WO2022156171A1 - 用于电动汽车的电压转换装置方法及电驱动*** - Google Patents

用于电动汽车的电压转换装置方法及电驱动*** Download PDF

Info

Publication number
WO2022156171A1
WO2022156171A1 PCT/CN2021/107558 CN2021107558W WO2022156171A1 WO 2022156171 A1 WO2022156171 A1 WO 2022156171A1 CN 2021107558 W CN2021107558 W CN 2021107558W WO 2022156171 A1 WO2022156171 A1 WO 2022156171A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
input terminal
switch
input
inverter unit
Prior art date
Application number
PCT/CN2021/107558
Other languages
English (en)
French (fr)
Inventor
甘银华
吴杰
张蕊
佟明智
罗李求
Original Assignee
蔚来汽车科技(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车科技(安徽)有限公司 filed Critical 蔚来汽车科技(安徽)有限公司
Publication of WO2022156171A1 publication Critical patent/WO2022156171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to the technical field of electric vehicles, and more particularly, to a voltage conversion device for electric vehicles.
  • the mainstream electric vehicle high-voltage system platforms on the market are all 400V.
  • the next-generation electric vehicle high-voltage system platform is gradually transitioning from 400V to 800V.
  • a voltage conversion device for an electric vehicle comprising: an inverter unit including three batches of multiple switch assemblies for supplying three-phase current required by an electric motor of the electric vehicle, and a third an input terminal and a second input terminal; a third input terminal, configurable to connect with the three-phase output terminal of the inverter unit; wherein the inverter unit is configured to: the input terminal will be input via the third input terminal and the second input terminal The second DC voltage is converted into a first DC voltage to provide the first DC voltage between the first input terminal and the second input terminal.
  • the voltage conversion device further includes: a first switch group configured to respectively couple the three-phase output terminal of the inverter unit with the three windings of the motor; and a second switch group configured to connect the third input terminal are respectively coupled with the three-phase output terminals of the inverter unit.
  • each batch of switch assemblies in the three batches of multiple switch assemblies respectively comprises a first switch assembly, a second switch assembly, a third switch assembly and a fourth switch assembly connected in series with each other, and each switch assembly consists of a triode and a The diodes are connected in parallel.
  • the first switch assembly is coupled to the first input end; the fourth switch assembly is coupled to the second input end; the connection point between the second switch assembly and the third switch assembly is Coupled to one phase output of the inverter unit.
  • an electric drive system comprising the voltage conversion device as described above.
  • a charging and driving system for an electric vehicle comprising: a battery; one or more accessories; the electric driving system as described above; and a plurality of switch controls configured to Perform on-off control between the charging port and the electric drive system to achieve: when the first direct current voltage is input to the charging port, the first direct current voltage is supplied to the battery and accessories; when the second direct current voltage is input to the charging port, the electric drive is performed The system boosts the second DC voltage to the first DC voltage for supply to the battery and accessories.
  • the voltage conversion device provided by the present invention does not require a complex DC/DC converter, but can be compatible with both 400V and 800V DC charging equipment directly through the inverter unit and different DC voltage input terminals, which saves the cost of electric vehicles.
  • the charging cost improves the economy of vehicle manufacturing, reduces the weight of the vehicle, and is conducive to optimizing the layout of the vehicle.
  • FIG. 1 shows a circuit of a voltage conversion device for an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 shows the connection state of the circuit of FIG. 1 when the electric vehicle is connected to the 800V charging pile.
  • FIG. 3 shows the connection state of the circuit of FIG. 1 when the electric vehicle is connected to a 400V charging pile.
  • Coupled is defined to mean directly connected to a component or indirectly connected to a component via another component.
  • One embodiment of the present invention provides a voltage conversion apparatus for an electric vehicle, which includes an inverter unit and a third input terminal outside the inverter unit.
  • the inverter unit includes three batches of multiple switch assemblies for supplying three-phase currents required by the electric motor of the electric vehicle, and a first input terminal T1 and a second input terminal T2.
  • the third input terminal T3 of the voltage conversion device is configurable with the three-phase output terminals A, B, C of the inverter unit.
  • the three input terminals can be used to receive DC voltage input, and the three-phase currents I A , I B , and I C required by the motor can be output through the inversion operation of the inverter unit.
  • the inverter unit specifically includes a first batch of multiple switch components: transistors Q11 , Q12 , Q13 , Q14 and diodes D11 , D12 , D13 , D14 . These transistors and diodes are connected in parallel.
  • the transistor Q11 and the diode D11 are connected in parallel to form the first switch assembly.
  • the transistor Q12 and the diode D12 are connected in parallel to form a second switch component.
  • the transistor Q13 and the diode D13 are connected in parallel to form a third switch component.
  • the transistor Q14 and the diode D14 are connected in parallel to form a fourth switch component.
  • the first, second, third and fourth switch assemblies are sequentially connected in series.
  • the inverter unit also includes a second plurality of switching components: transistors Q21, Q22, Q23, Q24, diodes D21, D22, D23, D24.
  • the transistor Q21 and the diode D21 are connected in parallel to form the first switch assembly.
  • the transistor Q22 and the diode D22 are connected in parallel to form a second switch component, and so on.
  • the first, second, third and fourth switch assemblies are connected in series in sequence.
  • the transistor Q31 and the diode D31 are connected in parallel to form a first switch component.
  • the transistor Q32 and the diode D32 are connected in parallel to form a second switch component, and so on.
  • the inverter unit can convert the input DC voltage into three-phase current for driving the motor.
  • the three-phase output terminals A, B, and C of the inverter unit and the third input terminal T3 are connected in a configurable manner.
  • the third input terminal T3 can be selectively connected to one or more of the three-phase output terminals A, B, and C.
  • such a configurable connection may be implemented via the second switch group S1, S2.
  • the voltage conversion device further includes a first switch group K1 and second switch groups S1 and S2.
  • the three-phase output terminals A, B and C of the inverter unit are respectively coupled with the three windings L1, L2 and L3 of the motor of the electric vehicle via the switch group K1, so that the motor can obtain the three-phase current required for operation.
  • the third input terminal T3 of the voltage conversion device is coupled to the three-phase output terminal of the inverter unit via the switch groups S1 and S2.
  • the first and third switch groups can be implemented by electronically controlled switches.
  • the first switch group K1 and the second switch groups S1 and S2 can be controlled by electronically controlled switches, diodes, etc. to realize on-off control.
  • a selector is used to realize the three-phase output terminals A, B, and C of the inverter and the three windings L1, L2, L3 of the motor or the third phase of the voltage conversion device. Connection between inputs T3.
  • the first input terminal T1 and the second input terminal T2 of the inverter unit can be used to receive 800V DC high voltage input, the first input terminal T1 is used as the positive pole, the second input terminal T2 can be coupled to the ground, and the voltage conversion device
  • the third input terminal T3 can be used to receive 400V DC voltage input, which is configurable to connect to the three-phase output terminals A, B, C of the inverter unit via two switches S1, S2, wherein the switch S1 is coupled to the three-phase output terminal Between terminals A and B, switch S2 is coupled between three-phase output terminals B and C.
  • the first and second input terminals T1 and T2 are used as input terminals, and when connected to 400V DC voltage, the third and second input terminals T3 and T2 are used as input terminals.
  • the second input terminals T1 and T2 are used as output terminals.
  • the inverter unit can not only directly supply the first DC voltage input between the first input terminal T1 and the second input terminal T2 to the high-voltage bus, but also charge the battery and other high-voltage accessories (such as air conditioning system, lighting system, etc.), more importantly, the inverter unit can also be configured to convert the second DC voltage input between the third input terminal T3 and the second input terminal T2 into the first DC voltage, Further, the first DC voltage is provided between the first input terminal T1 and the second input terminal T2, so that the high-voltage bus can obtain the first DC voltage.
  • the first DC voltage may be 800V
  • the second DC voltage may be 400V.
  • electric vehicles are compatible with two different charging devices, 400V and 800V.
  • the switches S1 and S2 are turned off, and the first switch group K1 is turned on as a whole, as shown in FIG. 2 , at this time, the electric drive system including the above-mentioned voltage conversion device (Electrical Drive System, EDS for short) works in 800V charging mode (ie traditional parking mode), each transistor of the inverter unit is in the off state, and the inverter unit is actually deactivated.
  • EDS Electronic Drive System
  • the 400V DC is connected to the EDS through the third input terminal T3 and the second input terminal T2, the switches S1 and S2 are closed, and the switch group K1 is disconnected, as shown in Figure 3 , at this time the EDS works in the 400V charging mode, the transistors (Q11, Q21, Q31) in each of the first switch components shown in the upper half of FIG.
  • a control unit (not shown in the drawings) can provide a turn-on voltage to the bases of each transistor of the inverter unit to match the 400V charging and the 800V charging.
  • the control unit can use time-division multiplexing technology to provide different turn-on voltages at different stages. For example, in order to match the 400V external charging pile, the control unit outputs turn-on transistors Q13, Q23, Q33, Q14, Q24, and Q34. voltage, so that they work in the amplification state, and at the same time, the control unit stops providing the on-voltage to the transistors Q11, Q21, Q31, Q12, Q22, Q32.
  • high-frequency SiC devices can be selected for each transistor.
  • the switching frequency can be appropriately increased to reduce the ripple current at the input and output terminals.
  • the switches S1, S2 and switch group K1 are all disconnected, and the power battery provides 800V DC power to the accessories including the EDS and the car air conditioner. All high voltage devices including power supply.
  • the first switch assembly is coupled to the first input T1
  • the first switch assembly is The four switch assemblies are each coupled to the second input terminal T2.
  • four NPN transistors are used in series in sequence, wherein the collector of the transistor Q21 and the cathode of the parallel diode D21 are commonly coupled to the first input terminal T1, and the emitter of the transistor Q24 and the anode of the parallel diode D24 is commonly coupled to the second input terminal T2.
  • the junction between the second switch assembly (composed of transistor Q22 and diode D22 in parallel) and the third switch assembly (composed of transistor Q23 and diode D23 in parallel) is coupled to the phase output terminal B of the inverter unit.
  • the connection point between the second switch assembly (Q12, D12 formed in parallel) and the third switch assembly (Q13, D13 formed in parallel) of the first plurality of switch assemblies is coupled to another of the inverter units phase output terminal C, while the connection point between the second switch assembly (Q32, D32 in parallel) and the third switch assembly (Q33, D33 in parallel) in the third plurality of switch assemblies is coupled to the inverter unit The other phase output terminal A of .
  • the inverter unit also includes capacitors.
  • a first capacitor C1 may be coupled between the output of the first switch assembly (Q11, D11) and the input of the fourth switch assembly (Q14, D14) to maintain a continuous current.
  • the second capacitor C2 is coupled between the output of the first switch assembly (Q21, D21) and the input of the fourth switch assembly (Q24, D24);
  • the third capacitor C3 is coupled between the output end of the first switch assembly (Q31, D31) and the input end of the fourth switch assembly (Q34, D34).
  • the first, second and third capacitors C1, C2, and C3 are used as switched capacitors for DC/DC conversion, which can be staggered by a certain angle in control, which can significantly reduce the current ripple at the input and output terminals. wave, which correspondingly reduces the size of the bus capacitance.
  • the switched capacitor can resonate the inductor in series, so that the current waveform flowing through the switch tube can be sinusoidal, and the soft switching of the switch tube can be realized, which helps to improve the system efficiency and improve the EMI performance.
  • the three windings L1, L2 and L3 of the motor can be connected in a Y shape or a delta shape, but the motor windings here are no longer used for energy storage in traditional DC/DC conversion. Inductance, so there is no current flowing through the motor windings, and no electromagnetic torque, so there are no mechanical jitter and NVH (ie, noise, vibration, and harshness) issues when the EDS is charged.
  • NVH ie, noise, vibration, and harshness
  • Some embodiments of the present invention also provide an electric drive system EDS, and the above-mentioned voltage conversion device can be used as a part of the EDS.
  • the devices shared by different charging voltages can be time-multiplexed in the EDS.
  • the EDS When the EDS is connected to the 800V charging pile, the DC voltage is applied between the first input terminal T1 and the second input terminal T2 of the voltage conversion device and directly connected to the high voltage bus, the third input terminal T3 is disabled.
  • the EDS is connected to the 400V charging pile, the DC voltage is applied between the third input terminal T3 and the second input terminal T2, and the boosted voltage is output at the first input terminal T1 and the second input terminal T2, and connected to a high voltage busbar.
  • capacitors C4 and C5 can be connected between the first input terminal T1 and the second input terminal T2, and the capacitors C4 and C5 are connected in series, which can be used to make the first input terminal T1 and the second input terminal T2
  • the output current is continuous and relatively constant.
  • the above electric drive system can achieve the following technical effects: 1. It can also realize a DC charging system compatible with 400V and 800V without adding a 400V to 800V transformer; The economy of the whole vehicle is reduced, the weight of the whole vehicle is reduced, and the space is saved; 3. When the drive system is used as a charging function, the drive motor winding does not participate in the work, and there is no electromagnetic torque, which avoids the problems of mechanical jitter and NVH. 4. When the inverter is used as a switched capacitor DC/DC converter, the energy storage inductance required by the traditional DC/DC converter is not required, so that EMI and conversion efficiency are improved.
  • a charging and driving system for an electric vehicle charges the power battery of the electric vehicle when the charging pile is connected, and when the electric vehicle is running, the electric motor is driven by the power battery and Supply power to each high voltage accessory.
  • the charging and driving system includes a battery, one or more high voltage accessories, the electric driving system described above, and a plurality of switch controls.
  • the plurality of switch control elements are configured to perform on-off control between the charging port and the electric drive system, so as to realize the following charging scheme: when the 800V voltage is input to the charging port, the 800V voltage is supplied to the battery and accessories; when the 400V voltage is input When the charging port is input, the 400V is boosted to 800V by the electric drive system, and then supplied to the battery and high-voltage accessories.
  • the charging ports include a charging port for 800V and a charging port for 400V, so the charging and driving system is compatible with two different levels of charging piles. When in driving mode, the charging and driving system disconnects the connection from the charging port, and uses the power battery to supply power to each high-voltage accessory.
  • an electric vehicle which adopts the above-mentioned charging and driving system for charging or driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种用于电动汽车的电压转换装置,其包括:逆变器单元,包括用于提供电动汽车的电动机所需三相电流的三批多个开关组件、以及第一输入端(T1)和第二输入端(T2);第三输入端(T3),与逆变器单元的三相输出端可配置地连接;其中,逆变器单元配置成:将经由第三输入端(T3)和第二输入端(T2)输入的第二直流电压转换为第一直流电压,以在第一输入端(T1)和第二输入端(T2)间提供第一直流电压。该电压转换装置节省了电动汽车的充电成本、提高了整车制造的经济性,降低了整车重量、有利于优化整车布局。

Description

用于电动汽车的电压转换装置方法及电驱动***
本申请要求2021年1月25日提交的、标题为“用于电动汽车的电压转换装置方法及电驱动***”的、中国发明专利申请No.202110094483.6的优先权和权益,所述申请的公开内容出于所有目的以其整体通过引用并入本文中。
技术领域
本发明涉及电动汽车技术领域,更具体地说,涉及一种用于电动汽车的电压转换装置。
背景技术
目前市场上主流电动汽车高压***平台均为400V。为了更高的效率和更便捷的充电体验,下一代电动汽车高压***平台逐渐由400V向800V过渡。
就动力电池而言,在从400V切换到800V平台时,为了兼容400V的充电设备,一种现有的解决方案是增加一级升压直流/直流变压器,在接入400V的直流充电桩进行充电时,充电桩的电压不会直接施加到动力电池端,而是通过大功率直流/直流变换器将电压升到800V后再给动力电池充电,但这种解决方案有如下不足:首先,400V转800V直流/直流变压器功率大,单体成本高,进而提高了整车成本;其次,该变压器体积大、重量大,不利于整车布局和轻量化。
发明内容
根据本发明的一个方面,提供了一种用于电动汽车的电压转换装置,包括:逆变器单元,包括用于提供电动汽车的电动机所需三相电流的三批多个开关组件、以及第一输入端和第二输入端;第三输入端,与逆变器单元的三相输出端可配置地连接;其中,逆变器单元配置成:将经由第三输入端和第二输入端输入的第二直流电压转换为第一直流电压,以在第一输入端和第二输入端间提供第一直流电压。
可选地,该电压转换装置还包括:第一开关组,配置成将逆变器单元的三相输出端与电动机的三个绕组分别耦合;以及第二开关组,配置成将第三输入端与逆变器单元的三相输出端分别耦合。
可选地,三批多个开关组件中的每批开关组件各自包括彼此串联的第一开关组件、第二开关组件、第三开关组件和第四开关组件,各开关组件分别由一个三极管和一个二极管并联连接而形成。
可选地,该于每批开关组件,其中,第一开关组件被耦合到第一输入端;第四开关组 件被耦合到第二输入端;第二开关组件和第三开关组件的连接点被耦合到逆变器单元的一个相输出端。
可选地,对于每批开关组件,其中,第一开关组件的输出端经由一个电容器被耦合到第四开关组件的输入端。
根据本发明的另一个方面,提供了一种电驱动***,其包括如上所述的电压转换装置。
根据本发明的又一个方面,提供了一种用于电动汽车的充电及驱动***,其包括:电池;一个或多个附件;如上所述的电驱动***;以及多个开关控制件,配置成执行充电端口与电驱动***之间的通断控制以实现:在第一直流电压输入充电端口时,将第一直流电压提供给电池及附件;在第二直流电压输入充电端口时,经电驱动***将第二直流电压升压为第一直流电压以便提供给电池及附件。
本发明的提供的电压转换装置无需复杂的直流/直流变换器,而是直接通过逆变器单元和不同的直流电压输入端就可兼容400V和800V两种直流充电设备,这节省了电动汽车的充电成本、提高了整车制造的经济性,降低了整车重量、有利于优化整车布局。
附图说明
图1示出根据本发明一个实施例的一种用于电动汽车的电压转换装置的电路。
图2示出图1的电路在电动汽车接入800V充电桩时的连接状态。
图3示出图1的电路在电动汽车接入400V充电桩时的连接状态。
具体实施方式
在以下描述中提出具体细节,以便提供对本发明的透彻理解。然而,本领域的技术人员将清楚地知道,即使没有这些具体细节也可实施本发明的实施例。在本发明中,可进行具体的数字引用,例如“第一元件”、“第二装置”等。但是,具体数字引用不应当被理解为必须服从于其字面顺序,而是应被理解为“第一元件”与“第二元件”不同。
本发明所提出的具体细节只是示范性的,具体细节可以变化,但仍然落入本发明的精神和范围之内。术语“耦合”定义为表示直接连接到组件或者经由另一个组件而间接连接到组件。
以下通过参照附图来描述适于实现本发明的方法、***和装置的优选实施例。虽然各实施例是针对元件的单个组合来描述,但是应理解,本发明包括所公开元件的所有可能组合。因此,如果一个实施例包括元件A、B和C,而第二实施例包括元件B和D,则本发明也应被认为包括A、B、C或D的其他剩余组合,即使没有明确公开。
本发明的一个实施例提供一种用于电动汽车的电压转换装置,其包括逆变器单元和处 于逆变器单元外部的第三输入端。该逆变器单元包括用于提供电动汽车的电动机所需三相电流的三批多个开关组件、以及第一输入端T1和第二输入端T2。电压转换装置的第三输入端T3与逆变器单元的三相输出端A、B、C可配置地连接。三个输入端可用于接收直流电压输入,经逆变器单元的逆变操作可输出电动机所需的三相电流I A、I B、I C
如图1所示,逆变器单元具体包括第一批多个开关组件:三极管Q11、Q12、Q13、Q14和二极管D11、D12、D13、D14。这些三极管和二极管两两并联。就第一批开关组件而言,三极管Q11和二极管D11并联构成第一开关组件。三极管Q12和二极管D12并联构成第二开关组件。三极管Q13和二极管D13并联构成第三开关组件。三极管Q14和二极管D14并联构成第四开关组件。第一、第二、第三和第四开关组件依次串联在一起。
类似地,逆变器单元还包括第二批多个开关组件:三极管Q21、Q22、Q23、Q24,二极管D21、D22、D23、D24。就第二批多个开关组件而言,三极管Q21和二极管D21并联构成第一开关组件。三极管Q22和二极管D22并联构成第二开关组件,依此类推。同样,第一、第二、第三和第四开关组件依次串联在一起。在第三批多个开关组件(三极管Q31、Q32、Q33、Q34及二极管D31、D32、D33、D34)中,三极管Q31和二极管D31并联构成第一开关组件。三极管Q32和二极管D32并联构成第二开关组件,依此类推。通过第一批、第二批和第三批多个开关组件的通断控制,逆变器单元能够将输入的直流电压转换为用于驱动电动机的三相电流。
在本发明的一些实施例中,逆变器单元的三相输出端A、B、C与第三输入端T3采用可配置的连接方式。由此,第三输入端T3可以选择性地与三相输出端A、B、C中的一个或多个相连接。作为示例,可经由第二开关组S1、S2实现这种可配置连接。
具体来说,电压转换装置还包括第一开关组K1和第二开关组S1、S2。其中,逆变器单元的三相输出端A、B、C经由开关组K1与电动汽车的电动机的三个绕组L1、L2和L3分别耦合,由此电动机可获得运转所需的三相电流。电压转换装置的第三输入端T3经开关组S1、S2与逆变器单元的三相输出端耦合。第一、第三开关组可由电控开关来实现。第一开关组K1和第二开关组S1、S2可由电控开关、二极管等来实现通断控制。在另一些实施例中,不是采用开关组,而是利用选择器来实现逆变器的三相输出端A、B、C与电动机的三个绕组L1、L2、L3或电压转换装置的第三输入端T3之间的连接。
具体来说,逆变器单元的第一输入端T1和第二输入端T2可用于接收800V直流高压输入,第一输入端T1作为正极,第二输入端T2可耦合到地,电压转换装置的第三输入端T3可用于接收400V直流电压输入,其经两个开关S1、S2与逆变器单元的三相输出端A、B、C 可配置地连接,其中,开关S1耦合在三相输出端A与B之间,开关S2耦合在三相输出端B与C之间。当接入800V直流电压时,第一、第二输入端T1、T2用作输入端,而当接入400V直流电压时,第三、第二输入端T3、T2用作输入端,第一、第二输入端T1、T2作为输出端。
通过开关组或选择器,逆变器单元不仅可将在第一输入端T1与第二输入端T2间输入的第一直流电压直接提供给高压母线,给电池充电的同时还给其他高压附件(诸如空调***、灯光***等)供电,更重要的是,逆变器单元还可配置成将在第三输入端T3和第二输入端T2间输入的第二直流电压转换为第一直流电压,进而在第一输入端T1和第二输入端T2间提供该第一直流电压,这样高压母线可获得第一直流电压。第一直流电压可以为800V,第二直流电压为400V。由此,电动汽车可兼容400V和800V两种不同的充电设备。
根据本发明的一些实施例,电动汽车接入800V充电桩时,开关S1和S2断开,第一开关组K1整体闭合,如图2所示,此时,包括上述电压转换装置的电驱动***(Electrical Drive System,简称EDS)工作在800V充电模式(即传统驻车模式),逆变器单元的各个三极管均处于截止状态,逆变器单元实际上被停用。
当外部的充电桩电压为400V时,400V直流电通过第三输入端T3和第二输入端T2两个端口接入到EDS,开关S1和S2闭合,同时开关组K1断开,如图3所示,此时EDS工作于400V充电模式,在图3上半部示出的各个第一开关组件中的三极管(Q11、Q21、Q31)、各个第二开关组件中的三极管(Q12、Q22、Q32)处于截止状态而被停用,而各个第三开关组件中的三极管(Q13、Q23、Q33)和第四开关组件中的三极管(Q14、Q24、Q34)处于放大状态,外部充电桩400V提供的直流电通过逆变器单元升压到800V,然后接入到高压母线。
在本发明的一些实施例中,可通过一个控制单元(附图未示出)向逆变器单元的各个三极管的基极提供导通电压,来配合400V的充电及800V的充电。该控制单元可采用分时复用技术,以便在不同的阶段提供不同导通电压,例如,为了配合400V的外部充电桩,控制单元向三极管Q13、Q23、Q33、Q14、Q24、Q34输出导通电压,以使得它们工作于放大状态,同时,控制单元停止向三极管Q11、Q21、Q31、Q12、Q22、Q32提供导通电压。在本发明的一些实施例中,各三极管可以选用高频SiC器件,当逆变器单元被用作开关电容DC/DC变换器时,可以适当提高开关频率,减小输入输出端纹波电流的大小,以相应地减小输入输出母线电容和开关电容的大小当电驱动***EDS处于驱动模式时,开关S1、S2以及开关组K1均断开,动力电池提供800V直流电给包括EDS和汽车空调附件在内的所有高压器件供电。
继续参见图1的具体示例,就第一批、第二批和第三批多个开关组件中的每一批而言, 其中的第一开关组件均被耦合到第一输入端T1,而第四开关组件均被耦合到第二输入端T2。具体地,以第二批多个开关组件为例,其采用4个NPN型三极管依次串联,其中三极管Q21的集电极和并联的二极管D21负极共同耦合到第一输入端T1,三极管Q24的发射极和并联的二极管D24的正极共同耦合到第二输入端T2。此外,第二开关组件(由三极管Q22和二极管D22并联构成)和第三开关组件(由三极管Q23和二极管D23并联构成)之间的连接点被耦合到逆变器单元的相输出端B。类似地,第一批多个开关组件中的第二开关组件(Q12、D12并联构成)和第三开关组件(Q13、D13并联构成)之间的连接点被耦合到逆变器单元的另一相输出端C,而第三批多个开关组件中的第二开关组件(Q32、D32并联构成)和第三开关组件(Q33、D33并联构成)之间的连接点被耦合到逆变器单元的另一相输出端A。
在本发明的一些实施例中,该逆变器单元还包括一些电容器。作为示例,对第一批多个开关组件而言,第一电容器C1可耦合在第一开关组件(Q11、D11)的输出端和第四开关组件(Q14、D14)的输入端之间,以维持持续的电流。类似地,对第二批多个开关组件而言,第二电容器C2耦合在第一开关组件(Q21、D21)的输出端和第四开关组件(Q24、D24)的输入端之间;对第三批多个开关组件而言,第三电容器C3耦合在第一开关组件(Q31、D31)的输出端和第四开关组件(Q34、D34)的输入端之间。此外,作为飞跨电容,第一、第二和第三电容器C1、C2、C3用作直流/直流变换的开关电容,在控制上可错开一定的角度,可以显著减小输入和输出端的电流纹波,这相应地减小了母线电容的大小。逆变器单元用作开关电容DC/DC变换器时,开关电容可以串联谐振电感,使得流过开关管的电流波形正弦化,可以实现开关管的软开关,这有助于提高***效率、改善EMI表现。
在本发明的一些实施例中,电动机的三个绕组L1、L2和L3可以接成Y型,也可以接成Δ型,但是这里的电机绕组不再用做传统直流/直流变换中的储能电感,所以电机绕组不会流过电流,也就没有电磁转矩,因此在EDS处于充电状态时没有机械抖动和NVH(即,噪声、振动与粗糙度)的问题。
本发明的一些实施例还提供一种电驱动***EDS,上述的电压转换装置可作为EDS的一部分。EDS内可对不同充电电压共享的器件分时复用,在EDS接入800V充电桩时,直流电压施加在电压转换装置的第一输入端T1和第二输入端T2之间并直接接入高压母线,第三输入端T3停用。在EDS接入400V充电桩时,直流电压施加在第三输入端T3和第二输入端T2之间,升压后的电压在第一输入端T1和第二输入端T2输出,并接入高压母线。
此外,作为一种改进,在第一输入端T1和第二输入端T2之间可连接有电容器C4、C5,电容器C4、C5串联,可用于使得在第一输入端T1和第二输入端T2间输出的电流持续且相对 恒定。
上述电驱动***可实现如下技术效果:1、无需额外增加一个400V转800V的变压装置,也可以实现兼容400V和800V的直流充电***;2、驱动***和直流充电***分时复用,提高了整车的经济性,降低了整车的重量,节省了空间;3、驱动***用作充电功能使用时,驱动电机绕组不参与工作,没有电磁转矩,避免了机械抖动和NVH的问题。4、当逆变器被用作开关电容DC/DC变换器时,不需要传统的DC/DC变换器所需的储能电感,使得EMI和转换效率改善。
根据本发明的另一些实施例,提供一种用于电动汽车的充电及驱动***,该***在接入充电桩时向电动汽车的动力电池充电,在电动汽车行驶时,由动力电池驱动电动机并向各高压附件供电。具体来说,该充电及驱动***包括电池、一个或多个高压附件、上述电驱动***、以及多个开关控制件。其中,该多个开关控制件配置成执行充电端口与电驱动***之间的通断控制,以实现以下充电方案:在800V电压输入充电端口时,将800V电压提供给电池及附件;在400V电压输入充电端口时,经电驱动***将400V升压为800V电压,再提供给电池及高压附件。具体来说,充电端口包括用于800V的充电端口和用于400V的充电端口,由此,该充电及驱动***可兼容两种不同级别的充电桩。当处于驱动模式下,充电及驱动***断开与充电端口之间的连接,并利用动力电池对各高压附件供电。
根据本发明的又一些实施例,还提供一种电动汽车,其采用上述充电及驱动***来进行充电或驾驶。
本领域的技术人员将会理解,结合本文中所公开的方面所描述的各种说明性逻辑块、模块、电路和算法步骤可以被实现为电子硬件、计算机软件或两者的组合。为了表明硬件和软件间的可互换性,各种说明性部件、块、模块、电路和步骤在上文根据其功能性总体地进行了描述。这样的功能性是实现为硬件还是软件将取决于特定应用以及对总体***所施加的设计限制。技术人员可以针对具体的特定应用、按照变化的方式来实现所描述的功能性,但是,这样的实现方式决策不应当被理解为引起与本发明范围的背离。
上述说明仅针对于本发明的优选实施例,并不在于限制本发明的保护范围。本领域技术人员可能作出各种变形设计,而不脱离本发明的思想及附随的权利要求。

Claims (10)

  1. 一种用于电动汽车的电压转换装置,包括:
    逆变器单元,包括用于提供所述电动汽车的电动机所需三相电流的三批多个开关组件、以及第一输入端和第二输入端;
    第三输入端,与所述逆变器单元的三相输出端可配置地连接;
    其中,所述逆变器单元配置成:
    将经由所述第三输入端和所述第二输入端输入的第二直流电压转换为第一直流电压,以在所述第一输入端和所述第二输入端间提供所述第一直流电压。
  2. 根据权利要求1所述的电压转换装置,其特征在于,所述电压转换装置还包括:
    第一开关组,配置成将所述逆变器单元的三相输出端与所述电动机的三个绕组分别耦合;以及
    第二开关组,配置成将所述第三输入端与所述逆变器单元的三相输出端分别耦合。
  3. 根据权利要求1所述的电压转换装置,其特征在于,所述三批多个开关组件中的每批开关组件各自包括彼此串联的第一开关组件、第二开关组件、第三开关组件和第四开关组件,各所述开关组件分别由一个三极管和一个二极管并联连接而形成。
  4. 根据权利要求3所述的电压转换装置,其特征在于,对于所述每批开关组件,其中,
    所述第一开关组件被耦合到所述第一输入端;
    所述第四开关组件被耦合到所述第二输入端;
    所述第二开关组件和所述第三开关组件的连接点被耦合到所述逆变器单元的一个相输出端。
  5. 根据权利要求3所述的电压转换装置,其特征在于,对于所述每批开关组件,其中,所述第一开关组件的输出端经由一个电容器被耦合到所述第四开关组件的输入端。
  6. 根据权利要求1所述的电压转换装置,其特征在于,所述第一直流电压为800V,所述第二直流电压为400V。
  7. 一种电驱动***,其包括如权利要求1至6中的任一项所述的电压转换装置。
  8. 一种用于电动汽车的充电及驱动***,包括:
    电池;
    一个或多个附件;
    如权利要求7所述的电驱动***;以及
    多个开关控制件,配置成执行充电端口与所述电驱动***之间的通断控制以实现:
    在第一直流电压输入所述充电端口时,将所述第一直流电压提供给所述电池及所述附件;
    在第二直流电压输入所述充电端口时,经所述电驱动***将所述第二直流电压升压为所述第一直流电压以便提供给所述电池及所述附件。
  9. 如权利要求8所述的***,其中,所述开关控制件配置成:
    在驱动模式下利用所述电池对所述附件供电。
  10. 一种电动汽车,其包括如权利要求8或9所述的***。
PCT/CN2021/107558 2021-01-25 2021-07-21 用于电动汽车的电压转换装置方法及电驱动*** WO2022156171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110094483.6 2021-01-25
CN202110094483.6A CN112737393A (zh) 2021-01-25 2021-01-25 用于电动汽车的电压转换装置方法及电驱动***

Publications (1)

Publication Number Publication Date
WO2022156171A1 true WO2022156171A1 (zh) 2022-07-28

Family

ID=75593844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107558 WO2022156171A1 (zh) 2021-01-25 2021-07-21 用于电动汽车的电压转换装置方法及电驱动***

Country Status (2)

Country Link
CN (1) CN112737393A (zh)
WO (1) WO2022156171A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737393A (zh) * 2021-01-25 2021-04-30 蔚来汽车科技(安徽)有限公司 用于电动汽车的电压转换装置方法及电驱动***
DE102022002606A1 (de) 2022-07-18 2024-01-18 Mercedes-Benz Group AG Fahrzeug und Verfahren zu dessen Betrieb

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099239A (zh) * 2014-05-06 2015-11-25 上海汽车集团股份有限公司 逆变器、汽车供电设备及汽车装置
CN109286211A (zh) * 2017-07-21 2019-01-29 现代自动车株式会社 电动车辆
CN110015112A (zh) * 2017-10-09 2019-07-16 保时捷股份公司 用于借助于换流器初始化电池的dc充电过程的方法
WO2020038747A1 (de) * 2018-08-20 2020-02-27 Thyssenkrupp Ag Ladevorrichtung mit steuerbarer zwischenkreismittelpunktsspannung sowie antriebssystem mit einer derartigen ladevorrichtung
WO2020120446A1 (de) * 2018-12-14 2020-06-18 Daimler Ag Schaltungsanordnung für ein kraftfahrzeug, insbesondere für ein hybrid- oder elektrofahrzeug
CN112737393A (zh) * 2021-01-25 2021-04-30 蔚来汽车科技(安徽)有限公司 用于电动汽车的电压转换装置方法及电驱动***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099239A (zh) * 2014-05-06 2015-11-25 上海汽车集团股份有限公司 逆变器、汽车供电设备及汽车装置
CN109286211A (zh) * 2017-07-21 2019-01-29 现代自动车株式会社 电动车辆
CN110015112A (zh) * 2017-10-09 2019-07-16 保时捷股份公司 用于借助于换流器初始化电池的dc充电过程的方法
WO2020038747A1 (de) * 2018-08-20 2020-02-27 Thyssenkrupp Ag Ladevorrichtung mit steuerbarer zwischenkreismittelpunktsspannung sowie antriebssystem mit einer derartigen ladevorrichtung
WO2020120446A1 (de) * 2018-12-14 2020-06-18 Daimler Ag Schaltungsanordnung für ein kraftfahrzeug, insbesondere für ein hybrid- oder elektrofahrzeug
CN112737393A (zh) * 2021-01-25 2021-04-30 蔚来汽车科技(安徽)有限公司 用于电动汽车的电压转换装置方法及电驱动***

Also Published As

Publication number Publication date
CN112737393A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022156387A1 (zh) 一种充电***及电动汽车
WO2022156171A1 (zh) 用于电动汽车的电压转换装置方法及电驱动***
US10211827B2 (en) Resonant gate driver
CN110034674B (zh) 一种高增益双向三相dc-dc变换器及控制方法
CN111434513A (zh) 一种车辆及其能量转换装置与动力***
CN216467384U (zh) 充电装置和包括此类充电装置的电驱动***
CN102593928A (zh) 用于形成充电电路的方法及设备
US10574144B1 (en) System and method for a magnetically coupled inductor boost and multiphase buck converter with split duty cycle
US20100085787A1 (en) System and method for powering a hybrid electric vehicle
US10381951B1 (en) Family of modular quasi-resonant inverters
US20220216723A1 (en) Charging system and electric vehicle
US10608555B2 (en) Inverter circuit comprising a circuit arrangement for regenerative damping of electrical oscillations, and method for regenerative damping of electrical oscillations
JP6953634B2 (ja) Dc/dcコンバータを備える車両充電器
CN111555614A (zh) 汽车双电源***的交错dc-dc变换器及其控制方法
CN114475362B (zh) 电动车辆及其驱动控制***
CN215904328U (zh) 一种充电***及电动汽车
KR101726285B1 (ko) 비절연 양방향 직류-직류 컨버터
CN112886846B (zh) 一种混合钳位五电平电压源型变换器及控制方法
CN110677080B (zh) 一种基于混合储能单元的无刷直流电机***控制方法
CN112491272A (zh) 一种双极性双向直流变压器
US10389352B1 (en) Gate loop differential mode choke for parallel power device switching current balance
KR20150062141A (ko) 전력 변환 회로
EP2602926A1 (en) An electronic power converter
KR20150062149A (ko) 전력 변환 회로
CN112224038A (zh) 一种能量转换装置、动力***及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920552

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21920552

Country of ref document: EP

Kind code of ref document: A1