WO2022156356A1 - 一种用于检测光伏组件的高精度感知定位装置 - Google Patents

一种用于检测光伏组件的高精度感知定位装置 Download PDF

Info

Publication number
WO2022156356A1
WO2022156356A1 PCT/CN2021/133302 CN2021133302W WO2022156356A1 WO 2022156356 A1 WO2022156356 A1 WO 2022156356A1 CN 2021133302 W CN2021133302 W CN 2021133302W WO 2022156356 A1 WO2022156356 A1 WO 2022156356A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
main control
photovoltaic
precision sensing
positioning device
Prior art date
Application number
PCT/CN2021/133302
Other languages
English (en)
French (fr)
Inventor
吴清健
陈应洪
Original Assignee
深圳怪虫机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳怪虫机器人有限公司 filed Critical 深圳怪虫机器人有限公司
Publication of WO2022156356A1 publication Critical patent/WO2022156356A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements

Definitions

  • the invention relates to a high-precision sensing and positioning device for detecting photovoltaic components.
  • the photovoltaic cleaning robot works autonomously, it needs to rely on the detection device to determine the location.
  • the market mainly relies on adding specific sensing devices or fixing devices to the photovoltaic array for positioning, so as to maintain the operation of the machine on the photovoltaic array, such as walking, cleaning or monitoring.
  • Such a sensing method of adding a specific sensing device or a fixed device not only increases the cost of the equipment, but also is easily limited by the size and shape of the photovoltaic array, so that the additional device cannot be installed.
  • the main purpose of the present invention is to provide a high-precision sensing and positioning device for detecting photovoltaic modules, which is simple in structure, convenient to use, safe and reliable.
  • a high-precision sensing and positioning device for detecting photovoltaic components is installed at the front end of a photovoltaic cleaning robot, the photovoltaic cleaning robot includes a body, and the front end of the body is A cleaning device is provided, and a traveling driving device is provided at the bottom end of the fuselage. The photovoltaic cleaning robot travels under the driving of the traveling driving device, and cleans the photovoltaic components through the cleaning device.
  • the front end of the fuselage is installed on the high-precision sensing and positioning device for detecting photovoltaic components, which is used to sense the surface image of the photovoltaic components located at the bottom of the fuselage.
  • the high-precision sensing and positioning device for detecting photovoltaic components includes a casing. , the upper and lower ends of the casing are both open, the upper end of the casing is opened with a cover plate, the casing is provided with a main control drive module, and the main control drive module includes a main control drive board, so
  • the lower surface of the main control driver board is provided with a camera module, the camera module includes a camera, a camera driver board and a first height adjustment nylon column, the camera is fixedly arranged on the lower surface of the camera driver board, and the camera drives
  • the board is arranged below the main control driving board through a plurality of the first height-adjusting nylon columns, a plurality of fill lights are arranged on the lower surface of the main control driving board, and the main control driving board is located in the casing.
  • a heat dissipation fan is fixedly arranged on the upper surface of the plate, and a heat dissipation hole is provided on the cover plate at a position corresponding to the heat dis
  • the fuselage includes a chassis and a connection frame disposed on the chassis, and the chassis is provided with a first positioning hole and a second positioning hole at the left and right positions, and the first positioning hole and the second positioning hole are respectively provided.
  • a travel drive device is arranged in the positioning holes.
  • the connecting frame includes a first connecting plate, a second connecting plate, a third connecting plate and a fourth connecting plate, wherein the first connecting plate is fixedly arranged on the upper surface of the left side of the chassis, and the second connecting plate
  • the plate is fixedly arranged on the upper surface of the front side of the chassis
  • the third connecting plate is fixedly arranged on the upper surface of the right side of the chassis
  • the fourth connecting plate is fixedly arranged on the upper surface of the rear side of the chassis.
  • the front part of the chassis is provided with a mounting hole, and the casing is fixedly arranged in the mounting hole on the chassis by tightening screws.
  • the shape of the casing is square, and a mounting plate is arranged on the upper part of the side wall inside the casing.
  • a through hole is arranged on the board at a position corresponding to the camera, and the camera takes a surface image of the photovoltaic panel at the bottom of the fuselage through the through hole, and a driver or sensor interface is arranged on the main control driver board and a driving power interface, a first positioning hole is provided on the casing at a position corresponding to the driving or sensor interface, and a second positioning hole is provided on the casing at a position corresponding to the driving power interface .
  • the number of the supplementary lights is four, and the four supplementary lights are respectively arranged under the four corners of the main control drive board, and the lower ends of the supplementary lights pass through the positioning holes on the mounting plate and face backward. Extend down.
  • the left end of the mounting plate is fixedly connected with the left side wall inside the casing
  • the right end of the mounting plate is fixedly connected with the right side wall inside the casing
  • the front end of the mounting plate is fixedly connected with the inside of the casing
  • the front sidewall of the mounting plate is fixedly connected
  • the rear end of the mounting plate is fixedly connected with the rear sidewall inside the housing.
  • the mounting plate and the housing are integrally formed, and the main control driving plate is arranged on the mounting plate through the four second height-adjusting nylon posts.
  • the cover plate is disposed on the upper end of the casing through the mounting assembly, and the plane on which the upper surface of the cover plate is located is the same plane as the plane on which the upper end of the casing is located.
  • the mounting assembly includes a first fixing part, a second fixing part, a third fixing part and a fourth fixing part, the first fixing part is arranged on the upper end of the left side wall inside the casing, and the second fixing part the upper end of the front side wall inside the casing, the third fixing part is arranged on the upper end of the right side wall inside the casing, the fourth fixing part is arranged on the front side wall inside the casing On the upper end, the cover plate is disposed on the upper end of the casing through the first fixing part, the second fixing part, the third fixing part and the fourth fixing part.
  • the high-precision sensing and positioning device for detecting photovoltaic components provided in the embodiment of the present invention can improve the automation degree of the photovoltaic cleaning robot, simplify the structure of the sensing component of the photovoltaic cleaning robot, and improve the photovoltaic cleaning
  • the applicability and developability of the robot can achieve the characteristics of the photovoltaic cleaning robot to perceive the surface of the photovoltaic panel, provide a reliable basis for the photovoltaic cleaning robot to automatically perform cleaning operations for decision-making and planning, and drive different external devices according to the instructions to complete the specified tasks. , saving manpower and reducing power station maintenance costs.
  • FIG. 1 is a schematic three-dimensional structural diagram of a photovoltaic cleaning robot provided by an embodiment of the present invention after the casing is removed.
  • FIG. 2 is a schematic top-view structural diagram of the photovoltaic cleaning robot provided by the embodiment of the present invention after the outer casing is removed.
  • FIG. 3 is an enlarged three-dimensional structural schematic diagram of a sensing component provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an enlarged exploded structure of a sensing component provided by an embodiment of the present invention.
  • FIG. 5 is an enlarged and exploded structural schematic diagram of the cooperation between a main control driver board and a camera module provided by an embodiment of the present invention.
  • FIG. 6 is an enlarged cross-sectional structural schematic diagram of a sensing component provided in one direction in one direction according to an embodiment of the present invention.
  • FIG. 7 is an enlarged cross-sectional structural schematic diagram of the sensing assembly provided in another direction in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an enlarged three-dimensional structure of a housing provided in one direction in one direction according to an embodiment of the present invention.
  • FIG. 9 is an enlarged schematic three-dimensional structural diagram of a casing provided in another direction according to an embodiment of the present invention.
  • FIG. 10 is an enlarged schematic three-dimensional structural diagram of a housing provided in a third direction according to an embodiment of the present invention.
  • FIG. 11 is a schematic photograph of the shading of the photovoltaic panel when the cells on the surface of the photovoltaic panel according to the embodiment of the present invention are placed vertically.
  • FIG. 12 is a schematic diagram showing the effect of fitting straight lines on the shading of the photovoltaic panel when the cells on the surface of the photovoltaic panel are vertically placed according to an embodiment of the present invention.
  • FIG. 13 is a schematic photo of the shading of the photovoltaic panel when the photovoltaic cleaning robot provided in the embodiment of the present invention crosses the slit on the photovoltaic panel in the photovoltaic array.
  • FIG. 14 is a schematic diagram of the effect of fitting a straight line on the shading of the photovoltaic panel when the photovoltaic cleaning robot in the photovoltaic array spans the gap on the photovoltaic panel provided by the embodiment of the present invention.
  • FIG. 15 is a schematic photo of the shading of the photovoltaic panel provided by the embodiment of the present invention when the cells on the surface of the photovoltaic panel are placed horizontally.
  • FIG. 16 is a schematic diagram illustrating the effect of fitting straight lines on the shading of the photovoltaic panel when the cells on the surface of the photovoltaic panel are placed horizontally according to an embodiment of the present invention.
  • the terms “arranged”, “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • a high-precision sensing and positioning device for detecting photovoltaic components is installed at the front end of a photovoltaic cleaning robot , the photovoltaic cleaning robot includes a body 100, the front end of the body 100 is provided with a cleaning device 200, and the bottom end of the body 100 is provided with a travel drive device 400, the photovoltaic cleaning robot is in the travel drive device 400 It drives under the driving of the fuselage, and cleans the photovoltaic panels through the cleaning device 200.
  • the high-precision sensing and positioning device for detecting photovoltaic components is installed at the front end of the fuselage 100.
  • the high-precision sensing and positioning device of the component senses the surface image of the photovoltaic module at the bottom of the body 100, that is, the photovoltaic panel.
  • the high-precision sensing and positioning device for detecting the photovoltaic module includes a casing 301, and the Both the upper end and the lower end are open, a cover plate 302 is provided at the position where the upper end of the casing 301 is open, and a main control driving module is arranged in the casing 301, and the main control driving module includes a main control driving board 303.
  • a camera module is provided on the lower surface of the main control driver board 303 , the camera module includes a camera 304 , a camera driver board 305 and a first height-adjusting nylon column 306 , and the camera 304 is fixedly arranged on the lower surface of the camera driver board 305 , the camera driver board 305 is arranged below the main control driver board 303 through a plurality of the first height-adjusting nylon posts 306, and a plurality of fill lights 308 are arranged on the lower surface of the main control driver board 303,
  • the shape of the main control driving board 303 can be square; specifically, a fill light 308 can be set at the four corners of the lower surface of the main control driving board 303, and the fill light 308 can be a 120-degree 850nm infrared LED
  • a cooling fan 309 is fixedly arranged on the upper surface of the main control driving board 303 in the casing 301 , and a cooling hole 310 is provided on the cover plate 302 corresponding to the cooling fan 309
  • the automation degree of the photovoltaic cleaning robot can be improved, the structure of the sensing component of the photovoltaic cleaning robot can be simplified, and the applicability and developability of the photovoltaic cleaning robot can be improved, so as to achieve the characteristics of the photovoltaic cleaning robot to perceive the surface of the photovoltaic panel, which is a photovoltaic cleaning robot.
  • the cleaning robot automatically performs cleaning operations to provide a reliable basis for decision-making and planning, and drives different external devices to complete specified tasks according to instructions, saving manpower and reducing power station maintenance costs.
  • the technical problem to be solved by the present invention is: during the cleaning operation, the photovoltaic cleaning robot senses the surface image of the photovoltaic module, that is, the photovoltaic panel, through a photosensitive device (such as a camera), analyzes and processes the image data according to the decision-making requirements, and finally receives The decision-making control command executes the external device and drives the photovoltaic cleaning robot to realize continuous automatic control operation.
  • a photosensitive device such as a camera
  • the main control driver board 303 may have a built-in system-level chip as the main control, and selectively perform sensor data reading and processing, task decision-making, path planning, System tasks such as device monitoring and interaction.
  • the main control drive board 303 can also have a built-in micro-control unit, which mainly reads part of the sensor data and receives control instructions, and controls the equipment such as the motor and the vacuum pump to perform cleaning operations on the photovoltaic panel.
  • the fuselage 100 includes a chassis 101 and a connection frame disposed on the chassis 101, and the chassis 101 is located on the left side and the right side respectively.
  • a first positioning hole 151 and a second positioning hole 152 are provided, and both the first positioning hole 151 and the second positioning hole 152 are provided with a travel driving device 400 .
  • the connecting frame includes a first connecting plate 102, a second connecting plate 103, a third connecting plate 104 and a fourth connecting plate 105, wherein all the
  • the first connecting plate 102 is fixedly arranged on the upper surface of the left side of the chassis 101
  • the second connecting plate 103 is fixedly arranged on the upper surface of the front side of the chassis 101
  • the third connecting plate 104 is fixedly arranged on the upper surface of the front side of the chassis 101.
  • the fourth connecting plate 105 is fixedly arranged on the upper surface of the rear side of the chassis 101 .
  • the front part of the chassis 101 is provided with a mounting hole (not shown in the figure), and the casing 301 is fixedly arranged on the into the mounting hole on the chassis 101 .
  • a first connecting portion 311 extends outward from the lower left bottom of the outer side wall of the casing 301
  • a second connecting portion 312 extends outward from the bottom of the front side of the outer side wall of the casing 301 .
  • a third connecting portion 313 extends outward from the bottom of the right side of the outer side wall of the casing 301
  • a fourth connecting portion 314 extends outward from the bottom of the front side of the outer side wall of the casing 301
  • the first connecting portion 311 , the second connecting part 312 , the third connecting part 313 and the fourth connecting part 314 are connected end to end to form a whole
  • the first connecting part 311 is provided with a plurality of first mounting convex parts 321 extending outward
  • the The first mounting convex portion 321 is provided with a first fixing hole 331
  • the second connecting portion 312 is provided with a plurality of second mounting convex portions 322 extending outward
  • a plurality of second mounting convex portions 322 are provided on the second mounting convex portion 322 .
  • the second fixing hole 332, the third connecting portion 313 is provided with a plurality of third mounting convex portions 323 extending outward, and the third mounting convex portion 323 is provided with a third fixing hole 333, the fourth connection The portion 314 is provided with a plurality of fourth mounting protrusions 324 extending outward, and the fourth mounting protrusions 314 are provided with fourth fixing holes 334 .
  • the housing 301 When the housing 301 is mounted in the mounting hole on the chassis 101 , the housing 301 is disposed in the mounting hole by being supported by the first connecting portion 311 , the second connecting portion 312 , the third connecting portion 313 and the fourth connecting portion 314
  • the peripheral chassis 101 passes through the first fixing hole 331 on the first mounting protrusion 321 , the second fixing hole 332 on the second mounting protrusion 322 , the third mounting hole 333 on the third mounting protrusion 323 , and the
  • the fourth fixing hole 334 on the fourth mounting convex portion 324 is fixedly connected to the chassis, thereby improving the firmness of the combination of the housing 301 and the chassis 101, improving safety and reliability, and then using a high-precision sensing and positioning device for detecting photovoltaic modules. It is firmly connected with the chassis 101 on the fuselage 100 to achieve the purpose of prolonging the service life of the high-precision sensing and positioning device used for detecting photovoltaic modules.
  • the shape of the casing 301 is square, and the upper part of the side wall inside the casing 301 is provided with a mounting plate 340, and the main control drives the
  • the plate 303 is disposed on the mounting plate 340 through a plurality of second height-adjusting nylon posts 307, and a through hole 341 is provided on the mounting plate 340 at a position corresponding to the camera 304, and the lower end of the camera 304 penetrates through the mounting plate 340.
  • the through hole 341 extends downward.
  • the camera 304 shoots a surface image of the photovoltaic panel at the bottom of the body 100 through the through hole 341.
  • the main control drive board 303 is provided with a drive or sensor interface 315 and Drive power interface 316, a first positioning hole 317 is provided on the casing 301 at a position corresponding to the drive or sensor interface 315, and a position corresponding to the drive power interface 316 is set on the casing 301 There are second positioning holes 318 . Meanwhile, a USB interface 319 is also provided on the main control driving board 303 , and third positioning holes 320 are respectively provided on the casing 301 at positions corresponding to the USB interface 319 .
  • a drive or sensor interface 315 may be provided on the left side, the front side and the right side of the main control driving board 303 , and the first positioning hole 317 is located on the left side wall of the housing 301 and is connected with the The drive or sensor interface 315 on the left side of the main control drive board 303 corresponds to that; the front side wall of the housing 301 is provided with a fourth positioning hole 325, the fourth positioning hole 325 is communicated with the second positioning hole 318, and The fourth positioning hole 325 corresponds to the drive or sensor interface 315 provided on the front side of the main control driving board 303 ; the right side wall of the housing 301 is provided with a fifth positioning hole 326 , and the fifth positioning hole 326 Corresponding to the drive or sensor interface 315 provided on the rear side of the main control drive board 303 .
  • the number of the supplementary lights 308 is four, and the four supplementary lights 308 are respectively arranged at the four corners of the main control driving board 303 Below, and the lower end of the fill light 308 extends downward through the positioning hole 329 provided on the mounting plate 340 .
  • the fill light 308 is an infrared LED fill light.
  • the left end of the mounting plate 340 is fixedly connected to the left side wall inside the casing 301, and the right end of the mounting plate 340 is connected to the casing
  • the right side wall inside the casing 301 is fixedly connected
  • the front end of the mounting plate 340 is fixedly connected with the front side wall inside the casing 301
  • the rear end of the mounting plate 340 is fixedly connected with the rear side inside the casing 301
  • the wall fixed connection can improve the firmness of the combination of the mounting plate 340 and the housing 301, so that the main control driving board 303 can be stably arranged in the housing 301 through the plurality of second height adjustment nylon posts 307 on the mounting plate 340. Above, installation reliability is improved.
  • the mounting plate 340 and the casing 301 are integrally formed, thereby making the combination of the mounting plate and the casing 301 more firm;
  • the main control driving board 303 is disposed on the mounting board 340 through the four second height adjusting nylon posts 307 .
  • the cover plate 302 is disposed on the upper end of the casing 301 through the installation component, and the upper surface of the cover plate 302 is located on a plane that The plane where the upper end of the casing 301 is located is the same plane, so that the cover plate 302 and the casing 301 can be combined more firmly, so as to prolong the service life of the high-precision sensing and positioning device for detecting photovoltaic modules.
  • the mounting component includes a first fixing part 345 , a second fixing part 346 , a third fixing part 347 and a fourth fixing part 348 .
  • a fixing portion 345 is arranged on the upper end of the left side wall inside the casing 301
  • the second fixing portion 346 is arranged on the upper end of the front side wall inside the casing 301
  • the third fixing portion 347 is arranged at the The upper end of the right side wall inside the casing 301
  • the fourth fixing portion 348 is arranged on the upper end of the front side wall inside the casing 301
  • the cover plate 302 passes through the first fixing portion 345 and the second fixing portion 346.
  • the third fixing part 347 and the fourth fixing part 348 are arranged on the upper end of the casing 301 .
  • the first fixing portion 345 is formed by extending inward from the left side wall inside the housing 301
  • the second fixing portion 346 is formed by extending inwardly from the front side wall inside the housing 301
  • the third fixing portion 347 is formed by The right side wall inside the housing 301 is formed to extend inward
  • the fourth fixing portion 348 is formed by extending inward from the front side wall inside the housing 301, so that the combination of the installation component and the housing 301 can be more firmly;
  • the high-precision sensing and positioning device for detecting photovoltaic modules provided by the embodiment of the present invention is shielded to a certain extent around the body 100 of the high-precision sensing and positioning device for detecting photovoltaic modules (such as the chassis 101 at the bottom of the body 100, etc.) , the fill light 308 at the upper four corners of the housing 301 can provide the only uniform and stable light source under the condition of covering the external light source, that is, it can avoid the interference of strong light during the day and can also operate at night;
  • the shading image extracts its features, fits the straight line relative path that the machine needs to track to maintain a straight line, optical flow algorithm visual mileage and multi-functional AI classification, such as photovoltaic type, cleanliness and defect detection, which ensures the accuracy of path planning.
  • the main control driver module supports running mainstream robot systems such as ROS/ROS2 and is equipped with common external device driver interfaces to improve integration and developability.
  • the above-mentioned main control driving module mainly includes a main control driving board 303 and its accessories, such as cooling fans and fixing parts; the main control driving board 303 is centrally configured
  • a 480P high-speed camera is fixed on the back of the main control drive board 303, that is, the lower surface.
  • the lens of the above-mentioned 480P high-speed camera passes through the positioning hole 329 on the mounting plate 340 set inside the casing 301 to shoot the surface of the photovoltaic panel.
  • the four corners inside the housing 301 are equipped with 120-degree 850nm infrared LED fill lights, and receive infrared intensity data through the infrared receiving module 328 set on the lower surface of the main control driver board 303 , and the shading image and brightness data of the photovoltaic panel captured by the camera 304 to self-adjust the brightness of the infrared LED fill light; at the same time, the above four infrared LED fill lights provide a unique and stable light source for the interior of the housing 301, The infrared LED fill light is not only cheap in price, but also can provide uniform brightness in the housing 301.
  • the reflection exposure point of the shading image on the surface of the photovoltaic panel is small in the image, and the interference to the shading image can be ignored.
  • the main control driver board 303 has a built-in system-level chip as the main control, and the shading image on the surface of the photovoltaic panel is captured by the camera 304, and the required image is provided according to requirements.
  • Perception data as follows:
  • Detection function According to the acquired images, it is detected by AI classification, and the surface type, relative placement direction, cleanliness and defects (hidden cracks, fragments, cracks, fragments, broken grids, sintered meshes, black cores, Black borders and low-efficiency slices) for real-time judgment;
  • Path tracking It is generally in the state of straight driving during operation, and a certain reference object is required to maintain the straight line driving of the machine. At this time, the line features of the shading are extracted according to the shading image, including the frame, the metal grid line and the space between the solar cells. According to the relative position of the photovoltaic panel and the relative position of the photovoltaic panel, fit the center path relative to the high-precision sensing and positioning device for detecting photovoltaic modules.
  • This path can be installed in the photovoltaic cleaning device according to the high-precision sensing positioning device for detecting photovoltaic modules
  • the position of the body 100 on the robot is used to calculate the lateral position deviation and yaw angle deviation between the body 100 of the photovoltaic cleaning robot and the preset path to calculate the required planned path; or through deep learning semantic segmentation or end-to-end
  • the relative position of the shading image and the preset path is directly or indirectly extracted by the deep learning model, and then calculated according to the position of the high-precision sensing and positioning device used for detecting photovoltaic modules installed on the body 100 of the photovoltaic cleaning robot.
  • the lateral position deviation and yaw angle deviation between the photovoltaic cleaning robot and the preset path are calculated to calculate the required planning path;
  • the relative placement directions of the photovoltaic panels include the vertical placement of the photovoltaic panels and the lateral placement of the photovoltaic panels. That is, the placement of the photovoltaic array is vertical or horizontal.
  • the surface types of the above photovoltaic panels include out-of-bounds and cross-slits, wherein: the out-of-bounds means that the photovoltaic panel in front of the photovoltaic cleaning robot is at the edge of the photovoltaic array, and will fall from the photovoltaic array when the photovoltaic cleaning robot continues to walk forward;
  • the said span is that the photovoltaic panel in front of the photovoltaic cleaning robot is at the rear edge of one photovoltaic panel in the photovoltaic array, and at the same time at the front edge of another photovoltaic panel adjacent to it in the photovoltaic array and located in front of it, when the photovoltaic cleaning robot continues When walking forward, it will cross the gap between the two adjacent photovoltaic panels in front of it.
  • the cleaning operation in the predetermined global path planning, it is generally divided into two states of straight running and turning.
  • a certain reference object is required to maintain the straight-line driving of the photovoltaic cleaning robot.
  • the relative position of the photovoltaic panel it can be roughly divided into two cases.
  • the long side of the photovoltaic panel in the photovoltaic array is parallel to the straight line.
  • the long side of the photovoltaic panel runs in a straight line vertically.
  • the cell layout on the 300W photovoltaic panel is a 6*10 array.
  • the size of one cell is 156*156mm, including the gap between the two cells in parallel.
  • the parallel length of the two vertical cells is in the range of 313-315mm. Then, in the case of maintaining each row covering two rows of cells, the center line of the photovoltaic cleaning robot should be maintained to overlap with the gap line in the parallel of the two cells, and the cleaning device should be slightly larger than the parallel length of the two vertical cells. , to ensure clean coverage.
  • the shading image of the photovoltaic panels captured by the camera 304 in the high-precision sensing and positioning device for detecting photovoltaic modules is the shading image of the photovoltaic panels in the photovoltaic array.
  • the image of the solar cell is placed vertically and detection data is formed, and the main control driving board 303 determines, according to the detection data, that the photovoltaic array where the photovoltaic cleaning robot is currently placed is placed vertically.
  • the vertical image of the solar cell taken directly in front of the photovoltaic cleaning robot should clearly see three vertical lines and one horizontal line, as shown in Figure 11, and the left
  • the straight line in the vertical direction is the metal busbar 120 on the right side of the left solar cell
  • the straight line in the middle vertical direction is the gap 130 between the two columns of solar cells
  • the straight line in the right vertical direction is the right
  • the straight line in the horizontal direction is the gap 130 between the two rows of solar cells.
  • the desired image should be symmetrically distributed on the left and right sides of the two columns of solar cells, and the center line of the image just overlaps with the gap 130 between the two columns of solar cells, that is, the extracted
  • the vertical straight line in the vertical line set ie, the three vertical straight lines 140
  • a horizontal straight line 150 extracted at the same time is the straight line eliminated after extraction, as shown in FIG. 12 . That is, by extracting the straight lines in the above three vertical directions, the current local desired straight line path can be obtained.
  • the photovoltaic cleaning robot When the photovoltaic cleaning robot encounters a gap-crossing situation during the cleaning operation, the camera cannot capture normal and complete solar cells, and the path extracted from the previous state can be maintained. As shown in Figure 13 and Figure 14, 111 is adjacent The gap between the two photovoltaic panels, 112 is the frame of the photovoltaic panel, at this time, the photovoltaic cleaning robot can maintain the path extracted in the previous state and walk in a straight line.
  • the distance between the three vertical straight lines is the same. According to this feature, it can be used in the case of incomplete extraction to ensure the continuity of the path planning.
  • the details are as follows: the straight line in the vertical direction on the left In the case of failure to extract, according to the remaining two vertical lines in combination with the motion control state, the possible position of the left vertical line is deduced; in the case of failure to extract the middle vertical line, According to whether the interval between the remaining two straight lines meets the range of the actual interval, if so, the middle straight line can be fitted; if the extraction of the right straight line fails, the motion control state is reversed according to the remaining two straight lines. Push out where the right line might appear.
  • the type of photovoltaic panels in the above photovoltaic array is that there are two metal busbars on a solar cell, and there are four other common types of photovoltaic panels on the market, that is, there are three metal busbars on a solar cell.
  • the method of extracting paths is similar to the above-mentioned two metal busbars on one solar cell.
  • the shading image of the photovoltaic panel captured by the camera 304 in the high-precision sensing and positioning device for detecting photovoltaic modules is the image of the photovoltaic panel in the photovoltaic array.
  • the battery slices are placed horizontally in an image and detection data is formed, and the main control drive board 303 determines, according to the detection data, that the photovoltaic array where the photovoltaic cleaning robot is currently placed is placed horizontally.
  • the shading image taken directly in front of the photovoltaic cleaning robot should clearly see one vertical straight line and three horizontal straight lines, of which: the vertical straight line is the difference between the two rows of solar cells.
  • the horizontal line on the front side is the metal busbar 160 on the rear side in the front side solar cell
  • the horizontal line in the middle is the metal busbar 160 on the front side in the rear side solar cell
  • the horizontal line on the rear side is the gap 170 between the two rows of solar cell sheets.
  • the desired image should be symmetrically distributed on the left and right sides of the two columns of solar cells, and the center line of the image is exactly the gap 170 between the two columns of solar cells.
  • the straight lines 180 in the vertical direction overlap, and the three straight lines 150 in the horizontal direction are straight lines that are extracted and eliminated, as shown in FIG. 16 . That is, by extracting the straight line 180 in the vertical direction, the current local desired straight line path can be obtained.
  • the camera 304 cannot capture normal and complete solar cells, and the path extracted in the previous state can be maintained.
  • the above-mentioned main control drive board 303 has a built-in micro-control unit, which mainly reads part of the sensor equipment data externally connected to the high-precision sensing and positioning device for detecting photovoltaic modules.
  • a built-in micro-control unit which mainly reads part of the sensor equipment data externally connected to the high-precision sensing and positioning device for detecting photovoltaic modules.
  • the above-mentioned main control driver board 303 supports mainstream robot systems such as ROS/ROS2, which can not only perform the above sensing and driving, but also expand internal and external development decisions.
  • the built-in decision-making function is directly developed on the robot system of the main control drive module.
  • the external decision-making function connects the robot system through the USB serial port or network service, obtains the sensing data provided by the high-precision sensing and positioning device for detecting photovoltaic modules through service requests and topic subscriptions, etc., and controls the external equipment through service permission and topic publishing. Work.

Landscapes

  • Cleaning In General (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种用于检测光伏组件的高精度感知定位装置,其安装在光伏清洁机器人的前端,光伏清洁机器人包括机身,光伏清洁机器人在行驶驱动装置的驱动下进行行驶,并通过清扫装置对光伏板进行清扫作业,通过用于检测光伏组件的高精度感知定位装置感知机身底部所处光伏组件的表面图像,包括壳体,壳体内设置有主控驱动模块,主控驱动模块包括主控驱动板,主控驱动板的下表面设置有摄像头模块,摄像头模块包括摄像头、摄像头驱动板以及第一高度调整尼龙柱,摄像头固定设置在摄像头驱动板的下表面,主控驱动板的下表面设置补光灯。本发明的有益效果在于,提供一种结构简单、使用方便且安全可靠的用于检测光伏组件的高精度感知定位装置。

Description

一种用于检测光伏组件的高精度感知定位装置 技术领域
本发明涉及一种用于检测光伏组件的高精度感知定位装置。
背景技术
太阳能光伏作为一种可再生清洁能源,已成为当今全球能源变革的重要力量。太阳能电池板表面容易积累风沙、灰尘等污垢,若没有及时科学专业的清洁和监测等维护作业,最高可导致组件发电功率衰减40%-60%,发电量下降20%-30%。因此,通过合理科学地清洁和维护太阳能电池板以及对组件的悉心养护来提升电站发电量和效益的理念,受到业界认可。
光伏清洁机器人自主工作的时候,需要依靠检测装置来判断所处位置。目前市面上主要需依靠在光伏阵列添加特定的感应装置或固定装置进行定位,维持机器在光伏阵列上的行走、清洁或监测等作业。这样的添加特定感应装置或固定装置的感应方式,不仅增加了设备成本,而且容易受光伏阵列的大小和形状的限制导致无法安装附加装置。部分依靠光伏边框进行定位,但边框的束缚导致光伏清洁机器人运行速度大幅度降低,且受阵列分布影响,无法准确规划出最优作业路径,严重影响作业效率和经济效益。
发明内容
鉴于现有技术中存在的上述问题,本发明的主要目的在于提供一种结构简单、使用方便且安全可靠的用于检测光伏组件的高精度感知定位装置。
本发明的技术方案是这样的:
一种用于检测光伏组件的高精度感知定位装置,所述用于检测光伏组件的高精度感知定位装置安装在光伏清洁机器人的前端,所述光伏清洁机器人包括机身,所述机身的前端设置有清扫装置,且所述机身的底端设置有行驶驱动装置,所述光伏清洁机器人在行驶驱动装置的驱动下进行行驶,并通过所述清扫 装置对光伏组件进行清扫作业,所述用于检测光伏组件的高精度感知定位装置安装所述机身的前端,用于感知所述机身底部所处光伏组件的表面图像,所述用于检测光伏组件的高精度感知定位装置包括壳体,所述壳体的上端和下端均为开口,所述壳体上端开口的位置设置有盖板,所述壳体内设置有主控驱动模块,所述主控驱动模块包括主控驱动板,所述主控驱动板的下表面设置有摄像头模块,所述摄像头模块包括摄像头、摄像头驱动板以及第一高度调整尼龙柱,所述摄像头固定设置在所述摄像头驱动板的下表面,所述摄像头驱动板通过多个所述第一高度调整尼龙柱设置在所述主控驱动板的下方,所述主控驱动板的下表面设置有多个补光灯,所述壳体内位于所述主控驱动板的上表面固定设置有散热风扇,所述盖板上与所述散热风扇相对应的位置设置有散热孔。
所述机身包括底盘以及设置在底盘上的连接框架,所述底盘上位于左侧和右侧的位置分别设置有第一定位孔和第二定位孔,且所述第一定位孔和第二定位孔中均设置有行驶驱动装置。
所述连接框架包括第一连接板、第二连接板、第三连接板以及第四连接板,其中,所述第一连接板固定设置在所述底盘左侧的上表面,所述第二连接板固定设置在所述底盘前侧的上表面,所述第三连接板固定设置在所述底盘右侧的上表面,所述第四连接板固定设置在所述底盘后侧的上表面。
所述底盘的前部设置有安装孔,所述壳体通过紧固螺钉固定设置在所述底盘上的所述安装孔中。
所述壳体的形状为方形,且所述壳体内部的侧壁上部设置有安装板,所述主控驱动板通过多个第二高度调整尼龙柱设置在所述安装板上,所述安装板上与所述摄像头相对应的位置设置有通孔,所述摄像头通过所述通孔拍摄所述机身底部所处光伏板的表面图像,所述主控驱动板上设置有驱动或传感器接口以及驱动电源接口,所述壳体上与所述驱动或传感器接口相对应的位置设置有第一定位孔,且所述壳体上与所述驱动电源接口相对应的位置设置有第二定位孔。
所述补光灯的数量为四个,四个所述补光灯分别设置在所述主控驱动板的四角下方,且所述补光灯的下端贯穿所述安装板上的定位孔后向下延伸。
所述安装板的左端与所述壳体内部的左侧壁固定连接,所述安装板的右端与所述壳体内部的右侧壁固定连接,所述安装板的前端与所述壳体内部的前侧 壁固定连接,且所述安装板的后端与所述壳体内部的后侧壁固定连接。
所述安装板与所述壳体为一体成型,所述主控驱动板通过四个所述第二高度调整尼龙柱设置在所述安装板上。
所述盖板通过安装组件设置在所述壳体的上端,且所述盖板的上表面所处平面与所述壳体的上端所处平面为同一个平面。
所述安装组件包括第一固定部、第二固定部、第三固定部以及第四固定部,所述第一固定部设置在所述壳体内部的左侧壁上端,所述第二固定部设置在所述壳体内部的前侧壁上端,所述第三固定部设置在在所述壳体内部的右侧壁上端,所述第四固定部设置在所述壳体内部的前侧壁上端,所述盖板通过上述第一固定部、第二固定部、第三固定部以及第四固定部设置在在所述壳体上端。
本发明具有以下优点和有益效果:本发明实施例提供的用于检测光伏组件的高精度感知定位装置,可提高光伏清洁机器人的自动化程度,简化光伏清洁机器人的感知组件的结构,并且提高光伏清洁机器人的适用性和可开发性,以达到光伏清洁机器人感知光伏板表面的特征,为光伏清洁机器人自动进行清洁作业提供可靠依据进行决策和规划,并根据指令驱动不同的外置装置完成指定作业任务,节约人力和降低电站维护成本。
附图说明
图1为本发明实施例提供的光伏清洁机器人去掉外壳后的立体结构示意图。
图2为本发明实施例提供的光伏清洁机器人去掉外壳后的俯视结构示意图。
图3为本发明实施例提供的感知组件的放大立体结构示意图。
图4为本发明实施例提供的感知组件的放大分解结构示意图。
图5为本发明实施例提供的主控驱动板与摄像头模块相配合的放大分解结构示意图。
图6为本发明实施例提供的感知组件一个方向的放大剖视结构示意图。
图7为本发明实施例提供的感知组件另一个方向的放大剖视结构示意图。
图8为本发明实施例提供的壳体一个方向的放大立体结构示意图。
图9为本发明实施例提供的壳体另一个方向的放大立体结构示意图。
图10为本发明实施例提供的壳体第三个方向的放大立体结构示意图。
图11为本发明实施例提供的光伏板表面电池片竖放时光伏板底纹的照片示意图。
图12为本发明实施例提供的光伏板表面电池片竖放时光伏板底纹的拟合直线效果示意图。
图13为本发明实施例提供的光伏清洁机器人在光伏阵列中的光伏板上跨缝时光伏板底纹的照片示意图。
图14为本发明实施例提供的光伏清洁机器人在光伏阵列中的光伏板上跨缝时光伏板底纹的拟合直线效果示意图。
图15为本发明实施例提供的光伏板表面电池片横放时光伏板底纹的照片示意图。
图16为本发明实施例提供的光伏板表面电池片横放时光伏板底纹的拟合直线效果示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作, 因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面将参照附图和具体实施例对本发明作进一步的说明。
如图1至图16所示:为本发明实施例提供的一种用于检测光伏组件的高精度感知定位装置,所述用于检测光伏组件的高精度感知定位装置安装在光伏清洁机器人的前端,所述光伏清洁机器人包括机身100,所述机身100的前端设置有清扫装置200,且所述机身100的底端设置有行驶驱动装置400,所述光伏清洁机器人在行驶驱动装置400的驱动下进行行驶,并通过所述清扫装置200对光伏板进行清扫作业,所述用于检测光伏组件的高精度感知定位装置安装在所述机身100的前端,通过所述用于检测光伏组件的高精度感知定位装置感知所述机身100底部所处光伏组件也即光伏板的表面图像,所述用于检测光伏组件的高精度感知定位装置包括壳体301,所述壳体301的上端和下端均为开口,所述壳体301上端开口的位置设置有盖板302,所述壳体301内设置有主控驱动模块,所述主控驱动模块包括主控驱动板303,所述主控驱动板303的下表面设置有摄像头模块,所述摄像头模块包括摄像头304、摄像头驱动板305以及第一高度调整尼龙柱306,所述摄像头304固定设置在所述摄像头驱动板305的下表面,所述摄像头驱动板305通过多个所述第一高度调整尼龙柱306设置在所述主控驱动板303的下方,所述主控驱动板303的下表面设置有多个补光灯308,所述主控驱动板303的形状可为方形;具体的,可在主控驱动板303的下表面的四角分别设置一补光灯308,且所述补光灯308可为120度850nm红外LED补光灯,所述壳体301内位于所述主控驱动板303的上表面固定设置有散热风扇309,所述盖板302上与所述散热风扇309相对应的位置设置有散热孔310。通过上述设计,可提高光伏清洁机器人的自动化程度,简化光伏清 洁机器人的感知组件的结构,并且提高光伏清洁机器人的适用性和可开发性,以达到光伏清洁机器人感知光伏板表面的特征,为光伏清洁机器人自动进行清洁作业提供可靠依据进行决策和规划,并根据指令驱动不同的外置装置完成指定作业任务,节约人力和降低电站维护成本。
本发明所要解决的技术问题是:光伏清洁机器人在进行清洁作业过程中,通过感光器件(如摄像头)感知光伏组件也即光伏板的表面图像,并将图像数据根据决策需求进行分析处理,最后接收决策控制指令执行外置装置,驱动光伏清洁机器人以实现持续自动控制作业。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述主控驱动板303可内置***级芯片作为主控,选择性进行传感器数据读取和处理、任务决策、路径规划、设备监控和交互等***任务。同时,主控驱动板303还可内置微控制单元,主要读取部分传感器数据并接收控制指令,控制电机和真空泵等设备在光伏板上进行清洁作业。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述机身100包括底盘101以及设置在底盘101上的连接框架,所述底盘101上位于左侧和右侧的位置分别设置有第一定位孔151和第二定位孔152,且所述第一定位孔151和第二定位孔152中均设置有行驶驱动装置400。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述连接框架包括第一连接板102、第二连接板103、第三连接板104以及第四连接板105,其中,所述第一连接板102固定设置在所述底盘101左侧的上表面,所述第二连接板103固定设置在所述底盘101前侧的上表面,所述第三连接板104固定设置在所述底盘101右侧的上表面,所述第四连接板105固定设置在所述底盘101后侧的上表面。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述底盘101的前部设置有安装孔(图中未示出),所述壳体301通过紧固螺钉固定设置在所述底盘101上的所述安装孔中。具体的,所述壳体301的外侧壁下部左侧底部向外延伸设置有第一连接部311,所述壳体301的外侧壁前侧底部向外延伸设置有第二连接部312,所述壳体301的外侧壁右侧底部向外延伸设置有第三连接部313,所述壳体301的外侧壁前侧底部向外延伸设置有第四连接部314, 且所述第一连接部311、第二连接部312、第三连接部313和第四连接部314首尾依次连接成一整体;同时,所述第一连接部311向外延伸设置有多个第一安装凸部321,且所述第一安装凸部321上设置有第一固定孔331,所述第二连接部312向外延伸设置有多个第二安装凸部322,且所述第二安装凸部322上设置有多个第二固定孔332,所述第三连接部313向外延伸设置有多个第三安装凸部323,且所述第三安装凸部323上设置有第三固定孔333,所述第四连接部314向外延伸设置有多个第四安装凸部324,且所述第四安装凸部314上设置有第四固定孔334。当壳体301安装在底盘101上的安装孔中时,所述壳体301通过第一连接部311、第二连接部312、第三连接部313和第四连接部314的支撑设置在安装孔周边的底盘101上,同时通过第一安装凸部321上的第一固定孔331、第二安装凸部322上的第二固定孔332、第三安装凸部323上的第三固定孔333以及第四安装凸部324上的第四固定孔334与底盘固定连接,从而提高壳体301与底盘101相结合的牢固性,安全可靠性得到提升,进而使用于检测光伏组件的高精度感知定位装置与机身100上的底盘101牢固连接,达到延长用于检测光伏组件的高精度感知定位装置的使用寿命的目的。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述壳体301的形状为方形,且所述壳体301内部的侧壁上部设置有安装板340,所述主控驱动板303通过多个第二高度调整尼龙柱307设置在所述安装板340上,所述安装板340上与所述摄像头304相对应的位置设置有通孔341,所述摄像头304的下端贯穿所述通孔341并向下延伸,所述摄像头304通过所述通孔341拍摄所述机身100底部所处光伏板的表面图像,所述主控驱动板303上设置有驱动或传感器接口315以及驱动电源接口316,所述壳体301上与所述驱动或传感器接口315相对应的位置设置有第一定位孔317,且所述壳体301上与所述驱动电源接口316相对应的位置设置有第二定位孔318。同时,所述主控驱动板303上还设置有USB接口319,同时壳体301上位于所述USB接口319相对应的位置分别设置有第三定位孔320。具体的,所述主控驱动板303上左侧、前侧以及右侧可均设置有一驱动或传感器接口315,所述第一定位孔317位于所述壳体301的左侧壁且与所述主控驱动板303左侧的驱动或传感器接口315相对应;所述壳体301的前侧壁设置有第四定位孔325,所述第四定位孔325 与第二定位孔318相连通,且所述第四定位孔325与主控驱动板303前侧设置的驱动或传感器接口315相对应;所述壳体301的右侧壁设置有第五定位孔326,且所述第五定位孔326与主控驱动板303后侧设置的驱动或传感器接口315相对应。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述补光灯308的数量为四个,四个所述补光灯308分别设置在所述主控驱动板303的四角下方,且所述补光灯308的下端贯穿所述安装板340上设置的定位孔329后向下延伸。同时,所述补光灯308为红外LED补光灯,通过上述设计,也即在主控驱动板303的四角下方分别设置一补光灯,共计四个补光灯308,可为壳体301内部提供唯一且稳定的光源。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述安装板340的左端与所述壳体301内部的左侧壁固定连接,所述安装板340的右端与所述壳体301内部的右侧壁固定连接,所述安装板340的前端与所述壳体301内部的前侧壁固定连接,且所述安装板340的后端与所述壳体301内部的后侧壁固定连接,可提高安装板340与壳体301相结合的牢固性,进而可使主控驱动板303通过多个第二高度调整尼龙柱307稳定设置在壳体301内所述安装板340的上方,安装可靠性得到提升。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述安装板340与所述壳体301为一体成型,进而可使安装板与壳体301的结合更加牢固;同时所述主控驱动板303通过四个所述第二高度调整尼龙柱307设置在所述安装板340上。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述盖板302通过安装组件设置在所述壳体301的上端,且所述盖板302的上表面所处平面与所述壳体301的上端所处平面为同一个平面,进而可使盖板302与壳体301的结合更加牢固,以达到延长用于检测光伏组件的高精度感知定位装置的使用寿命的目的。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,所述安装组件包括第一固定部345、第二固定部346、第三固定部347以及第四固定部348,所述第一固定部345设置在所述壳体301内部的左侧壁上端,所述第二固 定部346设置在所述壳体301内部的前侧壁上端,所述第三固定部347设置在在所述壳体301内部的右侧壁上端,所述第四固定部348设置在所述壳体301内部的前侧壁上端,所述盖板302通过上述第一固定部345、第二固定部346、第三固定部347以及第四固定部348设置在在所述壳体301上端。通过上述设计,也即第一固定部345由壳体301内部的左侧壁向内延伸形成,第二固定部346由壳体301内部的前侧壁向内延伸形成,第三固定部347由壳体301内部的右侧壁向内延伸形成,且所述第四固定部348由壳体301内部的前侧壁向内延伸形成,进而可使安装组件与壳体301的结合更加牢固;当盖板302安装在壳体301的上端时,盖板302通过第一固定部345、第二固定部346、第三固定部347以及第四固定部348进行支撑,同时盖板302通过紧固螺钉与第一固定部345、第二固定部346、第三固定部347以及第四固定部348固定连接,进而可使盖板302与壳体301的结合更加牢固,安全可靠性得到进一步提升。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,在用于检测光伏组件的高精度感知定位装置的机身100周围进行一定遮挡时(如机身100底部的底盘101等),壳体301内部上方四角的补光灯308,在遮盖外部光源的情况下可提供唯一均匀稳定的光源,即避免了白天强光的干扰也可在夜间进行作业;同时,由于通过光伏板的底纹图像提取其特征,拟合出机器维持直线作业需要跟踪的直线相对路径、光流算法视觉里程和进行多功能AI分类,如光伏类型、清洁度和缺陷检测,即确保了路径规划的准确性和时效性,也保证了功能的多样性;另外,主控驱动模块支持运行ROS/ROS2等主流机器人***和搭载常见外置设备驱动接口,提高一体化和可开发性。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,上述主控驱动模块主要包括主控驱动板303及其配件,如散热风扇和固定件等构成;主控驱动板303中心配置一个480P高速摄像头,固定在主控驱动板303的背面也即下表面,上述480P高速摄像头的镜头穿过所述壳体301内部设置的安装板340上的定位孔329,起到拍摄光伏板表面的底纹图像的作用;同时,壳体301内部的四个角落均配置120度850nm红外LED补光灯,并通过设置在主控驱动板303的下表面设置的红外接收模块328接收红外强度数据,以及通过摄像头304拍摄的光伏板的底纹图像以及亮度强弱数据,自调节红外LED补光灯的亮 度;同时上述四个红外LED补光灯为壳体301内部提供唯一且稳定的光源,红外LED补光灯不仅价格上廉价,且在壳体301中可以提供均匀的亮度,通过光伏板表面的底纹图像的反射曝光点在图像中较小,对底纹图像的干扰可以忽略不计。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,主控驱动板303内置***级芯片作为主控,通过摄像头304拍摄的光伏板表面的底纹图像,根据需求提供所需的感知数据,如下:
1.检测功能:根据获取的图像通过AI分类检测,对光伏板的表面类型、相对摆放方向、清洁度和缺陷(隐裂、碎片、裂纹、破片、断栅、烧结网纹、黑芯、黑边和低效率片)进行实时判断;
2.路径跟踪:在作业时一般为直线行驶的状态,需要一定的参照物来维持机器直线行驶,此时根据底纹图像提取底纹的线条特征,包括边框、金属栅线和太阳能电池片间的缝隙,并参考与光伏板的相对位置,拟合出相对用于检测光伏组件的高精度感知定位装置的中心路径,该路径可根据用于检测光伏组件的高精度感知定位装置安装在光伏清洁机器人上机身100的位置,推算出光伏清洁机器人的机身100与预设路径的横向位置偏差和横摆角偏差,以计算所需的规划路径;亦或可通过深度学习语义分割或端到端的方式,通过深度学习模型直接或间接的提取底纹图像与预设路径的相对位置,再根据用于检测光伏组件的高精度感知定位装置安装在光伏清洁机器人的机身100上的位置,推算出光伏清洁机器人与预设路径的横向位置偏差和横摆角偏差,以计算所需的规划路径;
3.视觉里程:通过图像进行光流算法处理,得出视觉里程。
上述光伏板的相对摆放方向包括光伏板竖置以及光伏板横置。也即光伏阵列的摆放方式为竖放或横放。上述光伏板的表面类型包括出界和跨缝,其中:所述出界为光伏清洁机器人前方的光伏板处于光伏阵列的边缘,当光伏清洁机器人继续向前行走时将从所述光伏阵列上跌落;所述跨缝为光伏清洁机器人前方的光伏板处于光伏阵列中一个光伏板的后端边缘,同时处于光伏阵列中与其相邻的且位于其前方的另一光伏板的前端边缘,当光伏清洁机器人继续向前行走时,将从位于其前方的相邻两个光伏板之间的缝隙跨过。在进行清洁作业时, 在规定的全局路径规划中,一般分为直线行驶和转弯两种状态。在直线行驶的状态中,需要一定的参照物来维持光伏清洁机器人的直线行驶,根据与光伏板的相对位置,大致可以分为两种情况,相对光伏阵列中光伏板长边平行直线行驶,相对光伏阵列中光伏板长边垂直直线行驶。
在300W光伏板上电池片布局为6*10阵列分布,一块电池片的尺寸为156*156mm,包括两块电池片并列中的缝隙,两块竖放电池片并列长度在313~315mm范围左右。那么在维持每一行作业覆盖两行电池片的情况下,光伏清洁机器人的中心线应维持与两块电池片并列中的缝隙线重叠,且清洁装置应略大于两块竖放电池片的并列长度,确保清洁覆盖率。
如图11所示,在相对光伏阵列中光伏板长边平行直线行驶的情况,用于检测光伏组件的高精度感知定位装置中摄像头304拍摄的光伏板的底纹图像为光伏阵列中光伏板的太阳能电池片竖放图像并形成检测数据,主控驱动板303根据所述检测数据判定所述光伏清洁机器人当前所处的光伏阵列的放置方式为竖放。根据电池片的表面特性,光伏清洁机器人的正前方拍摄的太阳能电池片竖放图像应可以明显的看到三条竖直方向的直线以及一条水平方向的直线,如图11所示,且左侧的竖直方向的直线为左侧太阳能电池片中右侧的金属主栅线120,中间的竖直方向的直线为两列太阳能电池片之间的缝隙130,右侧的竖直方向的直线为右侧太阳能电池片中左侧的金属主栅线120,水平方向的直线为两行太阳能电池片之间的缝隙130。而维持每一行光伏板作业覆盖两行电池片的情况下,那么期望图像应为两列太阳能电池片左右对称分布,图像中心线恰好与两列太阳能电池片之间的缝隙130重叠,即提取的竖直方向的直线集合(也即三条竖直方向的直线140)中中间的竖直方向的直线重叠,同时提取的一条水平方向的直线150为提取后淘汰的直线,如图12所示。即提取出上述三条竖直方向的直线即可得到目前局部期望的直线路径。在光伏清洁机器人进行清洁作业中遇到跨缝状况,摄像头无法拍摄到正常的和完整的太阳能电池片,维持前一个状态提取的路径即可,如图13和图14所示,111为相邻两个光伏板之间的间隙,112为光伏板的边框,此时光伏清洁机器人可维持前一个状态提取的路径进行直线行走即可。
由于跨缝距离短在这三条竖直方向的直线之间间隔相同,可根据该特性运 用在提取不完全的情况下,保证路径规划的连续性,具体如下:在左侧的竖直方向的直线提取失败的情况下,根据剩下的两条竖直方向的直线配合运动控制状态反推出左侧的竖直方向的直线可能出现的位置;在中间的竖直方向的直线提取失败的情况下,根据剩下的两条直线之间的间隔是否满足实际间隔的范围,若满足即可拟合出中间直线;在右侧直线提取失败的情况下,根据剩下的两条直线配合运动控制状态反推出右侧直线可能出现的位置。以上光伏阵列中光伏板的类型是一个太阳能电池片上存在两条金属主栅线,而对于市面上存在的光伏板的类别还有另外四种常见的类型,也即一个太阳能电池片上存在三条金属主栅线、四条金属主栅线、五条金属主栅线或六条金属主栅线;另外,一个太阳能电池片上还可存在七条金属主栅线、八条金属主栅线或九条金属主栅线,相应的提取路径的方法类似于上述一个太阳能电池片上存在两条金属主栅线。
如图15所示,在相对光伏阵列中光伏板长边垂直直线行驶的情况,用于检测光伏组件的高精度感知定位装置中摄像头304拍摄的光伏板的底纹图像为光伏阵列中光伏板的电池片横放图像并形成检测数据,主控驱动板303根据所述检测数据判定所述光伏清洁机器人当前所处的光伏阵列的放置方式为横放。根据电池片的表面特性,光伏清洁机器人正前方拍摄的底纹图像应可以明显的看到一条竖直方向的直线和三条水平方向的直线,其中:竖直方向的直线为两列太阳能电池片之间的缝隙170,前侧的水平方向的直线为前侧太阳能电池片中后侧的金属主栅线160,中间的水平方向的直线为后侧太阳能电池片中前侧的金属主栅线160,后侧的水平方向的直线为两行太阳能电池片之间的缝隙170。而维持每一行光伏板清洁作业覆盖两行太阳能电池片的情况下,那么期望图像应为两列太阳能电池片左右对称分布,图像中心线恰好与两列太阳能电池片之间的缝隙170即提取的竖直方向的直线180重叠,同时三条水平方向的直线150为提取且淘汰的直线,如图16所示。即提取出上述的竖直方向的直线180即可得到目前局部期望的直线路径。在清洁作业中遇到跨缝状况,摄像头304无法拍摄到正常的和完整的太阳能电池片,维持前一个状态提取的路径即可。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,上述主控驱动板303内置微控制单元,主要读取用于检测光伏组件的高精度感知定位装置外接的部分传感器设备数据,如超声波传感器、按键、编码器、气压检测模 块、惯性测量单元、温度检测等常见传感器数据,并接收控制指令,进过参数比例转换,控制电机、LED灯、蜂鸣器、电磁阀和真空泵等设备工作。
本发明实施例提供的用于检测光伏组件的高精度感知定位装置,上述主控驱动板303内部支持ROS/ROS2等主流机器人***,不仅可进行以上感知和驱动,还可进行拓展内外置开发决策功能。内置决策功能即直接在主控驱动模块的机器人***上进行开发。外置决策功能则通过USB串口或网络服务连接机器人***,通过服务请求和话题订阅等方式获取用于检测光伏组件的高精度感知定位装置提供的感知数据,通过服务答应和话题发布控制外置设备工作。
最后应说明的是:以上所述的各实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种用于检测光伏组件的高精度感知定位装置,所述用于检测光伏组件的高精度感知定位装置安装在光伏清洁机器人的前端,所述光伏清洁机器人包括机身,所述机身的前端设置有清扫装置,且所述机身的底端设置有行驶驱动装置,所述光伏清洁机器人在行驶驱动装置的驱动下进行行驶,并通过所述清扫装置对光伏组件进行清扫作业,其特征在于:所述用于检测光伏组件的高精度感知定位装置安装所述机身的前端,用于感知所述机身底部所处光伏组件的表面图像,所述用于检测光伏组件的高精度感知定位装置包括壳体,所述壳体的上端和下端均为开口,所述壳体上端开口的位置设置有盖板,所述壳体内设置有主控驱动模块,所述主控驱动模块包括主控驱动板,所述主控驱动板的下表面设置有摄像头模块,所述摄像头模块包括摄像头、摄像头驱动板以及第一高度调整尼龙柱,所述摄像头固定设置在所述摄像头驱动板的下表面,所述摄像头驱动板通过多个所述第一高度调整尼龙柱设置在所述主控驱动板的下方,所述主控驱动板的下表面设置有多个补光灯,所述壳体内位于所述主控驱动板的上表面固定设置有散热风扇,所述盖板上与所述散热风扇相对应的位置设置有散热孔。
  2. 根据权利要求1所述的用于检测光伏组件的高精度感知定位装置,其特征在于,所述机身包括底盘以及设置在底盘上的连接框架,所述底盘上位于左侧和右侧的位置分别设置有第一定位孔和第二定位孔,且所述第一定位孔和第二定位孔中均设置有行驶驱动装置。
  3. 根据权利要求2所述的用于检测光伏组件的高精度感知定位装置,其特征在于,所述连接框架包括第一连接板、第二连接板、第三连接板以及第四连接板,其中,所述第一连接板固定设置在所述底盘左侧的上表面,所述第二连接板固定设置在所述底盘前侧的上表面,所述第三连接板固定设置在所述底盘右侧的上表面,所述第四连接板固定设置在所述底盘后侧的上表面。
  4. 根据权利要求2所述的用于检测光伏组件的高精度感知定位装置,其特征在于,所述底盘的前部设置有安装孔,所述壳体通过紧固螺钉固定设置在所述底盘上的所述安装孔中。
  5. 根据权利要求1-4中任一所述的用于检测光伏组件的高精度感知定位装置,其特征在于,所述壳体的形状为方形,且所述壳体内部的侧壁上部设置有 安装板,所述主控驱动板通过多个第二高度调整尼龙柱设置在所述安装板上,所述安装板上与所述摄像头相对应的位置设置有通孔,所述摄像头通过所述通孔拍摄所述机身底部所处光伏板的表面图像,所述主控驱动板上设置有驱动或传感器接口以及驱动电源接口,所述壳体上与所述驱动或传感器接口相对应的位置设置有第一定位孔,且所述壳体上与所述驱动电源接口相对应的位置设置有第二定位孔。
  6. 根据权利要求5所述的用于检测光伏组件的高精度感知定位装置,其特征在于,所述补光灯的数量为四个,四个所述补光灯分别设置在所述主控驱动板的四角下方,且所述补光灯的下端贯穿所述安装板上的定位孔后向下延伸。
  7. 根据权利要求5所述的用于检测光伏组件的高精度感知定位装置,其特征在于,所述安装板的左端与所述壳体内部的左侧壁固定连接,所述安装板的右端与所述壳体内部的右侧壁固定连接,所述安装板的前端与所述壳体内部的前侧壁固定连接,且所述安装板的后端与所述壳体内部的后侧壁固定连接。
  8. 根据权利要求7所述的用于检测光伏组件的高精度感知定位装置,其特征在于,所述安装板与所述壳体为一体成型,所述主控驱动板通过四个所述第二高度调整尼龙柱设置在所述安装板上。
  9. 根据权利要求5所述的用于检测光伏组件的高精度感知定位装置,其特征在于,所述盖板通过安装组件设置在所述壳体的上端,且所述盖板的上表面所处平面与所述壳体的上端所处平面为同一个平面。
  10. 根据权利要求9所述的用于检测光伏组件的高精度感知定位装置,其特征在于,所述安装组件包括第一固定部、第二固定部、第三固定部以及第四固定部,所述第一固定部设置在所述壳体内部的左侧壁上端,所述第二固定部设置在所述壳体内部的前侧壁上端,所述第三固定部设置在在所述壳体内部的右侧壁上端,所述第四固定部设置在所述壳体内部的前侧壁上端,所述盖板通过上述第一固定部、第二固定部、第三固定部以及第四固定部设置在在所述壳体上端。
PCT/CN2021/133302 2021-01-24 2021-11-25 一种用于检测光伏组件的高精度感知定位装置 WO2022156356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110092465.4A CN114793091A (zh) 2021-01-24 2021-01-24 一种用于检测光伏组件的高精度感知定位装置
CN202110092465.4 2021-01-24

Publications (1)

Publication Number Publication Date
WO2022156356A1 true WO2022156356A1 (zh) 2022-07-28

Family

ID=82460547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133302 WO2022156356A1 (zh) 2021-01-24 2021-11-25 一种用于检测光伏组件的高精度感知定位装置

Country Status (2)

Country Link
CN (1) CN114793091A (zh)
WO (1) WO2022156356A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117522961A (zh) * 2023-11-07 2024-02-06 湖州丽天智能科技有限公司 一种基于光伏机器人的光伏阵列中断识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108838150A (zh) * 2018-09-18 2018-11-20 皖西学院 一种太阳能面板清洁用智能机器人
CN109510583A (zh) * 2019-01-04 2019-03-22 东莞市旗胜光电有限公司 一种光伏组件清洁及检测的自动机器人
CN110882970A (zh) * 2019-11-22 2020-03-17 深圳怪虫机器人有限公司 一种具有光伏板检测组件的光伏清洁机器人
CN111687859A (zh) * 2020-06-20 2020-09-22 深圳怪虫机器人有限公司 一种光伏清洁机器人获取最优作业路径的方法
CN111687856A (zh) * 2020-06-20 2020-09-22 深圳怪虫机器人有限公司 一种光伏清洁机器人获取直线作业路径的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108838150A (zh) * 2018-09-18 2018-11-20 皖西学院 一种太阳能面板清洁用智能机器人
CN109510583A (zh) * 2019-01-04 2019-03-22 东莞市旗胜光电有限公司 一种光伏组件清洁及检测的自动机器人
CN110882970A (zh) * 2019-11-22 2020-03-17 深圳怪虫机器人有限公司 一种具有光伏板检测组件的光伏清洁机器人
CN111687859A (zh) * 2020-06-20 2020-09-22 深圳怪虫机器人有限公司 一种光伏清洁机器人获取最优作业路径的方法
CN111687856A (zh) * 2020-06-20 2020-09-22 深圳怪虫机器人有限公司 一种光伏清洁机器人获取直线作业路径的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117522961A (zh) * 2023-11-07 2024-02-06 湖州丽天智能科技有限公司 一种基于光伏机器人的光伏阵列中断识别方法

Also Published As

Publication number Publication date
CN114793091A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
JP6995881B2 (ja) 太陽光パネル清掃ロボットの辺縁測位装置及びその測位方法
WO2022156356A1 (zh) 一种用于检测光伏组件的高精度感知定位装置
WO2018145632A1 (zh) 用于太阳能面板清扫机器人的导航***及其导航方法
CN205885370U (zh) 自主清洁设备
CN111687859A (zh) 一种光伏清洁机器人获取最优作业路径的方法
WO2018145631A1 (zh) 用于太阳能面板清扫机器人的定位装置及其定位方法
CN110882970A (zh) 一种具有光伏板检测组件的光伏清洁机器人
CN101674033A (zh) 高效聚光光伏太阳追踪装置和方法
CN113414157A (zh) 一种基于视觉slam的光伏清洁机器人
US10697669B2 (en) CSP tracking
CN112405552A (zh) 一种智能巡检机器人
CN111687857A (zh) 一种可识别光伏阵列放置方式的光伏清洁机器人
CN220986475U (zh) 一种用于检测光伏组件的感知定位装置
CN214133094U (zh) 一种适用于大型光伏电站组件的真空灰尘自动清理机
CN111687856A (zh) 一种光伏清洁机器人获取直线作业路径的方法
CN110030996A (zh) 用于确定自动驾驶设备位置和姿态的装置
CN102707731A (zh) 太阳能***
CN211070997U (zh) 一种具有光伏板检测组件的光伏清洁机器人
WO2021145141A1 (ja) 検査システム及び検査方法
CN115190373A (zh) 一种基于卫星遥感技术的农业环境及状态监控***和方法
CN205540301U (zh) 太阳能自动跟踪传感器及太阳能发电装置
CN216731823U (zh) 一种可识别光伏阵列放置方式的光伏清洁机器人
EP3680575B1 (en) Sensor assembly and improved tracking for csp systems
JP2005252163A (ja) ソーラーパネルの実装構造およびソーラーパネルの実装方法
CN118214361A (zh) 基于视觉slam与卫星导航***融合的光伏清洁机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920732

Country of ref document: EP

Kind code of ref document: A1