17~S25を実行すると、未完了の搭載ノズル40がないと判定し(S26でNO)、図27に示すフローチャートの処理を終了する。 When steps S17 to S25 are executed for all of the plurality of mounted nozzles 40 for one turn, it is determined that there is no unfinished mounted nozzle 40 (NO in S26), and the processing of the flowchart shown in FIG. 27 ends.
 実施形態1の部品搭載装置1は、図27に示すフローチャートの処理を1ターン毎に繰り返し実行する。これにより、搭載プログラム138の搭載順序に従って、1ターン毎に、搭載ノズル40による部品Pのピックアップ処理および厚さ計算を順次行う。 The component mounting apparatus 1 of Embodiment 1 repeatedly executes the processing of the flowchart shown in FIG. 27 for each turn. As a result, according to the mounting order of the mounting program 138, the pick-up processing and thickness calculation of the component P by the mounting nozzle 40 are sequentially performed for each turn.
 図26に戻ると、搭載ヘッド14は、複数の搭載ノズル40が部品Pをピックアップした状態で、作業エリアAに移動する。これにより、複数(最大8個)の部品Pを一括搬送する。この一括搬送中に目標位置演算部136は、部品Pを基板2に搭載する際の各搭載ノズル40の目標位置(X2、Y2、θ2、Z2)を求める。 Returning to FIG. 26, the mounting head 14 moves to the work area A with the multiple mounting nozzles 40 picking up the component P. As a result, a plurality of (maximum eight) parts P are transported collectively. The target position calculator 136 obtains the target positions (X2, Y2, θ2, Z2) of the respective mounting nozzles 40 when the component P is mounted on the substrate 2 during this collective transportation.
 目標位置演算部136による目標位置(X2、Y2、θ2、Z2)の算出方法について、図25で説明する。 A method of calculating the target position (X2, Y2, θ2, Z2) by the target position calculator 136 will be described with reference to FIG.
 図25に示すように、目標位置演算部136の第1演算部136Aは、(A)実装点データ148(X1、Y1、θ1)と、(B)ピックアップ後部品認識結果とに基づいて、目標位置(X2、Y2、θ2)を算出する。具体的には、ピックアップ後部品認識結果(ΔX、ΔY、Δθ)を用いて、実装点データ148(X1、Y1、θ1)で示される仮の目標位置を補正して、目標位置(X2、Y2、θ2)を算出する。 As shown in FIG. 25, the first calculation unit 136A of the target position calculation unit 136 calculates the target position based on (A) the mounting point data 148 (X1, Y1, θ1) and (B) the post-pickup part recognition result. Calculate the position (X2, Y2, θ2). Specifically, the post-pickup component recognition results (ΔX, ΔY, Δθ) are used to correct the provisional target position indicated by the mounting point data 148 (X1, Y1, θ1) to obtain the target position (X2, Y2). , θ2).
 なお、実施形態1の第7ターン、第8ターンのように、搭載ヘッド14が部品供給ユニット8、10から部品を直接ピックアップする場合(部品Pが微小部品以外である場合)、部品Pの認識は、部品カメラ32(図1)で撮像した画像を第3の認識部158で処理する部品認識により実行される。この場合、(B)ピックアップ後部品認識結果に代えて、(C)第3の認識部158による部品認識結果を用いて、実装点データ148(X1、Y1、θ1)を補正して目標位置(X2、Y2、θ2)を演算する。第3の認識部158による部品認識結果は、搭載ヘッド14に吸着されている部品P(微小部品以外)を部品カメラ32により撮像し、その撮像画像に基づいて第3の部品認識部158が部品Pを認識することで得られる。 Note that when the mounting head 14 directly picks up a component from the component supply units 8 and 10 as in the seventh and eighth turns of the first embodiment (when the component P is not a minute component), the component P is recognized. is performed by component recognition in which the third recognition unit 158 processes an image captured by the component camera 32 (FIG. 1). In this case, the mounting point data 148 (X1, Y1, θ1) is corrected using (C) the component recognition result by the third recognition unit 158 instead of the (B) post-pickup component recognition result, and the target position ( X2, Y2, θ2) are calculated. As a result of component recognition by the third recognition unit 158, the components P (other than minute components) picked up by the mounting head 14 are imaged by the component camera 32, and based on the captured image, the third component recognition unit 158 recognizes the components. Obtained by recognizing P.
 目標位置演算部136の第2演算部136Bは、(D)実装点データ148(Z1)と、(E)部品厚さ(計測値)150と、(H)第2基準高さH2とに基づいて、目標高さ(Z2)を算出する。具体的には、実装点データ148に含まれる基準高さ(Z1)にステップS25の計測によって得られた部品厚さ(計測値)150を加算することで、部品Pを保持する搭載ノズル40を移動させる目標高さ(Z2)を算出することができる。 Based on (D) mounting point data 148 (Z1), (E) part thickness (measured value) 150, and (H) second reference height H2 to calculate the target height (Z2). Specifically, by adding the component thickness (measured value) 150 obtained by the measurement in step S25 to the reference height (Z1) included in the mounting point data 148, the mounting nozzle 40 holding the component P is adjusted to A target height (Z2) to move can be calculated.
 (4)第1演算部136Aによって演算された目標位置(X2、Y2、θ2)と、(5)第2演算部136Bによって演算された目標高さ(Z2)は、目標位置140として本体制御部102の記憶部103に記憶される。 (4) the target position (X2, Y2, θ2) calculated by the first calculation unit 136A and (5) the target height (Z2) calculated by the second calculation unit 136B are set as the target position 140 by the main body control unit. 102 is stored in the storage unit 103 .
 次に、図29を参照しながら部品搭載処理について説明を行う。搭載ヘッド14による部品Pの搭載処理のフローを図29に示す。図29に示すフローチャートの各処理は、実装作業実行部126により実行される。 Next, the component mounting process will be described with reference to FIG. FIG. 29 shows a flow of processing for mounting the component P by the mounting head 14 . Each process of the flowchart shown in FIG. 29 is executed by the mounting work execution unit 126 .
 実装作業実行部126は、目標位置(X2、Y2、θ2、Z2)を取得する(S27)。具体的には、実装作業実行部126により、目標位置演算部136によって演算された目標位置(X2、Y2、θ2、Z2)を取得する。 The mounting work execution unit 126 acquires the target position (X2, Y2, θ2, Z2) (S27). Specifically, the mounting work execution unit 126 acquires the target position (X2, Y2, θ2, Z2) calculated by the target position calculation unit 136 .
 実装作業実行部126は、搭載ノズル40を実装点に位置決めする(S28)。具体的には、実装作業実行部126による制御により、搭載プログラム138の搭載順序に従って、基板2に搭載すべき部品Pを保持した搭載ノズル40をXY方向およびθ方向に位置決めする。位置決めの際には、ステップS27で取得した目標位置(X2、Y2、θ2)に向けて搭載ノズル40を移動させる。実施形態1では、図30Aに示すように、搭載ノズル40をZ方向に下降させながら斜め下方に移動させて搭載ノズル40を位置決めする。 The mounting work execution unit 126 positions the mounting nozzle 40 at the mounting point (S28). Specifically, the mounting nozzle 40 holding the component P to be mounted on the board 2 is positioned in the XY direction and the θ direction according to the mounting order of the mounting program 138 under the control of the mounting work execution unit 126 . During positioning, the mounted nozzle 40 is moved toward the target position (X2, Y2, θ2) acquired in step S27. In the first embodiment, as shown in FIG. 30A, the mounting nozzle 40 is positioned by moving it obliquely downward while lowering it in the Z direction.
 実装作業実行部126は、実装点が指定実装点であるか否かを判定する(S29)。具体的には、実装作業実行部126により、部品Pを搭載すべき基板2の実装点が、搭載プログラム138において指定実装点に指定されているか否かに基づいて判定する。図19に示す搭載プログラム138の例では、部品Pの搭載順序が1番目から9番目の部品Pに対応する実装点が指定実装点に指定されており、10番目以降の実装点は指定実装点に指定されていない。よって、第1ターンで部品が搭載される実装点は全て指定実装点となる。 The mounting work execution unit 126 determines whether or not the mounting point is the designated mounting point (S29). Specifically, the mounting work execution unit 126 determines whether or not the mounting point of the board 2 on which the component P is to be mounted is designated as the designated mounting point in the mounting program 138 . In the example of the mounting program 138 shown in FIG. 19, the mounting points corresponding to the first to ninth parts P in the mounting order of the parts P are designated as the designated mounting points. not specified. Therefore, all mounting points where components are mounted in the first turn are designated mounting points.
 実装点が指定実装点であると判定した場合(S29でYES)、制御部35は、搭載ノズル40の下降を開始し(S30)、接触を検出したか否かを判定する(S31)。ステップS31では、前述したステップS20と同様の接触検出方法を利用して、部品Pを保持した搭載ノズル40が基板2の実装点に接触したか否かを判定する。 When it is determined that the mounting point is the designated mounting point (YES in S29), the control unit 35 starts lowering the mounting nozzle 40 (S30) and determines whether or not contact has been detected (S31). In step S31, it is determined whether or not the mounting nozzle 40 holding the component P has come into contact with the mounting point of the substrate 2 using the same contact detection method as in step S20 described above.
 搭載ノズル40の接触を検出しない場合(S31でNO)、搭載ノズル40の下降を継続する。一方、図30Bに示すように、搭載ノズル40が保持する部品Pが基板2の上面に接触すると、搭載ノズル40の接触が検出される(S31でYES)。 If no contact of the mounting nozzle 40 is detected (NO in S31), the mounting nozzle 40 continues to descend. On the other hand, as shown in FIG. 30B, when the component P held by the mounting nozzle 40 contacts the upper surface of the substrate 2, the contact of the mounting nozzle 40 is detected (YES in S31).
 実装作業実行部126は、搭載ノズル40の接触が検出されたら、搭載ノズル40による吸引を解除(真空破壊)するとともに搭載ノズル40を上昇させる(S34)。実施形態1では、図30Cに示すように、搭載ノズル40を上方に移動させながら斜め方向に上昇させる。 When the contact of the mounting nozzle 40 is detected, the mounting work executing section 126 cancels the suction by the mounting nozzle 40 (vacuum breaking) and raises the mounting nozzle 40 (S34). In the first embodiment, as shown in FIG. 30C, the mounting nozzle 40 is moved upward and obliquely raised.
 実装作業実行部126は、最小値を取得する(S35)。具体的には、前述したステップS21と同様の方法により、接触を検出(S31でYES)してから搭載ノズル40を上昇させる直前の所定期間の出力値に関して最下点記憶部122に記憶されている搭載ノズル40の高さの最小値を読み出して取得する。この最小値は、部品Pを基板2に搭載したときの搭載ノズル40の高さ位置である。 The mounting work execution unit 126 acquires the minimum value (S35). Specifically, in the same manner as in step S21 described above, the lowest point storage unit 122 stores the output value for a predetermined period immediately before the mounting nozzle 40 is lifted after contact is detected (YES in S31). The minimum value of the height of the mounted nozzle 40 is read and acquired. This minimum value is the height position of the mounting nozzle 40 when the component P is mounted on the substrate 2 .
 実装作業実行部126は、実装点高さの計算を実装点高さ計測部132へ指令する(S36)。この指令を受けた実装点高さ計測部132は実装点の高さを計算する。具体的には、ステップS35で取得した搭載ノズル40の最小値が、図30Bに示すように基板2の実装点に接触した部品Pを保持する搭載ノズル40の高さZ3に相当するため、部品厚さ(計測値)150を減算することで、基板2の実装点の高さである実装点高さZ4を計算することができる。計算された実装点高さZ4は、実装点高さ(計測値)152として本体制御部102の記憶部103に記憶される。このように実施形態1では、実装点高さを計算する際に使用する部品厚さに、カタログ値ではなく、実際にその実装点に搭載される部品Pについて計測された正確な値を使用しているので、正確な実装点高さを得ることができる。 The mounting work execution unit 126 instructs the mounting point height measurement unit 132 to calculate the mounting point height (S36). The mounting point height measuring unit 132 that has received this command calculates the height of the mounting point. Specifically, since the minimum value of the mounting nozzle 40 obtained in step S35 corresponds to the height Z3 of the mounting nozzle 40 that holds the component P in contact with the mounting point of the substrate 2 as shown in FIG. By subtracting the thickness (measured value) 150, the mounting point height Z4, which is the height of the mounting point of the substrate 2, can be calculated. The calculated mounting point height Z4 is stored in the storage unit 103 of the main body control unit 102 as the mounting point height (measured value) 152 . As described above, in the first embodiment, the thickness of the component used to calculate the height of the mounting point is not the catalog value but the accurate value measured for the component P actually mounted at the mounting point. so you can get the exact mounting point height.
 実装作業実行部126は、未完了の搭載ノズル40があるか否かを判定する(S37)。具体的には、搭載プログラム138の搭載順序に従って、1ターン分の複数の搭載ノズル40のうち、ステップS28~S36を実行していない搭載ノズル40が存在するか否かに基づいて判定を行う。 The mounting work execution unit 126 determines whether or not there is an unfinished mounting nozzle 40 (S37). Specifically, determination is made based on whether or not there is a mounting nozzle 40 for which steps S28 to S36 have not been executed among the plurality of mounting nozzles 40 for one turn according to the mounting order of the mounting program 138 .
 1ターン分の複数の搭載ノズル40のうち、ステップS28~S36を実行していない搭載ノズル40が存在する場合、未完了の搭載ノズル40があると判定し(S37でYES)、ステップS28~S37を再度実行する。 If there is a mounted nozzle 40 for which steps S28 to S36 have not been executed among the plurality of mounted nozzles 40 for one turn, it is determined that there is an unfinished mounted nozzle 40 (YES in S37), and steps S28 to S37 are performed. again.
 1ターン分の複数の搭載ノズル40の全てに対してステップS28~S36を実行した場合、未完了の搭載ノズル40がないと判定し(S37でNO)、部品搭載処理を終了する。これで第1ターンの部品搭載処理が完了することになる。部品搭載装置1は、目標位置演算部136による実装データ148の設定から部品搭載処理(図29)までの一連の処理を1ターン毎に繰り返し実行することで、搭載プログラム138の搭載順序に従って、第2ターン以降の搭載ノズル40による部品Pの搭載、および、部品Pを搭載した基板2の実装点高さZ4の計算を順次行う。 When steps S28 to S36 have been executed for all of the plurality of mounting nozzles 40 for one turn, it is determined that there is no unfinished mounting nozzle 40 (NO in S37), and the component mounting process ends. This completes the component mounting process for the first turn. The component mounting apparatus 1 repeatedly executes a series of processes from the setting of the mounting data 148 by the target position calculation unit 136 to the component mounting process (FIG. 29) for each turn. The mounting of the component P by the mounting nozzle 40 after the second turn and the calculation of the mounting point height Z4 of the board 2 on which the component P is mounted are sequentially performed.
 図19に示す搭載プログラム138の例では、搭載順序が1番目から9番目の部品Pに対応する実装点が指定実装点に指定されている。このうち、搭載順序が1番目から6番目の部品Pが第1ターンで、搭載順序が7番目から9番目の部品Pが第2ターンで搭載されるようにプログラムされている。このため、1ターン目および2ターン目の部品Pに対して図29に示すフローが実行されると、全ての実装点(搭載順序が1番目から9番目)が指定実装点であると判定され(S29でYES)、ステップS30、S31、S34~S36の各処理が実装点のそれぞれに実行される。これにより、計9個の全ての指定実装点に関して実装点高さH4が計算される。 In the example of the mounting program 138 shown in FIG. 19, the mounting points corresponding to the first to ninth parts P in the mounting order are designated as the designated mounting points. Among them, the parts P whose mounting order is 1st to 6th are programmed to be mounted in the first turn, and the parts P whose mounting order is 7th to 9th are mounted in the second turn. Therefore, when the flow shown in FIG. 29 is executed for the parts P in the first and second turns, all mounting points (first to ninth in the mounting order) are determined to be designated mounting points. (YES in S29), each process of steps S30, S31, and S34 to S36 is executed for each mounting point. As a result, the mounting point height H4 is calculated for all nine designated mounting points.
 全ての指定実装点に関して実装点高さH4が計算されると、実装点高さ推定部134は、指定実装点以外の実装点の高さの推定処理を行う。 When the mounting point height H4 is calculated for all the designated mounting points, the mounting point height estimation unit 134 performs height estimation processing for mounting points other than the designated mounting points.
 実装点高さの推定処理のフローを図31に示す。図31に示すフローチャートの各処理は、実装点高さ推定部134により実行される。 Fig. 31 shows the flow of the mounting point height estimation process. Each process of the flowchart shown in FIG. 31 is executed by the mounting point height estimation unit 134 .
 実装点高さ推定部134は、ターンが終了したか否かを判定する(S38)。具体的には、部品搭載処理(図29)が終了したか否かを判定する。 The mounting point height estimation unit 134 determines whether or not the turn has ended (S38). Specifically, it is determined whether or not the component mounting process (FIG. 29) has ended.
 実装点高さ推定部134は、ターンが終了したと判定(S38でYes)したら、全ての指定実装点の高さを取得したか否かを判定する(S39)。図19に示す例では、搭載順序が1番目~9番目の実装点に関する実装点高さ(計測値)152が取得されたときに、全ての実装点の高さを取得したと判定し(S39でYes)、ステップS40に移行する。 When the mounting point height estimation unit 134 determines that the turn has ended (Yes in S38), it determines whether or not the heights of all designated mounting points have been acquired (S39). In the example shown in FIG. 19, when the mounting point heights (measurement values) 152 for the mounting points 1st to 9th in the mounting order are obtained, it is determined that the heights of all the mounting points have been obtained (S39). Yes), the process proceeds to step S40.
 本実施形態では、第1ターンが終了した時点では1番目~6番目の実装点高さ(計測値)152を取得した状態であるため、図31のフローにおいて1ターン目が終了したと判定されても、全ての指定実装点の高さを取得していないと判定されるので(S39でNO)、S40以降の処理は実行されない。その後、第2ターンが終了して1番目~9番目の実装点高さ(計測値)152が取得された状態となると(S39でYES)、S40以降の処理が実行される。 In this embodiment, when the first turn ends, the first to sixth mounting point heights (measurement values) 152 have been obtained, so it is determined that the first turn has ended in the flow of FIG. However, since it is determined that the heights of all the designated mounting points have not been obtained (NO in S39), the processing after S40 is not executed. After that, when the second turn ends and the first to ninth mounting point heights (measured values) 152 are obtained (YES in S39), the processing from S40 onwards is executed.
 実装点高さ推定部134は、基板形状を演算する(S40)。具体的には、複数の指定実装点に関する実装点高さ(計測値)152を取得(図25の矢印(G))し、取得した実装点高さ(計測値)152に基づいて、基板2の全体の形状を演算する。実施形態1では、基板形状を演算する際に「面補正」を用いる。面補正の方法については例えば、特開2006-203020どの方法を用いてもよい。面補正に限らず、基板2の全体形状を演算可能な任意の演算手法を用いてもよい。基板2の全体の形状を演算することで、基板2の任意の位置における高さを演算することができる。 The mounting point height estimation unit 134 calculates the board shape (S40). Specifically, mounting point heights (measured values) 152 for a plurality of designated mounting points are obtained (arrow (G) in FIG. 25), and based on the obtained mounting point heights (measured values) 152, the substrate 2 Calculate the overall shape of . In the first embodiment, "surface correction" is used when calculating the substrate shape. As for the surface correction method, for example, any method disclosed in Japanese Patent Laid-Open No. 2006-203020 may be used. Any calculation method capable of calculating the overall shape of the substrate 2 may be used without being limited to the surface correction. By calculating the overall shape of the substrate 2, the height at any position of the substrate 2 can be calculated.
 図32は、基板2における複数の実装点170の中から9つの指定実装点172が指定されている状態を示す概略正面図である。図32に示すように、基板2の角部には複数の基準マーク174が設けられており、前述したヘッドカメラ16による撮像画像に基づいて第1の認識部154が基板2の位置を認識するために利用される。 FIG. 32 is a schematic front view showing a state in which nine designated mounting points 172 are designated from a plurality of mounting points 170 on the substrate 2. FIG. As shown in FIG. 32, a plurality of reference marks 174 are provided at corners of the substrate 2, and the first recognition unit 154 recognizes the position of the substrate 2 based on the image captured by the head camera 16 described above. used for
 図32に示す例では、複数の指定実装点172を均等に分散させて配置している。これにより、基板形状を面補正で演算する際の演算精度を向上させることができる。指定実装点172の数が増えるほど、基板形状の演算精度が向上するため、計9つの指定実装点172を設けることで演算精度をさらに向上させることができる。 In the example shown in FIG. 32, a plurality of designated mounting points 172 are evenly distributed. As a result, it is possible to improve the calculation accuracy when calculating the substrate shape by surface correction. As the number of designated mounting points 172 increases, the accuracy of board shape calculation improves. Therefore, by providing a total of nine designated mounting points 172, the calculation accuracy can be further improved.
 図33は、基板176が複数の分割基板178を有する例を示す概略正面図である。図33に示す例では、基板176は4つの分割基板178を備えており、分割基板178のそれぞれに9つの指定実装点180が指定されている。このような場合、分割基板178のそれぞれで基板形状を演算することで、基板176の全体形状をより精度良く演算することができる。 FIG. 33 is a schematic front view showing an example in which the substrate 176 has a plurality of split substrates 178. FIG. In the example shown in FIG. 33, the substrate 176 has four divided substrates 178, and nine designated mounting points 180 are designated on each of the divided substrates 178. In the example shown in FIG. In such a case, by calculating the substrate shape for each of the divided substrates 178, the overall shape of the substrate 176 can be calculated with higher accuracy.
 実装点高さ推定部134は、他の実装点の高さを演算する(S41)。具体的には、実装点高さ推定部134により、ステップS40で演算した基板2の形状に基づいて、指定実装点に指定されていない他の実装点の推定高さを演算する。すなわち、部品Pが搭載されていない実装点の高さを推定する。 The mounting point height estimation unit 134 calculates the heights of other mounting points (S41). Specifically, the mounting point height estimator 134 calculates the estimated heights of the other mounting points not designated as the designated mounting points based on the shape of the substrate 2 calculated in step S40. That is, the height of the mounting point where the component P is not mounted is estimated.
 実装点高さ推定部134は、実装点データ(Z1)を更新する(S42)。具体的には、実装点高さ推定部134により、ステップS41で演算した実装点の推定高さに基づいて、実装点データ148のZ1の値を更新する(図25の矢印(6))。その後、図31に示すフローを終了する。実施形態1では、第2ターン終了後に実装点高さ推定部134によって指定実装点以外の実装点の高さ推定処理が実行され、実装点データ(Z1)が更新される。すなわち、実際の基板2の変形を反映した値に更新される。従って、第3ターン以降については、更新された実装点データ(Z1)を使用して目標高さ(Z2)を算出するので、部品搭載時における搭載ノズル40の高さを適切に制御して、部品Pの搭載ミスや搭載後の位置ずれの少ない高品質な部品搭載を実現することができる。 The mounting point height estimation unit 134 updates the mounting point data (Z1) (S42). Specifically, the mounting point height estimation unit 134 updates the value of Z1 in the mounting point data 148 based on the estimated height of the mounting point calculated in step S41 (arrow (6) in FIG. 25). After that, the flow shown in FIG. 31 ends. In the first embodiment, after the end of the second turn, the mounting point height estimation unit 134 executes height estimation processing for mounting points other than the designated mounting points, and updates the mounting point data (Z1). That is, the value is updated to reflect the actual deformation of the substrate 2 . Therefore, for the third and subsequent turns, the updated mounting point data (Z1) is used to calculate the target height (Z2). It is possible to realize high-quality component mounting with less component P mounting mistakes and positional deviation after mounting.
 次に、全ての指定実装点に部品Pが搭載された後の部品搭載処理について、図29を参照しながら説明する。実施形態1では、第3ターン(搭載順序が10番目以降)から指定実装点以外の実装点への部品搭載が開始する。図29に示すフローにおいて、実装点は指定実装点でないと判定され(S29でNO)、ステップS32に移行する。実装作業実行部126は、搭載ノズル40を下降させ(S32)、搭載ノズル40が目標高さ(Z2)に到達したか否かを判定する(S33)。 Next, referring to FIG. 29, the component mounting process after the component P has been mounted at all the designated mounting points will be described. In the first embodiment, component mounting to mounting points other than the designated mounting points starts from the third turn (the mounting order is 10th or later). In the flow shown in FIG. 29, it is determined that the mounting point is not the designated mounting point (NO in S29), and the process proceeds to step S32. The mounting work execution unit 126 lowers the mounting nozzle 40 (S32), and determines whether or not the mounting nozzle 40 has reached the target height (Z2) (S33).
 ステップS32、S33を経由する場合は、指定実装点と判定されたときのように部品Pの接触検出(S31)を行わないため、搭載ノズル40を目標高さ(Z2)に向けて高速で下降させることができる。すなわち、実装点高さの推定処理を行った以降は、搭載ノズル40を高速で下降させて部品Pの搭載を行うことができ、生産性を向上させることができる。 When steps S32 and S33 are passed through, the contact detection of the component P (S31) is not performed unlike when it is determined to be the designated mounting point, so the mounting nozzle 40 is lowered toward the target height (Z2) at high speed can be made That is, after the mounting point height estimation process is performed, the mounting nozzle 40 can be lowered at high speed to mount the component P, and productivity can be improved.
 実装点が指定実装点である場合(S29でYES)、部品Pと基板2との接触検出を行うため(S31)、搭載ノズル40を低速で下降させる(S30)。一方、実装点が指定実装点でない場合(S29でNO)、実装点高さの推定処理によって実装点の目標高さ(Z2)が算出されているため、目標高さ(Z2)に向けて搭載ノズル40を高速で下降させることができる(S32、S33)。いずれの場合であっても、図30Bに示すように部品Pが基板2に接触する位置まで搭載ノズル40を下降させて、基板2の実装点に部品Pを搭載することができる。 If the mounting point is the designated mounting point (YES in S29), the mounting nozzle 40 is lowered at a low speed (S30) in order to detect contact between the component P and the board 2 (S31). On the other hand, if the mounting point is not the designated mounting point (NO in S29), the target height (Z2) of the mounting point has been calculated by the mounting point height estimation process, so the mounting point is mounted toward the target height (Z2). The nozzle 40 can be lowered at high speed (S32, S33). In either case, the mounting nozzle 40 can be lowered to a position where the component P contacts the board 2 as shown in FIG.
 図26に戻ると、作業エリアAにおいて、搭載ヘッド14による基板2への部品Pの搭載をターン毎に実行している。前述したように、1ターン目、2ターン目においては接触検出を伴う部品Pの搭載を行うため、搭載ノズル40を低速で下降させるのに対し、3ターン目以降においては実装点の高さ推定に基づく目標高さに下降させるため、搭載ノズル40を高速で下降させて処理速度を向上させることができる。 Returning to FIG. 26, in the work area A, the mounting of the component P on the board 2 by the mounting head 14 is performed for each turn. As described above, in the first and second turns, the mounting nozzle 40 is lowered at a low speed in order to mount the component P with contact detection. Therefore, the mounting nozzle 40 can be lowered at high speed to improve the processing speed.
 前述した目標位置演算部136による目標位置(X2、Y2、Z2、θ2)の演算は、搭載ヘッド14が中継ステージ26上の部品Pをピックアップしてから作業エリアAに移動する間に行うことができる。これにより、作業効率を向上させることができる。 The calculation of the target position (X2, Y2, Z2, θ2) by the target position calculator 136 described above can be performed while the mounting head 14 picks up the component P on the relay stage 26 and moves to the work area A. can. Thereby, working efficiency can be improved.
 図26に示すように、取出ヘッド12は、第1部品供給ユニット6から微小部品を取り出す取出動作と、取り出した微小部品を中継ステージ26へ一括搬送する搬送動作と、微小部品を中継ステージ26に載置する載置動作と、第1部品供給ユニット6へ戻る戻り動作とを繰り返し実行する。 As shown in FIG. 26, the take-out head 12 performs a take-out operation for picking up minute components from the first component supply unit 6, a transport operation for collectively transporting the taken-out minute components to the relay stage 26, and a transport operation for transferring the minute components to the relay stage 26. A placement operation to place the component and a return operation to return to the first component supply unit 6 are repeatedly performed.
 搭載ヘッド14も同様に、作業エリアAから中継ステージ26へ移動する移動動作と、中継ステージ26に載置された微小部品をピックアップするピックアップ動作と、ピックアップした微小部品を作業エリアAに一括搬送する搬送動作と、作業エリアAの基板2に微小部品を搭載する搭載動作とを、1ターン毎に繰り返し実行する。 Similarly, the mounting head 14 also moves from the work area A to the relay stage 26, picks up minute parts placed on the relay stage 26, and collectively transports the picked-up minute parts to the work area A. A carrying operation and a mounting operation for mounting a minute component on the board 2 in the work area A are repeatedly executed for each turn.
 実施形態1では、取出ヘッド12における取出ノズル36の本数を、搭載ヘッド14における搭載ノズル40の本数よりも多く設けており、中継ステージ26へ一括搬送できる微小部品の数も多くすることができる。実施形態1では特に、取出ノズル36の本数(16本)を搭載ノズル40の本数(8本)の2倍としており、例えば図26に示すように、取出ヘッド12が1ターン分の作業を実行する間に、搭載ヘッド14が2ターン分の作業を実行するように制御することができる。これにより、作業効率を向上させることができる。 In Embodiment 1, the number of extraction nozzles 36 in the extraction head 12 is greater than the number of mounting nozzles 40 in the mounting head 14, so that the number of minute components that can be batch-conveyed to the relay stage 26 can be increased. Especially in the first embodiment, the number (16) of the extraction nozzles 36 is double the number (8) of the mounting nozzles 40. For example, as shown in FIG. During this time, the loading head 14 can be controlled to perform two turns of work. Thereby, working efficiency can be improved.
 図26に示す例では、搭載ヘッド14の6ターン目以降において、FRONT側の第1部品供給ユニット6に代えて、REAR側の第2部品供給ユニット8あるいは第3部品供給ユニット10から部品P(小型部品あるいは中型部品)をピックアップして基板2に搭載するターンを含む。搭載ヘッド14は、部品供給ユニット8、10から部品Pをピックアップし、部品カメラ32の上方に移動して部品カメラ32による部品Pの撮像および部品認識を行った後、作業エリアAに移動する。作業エリアAでは微小部品の場合と同様に、部品Pを基板2の実装点に搭載する搭載動作を搭載ノズル40別に順次実行する。搭載動作における搭載ノズル40の目標位置は、搭載プログラム138の初期値に基づく実装点データ148の値などを用いて、搭載ノズル40を高速で下降させて部品Pを基板2に搭載する。 In the example shown in FIG. 26, after the sixth turn of the mounting head 14, instead of the first component supply unit 6 on the FRONT side, the component P ( It includes a turn for picking up small or medium-sized parts and mounting them on the substrate 2 . The mounting head 14 picks up the component P from the component supply units 8 and 10, moves above the component camera 32, performs imaging and component recognition of the component P by the component camera 32, and then moves to the work area A. In the work area A, the mounting operation of mounting the component P on the mounting point of the substrate 2 is sequentially performed for each mounting nozzle 40, as in the case of the minute component. For the target position of the mounting nozzle 40 in the mounting operation, the values of the mounting point data 148 based on the initial values of the mounting program 138 are used to lower the mounting nozzle 40 at high speed to mount the component P on the board 2 .
 上記の通り、部品Pを供給する部品供給ユニット6、8、10をターン単位で切り替えながら部品搭載を行うことができる。 As described above, component mounting can be performed while switching the component supply units 6, 8, and 10 that supply the component P on a turn-by-turn basis.
(作用・効果1)
 上述したように、実施形態1の部品搭載装置1は、第1部品供給ユニット6から部品Pを取り出して基板2に搭載する部品搭載装置であって、複数の部品Pを載置可能な中継ステージ26と、第1部品供給ユニット6から部品Pを取り出して中継ステージ26に移送する取出ヘッド12(第1の部品移送部)と、中継ステージ26上の複数の部品Pを撮像して第1の画像を取得する中継ステージカメラ28と、部品Pを保持する搭載ノズル40を複数有し、中継ステージ26上の部品Pを搭載ノズル40でピックアップして基板2に搭載する搭載ヘッド14(第2の部品移送部)と、制御部35と、を備える。制御部35は、第1の画像を用いて中継ステージ26上の複数の部品Pを認識するピックアップ前部品認識(第1部品認識)を実行し、搭載ヘッド14を制御して、ピックアップ前部品認識の結果を利用して搭載ノズル40を中継ステージ26上の部品Pに位置合わせして部品Pをピックアップするピックアップ動作を、搭載ノズル40別に順次実行し、部品Pをピックアップした搭載ノズル40を基板2の上方に移動させる搬送動作を実行し、搭載ノズル40が保持する部品Pを基板2の実装点に搭載する搭載動作を、搭載ノズル40別に順次実行する。
(Action/Effect 1)
As described above, the component mounting apparatus 1 of Embodiment 1 is a component mounting apparatus that picks up components P from the first component supply unit 6 and mounts them on the substrate 2, and is a relay stage on which a plurality of components P can be mounted. 26, a pick-up head 12 (first component transfer section) that picks up a component P from the first component supply unit 6 and transfers it to the relay stage 26, and a plurality of components P on the relay stage 26 are imaged to obtain a first It has a relay stage camera 28 that acquires an image and a plurality of mounting nozzles 40 that hold the component P. A mounting head 14 (a second a component transfer section) and a control section 35. The control unit 35 executes pre-pickup part recognition (first part recognition) for recognizing a plurality of parts P on the relay stage 26 using the first image, and controls the mounting head 14 to perform pre-pickup part recognition. Using the result of (2), the mounting nozzles 40 are aligned with the components P on the relay stage 26, and the picking up operation of picking up the components P is sequentially performed for each mounting nozzle 40, and the mounting nozzles 40 picking up the components P are placed on the substrate 2. , and the mounting operation of mounting the components P held by the mounting nozzles 40 on the mounting points of the board 2 is sequentially executed for each mounting nozzle 40 .
 また、実施形態1の部品搭載方法は、第1部品供給ユニット6から部品Pを取り出して基板2に搭載する部品搭載方法であって、制御部35により、取出ヘッド12を制御して、第1部品供給ユニット6から部品Pを取り出して中継ステージ26に移送し、制御部35により、中継ステージカメラ28を制御して、中継ステージ26上の複数の部品Pを撮像して第1の画像を取得し、制御部35により、第1の画像を用いて、中継ステージ26上の複数の部品Pを認識するピックアップ前部品認識を実行し、制御部35により、複数の搭載ノズル40を有する搭載ヘッド14を制御して、ピックアップ前部品認識の結果を利用して搭載ノズル40を中継ステージ26上の部品Pに位置合わせして部品Pをピックアップするピックアップ動作を、搭載ノズル40別に順次実行し、部品Pをピックアップした搭載ノズル40を基板2の上方に移動させる搬送動作を実行し、搭載ノズル40が保持する部品Pを基板2の実装点に搭載する搭載動作を、搭載ノズル40別に順次実行する。 Further, the component mounting method of the first embodiment is a component mounting method in which the component P is picked up from the first component supply unit 6 and mounted on the substrate 2. The control unit 35 controls the pickup head 12 to A component P is picked up from the component supply unit 6 and transferred to the relay stage 26, and the control unit 35 controls the relay stage camera 28 to image the plurality of components P on the relay stage 26 to obtain a first image. Then, the controller 35 executes pre-pickup component recognition for recognizing a plurality of components P on the relay stage 26 using the first image, and the controller 35 controls the mounting head 14 having a plurality of mounting nozzles 40 . is controlled to sequentially execute the pick-up operation for picking up the component P by aligning the mounting nozzle 40 with the component P on the relay stage 26 using the result of pre-pickup component recognition for each mounting nozzle 40. are carried out to move the mounting nozzles 40 picking up the parts P to above the substrate 2, and the mounting operations of mounting the components P held by the mounting nozzles 40 on the mounting points of the substrate 2 are sequentially executed for each mounting nozzle 40.例文帳に追加
 このような装置/方法によれば、搭載ノズル40を中継ステージ26上の部品Pに位置合わせした上で部品Pを保持することで、部品Pの姿勢を安定させた状態で基板2に実装することができ、より質の高い部品搭載を実現することができる。また、部品Pとして微小部品を保持する場合でも、搭載ノズル40の保持面から部品Pがはみ出る面積を小さくすることができるので、図34A、図34Bに示すような部品Pどうしの間隔を詰めて基板2に搭載する「狭隣接実装」に適している。さらに、中継ステージ26上の複数の部品Pを一括して撮像・認識するので、複数の搭載ノズル40による部品Pのピックアップ動作を効率よく実行できる。 According to such an apparatus/method, by holding the component P after aligning the mounting nozzle 40 with the component P on the relay stage 26, the component P is mounted on the substrate 2 in a state where the attitude of the component P is stabilized. It is possible to achieve higher quality component mounting. Also, even when a minute component is held as the component P, the area where the component P protrudes from the holding surface of the mounting nozzle 40 can be reduced. It is suitable for "narrow adjacent mounting" to be mounted on the substrate 2. Furthermore, since a plurality of components P on the relay stage 26 are collectively imaged and recognized, the operation of picking up the components P by a plurality of mounting nozzles 40 can be efficiently executed.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、制御部35は、中継ステージカメラ28で撮像した画像に基づいて部品Pを認識する第2の認識部156(部品認識部)をさらに有し、制御部35は、搭載ノズル40を制御して、第2の認識部156で認識された部品Pの中心に向けて搭載ノズル40の下端面の中心を位置合わせして部品Pをピックアップする。これにより、部品Pの中心に搭載ノズル40の下端面の中心を位置合わせして部品Pをピックアップするので、部品Pを搭載ノズル40で安定した姿勢で保持することができ、搭載ノズル40の移動によって部品Pの姿勢が乱れることを抑制し、実装点に適切な姿勢で部品Pを搭載することができる。特に微小部品の搭載時に顕著な効果を発揮する。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the control unit 35 activates the second recognition unit 156 (component recognition unit) that recognizes the component P based on the image captured by the relay stage camera 28. Further, the control unit 35 controls the mounting nozzle 40 to align the center of the lower end surface of the mounting nozzle 40 toward the center of the component P recognized by the second recognition unit 156, thereby locating the component P. to pick up. As a result, the component P is picked up by aligning the center of the lower end surface of the mounting nozzle 40 with the center of the component P, so that the component P can be held in a stable posture by the mounting nozzle 40, and the mounting nozzle 40 can be moved. , the component P can be mounted in an appropriate posture at the mounting point. In particular, it exerts a remarkable effect when mounting minute parts.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、中継ステージ26は、部品Pが載置される仮置部70を有し、仮置部70は下方から部品Pを透視可能であり、中継ステージカメラ28は仮置部70の下方に配置される。これにより、中継ステージカメラ28を仮置部70の下方に配置して、取出ヘッド12の移動を妨げることなく部品Pの撮像を行うことができる。また、取出ヘッド12によって部品Pの撮像が妨げられることもない。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the relay stage 26 has the temporary placement section 70 on which the component P is placed, and the temporary placement section 70 allows the component P to be seen through from below. The relay stage camera 28 is arranged below the temporary placement section 70 . Accordingly, the relay stage camera 28 can be arranged below the temporary placement section 70 to image the component P without interfering with the movement of the pick-up head 12 . In addition, the pickup head 12 does not interfere with the imaging of the component P.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、中継ステージカメラ28は複数設けられ、複数の中継ステージカメラ28によって第1の画像を取得する。これにより、仮置部70の面積を広くとり、多くの部品Pの搭載作業を効率よく行うことができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, a plurality of relay stage cameras 28 are provided, and the plurality of relay stage cameras 28 acquire the first image. As a result, the area of the temporary placement portion 70 can be widened, and the work of mounting many parts P can be efficiently performed.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、制御部35はさらに、中継ステージカメラ28を制御して、搭載ノズル40に保持されている部品Pを撮像して第2の画像を取得する。これにより、同じ中継ステージカメラ28を使用してピックアップ後の部品Pを撮像することで、中継ステージカメラ28とは別の部品認識カメラでピックアップ後の部品Pを撮影する必要がなく、搭載ノズル40が部品カメラ32の上空へ移動する必要がない。これにより、動作の無駄を省いて生産性の高い部品搭載を実現することができる。 In addition, according to the component mounting apparatus/component mounting method of the first embodiment, the control unit 35 further controls the relay stage camera 28 to image the component P held by the mounting nozzle 40 to generate the second image. to get As a result, by using the same relay stage camera 28 to image the picked-up component P, there is no need to photograph the picked-up component P with a component recognition camera separate from the relay stage camera 28. does not need to move above the component camera 32 . As a result, wasteful operations can be eliminated, and highly productive component mounting can be realized.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、制御部35はさらに、第2の画像を用いて、搭載ノズル40に保持されている部品Pを認識するピックアップ後部品認識を実行し、ピックアップ後部品認識の結果を利用して、搭載動作において実装点に部品Pを搭載する際の目標位置を算出する。これにより、部品Pの搭載精度を高めることができ、搭載ミスの少ない部品搭載や狭隣接実装を実現できる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the control unit 35 further uses the second image to perform post-pickup component recognition for recognizing the component P held by the mounting nozzle 40. Then, using the result of component recognition after pickup, a target position for mounting the component P at the mounting point in the mounting operation is calculated. As a result, the mounting accuracy of the component P can be improved, and component mounting with few mounting errors and narrow adjacent mounting can be realized.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、制御部35は、搬送動作において、部品Pをそれぞれ保持した複数の搭載ノズル40を基板2の上方に移動させて複数の部品Pを一括搬送する。これにより、中継ステージ26から基板2の上方まで複数の部品Pを一括搬送することにより、部品搭載の作業効率を向上させることができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the control unit 35 moves the plurality of mounting nozzles 40 holding the respective components P above the substrate 2 in the conveying operation so that the plurality of components P are mounted. are collectively transported. Accordingly, by collectively transporting a plurality of components P from the relay stage 26 to above the substrate 2, the working efficiency of component mounting can be improved.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、取出ヘッド12は、複数の取出ノズル36を備え、制御部35は、取出ヘッド12を制御して、取出ノズル36で第1部品供給ユニット6から部品Pを取り出す取出動作を、取出ノズル36別に順次実行し、複数の取出ノズル36によって複数の部品Pを保持した状態で、複数の取出ノズル36を中継ステージ26の上方へ搬送する搬送動作を実行し、取出ノズル36が保持する部品Pを中継ステージ26に載置する載置動作を、取出ノズル36別に順次実行する。これにより、第1部品供給ユニット6から中継ステージ26まで複数の部品Pを一括搬送することにより、部品搭載の作業効率を向上させることができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the take-out head 12 has a plurality of take-out nozzles 36, and the control unit 35 controls the take-out head 12 so that the take-out nozzles 36 mount the first component. A take-out operation for taking out the parts P from the supply unit 6 is sequentially performed for each take-out nozzle 36, and the plurality of take-out nozzles 36 are conveyed above the intermediate stage 26 while holding the plurality of parts P by the plurality of take-out nozzles 36. A carrying operation is performed, and a placement operation for placing the component P held by the ejection nozzle 36 on the intermediate stage 26 is sequentially performed for each ejection nozzle 36 . Accordingly, by batch-conveying a plurality of components P from the first component supply unit 6 to the relay stage 26, the working efficiency of component mounting can be improved.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、取出ヘッド12における取出ノズル36の本数は、搭載ヘッド14における搭載ノズル40の本数よりも多い。これにより、取出ヘッド12の1回の一括搬送で、搭載ヘッド14の1回の一括搬送よりも多い数の部品Pを中継ステージ26に移送することができ、部品搭載の作業効率を向上させることができる。 Also, according to the component mounting apparatus/component mounting method of Embodiment 1, the number of extraction nozzles 36 in the extraction head 12 is greater than the number of mounting nozzles 40 in the mounting head 14 . As a result, a larger number of components P can be transferred to the intermediate stage 26 than one batch transfer of the mounting head 14 by one batch transfer of the pick-up head 12, and the work efficiency of component mounting is improved. can be done.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、取出ヘッド12における取出ノズル36の配列ピッチは、搭載ヘッド14における搭載ノズル40の配列ピッチと同じまたは1/n(nは1以上の整数)である。これにより、部品搭載の作業効率を向上させることができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the arrangement pitch of the extraction nozzles 36 in the extraction head 12 is the same as or 1/n (where n is 1 or more) the arrangement pitch of the mounting nozzles 40 in the mounting head 14. integer). Thereby, the working efficiency of component mounting can be improved.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、取出ヘッド12における取出ノズル36の本数(16本)は、搭載ヘッド14における搭載ノズル40の本数(8本)の2倍である。これにより、例えば取出ヘッド12の1回の一括搬送で、搭載ヘッドの2回分以上の一括搬送による部品Pを中継ステージ26に移送できるので、部品搭載の作業効率を向上させることができる。なお、取出ノズル36の本数は搭載ノズル40の本数に対して2倍に限らず、2倍以上にしてもよい。 Further, according to the component mounting apparatus/component mounting method of Embodiment 1, the number of extraction nozzles 36 in the extraction head 12 (16) is twice the number of mounting nozzles 40 in the mounting head 14 (8). . As a result, for example, with one batch transport of the pick-up head 12, the parts P by two or more batch transports of the mounting head can be transferred to the relay stage 26, so that the working efficiency of component mounting can be improved. The number of extraction nozzles 36 is not limited to twice the number of mounting nozzles 40, but may be more than twice.
(作用・効果2)
 上述したように、実施形態1の部品搭載装置1は、基板2の実装点に部品Pを搭載する部品搭載装置であって、部品Pを保持して基板2に搭載する搭載ノズル40と、搭載ノズル40を昇降させるサーボモータ56(モータ)と、搭載ノズル40の高さを検出する高さ検出部120(搭載ノズル高さ検出部)と、載置面71(第1基準面)を有する中継ステージ26と、作業エリアAに搬入された基板2を保持するバックアップピン98(基板保持部99)と、作業エリアAに設けられ、上面95A(第2基準面)を有する基板押さえ部材95と、制御部35と、を備える。制御部35は、中継ステージ26の載置面71に搭載ノズル40の下端面を接触させたときに高さ検出部120が検出する高さに基づいて第1基準高さH1を設定し、基板押さえ部材95の上面95Aに搭載ノズル40の下端面を接触させたときに高さ検出部120が検出する高さに基づいて第2基準高さH2を設定する基準高さ設定部130と、載置面71と搭載ノズル40の下端面との間に部品Pを挟んだときに高さ検出部120が検出する高さと第1基準高さH1とに基づいて、部品Pの厚さを計測する部品厚さ計測部128と、作業エリアAに保持された基板2の実装点の高さを記憶する実装点データ148(実装点高さ記憶部)と、実装点データ148に記憶されている実装点の高さと、部品厚さ計測部128で計測した部品Pの厚さと、第2基準高さH2とに基づいて、部品Pを保持した搭載ノズル40を実装点に向けて下降させる際の目標高さ(Z2)を算出する目標位置演算部136と、目標高さ(Z2)に基づいてサーボモータ56を制御するモータ制御部112と、を備える。
(Action/Effect 2)
As described above, the component mounting apparatus 1 of Embodiment 1 is a component mounting apparatus that mounts a component P on a mounting point of a substrate 2, and includes a mounting nozzle 40 that holds the component P and mounts it on the substrate 2; A relay having a servo motor 56 (motor) for raising and lowering the nozzle 40, a height detection unit 120 (mounted nozzle height detection unit) for detecting the height of the mounted nozzle 40, and a mounting surface 71 (first reference surface). A stage 26, a backup pin 98 (substrate holding portion 99) that holds the substrate 2 carried into the work area A, a substrate holding member 95 that is provided in the work area A and has an upper surface 95A (second reference surface), A control unit 35 is provided. The control unit 35 sets the first reference height H1 based on the height detected by the height detection unit 120 when the lower end surface of the mounting nozzle 40 is brought into contact with the mounting surface 71 of the relay stage 26, and the substrate a reference height setting unit 130 for setting the second reference height H2 based on the height detected by the height detection unit 120 when the lower end surface of the mounting nozzle 40 is brought into contact with the upper surface 95A of the pressing member 95; The thickness of the component P is measured based on the first reference height H1 and the height detected by the height detection unit 120 when the component P is sandwiched between the placement surface 71 and the lower end surface of the mounting nozzle 40. A component thickness measuring unit 128, a mounting point data 148 (mounting point height storage unit) storing the height of the mounting point of the board 2 held in the work area A, and the mounting data stored in the mounting point data 148. A target for lowering the mounting nozzle 40 holding the component P toward the mounting point based on the height of the point, the thickness of the component P measured by the component thickness measuring unit 128, and the second reference height H2. A target position calculation unit 136 that calculates the height (Z2) and a motor control unit 112 that controls the servo motor 56 based on the target height (Z2) are provided.
 また、実施形態1の部品搭載方法は、基板2の実装点に部品Pを搭載する部品搭載方法であって、制御部35により、部品Pを保持する搭載ノズル40を制御して、中継ステージ26の載置面71に搭載ノズル40の下端面を接触させて、搭載ノズル40の高さを検出可能な高さ検出部120が検出する高さから第1基準高さH1を設定し、制御部35により、搭載ノズル40を制御して、基板2の作業エリアAに設けられた基板押さえ部材95の上面95Aに搭載ノズル40の下端面を接触させて、高さ検出部120が検出する高さから第2基準高さH2を設定し、制御部35により、搭載ノズル40を制御して、載置面71と搭載ノズル40の下端面との間に部品Pを挟み込んで、高さ検出部120が検出する高さと第1基準高さH1とに基づいて、部品Pの厚さを算出し、制御部35により、算出した部品Pの厚さと、実装点データ138に記憶されている実装点の高さと、第2基準高さH2とに基づいて、部品Pを保持した搭載ノズル40を実装点に向けて下降させる際の目標高さ(Z2)を算出し、制御部35により、目標高さ(Z2)に基づいて、搭載ノズル40を昇降させるサーボモータ56を制御して、搭載ノズル40を実装点に向けて下降させる。 Further, the component mounting method of the first embodiment is a component mounting method for mounting the component P on the mounting point of the substrate 2. The lower end surface of the mounting nozzle 40 is brought into contact with the mounting surface 71 of the mounting nozzle 40, and the first reference height H1 is set from the height detected by the height detection unit 120 capable of detecting the height of the mounting nozzle 40, and the control unit 35 controls the mounting nozzle 40 to bring the lower end surface of the mounting nozzle 40 into contact with the upper surface 95A of the substrate pressing member 95 provided in the work area A of the substrate 2, and the height detected by the height detection unit 120 is reached. , the control unit 35 controls the mounting nozzle 40 to sandwich the component P between the mounting surface 71 and the lower end surface of the mounting nozzle 40, and the height detection unit 120 The thickness of the component P is calculated based on the height detected by and the first reference height H1. Based on the height and the second reference height H2, a target height (Z2) for lowering the mounting nozzle 40 holding the component P toward the mounting point is calculated. Based on (Z2), the servo motor 56 for raising and lowering the mounting nozzle 40 is controlled to lower the mounting nozzle 40 toward the mounting point.
 このような装置/方法によれば、搭載ノズル40の高さ検出機能を利用して部品Pの厚さを計測できるため、部品厚さ計測用の専用の計測装置が不要になり、搭載ヘッド40の小型化・軽量化を図ることができ、生産性の高い部品搭載装置1を実現することができる。 According to such an apparatus/method, since the thickness of the component P can be measured using the height detection function of the mounting nozzle 40, there is no need for a dedicated measuring device for measuring the thickness of the component. can be reduced in size and weight, and the component mounting apparatus 1 with high productivity can be realized.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、搭載ノズル40は、サーボモータ56によって昇降駆動されるシャフト42に交換可能に装着され、基準高さ設定部130は、搭載ノズル40別に第1基準高さH1と第2基準高さH2を設定する。これにより、搭載ノズル40別に第1基準高さH1と第2基準高さH2を設定することで、搭載ノズル40の個体差の影響を受けることなく部品厚さ計測と部品搭載を実施することができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the mounting nozzle 40 is replaceably attached to the shaft 42 that is driven up and down by the servomotor 56, and the reference height setting section 130 is configured so that the mounting nozzle 40 Separately, a first reference height H1 and a second reference height H2 are set. Accordingly, by setting the first reference height H1 and the second reference height H2 for each mounting nozzle 40, the component thickness measurement and component mounting can be performed without being affected by the individual difference of the mounting nozzles 40. can.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、搭載ノズル40は複数設けられるとともに、サーボモータ56によって昇降駆動される複数のシャフト42の各々に交換可能に装着され、基準高さ設定部130は、搭載ノズル40とシャフト42の組み合わせ別に第1基準高さH1と第2基準高さH2を設定する。これにより、搭載ノズル40とシャフト42の組み合わせ別に第1基準高さH1と第2基準高さH2を設定することで、搭載ノズル40やシャフト42の個体差に影響を受けることなく部品厚み計測と部品搭載を実施することができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, a plurality of mounting nozzles 40 are provided, and are replaceably attached to each of a plurality of shafts 42 driven up and down by a servomotor 56. The setting unit 130 sets the first reference height H1 and the second reference height H2 for each combination of the mounting nozzle 40 and the shaft 42 . Accordingly, by setting the first reference height H1 and the second reference height H2 for each combination of the mounting nozzle 40 and the shaft 42, the part thickness can be measured without being affected by the individual differences of the mounting nozzle 40 and the shaft 42. Part mounting can be performed.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、部品厚さ計測部128は、載置面71に載置された部品Pを搭載ノズル40でピックアップするときに高さ検出部120が検出する高さに基づいて部品Pの厚さを計測し、目標位置演算部136は、搭載ノズル40が部品Pをピックアップしてから作業エリアAへ移動する間に目標高さ(Z2)を算出する。これにより、部品Pのピックアップから搭載の一連の作業の中で部品厚さの計測と目標高さ(Z2)の計算を実行することができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the component thickness measurement unit 128 detects the height detection unit 120 when the component P placed on the mounting surface 71 is picked up by the mounting nozzle 40 . The thickness of the component P is measured based on the height detected by the target position calculation unit 136, and the target position calculation unit 136 calculates the target height (Z2) while the mounting nozzle 40 picks up the component P and moves to the work area A. calculate. This makes it possible to measure the thickness of the component P and calculate the target height (Z2) in a series of operations from picking up the component P to mounting it.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、部品厚さ計測部128は、部品Pをピックアップした搭載ノズル40が載置面71から離れる直前の所定期間に高さ検出部120が検出した値のうち最下点を示す値(最小値)に基づいて、部品Pの厚さを計測する。これにより、ピックアップ時の衝撃の影響を受けにくい期間の最小値を用いることで、部品Pの厚さをより正確に計測できる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the component thickness measurement unit 128 detects the height detection unit 120 during a predetermined period immediately before the mounting nozzle 40 picking up the component P leaves the mounting surface 71 . The thickness of the part P is measured based on the value (minimum value) indicating the lowest point among the values detected by . As a result, the thickness of the component P can be measured more accurately by using the minimum value of the period during which the influence of the impact during picking up is less likely to occur.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、載置面71に載置されている部品Pを撮像する中継ステージカメラ28をさらに備え、制御部35は、中継ステージカメラ28で撮像した画像に基づいて部品Pを認識する第2の認識部156(部品認識部)をさらに有し、制御部35は、搭載ノズル40を制御して、第2の認識部156で認識された部品Pの中心に向けて搭載ノズル40の下端面の中心を位置合わせして部品Pをピックアップする。これにより、部品Pの中心に搭載ノズル40の下端面の中心を位置合わせして部品Pをピックアップするので、部品Pの厚さをより正確に計測することができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the relay stage camera 28 that captures the image of the component P placed on the mounting surface 71 is further provided, and the control unit 35 controls the relay stage camera 28 to It further has a second recognition unit 156 (component recognition unit) that recognizes the component P based on the captured image. The center of the lower end face of the mounting nozzle 40 is aligned toward the center of the component P to pick up the component P. As a result, the center of the lower end face of the mounting nozzle 40 is aligned with the center of the component P to pick up the component P, so the thickness of the component P can be measured more accurately.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、第1基準面を有する第1基準部材は、第1部品供給ユニット6から供給される部品Pを一時的に載置する中継ステージ26である。これにより、中継ステージ26を設けることで、基板2への搭載前に部品Pを仮置きすることができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the first reference member having the first reference surface is a relay stage on which the component P supplied from the first component supply unit 6 is temporarily placed. 26. Accordingly, provision of the intermediate stage 26 allows the component P to be temporarily placed before being mounted on the board 2 .
 また、実施形態1の部品搭載装置/部品搭載方法によれば、第2基準面を有する第2基準部材は、バックアップピン98によって下方から支持される基板2を上方から押さえて位置決めする基板押さえ部材95である。これにより、第2基準高さH2を設定するための基準部材として基板押さえ部材95を利用することができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the second reference member having the second reference surface is a substrate pressing member that presses and positions the substrate 2 supported from below by the backup pins 98 from above. 95. Accordingly, the substrate pressing member 95 can be used as a reference member for setting the second reference height H2.
(作用・効果3)
 上述したように、実施形態1の部品搭載装置1は、作業エリアAに搬入された基板2の実装点に部品Pを搭載する部品搭載装置であって、部品Pを保持して基板2に搭載する搭載ノズル40と、搭載ノズル40を昇降させるサーボモータ56と、搭載ノズル40の高さを検出する高さ検出部120(搭載ノズル高さ検出部)と、制御部35と、を備える。制御部35は、部品Pを保持した搭載ノズル40が実装点に部品Pを搭載したときに高さ検出部120が検出する搭載ノズル40の高さと、部品Pの厚さとに基づいて、実装点の高さを計測する実装点高さ計測部132と、実装点高さ計測部132が計測した複数の実装点の高さに基づいて、部品Pが搭載されていない実装点の推定高さを算出する実装点高さ推定部134と、実装点の推定高さと実装点に搭載される部品Pの厚さとに基づいて、部品Pを保持した搭載ノズル40を実装点に向けて下降させる際の目標高さ(Z2)を算出する目標位置演算部と、目標高さ(Z2)に基づいてサーボモータ56を制御するモータ制御部112と、を備える。
(Action/Effect 3)
As described above, the component mounting apparatus 1 of Embodiment 1 is a component mounting apparatus that mounts a component P at the mounting point of the board 2 carried into the work area A, holds the component P, and mounts it on the board 2. , a servo motor 56 that raises and lowers the mounted nozzle 40 , a height detector 120 (mounted nozzle height detector) that detects the height of the mounted nozzle 40 , and a controller 35 . The control unit 35 determines the mounting point based on the height of the mounting nozzle 40 detected by the height detection unit 120 when the mounting nozzle 40 holding the component P mounts the component P at the mounting point and the thickness of the component P. Based on the mounting point height measuring unit 132 that measures the height of the mounting point height measuring unit 132 and the heights of the plurality of mounting points measured by the mounting point height measuring unit 132, the estimated height of the mounting point where the component P is not mounted is calculated. Based on the calculated mounting point height estimator 134 and the estimated height of the mounting point and the thickness of the component P mounted at the mounting point, the mounting nozzle 40 holding the component P is lowered toward the mounting point. A target position calculation unit that calculates the target height (Z2) and a motor control unit 112 that controls the servo motor 56 based on the target height (Z2) are provided.
 また、実施形態1の部品搭載方法は、作業エリアAに搬入された基板2の実装点に部品Pを搭載する部品搭載方法であって、制御部35により、部品Pを保持した搭載ノズル40を制御して、基板2の実装点に部品Pを搭載し、制御部35により、搭載ノズル40の高さを検出する高さ検出部120を用いて、搭載ノズル40が実装点に部品Pを搭載したときに高さ検出部120が検出する搭載ノズル40の高さと、部品Pの厚さとに基づいて、実装点の高さを計測し、制御部35により、計測した複数の実装点の高さに基づいて、部品Pが搭載されていない実装点の推定高さを算出し、制御部35により、実装点の推定高さと実装点に搭載される部品Pの厚さとに基づいて、部品Pを保持した搭載ノズル40を実装点に向けて下降させる際の目標高さ(Z2)を算出し、制御部35により、目標高さ(Z2)に基づいて、搭載ノズル40を昇降させるサーボモータ56を制御して、搭載ノズル40を実装点に向けて下降させる。 Further, the component mounting method of the first embodiment is a component mounting method for mounting the component P on the mounting point of the board 2 carried into the work area A, and the control unit 35 controls the mounting nozzle 40 holding the component P. The component P is mounted on the mounting point of the substrate 2 under control, and the mounting nozzle 40 mounts the component P on the mounting point using the height detection unit 120 that detects the height of the mounting nozzle 40 by the control unit 35. The height of the mounting point is measured based on the height of the mounting nozzle 40 detected by the height detection unit 120 and the thickness of the component P when the mounting nozzle 40 is mounted, and the control unit 35 controls the measured heights of the plurality of mounting points. Based on the estimated height of the mounting point where the component P is not mounted, the control unit 35 calculates the component P based on the estimated height of the mounting point and the thickness of the component P mounted at the mounting point. A target height (Z2) for lowering the held mounting nozzle 40 toward the mounting point is calculated, and the control unit 35 operates the servo motor 56 for raising and lowering the mounting nozzle 40 based on the target height (Z2). Control to lower the mounting nozzle 40 toward the mounting point.
 このような装置/方法によれば、搭載ノズル40が実装点に部品Pを実装する際に計測される実装点の高さ情報を用いて、部品Pが搭載されていない他の実装点の高さを推定することで、推定高さを用いて部品搭載を行うことができるとともに、実装点の高さを計測する専用の計測装置も不要となる。これにより、部品搭載装置1の簡素化を図りながら、作業効率を向上させることができる。 According to such an apparatus/method, the height information of the mounting point measured when the mounting nozzle 40 mounts the component P on the mounting point is used to determine the height of other mounting points where the component P is not mounted. By estimating the height, the component can be mounted using the estimated height, and a dedicated measuring device for measuring the height of the mounting point becomes unnecessary. As a result, work efficiency can be improved while simplifying the component mounting apparatus 1 .
 また、実施形態1の部品搭載装置/部品搭載方法によれば、基準面としての載置面71を有する中継ステージ26をさらに備える。制御部35はさらに、載置面71に搭載ノズル40の下端面を接触させたときに高さ検出部120が検出する高さに基づいて第1基準高さH1を設定する基準高さ設定部130と、載置面71と搭載ノズル40の下端面との間に部品Pを挟み込んだときに高さ検出部120が検出する高さと基準高さとに基づいて、部品Pの厚さを計測する部品厚さ計測部128と、を備え、実装点高さ計測部132は、部品厚さ計測部128で計測した部品Pの厚さを用いて実装点の高さを計測する。これにより、第1基準高さH1が設定される中継ステージ26を用いて部品Pの厚さを計測することで、部品Pの厚さにばらつきがある場合でも実装点の高さを精度良く計測できる。これにより、実装点高さ推定部134で算出する実装点の推定高さの信頼性が向上し、信頼性の高い部品搭載を実現できる。 Further, according to the component mounting apparatus/component mounting method of Embodiment 1, the relay stage 26 having the mounting surface 71 as the reference surface is further provided. The control unit 35 further includes a reference height setting unit that sets the first reference height H1 based on the height detected by the height detection unit 120 when the lower end surface of the mounting nozzle 40 is brought into contact with the mounting surface 71. 130, the thickness of the component P is measured based on the height detected by the height detection unit 120 when the component P is sandwiched between the mounting surface 71 and the lower end surface of the mounting nozzle 40, and the reference height. A component thickness measuring unit 128 is provided, and a mounting point height measuring unit 132 measures the height of the mounting point using the thickness of the component P measured by the component thickness measuring unit 128 . Accordingly, by measuring the thickness of the component P using the relay stage 26 on which the first reference height H1 is set, the height of the mounting point can be accurately measured even if the thickness of the component P varies. can. As a result, the reliability of the estimated mounting point height calculated by the mounting point height estimating unit 134 is improved, and highly reliable component mounting can be realized.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、部品厚さ計測部128は、載置面71に載置された部品Pを搭載ノズル40でピックアップするときに高さ検出部120が検出する高さに基づいて、部品Pの厚さを算出する。これにより、部品Pのピックアップから搭載の一連の作業の中で部品厚さ計測と目標高さ計算を実行することができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the component thickness measurement unit 128 detects the height detection unit 120 when the component P placed on the mounting surface 71 is picked up by the mounting nozzle 40 . calculates the thickness of the part P based on the height detected by . As a result, part thickness measurement and target height calculation can be executed in a series of operations from picking up the part P to mounting it.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、実装点170のうちの一部は、実装点高さ推定部134が推定高さを算出するための複数の指定実装点172に設定されており、実装点高さ推定部134は、複数の指定実装点172から得られた高さに基づいて、部品Pが搭載されていない実装点170の推定高さを算出する。これにより、指定実装点172を予め設定しておくことで、最適な実装点170を指定実装点172に設定することができ、実装点高さ推定部134で算出する実装点170の推定高さの信頼性が向上する。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, some of the mounting points 170 are designated as a plurality of designated mounting points 172 for the mounting point height estimator 134 to calculate the estimated height. The mounting point height estimation unit 134 calculates the estimated height of the mounting point 170 where the component P is not mounted, based on the heights obtained from the plurality of designated mounting points 172 . Accordingly, by setting the designated mounting point 172 in advance, the optimum mounting point 170 can be set as the designated mounting point 172, and the estimated height of the mounting point 170 calculated by the mounting point height estimation unit 134 can be calculated. reliability is improved.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、モータ制御部112は、実装点170に部品Pあるいは搭載ノズル40が接触したことを検出する接触検出部118を有し、制御部35は、指定実装点172に設定されている実装点170に部品Pを搭載する場合は、接触検出部118が接触を検出するまで搭載ノズル40を下降させるように制御し、指定実装点172以外の実装点170に部品Pを搭載する場合は、目標位置演算部136で算出した目標高さ(Z2)に到達するまで搭載ノズル40を下降させるように制御する。これにより、指定実装点172以外の実装点170には接触検出を伴わない部品Pの装着を行うので、部品Pの搭載時間を短縮して生産性を高めることができる。 Further, according to the component mounting apparatus/component mounting method of Embodiment 1, the motor control unit 112 has the contact detection unit 118 that detects that the component P or the mounting nozzle 40 has come into contact with the mounting point 170, and the control unit When the component P is to be mounted on the mounting point 170 set as the designated mounting point 172, the control unit 35 controls the mounting nozzle 40 to descend until the contact detection unit 118 detects contact. When mounting the component P at the mounting point 170 of , the mounting nozzle 40 is controlled to descend until reaching the target height (Z2) calculated by the target position calculation unit 136 . As a result, the component P is mounted on the mounting points 170 other than the designated mounting point 172 without contact detection, so that the mounting time of the component P can be shortened and the productivity can be improved.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、基板176は複数の分割基板178を含み、複数の指定実装点180は分割基板178毎に設定される。これにより、基板176が複数の分割基板178を含む場合でも、分割基板178毎に複数の指定実装点180を設定することで、基板176の全体において実装点の推定高さを精度良く算出することができる。 Further, according to the component mounting apparatus/component mounting method of the first embodiment, the substrate 176 includes a plurality of divided substrates 178, and a plurality of designated mounting points 180 are set for each divided substrate 178. As a result, even if the substrate 176 includes a plurality of divided substrates 178, by setting a plurality of designated mounting points 180 for each divided substrate 178, the estimated height of the mounting points on the entire substrate 176 can be calculated with high accuracy. can be done.
 また、実施形態1の部品搭載装置/部品搭載方法によれば、指定実装点172、204は、9以上の実装点に設定されている。これにより、実装点の推定高さを精度良く算出することができる。 Also, according to the component mounting apparatus/component mounting method of the first embodiment, the designated mounting points 172 and 204 are set to nine or more mounting points. As a result, the estimated height of the mounting point can be calculated with high accuracy.
(実施形態2)
 本発明に係る実施形態2の部品搭載装置およびそれを用いた部品搭載方法について説明する。なお、実施形態2では、主に実施形態1と異なる点について説明し、実施形態1と重複する記載は省略する。
(Embodiment 2)
A component mounting apparatus according to Embodiment 2 of the present invention and a component mounting method using the same will be described. In addition, in the second embodiment, differences from the first embodiment will be mainly described, and descriptions overlapping with the first embodiment will be omitted.
 実施形態2では、指定実装点以外の実装点についても高さ計測を行い、新しく得られた実装点の高さ情報を用いて基板2の推定高さを更新する点が、実施形態1と異なる。 Embodiment 2 is different from Embodiment 1 in that height measurement is also performed for mounting points other than the designated mounting points, and the estimated height of the board 2 is updated using newly obtained height information of the mounting points. .
 図35は、実施形態2の部品搭載処理に関するフローチャートである。 FIG. 35 is a flowchart relating to component mounting processing according to the second embodiment.
 図35に示すように、実施形態1と同様にステップS27、S28を実行した後、実装点が指定実装点であるか否かの判定(S29)を行わず、接触検出を伴う部品搭載を行う(S130、S131)。制御部35は、実装点が指定実装点か否かに関わらず、搭載ノズル40の下降を開始し(S130)、搭載ノズル40の接触を検出したか否かを判定する(S131)。ステップS130、S131はそれぞれ、実施形態1のステップS30、31と同様の処理である。 As shown in FIG. 35, after steps S27 and S28 are executed in the same manner as in the first embodiment, component mounting with contact detection is performed without determining whether or not the mounting point is the designated mounting point (S29). (S130, S131). Regardless of whether or not the mounting point is the designated mounting point, the control unit 35 starts lowering the mounting nozzle 40 (S130), and determines whether contact of the mounting nozzle 40 is detected (S131). Steps S130 and S131 are the same processes as steps S30 and S31 of the first embodiment, respectively.
 上記方法によれば、指定実装点に指定されていない実装点についても接触検出による実装点高さの計算を行うことができ(S36)、実装点高さの推定結果を更新していくことが可能となる。 According to the above method, it is possible to calculate the mounting point height by contact detection even for mounting points that are not designated as designated mounting points (S36), and to update the estimation result of the mounting point height. It becomes possible.
 図36は、実施形態2の実装点高さ推定処理に関するフローチャートである。 FIG. 36 is a flowchart relating to mounting point height estimation processing according to the second embodiment.
 図36に示すように、実施形態1と同様のステップS38~S42を実行した後、ステップS143を実行する。具体的には、制御部35は、次ターンも更新するか否かを判定する(S143)。次ターンも更新すると判定した場合(S143でYES)、ステップS38~S42を再度実行し、実装点データ148(Z1)の更新を次ターンに関しても行う(S42)。 As shown in FIG. 36, after executing steps S38 to S42 similar to those of the first embodiment, step S143 is executed. Specifically, the control unit 35 determines whether or not to update the next turn (S143). If it is determined to update the next turn (YES in S143), steps S38 to S42 are executed again, and the mounting point data 148 (Z1) is updated also for the next turn (S42).
 ステップS143における更新するか否かの判定は例えば、更新回数に閾値を設け、更新回数が閾値以下の場合は次ターンも更新すると判定し(S143でYES)、更新回数が閾値より多くなった場合は次ターンも更新しないと判定してもよい(S143でNO)。あるいは、部品搭載装置1が担当する全ての実装点に部品Pを搭載していない場合は、次ターンも更新すると判定し(S143でYES)、部品搭載装置1が担当する全ての実装点に部品Pを搭載した場合は、次ターンも更新しないと判定してもよい(S143でNO)。 In step S143, for example, a threshold is set for the number of updates, and if the number of updates is equal to or less than the threshold, it is determined that the next turn will be updated (YES in S143). may be determined not to update the next turn either (NO in S143). Alternatively, if the component P is not mounted at all the mounting points that the component mounting apparatus 1 takes charge of, it is determined that the next turn will be updated (YES in S143), and all the mounting points that the component mounting apparatus 1 takes charge of have the components. If P is mounted, it may be determined not to update the next turn either (NO in S143).
 上記フローによれば、ステップS143において次ターンも更新すると判定される限り、ターン毎に、図35のステップS36によって新たに得られる実装点高さを用いて、他の実装点の推定高さを演算することができ(S41)、実装点データ(Z1)を更新し続けることができる(S42)。搭載済みの部品Pの数が増えていくほど、実装点高さを推定するための元データが増えるため、実装点の推定高さを再計算することで、実装点の推定高さの精度を向上させることができる。 According to the above flow, as long as it is determined in step S143 to update the next turn as well, the mounting point height newly obtained in step S36 of FIG. Calculation can be performed (S41), and the mounting point data (Z1) can be continuously updated (S42). As the number of mounted parts P increases, the amount of original data for estimating the mounting point height increases. can be improved.
 一方、次ターンも更新しないと判定した場合(S143でNO)、図36に示すフローを終了する。図36に示すフローを終了した場合、図35に示すフローにおいて、ステップS130、S131による処理に代えて、図29に示すフローのステップS32、S33と同様の処理を行ってもよい。これにより、より精度の高い実装点の推定高さに基づいて目標高さ(Z2)を算出しながら、目標高さ(Z2)に向けて搭載ノズル40を高速で下降させることができ、部品搭載処理を精度良くかつ高速で行うことができる。 On the other hand, if it is determined that the next turn will not be updated either (NO in S143), the flow shown in FIG. 36 ends. When the flow shown in FIG. 36 ends, in the flow shown in FIG. 35, the same processes as steps S32 and S33 of the flow shown in FIG. 29 may be performed instead of the processes of steps S130 and S131. As a result, the mounting nozzle 40 can be lowered at high speed toward the target height (Z2) while calculating the target height (Z2) based on the more accurate estimated height of the mounting point. Processing can be performed accurately and at high speed.
 実施形態2においては、図17に示すブロック図において、実装点高さ計測部132は、指定実装点以外の実装点の高さも計測し、実装点高さ推定部134は、指定実装点の高さと、新たに計測された実装点の高さとを用いて、他の実装点の推定高さを算出する。実装点高さ(計測値)152は、指定実装点の高さの計測値に加えて、指定実装点以外の実装点の高さの計測値を含む。 In the second embodiment, in the block diagram shown in FIG. 17, the mounting point height measuring unit 132 also measures the height of mounting points other than the designated mounting point, and the mounting point height estimating unit 134 measures the height of the designated mounting point. and the newly measured height of the mounting point is used to calculate the estimated height of the other mounting point. The mounting point height (measured value) 152 includes the measured value of the height of the designated mounting point as well as the measured value of the height of the mounting points other than the designated mounting point.
 また、図25に示す目標位置演算部136によるデータ処理の流れにおいて、実装点高さ推定部134は、指定実装点の高さを取得できたら、(6)ターン毎に実装点の高さ推定処理を行って、(5)実装点データ148(Z1)を更新することができる。 Further, in the flow of data processing by the target position calculation unit 136 shown in FIG. 25, when the mounting point height estimation unit 134 acquires the height of the designated mounting point, (6) height estimation of the mounting point is performed for each turn. Processing may be performed to (5) update mounting point data 148 (Z1).
 上述したように、実施形態2の部品搭載装置/部品実装方法によれば、実装点高さ推定部134は、実装点高さ計測部132で得られた新たな実装点の高さを用いて、部品Pが搭載されていない実装点の推定高さを算出し、既に算出している実装点の推定高さを更新する。これにより、推定高さの精度を向上させることができる。 As described above, according to the component mounting apparatus/component mounting method of the second embodiment, the mounting point height estimation unit 134 uses the height of the new mounting point obtained by the mounting point height measurement unit 132 to , calculate the estimated height of the mounting point where the component P is not mounted, and update the already calculated estimated height of the mounting point. Thereby, the accuracy of the estimated height can be improved.
 次に、各種変形例について、図37~図41を用いて説明する。 Next, various modifications will be described with reference to FIGS. 37 to 41. FIG.
 図37は、変形例に係る部品搭載装置200の概略平面図である。図37に示す部品搭載装置200は、2つの中継ステージ228A、228Bと、2つの取出ヘッド212A、212Bと、2つの搭載ヘッド214A、214Bとを備える点が、実施形態1、2と主に異なる。図37に示すように、XYテーブル217は、第1X軸ビーム218Aと、第2X軸ビーム218Bと、第3X軸ビーム220Aと、第4X軸ビーム220Bとを備える。第1X軸ビーム218Aは第1取出ヘッド212Aを支持し、第2X軸ビーム218Bは第2取出ヘッド212Bを支持し、第3X軸ビーム220Aは第1搭載ヘッド214Aを支持し、第4X軸ビーム220Bは第2搭載ヘッド214Bを支持する。 FIG. 37 is a schematic plan view of a component mounting device 200 according to a modification. A component mounting apparatus 200 shown in FIG. 37 is mainly different from Embodiments 1 and 2 in that it includes two relay stages 228A and 228B, two picking heads 212A and 212B, and two mounting heads 214A and 214B. . As shown in FIG. 37, the XY table 217 comprises a first X-axis beam 218A, a second X-axis beam 218B, a third X-axis beam 220A and a fourth X-axis beam 220B. A first X-axis beam 218A supports the first pick head 212A, a second X-axis beam 218B supports the second pick head 212B, a third X-axis beam 220A supports the first mounting head 214A, and a fourth X-axis beam 220B. supports the second mounting head 214B.
 第1取出ヘッド212A、第1中継ステージ228Aおよび第1搭載ヘッド214Aは、第1部品供給ユニット6に対応して設けられている。同様に、第2取出ヘッド212B、第2中継ステージ228Bおよび第2搭載ヘッド214Bは、第2部品供給ユニット8に対応して設けられている。このような構成によれば、第2部品供給ユニット8が第1部品供給ユニット6と同様に微小部品を供給する場合にも対応することができる。 The first take-out head 212A, the first relay stage 228A and the first mounting head 214A are provided corresponding to the first component supply unit 6. Similarly, the second take-out head 212B, the second relay stage 228B and the second mounting head 214B are provided corresponding to the second component supply unit 8. As shown in FIG. According to such a configuration, it is possible to cope with the case where the second component supply unit 8 supplies minute components in the same way as the first component supply unit 6 does.
 図38は、別の変形例に係る部品搭載装置300の概略平面図である。図38に示す部品搭載装置300は、搭載ヘッド314を1つのみ備える点が、図37に示す変形例と主に異なる。図38に示すように、XYテーブル317は、第1X軸ビーム218Aと、第2X軸ビーム218Bと、搭載ヘッド314を支持する第3X軸ビーム320とを備える。 FIG. 38 is a schematic plan view of a component mounting device 300 according to another modified example. A component mounting apparatus 300 shown in FIG. 38 mainly differs from the modified example shown in FIG. 37 in that only one mounting head 314 is provided. As shown in FIG. 38, the XY table 317 includes a first X-axis beam 218A, a second X-axis beam 218B, and a third X-axis beam 320 that supports the mounting head 314. As shown in FIG.
 第1取出ヘッド212A、第1中継ステージ228Aおよび搭載ヘッド314は、第1部品供給ユニット6に対応して設けられており、第2取出ヘッド212B、第2中継ステージ228Bおよび搭載ヘッド314は、第2部品供給ユニット8に対応して設けられている。2つの部品供給部6、8に対して搭載ヘッド314を兼用して使用することができる。 The first pick-up head 212A, the first relay stage 228A and the mounting head 314 are provided corresponding to the first component supply unit 6, and the second pick-up head 212B, the second relay stage 228B and the mounting head 314 are provided for the first component supply unit 6. It is provided corresponding to the two-component supply unit 8 . The mounting head 314 can also be used for the two component supply units 6 and 8 .
 図39は、さらに別の変形例に係る部品搭載装置400の概略平面図である。図39に示す部品搭載装置400は、取出ヘッドを備えずに、搭載ヘッド314を1つのみ備える点が、図38に示す変形例と主に異なる。図39に示すように、XYテーブル417は、搭載ヘッド314を支持する第3X軸ビーム320を備える。 FIG. 39 is a schematic plan view of a component mounting apparatus 400 according to still another modification. A component mounting apparatus 400 shown in FIG. 39 is mainly different from the modified example shown in FIG. 38 in that it does not have a pick-up head and has only one mounting head 314 . As shown in FIG. 39, the XY table 417 has a third X-axis beam 320 that supports the mounting head 314 .
 図39に示す部品搭載装置400では、1つの搭載ヘッド314により、部品供給部6、8からの部品Pの取り出し、中継ステージ228A、228Bへの部品Pの載置、中継ステージ228A、228Bからの部品Pのピックアップ、基板2への部品Pの搭載を全て行う。これにより、部品搭載装置400の構造を簡素化することができる。 In the component mounting apparatus 400 shown in FIG. 39, one mounting head 314 is used to take out the component P from the component supply units 6 and 8, place the component P on the relay stages 228A and 228B, and load the component P from the relay stages 228A and 228B. Picking up the component P and mounting the component P on the substrate 2 are all performed. Thereby, the structure of the component mounting apparatus 400 can be simplified.
 図40は、さらに別の変形例にかかる搭載ヘッド514を示す斜視図である。図40に示す搭載ヘッド514は、ヘッドカメラ516と、複数の搭載ノズル540と、複数のシャフト542と、本体部544とを備える。 FIG. 40 is a perspective view showing a mounting head 514 according to yet another modified example. A mounting head 514 shown in FIG. 40 includes a head camera 516 , a plurality of mounting nozzles 540 , a plurality of shafts 542 and a body portion 544 .
 図40に示すように、複数の搭載ノズル540および複数のシャフト542はそれぞれ円環状に配置されており、Z方向に延びる回転軸Gを中心に回転可能に構成されている。このように、複数の搭載ノズル540を環状に配置したロータリー型の搭載ヘッド514を、搭載ヘッド14に代用して適用してもよい。取出ヘッド12も同様にロータリー型にしてもよい。 As shown in FIG. 40, the plurality of mounted nozzles 540 and the plurality of shafts 542 are each arranged in an annular shape and configured to be rotatable around a rotation axis G extending in the Z direction. In this manner, the rotary type mounting head 514 in which the plurality of mounting nozzles 540 are arranged in an annular shape may be used instead of the mounting head 14 . The take-out head 12 may likewise be of the rotary type.
 図41は、さらに別の変形例にかかる中継ステージ626を示す概略縦断面図である。図41に示す中継ステージ626は、中継ステージカメラ628と、仮置部670と、筐体674と、照明680と、拡散板682とを備える。 FIG. 41 is a schematic longitudinal sectional view showing a relay stage 626 according to yet another modified example. A relay stage 626 shown in FIG. 41 includes a relay stage camera 628 , a temporary placement section 670 , a housing 674 , lighting 680 and a diffusion plate 682 .
 図41に示す変形例では、中継ステージカメラ628は仮置部670の下方ではなく、仮置670の上方に設けられている。中継ステージカメラ628は、撮像方向を下方に向けて固定されている。仮置部670は透明な板で構成されており、照明680が照射する光が拡散板682で拡散されて仮置部670を通過し、部品Pを照らすことができる。中継ステージカメラ628は、取出ヘッド12あるいは搭載ヘッド14が仮置部670の上方にいないタイミングで、下方に位置する仮置部670の部品Pを撮像する。 In the modification shown in FIG. 41 , the relay stage camera 628 is provided above the temporary placement section 670 instead of below the temporary placement section 670 . The relay stage camera 628 is fixed with its imaging direction directed downward. The temporary placement portion 670 is made of a transparent plate, and the light emitted by the illumination 680 can be diffused by the diffusion plate 682 and pass through the temporary placement portion 670 to illuminate the component P. FIG. The relay stage camera 628 captures an image of the component P on the temporary placement section 670 located below the temporary placement section 670 at a timing when the picking head 12 or the mounting head 14 is not above the temporary placement section 670 .
 以上、上述の実施形態1、2を挙げて本発明を説明したが、本発明は上述の実施形態1、2に限定されない。 Although the present invention has been described with reference to Embodiments 1 and 2 above, the present invention is not limited to Embodiments 1 and 2 above.
 本開示は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。また、各実施形態における要素の組合せや順序の変化は、本開示の範囲および思想を逸脱することなく実現し得るものである。 Although the present disclosure has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such variations and modifications are to be included therein insofar as they do not depart from the scope of the present disclosure by the appended claims. Also, combinations of elements and changes in order of elements in each embodiment may be implemented without departing from the scope and spirit of the present disclosure.
 なお、前記実施形態の様々な変形例のうち、任意の変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 By appropriately combining any of the various modifications of the above embodiment, the respective effects can be achieved.
 本発明は、部品搭載装置および部品搭載方法であれば適用可能である。 The present invention is applicable to any component mounting device and component mounting method.
 1 部品搭載装置
 2 基板
 4 基板搬送ユニット
 5 搬送コンベア
 6 第1部品供給ユニット
 8 第2部品供給ユニット
 10 第3部品供給ユニット
 12 取出ヘッド
 14 搭載ヘッド
 16 ヘッドカメラ
 17 XYテーブル
 18、20 X軸ビーム
 22、24 Y軸テーブル
 26 中継ステージ
 28 中継ステージカメラ
 30 第1部品廃棄ボックス
 32 部品カメラ
 34 第2部品廃棄ボックス
 35 制御部
 36 取出ノズル
 38 本体部
 40 搭載ノズル
 42 シャフト
 44 本体部
 46 多孔質部材
 46A 底面
 48 吸引孔
 50 キャリアテープ
 52 ポケット
 54 吸引孔
 56サーボモータ 
 57 プーリ
 58 歯付きベルト
 59 θ軸モータ
 60 プーリ
 61 リニアモータ
 62 エンコーダ
 63 サーボモータ
 64 プーリ
 65 歯付きベルト
 66 θ軸モータ
 66A 出力軸
 67 プーリ
 68 リニアモータ
 69 エンコーダ
 70 仮置部
 71 載置面
 74 筐体
 76 部品除去ブラシ
 78 ブラシ駆動機構
 80 照明
 82 拡散板
 84 モータ
 86 ベルトカバー
 88 ベルト
 90 連結部
 92 スライダー
 94 ガイド
 95 基板押さえ部材
 95A 上面
 95B 下面
 95M 第1計測点
 96 基板ガイド
 97 搬送ベルト
 98 バックアップピン
 99 基板保持部
 100 ヘッドユニット制御部
 101 処理部
 102 本体制御部
 103 記憶部
 104 取出ヘッド制御部
 106 搭載ヘッド制御部
 108 モータ制御部
 110 θ軸モータ制御部
 112 モータ制御部
 114 θ軸モータ制御部
 116 モータドライバ
 118 接触検出部
 120 高さ検出部(搭載ノズル高さ検出部)
 122 最下点記憶部
 124 動作司令部
 126 実装作業実行部
 128 部品厚さ計測部
 130 基準高さ設定部
 132 実装点高さ計測部
 134 実装点高さ計測部
 136 目標位置演算部
 136A 第1演算部
 136B 第2演算部
 138 搭載プログラム
 140 目標位置
 142 部品データ
 144 基板データ
 146 基準高さデータ
 148 実装点データ
 150 部品厚さ(計測値)
 152 実装点高さ(計測値)
 154 第1の認識部
 156 第2の認識部
 158 第3の認識部
 160 モータドライバ
 168 動作司令部
 170 実装点
 172 指定実装点
 174 基準マーク
 176 基板
 178 分割基板
 180 指定実装点
 200 部品搭載装置
 212A 第1取出ヘッド
 212B 第2取出ヘッド
 214A 第1搭載ヘッド
 214B 第2搭載ヘッド
 217 XYテーブル
 218A 第1X軸ビーム
 218B 第2X軸ビーム
 220A 第3X軸ビーム
 220B 第4X軸ビーム
 228A 第1中継ステージ
 228B 第2中継ステージ
 300 部品搭載装置
 314 搭載ヘッド
 317 XYテーブル
 320 第3X軸ビーム
 400 部品搭載装置
 417 XYテーブル
 514 搭載ヘッド
 516 ヘッドカメラ
 540 搭載ノズル
 542 シャフト
 544 本体部
 626 中継ステージ
 628 中継ステージカメラ
 670 仮置部
 674 筐体
 680 照明
 682 拡散板
Reference Signs List 1 component mounting device 2 substrate 4 substrate transfer unit 5 transfer conveyor 6 first component supply unit 8 second component supply unit 10 third component supply unit 12 take-out head 14 mounting head 16 head camera 17 XY table 18, 20 X-axis beam 22 , 24 Y-axis table 26 relay stage 28 relay stage camera 30 first component discard box 32 component camera 34 second component discard box 35 control section 36 take-out nozzle 38 body section 40 mounting nozzle 42 shaft 44 body section 46 porous member 46A bottom surface 48 suction hole 50 carrier tape 52 pocket 54 suction hole 56 servo motor
57 pulley 58 toothed belt 59 θ-axis motor 60 pulley 61 linear motor 62 encoder 63 servo motor 64 pulley 65 toothed belt 66 θ-axis motor 66A output shaft 67 pulley 68 linear motor 69 encoder 70 temporary placement section 71 placement surface 74 housing Body 76 Component removing brush 78 Brush driving mechanism 80 Lighting 82 Diffusion plate 84 Motor 86 Belt cover 88 Belt 90 Connecting part 92 Slider 94 Guide 95 Substrate pressing member 95A Upper surface 95B Lower surface 95M First measurement point 96 Substrate guide 97 Conveyor belt 98 Backup pin 99 substrate holding section 100 head unit control section 101 processing section 102 body control section 103 storage section 104 extraction head control section 106 mounting head control section 108 motor control section 110 θ-axis motor control section 112 motor control section 114 θ-axis motor control section 116 Motor driver 118 Contact detector 120 Height detector (mounted nozzle height detector)
122 lowest point storage unit 124 motion command unit 126 mounting work execution unit 128 component thickness measurement unit 130 reference height setting unit 132 mounting point height measurement unit 134 mounting point height measurement unit 136 target position calculation unit 136A first calculation Part 136B Second calculation part 138 Mounting program 140 Target position 142 Component data 144 Board data 146 Reference height data 148 Mounting point data 150 Component thickness (measured value)
152 Mounting point height (measured value)
154 first recognition section 156 second recognition section 158 third recognition section 160 motor driver 168 motion command section 170 mounting point 172 designated mounting point 174 reference mark 176 board 178 divided board 180 designated mounting point 200 component mounting device 212A 1 extraction head 212B second extraction head 214A first mounting head 214B second mounting head 217 XY table 218A first X-axis beam 218B second X-axis beam 220A third X-axis beam 220B fourth X-axis beam 228A first relay stage 228B second relay Stage 300 Component mounting device 314 Mounting head 317 XY table 320 Third X-axis beam 400 Component mounting device 417 XY table 514 Mounting head 516 Head camera 540 Mounting nozzle 542 Shaft 544 Main unit 626 Relay stage 628 Relay stage camera 670 Temporary placement unit 674 Casing Body 680 Illumination 682 Diffusion plate

Claims (20)

  1.  部品供給ユニットから部品を取り出して基板に搭載する部品搭載装置であって、
     複数の部品を載置可能な中継ステージと、
     前記部品供給ユニットから部品を取り出して前記中継ステージに移送する第1の部品移送部と、
     前記中継ステージ上の複数の部品を撮像して第1の画像を取得する中継ステージカメラと、
     部品を保持する搭載ノズルを複数有し、前記中継ステージ上の部品を前記搭載ノズルでピックアップして基板に搭載する第2の部品移送部と、
     制御部と、を備え、
     前記制御部は、
      前記第1の画像を用いて前記中継ステージ上の複数の部品を認識する第1部品認識を実行し、
      前記第2の部品移送部を制御して、前記第1部品認識の結果を利用して前記搭載ノズルを前記中継ステージ上の部品に位置合わせして部品をピックアップするピックアップ動作を、前記搭載ノズル別に順次実行し、部品をピックアップした前記搭載ノズルを基板の上方に移動させる搬送動作を実行し、前記搭載ノズルが保持する部品を基板の実装点に搭載する搭載動作を、前記搭載ノズル別に順次実行する、
     部品搭載装置。
    A component mounting device that picks up a component from a component supply unit and mounts it on a substrate,
    a relay stage on which a plurality of parts can be placed;
    a first component transfer unit that picks up a component from the component supply unit and transfers it to the relay stage;
    a relay stage camera that captures a plurality of components on the relay stage to acquire a first image;
    a second component transfer unit having a plurality of mounting nozzles for holding components, and picking up components on the relay stage with the mounting nozzles and mounting the components on a substrate;
    a control unit;
    The control unit
    performing first component recognition for recognizing a plurality of components on the relay stage using the first image;
    A pick-up operation for picking up a component by controlling the second component transfer section and aligning the mounting nozzle with the component on the relay stage using the result of the first component recognition is performed for each of the mounting nozzles. A carrying operation is sequentially executed to move the mounting nozzles that have picked up the components above the substrate, and a mounting operation to mount the components held by the mounting nozzles onto mounting points of the substrate is sequentially executed for each of the mounting nozzles. ,
    Parts mounting device.
  2.  前記中継ステージは、部品が載置される仮置部を有し、
     前記仮置部は下方から部品を透視可能であり、前記中継ステージカメラは前記仮置部の下方に配置される、
     請求項1に記載の部品搭載装置。
    The relay stage has a temporary placement section on which the component is placed,
    The temporary placement section allows the component to be seen through from below, and the relay stage camera is arranged below the temporary placement section.
    The component mounting apparatus according to claim 1.
  3.  前記中継ステージカメラは複数設けられ、複数の前記中継ステージカメラによって前記第1の画像を取得する、
     請求項1又は2に記載の部品搭載装置。
    A plurality of the relay stage cameras are provided, and the first image is acquired by the plurality of the relay stage cameras.
    3. The component mounting apparatus according to claim 1 or 2.
  4.  前記制御部はさらに、前記中継ステージカメラを制御して、前記搭載ノズルに保持されている部品を撮像して第2の画像を取得する、
     請求項1~3のいずれかに記載の部品搭載装置。
    The control unit further controls the relay stage camera to image the component held by the mounting nozzle to acquire a second image.
    A component mounting apparatus according to any one of claims 1 to 3.
  5.  前記制御部はさらに、
      前記第2の画像を用いて、前記搭載ノズルに保持されている部品を認識する第2部品認識を実行し、
      前記第2部品認識の結果を利用して、前記搭載動作において前記実装点に部品を搭載する際の目標位置を算出する、
     請求項4に記載の部品搭載装置。
    The control unit further
    using the second image to perform second component recognition for recognizing a component held by the mounting nozzle;
    calculating a target position for mounting the component on the mounting point in the mounting operation using the result of the second component recognition;
    The component mounting apparatus according to claim 4.
  6.  前記制御部は、
      前記搬送動作において、部品をそれぞれ保持した複数の前記搭載ノズルを基板の上方に移動させて複数の部品を一括搬送する、
     請求項1~5のいずれかに記載の部品搭載装置。
    The control unit
    In the conveying operation, the plurality of mounting nozzles each holding a component is moved above the substrate to collectively convey the plurality of components.
    A component mounting apparatus according to any one of claims 1 to 5.
  7.  前記第1の部品移送部は、複数の取出ノズルを備え、
     前記制御部は、前記第1の部品移送部を制御して、
      前記取出ノズルで前記部品供給ユニットから部品を取り出す取出動作を、前記取出ノズル別に順次実行し、
      複数の前記取出ノズルによって複数の部品を保持した状態で、複数の前記取出ノズルを前記中継ステージの上方へ搬送する搬送動作を実行し、
      前記取出ノズルが保持する部品を前記中継ステージに載置する載置動作を、前記取出ノズル別に順次実行する、
     請求項1から6のいずれかに記載の部品搭載装置。
    The first component transfer section includes a plurality of take-out nozzles,
    The control unit controls the first component transfer unit,
    sequentially executing a take-out operation of taking out a component from the component supply unit by the take-out nozzle for each of the take-out nozzles;
    carrying out a carrying operation of carrying the plurality of extraction nozzles above the intermediate stage while holding a plurality of components by the plurality of extraction nozzles;
    placing the components held by the take-out nozzles on the intermediate stage, sequentially for each of the take-out nozzles;
    The component mounting apparatus according to any one of claims 1 to 6.
  8.  前記第1部品移送部における前記取出ノズルの本数は、前記第2部品移送部における前記搭載ノズルの本数よりも多い、
     請求項7に記載の部品搭載装置。
    The number of the extraction nozzles in the first component transfer section is greater than the number of the mounting nozzles in the second component transfer section,
    The component mounting apparatus according to claim 7.
  9.  前記第1部品移送部における前記取出ノズルの配列ピッチは、前記第2部品移送部における前記搭載ノズルの配列ピッチと同じまたは1/n(nは1以上の整数)である、
     請求項8に記載の部品搭載装置。
    The arrangement pitch of the extraction nozzles in the first component transfer section is the same as or 1/n (n is an integer equal to or greater than 1) to the arrangement pitch of the mounting nozzles in the second component transfer section.
    The component mounting apparatus according to claim 8.
  10.  前記第1部品移送部における前記取出ノズルの本数は、前記第2部品移送部における前記搭載ノズルの本数の2倍以上である、
     請求項8または9に記載の部品搭載装置。
    The number of the extraction nozzles in the first component transfer section is at least twice the number of the mounting nozzles in the second component transfer section.
    The component mounting apparatus according to claim 8 or 9.
  11.  部品供給ユニットから部品を取り出して基板に搭載する部品搭載方法であって、
     制御部により、第1の部品移送部を制御して、前記部品供給ユニットから部品を取り出して中継ステージに移送し、
     前記制御部により、中継ステージカメラを制御して、前記中継ステージ上の複数の部品を撮像して第1の画像を取得し、
     前記制御部により、前記第1の画像を用いて、前記中継ステージ上の複数の部品を認識する第1部品認識を実行し、
     前記制御部により、複数の搭載ノズルを有する第2の部品移送部を制御して、
      前記第1部品認識の結果を利用して前記搭載ノズルを前記中継ステージ上の部品に位置合わせして部品をピックアップするピックアップ動作を、前記搭載ノズル別に順次実行し、
      部品をピックアップした前記搭載ノズルを基板の上方に移動させる搬送動作を実行し、
      前記搭載ノズルが保持する部品を基板の実装点に搭載する搭載動作を、前記搭載ノズル別に順次実行する、
     部品搭載方法。
    A component mounting method for taking out a component from a component supply unit and mounting it on a substrate,
    The control unit controls the first component transfer unit to take out the component from the component supply unit and transfer it to the intermediate stage;
    obtaining a first image by controlling a relay stage camera by the control unit to image a plurality of components on the relay stage;
    The control unit executes first component recognition for recognizing a plurality of components on the relay stage using the first image,
    The control unit controls a second component transfer unit having a plurality of mounting nozzles,
    sequentially executing a pick-up operation for picking up a component by aligning the mounting nozzle with the component on the relay stage using the result of the first component recognition, for each of the mounting nozzles;
    executing a transport operation for moving the mounting nozzle that has picked up the component above the substrate;
    sequentially executing a mounting operation for mounting the component held by the mounting nozzle on a mounting point of the substrate for each of the mounting nozzles;
    Part mounting method.
  12.  前記中継ステージには、部品が載置される仮置部が設けられており、
     前記仮置部は下方から部品を透視可能であり、前記中継ステージカメラは前記仮置部の下方から部品を撮像する、
     請求項11に記載の部品搭載方法。
    The relay stage is provided with a temporary placement section on which the component is placed,
    The temporary placement section can see through the component from below, and the relay stage camera captures an image of the component from below the temporary placement section.
    The component mounting method according to claim 11.
  13.  前記中継ステージカメラを複数設けて、複数の前記中継ステージカメラによって前記第1の画像を取得する、
     請求項11又は12に記載の部品搭載方法。
    A plurality of the relay stage cameras are provided, and the first image is acquired by the plurality of the relay stage cameras.
    The component mounting method according to claim 11 or 12.
  14.  さらに、
     前記制御部により、前記中継ステージカメラを制御して、前記搭載ノズルに保持されている部品を撮像して第2の画像を取得する、
     請求項11から13のいずれかに記載の部品搭載方法。
    moreover,
    obtaining a second image by controlling the relay stage camera by the control unit to image the component held by the mounting nozzle;
    The component mounting method according to any one of claims 11 to 13.
  15.  さらに、
     前記制御部により、前記第2の画像を用いて、前記搭載ノズルに保持されている部品を認識する第2部品認識を実行し、
     前記制御部により、前記第2部品認識の結果を利用して、前記搭載動作において前記実装点に部品を搭載する際の目標位置を算出する、
     請求項14に記載の部品搭載方法。
    moreover,
    the control unit executes second component recognition for recognizing a component held by the mounting nozzle using the second image;
    calculating, by the control unit, a target position for mounting the component at the mounting point in the mounting operation, using the result of the second component recognition;
    The component mounting method according to claim 14.
  16.  前記搬送動作において、部品をそれぞれ保持した複数の前記搭載ノズルを基板の上方に移動させて複数の部品を一括搬送する、
     請求項11~15のいずれかに記載の部品搭載方法。
    In the conveying operation, the plurality of mounting nozzles each holding a component is moved above the substrate to collectively convey the plurality of components.
    The component mounting method according to any one of claims 11 to 15.
  17.  前記第1の部品移送部には、複数の取出ノズルが設けられており、
     さらに、
     前記制御部により、前記第1の部品移送部を制御して、
      前記取出ノズルで前記部品供給ユニットから部品を取り出す取出動作を、前記取出ノズル別に順次実行し、
      複数の前記取出ノズルによって複数の部品を保持した状態で、複数の前記取出ノズルを前記中継ステージの上方へ搬送する搬送動作を実行し、
      前記取出ノズルが保持する部品を前記中継ステージに載置する載置動作を、前記取出ノズル別に順次実行する、
     請求項11~16のいずれかに記載の部品搭載方法。
    A plurality of take-out nozzles are provided in the first component transfer section,
    moreover,
    The control unit controls the first component transfer unit,
    sequentially executing a take-out operation of taking out a component from the component supply unit by the take-out nozzle for each of the take-out nozzles;
    carrying out a carrying operation of carrying the plurality of extraction nozzles above the intermediate stage while holding a plurality of components by the plurality of extraction nozzles;
    placing the components held by the take-out nozzles on the intermediate stage, sequentially for each of the take-out nozzles;
    The component mounting method according to any one of claims 11 to 16.
  18.  前記第1部品移送部における前記取出ノズルの本数は、前記第2部品移送部における前記搭載ノズルの本数よりも多い、請求項17に記載の部品搭載方法。 The component mounting method according to claim 17, wherein the number of said take-out nozzles in said first component transfer section is greater than the number of said mounting nozzles in said second component transfer section.
  19.  前記第1部品移送部における前記取出ノズルの配列ピッチは、前記第2部品移送部における前記搭載ノズルの配列ピッチと同じまたは1/n(nは1以上の整数)である、
     請求項18に記載の部品搭載方法。
    The arrangement pitch of the extraction nozzles in the first component transfer section is the same as or 1/n (n is an integer equal to or greater than 1) to the arrangement pitch of the mounting nozzles in the second component transfer section.
    The component mounting method according to claim 18.
  20.  前記第1部品移送部における前記取出ノズルの本数は、前記第2部品移送部における前記搭載ノズルの本数の2倍以上である、
     請求項18または19に記載の部品搭載方法。
    The number of the extraction nozzles in the first component transfer section is at least twice the number of the mounting nozzles in the second component transfer section.
    The component mounting method according to claim 18 or 19.
PCT/JP2021/039694 2021-01-19 2021-10-27 Component mounting device and component mounting method WO2022158076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022576985A JPWO2022158076A1 (en) 2021-01-19 2021-10-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021006638 2021-01-19
JP2021-006638 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022158076A1 true WO2022158076A1 (en) 2022-07-28

Family

ID=82548750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039694 WO2022158076A1 (en) 2021-01-19 2021-10-27 Component mounting device and component mounting method

Country Status (2)

Country Link
JP (1) JPWO2022158076A1 (en)
WO (1) WO2022158076A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135992A (en) * 1997-10-31 1999-05-21 Victor Co Of Japan Ltd Components mounting apparatus
JP2009004400A (en) * 2007-06-19 2009-01-08 Yamaha Motor Co Ltd Mounting machine and component suction device
JP2010199630A (en) * 2002-11-13 2010-09-09 Fuji Mach Mfg Co Ltd Method and apparatus for mounting electronic component
JP2019029563A (en) * 2017-08-01 2019-02-21 芝浦メカトロニクス株式会社 Electronic component implementation apparatus and implementation method, and package component manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135992A (en) * 1997-10-31 1999-05-21 Victor Co Of Japan Ltd Components mounting apparatus
JP2010199630A (en) * 2002-11-13 2010-09-09 Fuji Mach Mfg Co Ltd Method and apparatus for mounting electronic component
JP2009004400A (en) * 2007-06-19 2009-01-08 Yamaha Motor Co Ltd Mounting machine and component suction device
JP2019029563A (en) * 2017-08-01 2019-02-21 芝浦メカトロニクス株式会社 Electronic component implementation apparatus and implementation method, and package component manufacturing method

Also Published As

Publication number Publication date
JPWO2022158076A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
CN107852849B (en) Component mounting machine
WO2015186530A1 (en) Component mounting device
JP6293454B2 (en) Electronic component mounting device
JP7102305B2 (en) Manufacturing method of die bonding equipment and semiconductor equipment
JP6154915B2 (en) Component mounting equipment
JP4712623B2 (en) Component conveying method, component conveying apparatus and surface mounter
KR20160093914A (en) Fpcb banding system for camera module
JP2010135574A (en) Transfer apparatus
JP2009016673A (en) Method for correcting component suction position and component transferring apparatus
US11317551B2 (en) Component mounter
JP4781945B2 (en) Substrate processing method and component mounting system
WO2022158076A1 (en) Component mounting device and component mounting method
KR20020073274A (en) Mounting device and component-mounting method thereof
JP2022110914A (en) Component mounting device and component mounting method
JP2022110913A (en) Component mounting device and component mounting method
CN109691257B (en) Component mounting machine
JP5787397B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP2007287838A (en) Parts transfer device, mounting machine, and parts transfer device for parts inspection machine
JP4467776B2 (en) Electronic component mounting method and surface mounter
JP2000077892A (en) Tape feeder and surface mounting machine
JP6307278B2 (en) Surface mounter and position shift detection method
JP3971216B2 (en) Parts testing equipment
JP4397696B2 (en) Component conveying device, surface mounter and component testing device
JP2006073959A (en) Component recognition device, surface mounting machine and component testing device
JP2653114B2 (en) Electronic component mounting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921179

Country of ref document: EP

Kind code of ref document: A1