WO2022156345A1 - 端面耦合器和半导体器件 - Google Patents

端面耦合器和半导体器件 Download PDF

Info

Publication number
WO2022156345A1
WO2022156345A1 PCT/CN2021/131900 CN2021131900W WO2022156345A1 WO 2022156345 A1 WO2022156345 A1 WO 2022156345A1 CN 2021131900 W CN2021131900 W CN 2021131900W WO 2022156345 A1 WO2022156345 A1 WO 2022156345A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
face
region
sub
width
Prior art date
Application number
PCT/CN2021/131900
Other languages
English (en)
French (fr)
Inventor
梁寒潇
宋一品
周颖聪
巫海苍
毛文浩
宋时伟
孙维祺
俞清扬
Original Assignee
苏州极刻光核科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州极刻光核科技有限公司 filed Critical 苏州极刻光核科技有限公司
Publication of WO2022156345A1 publication Critical patent/WO2022156345A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler

Definitions

  • the present disclosure relates to semiconductor technology, and in particular, to an end-face coupler and a semiconductor device.
  • optical fiber and optical waveguide have very extensive and important applications in the fields of optical communication, microwave optoelectronics, laser beam deflection, wavefront modulation and so on.
  • End-face coupling is a commonly used coupling method between optical fibers and waveguides.
  • the coupling efficiency of the two is usually not high because the mode spot of the waveguide differs greatly from the mode spot of the light in the optical fiber in terms of size and shape.
  • an end-face coupler comprising: a substrate having a groove therein; an isolation layer on the substrate; and a cover layer, the cover a layer on the isolation layer; a first optical waveguide located over the groove and including a portion of the isolation layer and a portion of the capping layer; and a second optical waveguide, the first optical waveguide
  • Two optical waveguides are located in the cover layer and are formed symmetrically with respect to the central axis of the first optical waveguide
  • the second optical waveguide includes a first sub-optical waveguide and a second sub-optical waveguide
  • the second sub-optical waveguide is formed on and aligned with the first sub-optical waveguide.
  • the first sub-optical waveguide includes a first gradation region, a first linear region, a second gradation region and a flat plate region connected in sequence, and the width of the first gradation region and the width of the second gradation region are far from the
  • the first optical waveguide gradually increases in the direction close to the end face of the optical fiber, and the width of the first linear region remains unchanged.
  • the second sub-optical waveguide includes a third gradient region and a second linear region connected in sequence, the width of the third gradient region gradually increases in a direction away from the end face of the first optical waveguide, the The width of the second linear region remains unchanged.
  • a semiconductor device including the end-face coupler as described above.
  • FIG. 1 is a schematic three-dimensional structural diagram of an end-face coupler according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic three-dimensional structural diagram of a second optical waveguide according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a top view of an end-face coupler according to an exemplary embodiment of the present disclosure
  • FIG. 4 is a top view of an end-face coupler according to another exemplary embodiment of the present disclosure.
  • 5A-5E are schematic cross-sectional views of different positions of an end face coupler according to an exemplary embodiment of the present disclosure
  • FIG. 6 is a schematic three-dimensional structural diagram of an end-face coupler according to another exemplary embodiment of the present disclosure.
  • FIG. 7 is a schematic three-dimensional structural diagram of a second optical waveguide according to another exemplary embodiment of the present disclosure.
  • FIG. 8 is a top view of an end-face coupler according to another exemplary embodiment of the present disclosure.
  • FIG. 9 is a top view of an end-face coupler according to another exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or Sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure.
  • Terms such as “before” or “before” and “after” or “followed by” may similarly be used, for example, to indicate the order in which light travels through elements.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
  • Embodiments of the disclosure are described herein with reference to schematic illustrations (and intermediate structures) of idealized embodiments of the disclosure. As such, variations to the shapes of the illustrations are to be expected, eg, as a result of manufacturing techniques and/or tolerances. Accordingly, embodiments of the present disclosure should not be construed as limited to the particular shapes of the regions illustrated herein, but are to include deviations in shapes due, for example, to manufacturing. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the present disclosure.
  • the term “substrate” may refer to the substrate of a diced wafer, or may refer to the substrate of an un-diced wafer.
  • the terms chip and die are used interchangeably, unless such interchange would create a conflict.
  • the term “layer” includes films and should not be construed to indicate vertical or horizontal thickness unless otherwise specified.
  • the existing end-face coupler can realize the coupling between the optical fiber and the waveguide, the coupling efficiency of the two is not high because the mode spot of the optical waveguide is quite different from the mode spot of the light in the optical fiber in terms of size and shape.
  • the size of an optical waveguide can be about 100 nanometers, so its mode field is usually about 100 nanometers, but the mode field size of some optical fibers, such as flat-end fibers, is usually about 10 microns. Therefore, the difference between the two makes direct coupling inefficient.
  • Embodiments of the present disclosure provide an improved end-face coupler that facilitates mode spot matching between an optical waveguide and an optical fiber, thereby improving optical coupling efficiency.
  • FIG. 1 is a schematic three-dimensional structural diagram of an end-face coupler 100 according to an exemplary embodiment of the present disclosure.
  • the end-face coupler 100 may include: a substrate 11 , an isolation layer 12 on the substrate 11 , a cover layer 13 on the isolation layer 12 , a first optical waveguide 14 and a second optical waveguide 15 .
  • the substrate 11 has grooves therein.
  • the first optical waveguide 14 is located above the groove and includes a portion of the isolation layer 12 and a portion of the capping layer 13 .
  • the second optical waveguide 15 is located within the cover layer 13 and is formed symmetrically with respect to the central axis of the first optical waveguide 14 .
  • FIG. 2 is a schematic three-dimensional structural diagram of the second optical waveguide 15 according to an exemplary embodiment of the present disclosure.
  • the second optical waveguide 15 includes a first sub-optical waveguide 151 and a second sub-optical waveguide 152 .
  • the second sub-optical waveguide 152 is formed on and aligned with the first sub-optical waveguide 151 .
  • alignment refers to the positioning of the second sub-optical waveguide 152 relative to the first sub-optical waveguide 151 such that light can be transmitted from the first sub-optical waveguide 151 to the second sub-optical light Waveguide 152 .
  • the first sub-optical waveguide 151 and the second sub-optical waveguide 152 together constitute a ridge waveguide.
  • the central axis of the first sub-optical waveguide 151 along the light transmission direction substantially coincides with the central axis of the second sub-optical waveguide 152 along the light transmission direction.
  • the term “substantially coincident” encompasses "coincidence” and deviations from “coincidence” due to manufacturing process-induced errors.
  • the alignment method of the first sub-optical waveguide 151 and the second sub-optical waveguide 152 is not limited to this, and other methods can also be used, as long as light can be transmitted from the first sub-optical waveguide 151 to the second sub-optical waveguide 152 .
  • the first sub-optical waveguide 151 and the second sub-optical waveguide 152 may be formed through two photolithography processes, respectively.
  • FIG. 3 is a top view of the end face coupler 100 according to an exemplary embodiment of the present disclosure.
  • the first sub-optical waveguide 151 includes a first gradient region 1511 , a first linear region 1512 , a second gradient region 1513 and a flat plate region 1514 which are connected in sequence.
  • the width of the first gradient region 1511 and the width of the second gradient region 1513 gradually increase in the direction away from the end face of the first optical waveguide 14 near the optical fiber, and the width of the first linear region 1512 remains unchanged.
  • the second sub-optical waveguide 152 includes a third gradient region 1521 and a second linear region 1522 which are connected in sequence.
  • the width of the third gradient region 1521 gradually increases in the direction away from the end face of the first optical waveguide 14, and the width of the second linear region 1522 remains unchanged.
  • the mode spot matching between the optical waveguide and the optical fiber can be realized, thereby improving the optical coupling efficiency.
  • the second gradient region between the first linear region and the flat plate region it helps to improve the stability of the mode spot conversion.
  • the refractive index of the second optical waveguide 15 is greater than the refractive index of the isolation layer 12 and the refractive index of the cladding layer 13 .
  • the end coupler 100 further includes a plurality of support arms 16 .
  • a plurality of support arms 16 are symmetrically arranged on both sides of the first optical waveguide 14 for supporting the first optical waveguide 14 .
  • a pair of support arms 16 may be arranged at intervals to avoid the settling of the waveguide.
  • the first gradient region 1511 , the second gradient region 1513 and the third gradient region 1521 in the end coupler may be linear gradient regions or non-linear gradient regions.
  • a linear gradient can be selected as the gradient mode of the second gradient area 1513, as shown in FIG. 3 .
  • the linear gradient region can complete the template conversion process in a shorter distance while ensuring the conversion stability, reducing the loss.
  • nonlinear gradient can be selected as the gradient mode of the second gradient region 1513 , as shown in FIG. 4 .
  • the nonlinear gradient region can achieve a more gentle mode conversion process, which helps to reduce the coupling loss.
  • the width of the first linear region 1512 in the end face coupler is greater than or equal to the width of the widest portion of the first gradient region 1511 and less than or equal to the width of the narrowest portion of the second gradient region 1513 width.
  • the width of the first gradient region 1511 gradually increases, the light field gradually gathers, and the mode spot size decreases accordingly.
  • the normal optical waveguide transmission is performed in the first linear region 1512, it enters the second gradient region 1513. can be further reduced.
  • the second gradient region 1513 is equivalent to providing a buffer region to increase the stability of the mode spot conversion.
  • the light field enters the slab area 1514 , wherein the width of the slab area 1514 is greater than or equal to the width of the widest portion of the second gradient area 1513 .
  • the mode spot size can be stably reduced, thereby realizing the effective coupling between the waveguide mode field and the fiber mode field.
  • the width of the second linear region 1522 in the end-face coupler is greater than or equal to the width of the widest portion of the third gradient region 1521 to achieve conversion of the mode spot size and improve coupling efficiency.
  • the length of the first gradient region 1511 is greater than 5 ⁇ m
  • the length of the first linear region 1512 is greater than 5 ⁇ m
  • the length of the third graded region 1521 is greater than 5 ⁇ m.
  • the end face of the second linear region 1522 facing away from the fiber in the end face coupler is in the same plane as the end face of the plate region 1514 facing away from the fiber.
  • the end face of the first sub-optical waveguide 151 close to the optical fiber is separated from the end face of the first optical waveguide 14 close to the optical fiber by a first predetermined distance L1
  • the end face of the second sub-optical waveguide 152 close to the optical fiber is separated by a first predetermined distance L1.
  • the end face is separated from the end face of the first optical waveguide 14 close to the optical fiber by a second predetermined distance L2, and the second predetermined distance L2 is greater than the first predetermined distance L1. Therefore, the light has a certain buffering distance after entering the first sub-optical waveguide 151, which increases the stability of the mode spot conversion, thereby reducing the mode field loss.
  • the first predetermined distance L1 may be 0, that is, the end face of the first sub-optical waveguide 151 close to the optical fiber and the end face of the first optical waveguide 14 close to the optical fiber may be located on the same plane.
  • the distance between the end face of the first sub-optical waveguide 151 close to the optical fiber and the end face of the second sub-optical waveguide 152 close to the optical fiber is greater than 5 ⁇ m.
  • a long enough spacing can make the light stable enough before starting the next conversion, which is beneficial to increase the stability of the mode spot conversion.
  • the second predetermined distance L2 may also be equal to the first predetermined distance L1, that is, the end face of the second sub-optical waveguide 152 close to the optical fiber and the end face of the first sub-optical waveguide 151 close to the optical fiber are on the same plane.
  • 5A-5E are schematic cross-sectional views of the end-face coupler 100 at different positions according to an exemplary embodiment of the present disclosure.
  • FIG. 5A is a schematic cross-sectional view of the end-face coupler 100 viewed at A in FIG. 3 .
  • the width W1 of the end face of the first optical waveguide 14 close to the optical fiber is in the range of 1 ⁇ m to 20 ⁇ m, and the height H1 of the end face is in the range of 1 ⁇ m to 20 ⁇ m.
  • the above numerical range includes two an endpoint.
  • FIG. 5B is a schematic cross-sectional view of the end-face coupler 100 viewed at B in FIG. 3 .
  • the width W2 of the top of the second linear region 1522 is between
  • the included angle of the sidewall of the second linear region 1522 relative to the bottom of the second linear region 1522 is in the range of 20 ⁇ 90°, and the above-mentioned numerical range includes both endpoints.
  • the included angle between the sidewall of the second linear region 1522 and the bottom of the second linear region 1522 may be 20°.
  • the included angle between the sidewall of the second linear region 1522 and the bottom of the second linear region 1522 may be 90°.
  • FIG. 5C is a schematic cross-sectional view of the end-face coupler 100 taken at C in FIG. 3 .
  • FIG. 5D is a schematic cross-sectional view of the end-face coupler 100 taken at D in FIG. 3 .
  • the sum of the height of the first sub-optical waveguide 151 and the height of the second sub-optical waveguide 152 is in the range of 100 nm ⁇ 2 ⁇ m, and the above-mentioned numerical range includes both endpoints. .
  • FIG. 5E is a schematic cross-sectional view of the end-face coupler 100 taken at E in FIG. 3 .
  • FIGS. 6-9 illustrate an end-face coupler 600 according to another exemplary embodiment of the present disclosure. The following will be described in detail with reference to FIGS. 6-9 .
  • FIG. 6 is a schematic three-dimensional structural diagram of an end-face coupler 600 according to another exemplary embodiment of the present disclosure.
  • the end-face coupler 600 may include: a substrate 61 , an isolation layer 62 on the substrate 61 , a cover layer 63 on the isolation layer 62 , a first optical waveguide 64 and a second optical waveguide 65 .
  • the substrate 61 has grooves therein.
  • the first optical waveguide 64 is located above the groove and includes a portion of the isolation layer 62 and a portion of the capping layer 63 .
  • the second optical waveguide 65 is located within the cover layer 63 and is formed symmetrically with respect to the central axis of the first optical waveguide 64 .
  • FIG. 7 is a schematic three-dimensional structural diagram of the second optical waveguide 65 according to an exemplary embodiment of the present disclosure.
  • the second optical waveguide 65 includes a first sub-optical waveguide 651 and a second sub-optical waveguide 652 .
  • the second sub-optical waveguide 652 is formed on and aligned with the first sub-optical waveguide 651 .
  • alignment refers to the positioning of the second sub-optical waveguide 652 relative to the first sub-optical waveguide 651 such that light can be transmitted from the first sub-optical waveguide 651 to the second sub-optical light Waveguide 652.
  • the central axis of the first sub-optical waveguide 651 along the light transmission direction substantially coincides with the central axis of the second sub-optical waveguide 652 along the light transmission direction.
  • the term “substantially coincident” encompasses "coincidence” and deviations from “coincidence” due to manufacturing process-induced errors.
  • the alignment method of the first sub-optical waveguide 651 and the second sub-optical waveguide 652 is not limited to this, and other methods can also be used, as long as light can be transmitted from the first sub-optical waveguide 651 to the second sub-optical waveguide 652 .
  • the first sub-optical waveguide 651 and the second sub-optical waveguide 652 may be formed through two photolithography processes, respectively.
  • FIG. 8 is a top view of an end face coupler 600 according to another exemplary embodiment of the present disclosure.
  • the first sub-optical waveguide 651 includes a first gradation region 6511 , a first linear region 6512 , a second gradation region 6513 and a flat plate region 6514 which are connected in sequence.
  • the width of the first gradient region 6511 and the width of the second gradient region 6513 gradually increase in the direction away from the end face of the first optical waveguide 64 close to the optical fiber, and the width of the first linear region 6512 remains unchanged.
  • FIG. 8 different from the end-face coupler 100 shown in FIGS.
  • the first sub-optical waveguide 651 may further include a third linear region 6515 , which is connected to the third linear region 6515 .
  • the first graded region 6511 adjoins and is closer to the end face of the first optical waveguide 64 near the optical fiber than the first graded region 6511 .
  • the width of the third linear region 6515 remains unchanged and is less than or equal to the width of the narrowest portion of the first gradient region 6511 .
  • the first sub-optical waveguide 651 and the second sub-optical waveguide 652 may be respectively formed through two photolithography processes, wherein the patterns in the second photolithography process need to be aligned with the patterns in the first photolithography process. allow.
  • the third linear region in the first sub-optical waveguide 651 it is helpful to reduce the sensitivity of alignment errors, thereby reducing the requirement of alignment accuracy required for secondary lithography.
  • the third linear region with a certain length can increase the stability of light during the mode spot conversion process, thereby helping to improve the single-mode property of the mode spot conversion process.
  • the included angle between the sidewall of the third linear region 6515 and the bottom of the third linear region 6515 is in the range of 20° to 90°, and the above numerical range includes both endpoints.
  • the included angle between the sidewall of the third linear region 6515 and the bottom of the third linear region 6515 may be 20°.
  • the included angle between the sidewall of the third linear region 6515 and the bottom of the third linear region 6515 may be 90°.
  • the second sub-optical waveguide 652 includes a third gradient region 6521 and a second linear region 6522 connected in sequence.
  • the width of the third gradient region 6521 gradually increases in the direction away from the end face of the first optical waveguide 64 close to the optical fiber, and the width of the second linear region 6522 remains unchanged.
  • the second sub-optical waveguide 652 may further include a fourth linear region 6523 , which is connected to the fourth linear region 6523 .
  • the third graded region 6521 adjoins and is closer to the end face of the first optical waveguide 64 near the optical fiber than the third graded region 6521 .
  • the width of the fourth linear region 6523 remains unchanged and is less than or equal to the width of the narrowest portion of the third gradient region 6521 .
  • light entering the second sub-optical waveguide 652 from the first sub-optical waveguide 651 is a key point to control the conversion efficiency of the mode spot.
  • Adding a fourth linear region near the end face of the + fiber in the second sub-optical waveguide 652 can increase the stability of light during the mode spot conversion process, thereby helping to improve the single-mode property of the mode spot conversion process, and Reduce the mode spot conversion loss.
  • the first gradient region 6511, the second gradient region 6513 and the third gradient region 6521 may be linear gradient regions or non-linear gradient regions.
  • linear gradient can be selected as the gradient mode of the second gradient area 6513, as shown in FIG. 8 .
  • the linearly graded region can reduce the alignment accuracy requirement when manufacturing the second sub-optical waveguide 652 in the manufacturing process, thereby reducing the process cost.
  • nonlinear gradient can be selected as the gradient mode of the second gradient region 6513, as shown in FIG. 9 .
  • the nonlinear gradient region can achieve a more gentle mode spot transformation process, which helps to reduce coupling losses.
  • the end surface of the third linear region 6515 and the end surface of the fourth linear region 6523 may be one of a triangle, a trapezoid or a rectangle.
  • the top width of the third linear region 6515 and the top width of the fourth linear region 6523 may be 0.
  • the top width of the third linear region 6515 and the top width of the fourth linear region 6523 are both 0.
  • end face coupler according to the exemplary embodiment of the present disclosure has been described above. According to an exemplary embodiment of the present disclosure, there is also provided a semiconductor device that may include the above-described end-face coupler.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种端面耦合器(100,600)和半导体器件。端面耦合器(100,600)包括:衬底(11,61),衬底(11,61)中具有凹槽;隔离层(12,62),位于衬底(11,61)上;覆盖层(13,63),位于隔离层(12,62)上;第一光波导(14,64),位于凹槽上方并且包括隔离层(12,62)的一部分和覆盖层(13,63)的一部分;以及第二光波导(15,65),位于覆盖层(13,63)内并且关于第一光波导(14,64)的中心轴线对称地形成,第二光波导(15,65)包括第一子光波导(151,651)和第二子光波导(152,652),第二子光波导(152,652)形成于第一子光波导(151,651)上并且与第一子光波导(151,651)对准。第一子光波导(151,651)包括依次连接的第一渐变区域(1511,6511)、第一线性区域(1512,6512)、第二渐变区域(1513,6513)和平板区域(1514,6514)。第二子光波导(152,652)包括依次连接的第三渐变区域(1521,6521)和第二线性区域(1522,6522)。

Description

端面耦合器和半导体器件 技术领域
本公开涉及半导体技术,特别是涉及一种端面耦合器和半导体器件。
背景技术
光纤与光波导的耦合技术在光通信、微波光电子、激光束偏转、波前调制等领域都有着非常广泛和重要的应用。端面耦合是一种常用的光纤和波导的耦合方式。但是对于某些光波导而言,由于波导的模斑在尺寸和形状方面与光纤中光的模斑差异较大,通常两者的耦合效率并不高。
发明内容
提供一种缓解、减轻或者甚至消除上述问题中的一个或多个的机制将是有利的。
根据本公开的一些实施例,提供了一种端面耦合器,包括:衬底,所述衬底中具有凹槽;隔离层,所述隔离层位于所述衬底上;覆盖层,所述覆盖层位于所述隔离层上;第一光波导,所述第一光波导位于所述凹槽上方并且包括所述隔离层的一部分和所述覆盖层的一部分;以及第二光波导,所述第二光波导位于所述覆盖层内并且关于所述第一光波导的中心轴线对称地形成,所述第二光波导包括第一子光波导和第二子光波导,所述第二子光波导形成于所述第一子光波导上并且与所述第一子光波导对准。所述第一子光波导包括依次连接的第一渐变区域、第一线性区域、第二渐变区域和平板区域,所述第一渐变区域的宽度和所述第二渐变区域的宽度在远离所述第一光波导的靠近光纤的端面的方向上逐渐增大,所述第一线性区域的宽度保持不变。所述第二子光波导包括依次连接的第三渐变区域和第二线性区域,所述第三渐变区域的宽度在远离所述第一光波导的所述端面的方向上逐渐增大,所述第二线性区域的宽度保持不变。
根据本公开的一些实施例,提供了一种半导体器件,包括如上所述的端面耦合器。
根据在下文中所描述的实施例,本公开的这些和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。
附图说明
在下面结合附图对于示例性实施例的描述中,本公开的更多细节、特征和优点被公开,在附图中:
图1是根据本公开示例性实施例的端面耦合器的立体结构示意图;
图2是根据本公开示例性实施例的第二光波导的立体结构示意图;
图3是根据本公开示例性实施例的端面耦合器的俯视图;
图4是根据本公开另一示例性实施例的端面耦合器的俯视图;
图5A-5E是根据本公开示例性实施例的端面耦合器的不同位置的剖面示意图;
图6是根据本公开另一示例性实施例的端面耦合器的立体结构示意图;
图7是根据本公开另一示例性实施例的第二光波导的立体结构示意图;
图8是根据本公开另一示例性实施例的端面耦合器的俯视图;以及
图9是根据本公开另一示例性实施例的端面耦合器的俯视图。
具体实施方式
将理解的是,尽管术语第一、第二、第三等等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分相区分。因此,下面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。
诸如“在…下面”、“在…之下”、“较下”、“在…下方”、“在…之上”、“较上”等等之类的空间相对术语在本文中可以为了便于描述而用来描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系。将理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”或“在其他元件或特征下面”或“在其他元件或特征下方”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在…之下”和“在…下方”可以涵盖在…之上和在…之下的取向两者。诸如“在…之前”或“在…前”和“在…之后”或“接着是”之类的术语可以类似地例如用来指示光穿过元件所依的次序。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是,当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。
本文中使用的术语仅出于描述特定实施例的目的并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述及特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合,并且短语“A和B中的至少一个”是指仅A、仅B、或A和B两者。
将理解的是,当元件或层被称为“在另一个元件或层上”、“连接到另一个元件或层”、“耦合到另一个元件或层”或“邻近另一个元件或层”时,其可以直接在另一个元件或层上、直接连接到另一个元件或层、直接耦合到另一个元件或层或者直接邻近另一个元件或层,或者可以存在中间元件或层。相反,当元件被称为“直接在另一个元件或层上”、“直接连接到另一个元件或层”、“直接耦合到另一个元件或层”、“直接邻近另一个元件或层”时,没有中间元件或层存在。然而,在任何情况下“在…上”或“直接在…上”都不应当被解释为要求一个层完全覆盖下面的层。
本文中参考本公开的理想化实施例的示意性图示(以及中间结构)描述本公开的实施例。正因为如此,应预期例如作为制造技术和/或公差的结果而对于图示形状的变化。因此,本公开的实施例不应当被解释为限于本文中图示的区的特定形状,而应包括例如由于制造导致的形状偏差。因此,图中图示的区本质上是示意性的,并且其形状不意图图示器件的区的实际形状并且不意图限制本公开的范围。
除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。将进一步理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
如本文使用的,术语“衬底”可以表示经切割的晶圆的衬底,或者可以指示未经切割的晶圆的衬底。类似地,术语芯片和裸片可以互换使用,除非这种互换会引起冲突。应当理解,术语“层”包括薄膜,除非另有说明,否则不应当解释为指示垂直或水平厚度。
尽管已有的端面耦合器能够实现光纤和波导之间的耦合,但由于光波导的模斑在尺寸和形状方面与光纤中光的模斑差异较大,所以两者的耦合效率并不高。例如,光波导的尺寸可以为百纳米左右,所以其模场通常也在百纳米左右,但是某些光纤、比如平头光纤的模场尺寸通常在十微米左右。因此,两者之间的差异使得直接耦合的效率很低。
本公开的实施例提供了一种改进的端面耦合器,其有助于实现光波导与光纤之间的模斑匹配,从而提高光耦合效率。
图1是根据本公开示例性实施例的端面耦合器100的立体结构示意图。如图1所示,端面耦合器100可以包括:衬底11,位于衬底11上的隔离层12,位于隔离层12上的覆盖层13,第一光波导14和第二光波导15。衬底11中具有凹槽。第一光波导14位于凹槽上方并且包括隔离层12的一部分和覆盖层13的一部分。第二光波导15位于覆盖层13内并且关于第一光波导14的中心轴线对称地形成。
图2是根据本公开示例性实施例的第二光波导15的立体结构示意图。如图2所示,第二光波导15包括第一子光波导151和第二子光波导152。第二子光波导152形成于第一子光波导151上并且与第一子光波导151对准。应当理解的是,此处所描述的“对准”的含义,是指第二子光波导152相对于第一子光波导151定位成使得光能够从第一子光波导151传输至第二子光波导152。
根据一些示例性实施例,第一子光波导151和第二子光波导152共同构成脊状波导。
根据一些示例性实施例,第一子光波导151的沿着光传输方向的中心轴线与第二子光波导152的沿着光传输方向的中心轴线基本上重合。术语“基本上重合”涵盖“重合”和由于制造工艺引起的误差而所致的相对于“重合”的偏离。当然,第一子光波导151与第二子光波导152的对准方式不限于此,也可以采用其它的方式,只要光能够从第一子光波导151传输至第二子光波导152即可。
示例性地,第一子光波导151和第二子光波导152可以分别经由两次光刻工艺而形成。
图3是根据本公开示例性实施例的端面耦合器100的俯视图。如图3所示,第一子光波导151包括依次连接的第一渐变区域1511、第一线性区域1512、第二渐变区域1513和平板区域1514。第一渐变区域1511的宽度和第二渐变区域1513的宽度在远离第一光波导14的靠近光纤的端面的方向上逐渐增大,第一线性区域1512的宽度保持不变。第二子光波导152包括依次连接的第三渐变区域1521和第二线性区域1522。第三渐变区域 1521的宽度在远离第一光波导14的所述端面的方向上逐渐增大,第二线性区域1522的宽度保持不变。
根据本公开实施例的端面耦合器100,能够实现光波导与光纤之间的模斑匹配,从而提高光耦合效率。特别是,通过在第一线性区域与平板区域之间设置第二渐变区域,有助于提高模斑转换的稳定性。
继续参考图1,在一些实施例中,第二光波导15的折射率大于隔离层12的折射率和覆盖层13的折射率。通过使第二光波导15的折射率比第二光波导15的上下两侧材料的折射率大,使得光能够集中在第二光波导15中有效地传输,从而起到有效导波的作用。
继续参考图1,在一些实施例中,端面耦合器100还包括多个支撑臂16。多个支撑臂16对称地设置在第一光波导14的两侧,以用于支撑第一光波导14。示例性的,可以根据需求,每隔一段距离便设置一对支撑臂16,以避免波导的沉降。
在一些实施例中,端面耦合器中的第一渐变区域1511、第二渐变区域1513和第三渐变区域1521可以为线性渐变区域或者非线性渐变区域。
示例性地,以第二渐变区域1513为例,可以选择线性渐变作为第二渐变区域1513的渐变方式,如图3所示。线性渐变区域能够在保证转换稳定性的同时,以更短的距离完成模板转换的过程,减少损耗。
示例性地,以第二渐变区域1513为例,可以选择非线性渐变作为第二渐变区域1513的渐变方式,如图4所示。非线性渐变区域能够实现更加缓和的模斑转换过程,有助于减少耦合损耗。
继续参考图3,在一些实施例中,端面耦合器中第一线性区域1512的宽度大于或者等于第一渐变区域1511的最宽部分的宽度,并且小于或者等于第二渐变区域1513的最窄部分的宽度。随着第一渐变区域1511的宽度的逐渐增大,光场逐渐聚集,模斑尺寸随之减小,在第一线性区域1512进行正常光波导传输后,进入第二渐变区域1513,模斑尺寸可以进一步减小。第二渐变区域1513相当于提供一段缓冲区域,以增加模斑转换的稳定性。最终,光场进入平板区域1514,其中,平板区域1514的宽度大于或者等于第二渐变区域1513的最宽部分的宽度。通过在第一线性区域1512与平板区域1514之间设置第二渐变区域1513,有助于模斑尺寸稳定地缩小,从而实现波导模场与光纤模场的有效耦合。
继续参考图3,在一些实施例中,端面耦合器中第二线性区域1522的宽度大于或者等于第三渐变区域1521的最宽部分的宽度,以实现模斑尺寸的转换,并提高耦合效率。
示例性地,第一渐变区域1511的长度大于5μm,并且,第一线性区域1512的长度大于5μm。示例性地,第三渐变区域1521的长度大于5μm。通过使第一渐变区域1511、第一线性区域1512和第三渐变区域1521的长度超过预定值,例如5μm,有助于实现模场的平缓变换。
继续参考图3,在一些实施例中,端面耦合器中第二线性区域1522的远离光纤的端面与平板区域1514的远离光纤的端面位于同一平面上。
继续参考图3,在一些实施例中,第一子光波导151的靠近光纤的端面与第一光波导14的靠近光纤的端面相距第一预定距离L1,第二子光波导152的靠近光纤的端面与第一光波导14的靠近光纤的端面相距第二预定距离L2,第二预定距离L2大于第一预定距离L1。由此,使得光在进入第一子光波导151后具有一定的缓冲距离,增加模斑转换的稳定性,从而减少模场损耗。
根据一些实施例,第一预定距离L1可以为0,即,第一子光波导151的靠近光纤的端面与第一光波导14的靠近光纤的端面可以位于同一平面上。
示例性的,第一子光波导151的靠近光纤的端面与第二子光波导152的靠近光纤的端面之间的距离大于5μm。足够长的间距可以使光足够稳定后再开始下一次转换,有利于增加模斑转换的稳定性。
根据一些实施例,第二预定距离L2也可以等于第一预定距离L1,即,第二子光波导152的靠近光纤的端面与第一子光波导151的靠近光纤的端面位于同一平面上。
图5A-5E是根据本公开示例性实施例的端面耦合器100在不同位置的剖面示意图。
图5A是在图3中A处观察端面耦合器100得到的剖面示意图。
如图5A所示,在一些实施例中,第一光波导14的靠近光纤的端面的宽度W1在1μm~20μm的范围内,端面的高度H1在1μm~20μm的范围内,上述数值范围包括两个端点。通过调整第一光波导14的尺寸,可以控制光在第一光波导14中的传输。
图5B是在图3中B处观察端面耦合器100得到的剖面示意图。
如图5B所示,在一些实施例中,第二线性区域1522的顶部的宽度W2在
100μm~4μm的范围内,上述数值范围包括两个端点。
根据一些实施例,第二线性区域1522的侧壁相对于第二线性区域1522的底部的夹角在20~90°的范围内,上述数值范围包括两个端点。如,第二线性区域1522的侧壁相对于第二线性区域1522的底部的夹角可以为20°。如,第二线性区域1522的侧壁相对于第二线性区域1522的底部的夹角可以为90°。
图5C是在图3中C处截取得到的端面耦合器100的剖面示意图。
图5D是在图3中D处截取得到的端面耦合器100的剖面示意图。
如图5D所示,在一些实施例中,第一子光波导151的高度和第二子光波导152的高度的总和在100nm~2μm的范围内,上述数值范围包括两个端点。。
图5E是在图3中E处截取得到的端面耦合器100的剖面示意图。
图6-图9示出了根据本公开另一示例性实施例的端面耦合器600。以下将参照图6-图9具体描述。
图6是根据本公开另一示例性实施例的端面耦合器600的立体结构示意图。如图6所示,端面耦合器600可以包括:衬底61,位于衬底61上的隔离层62,位于隔离层62上的覆盖层63,第一光波导64和第二光波导65。衬底61中具有凹槽。第一光波导64位于凹槽上方并且包括隔离层62的一部分和覆盖层63的一部分。第二光波导65位于覆盖层63内并且关于第一光波导64的中心轴线对称地形成。
图7是根据本公开示例性实施例的第二光波导65的立体结构示意图。如图2所示,第二光波导65包括第一子光波导651和第二子光波导652。第二子光波导652形成于第一子光波导651上并且与第一子光波导651对准。应当理解的是,此处所描述的“对准”的含义,是指第二子光波导652相对于第一子光波导651定位成使得光能够从第一子光波导651传输至第二子光波导652。
根据一些示例性实施例,第一子光波导651的沿着光传输方向的中心轴线与第二子光波导652的沿着光传输方向的中心轴线基本上重合。术语“基本上重合”涵盖“重合”和由于制造工艺引起的误差而所致的相对于“重合”的偏离。当然,第一子光波导651与第二子光波导652的对准方式不限于此,也可以采用其它的方式,只要光能够从第一子光波导651传输至第二子光波导652即可。
示例性地,第一子光波导651和第二子光波导652可以分别经由两次光刻工艺而形成。
图8是根据本公开另一示例性实施例的端面耦合器600的俯视图。如图8所示,第一子光波导651包括依次连接的第一渐变区域6511、第一线性区域6512、第二渐变区域6513和平板区域6514。第一渐变区域6511的宽度和第二渐变区域6513的宽度在远离第一光波导64的靠近光纤的端面的方向上逐渐增大,第一线性区域6512的宽度保持不变。如图8所示,与如图1至图4所示的端面耦合器100不同,在端面耦合器600中,第一子光波导651还可以包括第三线性区域6515,第三线性区域6515与第一渐变区域6511 邻接并且比第一渐变区域6511更靠近第一光波导64的靠近光纤的端面。第三线性区域6515的宽度保持不变并且小于或者等于第一渐变区域6511的最窄部分的宽度。
示例性的,第一子光波导651和第二子光波导652可以分别经由两次光刻工艺而形成,其中第二次光刻工艺中的图案需要与第一次光刻工艺中的图案对准。通过在第一子光波导651中增加第三线性区域,有助于降低对准误差的敏感度,从而降低二次光刻所需的对准精度的要求。另外,一定长度的第三线性区域能够增加光在进行模斑转换过程中的稳定性,由此有助于提高模斑转换过程的单模性。
在一些实施例中,第三线性区域6515的侧壁相对于第三线性区域6515的底部的夹角在20~90°的范围内,上述数值范围包括两个端点。如,第三线性区域6515的侧壁相对于第三线性区域6515的底部的夹角可以为20°。如,第三线性区域6515的侧壁相对于第三线性区域6515的底部的夹角可以为90°。
继续参考图8,在一些实施例中,第二子光波导652包括依次连接的第三渐变区域6521和第二线性区域6522。第三渐变区域6521的宽度在远离第一光波导64的靠近光纤的端面的方向上逐渐增大,第二线性区域6522的宽度保持不变。如图8所示,与如图1至图4所示的端面耦合器100不同,在端面耦合器600中,第二子光波导652还可以包括第四线性区域6523,第四线性区域6523与第三渐变区域6521邻接并且比第三渐变区域6521更靠近第一光波导64的靠近光纤的端面。第四线性区域6523的宽度保持不变并且小于或者等于第三渐变区域6521的最窄部分的宽度。
在第二光波导中,光从第一子光波导651进入第二子光波导652是一处控制模斑转换效率的关键点。在第二子光波导652中靠近+光纤的端面处增加第四线性区域,能够增加光在进行模斑转化过程中的稳定性,由此有助于提高模斑转换过程的单模性,并降低模斑转换损耗。
在端面耦合器600中,第一渐变区域6511、第二渐变区域6513和第三渐变区域6521可以为线性渐变区域或者非线性渐变区域。
示例性地,以第二渐变区域6513为例,可以选择线性渐变作为第二渐变区域6513的渐变方式,如图8所示。线性渐变区域能够降低工艺制作中在制作第二子光波导652时所需的对准精度要求,从而降低工艺成本。
示例性地,以第二渐变区域6513为例,可以选择非线性渐变作为第二渐变区域6513的渐变方式,如图9所示。非线性渐变区域能够实现更加缓和的模斑转化过程,有助于减少耦合损耗。
在一些实施例中,第三线性区域6515的端面和第四线性区域6523的端面可以为三角形,梯形或者矩形中的一种。当第三线性区域6515的端面和第四线性区域6523的端面中的至少一个端面为三角形时,即,可以使第三线性区域6515的顶部宽度为0,第四线性区域6523的顶部宽度为0,或者使第三线性区域6515的顶部宽度和第四线性区域6523的顶部宽度均为0。
上述已经对于根据本公开示例性实施例的端面耦合器进行了说明。根据本公开的示例性实施例,还提供了一种半导体器件,该半导体器件可以包括上述端面耦合器。
虽然在附图和和前面的描述中已经详细地说明和描述了本公开,但是这样的说明和描述应当被认为是说明性的和示意性的,而非限制性的;本公开不限于所公开的实施例。通过研究附图、公开内容和所附的权利要求书,本领域技术人员在实践所要求保护的主题时,能够理解和实现对于所公开的实施例的变型。在权利要求书中,词语“包括”不排除未列出的其他元件或步骤,不定冠词“一”或“一个”不排除多个,并且术语“多个”是指两个或两个以上。在相互不同的从属权利要求中记载了某些措施的仅有事实并不表明这些措施的组合不能用来获益。

Claims (21)

  1. 一种端面耦合器,包括:
    衬底,所述衬底中具有凹槽;
    隔离层,所述隔离层位于所述衬底上;
    覆盖层,所述覆盖层位于所述隔离层上;
    第一光波导,所述第一光波导位于所述凹槽上方并且包括所述隔离层的一部分和所述覆盖层的一部分;以及
    第二光波导,所述第二光波导位于所述覆盖层内并且关于所述第一光波导的中心轴线对称地形成,所述第二光波导包括第一子光波导和第二子光波导,所述第二子光波导形成于所述第一子光波导上并且与所述第一子光波导对准;
    其中,所述第一子光波导包括依次连接的第一渐变区域、第一线性区域、第二渐变区域和平板区域,所述第一渐变区域的宽度和所述第二渐变区域的宽度在远离所述第一光波导的靠近光纤的端面的方向上逐渐增大,所述第一线性区域的宽度保持不变,并且
    其中,所述第二子光波导包括依次连接的第三渐变区域和第二线性区域,所述第三渐变区域的宽度在远离所述第一光波导的所述端面的方向上逐渐增大,所述第二线性区域的宽度保持不变。
  2. 根据权利要求1所述的端面耦合器,其中,所述第一渐变区域、所述第二渐变区域和所述第三渐变区域为线性渐变区域或者非线性渐变区域。
  3. 根据权利要求1所述的端面耦合器,其中,所述第一线性区域的宽度大于或者等于所述第一渐变区域的最宽部分的宽度,并且小于或者等于所述第二渐变区域的最窄部分的宽度,并且其中,所述平板区域的宽度大于或者等于所述第二渐变区域的最宽部分的宽度。
  4. 根据权利要求1所述的端面耦合器,其中,所述第二线性区域的宽度大于或者等于所述第三渐变区域的最宽部分的宽度。
  5. 根据权利要求1所述的端面耦合器,其中,所述第二线性区域的顶部的宽度在100nm~4μm的范围内。
  6. 根据权利要求1所述的端面耦合器,其中,所述第二线性区域的侧壁相对于所述第二线性区域的底部的夹角在20~90°的范围内。
  7. 根据权利要求1所述的端面耦合器,其中,所述第一渐变区域的长度大于5μm,并且其中,所述第一线性区域的长度大于5μm。
  8. 根据权利要求1所述的端面耦合器,其中,所述第三渐变区域的长度大于5μm。
  9. 根据权利要求1所述的端面耦合器,其中,所述第二线性区域的远离所述光纤的端面与所述平板区域的远离所述光纤的端面位于同一平面上。
  10. 根据权利要求1-9中任一项所述的端面耦合器,其中,
    所述第一子光波导还包括第三线性区域,所述第三线性区域与所述第一渐变区域邻接并且比所述第一渐变区域更靠近所述第一光波导的所述端面,并且
    其中,所述第三线性区域的宽度保持不变并且小于或者等于所述第一渐变区域的最窄部分的宽度。
  11. 根据权利要求10所述的端面耦合器,其中,
    所述第三线性区域的侧壁相对于所述第三线性区域的底部的夹角在20~90°的范围内。
  12. 根据权利要求10所述的端面耦合器,其中,
    所述第二子光波导还包括第四线性区域,所述第四线性区域与所述第三渐变区域邻接并且比所述第三渐变区域更靠近所述第一光波导的所述端面,并且
    其中,所述第四线性区域的宽度保持不变并且小于或者等于所述第三渐变区域的最窄部分的宽度。
  13. 根据权利要求12所述的端面耦合器,其中,所述第三线性区域的端面和所述第四线性区域的端面为三角形,梯形或者矩形中的一种。
  14. 根据权利要求1-9中任一项所述的端面耦合器,其中,
    所述第一子光波导的靠近光纤的端面与所述第一光波导的所述端面相距第一预定距离,所述第二子光波导的靠近光纤的端面与所述第一光波导的所述端面相距第二预定距离,所述第二预定距离大于或者等于所述第一预定距离。
  15. 根据权利要求14所述的端面耦合器,其中,
    所述第一预定距离为0。
  16. 根据权利要求14所述的端面耦合器,其中,
    所述第一子光波导的所述端面与所述第二子光波导的所述端面之间的距离大于5μm。
  17. 根据权利要求1-9中任一项所述的端面耦合器,其中,
    所述第一子光波导的高度和所述第二子光波导的高度的总和在100nm~2μm的范围内。
  18. 根据权利要求1-9中任一项所述的端面耦合器,其中,
    所述第二光波导的折射率大于所述隔离层的折射率和所述覆盖层的折射率。
  19. 根据权利要求1-9中任一项所述的端面耦合器,还包括:
    多个支撑臂,所述多个支撑臂对称地设置在所述第一光波导的两侧,以用于支撑所述第一光波导。
  20. 根据权利要求1-9中任一项所述的端面耦合器,其中,
    所述第一光波导的靠近光纤的所述端面的宽度在1μm~20μm的范围内,所述端面的高度在1μm~20μm的范围内。
  21. 一种半导体器件,包括:
    如权利要求1至20中任一项所述的端面耦合器。
PCT/CN2021/131900 2021-01-20 2021-11-19 端面耦合器和半导体器件 WO2022156345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110077861.XA CN112904481B (zh) 2021-01-20 2021-01-20 端面耦合器和半导体器件
CN202110077861.X 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022156345A1 true WO2022156345A1 (zh) 2022-07-28

Family

ID=76118680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131900 WO2022156345A1 (zh) 2021-01-20 2021-11-19 端面耦合器和半导体器件

Country Status (2)

Country Link
CN (1) CN112904481B (zh)
WO (1) WO2022156345A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116840987A (zh) * 2023-08-30 2023-10-03 深圳市速腾聚创科技有限公司 端面耦合器、光芯片、激光雷达及可移动设备
CN116840972A (zh) * 2023-08-30 2023-10-03 深圳市速腾聚创科技有限公司 光芯片、激光雷达及可移动设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904481B (zh) * 2021-01-20 2022-09-02 苏州极刻光核科技有限公司 端面耦合器和半导体器件
CN115877509A (zh) * 2021-09-28 2023-03-31 苏州极刻光核科技有限公司 模斑转换结构和光子器件
CN115113348B (zh) * 2022-06-30 2024-01-23 华进半导体封装先导技术研发中心有限公司 一种硅光器件及其制备方法
CN117950110A (zh) * 2022-10-19 2024-04-30 苏州极刻光核科技有限公司 模斑转换结构和光子器件
CN115598764B (zh) * 2022-11-28 2023-03-14 之江实验室 端面耦合器、光电子芯片和端面耦合器的制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159975A (zh) * 2008-09-17 2011-08-17 英特尔公司 用于在硅光子芯片与光纤之间有效耦合的方法和设备
US20130156370A1 (en) * 2011-12-16 2013-06-20 Electronics And Telecommunications Research Institute Optical coupling devices and silicon photonics chips having the same
US20180348432A1 (en) * 2011-08-30 2018-12-06 Skorpios Technologies, Inc. Integrated photonics mode expander
CN111367014A (zh) * 2020-03-12 2020-07-03 电子科技大学 一种用于光互联的具有模斑转换功能的片上边缘耦合器
CN111665592A (zh) * 2020-05-07 2020-09-15 中国电子科技集团公司第五十五研究所 一种lnoi悬空模斑转换器及其工艺实现方法
CN211928243U (zh) * 2020-03-02 2020-11-13 苏州旭创科技有限公司 一种半导体光耦合结构和硅光集成芯片
CN112904481A (zh) * 2021-01-20 2021-06-04 苏州极刻光核科技有限公司 端面耦合器和半导体器件
CN113093333A (zh) * 2021-04-23 2021-07-09 南京刻得不错光电科技有限公司 模斑转换器和光子器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164838B2 (en) * 2005-02-15 2007-01-16 Xponent Photonics Inc Multiple-core planar optical waveguides and methods of fabrication and use thereof
US8326100B2 (en) * 2010-09-27 2012-12-04 Alcatel Lucent Low loss broadband fiber coupler to optical waveguide
JP6107948B2 (ja) * 2013-06-07 2017-04-05 日本電気株式会社 導波モード変換素子、偏波分離器及び光デバイス
CN109031518B (zh) * 2018-09-06 2020-01-03 南通赛勒光电科技有限公司 一种悬臂型端面耦合器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159975A (zh) * 2008-09-17 2011-08-17 英特尔公司 用于在硅光子芯片与光纤之间有效耦合的方法和设备
US20180348432A1 (en) * 2011-08-30 2018-12-06 Skorpios Technologies, Inc. Integrated photonics mode expander
US20130156370A1 (en) * 2011-12-16 2013-06-20 Electronics And Telecommunications Research Institute Optical coupling devices and silicon photonics chips having the same
CN211928243U (zh) * 2020-03-02 2020-11-13 苏州旭创科技有限公司 一种半导体光耦合结构和硅光集成芯片
CN111367014A (zh) * 2020-03-12 2020-07-03 电子科技大学 一种用于光互联的具有模斑转换功能的片上边缘耦合器
CN111665592A (zh) * 2020-05-07 2020-09-15 中国电子科技集团公司第五十五研究所 一种lnoi悬空模斑转换器及其工艺实现方法
CN112904481A (zh) * 2021-01-20 2021-06-04 苏州极刻光核科技有限公司 端面耦合器和半导体器件
CN113093333A (zh) * 2021-04-23 2021-07-09 南京刻得不错光电科技有限公司 模斑转换器和光子器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116840987A (zh) * 2023-08-30 2023-10-03 深圳市速腾聚创科技有限公司 端面耦合器、光芯片、激光雷达及可移动设备
CN116840972A (zh) * 2023-08-30 2023-10-03 深圳市速腾聚创科技有限公司 光芯片、激光雷达及可移动设备
CN116840987B (zh) * 2023-08-30 2023-12-12 深圳市速腾聚创科技有限公司 光芯片、激光雷达及可移动设备
CN116840972B (zh) * 2023-08-30 2023-12-12 深圳市速腾聚创科技有限公司 光芯片、激光雷达及可移动设备

Also Published As

Publication number Publication date
CN112904481B (zh) 2022-09-02
CN112904481A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022156345A1 (zh) 端面耦合器和半导体器件
Marchetti et al. Coupling strategies for silicon photonics integrated chips
TWI627457B (zh) 光纖至晶片之光學耦合器
WO2017137007A1 (en) Waveguide structure for oprical coupling
WO2021175082A1 (zh) 一种模斑变换器及硅光集成芯片
WO2022088228A1 (zh) 端面耦合器和半导体器件
US8412007B2 (en) 3-D waveguide coupling device capable of two-step coupling and manufacture method thereof
WO2015011845A1 (ja) 層間光波結合デバイス
CN109407229B (zh) 一种端面耦合器
CA2734614A1 (en) Optical mode transformer, in particular for coupling an optical fiber and a high-index contrast waveguide
WO2022222599A1 (zh) 模斑转换器和光子器件
CN111367014B (zh) 一种用于光互联的具有模斑转换功能的片上边缘耦合器
WO2022135095A1 (zh) 端面耦合器及其制造方法
US12019270B2 (en) Multi-layer silicon photonics apparatus
CN112987183B (zh) 层间耦合器
US20200132931A1 (en) Relaxed tolerance adiabatic coupler for optical interconnects
US11520175B2 (en) Active region-less modulator and method
WO2020134651A1 (zh) 波导芯层、模斑转换器、硅光器件及光通信设备
CN115857091A (zh) 一种铌酸锂薄膜mmi起偏分束器
CN114488405B (zh) 一种双波导绝热模式耦合器的设计方法
CN114217380B (zh) 一种端面耦合器及其制备方法
CN113376743B (zh) 一种基于长周期光栅的模斑转换器
WO2021108967A1 (zh) 模斑转换器及其制备方法、硅光器件和光通信设备
US20200026005A1 (en) 3D Funnel Photonic Structure For Fiber To Waveguide Coupling
JPH07128531A (ja) 光集積回路およびその作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920721

Country of ref document: EP

Kind code of ref document: A1