WO2022157978A1 - High-speed input device - Google Patents

High-speed input device Download PDF

Info

Publication number
WO2022157978A1
WO2022157978A1 PCT/JP2021/002455 JP2021002455W WO2022157978A1 WO 2022157978 A1 WO2022157978 A1 WO 2022157978A1 JP 2021002455 W JP2021002455 W JP 2021002455W WO 2022157978 A1 WO2022157978 A1 WO 2022157978A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
drive
counter electrode
driving
opposing
Prior art date
Application number
PCT/JP2021/002455
Other languages
French (fr)
Japanese (ja)
Inventor
和長 金谷
芳明 網田
崇裕 石黒
芳充 丹羽
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2021/002455 priority Critical patent/WO2022157978A1/en
Priority to JP2022576940A priority patent/JP7443576B2/en
Priority to EP21920132.4A priority patent/EP4283648A1/en
Publication of WO2022157978A1 publication Critical patent/WO2022157978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H2033/6667Details concerning lever type driving rod arrangements

Definitions

  • An embodiment of the present invention relates to a high-speed injector.
  • Injectors are used in various applications, such as fast grounding devices and bypass switches in power transmission systems, commutation circuit injectors for DC circuit breakers, and current source injectors for nuclear fusion plasma generation.
  • An example of an injector is an electrode-driven injector.
  • the electrode-driven injector has a pair of main electrodes arranged opposite to each other to which a high voltage is applied in a steady state.
  • One main electrode of the pair of main electrodes is a movable electrode, and the other main electrode is a fixed electrode.
  • the movable electrode is arranged so that it can move toward and away from the fixed electrode.
  • the movable electrode moves in the direction of contact with the fixed electrode by the drive unit.
  • the distance between the movable electrode and the fixed electrode becomes equal to or less than the insulation distance with respect to the applied voltage, arc discharge occurs between the movable electrode and the fixed electrode, and the injector starts energizing.
  • the movable electrode contacts the fixed electrode while continuing the arc discharge.
  • the thrower continues the energization while the movable electrode is in contact with the fixed electrode, and ends the throwing operation.
  • the inserting operation is finished while the electrodes are in contact with each other. Therefore, when a large current is applied, the molten metal on the electrode surface is cooled by the arc discharge, and the electrodes are spot-welded to each other.
  • the welded electrodes are separated from each other when the circuit is opened, and the welded portion is torn off to form a sharp protrusion on the electrode. These sharp protrusions become electric field concentration portions in a steady state when the electrodes are open and a high voltage is applied, and reduce the insulation performance between the electrodes.
  • the problem to be solved by the present invention is to provide a high-speed feeder that can suppress the deterioration of withstand voltage performance due to projections caused by welding between electrodes.
  • the high-speed inserter of the embodiment has a contact portion, a drive mechanism portion, and a shock absorbing portion.
  • the contact portion has a drive electrode and a counter electrode.
  • the drive electrode and the counter electrode are coaxially spaced apart from each other and opposed to each other.
  • the drive electrode and the counter electrode are accessible to each other.
  • An external voltage is applied between the drive electrode and the counter electrode.
  • the drive mechanism section is connected to the drive electrodes.
  • the drive mechanism section has a drive section, a drive-side biasing section, and a drive-side stopper.
  • the drive unit applies a driving force in a first direction to the drive electrode to approach the counter electrode during the closing operation.
  • the drive-side biasing portion always applies a restoring force to the drive electrode in the second direction separating the drive electrode from the counter electrode.
  • the drive-side stopper restricts displacement of the drive electrode in the second direction in a state in which the drive electrode and the counter electrode are separated from each other in a steady state.
  • the impact buffer is connected to the counter electrode.
  • the impact buffering section has an opposing side biasing section and an opposing side stopper.
  • the counter-side urging portion always applies a restoring force to the counter electrode in the second direction of contact with the drive electrode.
  • the opposing side stopper restricts the displacement of the opposing electrode in the second direction in a state where the driving electrode and the opposing electrode are separated from each other in a steady state.
  • Sectional drawing which shows the high-speed thrower of 1st Embodiment Sectional drawing which shows the high-speed thrower of 1st Embodiment. Sectional drawing which shows the high-speed thrower of 1st Embodiment. Sectional drawing which shows the high-speed thrower of 1st Embodiment. Sectional drawing which shows the high-speed thrower of 2nd Embodiment. Sectional drawing which shows the high-speed thrower of 2nd Embodiment. Sectional drawing which shows the high-speed thrower of 2nd Embodiment. Sectional drawing which shows the high-speed thrower of 2nd Embodiment. Sectional drawing which shows the high-speed thrower of 3rd Embodiment.
  • Sectional drawing which shows the high-speed thrower of 3rd Embodiment Sectional drawing which shows the high-speed thrower of 3rd Embodiment. Sectional drawing which shows the high-speed thrower of 3rd Embodiment. Sectional drawing which shows the high-speed thrower of 4th Embodiment.
  • FIGS. 1 to 4 are cross-sectional views showing the high-speed feeder of the first embodiment.
  • FIG. 1 shows a steady-state rapid-thrower 1 in a de-energized, cut-off state.
  • FIGS. 2 to 4 show the operation process during the closing operation of the high-speed inserter 1 in the closing state in which electricity can be supplied.
  • the high-speed feeder 1 includes a contact portion 2, a drive mechanism portion 3, and an impact cushioning portion 4.
  • the contact portion 2 is connected to the drive mechanism portion 3 and the impact buffer portion 4 .
  • the contact portion 2 will be described.
  • the contact portion 2 includes a drive electrode 11 , a counter electrode 12 and a pressure vessel 13 .
  • the drive electrode 11 and the counter electrode 12 are each formed in a rod shape and arranged coaxially.
  • the drive electrode 11 and the counter electrode 12 are arranged such that the tip of the drive electrode 11 and the tip of the counter electrode 12 are separated from each other and face each other.
  • Drive electrode 11 and counter electrode 12 are accessible to each other.
  • the drive electrode 11 and the counter electrode 12 can switch between an open circuit state in which the respective tips are separated from each other and a closed circuit state in which the respective tips are in contact with each other by relatively moving straight.
  • the extending direction of the drive electrode 11 and the counter electrode 12 is referred to as an axial direction.
  • the drive electrode 11 includes a discharge portion 11a provided at the tip, and a conducting shaft 11b connected to the discharge portion 11a.
  • the counter electrode 12 includes a discharge portion 12a provided at the tip, and a conducting shaft 12b connected to the discharge portion 12a.
  • the discharge portions 11a and 12a are made of a material having high wear resistance (arc resistance) to arc discharge.
  • the conducting shafts 11b and 12b are made of a highly conductive material.
  • the material with high wear resistance to arc discharge is a copper-tungsten alloy.
  • the highly conductive material is a copper alloy.
  • the materials forming the drive electrode 11 and the counter electrode 12 are not limited to the above materials.
  • At least the discharge portions 11a and 12a of the drive electrode 11 and the counter electrode 12 may be made of a metal material having high wear resistance to arc discharge, and may be made of, for example, a copper-chromium alloy other than a copper-tungsten alloy. may be Further, each of the drive electrode 11 and the counter electrode 12 may be made of the same material from the discharge portions 11a, 12a to the conducting shafts 11b, 12b.
  • the pressure vessel 13 includes an insulating cylinder 14 , a first lid 15 and a second lid 16 .
  • the insulating tube 14 includes a cylindrical insulator container 14a and metal flanges 14b and 14c fixed to both ends of the insulator container 14a.
  • a first lid 15 is electrically connected to the flange 14b.
  • a second lid 16 is electrically connected to the flange 14c.
  • Each of the first lid 15 and the second lid 16 is a disk-shaped plate member.
  • the first lid 15 and the second lid 16 are airtightly joined to the flanges 14b and 14c over the entire periphery so as to close the openings at the ends of the insulating cylinder 14, respectively.
  • a through hole is provided in each center of the first lid 15 and the second lid 16 .
  • An annular seal portion 17 is attached to the through hole of the first lid 15 .
  • An annular seal portion 18 is attached to the through hole of the second lid 16 .
  • the pressure vessel 13 accommodates the mutual contact portions of the drive electrode 11 and the counter electrode 12 .
  • the pressure vessel 13 encloses the entire discharge portions 11a and 12a of the drive electrode 11 and the counter electrode 12 and part of the current-carrying shafts 11b and 12b of the drive electrode 11 and the counter electrode 12, respectively.
  • the conducting shaft 11b passes through the through hole of the first lid 15 and extends to the outside of the pressure vessel 13 .
  • the conducting shaft 12 b passes through the through hole of the second lid 16 and extends outside the pressure vessel 13 .
  • the conducting shaft 11 b is in close contact with the inner peripheral surface of the seal portion 17 in the through hole of the first lid 15 .
  • the current-carrying shaft 11 b can move in the axial direction while keeping the pressure vessel 13 airtight and sliding in contact with the seal portion 17 .
  • the conducting shaft 12 b is in close contact with the seal portion 18 in the through hole of the second lid 16 .
  • the current-carrying shaft 12 b can move in the axial direction while keeping the pressure vessel 13 airtight and slidingly contacting the seal portion 18 .
  • the pressure vessel 13 encloses an insulating gas.
  • sulfur hexafluoride (SF 6 ) gas can be used as the insulating gas.
  • the insulating gas in addition to the sulfur hexafluoride gas, any one of nitrogen, carbon dioxide, oxygen and air, or a mixed gas thereof may be used.
  • the pressure of the insulating gas enclosed in the pressure vessel 13 is higher than the atmospheric pressure.
  • a first shield 19 and a second shield 20 made of metal are arranged inside the pressure vessel 13 .
  • Each shield 19, 20 is formed in a cylindrical shape.
  • the respective shields 19, 20 are arranged concentrically with each other and aligned in the axial direction.
  • a first end of the first shield 19 is coupled to the first lid 15 and is electrically connected.
  • a first end of the second shield 20 is coupled to the second lid 16 to be conductive.
  • a second end of the first shield 19 and a second end of the second shield 20 face each other inside the pressure vessel 13 .
  • the outer peripheral edges of the second end of the first shield 19 and the second end of the second shield 20 are R-chamfered.
  • the first shield 19 surrounds the drive electrode 11 .
  • a second shield 20 surrounds the counter electrode 12 .
  • the current-carrying shaft 11 b of the drive electrode 11 is movable in the axial direction while maintaining electrical connection with the first shield 19 while slidingly contacting the current collector 21 provided on the inner circumference of the first shield 19 .
  • the current-carrying shaft 12b of the counter electrode 12 is movable in the axial direction while maintaining electrical continuity with the second shield 20 while slidingly contacting the current collecting portion 22 provided on the inner circumference of the second shield 20 .
  • the drive electrode 11 is electrically connected to the first shield 19, the first lid 15 and the first flange 14b via the current collector 21.
  • the counter electrode 12 is electrically connected to the second shield 20, the second lid 16 and the second flange 14c via the current collector 22.
  • the end of the conducting shaft 11b is connected to the insulating operating rod 23 outside the pressure vessel 13.
  • the conducting shaft 11 b is connected to the drive mechanism section 3 via an insulating operating rod 23 .
  • the end of the conducting shaft 12b is connected to the insulation operating rod 24 outside the pressure vessel 13 .
  • the conducting shaft 12b is connected to the shock absorbing portion 4 via an insulating operating rod 24.
  • the contact portion 2 and the drive mechanism portion 3 are electrically insulated by connecting the drive mechanism portion 3 and the impact buffer portion 4 to the contact portion 2 via the insulating operation rods 23 and 24, which are insulators. and the shock absorbing portion 4 are electrically insulated.
  • the drive mechanism section 3 will be described.
  • the drive mechanism section 3 is connected to the drive electrodes 11 .
  • the drive mechanism section 3 includes a drive shaft 31 , a mechanism box 32 , a drive section 33 , a position holding section 34 and a drive side braking section 35 .
  • the drive shaft 31 extends outside the mechanism box 32 while being partly accommodated inside the mechanism box 32 .
  • the drive shaft 31 is connected to the current-carrying shaft 11b of the drive electrode 11 via an insulating operating rod 23 outside the mechanism box 32 . As a result, the drive shaft 31 is displaced integrally with the drive electrode 11 .
  • the drive unit 33 is an electromagnetic repulsion operation mechanism.
  • the drive unit 33 includes a metal ring 36 (repulsion body) connected to the drive shaft 31 and a coil 37 fixed to the mechanism box 32 .
  • the ring 36 and the coil 37 are arranged axially facing each other inside the mechanism box 32 .
  • a good conductor 36 a having a particularly low electrical resistivity is fixed to a portion of the ring 36 facing the coil 37 .
  • the ring 36 is arranged on the contact portion 2 side with respect to the coil 37 .
  • the good conductor 36a is made of oxygen-free copper, and the portion of the ring 36 other than the good conductor 36a is made of high-strength extra super duralumin.
  • an induced current is generated in the ring 36 (especially the good conductor 36a) in the direction opposite to the coil current.
  • a Lorentz force in the repulsive direction is generated between the coil 37 to which the coil current is energized and the ring 36 to which the induced current is energized.
  • the driving unit 33 uses the Lorentz force generated between the coil 37 and the ring 36 as driving force during the closing operation.
  • the driving force generated in the ring 36 displaces the driving electrode 11 in a direction (first direction) approaching the counter electrode 12 via the driving shaft 31 and the insulating operating rod 23 .
  • the position holding portion 34 includes a drive-side return spring 38 (drive-side biasing portion), a drive-side spring bearing 39 and a drive-side stopper 40 .
  • the drive side spring bearing 39 is coupled to the drive shaft 31 .
  • the base 41 is arranged on the contact portion 2 side with respect to the drive side spring bearing 39 .
  • the base 41 is arranged to surround the drive shaft 31 .
  • the base 41 is fixed to the mechanism box 32 .
  • the drive-side return spring 38 is a compression coil spring installed between the drive-side spring bearing 39 and the base 41 in a compressed state.
  • the drive-side return spring 38 always applies a spring force in a direction (second direction) to separate the contact portion 2 from the contact portion 2 to the drive-side spring bearing 39 .
  • the spring force of the drive-side return spring 38 will be referred to as drive-side return force.
  • a drive-side stopper 40 is fixed to the base 41 .
  • the drive-side stopper 40 is arranged on the side opposite to the contact portion 2 side with respect to the drive-side spring bearing 39 .
  • the drive-side stopper 40 is arranged so as to surround the drive shaft 31 .
  • the drive-side stopper 40 positions the drive shaft 31 and the drive electrode 11 in a steady state by coming into contact with the drive-side spring bearing 39 that receives the drive-side restoring force.
  • the drive-side braking portion 35 includes a cylinder 42 and a piston 43.
  • the drive-side braking portion 35 is a shock absorber.
  • the inside of the cylinder 42 is filled with hydraulic oil.
  • a damping force is generated in the piston 43 according to the amount of displacement and speed due to the viscous resistance of the working oil.
  • a damping force is generated in the direction opposite to the pushing direction of the piston 43 .
  • the piston 43 is pushed out of the cylinder 42 by a return spring (not shown) installed inside the cylinder 42 and stops at a predetermined position.
  • the cylinder 42 is fixed to the mechanism box 32 .
  • the piston 43 is placed in contact with the end of the drive shaft 31 and pushed into the cylinder 42 in a steady state in which the drive-side spring bearing 39 is in contact with the drive-side stopper 40 and remains stationary.
  • the impact buffering portion 4 will be described.
  • the shock absorbing portion 4 is connected to the counter electrode 12 .
  • the impact buffering section 4 includes an opposing shaft 51 , a mechanism box 52 , a position holding section 53 and an opposing side braking section 54 .
  • the opposing shaft 51 extends outside the mechanism box 52 while being partly accommodated inside the mechanism box 52 .
  • the opposing shaft 51 is connected to the conducting shaft 12 b of the opposing electrode 12 via an insulating operating rod 24 outside the mechanism box 52 . Thereby, the opposing shaft 51 is displaced integrally with the opposing electrode 12 .
  • the position holding portion 53 includes an opposing-side return spring 55 (opposing-side biasing portion), an opposing-side spring bearing 56 , an opposing-side stopper 57 , and a base 58 .
  • the opposing side spring bearing 56 is coupled to the opposing shaft 51 .
  • the base 58 is arranged on the side opposite to the contact portion 2 side with respect to the opposing side spring bearing 56 .
  • the base 58 is fixed to the mechanism box 52 .
  • the opposing return spring 55 is a compression coil spring installed between the opposing spring bearing 56 and the base 58 in a compressed state.
  • the opposing-side return spring 55 is arranged so as to always apply a spring force in the direction of approaching the contact portion 2 to the opposing-side spring bearing 56 .
  • the spring force of the opposing side return spring 55 will be referred to as the opposing side return force.
  • An opposing side stopper 57 is fixed to the base 58 .
  • the opposing side stopper 57 is arranged on the contact portion 2 side with respect to the opposing side spring bearing 56 .
  • the opposing side stopper 57 is arranged so as to surround the opposing shaft 51 .
  • the opposing side stopper 57 positions the opposing shaft 51 and the opposing electrode 12 in the steady state by contacting the opposing side spring bearing 56 that receives the opposing side restoring force.
  • the opposing side braking portion 54 includes a cylinder 59, a piston 60, and a stopper 61.
  • the opposing side braking portion 54 is a shock absorber like the driving side braking portion 35 .
  • the configuration of the cylinder 59 and the piston 60 is the same as the configuration of the cylinder 42 and the piston 43 of the driving side braking portion 35 .
  • the cylinder 59 is fixed to the mechanism box 52 via the base 58.
  • the piston 60 is not in contact with the opposite spring bearing 56 and is pushed out of the cylinder 59 and stopped at a predetermined position when the opposite spring bearing 56 is in contact with the opposite stopper 57 and remains stationary. is set up.
  • the stopper 61 is fixed to the base 58.
  • the stopper 61 is arranged so as to come into contact with the opposed side spring bearing 56 in the process of pushing the piston 60 into the cylinder 59 and limit the amount of pushing of the piston 60 within a certain value.
  • the high-speed feeder 1 of this embodiment is connected to an external circuit using the first lid 15 and the second lid 16 of the pressure vessel 13 of the contact portion 2 as terminals.
  • the drive electrode 11, the insulating operating rod 23, the drive shaft 31, the ring 36, and the drive side spring bearing 39 form a drive side movable portion 71 that operates integrally.
  • the opposing electrode 12, the insulating operating rod 24, the opposing shaft 51, and the opposing side spring bearing 56 form an opposing side movable portion 72 that operates integrally.
  • a normal state in which the high-speed closing device 1 is in a non-energized and cut-off state will be described.
  • the drive-side movable portion 71 is stationary at a position where the drive-side spring bearing 39 is pressed against the drive-side stopper 40 by the drive-side return spring 38 .
  • the end surface of the discharge portion 11a of the drive electrode 11 is arranged at a position flush with the R-chamfered end surface of the shield 19 .
  • the opposing side movable portion 72 is stationary at a position where the opposing side spring bearing 56 is pressed against the opposing side stopper 57 by the opposing side return spring 55 .
  • the end surface of the discharge portion 12a of the counter electrode 12 is arranged at a position flush with the R-chamfered end surface of the shield 20. As shown in FIG.
  • the high-speed feeder 1 When the high-speed feeder 1 is connected to an external circuit, a voltage is applied between the first lid 15 and the second lid 16 that serve as terminals.
  • the first lid 15 is electrically connected to the drive electrode 11 and the first shield 19 and has the same potential.
  • the second lid 16 is electrically connected to the counter electrode 12 and the second shield 20 and has the same potential. Therefore, the voltage applied to the high-speed injector 1 is applied between the drive electrode 11 and the first shield 19 and the counter electrode 12 and the second shield 20 inside the pressure vessel 13 .
  • the drive electrode 11 and the counter electrode 12 are sufficiently separated from each other in an open circuit state, and the electric field near the drive electrode 11 and the counter electrode 12 is sufficiently large compared to the dielectric breakdown electric field of the insulating gas enclosed in the pressure vessel 13. getting low. Therefore, the drive electrode 11 and the counter electrode 12 are electrically insulated. Therefore, the high-speed throwing device 1 is in a cutoff state in which the terminals are non-conducting.
  • the closing operation a state in which the high-speed inserter 1 is connected to an external circuit and a high voltage is applied to the drive electrode 11 and the counter electrode 12 will be described.
  • the closing operation is started by applying a coil current from an excitation circuit (not shown) to the coil 37 of the drive unit 33 in the steady state shown in FIG.
  • the closing operation includes an approaching step, a contacting step, and a separating step in this order.
  • the driving side movable portion 71 receives the driving force of the driving portion 33 .
  • the driving force of the driving portion 33 is sufficiently larger than the driving-side restoring force of the driving-side restoring spring 38 .
  • the drive-side movable portion 71 starts to be displaced in a direction to bring the drive electrode 11 closer to the counter electrode 12 while compressing the drive-side return spring 38 by the driving force of the drive portion 33 .
  • the drive electrode 11 When the drive electrode 11 approaches the counter electrode 12, the electric field near the drive electrode 11 and the counter electrode 12 increases. Since the electric field near the drive electrode 11 and the counter electrode 12 is higher than the dielectric breakdown electric field of the insulating gas enclosed in the pressure vessel 13, the electric field between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 dielectric breakdown occurs.
  • an arc discharge 73 is generated between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 due to dielectric breakdown. Since the drive electrode 11 and the counter electrode 12 are brought into a conductive state by the arc discharge 73, the first lid 15 and the second lid 16 are also brought into a conductive state. When the first lid 15 and the second lid 16, which are terminals for connecting to an external circuit, are in a conductive state, the high-speed feeder 1 changes to a closed state and starts energization.
  • the drive-side movable portion 71 continues to displace independently until the drive electrode 11 contacts the counter electrode 12 as shown in FIG. At this time, the piston 43 of the drive-side braking portion 35 is pushed out of the cylinder 42 by a return spring (not shown) installed inside the cylinder 42 as the drive-side movable portion 71 is displaced.
  • the discharge portion 11 a of the drive electrode 11 contacts the discharge portion 12 a of the counter electrode 12 .
  • the high-speed inserter 1 also continues the energized closing state.
  • the piston 43 pushed out from the cylinder 42 stops at a predetermined position.
  • the piston 43 may be stationary during the approach step.
  • the counter-side movable portion 72 is pushed by the drive-side movable portion 71 accelerated by the driving force of the drive portion 33 .
  • the drive-side movable portion 71 and the opposing-side movable portion 72 are displaced together in the driving force output direction while the drive electrode 11 is in contact with the opposing electrode 12 .
  • the driving force of the driving section 33 is attenuated after the driving electrode 11 contacts the counter electrode 12 .
  • the driving force decreases as the distance between the ring 36 and the coil 37 increases. Furthermore, the driving force is reduced due to the attenuation of the coil current. It should be noted that the driving force of the driving portion 33 may start to attenuate before the driving electrode 11 contacts the counter electrode 12 .
  • the drive-side movable portion 71 compresses the drive-side return spring 38
  • the opposing-side movable portion 72 compresses and displaces the opposing-side return spring 55 .
  • the driving-side restoring force and the opposing-side restoring force acting in the direction opposite to the driving force on the driving-side movable portion 71 and the opposing-side movable portion 72 are increased. Further, when the piston 60 of the opposing brake portion 54 is pushed into the cylinder 59, the opposing spring bearing 56 of the opposing movable portion 72 receives a damping force in the direction opposite to the pushing direction. Further, when the driving-side movable portion 71 contacts and accelerates the opposing-side movable portion 72, the driving-side movable portion 71 shares the momentum and decelerates.
  • the drive-side movable portion 71 decelerates greatly while being displaced together with the opposed-side movable portion 72 after coming into contact with the opposed-side movable portion 72 . It stops by contacting, and it will be in the state shown in FIG.
  • the driving-side movable portion 71 and the opposing-side movable portion 72 After stopping, the driving-side movable portion 71 and the opposing-side movable portion 72 reverse their displacement directions by the driving-side restoring force of the driving-side returning spring 38 and the opposing-side restoring force of the opposing-side returning spring 55 .
  • the driving-side movable portion 71 and the opposing-side movable portion 72 are accelerated and displaced in the direction opposite to the output direction of the driving force, and again enter the state shown in FIG.
  • the opposing side movable portion 72 stops when the opposing side spring bearing 56 contacts the opposing side stopper 57 .
  • the drive electrode 11 and the counter electrode 12 are basically in a contact state and maintain conduction through the contact portion. Even if the drive electrode 11 and the counter electrode 12 are temporarily separated, they maintain continuity through arc discharge. Therefore, the high-speed inserter 1 also continues the energized closing state.
  • the opposing electrode 12 is restricted in displacement by the opposing-side stopper 57, so that the driving-side return spring 38 is released from the driving-side movable portion 71 as shown in FIGS. Displaced independently by the restoring force.
  • the drive shaft 31 pushes the piston 43 of the drive brake portion 35 into the cylinder 42 , so that the drive-side movable portion 71 receives a damping force in the direction opposite to the pushing direction and starts to decelerate.
  • the driving-side movable portion 71 receives the damping force of the driving-side braking portion 35, decelerates, stops when the driving-side spring bearing 39 comes into contact with the driving-side stopper 40, and returns to the state shown in FIG. .
  • the driving force of the driving portion 33 is completely attenuated, or is sufficiently smaller than the driving-side restoring force, and the driving-side movable portion 71 is held in the state shown in FIG.
  • the drive unit 33 applies a driving force to the drive electrode 11, so that the drive electrode 11 first approaches the counter electrode 12.
  • the drive electrode 11 approaches the counter electrode 12
  • an arc discharge occurs between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 to start energization.
  • the drive electrode 11 contacts the counter electrode 12 while continuing to be energized, and is displaced together with the counter electrode 12 in the output direction of the driving force.
  • the driving electrode 11 and the counter electrode 12 are decelerated by the restoring force of the driving side return spring 38 and the counter side return spring 55 .
  • the drive electrode 11 and the counter electrode 12 reverse their displacement directions due to the restoring force.
  • the opposed electrode 12 is restrained from being displaced by the opposed side stopper 57 , so that the drive electrode 11 is separated from the opposed electrode 12 by the restoring force of the driving side return spring 38 .
  • an arc discharge is generated between the drive electrode 11 and the counter electrode 12, and current continues.
  • the driving electrodes 11 are restrained from being displaced by the driving-side stoppers 40, so that the driving electrodes 11 return to their normal positions. The energization ends when the arc discharge is extinguished in the process in which the drive electrode 11 separates from the counter electrode 12 or in the state of returning to the normal position.
  • the high-speed inserter 1 of the present embodiment operates as an electrode-driven high-speed inserter. Therefore, according to the present embodiment, unlike the trigger discharge type high speed injection device, a trigger electrode is not required, so that the high speed injection device 1 capable of operating more times than the trigger discharge type high speed injection device can be provided.
  • the trigger discharge type high speed feeder does not require an expensive pulse power supply, so the high speed feeder 1 can be provided at a lower equipment cost than the trigger discharge type.
  • the driving side movable portion 71 is displaced together with the counter side movable portion 72 in the operating direction of the driving force.
  • the momentum of the drive-side movable portion 71 is distributed to the opposing-side movable portion 72 .
  • the drive-side movable portion 71 receives the drive-side return force of the drive-side return spring 38, the opposing-side return force of the opposing-side return spring 55, and the damping force of the opposing-side braking portion 54, thereby greatly decelerating. do.
  • the drive electrode 11 is brought close to the counter electrode 12, and after arc discharge conduction is started between the discharge portions 11a and 12a, the drive electrode 11 is brought into contact with the counter electrode 12 and driven.
  • the side movable portion 71 decelerates. Therefore, the drive-side movable portion 71 hardly decelerates until the arc discharge starts conducting, and the electric field between the discharge portions 11a and 12a can be rapidly increased, so that the arc discharge generation start time can be shortened and variations can be reduced. .
  • the opposing electrode 12 after the opposing electrode 12 contacts the driving electrode 11 during the closing operation, it can move in the output direction of the driving force together with the driving electrode 11, so that the impact force at the time of contact can be reduced. . Therefore, it is possible to suppress the damage to the device due to the impact force when the drive electrode 11 and the counter electrode 12 contact each other, and it is possible to provide the high-speed inserter 1 that can be operated many times.
  • the high-speed feeder 1 generates an arc discharge between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 during the feed operation to start energization. Further, after the discharge portion 11a of the drive electrode 11 is brought into contact with the discharge portion 12a of the counter electrode 12, the discharge portion 11a is separated from the discharge portion 12a while continuing the energization, thereby completing the closing operation. According to this configuration, during the closing operation, after the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12, the metal surfaces of which are partially melted by arc discharge, come into contact with each other, they are separated again before being cooled and turned on. end the action.
  • the high-speed feeder 1 generates an arc discharge between the discharge parts 11a and 12a while the discharge part 11a of the driving electrode 11 is separated from the discharge part 12a of the counter electrode 12 in the injection operation. According to this configuration, even if a welded portion is formed when the discharge portions 11a and 12a are brought into contact with each other and a sharp protrusion is formed when the discharge portions 11a and 12a are separated, the sharp protrusion is evaporated and removed by the arc discharge. can do. As a result, it is possible to prevent the generation of an electric field concentration portion due to a sharp projection in a stationary state in which the electrodes are opened and a high voltage is applied. Therefore, it is possible to provide the high-speed feeder 1 capable of maintaining the insulation performance between the electrodes and suppressing the deterioration of the withstand voltage performance.
  • the drive unit 33 is an electromagnetic repulsion operation mechanism having a metal ring 36 and a coil 37 fixed to the mechanism box 32, and applies a driving force to the drive electrode 11 by an induced repulsion generated in the ring 36.
  • the drive electrode 11 is brought closer to the counter electrode 12 in a shorter time than the configuration in which the driving is performed by the hydraulic pressure, the restoring force of the spring, the electromagnetic force of the motor, or the like. Conduction by arcing can be initiated. Therefore, it is possible to provide a high-speed feeder 1 with a short feed time.
  • the drive-side return spring 38 and the opposing-side return spring 55 are coil springs. According to this configuration, a linear restoring force can be applied to the drive electrode 11 and the counter electrode 12 . Therefore, it is possible to stably hold the drive electrode 11 and the counter electrode 12 at the stationary position in the normal state and to reliably decelerate the drive electrode 11 and the counter electrode 12 during the closing operation.
  • the high-speed feeder 1 has a driving-side braking section 35.
  • the driving-side braking portion 35 contacts the driving electrode 11 displaced in the direction opposite to the output direction of the driving force of the driving portion 33 by the restoring force of the opposing-side restoring spring 55 during the closing operation, and decelerates the driving electrode 11 .
  • it is possible to attenuate the momentum of the drive electrode 11 that displaces toward the stationary position in the normal state. Therefore, it is possible to suppress the damage to the device due to the impact force when the drive electrode 11 is stopped.
  • the high-speed feeder 1 has an opposing braking portion 54.
  • the counter-side braking portion 54 contacts the counter electrode 12 displaced together with the drive electrode 11 by the driving force of the drive portion 33 in contact with the drive electrode 11 during the closing operation, and decelerates the counter electrode 12 .
  • it is possible to attenuate the momentum of the drive electrode 11 and the counter electrode 12 that are displaced toward the reverse position during the closing operation. Therefore, it is possible to suppress the damage to the device due to the impact force when the drive electrode 11 and the counter electrode 12 are reversed.
  • the high-speed injector 1 has a pressure vessel 13 filled with insulating gas.
  • the pressure vessel 13 accommodates contact portions of the drive electrode 11 and the counter electrode 12 . Part of each of the drive electrode 11 and the counter electrode 12 extends outside the pressure vessel 13 while keeping the pressure vessel 13 airtight.
  • the movable portion linked to each of the drive electrode 11 and the counter electrode 12 can be arranged outside the pressure vessel 13 .
  • operativity such as maintenance work of the high-speed feeder 1 can be improved.
  • the pressure vessel 13 can be miniaturized compared to a configuration in which at least one of the drive electrode and the counter electrode is wholly housed in the pressure vessel. Therefore, the amount of insulating gas used can be reduced.
  • the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 are made of a metal material having arc resistance. According to this configuration, it is possible to suppress melting of the surfaces of the discharge portions 11a and 12a due to arc discharge during the closing operation. Therefore, it is possible to suppress the occurrence of welded portions in the discharge portions 11a and 12a. Therefore, it is possible to suppress the formation of sharp protrusions on the surfaces of the discharge portions 11a and 12a when the welded portions are separated. As a result, it is possible to prevent the generation of an electric field concentration portion due to a sharp projection in a stationary state in which the electrodes are opened and a high voltage is applied. Therefore, it is possible to provide the high-speed feeder 1 capable of maintaining the insulation performance between the electrodes and suppressing the deterioration of the withstand voltage performance.
  • FIGS. 5 to 8 are cross-sectional views showing the high-speed injector of the second embodiment.
  • FIG. 5 shows the high-speed closing device 101 in steady state in a non-energized, cut-off state.
  • FIGS. 6 to 8 show the operation process during the closing operation of the high-speed inserter 101 in the closing state in which electricity can be supplied.
  • the second embodiment shown in FIG. 5 differs from the first embodiment in that the contact portions of the drive electrode 11 and the counter electrode 12 are accommodated in the vacuum container 112 . Configurations other than those described below are the same as those of the first embodiment.
  • the high-speed feeder 101 includes a contact portion 102 instead of the contact portion 2 of the first embodiment.
  • the contact portion 102 is connected to the drive mechanism portion 3 and the impact buffer portion 4 .
  • the contact portion 102 includes a drive electrode 11 , a counter electrode 12 , a pressure vessel 111 and a vacuum vessel 112 .
  • the configuration of the pressure vessel 111 is basically the same as the pressure vessel 13 of the first embodiment.
  • the relationship between the pressure vessel 111 and the drive electrode 11 and counter electrode 12 is also the same as in the first embodiment.
  • a different point from the pressure vessel 13 of the first embodiment is that a vacuum vessel 112 is sealed inside the pressure vessel 111 of the present embodiment.
  • the pressure vessel 111 encloses an insulating gas as in the first embodiment.
  • the pressure of the insulating gas is preferably atmospheric pressure to about three times the atmospheric pressure in order to reduce the pressure difference with the inside of the vacuum vessel 112 .
  • the inside of the vacuum container 112 is kept in a vacuum state.
  • the vacuum vessel 112 includes an insulating cylinder 113 , a first end plate 114 , a second end plate 115 , a first bellows 116 and a second bellows 117 .
  • the insulating cylinder 113 is a cylindrical insulator container.
  • the first end plate 114 and the second end plate 115 are made of metal.
  • Each of the first end plate 114 and the second end plate 115 is a disk-shaped plate material.
  • the first end plate 114 is airtightly joined to the insulating tube 113 so as to close the opening at the first end of the insulating tube 113 .
  • the second end plate 115 is airtightly joined to the insulating tube 113 so as to block the opening of the second end of the insulating tube 113 .
  • a through hole is provided in the center of each of the first end plate 114 and the second end plate 115 .
  • a first end of a first bellows 116 is airtightly joined to the through hole of the first end plate 114 .
  • a first end of a second bellows 117 is airtightly joined to the through hole of the second end plate 115 .
  • the first bellows 116 and the second bellows 117 are bellows-structured metal tubes that can be expanded and contracted in the axial direction, and are made of thin plates.
  • the vacuum vessel 112 is fixed to the pressure vessel 111 by connecting the second end plate 115 to the second lid 16 of the pressure vessel 111 via the support portion 118 .
  • the vacuum container 112 accommodates contact portions of the drive electrode 11 and the counter electrode 12 .
  • the vacuum vessel 112 encloses the entire discharge portions 11a and 12a of the drive electrode 11 and the counter electrode 12 and part of the current-carrying shafts 11b and 12b of the drive electrode 11 and the counter electrode 12, respectively.
  • the conducting shaft 11 b passes through the through hole of the first end plate 114 and extends outside the vacuum vessel 112 .
  • the conducting shaft 12 b passes through the through hole of the second end plate 115 and extends outside the vacuum vessel 112 .
  • the conducting shaft 11 b of the drive electrode 11 is airtightly joined to the second end of the first bellows 116 .
  • the conducting shaft 11b is movable in the axial direction while keeping the vacuum vessel 112 airtight.
  • the conducting shaft 12 b of the counter electrode 12 is airtightly joined to the second end of the second bellows 117 .
  • the conducting shaft 12b is movable in the axial direction while keeping the vacuum vessel 112 airtight.
  • a metal first collector flange 119 and a second collector flange 120 are arranged inside the pressure vessel 111.
  • Each current collecting flange 119, 120 is formed in an annular shape.
  • Each current collecting flange 119, 120 is arranged concentrically with each other.
  • the first collector flange 119 is fixed adjacent to the first lid 15 and electrically connected to the first lid 15 .
  • the second current collecting flange 120 is fixed adjacent to the second lid 16 and electrically connected to the second lid 16 .
  • the drive electrode 11 penetrates the inside of the first collector flange 119 .
  • the counter electrode 12 penetrates the inside of the second collector flange 120 .
  • the current-carrying shaft 11b of the driving electrode 11 is movable in the axial direction while maintaining electrical continuity with the first current collecting flange 119 while slidingly contacting the current collecting portion 21 provided on the inner circumference of the first current collecting flange 119. It's becoming The current-carrying shaft 12b of the counter electrode 12 is movable in the axial direction while being in sliding contact with the current collecting portion 22 provided on the inner circumference of the second current collecting flange 120 while maintaining electrical continuity with the second current collecting flange 120. It's becoming Thus, the drive electrode 11 is electrically connected to the first collector flange 119, the first lid 15 and the flange 14b via the collector 21. As shown in FIG.
  • the counter electrode 12 is electrically connected to the second current collecting flange 120, the second lid 16 and the second flange 14c via the current collecting portion 22. As shown in FIG. Furthermore, the drive electrode 11 is electrically connected to the first bellows 116 and the first end plate 114 . Also, the counter electrode 12 is electrically connected to the second bellows 117 , the second end plate 115 and the support portion 118 .
  • the end of the conducting shaft 11b of the drive electrode 11 is connected to the insulating operating rod 23 outside the pressure vessel 111.
  • the drive electrode 11 is connected to the drive mechanism section 3 via an insulating operating rod 23 .
  • the end of the conducting shaft 12 b of the counter electrode 12 is connected to the insulating operating rod 24 outside the pressure vessel 111 .
  • the counter electrode 12 is connected to the shock absorbing section 4 via an insulating operating rod 24 .
  • the contact portion 102 and the drive mechanism portion 3 are electrically insulated by connecting the drive mechanism portion 3 and the impact buffer portion 4 to the contact portion 102 via the insulating operation rods 23 and 24, which are insulators. and the shock absorbing portion 4 are electrically insulated.
  • the high-speed feeder 101 of this embodiment is connected to an external circuit using the first lid 15 and the second lid 16 of the pressure vessel 111 of the contact portion 102 as terminals.
  • the drive electrode 11, the insulating operating rod 23, the drive shaft 31, the ring 36, and the drive side spring bearing 39 form a drive side movable portion 71 that operates integrally.
  • the opposing electrode 12, the insulating operating rod 24, the opposing shaft 51, and the opposing side spring bearing 56 form an opposing side movable portion 72 that operates integrally.
  • the drive-side movable portion 71 is stationary at a position where the drive-side spring bearing 39 is pressed against the drive-side stopper 40 by the drive-side return spring 38 .
  • the opposing side movable portion 72 is stationary at a position where the opposing side spring bearing 56 is pressed against the opposing side stopper 57 by the opposing side return spring 55 .
  • the high-speed feeder 101 When the high-speed feeder 101 is connected to an external circuit, a voltage is applied between the first lid 15 and the second lid 16 that serve as terminals.
  • the first lid 15 is electrically connected to the drive electrode 11 and has the same potential.
  • the second lid 16 is electrically connected to the counter electrode 12 and has the same potential. Therefore, the voltage applied to the high-speed feeder 101 is applied between the drive electrode 11 and the counter electrode 12 inside the vacuum vessel 112 .
  • the drive electrode 11 and the counter electrode 12 are sufficiently separated from each other and are in an open circuit state, and the electric field near the drive electrode 11 and the counter electrode 12 is sufficiently lower than the dielectric breakdown electric field of the vacuum inside the vacuum vessel 112 . there is Therefore, the drive electrode 11 and the counter electrode 12 are electrically insulated. Therefore, the high-speed throwing device 101 is in a cutoff state in which the terminals are not electrically connected.
  • the closing operation a state in which the high-speed inserter 101 is connected to the external circuit and a high voltage is applied to the drive electrode 11 and the counter electrode 12 will be described.
  • the loading operation of the high-speed loading device 101 is basically the same as the loading operation of the high-speed loading device 1 of the first embodiment.
  • the closing operation of the high-speed closing device 101 is also started by applying a coil current to the coil 37 from an excitation circuit (not shown) to generate driving force in the ring 36 at the steady state shown in FIG.
  • the high-speed feeder 101 during the feeding operation differs from the high-speed feeder 1 of the first embodiment in that arc discharge occurs inside the vacuum vessel 112 .
  • arc discharge occurs inside the vacuum vessel 112 .
  • the electric field near drive electrode 11 and counter electrode 12 increases. Since the electric field near the drive electrode 11 and the counter electrode 12 is higher than the dielectric breakdown electric field in the vacuum inside the vacuum vessel 112, dielectric breakdown occurs between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12. occurs.
  • an arc discharge 73 is generated between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 due to dielectric breakdown.
  • the drive electrode 11 and the counter electrode 12 operate in the same manner as in the first embodiment, so that the same effects as in the first embodiment can be obtained. can play.
  • the vacuum vessel 112 accommodates the contact portions of the drive electrode 11 and the counter electrode 12 .
  • arc discharge occurs inside the vacuum vessel 112 during the closing operation of the high-speed closing device 101 .
  • decomposition of the insulating gas due to arc discharge can be suppressed.
  • it is possible to prevent unintended dielectric breakdown due to deterioration of the insulation performance of the insulating gas during normal operation when the electrodes are open and a high voltage is applied, and the high-speed feeder that can maintain the insulation performance between the electrodes. 101 can be provided.
  • FIGS. 9 to 12 are cross-sectional views showing a high-speed feeder of the third embodiment.
  • FIG. 9 shows the fast closing device 201 in steady state in a de-energized, cut-off state.
  • FIGS. 10 to 12 show the operation process during the closing operation of the high-speed inserter 201 in the closing state in which electricity can be supplied.
  • the third embodiment shown in FIG. 9 differs from the second embodiment in that the impact buffering section 204 is housed in a vacuum vessel 212. Configurations other than those described below are the same as those of the second embodiment.
  • a high-speed feeder 201 includes a contact portion 202 and a shock buffering portion 204 instead of the contact portion 102 and the shock buffering portion 4 of the second embodiment.
  • the contact portion 202 will be described.
  • the contact portion 202 is connected to the drive mechanism portion 3 and the impact buffer portion 204 .
  • the contact portion 202 includes a pressure vessel 211 and a vacuum vessel 212 instead of the pressure vessel 111 and the vacuum vessel 112 of the second embodiment.
  • the pressure vessel 211 includes a second lid 213 instead of the second lid 16 of the second embodiment.
  • the second lid 213 differs from the second lid 16 in that it does not have a through-hole and a sealing portion.
  • the second lid 213 completely closes the opening of the insulating cylinder 14 .
  • the relationship between the pressure vessel 211 and the drive electrode 11 is the same as in the second embodiment.
  • the pressure vessel 211 accommodates the entire counter electrode 12 .
  • a vacuum vessel 212 is sealed inside the pressure vessel 211 of this embodiment.
  • the pressure vessel 211 encloses insulating gas in the same manner as the pressure vessel 111 of the second embodiment.
  • the pressure of the insulating gas is preferably atmospheric pressure to about three times the atmospheric pressure in order to reduce the pressure difference with the inside of the vacuum vessel 212 .
  • the inside of the vacuum container 212 is kept in a vacuum state.
  • the vacuum vessel 212 includes a second end plate 214 instead of the second end plate 115 of the second embodiment.
  • the second end plate 214 is airtightly joined to the insulating tube 113 so as to block the opening of the second end of the insulating tube 113 .
  • the second end plate 214 differs from the second end plate 115 in that no through holes are provided and no bellows are fixed.
  • the second end plate 214 is fixed adjacent to the second lid 213 of the pressure vessel 211 and communicates with the second lid 213 .
  • the vacuum vessel 212 accommodates contact portions of the drive electrode 11 and the counter electrode 12 .
  • the vacuum vessel 212 encloses the entire discharge portion 11 a of the drive electrode 11 , a portion of the current-carrying shaft 11 b of the drive electrode 11 , the entire counter electrode 12 , and the impact buffer portion 204 .
  • the current-carrying shaft 12 b of the counter electrode 12 is connected to the impact buffering section 204 inside the vacuum vessel 212 .
  • the impact buffering portion 204 will be described later.
  • the collector flange 120 arranged inside the pressure vessel 111 of the second embodiment is not arranged inside the pressure vessel 211 .
  • the current collecting portion 22 provided on the current collecting flange 120 in the second embodiment is arranged on the shock absorbing portion 204 .
  • the impact buffering portion 204 will be described.
  • the shock absorbing portion 204 is housed in a vacuum container 212 .
  • the shock buffering part 204 is fixed to the second end plate 214 of the vacuum vessel 212 .
  • the impact buffering section 204 does not include the opposing shaft 51, the mechanism box 52, and the opposing side braking section 54 of the above other embodiments, and includes a position holding section 221 in place of the position holding section 53.
  • the position holding portion 221 includes an opposing side stopper 222 and a base 223 instead of the opposing side stopper 57 and the base 58 of the above other embodiments.
  • the conducting shaft 12b of the opposing electrode 12 is directly coupled to the opposing side spring bearing 56.
  • the base 223 is arranged on the side opposite to the contact portion 202 side with respect to the opposing side spring bearing 56 .
  • a base 223 is secured adjacent to the second end plate 214 .
  • the base 223 is in electrical communication with the second end plate 214 .
  • An opposing side stopper 222 is fixed to the base 223 .
  • the opposing side stopper 222 is arranged on the contact portion 202 side with respect to the opposing side spring bearing 56 .
  • the counter-side stopper 222 is arranged so as to surround the counter electrode 12 .
  • a current collecting portion 22 is provided on the inner periphery of the opposing side stopper 222 .
  • the current-carrying shaft 12b of the counter electrode 12 is movable in the axial direction while being in slidable contact with the current collecting portion 22 and maintaining electrical connection with the impact buffering portion 204 .
  • the counter electrode 12 is electrically connected to the impact buffering portion 204, the second end plate 214, the second lid 213 and the second flange 14c via the collector portion 22. As shown in FIG.
  • the high-speed feeder 201 of this embodiment is connected to an external circuit using the first lid 15 and the second lid 213 of the pressure vessel 211 of the contact portion 202 as terminals.
  • the drive electrode 11, the insulating operating rod 23, the drive shaft 31, the ring 36, and the drive side spring bearing 39 form a drive side movable portion 71 that operates integrally.
  • the opposing electrode 12 and the opposing side spring bearing 56 form an opposing side movable portion 272 that operates integrally.
  • the drive-side movable portion 71 is stationary at a position where the drive-side spring bearing 39 is pressed against the drive-side stopper 40 by the drive-side return spring 38 .
  • the opposing side movable portion 272 is stationary at a position where the opposing side spring bearing 56 is pressed against the opposing side stopper 222 by the opposing side return spring 55 .
  • the high-speed feeder 201 When the high-speed feeder 201 is connected to an external circuit, voltage is applied between the first lid 15 and the second lid 213, which serve as terminals.
  • the first lid 15 is electrically connected to the drive electrode 11 and has the same potential.
  • the second lid 213 is electrically connected to the counter electrode 12 and has the same potential. Therefore, the voltage applied to the high-speed feeder 201 is applied between the drive electrode 11 and the counter electrode 12 inside the vacuum vessel 212 .
  • the drive electrode 11 and the counter electrode 12 are in an open circuit state with a sufficient distance, and the electric field near the drive electrode 11 and the counter electrode 12 is sufficiently lower than the dielectric breakdown electric field of the vacuum inside the vacuum vessel 212 . . Therefore, the drive electrode 11 and the counter electrode 12 are electrically insulated. Therefore, the high-speed throwing device 201 is in a cutoff state in which the terminals are not electrically connected.
  • the closing operation a state in which the high-speed closing device 201 is connected to the external circuit and a high voltage is applied to the drive electrode 11 and the counter electrode 12 will be described.
  • the input operation of the high-speed input device 201 is basically the same as the input operation of the high-speed input device 101 of the second embodiment.
  • the closing operation of the high-speed closing device 201 is also started by applying a coil current to the coil 37 from an excitation circuit (not shown) to generate driving force in the ring 36 at the steady state shown in FIG.
  • the high-speed thrower 201 during the throwing operation differs from the high-speed thrower 101 of the second embodiment in that when the state shown in FIG. 11 shifts to the state shown in FIG. 222 receives only the opposing side return force from the opposing side return spring 55 to decelerate and stop.
  • the drive electrode 11 and the counter electrode 12 operate in the same manner as in the first embodiment, so that the same effects as in the first embodiment can be obtained. can play.
  • the impact buffering portion 204 is housed in the vacuum container 212 .
  • the opposing-side movable portion 272 can be lighter than the opposing-side movable portion 72 of the other embodiment because it does not include the insulating operation rod 24 and the opposing shaft 51 . Therefore, it is possible to further reduce the impact force generated when the opposing-side movable portion 272 contacts the driving-side movable portion 71 during the closing operation. Therefore, it is possible to suppress the damage to the device due to the impact force when the drive electrode 11 and the counter electrode 12 contact each other, and it is possible to provide the high-speed inserter 201 that can be operated many times.
  • the second bellows 117 connected to the counter electrode 12 in the second embodiment is no longer necessary. Since the counter electrode 12 in the second embodiment rapidly accelerates after contact with the drive electrode 11, a large mechanical load is generated on the second bellows 117 connected to the counter electrode 12, which may cause damage. There is Therefore, in this embodiment, by removing the second bellows 117, it is possible to avoid the vacuum leakage of the vacuum vessel 212 due to damage, and the high-speed feeder 201 capable of being operated more times can be provided.
  • FIG. 13 is a cross-sectional view showing a high-speed feeder of the fourth embodiment.
  • FIG. 13 shows the high-speed closing device 301 in steady state in a de-energized, cut-off state.
  • the fourth embodiment shown in FIG. 13 differs from the third embodiment in that the impact buffering section 304 is accommodated in the pressure vessel 211 outside the vacuum vessel 112 . Configurations other than those described below are the same as those of the third embodiment.
  • a high-speed feeder 301 includes a contact portion 302 and a shock buffering portion 304 instead of the contact portion 202 and the shock buffering portion 204 of the third embodiment.
  • the contact portion 302 will be described.
  • the contact portion 302 is connected to the drive mechanism portion 3 and the impact buffer portion 304 .
  • the contact portion 302 includes the vacuum vessel 112 of the second embodiment instead of the vacuum vessel 212 of the third embodiment.
  • the vacuum vessel 112 is fixed to the pressure vessel 211 by connecting the second end plate 115 to the second lid 213 of the pressure vessel 211 via the support portion 118 .
  • the second end plate 115 is electrically connected to the second lid 213 .
  • the impact buffering portion 304 will be described.
  • the configuration of the impact buffering portion 304 is basically the same as the impact buffering portion 204 of the third embodiment.
  • the shock absorbing portion 304 is housed in the pressure vessel 211 outside the vacuum vessel 112 .
  • the impact buffer 304 is arranged between the second end plate 115 of the vacuum vessel 112 and the second lid 213 of the pressure vessel 211 .
  • the shock absorbing part 304 is fixed to the pressure vessel 211 by fixing the base 223 adjacent to the second lid 213 .
  • the impact buffering portion 304 is electrically connected to the second lid 213 .
  • the high-speed feeder 301 of this embodiment is connected to an external circuit using the first lid 15 and the second lid 213 of the pressure vessel 211 of the contact portion 302 as terminals.
  • the drive electrode 11, the insulating operating rod 23, the drive shaft 31, the ring 36, and the drive side spring bearing 39 form a drive side movable portion 71 that operates integrally.
  • the opposing electrode 12 and the opposing side spring bearing 56 form an opposing side movable portion 272 that operates integrally. Note that the operation of the high-speed inserter 301 is the same as the operation of the high-speed inserter 201 of the third embodiment, so description thereof will be omitted.
  • the drive electrode 11 and the counter electrode 12 operate in the same manner as in the first embodiment, so that the same effects as in the first embodiment can be obtained. can play.
  • the impact buffering portion 304 is housed in the pressure vessel 211 .
  • the opposing side movable portion 272 is lighter than the opposing side movable portion 72 of the first and second embodiments because it does not include the insulating operation rod 24 and the opposing shaft 51. It is possible. Therefore, it is possible to obtain the same effects as those of the third embodiment.
  • the sliding portion of the opposing side movable portion 272 can be removed from the vacuum vessel 112, the generation of foreign matter in the vacuum vessel 112 can be suppressed. Therefore, the maintenance work of the contact part 302 can be reduced, and workability
  • the electromagnetic repulsion operation mechanism was described as an example of the drive section 33 of the drive mechanism section 3, but the configuration is not limited to this.
  • a hydraulic operating mechanism that uses a pressure difference of accumulated hydraulic pressure as a driving force
  • a spring operating mechanism that uses an accumulated force of a coil spring as a driving force, or the like may be applied.
  • the electromagnetic repulsion mechanism is advantageous as the driving unit because it takes time to release the driving force and it is difficult to rapidly reduce the driving force after the driving electrode 11 and the counter electrode 12 contact each other.
  • the drive electrode 11 and the counter electrode 12 are connected to the drive mechanism section 3 and the impact buffer section 4 via the insulating operation rods 23 and 24, which are insulators. not.
  • the drive electrode and the counter electrode may be directly connected to the drive mechanism section and the impact buffer section and electrically connected.
  • the driving side braking portion 35 and the opposing side braking portion 54 are provided in the driving mechanism portion 3 and the impact buffering portion 4, but the configuration is not limited to this.
  • the drive mechanism section and the impact buffer section may be provided with a position holding section that holds the positions of the drive electrode and the counter electrode in the steady state and outputs a force to return them to the state in the steady state during the closing operation.
  • the drive-side return spring 38 and the opposing-side return spring 55 are coil springs, but the configuration is not limited to this.
  • a disk spring, an air spring, or the like may be used as the drive-side return spring and the opposed-side return spring.
  • the driving side braking portion 35 and the opposing side braking portion 54 are shock absorbers that output damping force using the viscous resistance of hydraulic oil, but are not limited to this configuration.
  • the driving-side braking portion and the opposing-side braking portion may be air dampers utilizing viscous resistance of air, or may be rubber dampers utilizing a rubber damping mechanism.
  • a shock absorber that utilizes the viscous resistance of the hydraulic oil is advantageous as the braking portion.
  • the stopper 61 that limits the amount of pushing into the shock absorber is provided on the opposite side braking portion 54, but it is not limited to this configuration. If the opposed side movable portion is decelerated and stopped by at least one of the opposed side return force of the opposed side return spring and the damping force of the shock absorber, the stopper may not be provided.
  • the drive unit that applies a driving force to the drive electrode in the direction of approaching the counter electrode during the closing operation, and the drive unit that always returns to the drive electrode in the direction of separating from the counter electrode.
  • a drive-side biasing portion that applies a force
  • a drive-side stopper that regulates displacement of the drive electrode when the drive electrode and the counter electrode are separated from each other in a steady state
  • a counter electrode that always returns to the direction of contact with the drive electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

A high-speed input device according to one embodiment of the present invention has a contact part, a drive mechanism part, and a shock absorption part. The contact part has a drive electrode and an opposing electrode. The drive mechanism part has a drive unit and a drive-side biasing unit. The drive unit applies drive force, in a first direction approaching the opposing electrode, to the drive electrode during input operation. The drive-side biasing unit applies a recovery force, in a second direction moving away from the opposing electrode, to the drive electrode. The shock absorption part has an opposing-side biasing part and an opposing-side stopper. The opposing-side biasing part applies recovery force, in the second direction contacting the drive electrode, to the opposing electrode. The opposing-side stopper limits displacement in the second direction of the opposing electrode when the drive electrode and the opposing electrode have moved apart during normal operation.

Description

高速投入器high speed feeder
 本発明の実施形態は、高速投入器に関する。 An embodiment of the present invention relates to a high-speed injector.
 定常時は高電圧が印加された端子間の絶縁を保持し、任意のタイミングで高速に端子間を導通させて大電流を通電可能とする投入器がある。投入器は、電力送電系統における高速接地装置やバイパススイッチ、直流遮断器の転流回路用投入器、核融合プラズマ生成用の電流源投入器など、様々な用途で使用されている。 There is a closing device that maintains insulation between terminals to which high voltage is applied during normal operation, and enables high-speed conduction between terminals at any timing to allow a large current to flow. Injectors are used in various applications, such as fast grounding devices and bypass switches in power transmission systems, commutation circuit injectors for DC circuit breakers, and current source injectors for nuclear fusion plasma generation.
 投入器の一例として、電極駆動式投入器がある。電極駆動式投入器は、定常時に高電圧が印加される対向配置された一対の主電極を持つ。一対の主電極は、一方の主電極を可動電極とされ、他方の主電極を固定電極とされている。可動電極は、固定電極に対して離接動作できるように配置されている。投入動作時に、可動電極が駆動部によって固定電極と接触する方向に動作する。可動電極と固定電極との間の距離が、印加電圧に対する絶縁距離以下となると、可動電極と固定電極との間でアーク放電が発生し、投入器は通電を開始する。可動電極はアーク放電を継続しつつ固定電極と接触する。投入器は、可動電極が固定電極に接触した状態で通電を継続し、投入動作を終了する。 An example of an injector is an electrode-driven injector. The electrode-driven injector has a pair of main electrodes arranged opposite to each other to which a high voltage is applied in a steady state. One main electrode of the pair of main electrodes is a movable electrode, and the other main electrode is a fixed electrode. The movable electrode is arranged so that it can move toward and away from the fixed electrode. During the closing operation, the movable electrode moves in the direction of contact with the fixed electrode by the drive unit. When the distance between the movable electrode and the fixed electrode becomes equal to or less than the insulation distance with respect to the applied voltage, arc discharge occurs between the movable electrode and the fixed electrode, and the injector starts energizing. The movable electrode contacts the fixed electrode while continuing the arc discharge. The thrower continues the energization while the movable electrode is in contact with the fixed electrode, and ends the throwing operation.
 しかし、電極駆動式投入器では、電極間でのアーク放電発生後、電極同士を接触させた状態で投入動作を終了する。このため、大電流投入時において、アーク放電によって融解した電極表面の金属が冷却され、電極同士がスポット的に溶着する。溶着した電極同士は開路動作時に引き離され、溶着部が千切れることで電極に鋭利な突起が形成される。この鋭利な突起は、電極間が開き高電圧が印加される定常時において電界集中部となり、電極間の絶縁性能を低下させる。 However, in the electrode-driven inserter, after the arc discharge occurs between the electrodes, the inserting operation is finished while the electrodes are in contact with each other. Therefore, when a large current is applied, the molten metal on the electrode surface is cooled by the arc discharge, and the electrodes are spot-welded to each other. The welded electrodes are separated from each other when the circuit is opened, and the welded portion is torn off to form a sharp protrusion on the electrode. These sharp protrusions become electric field concentration portions in a steady state when the electrodes are open and a high voltage is applied, and reduce the insulation performance between the electrodes.
日本国特開昭55-163724号公報Japanese Patent Application Laid-Open No. 55-163724 日本国特開2019-186162号公報Japanese Patent Application Laid-Open No. 2019-186162 日本国実公昭57-007127号公報Japanese Patent Publication No. 57-007127
 本発明が解決しようとする課題は、電極間の溶着から生じた突起による耐電圧性能の低下を抑制できる高速投入器を提供することである。 The problem to be solved by the present invention is to provide a high-speed feeder that can suppress the deterioration of withstand voltage performance due to projections caused by welding between electrodes.
 実施形態の高速投入器は、接点部と、駆動機構部と、衝撃緩衝部と、を持つ。接点部は、駆動電極および対向電極を持つ。駆動電極および対向電極は、互いに同軸上で開離して対向配置されている。駆動電極および対向電極は、互いに接近可能である。駆動電極および対向電極の間には、外部から電圧が印加される。駆動機構部は、駆動電極に接続されている。駆動機構部は、駆動部、駆動側付勢部および駆動側ストッパを持つ。駆動部は、投入動作時に駆動電極に対して対向電極に接近する第1方向の駆動力を与える。駆動側付勢部は、駆動電極に対して対向電極から開離する第2方向に常に復帰力を与える。駆動側ストッパは、定常時に駆動電極と対向電極とが開離した状態で駆動電極の第2方向の変位を規制する。衝撃緩衝部は、対向電極に接続されている。衝撃緩衝部は、対向側付勢部および対向側ストッパを持つ。対向側付勢部は、対向電極に対して駆動電極に接触する第2方向に常に復帰力を与える。対向側ストッパは、定常時に駆動電極と対向電極とが開離した状態で対向電極の第2方向の変位を規制する。 The high-speed inserter of the embodiment has a contact portion, a drive mechanism portion, and a shock absorbing portion. The contact portion has a drive electrode and a counter electrode. The drive electrode and the counter electrode are coaxially spaced apart from each other and opposed to each other. The drive electrode and the counter electrode are accessible to each other. An external voltage is applied between the drive electrode and the counter electrode. The drive mechanism section is connected to the drive electrodes. The drive mechanism section has a drive section, a drive-side biasing section, and a drive-side stopper. The drive unit applies a driving force in a first direction to the drive electrode to approach the counter electrode during the closing operation. The drive-side biasing portion always applies a restoring force to the drive electrode in the second direction separating the drive electrode from the counter electrode. The drive-side stopper restricts displacement of the drive electrode in the second direction in a state in which the drive electrode and the counter electrode are separated from each other in a steady state. The impact buffer is connected to the counter electrode. The impact buffering section has an opposing side biasing section and an opposing side stopper. The counter-side urging portion always applies a restoring force to the counter electrode in the second direction of contact with the drive electrode. The opposing side stopper restricts the displacement of the opposing electrode in the second direction in a state where the driving electrode and the opposing electrode are separated from each other in a steady state.
第1の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 1st Embodiment. 第1の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 1st Embodiment. 第1の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 1st Embodiment. 第1の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 1st Embodiment. 第2の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 2nd Embodiment. 第2の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 2nd Embodiment. 第2の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 2nd Embodiment. 第2の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 2nd Embodiment. 第3の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 3rd Embodiment. 第3の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 3rd Embodiment. 第3の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 3rd Embodiment. 第3の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 3rd Embodiment. 第4の実施形態の高速投入器を示す断面図。Sectional drawing which shows the high-speed thrower of 4th Embodiment.
 以下、実施形態の高速投入器を、図面を参照して説明する。なお以下の説明では、同一または類似の機能を有する構成に同一の符号を示す。そして、それら構成の重複する説明は省略する場合がある。 The high-speed feeder of the embodiment will be described below with reference to the drawings. In the following description, the same reference numerals are used for components having the same or similar functions. Duplicate descriptions of these configurations may be omitted.
 (第1の実施形態)
 図1から図4は、第1の実施形態の高速投入器を示す断面図である。図1は、非通電の遮断状態にある定常時の高速投入器1を示している。図2から図4は、通電可能な投入状態にある高速投入器1の投入動作時の動作過程を示している。
(First embodiment)
1 to 4 are cross-sectional views showing the high-speed feeder of the first embodiment. FIG. 1 shows a steady-state rapid-thrower 1 in a de-energized, cut-off state. FIGS. 2 to 4 show the operation process during the closing operation of the high-speed inserter 1 in the closing state in which electricity can be supplied.
 図1に示すように、高速投入器1は、接点部2と、駆動機構部3と、衝撃緩衝部4と、を備える。接点部2は、駆動機構部3および衝撃緩衝部4に接続されている。 As shown in FIG. 1, the high-speed feeder 1 includes a contact portion 2, a drive mechanism portion 3, and an impact cushioning portion 4. The contact portion 2 is connected to the drive mechanism portion 3 and the impact buffer portion 4 .
 接点部2について説明する。
 接点部2は、駆動電極11と、対向電極12と、圧力容器13と、を備える。
The contact portion 2 will be described.
The contact portion 2 includes a drive electrode 11 , a counter electrode 12 and a pressure vessel 13 .
 駆動電極11および対向電極12は、それぞれ棒状に形成され、同軸上に配置されている。駆動電極11および対向電極12は、駆動電極11の先端、および対向電極12の先端が互いに開離して対向するように配置されている。駆動電極11および対向電極12は、互いに接近可能である。駆動電極11および対向電極12は、相対的に直進動作をすることで、それぞれの先端が互いに離れた開路状態と、それぞれの先端が互いに接触する閉路状態と、を切り替え可能である。以下、駆動電極11および対向電極12の延在方向を軸方向と称する。 The drive electrode 11 and the counter electrode 12 are each formed in a rod shape and arranged coaxially. The drive electrode 11 and the counter electrode 12 are arranged such that the tip of the drive electrode 11 and the tip of the counter electrode 12 are separated from each other and face each other. Drive electrode 11 and counter electrode 12 are accessible to each other. The drive electrode 11 and the counter electrode 12 can switch between an open circuit state in which the respective tips are separated from each other and a closed circuit state in which the respective tips are in contact with each other by relatively moving straight. Hereinafter, the extending direction of the drive electrode 11 and the counter electrode 12 is referred to as an axial direction.
 駆動電極11は、先端に設けられた放電部11aと、放電部11aに接続された通電軸11bと、を備える。対向電極12は、先端に設けられた放電部12aと、放電部12aに接続された通電軸12bと、を備える。放電部11a,12aは、アーク放電への耐損耗性(耐アーク性)が高い材料で形成されている。通電軸11b,12bは、導電性の高い材料で形成されている。本実施形態では、アーク放電への耐損耗性が高い材料は銅タングステン合金である。本実施形態では、導電性の高い材料は銅合金である。ただし、駆動電極11および対向電極12を形成する材料は上記材料に限定されない。駆動電極11および対向電極12のうち少なくとも放電部11a,12aは、アーク放電への耐損耗性が高い金属材料により形成されていればよく、銅タングステン合金の他に、例えば銅クロム合金で形成されていてもよい。また、駆動電極11および対向電極12それぞれは、放電部11a,12aから通電軸11b,12bにわたって同一の材料で形成されていてもよい。 The drive electrode 11 includes a discharge portion 11a provided at the tip, and a conducting shaft 11b connected to the discharge portion 11a. The counter electrode 12 includes a discharge portion 12a provided at the tip, and a conducting shaft 12b connected to the discharge portion 12a. The discharge portions 11a and 12a are made of a material having high wear resistance (arc resistance) to arc discharge. The conducting shafts 11b and 12b are made of a highly conductive material. In this embodiment, the material with high wear resistance to arc discharge is a copper-tungsten alloy. In this embodiment, the highly conductive material is a copper alloy. However, the materials forming the drive electrode 11 and the counter electrode 12 are not limited to the above materials. At least the discharge portions 11a and 12a of the drive electrode 11 and the counter electrode 12 may be made of a metal material having high wear resistance to arc discharge, and may be made of, for example, a copper-chromium alloy other than a copper-tungsten alloy. may be Further, each of the drive electrode 11 and the counter electrode 12 may be made of the same material from the discharge portions 11a, 12a to the conducting shafts 11b, 12b.
 圧力容器13は、絶縁筒14と、第1フタ15と、第2フタ16と、を備える。
 絶縁筒14は、円筒状の絶縁物容器14aと、絶縁物容器14aの両端に固定された金属製のフランジ14b,14cと、を備える。フランジ14bには第1フタ15が導通可能に接続されている。フランジ14cには第2フタ16が導通可能に接続されている。第1フタ15および第2フタ16は、それぞれ円板状の板材である。第1フタ15および第2フタ16は、それぞれ絶縁筒14の端部の開口を閉塞するように、フランジ14b,14cに全周にわたって気密に接合されている。第1フタ15および第2フタ16それぞれの中心部には、貫通孔が設けられている。第1フタ15の貫通孔には、環状のシール部17が装着されている。第2フタ16の貫通孔には、環状のシール部18が装着されている。
The pressure vessel 13 includes an insulating cylinder 14 , a first lid 15 and a second lid 16 .
The insulating tube 14 includes a cylindrical insulator container 14a and metal flanges 14b and 14c fixed to both ends of the insulator container 14a. A first lid 15 is electrically connected to the flange 14b. A second lid 16 is electrically connected to the flange 14c. Each of the first lid 15 and the second lid 16 is a disk-shaped plate member. The first lid 15 and the second lid 16 are airtightly joined to the flanges 14b and 14c over the entire periphery so as to close the openings at the ends of the insulating cylinder 14, respectively. A through hole is provided in each center of the first lid 15 and the second lid 16 . An annular seal portion 17 is attached to the through hole of the first lid 15 . An annular seal portion 18 is attached to the through hole of the second lid 16 .
 圧力容器13は、駆動電極11および対向電極12における互いの接触部を収容している。圧力容器13は、駆動電極11および対向電極12の放電部11a,12aの全体と、駆動電極11および対向電極12の通電軸11b,12bそれぞれの一部と、を封入している。通電軸11bは、第1フタ15の貫通孔を貫通し、圧力容器13の外部に延出している。通電軸12bは、第2フタ16の貫通孔を貫通し、圧力容器13の外部に延出している。通電軸11bは、第1フタ15の貫通孔においてシール部17の内周面に密着している。通電軸11bは、圧力容器13の気密を保ちつつ、シール部17に摺接しながら軸方向に移動可能である。通電軸12bは、第2フタ16の貫通孔においてシール部18と密着している。通電軸12bは、圧力容器13の気密を保ちつつ、シール部18に摺接しながら軸方向に移動可能である。 The pressure vessel 13 accommodates the mutual contact portions of the drive electrode 11 and the counter electrode 12 . The pressure vessel 13 encloses the entire discharge portions 11a and 12a of the drive electrode 11 and the counter electrode 12 and part of the current-carrying shafts 11b and 12b of the drive electrode 11 and the counter electrode 12, respectively. The conducting shaft 11b passes through the through hole of the first lid 15 and extends to the outside of the pressure vessel 13 . The conducting shaft 12 b passes through the through hole of the second lid 16 and extends outside the pressure vessel 13 . The conducting shaft 11 b is in close contact with the inner peripheral surface of the seal portion 17 in the through hole of the first lid 15 . The current-carrying shaft 11 b can move in the axial direction while keeping the pressure vessel 13 airtight and sliding in contact with the seal portion 17 . The conducting shaft 12 b is in close contact with the seal portion 18 in the through hole of the second lid 16 . The current-carrying shaft 12 b can move in the axial direction while keeping the pressure vessel 13 airtight and slidingly contacting the seal portion 18 .
 圧力容器13は、絶縁ガスを封入している。絶縁ガスとして、例えば六フッ化硫黄(SF)ガスを用いることができる。ただし、絶縁ガスとして、六フッ化硫黄ガスの他に、窒素、二酸化炭素、酸素および空気のうちいずれか単体、またはそれらの混合ガスを用いてもよい。圧力容器13に封入される絶縁ガスの圧力は、大気圧以上である。 The pressure vessel 13 encloses an insulating gas. For example, sulfur hexafluoride (SF 6 ) gas can be used as the insulating gas. However, as the insulating gas, in addition to the sulfur hexafluoride gas, any one of nitrogen, carbon dioxide, oxygen and air, or a mixed gas thereof may be used. The pressure of the insulating gas enclosed in the pressure vessel 13 is higher than the atmospheric pressure.
 圧力容器13の内部には、金属製の第1シールド19および第2シールド20が配置されている。各シールド19,20は、円筒状に形成されている。各シールド19,20は、互いに同心状に配置され、軸方向に並んでいる。第1シールド19の第1端は、第1フタ15に結合して導通している。第2シールド20の第1端は、第2フタ16に結合して導通している。第1シールド19の第2端、および第2シールド20の第2端は、圧力容器13の内部で互いに対向している。第1シールド19の第2端、および第2シールド20の第2端それぞれの外周縁は、R面取り加工されている。 A first shield 19 and a second shield 20 made of metal are arranged inside the pressure vessel 13 . Each shield 19, 20 is formed in a cylindrical shape. The respective shields 19, 20 are arranged concentrically with each other and aligned in the axial direction. A first end of the first shield 19 is coupled to the first lid 15 and is electrically connected. A first end of the second shield 20 is coupled to the second lid 16 to be conductive. A second end of the first shield 19 and a second end of the second shield 20 face each other inside the pressure vessel 13 . The outer peripheral edges of the second end of the first shield 19 and the second end of the second shield 20 are R-chamfered.
 第1シールド19は、駆動電極11を囲っている。第2シールド20は、対向電極12を囲っている。駆動電極11の通電軸11bは、第1シールド19の内周に設けられた集電部21に摺接しながら、第1シールド19との導通状態を保ちつつ軸方向に移動可能となっている。対向電極12の通電軸12bは、第2シールド20の内周に設けられた集電部22に摺接しながら、第2シールド20との導通状態を保ちつつ軸方向に移動可能となっている。これにより、駆動電極11は、集電部21を介して第1シールド19、第1フタ15および第1フランジ14bと導通している。対向電極12は、集電部22を介して第2シールド20、第2フタ16および第2フランジ14cと導通している。 The first shield 19 surrounds the drive electrode 11 . A second shield 20 surrounds the counter electrode 12 . The current-carrying shaft 11 b of the drive electrode 11 is movable in the axial direction while maintaining electrical connection with the first shield 19 while slidingly contacting the current collector 21 provided on the inner circumference of the first shield 19 . The current-carrying shaft 12b of the counter electrode 12 is movable in the axial direction while maintaining electrical continuity with the second shield 20 while slidingly contacting the current collecting portion 22 provided on the inner circumference of the second shield 20 . As a result, the drive electrode 11 is electrically connected to the first shield 19, the first lid 15 and the first flange 14b via the current collector 21. As shown in FIG. The counter electrode 12 is electrically connected to the second shield 20, the second lid 16 and the second flange 14c via the current collector 22. As shown in FIG.
 通電軸11bの端部は、圧力容器13の外部で絶縁操作ロッド23に接続されている。通電軸11bは、絶縁操作ロッド23を介して駆動機構部3に接続されている。通電軸12bの端部は、圧力容器13の外部で絶縁操作ロッド24に接続されている。通電軸12bは、絶縁操作ロッド24を介して衝撃緩衝部4に接続されている。駆動機構部3および衝撃緩衝部4が絶縁物である絶縁操作ロッド23,24を介して接点部2に接続することで、接点部2および駆動機構部3が電気的に絶縁され、接点部2および衝撃緩衝部4が電気的に絶縁されている。 The end of the conducting shaft 11b is connected to the insulating operating rod 23 outside the pressure vessel 13. The conducting shaft 11 b is connected to the drive mechanism section 3 via an insulating operating rod 23 . The end of the conducting shaft 12b is connected to the insulation operating rod 24 outside the pressure vessel 13 . The conducting shaft 12b is connected to the shock absorbing portion 4 via an insulating operating rod 24. As shown in FIG. The contact portion 2 and the drive mechanism portion 3 are electrically insulated by connecting the drive mechanism portion 3 and the impact buffer portion 4 to the contact portion 2 via the insulating operation rods 23 and 24, which are insulators. and the shock absorbing portion 4 are electrically insulated.
 駆動機構部3について説明する。
 駆動機構部3は、駆動電極11に接続されている。駆動機構部3は、駆動軸31と、機構箱32と、駆動部33と、位置保持部34と、駆動側制動部35と、を備える。
The drive mechanism section 3 will be described.
The drive mechanism section 3 is connected to the drive electrodes 11 . The drive mechanism section 3 includes a drive shaft 31 , a mechanism box 32 , a drive section 33 , a position holding section 34 and a drive side braking section 35 .
 駆動軸31は、一部が機構箱32の内部に収容された状態で機構箱32の外側に延出している。駆動軸31は、機構箱32の外側で、絶縁操作ロッド23を介して駆動電極11の通電軸11bに接続されている。これにより、駆動軸31は、駆動電極11と一体に変位する。 The drive shaft 31 extends outside the mechanism box 32 while being partly accommodated inside the mechanism box 32 . The drive shaft 31 is connected to the current-carrying shaft 11b of the drive electrode 11 via an insulating operating rod 23 outside the mechanism box 32 . As a result, the drive shaft 31 is displaced integrally with the drive electrode 11 .
 駆動部33は、電磁反発操作機構である。駆動部33は、駆動軸31に接続された金属製のリング36(反発体)と、機構箱32に固定されたコイル37と、を備える。リング36およびコイル37は、機構箱32の内部で軸方向に対向して配置されている。リング36のうちコイル37に対向する箇所には、特に電気抵抗率が低い良導体36aが固定されている。リング36は、コイル37に対して接点部2側に配置されている。本実施形態では、良導体36aは無酸素銅であり、リング36のうち良導体36a以外の部位は高強度の超々ジュラルミンである。コイル37に図示しない励磁回路からコイル電流を印加することで、リング36(特に良導体36a)にはコイル電流と逆方向の誘導電流が生じる。コイル電流が通電するコイル37と、誘導電流が通電するリング36との間には、反発方向のローレンツ力が発生する。駆動部33は、コイル37およびリング36の間に発生するローレンツ力を、投入動作時の駆動力として利用する。リング36に発生した駆動力は、駆動軸31および絶縁操作ロッド23を介して、駆動電極11を対向電極12に接近する方向(第1方向)に変位させる。 The drive unit 33 is an electromagnetic repulsion operation mechanism. The drive unit 33 includes a metal ring 36 (repulsion body) connected to the drive shaft 31 and a coil 37 fixed to the mechanism box 32 . The ring 36 and the coil 37 are arranged axially facing each other inside the mechanism box 32 . A good conductor 36 a having a particularly low electrical resistivity is fixed to a portion of the ring 36 facing the coil 37 . The ring 36 is arranged on the contact portion 2 side with respect to the coil 37 . In this embodiment, the good conductor 36a is made of oxygen-free copper, and the portion of the ring 36 other than the good conductor 36a is made of high-strength extra super duralumin. By applying a coil current to the coil 37 from an excitation circuit (not shown), an induced current is generated in the ring 36 (especially the good conductor 36a) in the direction opposite to the coil current. A Lorentz force in the repulsive direction is generated between the coil 37 to which the coil current is energized and the ring 36 to which the induced current is energized. The driving unit 33 uses the Lorentz force generated between the coil 37 and the ring 36 as driving force during the closing operation. The driving force generated in the ring 36 displaces the driving electrode 11 in a direction (first direction) approaching the counter electrode 12 via the driving shaft 31 and the insulating operating rod 23 .
 位置保持部34は、駆動側復帰ばね38(駆動側付勢部)と、駆動側ばね受け39と、駆動側ストッパ40と、を備える。駆動側ばね受け39は、駆動軸31に結合されている。ベース41は、駆動側ばね受け39に対して、接点部2側に配置されている。ベース41は、駆動軸31を囲うように配置されている。ベース41は、機構箱32に固定されている。駆動側復帰ばね38は、駆動側ばね受け39とベース41との間に圧縮状態で設置された圧縮コイルばねである。駆動側復帰ばね38は、駆動側ばね受け39に対して、接点部2から開離する方向(第2方向)のばね力を常に与える。以後、駆動側復帰ばね38のばね力を駆動側復帰力と称する。 The position holding portion 34 includes a drive-side return spring 38 (drive-side biasing portion), a drive-side spring bearing 39 and a drive-side stopper 40 . The drive side spring bearing 39 is coupled to the drive shaft 31 . The base 41 is arranged on the contact portion 2 side with respect to the drive side spring bearing 39 . The base 41 is arranged to surround the drive shaft 31 . The base 41 is fixed to the mechanism box 32 . The drive-side return spring 38 is a compression coil spring installed between the drive-side spring bearing 39 and the base 41 in a compressed state. The drive-side return spring 38 always applies a spring force in a direction (second direction) to separate the contact portion 2 from the contact portion 2 to the drive-side spring bearing 39 . Hereinafter, the spring force of the drive-side return spring 38 will be referred to as drive-side return force.
 ベース41には、駆動側ストッパ40が固定されている。駆動側ストッパ40は、駆動側ばね受け39に対して接点部2側とは反対側に配置されている。駆動側ストッパ40は、駆動軸31を囲うように配置されている。駆動側ストッパ40は、駆動側復帰力を受ける駆動側ばね受け39と接触することで、定常時における駆動軸31および駆動電極11を位置決めする。 A drive-side stopper 40 is fixed to the base 41 . The drive-side stopper 40 is arranged on the side opposite to the contact portion 2 side with respect to the drive-side spring bearing 39 . The drive-side stopper 40 is arranged so as to surround the drive shaft 31 . The drive-side stopper 40 positions the drive shaft 31 and the drive electrode 11 in a steady state by coming into contact with the drive-side spring bearing 39 that receives the drive-side restoring force.
 駆動側制動部35は、シリンダ42と、ピストン43と、を備える。本実施形態では、駆動側制動部35はショックアブソーバである。シリンダ42の内部には作動油が充填されている。ピストン43をシリンダ42に対して押し込むと、作動油の粘性抵抗によって、ピストン43には変位量と速度に応じた減衰力が生じる。減衰力は、ピストン43の押し込み方向の反対方向に発生する。また押し込んだピストン43を解放すると、シリンダ42の内部に設置された図示しない復帰ばねによって、ピストン43はシリンダ42から押し出され、所定の位置で静止する。シリンダ42は、機構箱32と固定されている。ピストン43は、駆動側ばね受け39が駆動側ストッパ40に接触して静止した定常時において、駆動軸31の端部と接触し、かつシリンダ42に対して押し込まれた状態で設置されている。 The drive-side braking portion 35 includes a cylinder 42 and a piston 43. In this embodiment, the drive-side braking portion 35 is a shock absorber. The inside of the cylinder 42 is filled with hydraulic oil. When the piston 43 is pushed into the cylinder 42, a damping force is generated in the piston 43 according to the amount of displacement and speed due to the viscous resistance of the working oil. A damping force is generated in the direction opposite to the pushing direction of the piston 43 . When the pushed piston 43 is released, the piston 43 is pushed out of the cylinder 42 by a return spring (not shown) installed inside the cylinder 42 and stops at a predetermined position. The cylinder 42 is fixed to the mechanism box 32 . The piston 43 is placed in contact with the end of the drive shaft 31 and pushed into the cylinder 42 in a steady state in which the drive-side spring bearing 39 is in contact with the drive-side stopper 40 and remains stationary.
 衝撃緩衝部4について説明する。
 衝撃緩衝部4は、対向電極12に接続されている。衝撃緩衝部4は、対向軸51と、機構箱52と、位置保持部53と、対向側制動部54と、を備える。
The impact buffering portion 4 will be described.
The shock absorbing portion 4 is connected to the counter electrode 12 . The impact buffering section 4 includes an opposing shaft 51 , a mechanism box 52 , a position holding section 53 and an opposing side braking section 54 .
 対向軸51は、一部が機構箱52の内部に収容された状態で機構箱52の外側に延出している。対向軸51は、機構箱52の外側で、絶縁操作ロッド24を介して対向電極12の通電軸12bに接続されている。これにより、対向軸51は、対向電極12と一体に変位する。 The opposing shaft 51 extends outside the mechanism box 52 while being partly accommodated inside the mechanism box 52 . The opposing shaft 51 is connected to the conducting shaft 12 b of the opposing electrode 12 via an insulating operating rod 24 outside the mechanism box 52 . Thereby, the opposing shaft 51 is displaced integrally with the opposing electrode 12 .
 位置保持部53は、対向側復帰ばね55(対向側付勢部)と、対向側ばね受け56と、対向側ストッパ57と、ベース58と、を備える。対向側ばね受56は、対向軸51に結合されている。ベース58は、対向側ばね受け56に対して、接点部2側とは反対側に配置されている。ベース58は、機構箱52に固定されている。対向側復帰ばね55は、対向側ばね受け56とベース58との間に圧縮状態で設置された圧縮コイルばねである。対向側復帰ばね55は、対向側ばね受け56に対して、接点部2に接近する方向のばね力を常に与えるよう配置されている。以後、対向側復帰ばね55のばね力を対向側復帰力と称する。 The position holding portion 53 includes an opposing-side return spring 55 (opposing-side biasing portion), an opposing-side spring bearing 56 , an opposing-side stopper 57 , and a base 58 . The opposing side spring bearing 56 is coupled to the opposing shaft 51 . The base 58 is arranged on the side opposite to the contact portion 2 side with respect to the opposing side spring bearing 56 . The base 58 is fixed to the mechanism box 52 . The opposing return spring 55 is a compression coil spring installed between the opposing spring bearing 56 and the base 58 in a compressed state. The opposing-side return spring 55 is arranged so as to always apply a spring force in the direction of approaching the contact portion 2 to the opposing-side spring bearing 56 . Hereinafter, the spring force of the opposing side return spring 55 will be referred to as the opposing side return force.
 ベース58には、対向側ストッパ57が固定されている。対向側ストッパ57は、対向側ばね受け56に対して接点部2側に配置されている。対向側ストッパ57は、対向軸51を囲うように配置されている。対向側ストッパ57は、対向側復帰力を受ける対向側ばね受け56と接触することで、定常時における対向軸51および対向電極12を位置決めする。 An opposing side stopper 57 is fixed to the base 58 . The opposing side stopper 57 is arranged on the contact portion 2 side with respect to the opposing side spring bearing 56 . The opposing side stopper 57 is arranged so as to surround the opposing shaft 51 . The opposing side stopper 57 positions the opposing shaft 51 and the opposing electrode 12 in the steady state by contacting the opposing side spring bearing 56 that receives the opposing side restoring force.
 対向側制動部54は、シリンダ59と、ピストン60と、ストッパ61と、を備える。本実施形態では、対向側制動部54は、駆動側制動部35と同様にショックアブソーバである。シリンダ59およびピストン60の構成は、駆動側制動部35のシリンダ42およびピストン43の構成と同一である。 The opposing side braking portion 54 includes a cylinder 59, a piston 60, and a stopper 61. In this embodiment, the opposing side braking portion 54 is a shock absorber like the driving side braking portion 35 . The configuration of the cylinder 59 and the piston 60 is the same as the configuration of the cylinder 42 and the piston 43 of the driving side braking portion 35 .
 シリンダ59は、ベース58を介して機構箱52に固定されている。ピストン60は、対向側ばね受け56が対向側ストッパ57に接触して静止した定常時において、対向側ばね受け56に非接触であり、かつシリンダ59から押し出され、所定の位置で制止した状態で設置されている。 The cylinder 59 is fixed to the mechanism box 52 via the base 58. The piston 60 is not in contact with the opposite spring bearing 56 and is pushed out of the cylinder 59 and stopped at a predetermined position when the opposite spring bearing 56 is in contact with the opposite stopper 57 and remains stationary. is set up.
 ストッパ61は、ベース58に固定されている。ストッパ61は、対向側ばね受け56がピストン60をシリンダ59に対して押し込む過程で対向側ばね受け56に接触し、ピストン60の押し込み量を一定値以内に制限するよう配置されている。 The stopper 61 is fixed to the base 58. The stopper 61 is arranged so as to come into contact with the opposed side spring bearing 56 in the process of pushing the piston 60 into the cylinder 59 and limit the amount of pushing of the piston 60 within a certain value.
 本実施形態の高速投入器1は、接点部2の圧力容器13における第1フタ15および第2フタ16を端子として、外部の回路に接続される。駆動電極11と、絶縁操作ロッド23と、駆動軸31と、リング36と、駆動側ばね受け39とは、一体となって動作する駆動側可動部71を形成する。対向電極12と、絶縁操作ロッド24と、対向軸51と、対向側ばね受け56とは、一体となって動作する対向側可動部72を形成する。 The high-speed feeder 1 of this embodiment is connected to an external circuit using the first lid 15 and the second lid 16 of the pressure vessel 13 of the contact portion 2 as terminals. The drive electrode 11, the insulating operating rod 23, the drive shaft 31, the ring 36, and the drive side spring bearing 39 form a drive side movable portion 71 that operates integrally. The opposing electrode 12, the insulating operating rod 24, the opposing shaft 51, and the opposing side spring bearing 56 form an opposing side movable portion 72 that operates integrally.
 高速投入器1が非通電の遮断状態である定常時について説明する。
 図1に示すように、駆動側可動部71は、駆動側ばね受け39が駆動側復帰ばね38によって駆動側ストッパ40に押し付けられた位置で静止している。駆動電極11の放電部11aの端面は、シールド19のR面取り加工された端面と面一となる位置に配置されている。
A normal state in which the high-speed closing device 1 is in a non-energized and cut-off state will be described.
As shown in FIG. 1 , the drive-side movable portion 71 is stationary at a position where the drive-side spring bearing 39 is pressed against the drive-side stopper 40 by the drive-side return spring 38 . The end surface of the discharge portion 11a of the drive electrode 11 is arranged at a position flush with the R-chamfered end surface of the shield 19 .
 対向側可動部72は、対向側ばね受け56が対向側復帰ばね55によって対向側ストッパ57に押し付けられた位置で静止している。対向電極12の放電部12aの端面は、シールド20のR面取り加工された端面と面一となる位置に配置されている。 The opposing side movable portion 72 is stationary at a position where the opposing side spring bearing 56 is pressed against the opposing side stopper 57 by the opposing side return spring 55 . The end surface of the discharge portion 12a of the counter electrode 12 is arranged at a position flush with the R-chamfered end surface of the shield 20. As shown in FIG.
 高速投入器1が外部の回路に接続されると、端子となる第1フタ15および第2フタ16の間に電圧が印加される。第1フタ15は、駆動電極11および第1シールド19と導通して同電位となっている。第2フタ16は、対向電極12および第2シールド20と導通して同電位となっている。よって高速投入器1に印加された電圧は、圧力容器13の内部で駆動電極11および第1シールド19と、対向電極12および第2シールド20と、の間に印加されている。 When the high-speed feeder 1 is connected to an external circuit, a voltage is applied between the first lid 15 and the second lid 16 that serve as terminals. The first lid 15 is electrically connected to the drive electrode 11 and the first shield 19 and has the same potential. The second lid 16 is electrically connected to the counter electrode 12 and the second shield 20 and has the same potential. Therefore, the voltage applied to the high-speed injector 1 is applied between the drive electrode 11 and the first shield 19 and the counter electrode 12 and the second shield 20 inside the pressure vessel 13 .
 定常時は、駆動電極11および対向電極12は互いに十分に離れた開路状態であり、駆動電極11および対向電極12付近の電界が圧力容器13に封入された絶縁ガスの絶縁破壊電界に比べて十分低くなっている。このため、駆動電極11と対向電極12との間が電気的に絶縁されている。よって高速投入器1は端子間が非導通の遮断状態となっている。 In the normal state, the drive electrode 11 and the counter electrode 12 are sufficiently separated from each other in an open circuit state, and the electric field near the drive electrode 11 and the counter electrode 12 is sufficiently large compared to the dielectric breakdown electric field of the insulating gas enclosed in the pressure vessel 13. getting low. Therefore, the drive electrode 11 and the counter electrode 12 are electrically insulated. Therefore, the high-speed throwing device 1 is in a cutoff state in which the terminals are non-conducting.
 高速投入器1が非通電の遮断状態である定常時から、通電可能な投入状態に変化し、最終的に定常時の遮断状態に復帰する投入動作について説明する。なお、以下の投入動作の説明では、外部回路に高速投入器1が接続されて、駆動電極11および対向電極12に高電圧が印加された状態を述べる。 A description will be given of the closing operation in which the high-speed closing device 1 changes from a steady state in which it is in a non-energized and cut-off state to a energized closing state and finally returns to the steady-state cut-off state. In the following description of the closing operation, a state in which the high-speed inserter 1 is connected to an external circuit and a high voltage is applied to the drive electrode 11 and the counter electrode 12 will be described.
 投入動作は、図1に示す定常時において、駆動部33のコイル37に図示しない励磁回路からコイル電流を印加し、リング36に駆動力を発生させることで開始する。投入動作は、接近ステップと、接触ステップと、開離ステップと、をこの順に備える。 The closing operation is started by applying a coil current from an excitation circuit (not shown) to the coil 37 of the drive unit 33 in the steady state shown in FIG. The closing operation includes an approaching step, a contacting step, and a separating step in this order.
 接近ステップについて説明する。接近ステップでは、図1に示す状態から図2に示す状態を経て、図3に示す状態に至る。 I will explain the approach step. In the approaching step, the state shown in FIG. 1 goes through the state shown in FIG. 2 and then the state shown in FIG. 3 is reached.
 駆動側可動部71は、駆動部33の駆動力を受ける。ここで駆動部33の駆動力は、駆動側復帰ばね38による駆動側復帰力に比べて十分に大きい。駆動側可動部71は、駆動部33の駆動力によって、駆動側復帰ばね38を圧縮しながら、駆動電極11を対向電極12に接近させる方向に変位を開始する。 The driving side movable portion 71 receives the driving force of the driving portion 33 . Here, the driving force of the driving portion 33 is sufficiently larger than the driving-side restoring force of the driving-side restoring spring 38 . The drive-side movable portion 71 starts to be displaced in a direction to bring the drive electrode 11 closer to the counter electrode 12 while compressing the drive-side return spring 38 by the driving force of the drive portion 33 .
 駆動電極11が対向電極12に接近すると、駆動電極11および対向電極12付近の電界が高くなる。駆動電極11および対向電極12付近の電界が圧力容器13に封入された絶縁ガスの絶縁破壊電界に比べて高くなることで、駆動電極11の放電部11aと対向電極12の放電部12aとの間で絶縁破壊が生じる。図2に示す位置まで駆動電極11が対向電極12に接近すると、絶縁破壊によって駆動電極11の放電部11aと対向電極12の放電部12aとの間でアーク放電73が発生する。駆動電極11および対向電極12は、アーク放電73によって導通状態となるため、第1フタ15および第2フタ16間も導通状態となる。外部回路との接続端子である第1フタ15および第2フタ16間が導通状態となることで、高速投入器1は投入状態に変化して通電を開始する。 When the drive electrode 11 approaches the counter electrode 12, the electric field near the drive electrode 11 and the counter electrode 12 increases. Since the electric field near the drive electrode 11 and the counter electrode 12 is higher than the dielectric breakdown electric field of the insulating gas enclosed in the pressure vessel 13, the electric field between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 dielectric breakdown occurs. When the drive electrode 11 approaches the counter electrode 12 to the position shown in FIG. 2, an arc discharge 73 is generated between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 due to dielectric breakdown. Since the drive electrode 11 and the counter electrode 12 are brought into a conductive state by the arc discharge 73, the first lid 15 and the second lid 16 are also brought into a conductive state. When the first lid 15 and the second lid 16, which are terminals for connecting to an external circuit, are in a conductive state, the high-speed feeder 1 changes to a closed state and starts energization.
 その後、図3に示すように駆動電極11が対向電極12に接触するまで、駆動側可動部71は単独で変位し続ける。このとき、駆動側制動部35のピストン43は、駆動側可動部71の変位に伴い、シリンダ42の内部に設置された図示しない復帰ばねによってシリンダ42から押し出される。 After that, the drive-side movable portion 71 continues to displace independently until the drive electrode 11 contacts the counter electrode 12 as shown in FIG. At this time, the piston 43 of the drive-side braking portion 35 is pushed out of the cylinder 42 by a return spring (not shown) installed inside the cylinder 42 as the drive-side movable portion 71 is displaced.
 接触ステップについて説明する。接触ステップでは、図3に示す状態から図4に示す状態を経て、再度図3に示す状態に復帰する。 I will explain the contact step. In the contact step, the state shown in FIG. 3 passes through the state shown in FIG. 4, and then returns to the state shown in FIG.
 図3に示すように、駆動電極11の放電部11aが対向電極12の放電部12aに接触する。これにより、駆動電極11および対向電極12の接触部を介して駆動電極11と対向電極12との導通が維持される。よって高速投入器1も、通電可能な投入状態を継続する。このとき、シリンダ42から押し出されたピストン43は、所定の位置で静止する。ただし、ピストン43は、接近ステップで静止してもよい。 As shown in FIG. 3 , the discharge portion 11 a of the drive electrode 11 contacts the discharge portion 12 a of the counter electrode 12 . As a result, conduction between the drive electrode 11 and the counter electrode 12 is maintained through the contact portion of the drive electrode 11 and the counter electrode 12 . Therefore, the high-speed inserter 1 also continues the energized closing state. At this time, the piston 43 pushed out from the cylinder 42 stops at a predetermined position. However, the piston 43 may be stationary during the approach step.
 駆動電極11の放電部11aが対向電極12の放電部12aに接触した後、対向側可動部72は駆動部33の駆動力によって加速した駆動側可動部71に押される。これにより、図4に示すように、駆動側可動部71および対向側可動部72は、駆動電極11が対向電極12に接触した状態で駆動力の出力方向に共に変位する。 After the discharge portion 11 a of the drive electrode 11 contacts the discharge portion 12 a of the counter electrode 12 , the counter-side movable portion 72 is pushed by the drive-side movable portion 71 accelerated by the driving force of the drive portion 33 . As a result, as shown in FIG. 4, the drive-side movable portion 71 and the opposing-side movable portion 72 are displaced together in the driving force output direction while the drive electrode 11 is in contact with the opposing electrode 12 .
 駆動部33の駆動力は、駆動電極11が対向電極12に接触した後に減衰する。駆動力は、リング36とコイル37との距離が大きくなることで低下する。さらに駆動力は、コイル電流が減衰することで低下する。なお、駆動部33の駆動力は、駆動電極11が対向電極12に接触する前から減衰し始めてもよい。一方、駆動側可動部71は駆動側復帰ばね38を圧縮し、対向側可動部72は対向側復帰ばね55を圧縮しつつ変位する。このため、駆動側可動部71および対向側可動部72それぞれに対して駆動力とは反対方向に作用する駆動側復帰力および対向側復帰力が増加する。さらに対向側可動部72の対向側ばね受け56は、対向側制動部54のピストン60をシリンダ59に対して押し込むことで、押し込み方向と反対方向の減衰力を受ける。また駆動側可動部71は、対向側可動部72に接触して加速させる際に、運動量を分け与え、減速する。よって駆動側可動部71は、対向側可動部72に接触後に対向側可動部72と共に変位しつつ大きく減速し、十分に減速した後に、対向側可動部72の対向側ばね受け56がストッパ61に接触することで停止し、図4に示す状態となる。 The driving force of the driving section 33 is attenuated after the driving electrode 11 contacts the counter electrode 12 . The driving force decreases as the distance between the ring 36 and the coil 37 increases. Furthermore, the driving force is reduced due to the attenuation of the coil current. It should be noted that the driving force of the driving portion 33 may start to attenuate before the driving electrode 11 contacts the counter electrode 12 . On the other hand, the drive-side movable portion 71 compresses the drive-side return spring 38 , and the opposing-side movable portion 72 compresses and displaces the opposing-side return spring 55 . Therefore, the driving-side restoring force and the opposing-side restoring force acting in the direction opposite to the driving force on the driving-side movable portion 71 and the opposing-side movable portion 72 are increased. Further, when the piston 60 of the opposing brake portion 54 is pushed into the cylinder 59, the opposing spring bearing 56 of the opposing movable portion 72 receives a damping force in the direction opposite to the pushing direction. Further, when the driving-side movable portion 71 contacts and accelerates the opposing-side movable portion 72, the driving-side movable portion 71 shares the momentum and decelerates. Therefore, the drive-side movable portion 71 decelerates greatly while being displaced together with the opposed-side movable portion 72 after coming into contact with the opposed-side movable portion 72 . It stops by contacting, and it will be in the state shown in FIG.
 なお、図3に示す状態から図4に示す状態に移行する過程において、駆動電極11および対向電極12は、接触時の反発力によって一時的に開離しても、アーク放電を介して導通を維持し、再接触時に接触部を介した導通を再開する。よって高速投入器1も、通電可能な投入状態を継続する。 In the process of shifting from the state shown in FIG. 3 to the state shown in FIG. 4, even if the drive electrode 11 and the counter electrode 12 are temporarily separated due to the repulsive force at the time of contact, continuity is maintained through arc discharge. and resumes conduction through the contact when re-contacted. Therefore, the high-speed inserter 1 also continues the energized closing state.
 駆動側可動部71および対向側可動部72は、停止後、駆動側復帰ばね38の駆動側復帰力と、対向側復帰ばね55の対向側復帰力とによって、変位方向を反転する。駆動側可動部71および対向側可動部72は、駆動力の出力方向とは反対方向に加速されて変位し、再度、図3に示す状態となる。ここで対向側可動部72は、対向側ばね受け56が対向側ストッパ57と接触することで停止する。 After stopping, the driving-side movable portion 71 and the opposing-side movable portion 72 reverse their displacement directions by the driving-side restoring force of the driving-side returning spring 38 and the opposing-side restoring force of the opposing-side returning spring 55 . The driving-side movable portion 71 and the opposing-side movable portion 72 are accelerated and displaced in the direction opposite to the output direction of the driving force, and again enter the state shown in FIG. Here, the opposing side movable portion 72 stops when the opposing side spring bearing 56 contacts the opposing side stopper 57 .
 なお図4に示す状態から図3に示す状態に復帰する過程において、基本的に駆動電極11および対向電極12は接触状態であり、接触部を介した導通を維持する。駆動電極11および対向電極12は、仮に一時的に開離しても、アーク放電を介して導通を維持する。よって高速投入器1も、通電可能な投入状態を継続する。 In the process of returning from the state shown in FIG. 4 to the state shown in FIG. 3, the drive electrode 11 and the counter electrode 12 are basically in a contact state and maintain conduction through the contact portion. Even if the drive electrode 11 and the counter electrode 12 are temporarily separated, they maintain continuity through arc discharge. Therefore, the high-speed inserter 1 also continues the energized closing state.
 開離ステップについて説明する。開離ステップでは、図3に示す状態から図2に示す状態を経て、図1に示す状態に至る。 I will explain the opening step. In the opening step, the state shown in FIG. 3 goes through the state shown in FIG. 2 and then the state shown in FIG. 1 is reached.
 図3および図2に示すように、駆動側可動部71は、対向側可動部72の停止後、対向電極12が対向側ストッパ57によって変位を規制されるので、駆動側復帰ばね38の駆動側復帰力によって単独で変位する。ここで駆動側可動部71は、駆動軸31が駆動側制動部35のピストン43をシリンダ42に対して押し込むことで、押し込み方向と反対方向の減衰力を受け、減速し始める。 As shown in FIGS. 3 and 2, after the opposing-side movable portion 72 stops, the opposing electrode 12 is restricted in displacement by the opposing-side stopper 57, so that the driving-side return spring 38 is released from the driving-side movable portion 71 as shown in FIGS. Displaced independently by the restoring force. Here, the drive shaft 31 pushes the piston 43 of the drive brake portion 35 into the cylinder 42 , so that the drive-side movable portion 71 receives a damping force in the direction opposite to the pushing direction and starts to decelerate.
 図3に示す状態から図2に示す状態に復帰する過程において、対向側可動部72は停止しており、駆動電極11の放電部11aは対向電極12の放電部12aから開離する。一方で、駆動電極11および対向電極12はアーク放電73を介して導通を維持しており、高速投入器1も、通電可能な投入状態を継続する。  In the process of returning from the state shown in FIG. 3 to the state shown in FIG. On the other hand, the drive electrode 11 and the counter electrode 12 maintain electrical continuity via the arc discharge 73, and the high-speed feeder 1 also continues the energized state.
 最終的に駆動側可動部71は、駆動側制動部35の減衰力を受け減速し、駆動側ばね受け39が駆動側ストッパ40に接触することで停止して、図1に示す状態に復帰する。このとき、駆動部33の駆動力は完全に減衰している、または駆動側復帰力に比べて十分に小さくなっており、駆動側可動部71は図1の状態に保持される。 Ultimately, the driving-side movable portion 71 receives the damping force of the driving-side braking portion 35, decelerates, stops when the driving-side spring bearing 39 comes into contact with the driving-side stopper 40, and returns to the state shown in FIG. . At this time, the driving force of the driving portion 33 is completely attenuated, or is sufficiently smaller than the driving-side restoring force, and the driving-side movable portion 71 is held in the state shown in FIG.
 図2に示す状態から図1に示す状態に復帰する過程または、図1に示す状態への復帰後において、駆動電極11および対向電極12の間で生じていたアーク放電は、外部回路における電流の遮断または減衰によって消弧される。これにより、駆動電極11および対向電極12は、再度電気的に絶縁された状態になる。以上により、高速投入器1は端子間が非導通の遮断状態に復帰し、投入動作を終了する。 In the process of returning from the state shown in FIG. 2 to the state shown in FIG. 1 or after returning to the state shown in FIG. Arc is extinguished by interruption or attenuation. As a result, the drive electrode 11 and the counter electrode 12 are electrically insulated again. As described above, the high-speed closing device 1 is returned to the interrupted state in which the terminals are not electrically connected, and the closing operation is completed.
 以上に説明したように、本実施形態の高速投入器1では、駆動部33により駆動電極11に駆動力を与えることで、最初に駆動電極11が対向電極12に接近する。駆動電極11が対向電極12に接近すると、駆動電極11の放電部11aと対向電極12の放電部12aとの間でアーク放電が発生して通電を開始する。次いで駆動電極11が通電を継続しつつ対向電極12に接触して対向電極12と共に駆動力の出力方向に変位する。この際、駆動電極11および対向電極12は駆動側復帰ばね38および対向側復帰ばね55の復帰力によって減速する。次いで駆動電極11および対向電極12は復帰力によって変位方向を反転する。次いで対向電極12が対向側ストッパ57によって変位を規制されることで、駆動電極11が駆動側復帰ばね38の復帰力によって対向電極12から開離する。駆動電極11が対向電極12から開離する過程で、駆動電極11と対向電極12との間にアーク放電が発生し、通電が継続される。次いで駆動電極11が駆動側ストッパ40によって変位を規制されることで、駆動電極11が定常時の位置に復帰する。駆動電極11が対向電極12から開離する過程、または定常時の位置に復帰した状態でアーク放電が消弧することで通電を終了する。以上により、本実施形態の高速投入器1は、電極駆動式の高速投入器として動作する。したがって、本実施形態によれば、トリガ放電式の高速投入器のようなトリガ電極が不要であるため、トリガ放電式に比べて多数回の動作が可能な高速投入器1を提供できる。また、本実施形態によれば、トリガ放電式の高速投入器では必須の高価なパルス電源が不要であるため、トリガ放電式に比べて機器コストが低い高速投入器1を提供できる。 As described above, in the high-speed feeder 1 of the present embodiment, the drive unit 33 applies a driving force to the drive electrode 11, so that the drive electrode 11 first approaches the counter electrode 12. When the drive electrode 11 approaches the counter electrode 12, an arc discharge occurs between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 to start energization. Next, the drive electrode 11 contacts the counter electrode 12 while continuing to be energized, and is displaced together with the counter electrode 12 in the output direction of the driving force. At this time, the driving electrode 11 and the counter electrode 12 are decelerated by the restoring force of the driving side return spring 38 and the counter side return spring 55 . Then, the drive electrode 11 and the counter electrode 12 reverse their displacement directions due to the restoring force. Then, the opposed electrode 12 is restrained from being displaced by the opposed side stopper 57 , so that the drive electrode 11 is separated from the opposed electrode 12 by the restoring force of the driving side return spring 38 . In the process in which the drive electrode 11 separates from the counter electrode 12, an arc discharge is generated between the drive electrode 11 and the counter electrode 12, and current continues. Next, the driving electrodes 11 are restrained from being displaced by the driving-side stoppers 40, so that the driving electrodes 11 return to their normal positions. The energization ends when the arc discharge is extinguished in the process in which the drive electrode 11 separates from the counter electrode 12 or in the state of returning to the normal position. As described above, the high-speed inserter 1 of the present embodiment operates as an electrode-driven high-speed inserter. Therefore, according to the present embodiment, unlike the trigger discharge type high speed injection device, a trigger electrode is not required, so that the high speed injection device 1 capable of operating more times than the trigger discharge type high speed injection device can be provided. In addition, according to the present embodiment, the trigger discharge type high speed feeder does not require an expensive pulse power supply, so the high speed feeder 1 can be provided at a lower equipment cost than the trigger discharge type.
 また、本実施形態の高速投入器1は、投入動作時に駆動電極11が対向電極12に接触した後、駆動側可動部71が対向側可動部72と共に駆動力の動作方向に変位することで、駆動側可動部71の運動量を対向側可動部72に分け与える。さらに、駆動側可動部71は、駆動側復帰ばね38の駆動側復帰力に加えて、対向側復帰ばね55の対向側復帰力、および対向側制動部54の減衰力を受けることで、大きく減速する。この構成によれば、投入動作時に、駆動電極11を対向電極12に接近させ、放電部11a,12a間でアーク放電による導通を開始させた後に、駆動電極11が対向電極12に接触して駆動側可動部71が減速する。よってアーク放電による導通開始までは駆動側可動部71は殆ど減速せず、放電部11a,12a間の電界を急速に上昇させることができるため、アーク放電の発生開始時間の短縮とばらつきを低減できる。これにより、投入時間がより短く、さらに投入時間のばらつきが小さい高速投入器1を提供できる。さらに上記構成によれば、対向電極12は、投入動作時に駆動電極11に接触した後に、駆動電極11と共に駆動力の出力方向に動作可能であるため、接触時の衝撃力を低減することができる。よって駆動電極11と対向電極12との接触時の衝撃力による、機器の損傷を抑制することが可能であり、多数回の操作が可能な高速投入器1を提供できる。 Further, in the high-speed thrower 1 of the present embodiment, after the drive electrode 11 contacts the counter electrode 12 during the throwing operation, the driving side movable portion 71 is displaced together with the counter side movable portion 72 in the operating direction of the driving force. The momentum of the drive-side movable portion 71 is distributed to the opposing-side movable portion 72 . Further, the drive-side movable portion 71 receives the drive-side return force of the drive-side return spring 38, the opposing-side return force of the opposing-side return spring 55, and the damping force of the opposing-side braking portion 54, thereby greatly decelerating. do. According to this configuration, during the closing operation, the drive electrode 11 is brought close to the counter electrode 12, and after arc discharge conduction is started between the discharge portions 11a and 12a, the drive electrode 11 is brought into contact with the counter electrode 12 and driven. The side movable portion 71 decelerates. Therefore, the drive-side movable portion 71 hardly decelerates until the arc discharge starts conducting, and the electric field between the discharge portions 11a and 12a can be rapidly increased, so that the arc discharge generation start time can be shortened and variations can be reduced. . As a result, it is possible to provide the high-speed feeder 1 with a shorter feed time and less variations in the feed time. Furthermore, according to the above configuration, after the opposing electrode 12 contacts the driving electrode 11 during the closing operation, it can move in the output direction of the driving force together with the driving electrode 11, so that the impact force at the time of contact can be reduced. . Therefore, it is possible to suppress the damage to the device due to the impact force when the drive electrode 11 and the counter electrode 12 contact each other, and it is possible to provide the high-speed inserter 1 that can be operated many times.
 また、高速投入器1は、投入動作時に、駆動電極11の放電部11aと対向電極12の放電部12aとの間でアーク放電を発生させて通電を開始する。さらに、駆動電極11の放電部11aを対向電極12の放電部12aに接触させた後、通電を継続しつつ放電部11aを放電部12aから開離させて、投入動作を終了する。この構成によれば、投入動作時に、アーク放電によって金属表面が一部融解した駆動電極11の放電部11aと対向電極12の放電部12aとが接触後、冷却される前に再度開離して投入動作を終了する。このため、放電部11a,12aに溶着部が発生することを抑制できる。よって、溶着部を引き離した際に生じる鋭利な突起が放電部11a,12aの表面に形成されることを抑制できる。これにより、電極間が開き高電圧が印加される定常時において、鋭利な突起による電界集中部の発生を防ぐことができる。したがって、電極間の絶縁性能を維持し、耐電圧性能の低下を抑制できる高速投入器1を提供できる。 In addition, the high-speed feeder 1 generates an arc discharge between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 during the feed operation to start energization. Further, after the discharge portion 11a of the drive electrode 11 is brought into contact with the discharge portion 12a of the counter electrode 12, the discharge portion 11a is separated from the discharge portion 12a while continuing the energization, thereby completing the closing operation. According to this configuration, during the closing operation, after the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12, the metal surfaces of which are partially melted by arc discharge, come into contact with each other, they are separated again before being cooled and turned on. end the action. Therefore, it is possible to suppress the occurrence of welded portions in the discharge portions 11a and 12a. Therefore, it is possible to suppress the formation of sharp protrusions on the surfaces of the discharge portions 11a and 12a when the welded portions are separated. As a result, it is possible to prevent the generation of an electric field concentration portion due to a sharp projection in a stationary state in which the electrodes are opened and a high voltage is applied. Therefore, it is possible to provide the high-speed feeder 1 capable of maintaining the insulation performance between the electrodes and suppressing the deterioration of the withstand voltage performance.
 また、高速投入器1は、投入動作において駆動電極11の放電部11aが対向電極12の放電部12aから開離しつつ、放電部11a,12a間にアーク放電を発生させる。この構成によれば、仮に放電部11a,12aの接触時に溶着部が生じ、放電部11a,12aの開離時に鋭利な突起が形成された場合でも、アーク放電によって鋭利な突起を蒸発させ、除去することができる。これにより、電極間が開き高電圧が印加される定常時において、鋭利な突起による電界集中部の発生を防ぐことができる。したがって、電極間の絶縁性能を維持し、耐電圧性能の低下を抑制できる高速投入器1を提供できる。 In addition, the high-speed feeder 1 generates an arc discharge between the discharge parts 11a and 12a while the discharge part 11a of the driving electrode 11 is separated from the discharge part 12a of the counter electrode 12 in the injection operation. According to this configuration, even if a welded portion is formed when the discharge portions 11a and 12a are brought into contact with each other and a sharp protrusion is formed when the discharge portions 11a and 12a are separated, the sharp protrusion is evaporated and removed by the arc discharge. can do. As a result, it is possible to prevent the generation of an electric field concentration portion due to a sharp projection in a stationary state in which the electrodes are opened and a high voltage is applied. Therefore, it is possible to provide the high-speed feeder 1 capable of maintaining the insulation performance between the electrodes and suppressing the deterioration of the withstand voltage performance.
 駆動部33は、金属製のリング36と、機構箱32に固定されたコイル37と、を持つ電磁反発操作機構であり、リング36に発生させる誘導反発力によって駆動電極11に駆動力を与える。この構成によれば、投入動作時に、油圧やばねの復元力、モータの電磁力等によって駆動する構成よりも短時間で、駆動電極11を対向電極12に接近させ、放電部11a,12a間でアーク放電による導通を開始させることができる。したがって、投入時間が短い高速投入器1を提供できる。 The drive unit 33 is an electromagnetic repulsion operation mechanism having a metal ring 36 and a coil 37 fixed to the mechanism box 32, and applies a driving force to the drive electrode 11 by an induced repulsion generated in the ring 36. According to this configuration, during the closing operation, the drive electrode 11 is brought closer to the counter electrode 12 in a shorter time than the configuration in which the driving is performed by the hydraulic pressure, the restoring force of the spring, the electromagnetic force of the motor, or the like. Conduction by arcing can be initiated. Therefore, it is possible to provide a high-speed feeder 1 with a short feed time.
 駆動側復帰ばね38および対向側復帰ばね55はコイルばねである。この構成によれば、駆動電極11および対向電極12に線形の復帰力を与えることができる。よって、定常時の静止位置における駆動電極11および対向電極12の安定的な保持、および投入動作時における駆動電極11および対向電極12の確実な減速を両立できる。 The drive-side return spring 38 and the opposing-side return spring 55 are coil springs. According to this configuration, a linear restoring force can be applied to the drive electrode 11 and the counter electrode 12 . Therefore, it is possible to stably hold the drive electrode 11 and the counter electrode 12 at the stationary position in the normal state and to reliably decelerate the drive electrode 11 and the counter electrode 12 during the closing operation.
 高速投入器1は、駆動側制動部35を持つ。駆動側制動部35は、投入動作時に、対向側復帰ばね55の復帰力によって駆動部33の駆動力の出力方向とは反対方向に変位する駆動電極11に接触し、駆動電極11を減速させる。この構成によれば、定常時の静止位置に向けて変位する駆動電極11の運動量を減衰させることができる。したがって、駆動電極11の停止時の衝撃力による機器の損傷を抑制できる。 The high-speed feeder 1 has a driving-side braking section 35. The driving-side braking portion 35 contacts the driving electrode 11 displaced in the direction opposite to the output direction of the driving force of the driving portion 33 by the restoring force of the opposing-side restoring spring 55 during the closing operation, and decelerates the driving electrode 11 . According to this configuration, it is possible to attenuate the momentum of the drive electrode 11 that displaces toward the stationary position in the normal state. Therefore, it is possible to suppress the damage to the device due to the impact force when the drive electrode 11 is stopped.
 高速投入器1は、対向側制動部54を持つ。対向側制動部54は、投入動作時に、駆動電極11に接触して駆動部33の駆動力によって駆動電極11と共に変位する対向電極12に接触し、対向電極12を減速させる。この構成によれば、投入動作時における反転位置に向けて変位する駆動電極11および対向電極12の運動量を減衰させることができる。したがって、駆動電極11および対向電極12の反転時の衝撃力による機器の損傷を抑制できる。 The high-speed feeder 1 has an opposing braking portion 54. The counter-side braking portion 54 contacts the counter electrode 12 displaced together with the drive electrode 11 by the driving force of the drive portion 33 in contact with the drive electrode 11 during the closing operation, and decelerates the counter electrode 12 . According to this configuration, it is possible to attenuate the momentum of the drive electrode 11 and the counter electrode 12 that are displaced toward the reverse position during the closing operation. Therefore, it is possible to suppress the damage to the device due to the impact force when the drive electrode 11 and the counter electrode 12 are reversed.
 高速投入器1は、絶縁ガスが封入された圧力容器13を持つ。圧力容器13は、駆動電極11および対向電極12の接触部を収容している。駆動電極11および対向電極12それぞれの一部は、圧力容器13の気密を保ちつつ圧力容器13の外部に延出している。この構成によれば、駆動電極11および対向電極12それぞれに連係された可動部を圧力容器13の外側に配置できる。これにより、高速投入器1の保守作業等の作業性を向上させることができる。また、駆動電極および対向電極のうち少なくともいずれか一方の全体が圧力容器に収容された構成と比較して、圧力容器13を小型化できる。よって、絶縁ガスの使用量を削減できる。 The high-speed injector 1 has a pressure vessel 13 filled with insulating gas. The pressure vessel 13 accommodates contact portions of the drive electrode 11 and the counter electrode 12 . Part of each of the drive electrode 11 and the counter electrode 12 extends outside the pressure vessel 13 while keeping the pressure vessel 13 airtight. According to this configuration, the movable portion linked to each of the drive electrode 11 and the counter electrode 12 can be arranged outside the pressure vessel 13 . Thereby, workability|operativity, such as maintenance work of the high-speed feeder 1, can be improved. Moreover, the pressure vessel 13 can be miniaturized compared to a configuration in which at least one of the drive electrode and the counter electrode is wholly housed in the pressure vessel. Therefore, the amount of insulating gas used can be reduced.
 駆動電極11の放電部11a、および対向電極12の放電部12aは、耐アーク性を有する金属材料により形成されている。この構成によれば、投入動作時に、アーク放電による放電部11a,12aの表面の融解を抑制できる。このため、放電部11a,12aに溶着部が発生することを抑制できる。よって、溶着部を引き離した際に生じる鋭利な突起が放電部11a,12aの表面に形成されることを抑制できる。これにより、電極間が開き高電圧が印加される定常時において、鋭利な突起による電界集中部の発生を防ぐことができる。したがって、電極間の絶縁性能を維持し、耐電圧性能の低下を抑制できる高速投入器1を提供できる。 The discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 are made of a metal material having arc resistance. According to this configuration, it is possible to suppress melting of the surfaces of the discharge portions 11a and 12a due to arc discharge during the closing operation. Therefore, it is possible to suppress the occurrence of welded portions in the discharge portions 11a and 12a. Therefore, it is possible to suppress the formation of sharp protrusions on the surfaces of the discharge portions 11a and 12a when the welded portions are separated. As a result, it is possible to prevent the generation of an electric field concentration portion due to a sharp projection in a stationary state in which the electrodes are opened and a high voltage is applied. Therefore, it is possible to provide the high-speed feeder 1 capable of maintaining the insulation performance between the electrodes and suppressing the deterioration of the withstand voltage performance.
 (第2の実施形態)
 図5から図8は、第2の実施形態の高速投入器を示す断面図である。図5は、非通電の遮断状態にある定常時の高速投入器101を示している。図6から図8は、通電可能な投入状態にある高速投入器101の投入動作時の動作過程を示している。
(Second embodiment)
5 to 8 are cross-sectional views showing the high-speed injector of the second embodiment. FIG. 5 shows the high-speed closing device 101 in steady state in a non-energized, cut-off state. FIGS. 6 to 8 show the operation process during the closing operation of the high-speed inserter 101 in the closing state in which electricity can be supplied.
 図5に示す第2の実施形態は、駆動電極11および対向電極12の接触部が真空容器112に収容されている点で、第1の実施形態とは異なる。なお、以下で説明する以外の構成は、第1の実施形態と同様である。 The second embodiment shown in FIG. 5 differs from the first embodiment in that the contact portions of the drive electrode 11 and the counter electrode 12 are accommodated in the vacuum container 112 . Configurations other than those described below are the same as those of the first embodiment.
 図5に示すように、高速投入器101は、第1の実施形態の接点部2に代えて接点部102を備える。接点部102は、駆動機構部3および衝撃緩衝部4に接続されている。接点部102は、駆動電極11と、対向電極12と、圧力容器111と、真空容器112と、を備える。 As shown in FIG. 5, the high-speed feeder 101 includes a contact portion 102 instead of the contact portion 2 of the first embodiment. The contact portion 102 is connected to the drive mechanism portion 3 and the impact buffer portion 4 . The contact portion 102 includes a drive electrode 11 , a counter electrode 12 , a pressure vessel 111 and a vacuum vessel 112 .
 圧力容器111の構成は、基本的に第1の実施形態の圧力容器13と同様である。圧力容器111と駆動電極11および対向電極12との関係も、第1の実施形態と同様である。第1の実施形態の圧力容器13と異なる点として、本実施形態の圧力容器111の内部には、真空容器112が封入されている。圧力容器111は、第1の実施形態と同様に絶縁ガスを封入している。絶縁ガスの圧力は、真空容器112内部との圧力差を低減するため、大気圧から大気圧の3倍程度が好適である。 The configuration of the pressure vessel 111 is basically the same as the pressure vessel 13 of the first embodiment. The relationship between the pressure vessel 111 and the drive electrode 11 and counter electrode 12 is also the same as in the first embodiment. A different point from the pressure vessel 13 of the first embodiment is that a vacuum vessel 112 is sealed inside the pressure vessel 111 of the present embodiment. The pressure vessel 111 encloses an insulating gas as in the first embodiment. The pressure of the insulating gas is preferably atmospheric pressure to about three times the atmospheric pressure in order to reduce the pressure difference with the inside of the vacuum vessel 112 .
 真空容器112の内部は、真空状態に保持されている。真空容器112は、絶縁筒113と、第1端板114と、第2端板115と、第1ベローズ116と、第2ベローズ117と、を備える。 The inside of the vacuum container 112 is kept in a vacuum state. The vacuum vessel 112 includes an insulating cylinder 113 , a first end plate 114 , a second end plate 115 , a first bellows 116 and a second bellows 117 .
 絶縁筒113は、円筒状の絶縁物容器である。第1端板114および第2端板115は、金属製である。第1端板114および第2端板115は、それぞれ円板状の板材である。第1端板114は、絶縁筒113の第1端の開口を閉塞するように絶縁筒113に気密に接合されている。第2端板115は、絶縁筒113の第2端の開口を閉塞するように絶縁筒113に気密に接合されている。第1端板114および第2端板115それぞれの中心部には、貫通孔が設けられている。第1端板114の貫通孔には、第1ベローズ116の第1端が気密に接合されている。第2端板115の貫通孔には、第2ベローズ117の第1端が気密に接合されている。第1ベローズ116および第2ベローズ117は、軸方向に伸縮可能な蛇腹構造の金属菅であり、薄板で形成されている。真空容器112は、第2端板115が支持部118を介して圧力容器111の第2フタ16に接続されることで圧力容器111に固定されている。 The insulating cylinder 113 is a cylindrical insulator container. The first end plate 114 and the second end plate 115 are made of metal. Each of the first end plate 114 and the second end plate 115 is a disk-shaped plate material. The first end plate 114 is airtightly joined to the insulating tube 113 so as to close the opening at the first end of the insulating tube 113 . The second end plate 115 is airtightly joined to the insulating tube 113 so as to block the opening of the second end of the insulating tube 113 . A through hole is provided in the center of each of the first end plate 114 and the second end plate 115 . A first end of a first bellows 116 is airtightly joined to the through hole of the first end plate 114 . A first end of a second bellows 117 is airtightly joined to the through hole of the second end plate 115 . The first bellows 116 and the second bellows 117 are bellows-structured metal tubes that can be expanded and contracted in the axial direction, and are made of thin plates. The vacuum vessel 112 is fixed to the pressure vessel 111 by connecting the second end plate 115 to the second lid 16 of the pressure vessel 111 via the support portion 118 .
 真空容器112は、駆動電極11および対向電極12の接触部を収容している。真空容器112は、駆動電極11および対向電極12の放電部11a、12aの全体と、駆動電極11および対向電極12の通電軸11b,12bそれぞれの一部と、を封入している。通電軸11bは、第1端板114の貫通孔を貫通し、真空容器112の外部に延出している。通電軸12bは、第2端板115の貫通孔を貫通し、真空容器112の外部に延出している。 The vacuum container 112 accommodates contact portions of the drive electrode 11 and the counter electrode 12 . The vacuum vessel 112 encloses the entire discharge portions 11a and 12a of the drive electrode 11 and the counter electrode 12 and part of the current-carrying shafts 11b and 12b of the drive electrode 11 and the counter electrode 12, respectively. The conducting shaft 11 b passes through the through hole of the first end plate 114 and extends outside the vacuum vessel 112 . The conducting shaft 12 b passes through the through hole of the second end plate 115 and extends outside the vacuum vessel 112 .
 駆動電極11の通電軸11bは、第1ベローズ116の第2端に気密に接合されている。通電軸11bは、真空容器112の気密を保ちつつ、軸方向に移動可能となっている。対向電極12の通電軸12bは、第2ベローズ117の第2端に気密に接合されている。通電軸12bは、真空容器112の気密を保ちつつ、軸方向に移動可能となっている。 The conducting shaft 11 b of the drive electrode 11 is airtightly joined to the second end of the first bellows 116 . The conducting shaft 11b is movable in the axial direction while keeping the vacuum vessel 112 airtight. The conducting shaft 12 b of the counter electrode 12 is airtightly joined to the second end of the second bellows 117 . The conducting shaft 12b is movable in the axial direction while keeping the vacuum vessel 112 airtight.
 圧力容器111の内部には、第1の実施形態のシールド19,20に代えて、金属製の第1集電フランジ119および第2集電フランジ120が配置されている。各集電フランジ119,120は、円環状に形成されている。各集電フランジ119,120は、互いに同心状に配置されている。第1集電フランジ119は、第1フタ15に隣接して固定され、第1フタ15と導通している。第2集電フランジ120は、第2フタ16に隣接して固定され、第2フタ16と導通している。駆動電極11は、第1集電フランジ119の内側を貫通している。対向電極12は、第2集電フランジ120の内側を貫通している。駆動電極11の通電軸11bは、第1集電フランジ119の内周に設けられた集電部21に摺接しながら、第1集電フランジ119との導通状態を保ちつつ軸方向に移動可能となっている。対向電極12の通電軸12bは、第2集電フランジ120の内周に設けられた集電部22に摺接しながら、第2集電フランジ120との導通状態を保ちつつ軸方向に移動可能となっている。これにより、駆動電極11は、集電部21を介して第1集電フランジ119、第1フタ15およびフランジ14bと導通している。対向電極12は、集電部22を介して第2集電フランジ120、第2フタ16および第2フランジ14cと導通している。さらに駆動電極11は、第1ベローズ116および第1端板114と導通している。また、対向電極12は、第2ベローズ117、第2端板115および支持部118と導通している。 Inside the pressure vessel 111, instead of the shields 19 and 20 of the first embodiment, a metal first collector flange 119 and a second collector flange 120 are arranged. Each current collecting flange 119, 120 is formed in an annular shape. Each current collecting flange 119, 120 is arranged concentrically with each other. The first collector flange 119 is fixed adjacent to the first lid 15 and electrically connected to the first lid 15 . The second current collecting flange 120 is fixed adjacent to the second lid 16 and electrically connected to the second lid 16 . The drive electrode 11 penetrates the inside of the first collector flange 119 . The counter electrode 12 penetrates the inside of the second collector flange 120 . The current-carrying shaft 11b of the driving electrode 11 is movable in the axial direction while maintaining electrical continuity with the first current collecting flange 119 while slidingly contacting the current collecting portion 21 provided on the inner circumference of the first current collecting flange 119. It's becoming The current-carrying shaft 12b of the counter electrode 12 is movable in the axial direction while being in sliding contact with the current collecting portion 22 provided on the inner circumference of the second current collecting flange 120 while maintaining electrical continuity with the second current collecting flange 120. It's becoming Thus, the drive electrode 11 is electrically connected to the first collector flange 119, the first lid 15 and the flange 14b via the collector 21. As shown in FIG. The counter electrode 12 is electrically connected to the second current collecting flange 120, the second lid 16 and the second flange 14c via the current collecting portion 22. As shown in FIG. Furthermore, the drive electrode 11 is electrically connected to the first bellows 116 and the first end plate 114 . Also, the counter electrode 12 is electrically connected to the second bellows 117 , the second end plate 115 and the support portion 118 .
 駆動電極11の通電軸11bの端部は、圧力容器111の外部で絶縁操作ロッド23に接続されている。駆動電極11は、絶縁操作ロッド23を介して駆動機構部3に接続されている。対向電極12の通電軸12bの端部は、圧力容器111の外部で絶縁操作ロッド24に接続されている。対向電極12は、絶縁操作ロッド24を介して衝撃緩衝部4に接続されている。駆動機構部3および衝撃緩衝部4が絶縁物である絶縁操作ロッド23,24を介して接点部102に接続することで、接点部102および駆動機構部3が電気的に絶縁され、接点部102および衝撃緩衝部4が電気的に絶縁されている。 The end of the conducting shaft 11b of the drive electrode 11 is connected to the insulating operating rod 23 outside the pressure vessel 111. The drive electrode 11 is connected to the drive mechanism section 3 via an insulating operating rod 23 . The end of the conducting shaft 12 b of the counter electrode 12 is connected to the insulating operating rod 24 outside the pressure vessel 111 . The counter electrode 12 is connected to the shock absorbing section 4 via an insulating operating rod 24 . The contact portion 102 and the drive mechanism portion 3 are electrically insulated by connecting the drive mechanism portion 3 and the impact buffer portion 4 to the contact portion 102 via the insulating operation rods 23 and 24, which are insulators. and the shock absorbing portion 4 are electrically insulated.
 本実施形態の高速投入器101は、接点部102の圧力容器111における第1フタ15および第2フタ16を端子として、外部の回路に接続される。駆動電極11と、絶縁操作ロッド23と、駆動軸31と、リング36と、駆動側ばね受け39とは、一体となって動作する駆動側可動部71を形成する。対向電極12と、絶縁操作ロッド24と、対向軸51と、対向側ばね受け56とは、一体となって動作する対向側可動部72を形成する。 The high-speed feeder 101 of this embodiment is connected to an external circuit using the first lid 15 and the second lid 16 of the pressure vessel 111 of the contact portion 102 as terminals. The drive electrode 11, the insulating operating rod 23, the drive shaft 31, the ring 36, and the drive side spring bearing 39 form a drive side movable portion 71 that operates integrally. The opposing electrode 12, the insulating operating rod 24, the opposing shaft 51, and the opposing side spring bearing 56 form an opposing side movable portion 72 that operates integrally.
 高速投入器101が非通電の遮断状態である定常時について説明する。
 図5に示すように、駆動側可動部71は、駆動側ばね受け39が駆動側復帰ばね38によって駆動側ストッパ40に押し付けられた位置で静止している。対向側可動部72は、対向側ばね受け56が対向側復帰ばね55によって対向側ストッパ57に押し付けられた位置で静止している。
A normal state in which the high-speed closing device 101 is in a non-energized and cut-off state will be described.
As shown in FIG. 5 , the drive-side movable portion 71 is stationary at a position where the drive-side spring bearing 39 is pressed against the drive-side stopper 40 by the drive-side return spring 38 . The opposing side movable portion 72 is stationary at a position where the opposing side spring bearing 56 is pressed against the opposing side stopper 57 by the opposing side return spring 55 .
 高速投入器101が、外部の回路に接続されると、端子となる第1フタ15および第2フタ16の間に電圧が印加される。第1フタ15は、駆動電極11と導通して同電位となっている。第2フタ16は、対向電極12と導通して同電位となっている。よって高速投入器101に印加された電圧は、真空容器112の内部で駆動電極11と対向電極12との間に印加されている。 When the high-speed feeder 101 is connected to an external circuit, a voltage is applied between the first lid 15 and the second lid 16 that serve as terminals. The first lid 15 is electrically connected to the drive electrode 11 and has the same potential. The second lid 16 is electrically connected to the counter electrode 12 and has the same potential. Therefore, the voltage applied to the high-speed feeder 101 is applied between the drive electrode 11 and the counter electrode 12 inside the vacuum vessel 112 .
 定常時は、駆動電極11および対向電極12は互いに十分に離れた開路状態であり、駆動電極11および対向電極12付近の電界が真空容器112内部の真空の絶縁破壊電界に比べて十分低くなっている。このため、駆動電極11と対向電極12との間が電気的に絶縁されている。よって高速投入器101は端子間が非導通の遮断状態となっている。 In the normal state, the drive electrode 11 and the counter electrode 12 are sufficiently separated from each other and are in an open circuit state, and the electric field near the drive electrode 11 and the counter electrode 12 is sufficiently lower than the dielectric breakdown electric field of the vacuum inside the vacuum vessel 112 . there is Therefore, the drive electrode 11 and the counter electrode 12 are electrically insulated. Therefore, the high-speed throwing device 101 is in a cutoff state in which the terminals are not electrically connected.
 高速投入器101が非通電の遮断状態である定常時から、通電可能な投入状態に変化し、最終的に定常時の遮断状態に復帰する投入動作について説明する。なお、以下の投入動作の説明では、外部回路に高速投入器101が接続されて、駆動電極11および対向電極12に高電圧が印加された状態を述べる。 A description will be given of the closing operation in which the high-speed closing device 101 changes from a steady state in which it is in a non-energized and cut-off state to a energized closing state and finally returns to the steady cut-off state. In the description of the closing operation below, a state in which the high-speed inserter 101 is connected to the external circuit and a high voltage is applied to the drive electrode 11 and the counter electrode 12 will be described.
 高速投入器101の投入動作は、基本的に第1の実施形態の高速投入器1における投入動作と同様である。高速投入器101の投入動作も、図5に示す定常時にて、コイル37に図示しない励磁回路からコイル電流を印加し、リング36に駆動力を発生させることで開始する。 The loading operation of the high-speed loading device 101 is basically the same as the loading operation of the high-speed loading device 1 of the first embodiment. The closing operation of the high-speed closing device 101 is also started by applying a coil current to the coil 37 from an excitation circuit (not shown) to generate driving force in the ring 36 at the steady state shown in FIG.
 投入動作時の高速投入器101は、図5の状態から図6の状態および図7の状態を経て、図8の状態に順に動作後、図8の状態から図7の状態および図6の状態を経て、図5の状態に順に動作し、最終的に図5の状態に復帰する。これは、第1の実施形態において、投入動作時の高速投入器1が、図1の状態から図4の状態に動作後、図4の状態から図1の状態に動作し、最終的に図1の状態に復帰する一連の動作に対応している。 5, through the states of FIGS. 6 and 7, to the state of FIG. 8, and then from the state of FIG. 8 to the state of FIG. 5, and finally returns to the state shown in FIG. This is because, in the first embodiment, the high-speed thrower 1 during the throwing operation moves from the state shown in FIG. 1 to the state shown in FIG. 4, then moves from the state shown in FIG. 4 to the state shown in FIG. It corresponds to a series of operations to return to the state of 1.
 投入動作時の高速投入器101が、第1の実施形態の高速投入器1と異なる点は、アーク放電が真空容器112の内部で発生することである。
 高速投入器101において、駆動側可動部71が変位して駆動電極11および対向電極12が互いに接近すると、駆動電極11および対向電極12付近の電界が高くなる。駆動電極11および対向電極12付近の電界が真空容器112内部の真空の絶縁破壊電界に比べて高くなることで、駆動電極11の放電部11aと対向電極12の放電部12aとの間で絶縁破壊が生じる。図6に示す位置まで駆動電極11が対向電極12に接近すると、絶縁破壊によって駆動電極11の放電部11aと対向電極12の放電部12aとの間でアーク放電73が発生する。
The high-speed feeder 101 during the feeding operation differs from the high-speed feeder 1 of the first embodiment in that arc discharge occurs inside the vacuum vessel 112 .
In high-speed feeder 101, when drive-side movable portion 71 is displaced and drive electrode 11 and counter electrode 12 approach each other, the electric field near drive electrode 11 and counter electrode 12 increases. Since the electric field near the drive electrode 11 and the counter electrode 12 is higher than the dielectric breakdown electric field in the vacuum inside the vacuum vessel 112, dielectric breakdown occurs between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12. occurs. When the drive electrode 11 approaches the counter electrode 12 to the position shown in FIG. 6, an arc discharge 73 is generated between the discharge portion 11a of the drive electrode 11 and the discharge portion 12a of the counter electrode 12 due to dielectric breakdown.
 以上に説明したように、本実施形態の高速投入器101によれば、駆動電極11および対向電極12が第1の実施形態と同様に動作するので、第1の実施形態と同様の作用効果を奏することができる。 As described above, according to the high-speed feeder 101 of the present embodiment, the drive electrode 11 and the counter electrode 12 operate in the same manner as in the first embodiment, so that the same effects as in the first embodiment can be obtained. can play.
 さらに、本実施形態では、真空容器112が駆動電極11および対向電極12の接触部を収容している。この構成によれば、高速投入器101の投入動作時に、アーク放電が真空容器112の内部で発生する。これにより、絶縁ガス雰囲気下でのアーク放電と異なり、アーク放電による絶縁ガスの分解を抑制することができる。これにより、電極間が開き高電圧が印加される定常時において、絶縁ガスの絶縁性能低下による意図しない絶縁破壊の発生を防ぐことが可能であり、電極間の絶縁性能を維持可能な高速投入器101を提供できる。 Furthermore, in this embodiment, the vacuum vessel 112 accommodates the contact portions of the drive electrode 11 and the counter electrode 12 . According to this configuration, arc discharge occurs inside the vacuum vessel 112 during the closing operation of the high-speed closing device 101 . As a result, unlike arc discharge in an atmosphere of insulating gas, decomposition of the insulating gas due to arc discharge can be suppressed. As a result, it is possible to prevent unintended dielectric breakdown due to deterioration of the insulation performance of the insulating gas during normal operation when the electrodes are open and a high voltage is applied, and the high-speed feeder that can maintain the insulation performance between the electrodes. 101 can be provided.
 (第3の実施形態)
 図9から図12は、第3の実施形態の高速投入器を示す断面図である。図9は、非通電の遮断状態にある定常時の高速投入器201を示している。図10から図12は、通電可能な投入状態にある高速投入器201の投入動作時の動作過程を示している。
(Third embodiment)
9 to 12 are cross-sectional views showing a high-speed feeder of the third embodiment. FIG. 9 shows the fast closing device 201 in steady state in a de-energized, cut-off state. FIGS. 10 to 12 show the operation process during the closing operation of the high-speed inserter 201 in the closing state in which electricity can be supplied.
 図9に示す第3の実施形態は、衝撃緩衝部204が真空容器212に収容されている点で、第2の実施形態とは異なる。なお、以下で説明する以外の構成は、第2の実施形態と同様である。 The third embodiment shown in FIG. 9 differs from the second embodiment in that the impact buffering section 204 is housed in a vacuum vessel 212. Configurations other than those described below are the same as those of the second embodiment.
 図9に示すように、高速投入器201は、第2の実施形態の接点部102および衝撃緩衝部4に代えて、接点部202および衝撃緩衝部204を備える。 As shown in FIG. 9, a high-speed feeder 201 includes a contact portion 202 and a shock buffering portion 204 instead of the contact portion 102 and the shock buffering portion 4 of the second embodiment.
 接点部202について説明する。
 接点部202は、駆動機構部3および衝撃緩衝部204に接続されている。接点部202は、第2の実施形態の圧力容器111および真空容器112に代えて、圧力容器211および真空容器212を備える。
The contact portion 202 will be described.
The contact portion 202 is connected to the drive mechanism portion 3 and the impact buffer portion 204 . The contact portion 202 includes a pressure vessel 211 and a vacuum vessel 212 instead of the pressure vessel 111 and the vacuum vessel 112 of the second embodiment.
 圧力容器211は、第2の実施形態の第2フタ16に代えて、第2フタ213を備える。第2フタ213は、貫通孔およびシール部が設けられていない点で第2フタ16と異なる。第2フタ213は、絶縁筒14の開口を完全に閉塞している。圧力容器211と駆動電極11との関係は、第2の実施形態と同様である。圧力容器211は、対向電極12の全体を収容している。本実施形態の圧力容器211の内部には、真空容器212が封入されている。圧力容器211は、第2の実施形態の圧力容器111と同様に絶縁ガスを封入している。絶縁ガスの圧力は、真空容器212内部との圧力差を低減するため、大気圧から大気圧の3倍程度が好適である。 The pressure vessel 211 includes a second lid 213 instead of the second lid 16 of the second embodiment. The second lid 213 differs from the second lid 16 in that it does not have a through-hole and a sealing portion. The second lid 213 completely closes the opening of the insulating cylinder 14 . The relationship between the pressure vessel 211 and the drive electrode 11 is the same as in the second embodiment. The pressure vessel 211 accommodates the entire counter electrode 12 . A vacuum vessel 212 is sealed inside the pressure vessel 211 of this embodiment. The pressure vessel 211 encloses insulating gas in the same manner as the pressure vessel 111 of the second embodiment. The pressure of the insulating gas is preferably atmospheric pressure to about three times the atmospheric pressure in order to reduce the pressure difference with the inside of the vacuum vessel 212 .
 真空容器212は、内部が真空状態に保持されている。真空容器212は、第2の実施形態の第2端板115に代えて、第2端板214を備える。第2端板214は、絶縁筒113の第2端の開口を閉塞するように絶縁筒113に気密に接合されている。第2端板214は、貫通孔が設けられておらず、ベローズが固定されていない点で第2端板115と異なる。第2端板214は、圧力容器211の第2フタ213に隣接して固定され、第2フタ213と導通している。 The inside of the vacuum container 212 is kept in a vacuum state. The vacuum vessel 212 includes a second end plate 214 instead of the second end plate 115 of the second embodiment. The second end plate 214 is airtightly joined to the insulating tube 113 so as to block the opening of the second end of the insulating tube 113 . The second end plate 214 differs from the second end plate 115 in that no through holes are provided and no bellows are fixed. The second end plate 214 is fixed adjacent to the second lid 213 of the pressure vessel 211 and communicates with the second lid 213 .
 真空容器212は、駆動電極11および対向電極12の接触部を収容している。真空容器212は、駆動電極11の放電部11aの全体と、駆動電極11の通電軸11bの一部と、対向電極12の全体と、衝撃緩衝部204と、を封入している。対向電極12の通電軸12bは、真空容器212の内部で衝撃緩衝部204に接続されている。衝撃緩衝部204については後述する。 The vacuum vessel 212 accommodates contact portions of the drive electrode 11 and the counter electrode 12 . The vacuum vessel 212 encloses the entire discharge portion 11 a of the drive electrode 11 , a portion of the current-carrying shaft 11 b of the drive electrode 11 , the entire counter electrode 12 , and the impact buffer portion 204 . The current-carrying shaft 12 b of the counter electrode 12 is connected to the impact buffering section 204 inside the vacuum vessel 212 . The impact buffering portion 204 will be described later.
 圧力容器211の内部には、第2の実施形態の圧力容器111の内部に配置されていた集電フランジ120が配置されていない。第2の実施形態において集電フランジ120に設けられていた集電部22は、衝撃緩衝部204に配置されている。 Inside the pressure vessel 211, the collector flange 120 arranged inside the pressure vessel 111 of the second embodiment is not arranged. The current collecting portion 22 provided on the current collecting flange 120 in the second embodiment is arranged on the shock absorbing portion 204 .
 衝撃緩衝部204について説明する。
 衝撃緩衝部204は、真空容器212に収容されている。衝撃緩衝部204は、真空容器212の第2端板214に固定されている。衝撃緩衝部204は、上記他の実施形態の対向軸51、機構箱52および対向側制動部54を備えておらず、かつ位置保持部53に代えて位置保持部221を備える。
The impact buffering portion 204 will be described.
The shock absorbing portion 204 is housed in a vacuum container 212 . The shock buffering part 204 is fixed to the second end plate 214 of the vacuum vessel 212 . The impact buffering section 204 does not include the opposing shaft 51, the mechanism box 52, and the opposing side braking section 54 of the above other embodiments, and includes a position holding section 221 in place of the position holding section 53. FIG.
 位置保持部221は、上記他の実施形態の対向側ストッパ57およびベース58に代えて、対向側ストッパ222およびベース223を備える。また、本実施形態では、対向側ばね受け56に対向電極12の通電軸12bが直接結合されている。ベース223は、対向側ばね受け56に対して、接点部202側とは反対側に配置されている。ベース223は、第2端板214に隣接して固定されている。ベース223は、第2端板214と導通している。ベース223には、対向側ストッパ222が固定されている。対向側ストッパ222は、対向側ばね受け56に対して接点部202側に配置されている。対向側ストッパ222は、対向電極12を囲うように配置されている。対向側ストッパ222の内周には、集電部22が設けられている。対向電極12の通電軸12bは、集電部22に摺接しながら、衝撃緩衝部204との導通状態を保ちつつ軸方向に移動可能となっている。これにより、対向電極12は、集電部22を介して衝撃緩衝部204、第2端板214、第2フタ213および第2フランジ14cと導通している。 The position holding portion 221 includes an opposing side stopper 222 and a base 223 instead of the opposing side stopper 57 and the base 58 of the above other embodiments. Further, in the present embodiment, the conducting shaft 12b of the opposing electrode 12 is directly coupled to the opposing side spring bearing 56. As shown in FIG. The base 223 is arranged on the side opposite to the contact portion 202 side with respect to the opposing side spring bearing 56 . A base 223 is secured adjacent to the second end plate 214 . The base 223 is in electrical communication with the second end plate 214 . An opposing side stopper 222 is fixed to the base 223 . The opposing side stopper 222 is arranged on the contact portion 202 side with respect to the opposing side spring bearing 56 . The counter-side stopper 222 is arranged so as to surround the counter electrode 12 . A current collecting portion 22 is provided on the inner periphery of the opposing side stopper 222 . The current-carrying shaft 12b of the counter electrode 12 is movable in the axial direction while being in slidable contact with the current collecting portion 22 and maintaining electrical connection with the impact buffering portion 204 . Thus, the counter electrode 12 is electrically connected to the impact buffering portion 204, the second end plate 214, the second lid 213 and the second flange 14c via the collector portion 22. As shown in FIG.
 本実施形態の高速投入器201は、接点部202の圧力容器211における第1フタ15および第2フタ213を端子として、外部の回路に接続される。駆動電極11と、絶縁操作ロッド23と、駆動軸31と、リング36と、駆動側ばね受け39とは、一体となって動作する駆動側可動部71を形成する。対向電極12と、対向側ばね受け56とは、一体となって動作する対向側可動部272を形成する。 The high-speed feeder 201 of this embodiment is connected to an external circuit using the first lid 15 and the second lid 213 of the pressure vessel 211 of the contact portion 202 as terminals. The drive electrode 11, the insulating operating rod 23, the drive shaft 31, the ring 36, and the drive side spring bearing 39 form a drive side movable portion 71 that operates integrally. The opposing electrode 12 and the opposing side spring bearing 56 form an opposing side movable portion 272 that operates integrally.
 高速投入器201が非通電の遮断状態である定常時について説明する。
 図9に示すように、駆動側可動部71は、駆動側ばね受け39が駆動側復帰ばね38によって駆動側ストッパ40に押し付けられた位置で静止している。対向側可動部272は、対向側ばね受け56が対向側復帰ばね55によって対向側ストッパ222に押し付けられた位置で静止している。
A normal state in which the high-speed closing device 201 is in a non-energized and cut-off state will be described.
As shown in FIG. 9 , the drive-side movable portion 71 is stationary at a position where the drive-side spring bearing 39 is pressed against the drive-side stopper 40 by the drive-side return spring 38 . The opposing side movable portion 272 is stationary at a position where the opposing side spring bearing 56 is pressed against the opposing side stopper 222 by the opposing side return spring 55 .
 高速投入器201が、外部の回路に接続されると、端子となる第1フタ15および第2フタ213の間に電圧が印加される。第1フタ15は、駆動電極11と導通して同電位となっている。第2フタ213は、対向電極12と導通して同電位となっている。よって高速投入器201に印加された電圧は、真空容器212の内部で駆動電極11と対向電極12との間に印加されている。 When the high-speed feeder 201 is connected to an external circuit, voltage is applied between the first lid 15 and the second lid 213, which serve as terminals. The first lid 15 is electrically connected to the drive electrode 11 and has the same potential. The second lid 213 is electrically connected to the counter electrode 12 and has the same potential. Therefore, the voltage applied to the high-speed feeder 201 is applied between the drive electrode 11 and the counter electrode 12 inside the vacuum vessel 212 .
 定常時は、駆動電極11と対向電極12が十分に離れた開路状態であり、駆動電極11と対向電極12付近の電界が真空容器212内部の真空の絶縁破壊電界に比べて十分低くなっている。このため、駆動電極11と対向電極12との間が電気的に絶縁されている。よって高速投入器201は端子間が非導通の遮断状態となっている。 In the normal state, the drive electrode 11 and the counter electrode 12 are in an open circuit state with a sufficient distance, and the electric field near the drive electrode 11 and the counter electrode 12 is sufficiently lower than the dielectric breakdown electric field of the vacuum inside the vacuum vessel 212 . . Therefore, the drive electrode 11 and the counter electrode 12 are electrically insulated. Therefore, the high-speed throwing device 201 is in a cutoff state in which the terminals are not electrically connected.
 高速投入器201が非通電の遮断状態である定常時から、通電可能な投入状態に変化し、最終的に定常時の遮断状態に復帰する投入動作について説明する。なお、以下の投入動作の説明では、外部回路に高速投入器201が接続されて、駆動電極11および対向電極12に高電圧が印加された状態を述べる。 A description will be given of the closing operation in which the high-speed closing device 201 changes from a steady state in which it is in a non-energized and cut-off state to a energized closing state and finally returns to the steady cut-off state. In the description of the closing operation below, a state in which the high-speed closing device 201 is connected to the external circuit and a high voltage is applied to the drive electrode 11 and the counter electrode 12 will be described.
 高速投入器201の投入動作は、基本的に第2の実施形態の高速投入器101における投入動作と同様である。高速投入器201の投入動作も、図9に示す定常時にて、コイル37に図示しない励磁回路からコイル電流を印加し、リング36に駆動力を発生させることで開始する。 The input operation of the high-speed input device 201 is basically the same as the input operation of the high-speed input device 101 of the second embodiment. The closing operation of the high-speed closing device 201 is also started by applying a coil current to the coil 37 from an excitation circuit (not shown) to generate driving force in the ring 36 at the steady state shown in FIG.
 投入動作時の高速投入器201は、図9の状態から図10の状態および図11の状態を経て、図12の状態に順に動作後、図12の状態から図11の状態および図10の状態を経て、図9の状態に順に動作し、最終的に図9の状態に復帰する。これは、第2の実施形態において、投入動作時の高速投入器101が、図5の状態から図8の状態に動作後、図8の状態から図5の状態に動作し、最終的に図5の状態に復帰する一連の動作に対応している。 9, through the states of FIGS. 10 and 11, and then to the state of FIG. 12, and then from the state of FIG. After that, the state shown in FIG. 9 is sequentially operated, and finally the state shown in FIG. 9 is restored. This is because, in the second embodiment, the high-speed thrower 101 during the throwing operation moves from the state shown in FIG. 5 to the state shown in FIG. 8, then moves from the state shown in FIG. 8 to the state shown in FIG. It corresponds to a series of operations for returning to the state of 5.
 投入動作時の高速投入器201が、第2の実施形態の高速投入器101と異なる点は、図11の状態から図12の状態に移行する際に、対向側可動部272の対向側ばね受け222が、対向側復帰ばね55から対向側復帰力のみを受けて減速し、停止することである。 The high-speed thrower 201 during the throwing operation differs from the high-speed thrower 101 of the second embodiment in that when the state shown in FIG. 11 shifts to the state shown in FIG. 222 receives only the opposing side return force from the opposing side return spring 55 to decelerate and stop.
 以上に説明したように、本実施形態の高速投入器201によれば、駆動電極11および対向電極12が第1の実施形態と同様に動作するので、第1の実施形態と同様の作用効果を奏することができる。 As described above, according to the high-speed feeder 201 of this embodiment, the drive electrode 11 and the counter electrode 12 operate in the same manner as in the first embodiment, so that the same effects as in the first embodiment can be obtained. can play.
 さらに、本実施形態では、衝撃緩衝部204が真空容器212に収容されている。この構成によれば、対向側可動部272は、上記他の実施形態の対向側可動部72と比べて、絶縁操作ロッド24および対向軸51を備えない分、軽量化を可能とされる。よって投入動作時において、対向側可動部272が駆動側可動部71と接触する際に生じる衝撃力を更に低減することができる。よって駆動電極11と対向電極12との接触時の衝撃力による、機器の損傷を抑制することが可能であり、多数回の操作が可能な高速投入器201を提供できる。 Furthermore, in this embodiment, the impact buffering portion 204 is housed in the vacuum container 212 . According to this configuration, the opposing-side movable portion 272 can be lighter than the opposing-side movable portion 72 of the other embodiment because it does not include the insulating operation rod 24 and the opposing shaft 51 . Therefore, it is possible to further reduce the impact force generated when the opposing-side movable portion 272 contacts the driving-side movable portion 71 during the closing operation. Therefore, it is possible to suppress the damage to the device due to the impact force when the drive electrode 11 and the counter electrode 12 contact each other, and it is possible to provide the high-speed inserter 201 that can be operated many times.
 また、本実施形態によれば、対向電極12の全体が真空容器212に収容されることで、第2の実施形態において対向電極12と接続されていた第2ベローズ117が不要となる。第2の実施形態における対向電極12は、駆動電極11との接触後に急加速するため、対向電極12と接続された第2ベローズ117には大きな機械的負荷が生じ、損傷の原因となる可能性がある。よって本実施形態では第2ベローズ117を排することで、損傷による真空容器212の真空漏れを回避することが可能であり、より多数回の操作が可能な高速投入器201を提供できる。 In addition, according to the present embodiment, since the entire counter electrode 12 is accommodated in the vacuum vessel 212, the second bellows 117 connected to the counter electrode 12 in the second embodiment is no longer necessary. Since the counter electrode 12 in the second embodiment rapidly accelerates after contact with the drive electrode 11, a large mechanical load is generated on the second bellows 117 connected to the counter electrode 12, which may cause damage. There is Therefore, in this embodiment, by removing the second bellows 117, it is possible to avoid the vacuum leakage of the vacuum vessel 212 due to damage, and the high-speed feeder 201 capable of being operated more times can be provided.
 (第4の実施形態)
 図13は、第4の実施形態の高速投入器を示す断面図である。図13は、非通電の遮断状態にある定常時の高速投入器301を示している。
 図13に示す第4の実施形態は、衝撃緩衝部304が真空容器112の外側で圧力容器211に収容されている点で、第3の実施形態とは異なる。なお、以下で説明する以外の構成は、第3の実施形態と同様である。
(Fourth embodiment)
FIG. 13 is a cross-sectional view showing a high-speed feeder of the fourth embodiment. FIG. 13 shows the high-speed closing device 301 in steady state in a de-energized, cut-off state.
The fourth embodiment shown in FIG. 13 differs from the third embodiment in that the impact buffering section 304 is accommodated in the pressure vessel 211 outside the vacuum vessel 112 . Configurations other than those described below are the same as those of the third embodiment.
 図13に示すように、高速投入器301は、第3の実施形態の接点部202および衝撃緩衝部204に代えて、接点部302および衝撃緩衝部304を備える。 As shown in FIG. 13, a high-speed feeder 301 includes a contact portion 302 and a shock buffering portion 304 instead of the contact portion 202 and the shock buffering portion 204 of the third embodiment.
 接点部302について説明する。
 接点部302は、駆動機構部3および衝撃緩衝部304に接続されている。接点部302は、第3の実施形態の真空容器212に代えて、第2の実施形態の真空容器112を備える。真空容器112は、第2端板115が支持部118を介して圧力容器211の第2フタ213に接続されることで圧力容器211に固定されている。第2端板115は、第2フタ213と導通している。
The contact portion 302 will be described.
The contact portion 302 is connected to the drive mechanism portion 3 and the impact buffer portion 304 . The contact portion 302 includes the vacuum vessel 112 of the second embodiment instead of the vacuum vessel 212 of the third embodiment. The vacuum vessel 112 is fixed to the pressure vessel 211 by connecting the second end plate 115 to the second lid 213 of the pressure vessel 211 via the support portion 118 . The second end plate 115 is electrically connected to the second lid 213 .
 衝撃緩衝部304について説明する。
 衝撃緩衝部304の構成は、基本的に第3の実施形態の衝撃緩衝部204と同様である。衝撃緩衝部304は、真空容器112の外側で圧力容器211に収容されている。衝撃緩衝部304は、真空容器112の第2端板115と圧力容器211の第2フタ213との間に配置されている。衝撃緩衝部304は、ベース223が第2フタ213に隣接して固定されていることで、圧力容器211に固定されている。衝撃緩衝部304は、第2フタ213と導通している。
The impact buffering portion 304 will be described.
The configuration of the impact buffering portion 304 is basically the same as the impact buffering portion 204 of the third embodiment. The shock absorbing portion 304 is housed in the pressure vessel 211 outside the vacuum vessel 112 . The impact buffer 304 is arranged between the second end plate 115 of the vacuum vessel 112 and the second lid 213 of the pressure vessel 211 . The shock absorbing part 304 is fixed to the pressure vessel 211 by fixing the base 223 adjacent to the second lid 213 . The impact buffering portion 304 is electrically connected to the second lid 213 .
 本実施形態の高速投入器301は、接点部302の圧力容器211における第1フタ15および第2フタ213を端子として、外部の回路に接続される。駆動電極11と、絶縁操作ロッド23と、駆動軸31と、リング36と、駆動側ばね受け39とは、一体となって動作する駆動側可動部71を形成する。対向電極12と、対向側ばね受け56とは、一体となって動作する対向側可動部272を形成する。なお、高速投入器301の動作は、第3の実施形態の高速投入器201の動作と同様であるため説明を省略する。 The high-speed feeder 301 of this embodiment is connected to an external circuit using the first lid 15 and the second lid 213 of the pressure vessel 211 of the contact portion 302 as terminals. The drive electrode 11, the insulating operating rod 23, the drive shaft 31, the ring 36, and the drive side spring bearing 39 form a drive side movable portion 71 that operates integrally. The opposing electrode 12 and the opposing side spring bearing 56 form an opposing side movable portion 272 that operates integrally. Note that the operation of the high-speed inserter 301 is the same as the operation of the high-speed inserter 201 of the third embodiment, so description thereof will be omitted.
 以上に説明したように、本実施形態の高速投入器301によれば、駆動電極11および対向電極12が第1の実施形態と同様に動作するので、第1の実施形態と同様の作用効果を奏することができる。 As described above, according to the high-speed feeder 301 of the present embodiment, the drive electrode 11 and the counter electrode 12 operate in the same manner as in the first embodiment, so that the same effects as in the first embodiment can be obtained. can play.
 さらに、本実施形態では、衝撃緩衝部304が圧力容器211に収容されている。この構成によれば、対向側可動部272は、第1の実施形態および第2の実施形態の対向側可動部72と比べて、絶縁操作ロッド24および対向軸51を備えない分、軽量化を可能とされる。したがって、第3の実施形態と同様の作用効果を奏することができる。 Furthermore, in this embodiment, the impact buffering portion 304 is housed in the pressure vessel 211 . According to this configuration, the opposing side movable portion 272 is lighter than the opposing side movable portion 72 of the first and second embodiments because it does not include the insulating operation rod 24 and the opposing shaft 51. It is possible. Therefore, it is possible to obtain the same effects as those of the third embodiment.
 また、対向側可動部272の摺動部を真空容器112から排することができるので、真空容器112内の異物の発生を抑制できる。よって、接点部302の保守作業を減らして、高速投入器301の保守作業等の作業性を向上させることができる。 Also, since the sliding portion of the opposing side movable portion 272 can be removed from the vacuum vessel 112, the generation of foreign matter in the vacuum vessel 112 can be suppressed. Therefore, the maintenance work of the contact part 302 can be reduced, and workability|operativity, such as maintenance work of the high-speed feeder 301, can be improved.
 なお、上記実施形態では、駆動機構部3の駆動部33の例として電磁反発操作機構を説明したが、この構成に限定されない。例えば駆動部として、蓄圧した油圧の圧力差を駆動力として用いる油圧操作機構や、蓄勢したコイルばねの力を駆動力として用いるばね操作機構等を適用しても良い。ただし、駆動力の開放に時間を要する点や、駆動電極11と対向電極12との接触後に駆動力を急減させることが困難である点から、電磁反発機構が駆動部として有利である。 In the above embodiment, the electromagnetic repulsion operation mechanism was described as an example of the drive section 33 of the drive mechanism section 3, but the configuration is not limited to this. For example, as the drive unit, a hydraulic operating mechanism that uses a pressure difference of accumulated hydraulic pressure as a driving force, a spring operating mechanism that uses an accumulated force of a coil spring as a driving force, or the like may be applied. However, the electromagnetic repulsion mechanism is advantageous as the driving unit because it takes time to release the driving force and it is difficult to rapidly reduce the driving force after the driving electrode 11 and the counter electrode 12 contact each other.
 また、上記実施形態では、駆動電極11および対向電極12が、絶縁物である絶縁操作ロッド23,24を介して、駆動機構部3および衝撃緩衝部4に接続されているが、この構成に限定されない。駆動電極および対向電極は、駆動機構部および衝撃緩衝部に直接接続され、電気的に導通していても良い。 In the above embodiment, the drive electrode 11 and the counter electrode 12 are connected to the drive mechanism section 3 and the impact buffer section 4 via the insulating operation rods 23 and 24, which are insulators. not. The drive electrode and the counter electrode may be directly connected to the drive mechanism section and the impact buffer section and electrically connected.
 また、上記実施形態では、駆動機構部3および衝撃緩衝部4に、駆動側制動部35および対向側制動部54を設けているが、この構成に限定されない。駆動機構部および衝撃緩衝部は、定常時の駆動電極および対向電極の位置を保持し、かつ投入動作時に定常時の状態へ復帰させる力を出力する位置保持部を設けていれば良い。 Further, in the above-described embodiment, the driving side braking portion 35 and the opposing side braking portion 54 are provided in the driving mechanism portion 3 and the impact buffering portion 4, but the configuration is not limited to this. The drive mechanism section and the impact buffer section may be provided with a position holding section that holds the positions of the drive electrode and the counter electrode in the steady state and outputs a force to return them to the state in the steady state during the closing operation.
 また、上記実施形態では、駆動側復帰ばね38および対向側復帰ばね55をコイルばねとしたが、この構成に限定されない。駆動側復帰ばねおよび対向側復帰ばねとして皿ばねや空気ばね等を用いても良い。 Also, in the above embodiment, the drive-side return spring 38 and the opposing-side return spring 55 are coil springs, but the configuration is not limited to this. A disk spring, an air spring, or the like may be used as the drive-side return spring and the opposed-side return spring.
 また、上記実施形態では、駆動側制動部35および対向側制動部54が、作動油の粘性抵抗を利用して減衰力を出力するショックアブソーバであるが、この構成に限定されない。駆動側制動部および対向側制動部は、空気の粘性抵抗を利用した空気ダンパでも良いし、ゴムの減衰機構を利用したゴムダンパでも良い。ただし、押し込み量に対する減衰力の立ち上がり特性を考慮すると、作動油の粘性抵抗を利用したショックアブソーバが制動部として有利である。 In addition, in the above embodiment, the driving side braking portion 35 and the opposing side braking portion 54 are shock absorbers that output damping force using the viscous resistance of hydraulic oil, but are not limited to this configuration. The driving-side braking portion and the opposing-side braking portion may be air dampers utilizing viscous resistance of air, or may be rubber dampers utilizing a rubber damping mechanism. However, considering the rising characteristics of the damping force with respect to the pushing amount, a shock absorber that utilizes the viscous resistance of the hydraulic oil is advantageous as the braking portion.
 また、上記実施形態では、対向側制動部54にショックアブソーバへの押し込み量を制限するストッパ61を設けたが、この構成に限定されない。対向側可動部が、対向側復帰ばねの対向側復帰力、およびショックアブソーバの減衰力の少なくともいずれか一方によって減速されて停止するのであれば、ストッパを設けなくても良い。 In addition, in the above-described embodiment, the stopper 61 that limits the amount of pushing into the shock absorber is provided on the opposite side braking portion 54, but it is not limited to this configuration. If the opposed side movable portion is decelerated and stopped by at least one of the opposed side return force of the opposed side return spring and the damping force of the shock absorber, the stopper may not be provided.
 以上説明した少なくともひとつの実施形態によれば、投入動作時に駆動電極に対して対向電極に接近する方向の駆動力を与える駆動部と、駆動電極に対して対向電極から開離する方向に常に復帰力を与える駆動側付勢部と、定常時に駆動電極と対向電極とが開離した状態で駆動電極の変位を規制する駆動側ストッパと、対向電極に対して駆動電極に接触する方向に常に復帰力を与える対向側付勢部と、定常時に駆動電極と対向電極とが開離した状態で対向電極の変位を規制する対向側ストッパと、を持つので、電極間の溶着から生じた突起による耐電圧性能の低下を抑制できる。 According to at least one of the embodiments described above, the drive unit that applies a driving force to the drive electrode in the direction of approaching the counter electrode during the closing operation, and the drive unit that always returns to the drive electrode in the direction of separating from the counter electrode. A drive-side biasing portion that applies a force, a drive-side stopper that regulates displacement of the drive electrode when the drive electrode and the counter electrode are separated from each other in a steady state, and a counter electrode that always returns to the direction of contact with the drive electrode. Since it has a counter-side urging portion that applies a force and a counter-side stopper that restricts the displacement of the counter electrode in a state where the drive electrode and the counter electrode are separated in a steady state, it is possible to withstand the protrusion caused by the welding between the electrodes. A decrease in voltage performance can be suppressed.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

Claims (13)

  1.  互いに同軸上で開離して対向配置され、かつ互いに接近可能な駆動電極および対向電極を有し、前記駆動電極および前記対向電極の間に外部から電圧が印加される接点部と、
     前記駆動電極に接続されており、投入動作時に前記駆動電極に対して前記対向電極に接近する第1方向の駆動力を与える駆動部、前記駆動電極に対して前記対向電極から開離する第2方向に常に復帰力を与える駆動側付勢部、および定常時に前記駆動電極と前記対向電極とが開離した状態で前記駆動電極の前記第2方向の変位を規制する駆動側ストッパを有する駆動機構部と、
     前記対向電極に接続されており、前記対向電極に対して前記駆動電極に接触する前記第2方向に常に復帰力を与える対向側付勢部、および定常時に前記駆動電極と前記対向電極とが開離した状態で前記対向電極の前記第2方向の変位を規制する対向側ストッパを有する衝撃緩衝部と、
     を備える高速投入器。
    a contact portion having a drive electrode and a counter electrode which are coaxially spaced apart from each other and opposed to each other and which are accessible to each other, and to which a voltage is applied from the outside between the drive electrode and the counter electrode;
    A drive unit connected to the drive electrode and applying a drive force in a first direction to the drive electrode to approach the counter electrode during a closing operation, and a second drive unit to separate the drive electrode from the counter electrode a driving mechanism that has a driving side biasing portion that always applies a restoring force in the direction, and a driving side stopper that restricts displacement of the driving electrode in the second direction in a state in which the driving electrode and the counter electrode are separated in a steady state; Department and
    a counter-side urging portion connected to the counter electrode and always applying a restoring force to the counter electrode in the second direction in which the counter electrode is in contact with the drive electrode; a shock buffering portion having a counter-side stopper that restricts displacement of the counter electrode in the second direction in a separated state;
    high speed injector.
  2.  前記投入動作は、
      前記駆動電極が前記駆動部の駆動力によって前記対向電極に接近して通電を開始する接近ステップと、
      前記駆動電極が前記対向電極に接触して前記対向電極と共に前記第1方向に変位した後、前記駆動側付勢部の復帰力、および前記対向側付勢部の復帰力によって前記対向電極と共に変位方向を前記第2方向に反転する接触ステップと、
      前記対向電極が前記対向側ストッパによって前記第2方向の変位を規制され、前記駆動電極が前記対向電極から開離しつつ、前記駆動電極および前記対向電極の間にアーク放電を発生させる開離ステップと、
     を備える、
     請求項1に記載の高速投入器。
    The closing operation is
    an approaching step in which the driving electrode approaches the counter electrode by the driving force of the driving unit and starts energization;
    After the drive electrode contacts the counter electrode and is displaced in the first direction together with the counter electrode, it is displaced together with the counter electrode by the restoring force of the driving-side biasing portion and the restoring force of the counter-side biasing portion. a contacting step of reversing direction to said second direction;
    a separating step of generating an arc discharge between the drive electrode and the counter electrode while the counter electrode is restrained from being displaced in the second direction by the counter side stopper and the drive electrode is separated from the counter electrode; ,
    comprising
    A rapid dosing device according to claim 1.
  3.  前記駆動部は、
      前記駆動電極に接続された良導体の反発体と、
      前記反発体と対向配置されたコイルと、
     を備え、
     前記駆動部が前記駆動電極に与える駆動力は、前記コイルに電流を印加することで前記反発体に発生する誘導反発力である、
     請求項1または請求項2に記載の高速投入器。
    The drive unit
    a good conductor repulsive body connected to the drive electrode;
    a coil facing the repulsive body;
    with
    The driving force applied to the driving electrode by the driving unit is an induced repulsive force generated in the repulsive body by applying a current to the coil.
    3. A high-speed feeder according to claim 1 or claim 2.
  4.  前記駆動側付勢部および前記対向側付勢部のうち少なくともいずれか一方はコイルばねである、
     請求項1から請求項3のいずれか1項に記載の高速投入器。
    At least one of the driving-side biasing portion and the opposing-side biasing portion is a coil spring,
    A high-speed feeder according to any one of claims 1 to 3.
  5.  前記投入動作時に、前記対向側付勢部の復帰力によって前記第2方向に変位する前記駆動電極に接触して前記駆動電極を減速させる駆動側制動部をさらに備える請求項1から請求項4のいずれか1項に記載の高速投入器。 5. The apparatus according to any one of claims 1 to 4, further comprising a drive-side braking portion that contacts the drive electrode displaced in the second direction by a restoring force of the opposing-side biasing portion to decelerate the drive electrode during the closing operation. A high-speed dosing device according to any one of claims 1 to 3.
  6.  前記投入動作時に、前記駆動電極に接触して前記駆動部の駆動力によって前記駆動電極と共に前記第1方向に変位する前記対向電極に接触して前記対向電極を減速させる対向側制動部をさらに備える請求項1から請求項5のいずれか1項に記載の高速投入器。 It further comprises a counter-side braking unit that contacts the counter electrode displaced in the first direction together with the drive electrode by the driving force of the driving unit and decelerates the counter electrode during the closing operation. A high-speed feeder according to any one of claims 1 to 5.
  7.  前記駆動電極および前記対向電極の接触部を収容し、絶縁ガスが封入された圧力容器をさらに備え、
     前記駆動電極および前記対向電極それぞれの一部は、前記圧力容器の気密を保ちつつ前記圧力容器の外部に延出している、
     請求項1から請求項6のいずれか1項に記載の高速投入器。
    further comprising a pressure vessel containing contact portions of the drive electrode and the counter electrode and containing an insulating gas;
    A part of each of the drive electrode and the counter electrode extends to the outside of the pressure vessel while keeping the pressure vessel airtight.
    A high-speed dosing device according to any one of claims 1 to 6.
  8.  前記絶縁ガスは、六フッ化硫黄ガス、窒素、二酸化炭素、酸素および空気のうち少なくともいずれか1つにより構成されている、
     請求項7に記載の高速投入器。
    The insulating gas is composed of at least one of sulfur hexafluoride gas, nitrogen, carbon dioxide, oxygen and air,
    8. A rapid dosing device according to claim 7.
  9.  前記衝撃緩衝部は、前記圧力容器に収容されている、
     請求項7または請求項8に記載の高速投入器。
    The shock buffering part is housed in the pressure vessel,
    9. A high-speed feeder according to claim 7 or claim 8.
  10.  前記駆動電極および前記対向電極の接触部を収容する真空容器をさらに備え、
     前記駆動電極の一部は、前記真空容器の気密を保ちつつ前記真空容器の外部に延出している、
     請求項1から請求項9のいずれか1項に記載の高速投入器。
    further comprising a vacuum vessel that accommodates contact portions of the drive electrode and the counter electrode;
    A part of the drive electrode extends outside the vacuum vessel while keeping the vacuum vessel airtight.
    A high speed dosing device according to any one of claims 1 to 9.
  11.  前記衝撃緩衝部は、前記真空容器に収容されている、
     請求項10に記載の高速投入器。
    The shock buffering part is housed in the vacuum vessel,
    11. A rapid dosing device according to claim 10.
  12.  前記駆動電極および前記対向電極における少なくとも一部は、耐アーク性を有する金属材料により形成されている、
     請求項1から請求項11のいずれか1項に記載の高速投入器。
    At least part of the drive electrode and the counter electrode is made of a metal material having arc resistance,
    A rapid dosing device as claimed in any one of claims 1 to 11.
  13.  前記金属材料は、銅タングステン合金または銅クロム合金である、
     請求項12に記載の高速投入器。
    The metal material is a copper-tungsten alloy or a copper-chromium alloy,
    13. A rapid dosing device according to claim 12.
PCT/JP2021/002455 2021-01-25 2021-01-25 High-speed input device WO2022157978A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/002455 WO2022157978A1 (en) 2021-01-25 2021-01-25 High-speed input device
JP2022576940A JP7443576B2 (en) 2021-01-25 2021-01-25 high speed dosing device
EP21920132.4A EP4283648A1 (en) 2021-01-25 2021-01-25 High-speed input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002455 WO2022157978A1 (en) 2021-01-25 2021-01-25 High-speed input device

Publications (1)

Publication Number Publication Date
WO2022157978A1 true WO2022157978A1 (en) 2022-07-28

Family

ID=82548616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002455 WO2022157978A1 (en) 2021-01-25 2021-01-25 High-speed input device

Country Status (3)

Country Link
EP (1) EP4283648A1 (en)
JP (1) JP7443576B2 (en)
WO (1) WO2022157978A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121653U (en) * 1976-03-12 1977-09-16
JPS55163724A (en) 1979-06-07 1980-12-20 Shizuki Electric Permanent magnet drive type rotary arc discharge switch
JPS577127U (en) 1980-06-14 1982-01-14
JPS6044932A (en) * 1983-08-18 1985-03-11 三菱電機株式会社 Vacuum breaker
JPH05190063A (en) * 1992-01-17 1993-07-30 Toshiba Corp Vacuum circuit-breaker
JP2019186162A (en) 2018-04-17 2019-10-24 株式会社日立産機システム Electromagnetic operation device for switch, and high speed input device, vacuum circuit breaker, and switchgear using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051735A1 (en) 2006-10-30 2008-05-08 Merck Patent Gmbh Printable medium for the etching of oxidic, transparent, conductive layers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121653U (en) * 1976-03-12 1977-09-16
JPS55163724A (en) 1979-06-07 1980-12-20 Shizuki Electric Permanent magnet drive type rotary arc discharge switch
JPS577127U (en) 1980-06-14 1982-01-14
JPS6044932A (en) * 1983-08-18 1985-03-11 三菱電機株式会社 Vacuum breaker
JPH05190063A (en) * 1992-01-17 1993-07-30 Toshiba Corp Vacuum circuit-breaker
JP2019186162A (en) 2018-04-17 2019-10-24 株式会社日立産機システム Electromagnetic operation device for switch, and high speed input device, vacuum circuit breaker, and switchgear using the same

Also Published As

Publication number Publication date
JPWO2022157978A1 (en) 2022-07-28
EP4283648A1 (en) 2023-11-29
JP7443576B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
RU2324995C1 (en) Electromagnetic drive and circuit breaker comprising driver
US9659727B2 (en) Switch
JP6219105B2 (en) Switch
JP2015060778A (en) Switch
WO2015037318A1 (en) Switch
US9627155B2 (en) Electrical switching device with a triple motion contact arrangement
JP2011009156A (en) Gas-blast circuit breaker with injection resistance contact and its injection, the circuit break method
US20130015930A1 (en) Fast switch with non-circular thomson coil
US4272661A (en) High speed vacuum interrupter
JP2008545228A (en) Electrical switchgear and method for operating the electrical switchgear
JP2019506718A (en) Opening / closing rod guide apparatus and method for high voltage power circuit breaker
US11289295B2 (en) Circuit breaker
WO2022157978A1 (en) High-speed input device
JP2019186162A (en) Electromagnetic operation device for switch, and high speed input device, vacuum circuit breaker, and switchgear using the same
WO2014118875A1 (en) Switch device
US20150114933A1 (en) Pushrod assembly for a medium voltage vacuum circuit breaker
US12033813B2 (en) Vacuum switching device for medium- and high-voltage applications
US20230386770A1 (en) Switch
US20220102084A1 (en) Vacuum switching device for medium- and high-voltage applications
JP7347998B2 (en) circuit breaker
CN114097054B (en) Circuit breaker
US11955300B2 (en) Switch
JP2779055B2 (en) Contact device
JP2016115504A (en) Gas circuit breaker
CN116978733A (en) Vacuum circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576940

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021920132

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021920132

Country of ref document: EP

Effective date: 20230825