WO2022153697A1 - Mems switch and manufacturing method for mems switch - Google Patents

Mems switch and manufacturing method for mems switch Download PDF

Info

Publication number
WO2022153697A1
WO2022153697A1 PCT/JP2021/043956 JP2021043956W WO2022153697A1 WO 2022153697 A1 WO2022153697 A1 WO 2022153697A1 JP 2021043956 W JP2021043956 W JP 2021043956W WO 2022153697 A1 WO2022153697 A1 WO 2022153697A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
layer
base layer
face
mems switch
Prior art date
Application number
PCT/JP2021/043956
Other languages
French (fr)
Japanese (ja)
Inventor
理 松島
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2022575115A priority Critical patent/JPWO2022153697A1/ja
Publication of WO2022153697A1 publication Critical patent/WO2022153697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H57/00Electrostrictive relays; Piezoelectric relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays

Definitions

  • This disclosure relates to a MEMS switch and a method for manufacturing a MEMS switch.
  • Patent Document 1 discloses a MEMS switch.
  • This MEMS switch includes a fixed contact portion and a movable contact portion.
  • the fixed contact portion has a lower surface fixed to the upper surface of the base substrate via an insulating film.
  • the movable contact portion floats from the upper surface of the base substrate.
  • the movable contact portion is moved by the actuator in a direction parallel to the upper surface of the base substrate.
  • An MEMS switch as an example of the present disclosure has a first main surface and a second main surface on the opposite side thereof, and is formed on a substrate in which a cavity is formed and on the first main surface side of the substrate.
  • An actuator unit that converts an electric signal into a mechanical operation
  • a movable contact unit that is formed on the first main surface side of the substrate in a state of floating in the cavity and can be displaced by the mechanical operation of the actuator unit, and the above.
  • a fixed contact portion facing the movable contact portion and capable of contacting and not contacting the movable contact portion due to displacement of the movable contact portion is included, and at least one of the movable contact portion and the fixed contact portion includes the substrate and the fixed contact portion.
  • the first insulating layer formed on the substrate and the first insulating layer formed on the first insulating layer so as to cover the end faces of the first insulating layer along the thickness direction of the substrate are referred to as the first insulating layer. It has a first structure including a second insulating layer containing different materials and a conductive contact layer supported by the first insulating layer.
  • FIG. 1 is a schematic plan view of a MEMS switch according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of the MEMS switch according to the embodiment of the present disclosure.
  • 3A and 3B are schematic views showing the operation of the MEMS switch of FIG. 4A and 4B are schematic views (enlarged views) showing the operation of the MEMS switch of FIG.
  • FIG. 5A is a diagram showing a part of the manufacturing process of the MEMS switch of FIG.
  • FIG. 5B is a diagram showing the next step of FIG. 5A.
  • FIG. 5C is a diagram showing the next step of FIG. 5B.
  • FIG. 5D is a diagram showing the next step of FIG. 5C.
  • FIG. 5E is a diagram showing the next step of FIG. 5D.
  • FIG. 5F is a diagram showing the next step of FIG. 5E.
  • FIG. 5G is a diagram showing the next step of FIG. 5F.
  • FIG. 5H is a diagram showing the next step of FIG. 5G.
  • FIG. 6 is a schematic cross-sectional view of the MEMS switch according to the embodiment of the present disclosure.
  • FIG. 7A is a diagram showing a part of the manufacturing process of the MEMS switch of FIG.
  • FIG. 7B is a diagram showing the next step of FIG. 7A.
  • FIG. 7C is a diagram showing the next step of FIG. 7B.
  • FIG. 7D is a diagram showing the next step of FIG. 7C.
  • FIG. 7E is a diagram showing the next step of FIG. 7D.
  • FIG. 7F is a diagram showing the next step of FIG. 7E.
  • FIG. 7G is a diagram showing the next step of FIG. 7F.
  • FIG. 7H is a diagram showing the next step of FIG. 7G.
  • FIG. 8 is a schematic cross-sectional view of the MEMS switch according to the embodiment of the present disclosure.
  • FIG. 9A is a diagram showing a part of the manufacturing process of the MEMS switch of FIG.
  • FIG. 9B is a diagram showing the next step of FIG. 9A.
  • FIG. 9C is a diagram showing the next step of FIG. 9B.
  • FIG. 9D is a diagram showing the next step of FIG. 9C.
  • FIG. 9E is a diagram showing the next step of FIG. 9D.
  • FIG. 9F is a diagram showing the next step of FIG. 9E.
  • FIG. 9G is a diagram showing the next step of FIG.
  • FIG. 9F is a diagram showing the next step of FIG. 9G.
  • FIG. 10 is a schematic cross-sectional view of the MEMS switch according to the embodiment of the present disclosure.
  • FIG. 11A is a diagram showing a part of the manufacturing process of the MEMS switch of FIG.
  • FIG. 11B is a diagram showing the next step of FIG. 11A.
  • FIG. 11C is a diagram showing the next step of FIG. 11B.
  • FIG. 11D is a diagram showing the next step of FIG. 11C.
  • FIG. 11E is a diagram showing the next step of FIG. 11D.
  • FIG. 11F is a diagram showing the next step of FIG. 11E.
  • FIG. 11G is a diagram showing the next step of FIG. 11F.
  • FIG. 11H is a diagram showing the next step of FIG. 11G.
  • the MEMS switch as the first example of the present disclosure has a first main surface and a second main surface on the opposite side thereof, and is formed on a substrate in which a cavity is formed and on the first main surface side of the substrate.
  • An actuator unit that converts an electric signal into a mechanical operation, and a movable contact portion that is formed in a state of floating in the cavity on the first main surface side of the substrate and can be displaced by the mechanical operation of the actuator unit.
  • a fixed contact portion facing the movable contact portion and capable of contacting and not contacting the movable contact portion due to displacement of the movable contact portion is included, and at least one of the movable contact portion and the fixed contact portion is the substrate.
  • the end face of the first insulating layer of the first structure is covered with the second insulating layer.
  • the substrate is a semiconductor substrate containing impurities
  • the first insulating layer directly under the contact layer is excessively etched, a part of the contact layer may float in the air and come into contact with the semiconductor substrate. This type of contact can lead to poor switching of the MEMS switch.
  • the MEMS switch of the present disclosure such switching failure can be suppressed.
  • the substrate is formed on the first base layer, the first base layer, and the embedded insulating layer containing the same material as the first insulating layer, and the embedded insulation.
  • the cavity is formed between the first base layer and the second base layer, and is partitioned from the side by the embedded insulating layer, including a second base layer formed on the layer.
  • the first insulating layer may be formed on the second base layer.
  • the first insulating layer and the embedded insulating layer contain the same material, but the end face of the first insulating layer is covered with the second insulating layer. Therefore, for example, when a part of the embedded insulating layer is removed by etching to form a cavity between the first base layer and the second base layer, the first insulating layer is prevented from being etched from the end face. be able to.
  • the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate, and the first In the structure, the second insulating layer may cover the end face of the first insulating layer so as to have an end portion at the boundary between the end face of the second base layer and the end face of the first insulating layer.
  • the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate, and the first In the structure, the second insulating layer may further cover the end face of the second base layer in addition to the end face of the first insulating layer.
  • the second base layer of the first structure has an end face. Etching can be suppressed.
  • a part of the first insulating layer is formed between the end face of the second base layer and the end face of the first insulating layer.
  • a step may be formed so as to project from the end face of the base layer.
  • the actuator portion is an electrostatic actuator formed on the second base layer while floating with respect to the cavity, and the fixed electrodes and the fixed electrodes are arranged alternately.
  • the movable electrode includes a comb-tooth type electrostatic actuator that is displaced by an electrostatic force between the movable electrode and the fixed electrode, and the movable contact portion is said to be via a connecting member connected to the movable electrode. It may be provided so as to be displaceable with respect to the electrostatic actuator.
  • At least one of the movable electrode and the fixed electrode has a second structure including the second base layer, the first insulating layer, and the second insulating layer. You may have.
  • the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate, and the second base layer is connected to the end face.
  • the second insulating layer may cover the end face of the first insulating layer so as to have an end portion at the boundary between the end face of the second base layer and the end face of the first insulating layer.
  • the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate, and the second base layer is connected to the end face.
  • the second insulating layer may further cover the end face of the second base layer in addition to the end face of the first insulating layer.
  • the second base layer of the second structure has an end face. Etching can be suppressed. As a result, the distance between the movable electrode and the fixed electrode can be maintained almost as designed.
  • a part of the first insulating layer is formed between the end face of the second base layer and the end face of the first insulating layer.
  • a step may be formed so as to project from the end face of the base layer.
  • the first insulating layer has a main surface intersecting the end surface of the first insulating layer, and the second insulating layer is the first insulating layer.
  • the main surface and the end surface are continuously covered, and the contact layer may face the main surface and the end surface of the first insulating layer via the second insulating layer.
  • the first insulating layer may contain silicon oxide (SiO 2 ), and the second insulating layer may contain aluminum oxide (Al 2 O 3 ).
  • a method for manufacturing a MEMS switch as a second example of the present disclosure includes a first base layer, an embedded insulating layer formed on the first base layer, and a second base layer formed on the embedded insulating layer.
  • the first insulating layer containing a material different from the first insulating layer is provided so as to cover the main surface of the first insulating layer and the end surface of the first insulating layer exposed to the first opening.
  • the second base layer partitioned by the through hole and the first on the second base layer.
  • the first base layer and the second base layer are formed by forming a movable contact portion and a fixed contact portion including the insulating layer and the second insulating layer, and etching the embedded insulating layer through the through hole.
  • the process includes a step of forming a cavity between the two, and a step of forming a contact layer on the first insulating layer by depositing a conductive material in a predetermined pattern after etching the embedded insulating layer.
  • the end face of the first insulating layer is covered with the second insulating layer. This makes it possible to prevent the first insulating layer from being etched from the end face when the embedded insulating layer is etched through the through hole. Therefore, it is possible to prevent the first insulating layer immediately below the contact layer from being removed by etching, so that the contact layer can be stably supported by the first insulating layer.
  • a method for manufacturing a MEMS switch as a third example of the present disclosure includes a first base layer, an embedded insulating layer formed on the first base layer, and a second base layer formed on the embedded insulating layer.
  • the second base layer partitioned by the through hole, a movable contact portion including the first insulating layer on the second base layer, and fixing
  • the step of forming the contact portion, the main surface of the first insulating layer, the end surface of the first insulating layer exposed to the first opening, and the end surface of the second base layer exposed to the through hole are covered.
  • the first insulating layer is formed.
  • a contact layer is formed on the first insulating layer by a step of forming a cavity between the base layer and the second base layer and by depositing a conductive material in a predetermined pattern after etching the embedded insulating layer. Including the process.
  • the end face of the first insulating layer is covered with the second insulating layer. This makes it possible to prevent the first insulating layer from being etched from the end face when the embedded insulating layer is etched through the through hole. Therefore, it is possible to prevent the first insulating layer immediately below the contact layer from being removed by etching, so that the contact layer can be stably supported by the first insulating layer.
  • the end face of the second base layer is also covered and protected by the second insulating layer, it is possible to prevent the second base layer from being etched from the end face.
  • the step of forming the second insulating layer forms the second insulating layer by an atomic layer deposition method (ALD). It may include a step.
  • ALD atomic layer deposition method
  • FIG. 1 is a schematic plan view of the MEMS switch A1 according to the embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of the MEMS switch A1 according to the embodiment of the present disclosure.
  • FIG. 2 does not show a cross section of a specific portion of the MEMS switch A1 of FIG.
  • FIG. 2 some configurations of the MEMS switch A1 are extracted and shown in order to clarify the structure of the MEMS switch A1.
  • the MEMS switch A1 is, for example, an electrostatically driven MEMS switch including an electrostatic actuator 2.
  • the MEMS switch A1 generates a driving force along the first direction X by, for example, mechanical operation of the electrostatic actuator 2.
  • the direction orthogonal to the first direction X in the horizontal direction is the second direction Y
  • the direction orthogonal to the first direction X in the vertical direction is the third direction Z.
  • the third direction Z may be defined as the thickness direction of the MEMS switch A1 and the thickness direction of the substrate 3 described later.
  • the first direction X and the second direction Y may be defined as directions orthogonal to the thickness direction of the substrate 3, which will be described later.
  • the MEMS switch A1 includes the substrate 3.
  • the substrate 3 may form the outer shape of the MEMS switch A1.
  • the substrate 3 may be a structure formed in a chip shape (rectangular cuboid shape). 1 and 2 show a part of the substrate 3.
  • the substrate 3 may be a semiconductor substrate containing a semiconductor material such as Si.
  • the substrate 3 has a first main surface 4 and a second main surface 5 on the opposite side of the first main surface 4.
  • the first main surface 4 may be the upper surface of the substrate 3, and the second main surface 5 may be the lower surface of the substrate 3.
  • the first main surface 4 may be a processed surface of the substrate 3 on which the MEMS structure is formed, and the second main surface 5 may be a non-processed surface with respect to the processed surface.
  • the substrate 3 includes a first base layer 6, a second base layer 7, and an embedded insulating layer 8 between the first base layer 6 and the second base layer 7.
  • the substrate 3 may be an SOI (Silicon on Insulator) substrate.
  • the first base layer 6 may be a Si substrate
  • the second base layer 7 may be a Si layer
  • the embedded insulating layer 8 may be a BOX (Buried Oxide) layer.
  • the first base layer 6 may be a semiconductor substrate (for example, a Si substrate).
  • the thickness of the first base layer 6 may be, for example, 10 ⁇ m or more and 700 ⁇ m or less.
  • the first base layer 6 has a first main surface 9 and a second main surface 10 on the opposite side of the first main surface 9.
  • the second main surface 10 of the first base layer 6 may be the second main surface 5 of the substrate 3.
  • the second base layer 7 may be a semiconductor layer (for example, a Si layer).
  • the thickness of the second base layer 7 may be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the second base layer 7 has a first main surface 11 and a second main surface 12 on the opposite side of the first main surface 11.
  • the first main surface 11 of the second base layer 7 may be the first main surface 4 of the substrate 3.
  • the embedded insulating layer 8 is in contact with and sandwiched between the first base layer 6 and the second base layer 7.
  • the embedded insulating layer 8 may be an insulating layer containing the first insulating material.
  • the first insulating material may be, for example, an insulating material containing silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or the like.
  • the first insulating material may be, for example, an insulating material that can be etched by an etching gas such as CF 4 , CHF 3 , SF 6 , and an etching solution.
  • the thickness of the embedded insulating layer 8 may be smaller than that of the first base layer 6 and the second base layer 7.
  • the thickness of the embedded insulating layer 8 may be, for example, 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the embedded insulating layer 8 has a first joint surface 13 in contact with the second main surface 12 of the second base layer 7, and a second joint surface 14 in contact with the first main surface 9 of the first base layer 6. ..
  • the embedded insulating layer 8 further has a side surface 15.
  • the side surface 15 of the embedded insulating layer 8 faces the cavity 16 from the side. In other words, the side surface 15 of the embedded insulating layer 8 faces the cavity 16 in the first direction X and the second direction Y.
  • the embedded insulating layer 8 is partially formed between the first base layer 6 and the second base layer 7. In the region between the first base layer 6 and the second base layer 7, the region where the embedded insulating layer 8 is not formed is the cavity 16.
  • the cavity 16 is partitioned by a first main surface 9 of the first base layer 6, a second main surface 12 of the second base layer 7, and a side surface 15 of the embedded insulating layer 8.
  • the bottom surface of the cavity 16 is the first main surface 9 of the first base layer 6,
  • the upper surface of the cavity 16 is the second main surface 12 of the second base layer 7, and
  • the side surface 15 of the cavity 16 is the side surface of the embedded insulating layer 8. It may be 15.
  • the second base layer 7 includes a fixed structure 17 and a movable structure 18 that can be displaced with respect to the fixed structure 17.
  • the fixing structure 17 has a frame portion 19 fixed to the first joint surface 13 of the embedded insulating layer 8 and a first cantilever supported by the frame portion 19 in a floating state with respect to the cavity 16. Includes structure 20 and.
  • the frame portion 19 may include a pair of strip-shaped frame portions 19 extending parallel to each other in the first direction X.
  • the first cantilever structure 20 may include a plurality of first cantilever structures 20 extending parallel to each other in the second direction Y from the frame portion 19. In this embodiment, four first cantilever structures 20 are mechanically connected to the frame portion 19. Since the first cantilever structure 20 is an electrode fixed via the frame portion 19, it may be defined as a fixed electrode 21.
  • the movable structure 18 is formed so as to be entirely floating with respect to the cavity 16. With reference to FIG. 1, the movable structure 18 includes a connecting member 22 and a second cantilever structure 23.
  • the connecting member 22 may include a strip-shaped connecting member 22 extending in the first direction X.
  • the second cantilever structure 23 may include a plurality of second cantilever structures 23 extending parallel to each other in the second direction Y from the connecting member 22. In this embodiment, four second cantilever structures 23 extending from the connecting member 22 toward the frame portion 19 are mechanically connected to the connecting member 22.
  • the second cantilever structure 23 extends between adjacent first cantilever structures 20 toward the frame portion 19.
  • the first cantilever structure 20 and the second cantilever structure 23 extend in parallel with each other with a gap 55 in between. Since the second cantilever structure 23 is an electrode supported by the connecting member 22 while floating with respect to the cavity 16, it may be defined as a movable electrode 24.
  • the integrated structure of the connecting member 22 and the second cantilever structure 23 may be defined as the movable electrode 24. Since the connecting member 22 is a member that presses the movable contact portion 45 against the fixed contact portion 46 described later, it may be defined as a push rod.
  • the first cantilever structure 20 and the second cantilever structure 23 are each formed in a comb-teeth shape and mesh with each other at intervals.
  • the comb-tooth type electrode 25 including the first cantilever structure 20 (fixed electrode 21) and the second cantilever structure 23 (movable electrode 24) is formed.
  • an electrostatic force is generated between the fixed electrode 21 and the movable electrode 24.
  • the comb-toothed electrode 25 may be defined as an electrostatic actuator 2 that converts an electrical signal into a mechanical displacement along the first direction X.
  • the first cantilever structure 20 and the second cantilever structure 23 face each other in the first direction X.
  • the first cantilever structure 20 and the second cantilever structure 23 may be arranged alternately along the first direction X.
  • the second cantilever structure 23 and the first cantilever structure 20 are defined as the first movable electrode 24A, the first fixed electrode 21A, the second movable electrode 24B, and the second fixed electrode 21B in the order of arrangement in the first direction X. You may.
  • the first fixed electrode 21A is sandwiched between the first movable electrode 24A and the second movable electrode 24B at intervals in the first direction X.
  • the second movable electrode 24B is sandwiched between the first fixed electrode 21A and the second fixed electrode 21B at intervals in the first direction X.
  • the distance between one fixed electrode 21 and a pair of movable electrodes 24 adjacent to the fixed electrode 21 may be different from each other.
  • the distance between one movable electrode 24 and a pair of fixed electrodes 21 adjacent to the movable electrode 24 may be different from each other.
  • the distance d1 between the first movable electrode 24A and the first fixed electrode 21A may be smaller than the distance d2 between the second movable electrode 24B and the first fixed electrode 21A.
  • the distance d2 between the second movable electrode 24B and the first fixed electrode 21A may be larger than the distance d3 between the second movable electrode 24B and the second fixed electrode 21B.
  • the asymmetric structure 72 in which the distance between the fixed electrode 21 and the movable electrode 24 varies is provided.
  • This asymmetric structure 72 upsets the balance of the electrostatic force in the comb-tooth type electrode 25.
  • an electrostatic force acting between the second movable electrode 24B and the second fixed electrode 21B acts between the second movable electrode 24B and the first fixed electrode 21A. It can be made larger than the electrostatic force (first electrostatic force F1). Therefore, the movable structure 18 is displaced toward the fixed contact portion 46 by the electrostatic force corresponding to the difference between the first electrostatic force F1 and the second electrostatic force F2 (first electrostatic force F1-second electrostatic force F2). Can be done.
  • the movable structure 18 is mechanically connected to the fixed structure 17 via a beam portion 27 so as to be displaceable.
  • the beam portion 27 is formed by utilizing the second base layer 7 as in the fixed structure 17 and the movable structure 18.
  • the beam portion 27 is formed in a band shape extending from both sides of the connecting member 22 in the second direction Y toward the frame portion 19 along the second direction Y.
  • the first end 28 in the longitudinal direction of the beam 27 and the second end 29 on the opposite side thereof are mechanically connected to the frame 19 and the connecting member 22, respectively.
  • two beam portions 27 may be formed on both sides of the comb tooth type electrode 25 in the first direction X, for a total of four beams.
  • the movable structure 18 is supported at four points by the beam portion 27 in a state of floating with respect to the cavity 16.
  • Each beam portion 27 may be connected perpendicularly to the connecting member 22.
  • the beam portion 27 has flexibility.
  • the beam portion 27 can be elastically bent in the first direction X.
  • the second end portion 29, which is a free end opposite to the fixed end can be displaced in the first direction X with respect to the first end portion 28, which is a fixed end fixed to the frame portion 19.
  • it may have flexibility.
  • the beam portion 27 has a flexible structure for connecting the fixed structure 17 and the movable structure 18, it may be defined as a flexible connection structure.
  • the beam portion 27 may be defined as a spring structure that bends in the first direction X.
  • the beam portion 27 may be defined as a structure included in the movable structure 18.
  • the integrated structure of the connecting member 22, the second cantilever structure 23, and the beam portion 27 may be defined as the movable electrode 24.
  • the MEMS switch A1 includes a movable contact portion 45 and a fixed contact portion 46.
  • the movable contact portion 45 is provided on the connecting member 22 of the movable structure 18.
  • the movable contact portion 45 is provided at the end portion 47 in the longitudinal direction of the connecting member 22.
  • the second beam portion 48 is mechanically connected to the end portion 47 of the connecting member 22.
  • the second beam portion 48 has a linear shape extending in a direction intersecting the longitudinal direction of the connecting member 22.
  • the second beam portion 48 extends from the end portion 47 of the connecting member 22 on both sides in the crossing direction.
  • the movable contact portion 45 is selectively formed on the second side portion 50 of the first side portion 49 and the second side portion 50 in the width direction of the second beam portion 48.
  • the first side portion 49 of the second beam portion 48 is a side portion facing the electrostatic actuator 2 in the first direction X, and the second side portion 50 is the opposite side of the first side portion 49.
  • the movable contact portion 45 has a first structure 51 formed in a floating state with respect to the cavity 16.
  • the first structure 51 includes a second base layer 7, a first insulating layer 36, a second insulating layer 37, and a movable contact layer 52.
  • the first insulating layer 36 is formed on the second base layer 7.
  • the first insulating layer 36 has an end surface 53 along the thickness direction of the substrate 3 (in this embodiment, the third direction Z) and a main surface 54 intersecting the end surface 53.
  • the main surface 54 of the first insulating layer 36 is formed along the first main surface 4 of the substrate 3.
  • the end surface 53 of the first insulating layer 36 of the first structure 51 faces the fixed contact portion 46 via a gap 55 between the first insulating layer 36 and the fixed contact portion 46.
  • the second base layer 7 has an end surface 83 facing the fixed contact portion 46 via a gap 55 so as to be connected to the end surface 53 of the first insulating layer 36.
  • the first insulating layer 36 may contain, for example, the same first insulating material as the embedded insulating layer 8.
  • the first insulating layer 36 may be silicon oxide (SiO 2 ).
  • the first insulating material may be, for example, an insulating material containing silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or the like.
  • the first insulating material may be, for example, an insulating material that can be etched by an etching gas such as CF 4 , CHF 3 , SF 6 , and an etching solution.
  • the first insulating layer 36 may have a thickness of, for example, 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the second insulating layer 37 is formed on the first insulating layer 36 so as to cover the end surface 53 of the first insulating layer 36.
  • the second insulating layer 37 may continuously cover the main surface 54 and the end surface 53 of the first insulating layer 36.
  • the second insulating layer 37 has a main surface of the first insulating layer 36 so that the second insulating layer 37 has an end portion 84 at the boundary portion 56 between the end surface 83 of the second base layer 7 and the end surface 53 of the first insulating layer 36.
  • the 54 and the end face 53 are continuously covered.
  • the boundary portion 56 between the end surface 83 of the second base layer 7 and the end surface 53 of the first insulating layer 36 is formed at the boundary portion 85 between the end surface 83 of the second base layer 7 and the end surface 86 of the second insulating layer 37. It is covered.
  • the end surface 86 of the second insulating layer 37 is a surface continuous with the end surface 83 of the second base layer 7, and faces the fixed contact portion 46 via the gap 55.
  • the second insulating layer 37 may have a main surface 87 intersecting the end surface 86.
  • the main surface 87 of the second insulating layer 37 is formed along the first main surface 4 of the substrate 3.
  • the second insulating layer 37 may contain a second insulating material different from that of the first insulating layer 36.
  • the second insulating layer 37 may be a second insulating material having an etching selectivity with respect to the first insulating layer 36.
  • the second insulating layer 37 may be a second insulating material having an etching selectivity with respect to the first insulating layer 36 and the embedded insulating layer 8.
  • the second insulating layer 37 may be a second insulating material having etching resistance against an etching gas and an etching solution that can be used for etching the first insulating layer 36.
  • the second insulating layer 37 has etching resistance, for example, when the etching gas for the first insulating layer 36 is used, the etching selectivity of the first insulating layer 36 and the second insulating layer 37 (the first insulating layer 36).
  • the average etching rate of the second insulating layer 37) may be 10 to 1000. Therefore, the second insulating layer 37 may be defined as an etching protective layer that protects the first insulating layer 36 from etching when the embedded insulating layer 8 made of the same material as the first insulating layer 36 is etched.
  • the second insulating material may be an insulating material containing aluminum oxide (Al 2 O 3 ), tantalum oxide (TaO 2 ) and the like.
  • the second insulating material may be, for example, an insulating material that can be etched by an etching gas such as CF 4 , CHF 3 , SF 6 , and an etching solution.
  • the second insulating layer 37 may be thinner than the first insulating layer 36.
  • the second insulating layer 37 may have a thickness of, for example, 0.01 ⁇ m or more and 10 ⁇ m or less.
  • the movable contact layer 52 is supported by the first insulating layer 36 via the second insulating layer 37.
  • the movable contact layer 52 covers the main surface 87 and the end surface 86 of the second insulating layer 37.
  • the movable contact layer 52 faces the main surface 54 and the end surface 53 of the first insulating layer 36 via the second insulating layer 37.
  • the portion of the end surface 86 close to the main surface 87 is covered with the movable contact layer 52, and the remaining portion of the end surface 86 is exposed toward the gap 55. May be good.
  • the boundary portion 85 between the second insulating layer 37 and the second base layer 7 of the first structure 51 may face the gap 55.
  • the movable contact layer 52 includes a base portion 57 formed on the main surface 87 of the second insulating layer 37, and a protruding portion 58 protruding from the base portion 57 toward the fixed contact portion 46 with respect to the end surface 86 of the second insulating layer 37. May be included integrally.
  • the protruding portion 58 may be a portion that covers the end face 86 of the second insulating layer 37.
  • the movable contact layer 52 may be made of a conductive material such as gold (Au) or aluminum (Al). The movable contact layer 52 is electrically connected to the first signal line 59.
  • the fixed contact portion 46 is provided in the frame portion 19 of the fixed structure 17.
  • the frame portion 19 includes a first frame portion 60 and a second frame portion 61 that are mechanically separated from each other.
  • the first frame portion 60 and the second frame portion 61 are formed with a second signal line 62 that conducts by contact between the movable contact portion 45 and the fixed contact portion 46.
  • the fixed contact portion 46 has a second structure 63 supported by the embedded insulating layer 8.
  • the second structure 63 includes a second base layer 7, a first insulating layer 36, a second insulating layer 37, and a fixed contact layer 64.
  • the first insulating layer 36 is formed on the second base layer 7.
  • the first insulating layer 36 has an end surface 65 along the thickness direction of the substrate 3 (in this embodiment, the third direction Z) and a main surface 66 intersecting the end surface 65.
  • the main surface 66 of the first insulating layer 36 is formed along the first main surface 4 of the substrate 3.
  • the end surface 65 of the first insulating layer 36 of the second structure 63 faces the movable contact portion 45 via a gap 55 between the first insulating layer 36 and the movable contact portion 45.
  • the second base layer 7 has an end face 88 facing the fixed contact portion 46 via a gap 55 so as to be connected to the end face 65 of the first insulating layer 36.
  • the second insulating layer 37 is formed on the first insulating layer 36 so as to cover the end face 65 of the first insulating layer 36.
  • the second insulating layer 37 may continuously cover the main surface 66 and the end surface 65 of the first insulating layer 36.
  • the second insulating layer 37 has a main surface of the first insulating layer 36 so that the second insulating layer 37 has an end portion 89 at a boundary portion 67 between the end surface 88 of the second base layer 7 and the end surface 65 of the first insulating layer 36.
  • the 66 and the end face 65 are continuously covered.
  • the boundary portion 67 between the end face 88 of the second base layer 7 and the end face 65 of the first insulating layer 36 is formed at the boundary portion 90 between the end face 88 of the second base layer 7 and the end face 91 of the second insulating layer 37. It is covered.
  • the end surface 91 of the second insulating layer 37 is a surface continuous with the end surface 88 of the second base layer 7, and faces the movable contact portion 45 via the gap 55.
  • the second insulating layer 37 may have a main surface 92 that intersects the end surface 91.
  • the main surface 92 of the second insulating layer 37 is formed along the first main surface 4 of the substrate 3.
  • the fixed contact layer 64 is supported by the first insulating layer 36 via the second insulating layer 37.
  • the fixed contact layer 64 covers the main surface 92 and the end surface 91 of the second insulating layer 37.
  • the fixed contact layer 64 faces the main surface 66 and the end surface 65 of the first insulating layer 36 via the second insulating layer 37.
  • the portion of the end surface 91 near the main surface 92 is covered with the fixed contact layer 64, and the remaining portion of the end surface 91 is exposed toward the gap 55. May be good.
  • the boundary portion 90 between the second insulating layer 37 and the second base layer 7 of the second structure 63 may face the gap 55.
  • the fixed contact layer 64 includes a base portion 68 formed on the main surface 92 of the second insulating layer 37 and a protruding portion 69 protruding from the base portion 68 toward the movable contact portion 45 side of the end surface 91 of the second insulating layer 37. May be included integrally.
  • the protruding portion 69 may be a portion that covers the end face 91 of the second insulating layer 37.
  • the fixed contact layer 64 may be, for example, a conductive material such as gold (Au) or aluminum (Al).
  • the fixed contact layer 64 is electrically connected to the second signal line 62.
  • 3A and 3B are schematic views showing the operation of the MEMS switch A1 of FIG. 4A and 4B are schematic views (enlarged views) showing the operation of the MEMS switch A1 of FIG.
  • the MEMS switch A1 To drive the MEMS switch A1, for example, a voltage is applied so that a potential difference is formed between the movable electrode 24 and the fixed electrode 21 of the electrostatic actuator 2. As a result, as shown in FIGS. 3B and 4B, the beam portion 27 is deformed and the connecting member 22 is displaced. Due to the displacement of the connecting member 22, the movable contact portion 45 approaches the fixed contact portion 46, and the movable contact portion 45 can be brought into contact with the fixed contact portion 46. By this contact, the MEMS switch A1 is turned on, the first signal line 59 and the second signal line 62 are made conductive, and a conduction circuit is formed.
  • the second base layer 7 of the movable contact portion 45 may selectively project toward the fixed contact portion 46 with respect to the second beam portion 48. Further, the second base layer 7 of the fixed contact portion 46 may selectively project toward the movable contact portion 45 with respect to the first frame portion 60.
  • 5A to 5H are diagrams showing a part of the manufacturing process of the MEMS switch A1 of FIG. 1 in the order of processes.
  • a wafer 73 forming the substrate 3 of the MEMS switch A1 is prepared with reference to FIG. 5A.
  • the wafer 73 has a first wafer main surface 74 and a second wafer main surface 75 on the opposite side of the first wafer main surface 74.
  • the first wafer main surface 74 is the first main surface 11 of the second base layer 7, and the second wafer main surface 75 is the second main surface 10 of the first base layer 6.
  • the wafer 73 is an SOI wafer in this embodiment.
  • the first insulating layer 36 is formed on the first wafer main surface 74 of the wafer 73.
  • the first insulating layer 36 may be formed by, for example, a CVD (Chemical Vapor Deposition) method, a thermal oxidation method, or the like.
  • the unnecessary portion of the first insulating layer 36 is removed.
  • the first opening 93 is formed in the first insulating layer 36, and a part of the first main surface 11 of the second base layer 7 is exposed from the first opening 93.
  • the second insulating layer 37 is formed on the first insulating layer 36.
  • the second insulating layer 37 may be formed by, for example, an atomic layer deposition method (ALD).
  • ALD atomic layer deposition method
  • a trench 76 is formed as a through hole that penetrates from the first main surface 11 of the second base layer 7 to the second base layer 7 and reaches the embedded insulating layer 8.
  • the trench 76 may be formed by, for example, an anisotropic deep RIE (Reactive Ion Etching).
  • an etching gas capable of etching the embedded insulating layer 8 is supplied.
  • a fluorine-based gas for example, HF or the like
  • the embedded insulating layer 8 is selectively removed.
  • a cavity 16 sandwiched between the first base layer 6 and the second base layer 7 is formed in the portion from which the embedded insulating layer 8 has been removed.
  • the fixed structure 17 and the movable structure 18 are separately formed.
  • a part of the embedded insulating layer 8 remains in contact with and sandwiched between the first base layer 6 and the second base layer 7.
  • the movable contact layer 52 and the fixed contact layer 64 are formed.
  • the movable contact layer 52 and the fixed contact layer 64 are formed by depositing these conductive materials (metal materials).
  • the movable contact layer 52 and the fixed contact layer 64 may be deposited by, for example, a CVD (Chemical Vapor Deposition) method, a PVD (Physical Vapor Deposition) method, or the like.
  • a part of the conductive material may not be deposited on the first insulating layer 36, but may be deposited as a residue 77 on the end faces 83, 88, the cavity 16 and the like of the second base layer 7.
  • the residue 77 is physically and electrically separated from the movable contact layer 52 and the fixed contact layer 64.
  • the end faces 53 and 65 of the first insulating layer 36 are covered with the second insulating layer 37.
  • FIG. 6 is a schematic cross-sectional view of the MEMS switch B1 according to the embodiment of the present disclosure.
  • the same reference numerals will be given to the structures corresponding to the structures described for the MEMS switch A1 according to the above-described embodiment, and the description thereof will be omitted.
  • the movable electrode 24, the fixed electrode 21, and the beam portion 27 each have a third structure 94 formed in a floating state with respect to the cavity 16.
  • the third structure 94 includes a second base layer 7, a first insulating layer 36, and a second insulating layer 37.
  • the first insulating layer 36 is formed on the second base layer 7.
  • the first insulating layer 36 has an end surface 95 along the thickness direction of the substrate 3 (in this embodiment, the third direction Z) and a main surface 96 intersecting the end surface 95.
  • the main surface 96 of the first insulating layer 36 is formed along the first main surface 4 of the substrate 3.
  • the second base layer 7 has an end face 97 so as to be connected to the end face 95 of the first insulating layer 36.
  • the second insulating layer 37 is formed on the first insulating layer 36 so as to cover the end face 95 of the first insulating layer 36.
  • the second insulating layer 37 may continuously cover the main surface 96 and the end surface 95 of the first insulating layer 36.
  • the second insulating layer 37 has a main surface of the first insulating layer 36 so that the second insulating layer 37 has an end portion 98 at a boundary portion 99 between the end surface 97 of the second base layer 7 and the end surface 95 of the first insulating layer 36.
  • 96 and end face 95 are continuously covered.
  • the boundary portion 99 between the end face 97 of the second base layer 7 and the end face 95 of the first insulating layer 36 is the boundary portion 100 between the end face 97 of the second base layer 7 and the end face 101 of the second insulating layer 37. It is covered.
  • the end surface 101 of the second insulating layer 37 is a surface continuous with the end surface 97 of the second base layer 7. Further, the second insulating layer 37 may have a main surface 102 that intersects the end surface 101.
  • the main surface 102 of the second insulating layer 37 is formed along the first main surface 4 of the substrate 3.
  • 7A to 7H are diagrams showing a part of the manufacturing process of the MEMS switch B1 of FIG. 6 in the order of the processes.
  • a wafer 73 forming the substrate 3 of the MEMS switch B1 is prepared with reference to FIG. 7A.
  • the first insulating layer 36 is formed on the first wafer main surface 74 of the wafer 73.
  • the first insulating layer 36 may be formed by, for example, a CVD (Chemical Vapor Deposition) method, a thermal oxidation method, or the like.
  • the unnecessary portion of the first insulating layer 36 is removed.
  • the first opening 93 is formed in the first insulating layer 36, and a part of the first main surface 11 of the second base layer 7 is exposed from the first opening 93.
  • the second insulating layer 37 is formed on the first insulating layer 36.
  • the second insulating layer 37 may be formed by, for example, an atomic layer deposition method (ALD).
  • ALD atomic layer deposition method
  • the main surfaces 54, 66, 96 of the first insulating layer 36 and the end faces 53, 65, 95 of the first insulating layer 36 exposed to the first opening 93 are covered with the second insulating layer 37.
  • a trench 76 is formed as a through hole that penetrates from the first main surface 11 of the second base layer 7 to the second base layer 7 and reaches the embedded insulating layer 8.
  • the trench 76 may be formed by, for example, an anisotropic deep RIE (Reactive Ion Etching).
  • an etching gas capable of etching the embedded insulating layer 8 is supplied.
  • a fluorine-based gas for example, HF or the like
  • the embedded insulating layer 8 is selectively removed.
  • a cavity 16 sandwiched between the first base layer 6 and the second base layer 7 is formed in the portion from which the embedded insulating layer 8 has been removed.
  • the movable contact layer 52 and the fixed contact layer 64 are formed.
  • the end face 95 of the first insulating layer 36 is covered with the second insulating layer 37. This makes it possible to prevent the first insulating layer 36 from being etched from the end face 95 when the embedded insulating layer 8 is etched through the trench 76 (FIG. 7G). Therefore, the first main surface 11 of the movable electrode 24 and the fixed electrode 21 can be reliably covered with the first insulating layer 36, so that the insulation reliability of the movable electrode 24 and the fixed electrode 21 can be improved.
  • FIG. 8 is a schematic cross-sectional view of the MEMS switch C1 according to the embodiment of the present disclosure.
  • the same reference numerals will be given to the structures corresponding to the structures described for the MEMS switches A1 and B1 according to the above-described embodiment, and the description thereof will be omitted.
  • the second insulating layer 37 is a second base layer 7 in addition to the end faces 53, 65, 95 of the first insulating layer 36. It covers the end faces 83, 88, 97.
  • the second insulating layer 37 is a first insulating layer so as to cross the boundary portions 56, 67, 99 between the end faces 83, 88, 97 of the second base layer 7 and the end faces 53, 65, 95 of the first insulating layer 36.
  • the end faces 53, 65, 95 of 36 and the end faces 83, 88, 97 of the second base layer 7 are integrally covered.
  • the second main surface 12 of the second base layer 7 is not covered with the second insulating layer 37 and is exposed to the cavity 16. ..
  • 9A to 9H are diagrams showing a part of the manufacturing process of the MEMS switch C1 of FIG. 8 in the order of the processes.
  • a wafer 73 forming the substrate 3 of the MEMS switch C1 is prepared with reference to FIG. 9A.
  • the first insulating layer 36 is formed on the first wafer main surface 74 of the wafer 73.
  • the first insulating layer 36 may be formed by, for example, a CVD (Chemical Vapor Deposition) method, a thermal oxidation method, or the like.
  • the unnecessary portion of the first insulating layer 36 is removed.
  • the first opening 93 is formed in the first insulating layer 36, and a part of the first main surface 11 of the second base layer 7 is exposed from the first opening 93.
  • a trench 76 is formed as a through hole that penetrates from the first main surface 11 of the second base layer 7 to the second base layer 7 and reaches the embedded insulating layer 8.
  • the trench 76 may be formed by, for example, an anisotropic deep RIE (Reactive Ion Etching).
  • the second insulating layer 37 is formed on the first insulating layer 36.
  • the second insulating layer 37 may be formed by, for example, an atomic layer deposition method (ALD).
  • ALD atomic layer deposition method
  • the main surfaces 54, 66, 96 of the first insulating layer 36, the end faces 53, 65, 95 of the first insulating layer 36 exposed to the first opening 93, and the end faces 83 of the second base layer 7 exposed to the trench 76, 88 and 97 are covered with the second insulating layer 37.
  • an etching gas capable of etching the embedded insulating layer 8 is supplied.
  • a fluorine-based gas for example, HF or the like
  • the embedded insulating layer 8 is selectively removed.
  • a cavity 16 sandwiched between the first base layer 6 and the second base layer 7 is formed in the portion from which the embedded insulating layer 8 has been removed.
  • the movable contact layer 52 and the fixed contact layer 64 are formed.
  • the MEMS switch C1 for example, when a part of the embedded insulating layer 8 is removed by etching to form a cavity 16 between the first base layer 6 and the second base layer 7, a third structure is formed. It is possible to prevent the second base layer 7 of 94 from being etched from the end face 97. Thereby, for example, the distances d1 to d3 between the movable electrode 24 and the fixed electrode 21 can be maintained substantially as designed.
  • FIG. 10 is a schematic cross-sectional view of the MEMS switch D1 according to the embodiment of the present disclosure.
  • the same reference numerals will be given to the structures corresponding to the structures described for the MEMS switches A1 to C1 according to the above-described embodiment, and the description thereof will be omitted.
  • the MEMS switch D1 in the first structure 51, the second structure 63, and the third structure 94, between the end faces 83, 88, 97 of the second base layer 7 and the end faces 53, 65, 95 of the first insulating layer 36. Is formed with a step 103 so that a part of the first insulating layer 36 projects from the end faces 83, 88, 97 of the second base layer 7.
  • 11A to 11H are diagrams showing a part of the manufacturing process of the MEMS switch D1 of FIG. 10 in the order of processes.
  • a wafer 73 forming the substrate 3 of the MEMS switch D1 is prepared with reference to FIG. 11A.
  • the first insulating layer 36 is formed on the first wafer main surface 74 of the wafer 73.
  • the first insulating layer 36 may be formed by, for example, a CVD (Chemical Vapor Deposition) method, a thermal oxidation method, or the like.
  • the unnecessary portion of the first insulating layer 36 is removed.
  • the first opening 93 is formed in the first insulating layer 36, and a part of the first main surface 11 of the second base layer 7 is exposed from the first opening 93.
  • a trench 76 is formed as a through hole that penetrates from the first main surface 11 of the second base layer 7 to the second base layer 7 and reaches the embedded insulating layer 8.
  • the trench 76 may be formed by, for example, an anisotropic deep RIE (Reactive Ion Etching). As a result, the step 103 is formed.
  • the second insulating layer 37 is formed on the first insulating layer 36.
  • the second insulating layer 37 may be formed by, for example, an atomic layer deposition method (ALD).
  • ALD atomic layer deposition method
  • the main surfaces 54, 66, 96 of the first insulating layer 36, the end faces 53, 65, 95 of the first insulating layer 36 exposed to the first opening 93, and the end faces 83 of the second insulating layer 37 exposed to the trench 76, 88 and 97 are covered with the second insulating layer 37.
  • an etching gas capable of etching the embedded insulating layer 8 is supplied.
  • a fluorine-based gas for example, HF or the like
  • the embedded insulating layer 8 is selectively removed.
  • a cavity 16 sandwiched between the first base layer 6 and the second base layer 7 is formed in the portion from which the embedded insulating layer 8 has been removed.
  • the movable contact layer 52 and the fixed contact layer 64 are formed.
  • FIGS. 11A to 11H According to the methods of FIGS. 11A to 11H, the same effects as the methods of FIGS. 5A to 5H, the methods of FIGS. 7A to 7H, and the methods of FIGS. 9A to 9H can be obtained.
  • MEMS switches A1, B1, C1, and D1 of the present disclosure can also be implemented in other embodiments.
  • the movable structure 18 is displaced by the electrostatic drive of the electrostatic actuator 2, but it may be displaced by the piezoelectric drive of the piezoelectric actuator including the piezoelectric element. Further, the movable structure 18 may be displaced by a combination of electrostatic drive and piezoelectric drive.
  • Electrostatic actuator 3 Substrate 4: First main surface 5: Second main surface 6: First base layer 7: Second base layer 8: Embedded insulating layer 9: First main surface 10: Second main surface 11 : 1st main surface 12: 2nd main surface 13: 1st joint surface 14: 2nd joint surface 15: Side surface 16: Cavity 17: Fixed structure 18: Movable structure 19: Frame portion 20: 1st cantilever structure 21: Fixed Electrode 21A: 1st fixed electrode 21B: 2nd fixed electrode 22: Connecting member 23: 2nd cantilever structure 24: Movable electrode 24A: 1st movable electrode 24B: 2nd movable electrode 25: Comb tooth type electrode 27: Beam portion 28 : 1st end 29: 2nd end 36: 1st insulating layer 37: 2nd insulating layer 45: Movable contact part 46: Fixed contact part 47: End part 48: 2nd beam part 49: 1st side part 50 : Second side portion 51: First structure 52: Movable contact layer 53

Landscapes

  • Micromachines (AREA)

Abstract

This MEMS switch comprises: a substrate that has a first main surface and a second main surface on the opposite side thereof, and also has a cavity formed therein; an actuator unit that is formed on the first main surface side of the substrate and converts an electric signal to a mechanical action; a movable contact part that is formed, in a floating state in the cavity, on the first main surface side of the substrate, and can be displaced by the mechanical action of the actuator unit; and a fixed contact part that faces the movable contact part, and can be set to be in contact with or non-contact with the movable contact part by the displacement of the movable contact part, wherein at least one of the movable contact part and the fixed contact part has a first structure in which are included the substrate, a first insulating layer that is formed on the substrate, a second insulating layer that is formed on the first insulating layer so as to cover an end surface of the first insulating layer along the thickness direction of the substrate, and that contains a material different from that of the first insulating layer, and a conductive contact layer that is supported by the first insulating layer.

Description

MEMSスイッチおよびMEMSスイッチの製造方法MEMS switch and manufacturing method of MEMS switch
 本開示は、MEMSスイッチおよびMEMSスイッチの製造方法に関する。 This disclosure relates to a MEMS switch and a method for manufacturing a MEMS switch.
 たとえば、特許文献1は、MEMSスイッチを開示している。このMEMSスイッチは、固定接点部と可動接点部とを備えている。固定接点部は、絶縁膜を介してベース基板の上面に固定された下面を有している。可動接点部は、ベース基板の上面から浮いている。可動接点部は、アクチュエータによってベース基板の上面と平行な方向に移動する。 For example, Patent Document 1 discloses a MEMS switch. This MEMS switch includes a fixed contact portion and a movable contact portion. The fixed contact portion has a lower surface fixed to the upper surface of the base substrate via an insulating film. The movable contact portion floats from the upper surface of the base substrate. The movable contact portion is moved by the actuator in a direction parallel to the upper surface of the base substrate.
欧州特許出願公開第2365499明細書European Patent Application Publication No. 2365499
 本開示の一例としてのMEMSスイッチは、第1主面およびその反対側の第2主面を有し、空洞が内部に形成された基板と、前記基板の前記第1主面側に形成され、電気信号を機械的動作に変換するアクチュエータ部と、前記基板の前記第1主面側に前記空洞に浮いた状態で形成され、前記アクチュエータ部の機械的動作によって変位可能な可動接点部と、前記可動接点部と対向し、前記可動接点部の変位によって前記可動接点部と接触および非接触可能な固定接点部とを含み、前記可動接点部および前記固定接点部の少なくとも一方は、前記基板と、前記基板上に形成された第1絶縁層と、前記基板の厚さ方向に沿う前記第1絶縁層の端面を被覆するように前記第1絶縁層上に形成され、前記第1絶縁層とは異なる材料を含む第2絶縁層と、前記第1絶縁層に支持された導電性の接点層とを含む第1構造を有している。 An MEMS switch as an example of the present disclosure has a first main surface and a second main surface on the opposite side thereof, and is formed on a substrate in which a cavity is formed and on the first main surface side of the substrate. An actuator unit that converts an electric signal into a mechanical operation, a movable contact unit that is formed on the first main surface side of the substrate in a state of floating in the cavity and can be displaced by the mechanical operation of the actuator unit, and the above. A fixed contact portion facing the movable contact portion and capable of contacting and not contacting the movable contact portion due to displacement of the movable contact portion is included, and at least one of the movable contact portion and the fixed contact portion includes the substrate and the fixed contact portion. The first insulating layer formed on the substrate and the first insulating layer formed on the first insulating layer so as to cover the end faces of the first insulating layer along the thickness direction of the substrate are referred to as the first insulating layer. It has a first structure including a second insulating layer containing different materials and a conductive contact layer supported by the first insulating layer.
図1は、本開示の一実施形態に係るMEMSスイッチの模式的な平面図である。FIG. 1 is a schematic plan view of a MEMS switch according to an embodiment of the present disclosure. 図2は、本開示の一実施形態に係るMEMSスイッチの模式的な断面図である。FIG. 2 is a schematic cross-sectional view of the MEMS switch according to the embodiment of the present disclosure. 図3Aおよび図3Bは、図1のMEMSスイッチの動作を示す模式図である。3A and 3B are schematic views showing the operation of the MEMS switch of FIG. 図4Aおよび図4Bは、図1のMEMSスイッチの動作を示す模式図(拡大図)である。4A and 4B are schematic views (enlarged views) showing the operation of the MEMS switch of FIG. 図5Aは、図1のMEMSスイッチの製造工程の一部を示す図である。FIG. 5A is a diagram showing a part of the manufacturing process of the MEMS switch of FIG. 図5Bは、図5Aの次の工程を示す図である。FIG. 5B is a diagram showing the next step of FIG. 5A. 図5Cは、図5Bの次の工程を示す図である。FIG. 5C is a diagram showing the next step of FIG. 5B. 図5Dは、図5Cの次の工程を示す図である。FIG. 5D is a diagram showing the next step of FIG. 5C. 図5Eは、図5Dの次の工程を示す図である。FIG. 5E is a diagram showing the next step of FIG. 5D. 図5Fは、図5Eの次の工程を示す図である。FIG. 5F is a diagram showing the next step of FIG. 5E. 図5Gは、図5Fの次の工程を示す図である。FIG. 5G is a diagram showing the next step of FIG. 5F. 図5Hは、図5Gの次の工程を示す図である。FIG. 5H is a diagram showing the next step of FIG. 5G. 図6は、本開示の一実施形態に係るMEMSスイッチの模式的な断面図である。FIG. 6 is a schematic cross-sectional view of the MEMS switch according to the embodiment of the present disclosure. 図7Aは、図6のMEMSスイッチの製造工程の一部を示す図である。FIG. 7A is a diagram showing a part of the manufacturing process of the MEMS switch of FIG. 図7Bは、図7Aの次の工程を示す図である。FIG. 7B is a diagram showing the next step of FIG. 7A. 図7Cは、図7Bの次の工程を示す図である。FIG. 7C is a diagram showing the next step of FIG. 7B. 図7Dは、図7Cの次の工程を示す図である。FIG. 7D is a diagram showing the next step of FIG. 7C. 図7Eは、図7Dの次の工程を示す図である。FIG. 7E is a diagram showing the next step of FIG. 7D. 図7Fは、図7Eの次の工程を示す図である。FIG. 7F is a diagram showing the next step of FIG. 7E. 図7Gは、図7Fの次の工程を示す図である。FIG. 7G is a diagram showing the next step of FIG. 7F. 図7Hは、図7Gの次の工程を示す図である。FIG. 7H is a diagram showing the next step of FIG. 7G. 図8は、本開示の一実施形態に係るMEMSスイッチの模式的な断面図である。FIG. 8 is a schematic cross-sectional view of the MEMS switch according to the embodiment of the present disclosure. 図9Aは、図8のMEMSスイッチの製造工程の一部を示す図である。FIG. 9A is a diagram showing a part of the manufacturing process of the MEMS switch of FIG. 図9Bは、図9Aの次の工程を示す図である。FIG. 9B is a diagram showing the next step of FIG. 9A. 図9Cは、図9Bの次の工程を示す図である。FIG. 9C is a diagram showing the next step of FIG. 9B. 図9Dは、図9Cの次の工程を示す図である。FIG. 9D is a diagram showing the next step of FIG. 9C. 図9Eは、図9Dの次の工程を示す図である。FIG. 9E is a diagram showing the next step of FIG. 9D. 図9Fは、図9Eの次の工程を示す図である。FIG. 9F is a diagram showing the next step of FIG. 9E. 図9Gは、図9Fの次の工程を示す図である。FIG. 9G is a diagram showing the next step of FIG. 9F. 図9Hは、図9Gの次の工程を示す図である。FIG. 9H is a diagram showing the next step of FIG. 9G. 図10は、本開示の一実施形態に係るMEMSスイッチの模式的な断面図である。FIG. 10 is a schematic cross-sectional view of the MEMS switch according to the embodiment of the present disclosure. 図11Aは、図10のMEMSスイッチの製造工程の一部を示す図である。FIG. 11A is a diagram showing a part of the manufacturing process of the MEMS switch of FIG. 図11Bは、図11Aの次の工程を示す図である。FIG. 11B is a diagram showing the next step of FIG. 11A. 図11Cは、図11Bの次の工程を示す図である。FIG. 11C is a diagram showing the next step of FIG. 11B. 図11Dは、図11Cの次の工程を示す図である。FIG. 11D is a diagram showing the next step of FIG. 11C. 図11Eは、図11Dの次の工程を示す図である。FIG. 11E is a diagram showing the next step of FIG. 11D. 図11Fは、図11Eの次の工程を示す図である。FIG. 11F is a diagram showing the next step of FIG. 11E. 図11Gは、図11Fの次の工程を示す図である。FIG. 11G is a diagram showing the next step of FIG. 11F. 図11Hは、図11Gの次の工程を示す図である。FIG. 11H is a diagram showing the next step of FIG. 11G.
<本開示の実施形態>
 まず、本開示の実施形態を列記して説明する。
<Embodiment of the present disclosure>
First, the embodiments of the present disclosure will be listed and described.
 本開示の第1例としてのMEMSスイッチは、第1主面およびその反対側の第2主面を有し、空洞が内部に形成された基板と、前記基板の前記第1主面側に形成され、電気信号を機械的動作に変換するアクチュエータ部と、前記基板の前記第1主面側に前記空洞に浮いた状態で形成され、前記アクチュエータ部の機械的動作によって変位可能な可動接点部と、前記可動接点部と対向し、前記可動接点部の変位によって前記可動接点部と接触および非接触可能な固定接点部とを含み、前記可動接点部および前記固定接点部の少なくとも一方は、前記基板と、前記基板上に形成された第1絶縁層と、前記基板の厚さ方向に沿う前記第1絶縁層の端面を被覆するように前記第1絶縁層上に形成され、前記第1絶縁層とは異なる材料を含む第2絶縁層と、前記第1絶縁層に支持された導電性の接点層とを含む第1構造を有している。 The MEMS switch as the first example of the present disclosure has a first main surface and a second main surface on the opposite side thereof, and is formed on a substrate in which a cavity is formed and on the first main surface side of the substrate. An actuator unit that converts an electric signal into a mechanical operation, and a movable contact portion that is formed in a state of floating in the cavity on the first main surface side of the substrate and can be displaced by the mechanical operation of the actuator unit. A fixed contact portion facing the movable contact portion and capable of contacting and not contacting the movable contact portion due to displacement of the movable contact portion is included, and at least one of the movable contact portion and the fixed contact portion is the substrate. The first insulating layer formed on the substrate and the first insulating layer formed on the first insulating layer so as to cover the end faces of the first insulating layer along the thickness direction of the substrate. It has a first structure including a second insulating layer containing a material different from the above, and a conductive contact layer supported by the first insulating layer.
 この構成によれば、第1構造の第1絶縁層の端面が第2絶縁層で被覆されている。これにより、たとえば、基板に空洞を形成する際に第1絶縁層をエッチングし得るエッチングガスやエッチング液が使用されても、第1絶縁層が端面からエッチングされることを抑制することができる。そのため、接点層の直下の第1絶縁層がエッチングにより除去されることを防止できるので、接点層を第1絶縁層によって安定的に支持することができる。その結果、可動接点部と固定接点部との接触信頼性を向上することができる。 According to this configuration, the end face of the first insulating layer of the first structure is covered with the second insulating layer. Thereby, for example, even if an etching gas or an etching solution capable of etching the first insulating layer is used when forming a cavity in the substrate, it is possible to prevent the first insulating layer from being etched from the end face. Therefore, it is possible to prevent the first insulating layer immediately below the contact layer from being removed by etching, so that the contact layer can be stably supported by the first insulating layer. As a result, the contact reliability between the movable contact portion and the fixed contact portion can be improved.
 また、基板が不純物を含む半導体基板である場合、接点層の直下の第1絶縁層が過度にエッチングされると、接点層の一部が宙に浮いて半導体基板と接触する場合がある。この種の接触は、MEMSスイッチのスイッチング不良を起こすおそれがある。これに対し、本開示のMEMSスイッチでは、そのようなスイッチング不良を抑制することができる。 Further, when the substrate is a semiconductor substrate containing impurities, if the first insulating layer directly under the contact layer is excessively etched, a part of the contact layer may float in the air and come into contact with the semiconductor substrate. This type of contact can lead to poor switching of the MEMS switch. On the other hand, in the MEMS switch of the present disclosure, such switching failure can be suppressed.
 本開示の第1例としてのMEMSスイッチでは、前記基板は、第1ベース層と、前記第1ベース層上に形成され、前記第1絶縁層と同じ材料を含む埋め込み絶縁層と、前記埋め込み絶縁層上に形成された第2ベース層とを含み、前記空洞は、前記第1ベース層と前記第2ベース層との間に形成され、前記埋め込み絶縁層によって側方から区画されており、前記第1構造において前記第1絶縁層は、前記第2ベース層上に形成されていてもよい。 In the MEMS switch as the first example of the present disclosure, the substrate is formed on the first base layer, the first base layer, and the embedded insulating layer containing the same material as the first insulating layer, and the embedded insulation. The cavity is formed between the first base layer and the second base layer, and is partitioned from the side by the embedded insulating layer, including a second base layer formed on the layer. In the first structure, the first insulating layer may be formed on the second base layer.
 この構成によれば、第1絶縁層と埋め込み絶縁層とが同じ材料を含むが、第1絶縁層の端面が第2絶縁層で被覆されている。そのため、たとえば、埋め込み絶縁層の一部をエッチングによって除去して第1ベース層と第2ベース層との間に空洞を形成する際に、第1絶縁層が端面からエッチングされることを抑制することができる。 According to this configuration, the first insulating layer and the embedded insulating layer contain the same material, but the end face of the first insulating layer is covered with the second insulating layer. Therefore, for example, when a part of the embedded insulating layer is removed by etching to form a cavity between the first base layer and the second base layer, the first insulating layer is prevented from being etched from the end face. be able to.
 本開示の第1例としてのMEMSスイッチでは、前記第1構造において前記第2ベース層は、前記基板の厚さ方向において前記第1絶縁層の端面に連なる端面を有しており、前記第1構造において前記第2絶縁層は、前記第2ベース層の端面と前記第1絶縁層の端面との境界部に端部を有するように前記第1絶縁層の端面を被覆していてもよい。 In the MEMS switch as the first example of the present disclosure, in the first structure, the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate, and the first In the structure, the second insulating layer may cover the end face of the first insulating layer so as to have an end portion at the boundary between the end face of the second base layer and the end face of the first insulating layer.
 本開示の第1例としてのMEMSスイッチでは、前記第1構造において前記第2ベース層は、前記基板の厚さ方向において前記第1絶縁層の端面に連なる端面を有しており、前記第1構造において前記第2絶縁層は、前記第1絶縁層の端面に加えてさらに、前記第2ベース層の端面を被覆していてもよい。 In the MEMS switch as the first example of the present disclosure, in the first structure, the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate, and the first In the structure, the second insulating layer may further cover the end face of the second base layer in addition to the end face of the first insulating layer.
 この構成によれば、たとえば、埋め込み絶縁層の一部をエッチングによって除去して第1ベース層と第2ベース層との間に空洞を形成する際に、第1構造の第2ベース層が端面からエッチングされることを抑制することができる。 According to this configuration, for example, when a part of the embedded insulating layer is removed by etching to form a cavity between the first base layer and the second base layer, the second base layer of the first structure has an end face. Etching can be suppressed.
 本開示の第1例としてのMEMSスイッチでは、前記第1構造において前記第2ベース層の端面と前記第1絶縁層の端面との間には、前記第1絶縁層の一部が前記第2ベース層の端面に対して突出するように、段差が形成されていてもよい。 In the MEMS switch as the first example of the present disclosure, in the first structure, a part of the first insulating layer is formed between the end face of the second base layer and the end face of the first insulating layer. A step may be formed so as to project from the end face of the base layer.
 本開示の第1例としてのMEMSスイッチでは、前記アクチュエータ部は、前記空洞に対して浮いた状態で前記第2ベース層に形成された静電アクチュエータであって、交互に配列された固定電極および可動電極を含み、前記可動電極と前記固定電極との間の静電気力によって変位する櫛歯型の静電アクチュエータを含み、前記可動接点部は、前記可動電極に連結された連結部材を介して前記静電アクチュエータに対して変位可能に設けられていてもよい。 In the MEMS switch as the first example of the present disclosure, the actuator portion is an electrostatic actuator formed on the second base layer while floating with respect to the cavity, and the fixed electrodes and the fixed electrodes are arranged alternately. The movable electrode includes a comb-tooth type electrostatic actuator that is displaced by an electrostatic force between the movable electrode and the fixed electrode, and the movable contact portion is said to be via a connecting member connected to the movable electrode. It may be provided so as to be displaceable with respect to the electrostatic actuator.
 本開示の第1例としてのMEMSスイッチでは、前記可動電極および前記固定電極の少なくとも一方は、前記第2ベース層と、前記第1絶縁層と、前記第2絶縁層とを含む第2構造を有していてもよい。 In a MEMS switch as a first example of the present disclosure, at least one of the movable electrode and the fixed electrode has a second structure including the second base layer, the first insulating layer, and the second insulating layer. You may have.
 本開示の第1例としてのMEMSスイッチでは、前記第2構造において前記第2ベース層は、前記基板の厚さ方向において前記第1絶縁層の端面に連なる端面を有しており、前記第2構造において前記第2絶縁層は、前記第2ベース層の端面と前記第1絶縁層の端面との境界部に端部を有するように前記第1絶縁層の端面を被覆していてもよい。 In the MEMS switch as the first example of the present disclosure, in the second structure, the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate, and the second base layer is connected to the end face. In the structure, the second insulating layer may cover the end face of the first insulating layer so as to have an end portion at the boundary between the end face of the second base layer and the end face of the first insulating layer.
 本開示の第1例としてのMEMSスイッチでは、前記第2構造において前記第2ベース層は、前記基板の厚さ方向において前記第1絶縁層の端面に連なる端面を有しており、前記第2構造において前記第2絶縁層は、前記第1絶縁層の端面に加えてさらに、前記第2ベース層の端面を被覆していてもよい。 In the MEMS switch as the first example of the present disclosure, in the second structure, the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate, and the second base layer is connected to the end face. In the structure, the second insulating layer may further cover the end face of the second base layer in addition to the end face of the first insulating layer.
 この構成によれば、たとえば、埋め込み絶縁層の一部をエッチングによって除去して第1ベース層と第2ベース層との間に空洞を形成する際に、第2構造の第2ベース層が端面からエッチングされることを抑制することができる。これにより、可動電極と固定電極との間の距離を、ほぼ設計通りに維持することができる。 According to this configuration, for example, when a part of the embedded insulating layer is removed by etching to form a cavity between the first base layer and the second base layer, the second base layer of the second structure has an end face. Etching can be suppressed. As a result, the distance between the movable electrode and the fixed electrode can be maintained almost as designed.
 本開示の第1例としてのMEMSスイッチでは、前記第2構造において前記第2ベース層の端面と前記第1絶縁層の端面との間には、前記第1絶縁層の一部が前記第2ベース層の端面に対して突出するように、段差が形成されていてもよい。 In the MEMS switch as the first example of the present disclosure, in the second structure, a part of the first insulating layer is formed between the end face of the second base layer and the end face of the first insulating layer. A step may be formed so as to project from the end face of the base layer.
 本開示の第1例としてのMEMSスイッチでは、前記第1絶縁層は、前記第1絶縁層の端面に交差する主面を有しており、前記第2絶縁層は、前記第1絶縁層の前記主面および前記端面を連続して被覆しており、前記接点層は、前記第2絶縁層を介して前記第1絶縁層の前記主面および前記端面に対向していてもよい。 In the MEMS switch as the first example of the present disclosure, the first insulating layer has a main surface intersecting the end surface of the first insulating layer, and the second insulating layer is the first insulating layer. The main surface and the end surface are continuously covered, and the contact layer may face the main surface and the end surface of the first insulating layer via the second insulating layer.
 本開示の第1例としてのMEMSスイッチでは、前記第1絶縁層は、酸化シリコン(SiO)を含み、前記第2絶縁層は、酸化アルミニウム(Al)を含んでいてもよい。 In the MEMS switch as the first example of the present disclosure, the first insulating layer may contain silicon oxide (SiO 2 ), and the second insulating layer may contain aluminum oxide (Al 2 O 3 ).
 本開示の第2例としてのMEMSスイッチの製造方法は、第1ベース層と、前記第1ベース層上に形成された埋め込み絶縁層と、前記埋め込み絶縁層上に形成された第2ベース層とを含む基板の前記第2ベース層上に、前記埋め込み絶縁層と同じ材料を含む第1絶縁層を形成する工程と、前記第1絶縁層に選択的に第1開孔を形成する工程と、前記第1絶縁層の主面、および前記第1開孔に露出する前記第1絶縁層の端面を被覆するように、前記第1絶縁層とは異なる材料を含む第2絶縁層を前記第1絶縁層上に形成する工程と、前記第2ベース層に所定パターンを有する貫通孔を形成することによって、前記貫通孔によって区画された前記第2ベース層、当該第2ベース層上の前記第1絶縁層および前記第2絶縁層を含む可動接点部および固定接点部を形成する工程と、前記貫通孔を介して前記埋め込み絶縁層をエッチングすることによって、前記第1ベース層と前記第2ベース層との間に空洞を形成する工程と、前記埋め込み絶縁層のエッチング後、導電材料を所定パターンで堆積することによって、前記第1絶縁層上に接点層を形成する工程とを含む。 A method for manufacturing a MEMS switch as a second example of the present disclosure includes a first base layer, an embedded insulating layer formed on the first base layer, and a second base layer formed on the embedded insulating layer. A step of forming a first insulating layer containing the same material as the embedded insulating layer on the second base layer of the substrate containing the above, and a step of selectively forming a first opening in the first insulating layer. The first insulating layer containing a material different from the first insulating layer is provided so as to cover the main surface of the first insulating layer and the end surface of the first insulating layer exposed to the first opening. By forming a step of forming on the insulating layer and forming a through hole having a predetermined pattern in the second base layer, the second base layer partitioned by the through hole and the first on the second base layer. The first base layer and the second base layer are formed by forming a movable contact portion and a fixed contact portion including the insulating layer and the second insulating layer, and etching the embedded insulating layer through the through hole. The process includes a step of forming a cavity between the two, and a step of forming a contact layer on the first insulating layer by depositing a conductive material in a predetermined pattern after etching the embedded insulating layer.
 この方法によれば、第1絶縁層の端面が第2絶縁層で被覆されている。これにより、貫通孔を介して埋め込み絶縁層をエッチングする際に、第1絶縁層が端面からエッチングされることを抑制することができる。そのため、接点層の直下の第1絶縁層がエッチングにより除去されることを防止できるので、接点層を第1絶縁層によって安定的に支持することができる。 According to this method, the end face of the first insulating layer is covered with the second insulating layer. This makes it possible to prevent the first insulating layer from being etched from the end face when the embedded insulating layer is etched through the through hole. Therefore, it is possible to prevent the first insulating layer immediately below the contact layer from being removed by etching, so that the contact layer can be stably supported by the first insulating layer.
 本開示の第3例としてのMEMSスイッチの製造方法は、第1ベース層と、前記第1ベース層上に形成された埋め込み絶縁層と、前記埋め込み絶縁層上に形成された第2ベース層とを含む基板の前記第2ベース層上に、前記埋め込み絶縁層と同じ材料を含む第1絶縁層を形成する工程と、前記第1絶縁層に選択的に第1開孔を形成する工程と、前記第2ベース層に所定パターンを有する貫通孔を形成することによって、前記貫通孔によって区画された前記第2ベース層、当該第2ベース層上の前記第1絶縁層を含む可動接点部および固定接点部を形成する工程と、前記第1絶縁層の主面、前記第1開孔に露出する前記第1絶縁層の端面、および前記貫通孔に露出する前記第2ベース層の端面を被覆するように、前記第1絶縁層とは異なる材料を含む第2絶縁層を前記第1絶縁層上に形成する工程と、前記貫通孔を介して前記埋め込み絶縁層をエッチングすることによって、前記第1ベース層と前記第2ベース層との間に空洞を形成する工程と、前記埋め込み絶縁層のエッチング後、導電材料を所定パターンで堆積することによって、前記第1絶縁層上に接点層を形成する工程とを含む。 A method for manufacturing a MEMS switch as a third example of the present disclosure includes a first base layer, an embedded insulating layer formed on the first base layer, and a second base layer formed on the embedded insulating layer. A step of forming a first insulating layer containing the same material as the embedded insulating layer on the second base layer of the substrate containing the above, and a step of selectively forming a first opening in the first insulating layer. By forming a through hole having a predetermined pattern in the second base layer, the second base layer partitioned by the through hole, a movable contact portion including the first insulating layer on the second base layer, and fixing The step of forming the contact portion, the main surface of the first insulating layer, the end surface of the first insulating layer exposed to the first opening, and the end surface of the second base layer exposed to the through hole are covered. As described above, by forming a second insulating layer containing a material different from the first insulating layer on the first insulating layer and etching the embedded insulating layer through the through hole, the first insulating layer is formed. A contact layer is formed on the first insulating layer by a step of forming a cavity between the base layer and the second base layer and by depositing a conductive material in a predetermined pattern after etching the embedded insulating layer. Including the process.
 この方法によれば、第1絶縁層の端面が第2絶縁層で被覆されている。これにより、貫通孔を介して埋め込み絶縁層をエッチングする際に、第1絶縁層が端面からエッチングされることを抑制することができる。そのため、接点層の直下の第1絶縁層がエッチングにより除去されることを防止できるので、接点層を第1絶縁層によって安定的に支持することができる。 According to this method, the end face of the first insulating layer is covered with the second insulating layer. This makes it possible to prevent the first insulating layer from being etched from the end face when the embedded insulating layer is etched through the through hole. Therefore, it is possible to prevent the first insulating layer immediately below the contact layer from being removed by etching, so that the contact layer can be stably supported by the first insulating layer.
 また、第2ベース層の端面も第2絶縁層で被覆されて保護されているので、第2ベース層が端面からエッチングされることを抑制することもできる。 Further, since the end face of the second base layer is also covered and protected by the second insulating layer, it is possible to prevent the second base layer from being etched from the end face.
 本開示の第2例および第3例としてのMEMSスイッチの製造方法では、前記第2絶縁層を形成する工程は、原子層堆積法(ALD:Atomic Layer Deposition)によって前記第2絶縁層を形成する工程を含んでいてもよい。
<本開示の実施形態の詳細な説明>
 次に、本開示の実施形態を、添付図面を参照して詳細に説明する。以下の詳細な説明において、序数が付された名称の構成要素および方向が複数存在するが、当該序数と、請求項に記載の構成要素および方向の序数とは、必ずしも一致するものではない。
In the method for manufacturing a MEMS switch as the second example and the third example of the present disclosure, the step of forming the second insulating layer forms the second insulating layer by an atomic layer deposition method (ALD). It may include a step.
<Detailed description of the embodiments of the present disclosure>
Next, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the following detailed description, there are a plurality of components and directions with ordinal numbers, but the ordinal numbers and the ordinal numbers of the components and directions described in the claims do not always match.
 図1は、本開示の一実施形態に係るMEMSスイッチA1の模式的な平面図である。図2は、本開示の一実施形態に係るMEMSスイッチA1の模式的な断面図である。図2は、図1のMEMSスイッチA1の特定部分の断面を示すものではない。図2では、MEMSスイッチA1の構造の明瞭化のために、MEMSスイッチA1のいくつかの構成が抽出して示されている。 FIG. 1 is a schematic plan view of the MEMS switch A1 according to the embodiment of the present disclosure. FIG. 2 is a schematic cross-sectional view of the MEMS switch A1 according to the embodiment of the present disclosure. FIG. 2 does not show a cross section of a specific portion of the MEMS switch A1 of FIG. In FIG. 2, some configurations of the MEMS switch A1 are extracted and shown in order to clarify the structure of the MEMS switch A1.
 MEMSスイッチA1は、たとえば、静電アクチュエータ2を備える静電駆動MEMSスイッチである。MEMSスイッチA1は、たとえば、静電アクチュエータ2の機械的動作によって、第1方向Xに沿う駆動力を発生する。この実施形態では、第1方向Xに対して水平方向に直交する方向が第2方向Yであり、第1方向Xに対して鉛直方向に直交する方向が第3方向Zである。第3方向Zは、MEMSスイッチA1の厚さ方向、後述する基板3の厚さ方向と定義してもよい。第1方向Xおよび第2方向Yは、後述する基板3の厚さ方向に直交する方向と定義してもよい。 The MEMS switch A1 is, for example, an electrostatically driven MEMS switch including an electrostatic actuator 2. The MEMS switch A1 generates a driving force along the first direction X by, for example, mechanical operation of the electrostatic actuator 2. In this embodiment, the direction orthogonal to the first direction X in the horizontal direction is the second direction Y, and the direction orthogonal to the first direction X in the vertical direction is the third direction Z. The third direction Z may be defined as the thickness direction of the MEMS switch A1 and the thickness direction of the substrate 3 described later. The first direction X and the second direction Y may be defined as directions orthogonal to the thickness direction of the substrate 3, which will be described later.
 MEMSスイッチA1は、基板3を含む。基板3は、MEMSスイッチA1の外形を形成していてもよい。たとえば、基板3は、チップ状(直方体形状)に形成された構造体であってもよい。図1および図2は、基板3の一部を示している。基板3は、Si等の半導体材料を含む半導体基板であってもよい。基板3は、第1主面4と、第1主面4の反対側の第2主面5とを有している。第1主面4が基板3の上面であり、第2主面5が基板3の下面であってもよい。第1主面4は、MEMS構造が形成された基板3の加工面であり、第2主面5は、加工面に対して非加工面であってもよい。 The MEMS switch A1 includes the substrate 3. The substrate 3 may form the outer shape of the MEMS switch A1. For example, the substrate 3 may be a structure formed in a chip shape (rectangular cuboid shape). 1 and 2 show a part of the substrate 3. The substrate 3 may be a semiconductor substrate containing a semiconductor material such as Si. The substrate 3 has a first main surface 4 and a second main surface 5 on the opposite side of the first main surface 4. The first main surface 4 may be the upper surface of the substrate 3, and the second main surface 5 may be the lower surface of the substrate 3. The first main surface 4 may be a processed surface of the substrate 3 on which the MEMS structure is formed, and the second main surface 5 may be a non-processed surface with respect to the processed surface.
 基板3は、この実施形態では、第1ベース層6と、第2ベース層7と、第1ベース層6および第2ベース層7の間の埋め込み絶縁層8とを含む。基板3は、SOI(Silicon on Insulator)基板であってもよい。基板3がSOI基板である場合、第1ベース層6はSi基板であり、第2ベース層7はSi層であり、埋め込み絶縁層8はBOX(Buried Oxide)層であってもよい。 In this embodiment, the substrate 3 includes a first base layer 6, a second base layer 7, and an embedded insulating layer 8 between the first base layer 6 and the second base layer 7. The substrate 3 may be an SOI (Silicon on Insulator) substrate. When the substrate 3 is an SOI substrate, the first base layer 6 may be a Si substrate, the second base layer 7 may be a Si layer, and the embedded insulating layer 8 may be a BOX (Buried Oxide) layer.
 第1ベース層6は、この実施形態では、半導体基板(たとえば、Si基板)であってもよい。第1ベース層6の厚さは、たとえば、10μm以上700μm以下であってもよい。第1ベース層6は、第1主面9と、第1主面9の反対側の第2主面10とを有している。第1ベース層6の第2主面10は、基板3の第2主面5であってもよい。 In this embodiment, the first base layer 6 may be a semiconductor substrate (for example, a Si substrate). The thickness of the first base layer 6 may be, for example, 10 μm or more and 700 μm or less. The first base layer 6 has a first main surface 9 and a second main surface 10 on the opposite side of the first main surface 9. The second main surface 10 of the first base layer 6 may be the second main surface 5 of the substrate 3.
 第2ベース層7は、この実施形態では、半導体層(たとえば、Si層)であってもよい。第2ベース層7の厚さは、たとえば、10μm以上100μm以下であってもよい。第2ベース層7は、第1主面11と、第1主面11の反対側の第2主面12とを有している。第2ベース層7の第1主面11は、基板3の第1主面4であってもよい。 In this embodiment, the second base layer 7 may be a semiconductor layer (for example, a Si layer). The thickness of the second base layer 7 may be, for example, 10 μm or more and 100 μm or less. The second base layer 7 has a first main surface 11 and a second main surface 12 on the opposite side of the first main surface 11. The first main surface 11 of the second base layer 7 may be the first main surface 4 of the substrate 3.
 埋め込み絶縁層8は、第1ベース層6と第2ベース層7との間に接触して挟まれている。埋め込み絶縁層8は、この実施形態では、第1絶縁材料を含む絶縁層であってもよい。第1絶縁材料は、たとえば、酸化シリコン(SiO)、窒化シリコン(Si)等を含む絶縁材料であってもよい。第1絶縁材料は、たとえば、CF、CHF、SF等のエッチングガスおよびエッチング液によってエッチング可能な絶縁材料であってもよい。埋め込み絶縁層8の厚さは、第1ベース層6および第2ベース層7よりも小さくてもよい。埋め込み絶縁層8の厚さは、たとえば、0.1μm以上20μm以下であってもよい。 The embedded insulating layer 8 is in contact with and sandwiched between the first base layer 6 and the second base layer 7. In this embodiment, the embedded insulating layer 8 may be an insulating layer containing the first insulating material. The first insulating material may be, for example, an insulating material containing silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or the like. The first insulating material may be, for example, an insulating material that can be etched by an etching gas such as CF 4 , CHF 3 , SF 6 , and an etching solution. The thickness of the embedded insulating layer 8 may be smaller than that of the first base layer 6 and the second base layer 7. The thickness of the embedded insulating layer 8 may be, for example, 0.1 μm or more and 20 μm or less.
 埋め込み絶縁層8は、第2ベース層7の第2主面12に接する第1接合面13と、第1ベース層6の第1主面9に接する第2接合面14とを有している。埋め込み絶縁層8は、さらに、側面15を有している。埋め込み絶縁層8の側面15は、空洞16に対して横側から面している。他の言い方では、埋め込み絶縁層8の側面15は、第1方向Xおよび第2方向Yにおいて、空洞16に対して面している。埋め込み絶縁層8は、第1ベース層6と第2ベース層7との間に部分的に形成されている。第1ベース層6と第2ベース層7との間の領域において、埋め込み絶縁層8が形成されていない領域が空洞16である。空洞16は、第1ベース層6の第1主面9、第2ベース層7の第2主面12および埋め込み絶縁層8の側面15によって区画されている。空洞16の底面が第1ベース層6の第1主面9であり、空洞16の上面が第2ベース層7の第2主面12であり、空洞16の側面15が埋め込み絶縁層8の側面15であってもよい。 The embedded insulating layer 8 has a first joint surface 13 in contact with the second main surface 12 of the second base layer 7, and a second joint surface 14 in contact with the first main surface 9 of the first base layer 6. .. The embedded insulating layer 8 further has a side surface 15. The side surface 15 of the embedded insulating layer 8 faces the cavity 16 from the side. In other words, the side surface 15 of the embedded insulating layer 8 faces the cavity 16 in the first direction X and the second direction Y. The embedded insulating layer 8 is partially formed between the first base layer 6 and the second base layer 7. In the region between the first base layer 6 and the second base layer 7, the region where the embedded insulating layer 8 is not formed is the cavity 16. The cavity 16 is partitioned by a first main surface 9 of the first base layer 6, a second main surface 12 of the second base layer 7, and a side surface 15 of the embedded insulating layer 8. The bottom surface of the cavity 16 is the first main surface 9 of the first base layer 6, the upper surface of the cavity 16 is the second main surface 12 of the second base layer 7, and the side surface 15 of the cavity 16 is the side surface of the embedded insulating layer 8. It may be 15.
 第2ベース層7は、固定構造17と、固定構造17に対して変位可能な可動構造18とを含む。 The second base layer 7 includes a fixed structure 17 and a movable structure 18 that can be displaced with respect to the fixed structure 17.
 固定構造17は、少なくとも一部が埋め込み絶縁層8上に形成されている。図2を参照して、固定構造17は、埋め込み絶縁層8の第1接合面13に固定されたフレーム部19と、フレーム部19によって空洞16に対して浮いた状態で支持された第1カンチレバー構造20とを含む。 At least a part of the fixed structure 17 is formed on the embedded insulating layer 8. With reference to FIG. 2, the fixing structure 17 has a frame portion 19 fixed to the first joint surface 13 of the embedded insulating layer 8 and a first cantilever supported by the frame portion 19 in a floating state with respect to the cavity 16. Includes structure 20 and.
 図1を参照して、フレーム部19は、第1方向Xにおいて互いに平行に延びる一対の帯状のフレーム部19を含んでいてもよい。第1カンチレバー構造20は、フレーム部19から第2方向Yに互いに平行に延びる複数の第1カンチレバー構造20を含んでいてもよい。この実施形態では、フレーム部19に対して4本の第1カンチレバー構造20が機械的に接続されている。第1カンチレバー構造20は、フレーム部19を介して固定された電極であるため、固定電極21と定義してもよい。 With reference to FIG. 1, the frame portion 19 may include a pair of strip-shaped frame portions 19 extending parallel to each other in the first direction X. The first cantilever structure 20 may include a plurality of first cantilever structures 20 extending parallel to each other in the second direction Y from the frame portion 19. In this embodiment, four first cantilever structures 20 are mechanically connected to the frame portion 19. Since the first cantilever structure 20 is an electrode fixed via the frame portion 19, it may be defined as a fixed electrode 21.
 可動構造18は、全体が空洞16に対して浮いた状態で形成されている。図1を参照して、可動構造18は、連結部材22と、第2カンチレバー構造23とを含む。 The movable structure 18 is formed so as to be entirely floating with respect to the cavity 16. With reference to FIG. 1, the movable structure 18 includes a connecting member 22 and a second cantilever structure 23.
 連結部材22は、第1方向Xに延びる帯状の連結部材22を含んでいてもよい。第2カンチレバー構造23は、連結部材22から第2方向Yに互いに平行に延びる複数の第2カンチレバー構造23を含んでいてもよい。この実施形態では、フレーム部19に向かって連結部材22から延びる4本の第2カンチレバー構造23が、連結部材22に機械的に連結されている。第2カンチレバー構造23は、隣り合う第1カンチレバー構造20の間をフレーム部19に向かって延びている。第1カンチレバー構造20および第2カンチレバー構造23は、互いに隙間55を挟んで平行に延びている。第2カンチレバー構造23は、空洞16に対して浮いた状態で連結部材22に支持された電極であるため、可動電極24と定義してもよい。連結部材22および第2カンチレバー構造23の一体構造物を可動電極24と定義してもよい。連結部材22は、後述する固定接点部46に可動接点部45を押し付ける部材であるため、プッシュロッドと定義してもよい。 The connecting member 22 may include a strip-shaped connecting member 22 extending in the first direction X. The second cantilever structure 23 may include a plurality of second cantilever structures 23 extending parallel to each other in the second direction Y from the connecting member 22. In this embodiment, four second cantilever structures 23 extending from the connecting member 22 toward the frame portion 19 are mechanically connected to the connecting member 22. The second cantilever structure 23 extends between adjacent first cantilever structures 20 toward the frame portion 19. The first cantilever structure 20 and the second cantilever structure 23 extend in parallel with each other with a gap 55 in between. Since the second cantilever structure 23 is an electrode supported by the connecting member 22 while floating with respect to the cavity 16, it may be defined as a movable electrode 24. The integrated structure of the connecting member 22 and the second cantilever structure 23 may be defined as the movable electrode 24. Since the connecting member 22 is a member that presses the movable contact portion 45 against the fixed contact portion 46 described later, it may be defined as a push rod.
 このように、第1カンチレバー構造20および第2カンチレバー構造23は、それぞれ櫛歯状に形成されており、互いに間隔を空けてかみ合っている。これにより、第1カンチレバー構造20(固定電極21)および第2カンチレバー構造23(可動電極24)を含む櫛歯型電極25が形成されている。固定電極21および可動電極24に電気信号が入力されることによって、固定電極21と可動電極24との間に静電気力が発生する。この静電気力によって、第1方向Xにおいて可動電極24を固定電極21に近づけたり、可動電極24を固定電極21から遠ざけたりする機械的動作を行うことができる。したがって、櫛歯型電極25は、電気信号を第1方向Xに沿う機械的変位に変換する静電アクチュエータ2と定義してもよい。 As described above, the first cantilever structure 20 and the second cantilever structure 23 are each formed in a comb-teeth shape and mesh with each other at intervals. As a result, the comb-tooth type electrode 25 including the first cantilever structure 20 (fixed electrode 21) and the second cantilever structure 23 (movable electrode 24) is formed. When an electric signal is input to the fixed electrode 21 and the movable electrode 24, an electrostatic force is generated between the fixed electrode 21 and the movable electrode 24. By this electrostatic force, it is possible to perform a mechanical operation such as bringing the movable electrode 24 closer to the fixed electrode 21 or moving the movable electrode 24 away from the fixed electrode 21 in the first direction X. Therefore, the comb-toothed electrode 25 may be defined as an electrostatic actuator 2 that converts an electrical signal into a mechanical displacement along the first direction X.
 第1カンチレバー構造20および第2カンチレバー構造23は、第1方向Xにおいて対向している。たとえば、図1に示すように、第1カンチレバー構造20および第2カンチレバー構造23が、第1方向Xに沿って交互に配置されていてもよい。たとえば、第2カンチレバー構造23および第1カンチレバー構造20は、第1方向Xの配列順に、第1可動電極24A、第1固定電極21A、第2可動電極24B、および第2固定電極21Bと定義してもよい。第1固定電極21Aは、第1方向Xにおいて、第1可動電極24Aおよび第2可動電極24Bに間隔を空けて挟まれている。第2可動電極24Bは、第1方向Xにおいて、第1固定電極21Aおよび第2固定電極21Bに間隔を空けて挟まれている。 The first cantilever structure 20 and the second cantilever structure 23 face each other in the first direction X. For example, as shown in FIG. 1, the first cantilever structure 20 and the second cantilever structure 23 may be arranged alternately along the first direction X. For example, the second cantilever structure 23 and the first cantilever structure 20 are defined as the first movable electrode 24A, the first fixed electrode 21A, the second movable electrode 24B, and the second fixed electrode 21B in the order of arrangement in the first direction X. You may. The first fixed electrode 21A is sandwiched between the first movable electrode 24A and the second movable electrode 24B at intervals in the first direction X. The second movable electrode 24B is sandwiched between the first fixed electrode 21A and the second fixed electrode 21B at intervals in the first direction X.
 第1方向Xにおいて、1つの固定電極21と、当該固定電極21に隣り合う1対の可動電極24との距離は、互いに異なっていてもよい。第1方向Xにおいて、1つの可動電極24と、当該可動電極24に隣り合う1対の固定電極21との距離は、互いに異なっていてもよい。たとえば、第1可動電極24Aと第1固定電極21Aとの距離d1は、第2可動電極24Bと第1固定電極21Aとの距離d2よりも小さくてもよい。また、第2可動電極24Bと第1固定電極21Aとの距離d2は、第2可動電極24Bと第2固定電極21Bとの距離d3よりも大きくてもよい。 In the first direction X, the distance between one fixed electrode 21 and a pair of movable electrodes 24 adjacent to the fixed electrode 21 may be different from each other. In the first direction X, the distance between one movable electrode 24 and a pair of fixed electrodes 21 adjacent to the movable electrode 24 may be different from each other. For example, the distance d1 between the first movable electrode 24A and the first fixed electrode 21A may be smaller than the distance d2 between the second movable electrode 24B and the first fixed electrode 21A. Further, the distance d2 between the second movable electrode 24B and the first fixed electrode 21A may be larger than the distance d3 between the second movable electrode 24B and the second fixed electrode 21B.
 このように、櫛歯型電極25において固定電極21と可動電極24との距離にばらつきがある非対称構造72が提供される。この非対称構造72は、櫛歯型電極25における静電気力の釣り合いを崩す。その結果、たとえば、第2可動電極24Bと第2固定電極21Bとの間に作用する静電気力(第2静電気力F2)を、第2可動電極24Bと第1固定電極21Aとの間に作用する静電気力(第1静電気力F1)に比べて大きくすることができる。したがって、第1静電気力F1と第2静電気力F2との差(第1静電気力F1-第2静電気力F2)に相当する静電気力によって、可動構造18を固定接点部46に向かって変位させることができる。 As described above, in the comb-tooth type electrode 25, the asymmetric structure 72 in which the distance between the fixed electrode 21 and the movable electrode 24 varies is provided. This asymmetric structure 72 upsets the balance of the electrostatic force in the comb-tooth type electrode 25. As a result, for example, an electrostatic force acting between the second movable electrode 24B and the second fixed electrode 21B (second electrostatic force F2) acts between the second movable electrode 24B and the first fixed electrode 21A. It can be made larger than the electrostatic force (first electrostatic force F1). Therefore, the movable structure 18 is displaced toward the fixed contact portion 46 by the electrostatic force corresponding to the difference between the first electrostatic force F1 and the second electrostatic force F2 (first electrostatic force F1-second electrostatic force F2). Can be done.
 可動構造18は、ビーム部27を介して、固定構造17に対して変位可能に機械的に接続されている。ビーム部27は、固定構造17および可動構造18と同様に第2ベース層7を利用して形成されている。ビーム部27は、連結部材22の第2方向Yの両側からフレーム部19に向かって第2方向Yに沿って延びる帯状に形成されている。ビーム部27の長手方向の第1端部28およびその反対側の第2端部29は、それぞれ、フレーム部19および連結部材22に機械的に接続されている。ビーム部27は、図1に示すように、櫛歯型電極25の第1方向Xの両側に2本ずつ、合計4本形成されていてもよい。これにより、可動構造18は、空洞16に対して浮いた状態で、ビーム部27によって4点で支持されている。各ビーム部27は、連結部材22に対して垂直に接続されていてもよい。 The movable structure 18 is mechanically connected to the fixed structure 17 via a beam portion 27 so as to be displaceable. The beam portion 27 is formed by utilizing the second base layer 7 as in the fixed structure 17 and the movable structure 18. The beam portion 27 is formed in a band shape extending from both sides of the connecting member 22 in the second direction Y toward the frame portion 19 along the second direction Y. The first end 28 in the longitudinal direction of the beam 27 and the second end 29 on the opposite side thereof are mechanically connected to the frame 19 and the connecting member 22, respectively. As shown in FIG. 1, two beam portions 27 may be formed on both sides of the comb tooth type electrode 25 in the first direction X, for a total of four beams. As a result, the movable structure 18 is supported at four points by the beam portion 27 in a state of floating with respect to the cavity 16. Each beam portion 27 may be connected perpendicularly to the connecting member 22.
 ビーム部27は、可撓性を有している。たとえば、ビーム部27は、第1方向Xにおいて弾性的に折り曲げ可能である。ビーム部27は、たとえば、フレーム部19に固定された固定端である第1端部28に対して、固定端の反対側の自由端である第2端部29が第1方向Xにおいて変位可能なように、可撓性を有していてもよい。ビーム部27は、固定構造17と可動構造18とを接続する可撓性を有する構造であるため、フレキシブル接続構造と定義してもよい。ビーム部27は、第1方向Xに撓むスプリング構造と定義してもよい。また、ビーム部27は、可動構造18に含まれる構造と定義してもよい。この場合、連結部材22、第2カンチレバー構造23およびビーム部27の一体構造物を可動電極24と定義してもよい。 The beam portion 27 has flexibility. For example, the beam portion 27 can be elastically bent in the first direction X. In the beam portion 27, for example, the second end portion 29, which is a free end opposite to the fixed end, can be displaced in the first direction X with respect to the first end portion 28, which is a fixed end fixed to the frame portion 19. As such, it may have flexibility. Since the beam portion 27 has a flexible structure for connecting the fixed structure 17 and the movable structure 18, it may be defined as a flexible connection structure. The beam portion 27 may be defined as a spring structure that bends in the first direction X. Further, the beam portion 27 may be defined as a structure included in the movable structure 18. In this case, the integrated structure of the connecting member 22, the second cantilever structure 23, and the beam portion 27 may be defined as the movable electrode 24.
 MEMSスイッチA1は、可動接点部45と、固定接点部46とを含む。 The MEMS switch A1 includes a movable contact portion 45 and a fixed contact portion 46.
 図1を参照して、可動接点部45は、可動構造18の連結部材22に設けられている。たとえば、可動接点部45は、連結部材22の長手方向の端部47に設けられている。この実施形態では、連結部材22の端部47に第2ビーム部48が機械的に接続されている。第2ビーム部48は、連結部材22の長手方向に交差する方向に延びる直線状である。第2ビーム部48は、連結部材22の端部47から当該交差方向の両側に延びている。可動接点部45は、第2ビーム部48の幅方向における第1側部49および第2側部50のうち、第2側部50に選択的に形成されている。第2ビーム部48の第1側部49は、第1方向Xにおいて静電アクチュエータ2に対向する側部であり、第2側部50は第1側部49の反対側である。 With reference to FIG. 1, the movable contact portion 45 is provided on the connecting member 22 of the movable structure 18. For example, the movable contact portion 45 is provided at the end portion 47 in the longitudinal direction of the connecting member 22. In this embodiment, the second beam portion 48 is mechanically connected to the end portion 47 of the connecting member 22. The second beam portion 48 has a linear shape extending in a direction intersecting the longitudinal direction of the connecting member 22. The second beam portion 48 extends from the end portion 47 of the connecting member 22 on both sides in the crossing direction. The movable contact portion 45 is selectively formed on the second side portion 50 of the first side portion 49 and the second side portion 50 in the width direction of the second beam portion 48. The first side portion 49 of the second beam portion 48 is a side portion facing the electrostatic actuator 2 in the first direction X, and the second side portion 50 is the opposite side of the first side portion 49.
 図2を参照して、可動接点部45は、空洞16に対して浮いた状態で形成された第1構造51を有している。第1構造51は、第2ベース層7と、第1絶縁層36と、第2絶縁層37と、可動接点層52とを含む。 With reference to FIG. 2, the movable contact portion 45 has a first structure 51 formed in a floating state with respect to the cavity 16. The first structure 51 includes a second base layer 7, a first insulating layer 36, a second insulating layer 37, and a movable contact layer 52.
 第1構造51において第1絶縁層36は、第2ベース層7上に形成されている。第1絶縁層36は、基板3の厚さ方向(この実施形態では、第3方向Z)に沿う端面53と、当該端面53に交差する主面54を有している。第1絶縁層36の主面54は、基板3の第1主面4に沿って形成されている。第1構造51の第1絶縁層36の端面53は、固定接点部46との間の隙間55を介して固定接点部46に対向している。第1絶縁層36の端面53に連なるように、第2ベース層7は、隙間55を介して固定接点部46に対向する端面83を有している。 In the first structure 51, the first insulating layer 36 is formed on the second base layer 7. The first insulating layer 36 has an end surface 53 along the thickness direction of the substrate 3 (in this embodiment, the third direction Z) and a main surface 54 intersecting the end surface 53. The main surface 54 of the first insulating layer 36 is formed along the first main surface 4 of the substrate 3. The end surface 53 of the first insulating layer 36 of the first structure 51 faces the fixed contact portion 46 via a gap 55 between the first insulating layer 36 and the fixed contact portion 46. The second base layer 7 has an end surface 83 facing the fixed contact portion 46 via a gap 55 so as to be connected to the end surface 53 of the first insulating layer 36.
 第1絶縁層36は、たとえば、埋め込み絶縁層8と同じ第1絶縁材料を含んでいてもよい。この実施形態では、第1絶縁層36は、酸化シリコン(SiO)であってもよい。第1絶縁材料は、たとえば、酸化シリコン(SiO)、窒化シリコン(Si)等を含む絶縁材料であってもよい。第1絶縁材料は、たとえば、CF、CHF、SF等のエッチングガスおよびエッチング液によってエッチング可能な絶縁材料であってもよい。第1絶縁層36は、たとえば、0.1μm以上20μm以下の厚さを有していてもよい。 The first insulating layer 36 may contain, for example, the same first insulating material as the embedded insulating layer 8. In this embodiment, the first insulating layer 36 may be silicon oxide (SiO 2 ). The first insulating material may be, for example, an insulating material containing silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or the like. The first insulating material may be, for example, an insulating material that can be etched by an etching gas such as CF 4 , CHF 3 , SF 6 , and an etching solution. The first insulating layer 36 may have a thickness of, for example, 0.1 μm or more and 20 μm or less.
 第1構造51において第2絶縁層37は、第1絶縁層36の端面53を被覆するように第1絶縁層36上に形成されている。第2絶縁層37は、第1絶縁層36の主面54および端面53を連続して被覆していてもよい。この実施形態では、第2絶縁層37は、第2ベース層7の端面83と第1絶縁層36の端面53との境界部56に端部84を有するように第1絶縁層36の主面54および端面53を連続して被覆している。これにより、第2ベース層7の端面83と第1絶縁層36の端面53との境界部56は、第2ベース層7の端面83と第2絶縁層37の端面86との境界部85で被覆されている。第2絶縁層37の端面86は、第2ベース層7の端面83に連続する面であり、隙間55を介して固定接点部46に対向している。また、第2絶縁層37は、端面86に交差する主面87を有していてもよい。第2絶縁層37の主面87は、基板3の第1主面4に沿って形成されている。 In the first structure 51, the second insulating layer 37 is formed on the first insulating layer 36 so as to cover the end surface 53 of the first insulating layer 36. The second insulating layer 37 may continuously cover the main surface 54 and the end surface 53 of the first insulating layer 36. In this embodiment, the second insulating layer 37 has a main surface of the first insulating layer 36 so that the second insulating layer 37 has an end portion 84 at the boundary portion 56 between the end surface 83 of the second base layer 7 and the end surface 53 of the first insulating layer 36. The 54 and the end face 53 are continuously covered. As a result, the boundary portion 56 between the end surface 83 of the second base layer 7 and the end surface 53 of the first insulating layer 36 is formed at the boundary portion 85 between the end surface 83 of the second base layer 7 and the end surface 86 of the second insulating layer 37. It is covered. The end surface 86 of the second insulating layer 37 is a surface continuous with the end surface 83 of the second base layer 7, and faces the fixed contact portion 46 via the gap 55. Further, the second insulating layer 37 may have a main surface 87 intersecting the end surface 86. The main surface 87 of the second insulating layer 37 is formed along the first main surface 4 of the substrate 3.
 第2絶縁層37は、第1絶縁層36とは異なる第2絶縁材料を含んでいてもよい。第2絶縁層37は、第1絶縁層36に対してエッチング選択比を有する第2絶縁材料であってもよい。第2絶縁層37は、第1絶縁層36および埋め込み絶縁層8に対してエッチング選択比を有する第2絶縁材料であってもよい。第2絶縁層37は、第1絶縁層36のエッチングに使用可能なエッチングガスおよびエッチング液に対してエッチング耐性を有する第2絶縁材料であってもよい。第2絶縁層37がエッチング耐性を有するとは、たとえば、第1絶縁層36用のエッチングガスを使用する場合の第1絶縁層36および第2絶縁層37のエッチング選択比(第1絶縁層36の平均エッチングレート/第2絶縁層37の平均エッチングレート)が、10~1000であってもよい。このようなことから、第2絶縁層37は、第1絶縁層36と同じ材料からなる埋め込み絶縁層8のエッチング時に第1絶縁層36をエッチングから保護するエッチング保護層と定義してもよい。 The second insulating layer 37 may contain a second insulating material different from that of the first insulating layer 36. The second insulating layer 37 may be a second insulating material having an etching selectivity with respect to the first insulating layer 36. The second insulating layer 37 may be a second insulating material having an etching selectivity with respect to the first insulating layer 36 and the embedded insulating layer 8. The second insulating layer 37 may be a second insulating material having etching resistance against an etching gas and an etching solution that can be used for etching the first insulating layer 36. The second insulating layer 37 has etching resistance, for example, when the etching gas for the first insulating layer 36 is used, the etching selectivity of the first insulating layer 36 and the second insulating layer 37 (the first insulating layer 36). The average etching rate of the second insulating layer 37) may be 10 to 1000. Therefore, the second insulating layer 37 may be defined as an etching protective layer that protects the first insulating layer 36 from etching when the embedded insulating layer 8 made of the same material as the first insulating layer 36 is etched.
 この実施形態では、第2絶縁材料は、酸化アルミニウム(Al)、酸化タンタル(TaO)等を含む絶縁材料であってもよい。第2絶縁材料は、たとえば、CF、CHF、SF等のエッチングガスおよびエッチング液によってエッチング可能な絶縁材料であってもよい。第2絶縁層37は、第1絶縁層36よりも薄くてもよい。第2絶縁層37は、たとえば、0.01μm以上10μm以下の厚さを有していてもよい。 In this embodiment, the second insulating material may be an insulating material containing aluminum oxide (Al 2 O 3 ), tantalum oxide (TaO 2 ) and the like. The second insulating material may be, for example, an insulating material that can be etched by an etching gas such as CF 4 , CHF 3 , SF 6 , and an etching solution. The second insulating layer 37 may be thinner than the first insulating layer 36. The second insulating layer 37 may have a thickness of, for example, 0.01 μm or more and 10 μm or less.
 可動接点層52は、第2絶縁層37を介して第1絶縁層36に支持されている。可動接点層52は、第2絶縁層37の主面87および端面86を被覆している。可動接点層52は、第2絶縁層37を介して第1絶縁層36の主面54および端面53に対向している。この実施形態では、第1絶縁層36の厚さ方向において、端面86の主面87に近い部分が可動接点層52で被覆され、端面86の残りの部分は隙間55に向かって露出していてもよい。言い換えれば、第1構造51の第2絶縁層37と第2ベース層7との境界部85が隙間55に面していてもよい。可動接点層52は、第2絶縁層37の主面87に形成されたベース部57と、ベース部57から第2絶縁層37の端面86よりも固定接点部46側に突出した突出部58とを一体的に含んでいてもよい。突出部58は、第2絶縁層37の端面86を被覆する部分であってもよい。可動接点層52は、たとえば、金(Au)、アルミニウム(Al)等の導電材料であってもよい。可動接点層52は、第1信号線59に電気的に接続されている。 The movable contact layer 52 is supported by the first insulating layer 36 via the second insulating layer 37. The movable contact layer 52 covers the main surface 87 and the end surface 86 of the second insulating layer 37. The movable contact layer 52 faces the main surface 54 and the end surface 53 of the first insulating layer 36 via the second insulating layer 37. In this embodiment, in the thickness direction of the first insulating layer 36, the portion of the end surface 86 close to the main surface 87 is covered with the movable contact layer 52, and the remaining portion of the end surface 86 is exposed toward the gap 55. May be good. In other words, the boundary portion 85 between the second insulating layer 37 and the second base layer 7 of the first structure 51 may face the gap 55. The movable contact layer 52 includes a base portion 57 formed on the main surface 87 of the second insulating layer 37, and a protruding portion 58 protruding from the base portion 57 toward the fixed contact portion 46 with respect to the end surface 86 of the second insulating layer 37. May be included integrally. The protruding portion 58 may be a portion that covers the end face 86 of the second insulating layer 37. The movable contact layer 52 may be made of a conductive material such as gold (Au) or aluminum (Al). The movable contact layer 52 is electrically connected to the first signal line 59.
 図2を参照して、固定接点部46は、固定構造17のフレーム部19に設けられている。フレーム部19は、互いに機械的に分離された第1フレーム部60および第2フレーム部61を含む。第1フレーム部60および第2フレーム部61には、可動接点部45と固定接点部46との接触によって導通する第2信号線62が形成されている。固定接点部46は、埋め込み絶縁層8に支持された第2構造63を有している。第2構造63は、第2ベース層7と、第1絶縁層36と、第2絶縁層37と、固定接点層64とを含む。 With reference to FIG. 2, the fixed contact portion 46 is provided in the frame portion 19 of the fixed structure 17. The frame portion 19 includes a first frame portion 60 and a second frame portion 61 that are mechanically separated from each other. The first frame portion 60 and the second frame portion 61 are formed with a second signal line 62 that conducts by contact between the movable contact portion 45 and the fixed contact portion 46. The fixed contact portion 46 has a second structure 63 supported by the embedded insulating layer 8. The second structure 63 includes a second base layer 7, a first insulating layer 36, a second insulating layer 37, and a fixed contact layer 64.
 第2構造63において第1絶縁層36は、第2ベース層7上に形成されている。第1絶縁層36は、基板3の厚さ方向(この実施形態では、第3方向Z)に沿う端面65と、当該端面65に交差する主面66を有している。第1絶縁層36の主面66は、基板3の第1主面4に沿って形成されている。第2構造63の第1絶縁層36の端面65は、可動接点部45との間の隙間55を介して可動接点部45に対向している。第1絶縁層36の端面65に連なるように、第2ベース層7は、隙間55を介して固定接点部46に対向する端面88を有している。 In the second structure 63, the first insulating layer 36 is formed on the second base layer 7. The first insulating layer 36 has an end surface 65 along the thickness direction of the substrate 3 (in this embodiment, the third direction Z) and a main surface 66 intersecting the end surface 65. The main surface 66 of the first insulating layer 36 is formed along the first main surface 4 of the substrate 3. The end surface 65 of the first insulating layer 36 of the second structure 63 faces the movable contact portion 45 via a gap 55 between the first insulating layer 36 and the movable contact portion 45. The second base layer 7 has an end face 88 facing the fixed contact portion 46 via a gap 55 so as to be connected to the end face 65 of the first insulating layer 36.
 第2構造63において第2絶縁層37は、第1絶縁層36の端面65を被覆するように第1絶縁層36上に形成されている。第2絶縁層37は、第1絶縁層36の主面66および端面65を連続して被覆していてもよい。この実施形態では、第2絶縁層37は、第2ベース層7の端面88と第1絶縁層36の端面65との境界部67に端部89を有するように第1絶縁層36の主面66および端面65を連続して被覆している。これにより、第2ベース層7の端面88と第1絶縁層36の端面65との境界部67は、第2ベース層7の端面88と第2絶縁層37の端面91との境界部90で被覆されている。第2絶縁層37の端面91は、第2ベース層7の端面88に連続する面であり、隙間55を介して可動接点部45に対向している。また、第2絶縁層37は、端面91に交差する主面92を有していてもよい。第2絶縁層37の主面92は、基板3の第1主面4に沿って形成されている。 In the second structure 63, the second insulating layer 37 is formed on the first insulating layer 36 so as to cover the end face 65 of the first insulating layer 36. The second insulating layer 37 may continuously cover the main surface 66 and the end surface 65 of the first insulating layer 36. In this embodiment, the second insulating layer 37 has a main surface of the first insulating layer 36 so that the second insulating layer 37 has an end portion 89 at a boundary portion 67 between the end surface 88 of the second base layer 7 and the end surface 65 of the first insulating layer 36. The 66 and the end face 65 are continuously covered. As a result, the boundary portion 67 between the end face 88 of the second base layer 7 and the end face 65 of the first insulating layer 36 is formed at the boundary portion 90 between the end face 88 of the second base layer 7 and the end face 91 of the second insulating layer 37. It is covered. The end surface 91 of the second insulating layer 37 is a surface continuous with the end surface 88 of the second base layer 7, and faces the movable contact portion 45 via the gap 55. Further, the second insulating layer 37 may have a main surface 92 that intersects the end surface 91. The main surface 92 of the second insulating layer 37 is formed along the first main surface 4 of the substrate 3.
 固定接点層64は、第2絶縁層37を介して第1絶縁層36に支持されている。固定接点層64は、第2絶縁層37の主面92および端面91を被覆している。固定接点層64は、第2絶縁層37を介して第1絶縁層36の主面66および端面65に対向している。この実施形態では、第1絶縁層36の厚さ方向において、端面91の主面92に近い部分が固定接点層64で被覆され、端面91の残りの部分は隙間55に向かって露出していてもよい。言い換えれば、第2構造63の第2絶縁層37と第2ベース層7との境界部90が隙間55に面していてもよい。固定接点層64は、第2絶縁層37の主面92に形成されたベース部68と、ベース部68から第2絶縁層37の端面91よりも可動接点部45側に突出した突出部69とを一体的に含んでいてもよい。突出部69は、第2絶縁層37の端面91を被覆する部分であってもよい。固定接点層64は、たとえば、金(Au)、アルミニウム(Al)等の導電材料であってもよい。固定接点層64は、第2信号線62に電気的に接続されている。 The fixed contact layer 64 is supported by the first insulating layer 36 via the second insulating layer 37. The fixed contact layer 64 covers the main surface 92 and the end surface 91 of the second insulating layer 37. The fixed contact layer 64 faces the main surface 66 and the end surface 65 of the first insulating layer 36 via the second insulating layer 37. In this embodiment, in the thickness direction of the first insulating layer 36, the portion of the end surface 91 near the main surface 92 is covered with the fixed contact layer 64, and the remaining portion of the end surface 91 is exposed toward the gap 55. May be good. In other words, the boundary portion 90 between the second insulating layer 37 and the second base layer 7 of the second structure 63 may face the gap 55. The fixed contact layer 64 includes a base portion 68 formed on the main surface 92 of the second insulating layer 37 and a protruding portion 69 protruding from the base portion 68 toward the movable contact portion 45 side of the end surface 91 of the second insulating layer 37. May be included integrally. The protruding portion 69 may be a portion that covers the end face 91 of the second insulating layer 37. The fixed contact layer 64 may be, for example, a conductive material such as gold (Au) or aluminum (Al). The fixed contact layer 64 is electrically connected to the second signal line 62.
 図3Aおよび図3Bは、図1のMEMSスイッチA1の動作を示す模式図である。図4Aおよび図4Bは、図1のMEMSスイッチA1の動作を示す模式図(拡大図)である。 3A and 3B are schematic views showing the operation of the MEMS switch A1 of FIG. 4A and 4B are schematic views (enlarged views) showing the operation of the MEMS switch A1 of FIG.
 MEMSスイッチA1を駆動させるには、たとえば、静電アクチュエータ2の可動電極24と固定電極21との間に電位差が形成されるように電圧が印加される。これにより、図3Bおよび図4Bに示すように、ビーム部27が変形して連結部材22が変位する。この連結部材22の変位によって可動接点部45が固定接点部46に近づき、可動接点部45を固定接点部46に接触させることができる。この接触によって、MEMSスイッチA1がオンとなり第1信号線59と第2信号線62との間が導通し、導通回路が形成される。一方、可動電極24および固定電極21への電圧の印加を解除すると、変形していたビーム部27が復元する。これにより、可動接点部45が固定接点部46から離間して非接触となり、MEMSスイッチA1がオフとなる。 To drive the MEMS switch A1, for example, a voltage is applied so that a potential difference is formed between the movable electrode 24 and the fixed electrode 21 of the electrostatic actuator 2. As a result, as shown in FIGS. 3B and 4B, the beam portion 27 is deformed and the connecting member 22 is displaced. Due to the displacement of the connecting member 22, the movable contact portion 45 approaches the fixed contact portion 46, and the movable contact portion 45 can be brought into contact with the fixed contact portion 46. By this contact, the MEMS switch A1 is turned on, the first signal line 59 and the second signal line 62 are made conductive, and a conduction circuit is formed. On the other hand, when the application of the voltage to the movable electrode 24 and the fixed electrode 21 is released, the deformed beam portion 27 is restored. As a result, the movable contact portion 45 is separated from the fixed contact portion 46 and becomes non-contact, and the MEMS switch A1 is turned off.
 なお、図4Aおよび図4Bに示すように、可動接点部45の第2ベース層7は、第2ビーム部48に対して固定接点部46側に選択的に突出していてもよい。また、固定接点部46の第2ベース層7は、第1フレーム部60に対して可動接点部45側に選択的に突出していてもよい。 As shown in FIGS. 4A and 4B, the second base layer 7 of the movable contact portion 45 may selectively project toward the fixed contact portion 46 with respect to the second beam portion 48. Further, the second base layer 7 of the fixed contact portion 46 may selectively project toward the movable contact portion 45 with respect to the first frame portion 60.
 図5A~図5Hは、図1のMEMSスイッチA1の製造工程の一部を工程順に示す図である。 5A to 5H are diagrams showing a part of the manufacturing process of the MEMS switch A1 of FIG. 1 in the order of processes.
 MEMSスイッチA1を製造するには、たとえば、図5Aを参照して、MEMSスイッチA1の基板3を形成するウエハ73が準備される。ウエハ73は、第1ウエハ主面74と、第1ウエハ主面74の反対側の第2ウエハ主面75とを有している。第1ウエハ主面74が第2ベース層7の第1主面11であり、第2ウエハ主面75が第1ベース層6の第2主面10である。ウエハ73は、この実施形態ではSOIウエハである。 In order to manufacture the MEMS switch A1, for example, a wafer 73 forming the substrate 3 of the MEMS switch A1 is prepared with reference to FIG. 5A. The wafer 73 has a first wafer main surface 74 and a second wafer main surface 75 on the opposite side of the first wafer main surface 74. The first wafer main surface 74 is the first main surface 11 of the second base layer 7, and the second wafer main surface 75 is the second main surface 10 of the first base layer 6. The wafer 73 is an SOI wafer in this embodiment.
 次に、図5Bを参照して、ウエハ73の第1ウエハ主面74に、第1絶縁層36が形成される。第1絶縁層36は、たとえば、CVD(Chemical Vapor Deposition)法、熱酸化法等によって形成されてもよい。 Next, with reference to FIG. 5B, the first insulating layer 36 is formed on the first wafer main surface 74 of the wafer 73. The first insulating layer 36 may be formed by, for example, a CVD (Chemical Vapor Deposition) method, a thermal oxidation method, or the like.
 次に、図5Cを参照して、第1絶縁層36の不要部分が除去される。これにより、第1絶縁層36に第1開孔93が形成され、第1開孔93から第2ベース層7の第1主面11の一部が露出する。 Next, referring to FIG. 5C, the unnecessary portion of the first insulating layer 36 is removed. As a result, the first opening 93 is formed in the first insulating layer 36, and a part of the first main surface 11 of the second base layer 7 is exposed from the first opening 93.
 次に、図5Dを参照して、第1絶縁層36上に第2絶縁層37が形成される。第2絶縁層37は、たとえば、原子層堆積法(ALD:Atomic Layer Deposition)によって形成されてもよい。第1絶縁層36の主面54,66、および第1開孔93に露出する第1絶縁層36の端面53,65は、第2絶縁層37に被覆される。 Next, referring to FIG. 5D, the second insulating layer 37 is formed on the first insulating layer 36. The second insulating layer 37 may be formed by, for example, an atomic layer deposition method (ALD). The main surfaces 54 and 66 of the first insulating layer 36 and the end surfaces 53 and 65 of the first insulating layer 36 exposed to the first opening 93 are covered with the second insulating layer 37.
 次に、図5Eを参照して、第1絶縁層36および第2絶縁層37の不要部分が除去される。これにより、第2ベース層7の第1主面11の一部が露出する。 Next, referring to FIG. 5E, unnecessary portions of the first insulating layer 36 and the second insulating layer 37 are removed. As a result, a part of the first main surface 11 of the second base layer 7 is exposed.
 次に、図5Fを参照して、第2ベース層7の第1主面11から第2ベース層7を貫通して埋め込み絶縁層8に達する貫通孔としてのトレンチ76が形成される。トレンチ76は、たとえば、異方性のディープRIE(Reactive Ion Etching)によって形成されてもよい。 Next, with reference to FIG. 5F, a trench 76 is formed as a through hole that penetrates from the first main surface 11 of the second base layer 7 to the second base layer 7 and reaches the embedded insulating layer 8. The trench 76 may be formed by, for example, an anisotropic deep RIE (Reactive Ion Etching).
 次に、図5Gを参照して、埋め込み絶縁層8をエッチング可能なエッチングガスが供給される。エッチングガスとしては、たとえば、フッ素系ガス(たとえば、HF等)が使用される。これにより、埋め込み絶縁層8が選択的に除去される。埋め込み絶縁層8が除去された部分には、第1ベース層6と第2ベース層7で挟まれた空洞16が形成される。空洞16の形成によって、固定構造17および可動構造18が分離して形成される。一方、埋め込み絶縁層8の一部は、第1ベース層6と第2ベース層7とに接触して挟まれた状態で残存する。 Next, referring to FIG. 5G, an etching gas capable of etching the embedded insulating layer 8 is supplied. As the etching gas, for example, a fluorine-based gas (for example, HF or the like) is used. As a result, the embedded insulating layer 8 is selectively removed. A cavity 16 sandwiched between the first base layer 6 and the second base layer 7 is formed in the portion from which the embedded insulating layer 8 has been removed. By forming the cavity 16, the fixed structure 17 and the movable structure 18 are separately formed. On the other hand, a part of the embedded insulating layer 8 remains in contact with and sandwiched between the first base layer 6 and the second base layer 7.
 次に、図5Hを参照して、可動接点層52および固定接点層64が形成される。可動接点層52および固定接点層64は、これらの導電材料(金属材料)の堆積によって形成される。可動接点層52および固定接点層64の堆積は、たとえば、CVD(Chemical Vapor Deposition)法、PVD(Physical Vapor Deposition)法等によって行われてもよい。この際、導電材料の一部が、第1絶縁層36上に堆積せず、第2ベース層7の端面83,88、空洞16等に残渣77として堆積してもよい。残渣77は、可動接点層52および固定接点層64とは、物理的かつ電気的に分離されている。 Next, with reference to FIG. 5H, the movable contact layer 52 and the fixed contact layer 64 are formed. The movable contact layer 52 and the fixed contact layer 64 are formed by depositing these conductive materials (metal materials). The movable contact layer 52 and the fixed contact layer 64 may be deposited by, for example, a CVD (Chemical Vapor Deposition) method, a PVD (Physical Vapor Deposition) method, or the like. At this time, a part of the conductive material may not be deposited on the first insulating layer 36, but may be deposited as a residue 77 on the end faces 83, 88, the cavity 16 and the like of the second base layer 7. The residue 77 is physically and electrically separated from the movable contact layer 52 and the fixed contact layer 64.
 その後、たとえば第1信号線59、第2信号線62等の必要な配線等が形成され、ウエハ73が各チップ単位に分割されることによって、MEMSスイッチA1が得られる。 After that, for example, necessary wirings such as the first signal line 59 and the second signal line 62 are formed, and the wafer 73 is divided into chip units to obtain the MEMS switch A1.
 図5A~図5Hの方法によれば、第1絶縁層36の端面53,65が第2絶縁層37で被覆されている。これにより、トレンチ76を介して埋め込み絶縁層8をエッチングする際に(図5G)、第1絶縁層36が端面53,65からエッチングされることを抑制することができる。そのため、可動接点層52および固定接点層64の直下の第1絶縁層36がエッチングにより除去されることを防止できるので、可動接点層52および固定接点層64を第1絶縁層36によって安定的に支持することができる。その結果、可動接点部45と固定接点部46との接触信頼性を向上することができる。 According to the methods of FIGS. 5A to 5H, the end faces 53 and 65 of the first insulating layer 36 are covered with the second insulating layer 37. This makes it possible to prevent the first insulating layer 36 from being etched from the end faces 53 and 65 when the embedded insulating layer 8 is etched through the trench 76 (FIG. 5G). Therefore, it is possible to prevent the first insulating layer 36 immediately below the movable contact layer 52 and the fixed contact layer 64 from being removed by etching, so that the movable contact layer 52 and the fixed contact layer 64 can be stably separated by the first insulating layer 36. Can be supported. As a result, the contact reliability between the movable contact portion 45 and the fixed contact portion 46 can be improved.
 また、可動接点層52および固定接点層64の直下の第1絶縁層36が過度にエッチングされると、可動接点層52および固定接点層64の一部が宙に浮いて第2ベース層7(半導体)と接触する場合がある。この種の接触は、MEMSスイッチA1のスイッチング不良を起こすおそれがある。これに対し、本開示のMEMSスイッチA1では、そのようなスイッチング不良を抑制することができる。 Further, when the first insulating layer 36 directly under the movable contact layer 52 and the fixed contact layer 64 is excessively etched, a part of the movable contact layer 52 and the fixed contact layer 64 floats in the air and the second base layer 7 ( It may come into contact with semiconductors). This type of contact may cause switching failure of the MEMS switch A1. On the other hand, in the MEMS switch A1 of the present disclosure, such switching failure can be suppressed.
 図6は、本開示の一実施形態に係るMEMSスイッチB1の模式的な断面図である。以下では、前述の実施形態に係るMEMSスイッチA1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。 FIG. 6 is a schematic cross-sectional view of the MEMS switch B1 according to the embodiment of the present disclosure. In the following, the same reference numerals will be given to the structures corresponding to the structures described for the MEMS switch A1 according to the above-described embodiment, and the description thereof will be omitted.
 図6のMEMSスイッチB1では、可動電極24、固定電極21およびビーム部27は、それぞれ、空洞16に対して浮いた状態で形成された第3構造94を有している。第3構造94は、第2ベース層7と、第1絶縁層36と、第2絶縁層37とを含む。 In the MEMS switch B1 of FIG. 6, the movable electrode 24, the fixed electrode 21, and the beam portion 27 each have a third structure 94 formed in a floating state with respect to the cavity 16. The third structure 94 includes a second base layer 7, a first insulating layer 36, and a second insulating layer 37.
 第3構造94において第1絶縁層36は、第2ベース層7上に形成されている。第1絶縁層36は、基板3の厚さ方向(この実施形態では、第3方向Z)に沿う端面95と、当該端面95に交差する主面96を有している。第1絶縁層36の主面96は、基板3の第1主面4に沿って形成されている。第1絶縁層36の端面95に連なるように、第2ベース層7は端面97を有している。 In the third structure 94, the first insulating layer 36 is formed on the second base layer 7. The first insulating layer 36 has an end surface 95 along the thickness direction of the substrate 3 (in this embodiment, the third direction Z) and a main surface 96 intersecting the end surface 95. The main surface 96 of the first insulating layer 36 is formed along the first main surface 4 of the substrate 3. The second base layer 7 has an end face 97 so as to be connected to the end face 95 of the first insulating layer 36.
 第3構造94において第2絶縁層37は、第1絶縁層36の端面95を被覆するように第1絶縁層36上に形成されている。第2絶縁層37は、第1絶縁層36の主面96および端面95を連続して被覆していてもよい。この実施形態では、第2絶縁層37は、第2ベース層7の端面97と第1絶縁層36の端面95との境界部99に端部98を有するように第1絶縁層36の主面96および端面95を連続して被覆している。これにより、第2ベース層7の端面97と第1絶縁層36の端面95との境界部99は、第2ベース層7の端面97と第2絶縁層37の端面101との境界部100で被覆されている。第2絶縁層37の端面101は、第2ベース層7の端面97に連続する面である。また、第2絶縁層37は、端面101に交差する主面102を有していてもよい。第2絶縁層37の主面102は、基板3の第1主面4に沿って形成されている。 In the third structure 94, the second insulating layer 37 is formed on the first insulating layer 36 so as to cover the end face 95 of the first insulating layer 36. The second insulating layer 37 may continuously cover the main surface 96 and the end surface 95 of the first insulating layer 36. In this embodiment, the second insulating layer 37 has a main surface of the first insulating layer 36 so that the second insulating layer 37 has an end portion 98 at a boundary portion 99 between the end surface 97 of the second base layer 7 and the end surface 95 of the first insulating layer 36. 96 and end face 95 are continuously covered. As a result, the boundary portion 99 between the end face 97 of the second base layer 7 and the end face 95 of the first insulating layer 36 is the boundary portion 100 between the end face 97 of the second base layer 7 and the end face 101 of the second insulating layer 37. It is covered. The end surface 101 of the second insulating layer 37 is a surface continuous with the end surface 97 of the second base layer 7. Further, the second insulating layer 37 may have a main surface 102 that intersects the end surface 101. The main surface 102 of the second insulating layer 37 is formed along the first main surface 4 of the substrate 3.
 図7A~図7Hは、図6のMEMSスイッチB1の製造工程の一部を工程順に示す図である。 7A to 7H are diagrams showing a part of the manufacturing process of the MEMS switch B1 of FIG. 6 in the order of the processes.
 MEMSスイッチB1を製造するには、たとえば、図7Aを参照して、MEMSスイッチB1の基板3を形成するウエハ73が準備される。 To manufacture the MEMS switch B1, for example, a wafer 73 forming the substrate 3 of the MEMS switch B1 is prepared with reference to FIG. 7A.
 次に、図7Bを参照して、ウエハ73の第1ウエハ主面74に、第1絶縁層36が形成される。第1絶縁層36は、たとえば、CVD(Chemical Vapor Deposition)法、熱酸化法等によって形成されてもよい。 Next, with reference to FIG. 7B, the first insulating layer 36 is formed on the first wafer main surface 74 of the wafer 73. The first insulating layer 36 may be formed by, for example, a CVD (Chemical Vapor Deposition) method, a thermal oxidation method, or the like.
 次に、図7Cを参照して、第1絶縁層36の不要部分が除去される。これにより、第1絶縁層36に第1開孔93が形成され、第1開孔93から第2ベース層7の第1主面11の一部が露出する。 Next, referring to FIG. 7C, the unnecessary portion of the first insulating layer 36 is removed. As a result, the first opening 93 is formed in the first insulating layer 36, and a part of the first main surface 11 of the second base layer 7 is exposed from the first opening 93.
 次に、図7Dを参照して、第1絶縁層36上に第2絶縁層37が形成される。第2絶縁層37は、たとえば、原子層堆積法(ALD:Atomic Layer Deposition)によって形成されてもよい。第1絶縁層36の主面54,66,96、および第1開孔93に露出する第1絶縁層36の端面53,65,95は、第2絶縁層37に被覆される。 Next, referring to FIG. 7D, the second insulating layer 37 is formed on the first insulating layer 36. The second insulating layer 37 may be formed by, for example, an atomic layer deposition method (ALD). The main surfaces 54, 66, 96 of the first insulating layer 36 and the end faces 53, 65, 95 of the first insulating layer 36 exposed to the first opening 93 are covered with the second insulating layer 37.
 次に、図7Eを参照して、第2絶縁層37の不要部分が除去される。これにより、第2ベース層7の第1主面11の一部が露出する。 Next, referring to FIG. 7E, the unnecessary portion of the second insulating layer 37 is removed. As a result, a part of the first main surface 11 of the second base layer 7 is exposed.
 次に、図7Fを参照して、第2ベース層7の第1主面11から第2ベース層7を貫通して埋め込み絶縁層8に達する貫通孔としてのトレンチ76が形成される。トレンチ76は、たとえば、異方性のディープRIE(Reactive Ion Etching)によって形成されてもよい。 Next, with reference to FIG. 7F, a trench 76 is formed as a through hole that penetrates from the first main surface 11 of the second base layer 7 to the second base layer 7 and reaches the embedded insulating layer 8. The trench 76 may be formed by, for example, an anisotropic deep RIE (Reactive Ion Etching).
 次に、図7Gを参照して、埋め込み絶縁層8をエッチング可能なエッチングガスが供給される。エッチングガスとしては、たとえば、フッ素系ガス(たとえば、HF等)が使用される。これにより、埋め込み絶縁層8が選択的に除去される。埋め込み絶縁層8が除去された部分には、第1ベース層6と第2ベース層7で挟まれた空洞16が形成される。 Next, referring to FIG. 7G, an etching gas capable of etching the embedded insulating layer 8 is supplied. As the etching gas, for example, a fluorine-based gas (for example, HF or the like) is used. As a result, the embedded insulating layer 8 is selectively removed. A cavity 16 sandwiched between the first base layer 6 and the second base layer 7 is formed in the portion from which the embedded insulating layer 8 has been removed.
 次に、図7Hを参照して、可動接点層52および固定接点層64が形成される。 Next, with reference to FIG. 7H, the movable contact layer 52 and the fixed contact layer 64 are formed.
 その後、たとえば第1信号線59、第2信号線62等の必要な配線等が形成され、ウエハ73が各チップ単位に分割されることによって、MEMSスイッチB1が得られる。 After that, for example, necessary wirings such as the first signal line 59 and the second signal line 62 are formed, and the wafer 73 is divided into chip units to obtain the MEMS switch B1.
 図7A~図7Hの方法によれば、第1絶縁層36の端面53,65が第2絶縁層37で被覆されている。これにより、図5A~図5Hの方法と同様の効果を得ることができる。 According to the methods of FIGS. 7A to 7H, the end faces 53 and 65 of the first insulating layer 36 are covered with the second insulating layer 37. Thereby, the same effect as the method of FIGS. 5A to 5H can be obtained.
 さらに、第1絶縁層36の端面95が第2絶縁層37で被覆されている。これにより、トレンチ76を介して埋め込み絶縁層8をエッチングする際に(図7G)、第1絶縁層36が端面95からエッチングされることを抑制することができる。そのため、可動電極24および固定電極21の第1主面11を第1絶縁層36で確実に被覆できるので、可動電極24および固定電極21の絶縁信頼性を向上することができる。 Further, the end face 95 of the first insulating layer 36 is covered with the second insulating layer 37. This makes it possible to prevent the first insulating layer 36 from being etched from the end face 95 when the embedded insulating layer 8 is etched through the trench 76 (FIG. 7G). Therefore, the first main surface 11 of the movable electrode 24 and the fixed electrode 21 can be reliably covered with the first insulating layer 36, so that the insulation reliability of the movable electrode 24 and the fixed electrode 21 can be improved.
 図8は、本開示の一実施形態に係るMEMSスイッチC1の模式的な断面図である。以下では、前述の実施形態に係るMEMSスイッチA1およびB1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。 FIG. 8 is a schematic cross-sectional view of the MEMS switch C1 according to the embodiment of the present disclosure. In the following, the same reference numerals will be given to the structures corresponding to the structures described for the MEMS switches A1 and B1 according to the above-described embodiment, and the description thereof will be omitted.
 MEMSスイッチC1では、第1構造51、第2構造63および第3構造94において第2絶縁層37は、第1絶縁層36の端面53,65,95に加えてさらに、第2ベース層7の端面83,88,97を被覆している。第2絶縁層37は、第2ベース層7の端面83,88,97と第1絶縁層36の端面53,65,95との境界部56,67,99を横切るように、第1絶縁層36の端面53,65,95および第2ベース層7の端面83,88,97を一体的に被覆している。第1構造51、第2構造63および第3構造94において、第2ベース層7の第2主面12は、第2絶縁層37で被覆されておらず、空洞16に対して露出している。 In the MEMS switch C1, in the first structure 51, the second structure 63, and the third structure 94, the second insulating layer 37 is a second base layer 7 in addition to the end faces 53, 65, 95 of the first insulating layer 36. It covers the end faces 83, 88, 97. The second insulating layer 37 is a first insulating layer so as to cross the boundary portions 56, 67, 99 between the end faces 83, 88, 97 of the second base layer 7 and the end faces 53, 65, 95 of the first insulating layer 36. The end faces 53, 65, 95 of 36 and the end faces 83, 88, 97 of the second base layer 7 are integrally covered. In the first structure 51, the second structure 63, and the third structure 94, the second main surface 12 of the second base layer 7 is not covered with the second insulating layer 37 and is exposed to the cavity 16. ..
 図9A~図9Hは、図8のMEMSスイッチC1の製造工程の一部を工程順に示す図である。 9A to 9H are diagrams showing a part of the manufacturing process of the MEMS switch C1 of FIG. 8 in the order of the processes.
 MEMSスイッチC1を製造するには、たとえば、図9Aを参照して、MEMSスイッチC1の基板3を形成するウエハ73が準備される。 To manufacture the MEMS switch C1, for example, a wafer 73 forming the substrate 3 of the MEMS switch C1 is prepared with reference to FIG. 9A.
 次に、図9Bを参照して、ウエハ73の第1ウエハ主面74に、第1絶縁層36が形成される。第1絶縁層36は、たとえば、CVD(Chemical Vapor Deposition)法、熱酸化法等によって形成されてもよい。 Next, with reference to FIG. 9B, the first insulating layer 36 is formed on the first wafer main surface 74 of the wafer 73. The first insulating layer 36 may be formed by, for example, a CVD (Chemical Vapor Deposition) method, a thermal oxidation method, or the like.
 次に、図9Cを参照して、第1絶縁層36の不要部分が除去される。これにより、第1絶縁層36に第1開孔93が形成され、第1開孔93から第2ベース層7の第1主面11の一部が露出する。 Next, referring to FIG. 9C, the unnecessary portion of the first insulating layer 36 is removed. As a result, the first opening 93 is formed in the first insulating layer 36, and a part of the first main surface 11 of the second base layer 7 is exposed from the first opening 93.
 次に、図9Dを参照して、第2ベース層7の第1主面11から第2ベース層7を貫通して埋め込み絶縁層8に達する貫通孔としてのトレンチ76が形成される。トレンチ76は、たとえば、異方性のディープRIE(Reactive Ion Etching)によって形成されてもよい。 Next, with reference to FIG. 9D, a trench 76 is formed as a through hole that penetrates from the first main surface 11 of the second base layer 7 to the second base layer 7 and reaches the embedded insulating layer 8. The trench 76 may be formed by, for example, an anisotropic deep RIE (Reactive Ion Etching).
 次に、図9Eを参照して、第1絶縁層36上に第2絶縁層37が形成される。第2絶縁層37は、たとえば、原子層堆積法(ALD:Atomic Layer Deposition)によって形成されてもよい。第1絶縁層36の主面54,66,96、第1開孔93に露出する第1絶縁層36の端面53,65,95、およびトレンチ76に露出する第2ベース層7の端面83,88,97は、第2絶縁層37に被覆される。 Next, referring to FIG. 9E, the second insulating layer 37 is formed on the first insulating layer 36. The second insulating layer 37 may be formed by, for example, an atomic layer deposition method (ALD). The main surfaces 54, 66, 96 of the first insulating layer 36, the end faces 53, 65, 95 of the first insulating layer 36 exposed to the first opening 93, and the end faces 83 of the second base layer 7 exposed to the trench 76, 88 and 97 are covered with the second insulating layer 37.
 次に、図9Fを参照して、第2絶縁層37の不要部分が除去される。これにより、埋め込み絶縁層8の一部が露出する。 Next, referring to FIG. 9F, the unnecessary portion of the second insulating layer 37 is removed. As a result, a part of the embedded insulating layer 8 is exposed.
 次に、図9Gを参照して、埋め込み絶縁層8をエッチング可能なエッチングガスが供給される。エッチングガスとしては、たとえば、フッ素系ガス(たとえば、HF等)が使用される。これにより、埋め込み絶縁層8が選択的に除去される。埋め込み絶縁層8が除去された部分には、第1ベース層6と第2ベース層7で挟まれた空洞16が形成される。 Next, referring to FIG. 9G, an etching gas capable of etching the embedded insulating layer 8 is supplied. As the etching gas, for example, a fluorine-based gas (for example, HF or the like) is used. As a result, the embedded insulating layer 8 is selectively removed. A cavity 16 sandwiched between the first base layer 6 and the second base layer 7 is formed in the portion from which the embedded insulating layer 8 has been removed.
 次に、図9Hを参照して、可動接点層52および固定接点層64が形成される。 Next, with reference to FIG. 9H, the movable contact layer 52 and the fixed contact layer 64 are formed.
 その後、たとえば第1信号線59、第2信号線62等の必要な配線等が形成され、ウエハ73が各チップ単位に分割されることによって、MEMSスイッチC1が得られる。 After that, for example, necessary wirings such as the first signal line 59 and the second signal line 62 are formed, and the wafer 73 is divided into chip units to obtain the MEMS switch C1.
 図9A~図9Hの方法によれば、第1絶縁層36の端面53,65,95が第2絶縁層37で被覆されている。これにより、図5A~図5Hの方法および図7A~図7Hの方法と同様の効果を得ることができる。 According to the methods of FIGS. 9A to 9H, the end faces 53, 65, 95 of the first insulating layer 36 are covered with the second insulating layer 37. Thereby, the same effect as the method of FIGS. 5A to 5H and the method of FIGS. 7A to 7H can be obtained.
 さらに、MEMSスイッチC1によれば、たとえば、埋め込み絶縁層8の一部をエッチングによって除去して第1ベース層6と第2ベース層7との間に空洞16を形成する際に、第3構造94の第2ベース層7が端面97からエッチングされることを抑制することができる。これにより、たとえば、可動電極24と固定電極21との間の距離d1~d3を、ほぼ設計通りに維持することができる。 Further, according to the MEMS switch C1, for example, when a part of the embedded insulating layer 8 is removed by etching to form a cavity 16 between the first base layer 6 and the second base layer 7, a third structure is formed. It is possible to prevent the second base layer 7 of 94 from being etched from the end face 97. Thereby, for example, the distances d1 to d3 between the movable electrode 24 and the fixed electrode 21 can be maintained substantially as designed.
 図10は、本開示の一実施形態に係るMEMSスイッチD1の模式的な断面図である。以下では、前述の実施形態に係るMEMSスイッチA1~C1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。 FIG. 10 is a schematic cross-sectional view of the MEMS switch D1 according to the embodiment of the present disclosure. In the following, the same reference numerals will be given to the structures corresponding to the structures described for the MEMS switches A1 to C1 according to the above-described embodiment, and the description thereof will be omitted.
 MEMSスイッチD1では、第1構造51、第2構造63および第3構造94において、第2ベース層7の端面83,88,97と第1絶縁層36の端面53,65,95との間には、第1絶縁層36の一部が第2ベース層7の端面83,88,97に対して突出するように、段差103が形成されている。 In the MEMS switch D1, in the first structure 51, the second structure 63, and the third structure 94, between the end faces 83, 88, 97 of the second base layer 7 and the end faces 53, 65, 95 of the first insulating layer 36. Is formed with a step 103 so that a part of the first insulating layer 36 projects from the end faces 83, 88, 97 of the second base layer 7.
 図11A~図11Hは、図10のMEMSスイッチD1の製造工程の一部を工程順に示す図である。 11A to 11H are diagrams showing a part of the manufacturing process of the MEMS switch D1 of FIG. 10 in the order of processes.
 MEMSスイッチD1を製造するには、たとえば、図11Aを参照して、MEMSスイッチD1の基板3を形成するウエハ73が準備される。 To manufacture the MEMS switch D1, for example, a wafer 73 forming the substrate 3 of the MEMS switch D1 is prepared with reference to FIG. 11A.
 次に、図11Bを参照して、ウエハ73の第1ウエハ主面74に、第1絶縁層36が形成される。第1絶縁層36は、たとえば、CVD(Chemical Vapor Deposition)法、熱酸化法等によって形成されてもよい。 Next, with reference to FIG. 11B, the first insulating layer 36 is formed on the first wafer main surface 74 of the wafer 73. The first insulating layer 36 may be formed by, for example, a CVD (Chemical Vapor Deposition) method, a thermal oxidation method, or the like.
 次に、図11Cを参照して、第1絶縁層36の不要部分が除去される。これにより、第1絶縁層36に第1開孔93が形成され、第1開孔93から第2ベース層7の第1主面11の一部が露出する。 Next, referring to FIG. 11C, the unnecessary portion of the first insulating layer 36 is removed. As a result, the first opening 93 is formed in the first insulating layer 36, and a part of the first main surface 11 of the second base layer 7 is exposed from the first opening 93.
 次に、図11Dを参照して、第2ベース層7の第1主面11から第2ベース層7を貫通して埋め込み絶縁層8に達する貫通孔としてのトレンチ76が形成される。トレンチ76は、たとえば、異方性のディープRIE(Reactive Ion Etching)によって形成されてもよい。これにより、段差103が形成される。 Next, with reference to FIG. 11D, a trench 76 is formed as a through hole that penetrates from the first main surface 11 of the second base layer 7 to the second base layer 7 and reaches the embedded insulating layer 8. The trench 76 may be formed by, for example, an anisotropic deep RIE (Reactive Ion Etching). As a result, the step 103 is formed.
 次に、図11Eを参照して、第1絶縁層36上に第2絶縁層37が形成される。第2絶縁層37は、たとえば、原子層堆積法(ALD:Atomic Layer Deposition)によって形成されてもよい。第1絶縁層36の主面54,66,96、第1開孔93に露出する第1絶縁層36の端面53,65,95、およびトレンチ76に露出する第2絶縁層37の端面83,88,97は、第2絶縁層37に被覆される。 Next, referring to FIG. 11E, the second insulating layer 37 is formed on the first insulating layer 36. The second insulating layer 37 may be formed by, for example, an atomic layer deposition method (ALD). The main surfaces 54, 66, 96 of the first insulating layer 36, the end faces 53, 65, 95 of the first insulating layer 36 exposed to the first opening 93, and the end faces 83 of the second insulating layer 37 exposed to the trench 76, 88 and 97 are covered with the second insulating layer 37.
 次に、図11Fを参照して、第2絶縁層37の不要部分が除去される。これにより、埋め込み絶縁層8の一部が露出する。 Next, referring to FIG. 11F, the unnecessary portion of the second insulating layer 37 is removed. As a result, a part of the embedded insulating layer 8 is exposed.
 次に、図11Gを参照して、埋め込み絶縁層8をエッチング可能なエッチングガスが供給される。エッチングガスとしては、たとえば、フッ素系ガス(たとえば、HF等)が使用される。これにより、埋め込み絶縁層8が選択的に除去される。埋め込み絶縁層8が除去された部分には、第1ベース層6と第2ベース層7で挟まれた空洞16が形成される。 Next, referring to FIG. 11G, an etching gas capable of etching the embedded insulating layer 8 is supplied. As the etching gas, for example, a fluorine-based gas (for example, HF or the like) is used. As a result, the embedded insulating layer 8 is selectively removed. A cavity 16 sandwiched between the first base layer 6 and the second base layer 7 is formed in the portion from which the embedded insulating layer 8 has been removed.
 次に、図11Hを参照して、可動接点層52および固定接点層64が形成される。 Next, with reference to FIG. 11H, the movable contact layer 52 and the fixed contact layer 64 are formed.
 その後、たとえば第1信号線59、第2信号線62等の必要な配線等が形成され、ウエハ73が各チップ単位に分割されることによって、MEMSスイッチD1が得られる。 After that, for example, necessary wirings such as the first signal line 59 and the second signal line 62 are formed, and the wafer 73 is divided into chip units to obtain the MEMS switch D1.
 図11A~図11Hの方法によれば、図5A~図5Hの方法、図7A~図7Hの方法、および図9A~図9Hの方法と同様の効果を得ることができる。 According to the methods of FIGS. 11A to 11H, the same effects as the methods of FIGS. 5A to 5H, the methods of FIGS. 7A to 7H, and the methods of FIGS. 9A to 9H can be obtained.
 以上、本開示の実施形態について説明したが、本開示のMEMSスイッチA1,B1,C1,D1は他の形態で実施することもできる。 Although the embodiments of the present disclosure have been described above, the MEMS switches A1, B1, C1, and D1 of the present disclosure can also be implemented in other embodiments.
 たとえば、前述の実施形態では、可動構造18は、静電アクチュエータ2の静電駆動によって変位しているが、圧電素子を含む圧電アクチュエータの圧電駆動によって変位してもよい。また、静電駆動と圧電駆動との組み合わせによって可動構造18を変位させてもよい。 For example, in the above-described embodiment, the movable structure 18 is displaced by the electrostatic drive of the electrostatic actuator 2, but it may be displaced by the piezoelectric drive of the piezoelectric actuator including the piezoelectric element. Further, the movable structure 18 may be displaced by a combination of electrostatic drive and piezoelectric drive.
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 In addition, various design changes can be made within the scope of the matters stated in the claims.
 本出願は、2021年1月12日に日本国特許庁に提出された特願2021-002838号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2021-002838 submitted to the Japan Patent Office on January 12, 2021, and the entire disclosure of this application shall be incorporated herein by reference.
2     :静電アクチュエータ
3     :基板
4     :第1主面
5     :第2主面
6     :第1ベース層
7     :第2ベース層
8     :埋め込み絶縁層
9     :第1主面
10    :第2主面
11    :第1主面
12    :第2主面
13    :第1接合面
14    :第2接合面
15    :側面
16    :空洞
17    :固定構造
18    :可動構造
19    :フレーム部
20    :第1カンチレバー構造
21    :固定電極
21A   :第1固定電極
21B   :第2固定電極
22    :連結部材
23    :第2カンチレバー構造
24    :可動電極
24A   :第1可動電極
24B   :第2可動電極
25    :櫛歯型電極
27    :ビーム部
28    :第1端部
29    :第2端部
36    :第1絶縁層
37    :第2絶縁層
45    :可動接点部
46    :固定接点部
47    :端部
48    :第2ビーム部
49    :第1側部
50    :第2側部
51    :第1構造
52    :可動接点層
53    :端面
54    :主面
55    :隙間
56    :境界部
57    :ベース部
58    :突出部
59    :第1信号線
60    :第1フレーム部
61    :第2フレーム部
62    :第2信号線
63    :第2構造
64    :固定接点層
65    :端面
66    :主面
67    :境界部
68    :ベース部
69    :突出部
72    :非対称構造
73    :ウエハ
74    :第1ウエハ主面
75    :第2ウエハ主面
76    :トレンチ
77    :残渣
83    :端面
84    :端部
85    :境界部
86    :端面
87    :主面
88    :端面
89    :端部
90    :境界部
91    :端面
92    :主面
93    :第1開孔
94    :第3構造
95    :端面
96    :主面
97    :端面
98    :端部
99    :境界部
100   :境界部
101   :端面
102   :主面
103   :段差
A1    :MEMSスイッチ
B1    :MEMSスイッチ
C1    :MEMSスイッチ
D1    :MEMSスイッチ
F1    :第1静電気力
F2    :第2静電気力
X     :第1方向
Y     :第2方向
Z     :第3方向
d1    :距離
d2    :距離
d3    :距離
 
2: Electrostatic actuator 3: Substrate 4: First main surface 5: Second main surface 6: First base layer 7: Second base layer 8: Embedded insulating layer 9: First main surface 10: Second main surface 11 : 1st main surface 12: 2nd main surface 13: 1st joint surface 14: 2nd joint surface 15: Side surface 16: Cavity 17: Fixed structure 18: Movable structure 19: Frame portion 20: 1st cantilever structure 21: Fixed Electrode 21A: 1st fixed electrode 21B: 2nd fixed electrode 22: Connecting member 23: 2nd cantilever structure 24: Movable electrode 24A: 1st movable electrode 24B: 2nd movable electrode 25: Comb tooth type electrode 27: Beam portion 28 : 1st end 29: 2nd end 36: 1st insulating layer 37: 2nd insulating layer 45: Movable contact part 46: Fixed contact part 47: End part 48: 2nd beam part 49: 1st side part 50 : Second side portion 51: First structure 52: Movable contact layer 53: End surface 54: Main surface 55: Gap 56: Boundary portion 57: Base portion 58: Protruding portion 59: First signal line 60: First frame portion 61 : Second frame portion 62: Second signal line 63: Second structure 64: Fixed contact layer 65: End face 66: Main surface 67: Boundary portion 68: Base portion 69: Protruding portion 72: Asymmetric structure 73: Wafer 74: First 1 wafer main surface 75: 2nd wafer main surface 76: trench 77: residue 83: end surface 84: end 85: boundary 86: end surface 87: main surface 88: end surface 89: end 90: boundary 91: end surface 92 : Main surface 93: First opening 94: Third structure 95: End surface 96: Main surface 97: End surface 98: End portion 99: Boundary portion 100: Boundary portion 101: End surface 102: Main surface 103: Step A1: MEMS switch B1: MEMS switch C1: MEMS switch D1: MEMS switch F1 : 1st electrostatic force F2: 2nd electrostatic force X: 1st direction Y: 2nd direction Z: 3rd direction d1: Distance d2: Distance d3: Distance

Claims (15)

  1.  第1主面およびその反対側の第2主面を有し、空洞が内部に形成された基板と、
     前記基板の前記第1主面側に形成され、電気信号を機械的動作に変換するアクチュエータ部と、
     前記基板の前記第1主面側に前記空洞に浮いた状態で形成され、前記アクチュエータ部の機械的動作によって変位可能な可動接点部と、
     前記可動接点部と対向し、前記可動接点部の変位によって前記可動接点部と接触および非接触可能な固定接点部とを含み、
     前記可動接点部および前記固定接点部の少なくとも一方は、前記基板と、前記基板上に形成された第1絶縁層と、前記基板の厚さ方向に沿う前記第1絶縁層の端面を被覆するように前記第1絶縁層上に形成され、前記第1絶縁層とは異なる材料を含む第2絶縁層と、前記第1絶縁層に支持された導電性の接点層とを含む第1構造を有している、MEMSスイッチ。
    A substrate having a first main surface and a second main surface on the opposite side, and a cavity formed inside,
    An actuator unit formed on the first main surface side of the substrate and converting an electric signal into a mechanical operation,
    A movable contact portion formed on the first main surface side of the substrate in a state of floating in the cavity and displaceable by the mechanical operation of the actuator portion.
    A fixed contact portion facing the movable contact portion and capable of contacting and not contacting the movable contact portion due to displacement of the movable contact portion is included.
    At least one of the movable contact portion and the fixed contact portion covers the substrate, the first insulating layer formed on the substrate, and the end face of the first insulating layer along the thickness direction of the substrate. Has a first structure including a second insulating layer formed on the first insulating layer and containing a material different from the first insulating layer, and a conductive contact layer supported by the first insulating layer. The MEMS switch.
  2.  前記基板は、第1ベース層と、前記第1ベース層上に形成され、前記第1絶縁層と同じ材料を含む埋め込み絶縁層と、前記埋め込み絶縁層上に形成された第2ベース層とを含み、
     前記空洞は、前記第1ベース層と前記第2ベース層との間に形成され、前記埋め込み絶縁層によって側方から区画されており、
     前記第1構造において前記第1絶縁層は、前記第2ベース層上に形成されている、請求項1に記載のMEMSスイッチ。
    The substrate includes a first base layer, an embedded insulating layer formed on the first base layer and containing the same material as the first insulating layer, and a second base layer formed on the embedded insulating layer. Including
    The cavity is formed between the first base layer and the second base layer, and is partitioned from the side by the embedded insulating layer.
    The MEMS switch according to claim 1, wherein in the first structure, the first insulating layer is formed on the second base layer.
  3.  前記第1構造において前記第2ベース層は、前記基板の厚さ方向において前記第1絶縁層の端面に連なる端面を有しており、
     前記第1構造において前記第2絶縁層は、前記第2ベース層の端面と前記第1絶縁層の端面との境界部に端部を有するように前記第1絶縁層の端面を被覆している、請求項2に記載のMEMSスイッチ。
    In the first structure, the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate.
    In the first structure, the second insulating layer covers the end face of the first insulating layer so as to have an end portion at a boundary between the end face of the second base layer and the end face of the first insulating layer. , The MEMS switch according to claim 2.
  4.  前記第1構造において前記第2ベース層は、前記基板の厚さ方向において前記第1絶縁層の端面に連なる端面を有しており、
     前記第1構造において前記第2絶縁層は、前記第1絶縁層の端面に加えてさらに、前記第2ベース層の端面を被覆している、請求項2に記載のMEMSスイッチ。
    In the first structure, the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate.
    The MEMS switch according to claim 2, wherein in the first structure, the second insulating layer further covers the end face of the second base layer in addition to the end face of the first insulating layer.
  5.  前記第1構造において前記第2ベース層の端面と前記第1絶縁層の端面との間には、前記第1絶縁層の一部が前記第2ベース層の端面に対して突出するように、段差が形成されている、請求項4に記載のMEMSスイッチ。 In the first structure, between the end face of the second base layer and the end face of the first insulating layer, a part of the first insulating layer projects with respect to the end face of the second base layer. The MEMS switch according to claim 4, wherein a step is formed.
  6.  前記アクチュエータ部は、前記空洞に対して浮いた状態で前記第2ベース層に形成された静電アクチュエータであって、交互に配列された固定電極および可動電極を含み、前記可動電極と前記固定電極との間の静電気力によって変位する櫛歯型の静電アクチュエータを含み、
     前記可動接点部は、前記可動電極に連結された連結部材を介して前記静電アクチュエータに対して変位可能に設けられている、請求項2~5のいずれか一項に記載のMEMSスイッチ。
    The actuator portion is an electrostatic actuator formed on the second base layer while floating with respect to the cavity, and includes fixed electrodes and movable electrodes arranged alternately, and the movable electrodes and the fixed electrodes are included. Including a comb-tooth type electrostatic actuator that is displaced by electrostatic force between and
    The MEMS switch according to any one of claims 2 to 5, wherein the movable contact portion is provided so as to be displaceable with respect to the electrostatic actuator via a connecting member connected to the movable electrode.
  7.  前記可動電極および前記固定電極の少なくとも一方は、前記第2ベース層と、前記第1絶縁層と、前記第2絶縁層とを含む第2構造を有している、請求項6に記載のMEMSスイッチ。 The MEMS according to claim 6, wherein at least one of the movable electrode and the fixed electrode has a second structure including the second base layer, the first insulating layer, and the second insulating layer. switch.
  8.  前記第2構造において前記第2ベース層は、前記基板の厚さ方向において前記第1絶縁層の端面に連なる端面を有しており、
     前記第2構造において前記第2絶縁層は、前記第2ベース層の端面と前記第1絶縁層の端面との境界部に端部を有するように前記第1絶縁層の端面を被覆している、請求項7に記載のMEMSスイッチ。
    In the second structure, the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate.
    In the second structure, the second insulating layer covers the end face of the first insulating layer so as to have an end portion at the boundary between the end face of the second base layer and the end face of the first insulating layer. , The MEMS switch according to claim 7.
  9.  前記第2構造において前記第2ベース層は、前記基板の厚さ方向において前記第1絶縁層の端面に連なる端面を有しており、
     前記第2構造において前記第2絶縁層は、前記第1絶縁層の端面に加えてさらに、前記第2ベース層の端面を被覆している、請求項7に記載のMEMSスイッチ。
    In the second structure, the second base layer has an end face connected to the end face of the first insulating layer in the thickness direction of the substrate.
    The MEMS switch according to claim 7, wherein in the second structure, the second insulating layer further covers the end face of the second base layer in addition to the end face of the first insulating layer.
  10.  前記第2構造において前記第2ベース層の端面と前記第1絶縁層の端面との間には、前記第1絶縁層の一部が前記第2ベース層の端面に対して突出するように、段差が形成されている、請求項9に記載のMEMSスイッチ。 In the second structure, between the end face of the second base layer and the end face of the first insulating layer, a part of the first insulating layer projects with respect to the end face of the second base layer. The MEMS switch according to claim 9, wherein a step is formed.
  11.  前記第1絶縁層は、前記第1絶縁層の端面に交差する主面を有しており、
     前記第2絶縁層は、前記第1絶縁層の前記主面および前記端面を連続して被覆しており、
     前記接点層は、前記第2絶縁層を介して前記第1絶縁層の前記主面および前記端面に対向している、請求項1~10のいずれか一項に記載のMEMSスイッチ。
    The first insulating layer has a main surface that intersects the end surface of the first insulating layer.
    The second insulating layer continuously covers the main surface and the end surface of the first insulating layer.
    The MEMS switch according to any one of claims 1 to 10, wherein the contact layer faces the main surface and the end surface of the first insulating layer via the second insulating layer.
  12.  前記第1絶縁層は、酸化シリコン(SiO)を含み、
     前記第2絶縁層は、酸化アルミニウム(Al)を含む、請求項1~11のいずれか一項に記載のMEMSスイッチ。
    The first insulating layer contains silicon oxide (SiO 2 ) and contains silicon oxide (SiO 2).
    The MEMS switch according to any one of claims 1 to 11, wherein the second insulating layer contains aluminum oxide (Al 2 O 3 ).
  13.  第1ベース層と、前記第1ベース層上に形成された埋め込み絶縁層と、前記埋め込み絶縁層上に形成された第2ベース層とを含む基板の前記第2ベース層上に、前記埋め込み絶縁層と同じ材料を含む第1絶縁層を形成する工程と、
     前記第1絶縁層に選択的に第1開孔を形成する工程と、
     前記第1絶縁層の主面、および前記第1開孔に露出する前記第1絶縁層の端面を被覆するように、前記第1絶縁層とは異なる材料を含む第2絶縁層を前記第1絶縁層上に形成する工程と、
     前記第2ベース層に所定パターンを有する貫通孔を形成することによって、前記貫通孔によって区画された前記第2ベース層、当該第2ベース層上の前記第1絶縁層および前記第2絶縁層を含む可動接点部および固定接点部を形成する工程と、
     前記貫通孔を介して前記埋め込み絶縁層をエッチングすることによって、前記第1ベース層と前記第2ベース層との間に空洞を形成する工程と、
     前記埋め込み絶縁層のエッチング後、導電材料を所定パターンで堆積することによって、前記第1絶縁層上に接点層を形成する工程とを含む、MEMSスイッチの製造方法。
    The embedded insulation on the second base layer of the substrate including the first base layer, the embedded insulating layer formed on the first base layer, and the second base layer formed on the embedded insulating layer. The process of forming the first insulating layer containing the same material as the layer,
    The step of selectively forming the first opening in the first insulating layer and
    The first insulating layer containing a material different from that of the first insulating layer is provided so as to cover the main surface of the first insulating layer and the end surface of the first insulating layer exposed to the first opening. The process of forming on the insulating layer and
    By forming a through hole having a predetermined pattern in the second base layer, the second base layer partitioned by the through hole, the first insulating layer on the second base layer, and the second insulating layer are formed. The process of forming the movable contact part and the fixed contact part including
    A step of forming a cavity between the first base layer and the second base layer by etching the embedded insulating layer through the through hole.
    A method for manufacturing a MEMS switch, which comprises a step of forming a contact layer on the first insulating layer by depositing a conductive material in a predetermined pattern after etching the embedded insulating layer.
  14.  第1ベース層と、前記第1ベース層上に形成された埋め込み絶縁層と、前記埋め込み絶縁層上に形成された第2ベース層とを含む基板の前記第2ベース層上に、前記埋め込み絶縁層と同じ材料を含む第1絶縁層を形成する工程と、
     前記第1絶縁層に選択的に第1開孔を形成する工程と、
     前記第2ベース層に所定パターンを有する貫通孔を形成することによって、前記貫通孔によって区画された前記第2ベース層、当該第2ベース層上の前記第1絶縁層を含む可動接点部および固定接点部を形成する工程と、
     前記第1絶縁層の主面、前記第1開孔に露出する前記第1絶縁層の端面、および前記貫通孔に露出する前記第2ベース層の端面を被覆するように、前記第1絶縁層とは異なる材料を含む第2絶縁層を前記第1絶縁層上に形成する工程と、
     前記貫通孔を介して前記埋め込み絶縁層をエッチングすることによって、前記第1ベース層と前記第2ベース層との間に空洞を形成する工程と、
     前記埋め込み絶縁層のエッチング後、導電材料を所定パターンで堆積することによって、前記第1絶縁層上に接点層を形成する工程とを含む、MEMSスイッチの製造方法。
    The embedded insulation on the second base layer of the substrate including the first base layer, the embedded insulating layer formed on the first base layer, and the second base layer formed on the embedded insulating layer. The process of forming the first insulating layer containing the same material as the layer,
    The step of selectively forming the first opening in the first insulating layer and
    By forming a through hole having a predetermined pattern in the second base layer, the second base layer partitioned by the through hole, a movable contact portion including the first insulating layer on the second base layer, and fixing The process of forming the contact part and
    The first insulating layer so as to cover the main surface of the first insulating layer, the end surface of the first insulating layer exposed to the first opening, and the end surface of the second base layer exposed to the through hole. A step of forming a second insulating layer containing a material different from the above on the first insulating layer, and
    A step of forming a cavity between the first base layer and the second base layer by etching the embedded insulating layer through the through hole.
    A method for manufacturing a MEMS switch, which comprises a step of forming a contact layer on the first insulating layer by depositing a conductive material in a predetermined pattern after etching the embedded insulating layer.
  15.  前記第2絶縁層を形成する工程は、原子層堆積法(ALD:Atomic Layer Deposition)によって前記第2絶縁層を形成する工程を含む、請求項13または14に記載のMEMSスイッチの製造方法。
     
    The method for manufacturing a MEMS switch according to claim 13 or 14, wherein the step of forming the second insulating layer includes a step of forming the second insulating layer by an atomic layer deposition method (ALD).
PCT/JP2021/043956 2021-01-12 2021-11-30 Mems switch and manufacturing method for mems switch WO2022153697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022575115A JPWO2022153697A1 (en) 2021-01-12 2021-11-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021002838 2021-01-12
JP2021-002838 2021-01-12

Publications (1)

Publication Number Publication Date
WO2022153697A1 true WO2022153697A1 (en) 2022-07-21

Family

ID=82447146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043956 WO2022153697A1 (en) 2021-01-12 2021-11-30 Mems switch and manufacturing method for mems switch

Country Status (2)

Country Link
JP (1) JPWO2022153697A1 (en)
WO (1) WO2022153697A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243389A (en) * 2011-05-13 2012-12-10 Advantest Corp Switching device, transmission line change-over device, manufacturing method, and test device
JP2013026195A (en) * 2011-07-26 2013-02-04 Advantest Corp Switching device, manufacturing method of the same, transmission channel switching device, and testing device
JP2015088339A (en) * 2013-10-30 2015-05-07 国立大学法人東北大学 Integrated circuit device including piezoelectric mems switch and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243389A (en) * 2011-05-13 2012-12-10 Advantest Corp Switching device, transmission line change-over device, manufacturing method, and test device
JP2013026195A (en) * 2011-07-26 2013-02-04 Advantest Corp Switching device, manufacturing method of the same, transmission channel switching device, and testing device
JP2015088339A (en) * 2013-10-30 2015-05-07 国立大学法人東北大学 Integrated circuit device including piezoelectric mems switch and manufacturing method of the same

Also Published As

Publication number Publication date
JPWO2022153697A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US20230353066A1 (en) MEMS Structure and Method of Forming Same
US7098577B2 (en) Piezoelectric switch for tunable electronic components
CN107337175B (en) Semiconductor structure and manufacturing method thereof
JP4580745B2 (en) Piezoelectric drive MEMS device
US7972884B2 (en) Micromechanical device and method of manufacturing micromechanical device
JP2007535797A (en) Beam for micromachine technology (MEMS) switches
JP2007160495A (en) Mems vibrator, and method for manufacturing the same
EP1024512B1 (en) Electrostatic micro-relay
US20060171628A1 (en) Mems element and method of producing the same, and diffraction type mems element
US20190027331A1 (en) Integrated electro-mechanical actuator
TW202239697A (en) Electrically actuatable mems switch
JP5579118B2 (en) Mechanical switch with curved bilayer
JP2007242462A (en) Mechanical switch
US20230013976A1 (en) Movable piezo element and method for producing a movable piezo element
WO2022153697A1 (en) Mems switch and manufacturing method for mems switch
US9287050B2 (en) MEMS and method of manufacturing the same
JP5202236B2 (en) Micro electromechanical switch and method for manufacturing the same
WO2022153696A1 (en) Mems switch
JP4635023B2 (en) MEMS
JP5314932B2 (en) Electric micro mechanical switch
KR0158161B1 (en) Microswitch and manufacturing process of it
US20220328258A1 (en) Mems switch including an embedded metal contact
JP2009226497A (en) Micromechanical apparatus and manufacturing method of micromechanical apparatus
JP2009226498A (en) Micromechanical apparatus and manufacturing method of micromechanical apparatus
JP2005202257A (en) Light deflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919586

Country of ref document: EP

Kind code of ref document: A1