WO2022152331A1 - 辅链路的cws确定方法及装置、计算机可读存储介质 - Google Patents

辅链路的cws确定方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2022152331A1
WO2022152331A1 PCT/CN2022/077085 CN2022077085W WO2022152331A1 WO 2022152331 A1 WO2022152331 A1 WO 2022152331A1 CN 2022077085 W CN2022077085 W CN 2022077085W WO 2022152331 A1 WO2022152331 A1 WO 2022152331A1
Authority
WO
WIPO (PCT)
Prior art keywords
cws
lbt
contention window
module
determining
Prior art date
Application number
PCT/CN2022/077085
Other languages
English (en)
French (fr)
Inventor
张萌
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2022152331A1 publication Critical patent/WO2022152331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a method and device for determining a CWS of a secondary link, and a computer-readable storage medium.
  • the transmission of the existing secondary link (Sidelink), whether it is the fourth generation mobile communication technology (The Fourth-Generation mobile communications, 4G for short) or 5G, still works on the licensed spectrum.
  • the secondary link transmission will be extended to the unlicensed spectrum (that is, the unlicensed spectrum).
  • a notable feature of the unlicensed spectrum is the use of the data transmission strategy of Listen Before Talk (LBT).
  • the terminal performs LBT monitoring within a contention window (Contention Window, CW for short), and during data transmission using an unlicensed spectrum, the contention window is adjustable.
  • Contention Window Size (CWS for short) is an important parameter for adjusting the contention window. By adjusting the CWS, the effect of adjusting the contention window can be achieved.
  • LAA Licensed-Assisted Access
  • NR-U New Radio in Unlicensed Spectrum
  • HARQ-ACK Hybrid Automatic Repeat request ACKnowledgement
  • the secondary link may not require HARQ-ACK feedback in some configurations, and how to adjust the CWS is a problem at this time.
  • the technical problem solved by the present invention is how to reasonably adjust the CWS in the LBT process when the secondary link is combined with the LBT.
  • an embodiment of the present invention provides a method for determining the CWS of an auxiliary link, where the auxiliary link is transmitted on an unlicensed spectrum.
  • the method includes: determining the CWS used in this LBT, wherein the The CWS used in this LBT is determined according to reference parameters, and the reference parameters include the number of CBR and/or LBT failures; the contention window of this LBT is determined according to the CWS used in this LBT, and within the contention window Perform LBT operations.
  • the determining the CWS used in the current LBT includes: determining the CWS used in the current LBT according to a preset mapping relationship between reference parameters and a CWS set, where the CWS set includes at least one candidate CWS.
  • the preset mapping relationship between the reference parameter and the CWS set is preset through a protocol, or obtained from high-layer signaling.
  • the value of the reference parameter includes a plurality of interval ranges
  • the preset mapping relationship is a mapping relationship between each interval range of the reference parameter and each candidate CWS in the CWS set.
  • the reference parameter is used to represent the busyness of the channel on the unlicensed spectrum, and the busier the channel, the greater the value of the corresponding CWS.
  • LBTs with different priorities correspond to different CWS sets.
  • the determining of the CWS used in this LBT includes: receiving indication information, where the indication information is selected from: DCI, SCI, RRC signaling, PC5 RRC signaling, MAC-CE, and PC5 MAC-CE; Determine the CWS adopted by this LBT according to the indication information.
  • the CBR is measured by the receiving end or the transmitting end connected by the secondary link.
  • the number of LBT failures is the number of LBT failures within a preset time window.
  • the determining the contention window of this LBT according to the CWS adopted by the LBT this time includes: randomly selecting from the contention window selection interval to obtain the contention window of this LBT, wherein the upper limit of the contention window selection interval is The CWS used for this LBT.
  • an embodiment of the present invention further provides an apparatus for determining the CWS of an auxiliary link, the auxiliary link is transmitted on an unlicensed spectrum, and the apparatus includes: a first determination module, configured to determine the LBT this time The adopted CWS, wherein the CWS used in the LBT this time is determined according to reference parameters, and the reference parameters include the number of CBR and/or LBT failures; a second determination module is used for the CWS used in the LBT this time. The contention window of the current LBT is determined, and the LBT operation is performed within the contention window.
  • embodiments of the present invention further provide a computer-readable storage medium, where the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, and a computer program is stored thereon. The steps of the above-described methods are performed when the computer program is executed by the processor.
  • an embodiment of the present invention further provides a device for determining CWS of a secondary link, including a memory and a processor, where the memory stores a computer program that can run on the processor, and the processor The steps of the above-described methods are performed when the computer program is run.
  • An embodiment of the present invention provides a method for determining the CWS of an auxiliary link.
  • the auxiliary link is transmitted on an unlicensed spectrum.
  • the method includes: determining the CWS used in the current LBT, where the CWS used in the current LBT is is determined according to reference parameters, the reference parameters include the number of CBR and/or LBT failures; the contention window of this LBT is determined according to the CWS used in the current LBT, and the LBT operation is performed within the contention window.
  • this embodiment adjusts the CWS based on other reference parameters (such as CBR and the number of LBT failures), so that the secondary link transmission scenario without HARQ feedback is combined with LBT.
  • CBR the number of LBT failures
  • the busyness of the channel during the transmission of the secondary link is measured by the number of CBR, LBT failures, or a combination of the two, so as to reasonably determine the duration of the contention window during the next LBT.
  • the CWS used in this LBT is determined, wherein the CWS set includes at least one candidate CWS.
  • different interval ranges of the reference parameter values correspond to different CWS candidate values in the CWS set. In this way, the corresponding CWS can be quickly determined according to the specific value of the currently acquired reference parameter.
  • FIG. 1 is a flowchart of a method for determining a CWS of a secondary link according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an apparatus for determining a CWS of a secondary link according to an embodiment of the present invention.
  • the prior art cannot reasonably adjust the CWS in the LBT process when the secondary link is combined with the LBT.
  • an embodiment of the present invention provides a method for determining the CWS of an auxiliary link, where the auxiliary link is transmitted on an unlicensed spectrum.
  • the method includes: determining the CWS used in this LBT, wherein the The CWS used in this LBT is determined according to reference parameters, and the reference parameters include the number of CBR and/or LBT failures; the contention window of this LBT is determined according to the CWS used in this LBT, and within the contention window Perform LBT operations.
  • This embodiment adjusts the CWS based on other reference parameters (such as CBR and LBT failure times), so that the CWS in the LBT process can still be reasonably adjusted when the secondary link transmission scenario without HARQ feedback is combined with the LBT.
  • the busyness of the channel during the transmission of the secondary link is measured by the number of CBR, LBT failures, or a combination of the two, so as to reasonably determine the duration of the contention window during the next LBT.
  • the LBT types applicable to this embodiment may include, but are not limited to: Channel Access Type of Type 2A (Channel Access Type, CAT2 Type 2A for short); Channel Access Type of Type 2B (CAT2 Type 2B for short); Channel Access Type of Type 2C Access type (referred to as CAT2 Type 2C); channel access type of Type 1 (referred to as CAT4 Type 1).
  • CAT2 Type 2A/CAT2 Type 2B/CAT2 Type 2C/CAT4 Type 1 can each contain a channel access priority class of 1 to 4 (Channel Access Priority Class, CAPC for short).
  • CAPC Channel Access Priority Class
  • FIG. 1 is a flowchart of a method for determining a CWS of a secondary link according to an embodiment of the present invention.
  • the secondary link may connect a transmitter (Transmitter, Tx for short) and a receiver (Receiver, Rx for short).
  • the secondary link may also be connected to a base station (gNB), and the base station sends information to the receiving end through the transmitting end.
  • gNB base station
  • This embodiment may be executed by the sending end, and the sending end may be a user equipment (User Equipment, UE for short). Specifically, this embodiment may be implemented by a chip with an LBT function in the user equipment, and may also be implemented by a baseband chip in the user equipment.
  • UE User Equipment
  • the secondary link is transmitted on an unlicensed spectrum.
  • the transmitting end needs to perform an LBT process.
  • the method for determining the CWS of the secondary link in this embodiment may include the following steps:
  • Step S101 determining the CWS used in the LBT this time, wherein the CWS used in the LBT this time is determined according to a reference parameter, and the reference parameter includes the number of CBR and/or LBT failures;
  • Step S102 Determine the contention window of the current LBT according to the CWS adopted by the current LBT, and perform the LBT operation within the contention window.
  • the reference parameter may include a channel busy ratio (Channel Busy Ratio, CBR for short), which is used to represent the busyness of the sub-channel in a recent period of time.
  • CBR Channel Busy Ratio
  • the value range of CBR may be 0 to 1, and the larger the value of CBR, the busier the corresponding subchannel.
  • a preset mapping relationship may exist between the CBR and the CWS set, wherein the CWS set includes at least one candidate CWS.
  • the value of the CBR may include a plurality of interval ranges, and the preset mapping relationship is a mapping relationship between each interval range of the CBR and each candidate CWS in the CWS set.
  • CBR range CWS 0-0.1 15 0.1-0.6 31 0.6-1.0 64
  • Table 1 includes two columns of elements, the first column is the value range of CBR (CBR range for short), and the second column is the CWS set.
  • CBR range for short
  • CWS set the value range of the CBR is divided into three intervals, wherein each interval corresponds to a candidate CWS.
  • the section division manner of the CBR in Table 1 and the specific value of each candidate CWS in the CWS set can be adjusted as required.
  • different LBT types may correspond to different mapping relationships between CBR and CWS; or, for the same LBT type, when corresponding to different CAPCs, they may also correspond to different mapping relationships between CBR and CWS.
  • cyclic prefix extensions Cyclic Prefix extensions, CPE for short
  • they may also correspond to different mapping relationships between CBR and CWS.
  • the above-mentioned preset mapping relationship may be stored locally at the receiving end, and retrieved and obtained when step S101 is performed.
  • the preset mapping relationship may be preset through a protocol, and fixed in the memory of the receiving end when the receiving end leaves the factory.
  • the preset mapping relationship may be configured through high-level signaling, and the high-level signaling may at least include: radio resource control (Radio Resource Control, RRC for short) signaling; using vehicle to outside information exchange (vehicle to everything, The RRC (PC5 RRC) signaling transmitted by the interface for direct end-to-end (Device to Device, D2D) direct communication between UEs of the V2X) service; the Media Access Control-Control Element (Media Access Control-Control Element, MAC-CE for short); MAC-CE using PC5 interface (PC5 MAC-CE).
  • radio resource control Radio Resource Control
  • RRC Radio Resource Control
  • the step S101 may include the step of: determining the CWS used by the LBT this time according to the preset mapping relationship between the CBR and the CWS set.
  • the CBR may be measured by the receiving end.
  • the CBR may also be measured by the sender and sent to the receiver through the secondary link.
  • the reference parameter may include the number of LBT failures, which may also represent the busyness of the subchannel in a recent period of time. For example, the results of the most recent LBT execution are counted, and if the LBT is not successful after the maximum attempt time, it is recorded as an LBT failure. For another example, if the LBT attempt time exceeds the maximum transmission delay of the data packet to be transmitted, it is recorded as an LBT failure. Therefore, the number of LBT failures so far in data transmission through the secondary link is used to judge the busyness of the sub-channel.
  • the busier the corresponding sub-channel Specifically, the larger the value of the number of LBT failures, the busier the corresponding sub-channel.
  • the value of the number of LBT failures may include multiple ranges, and the preset mapping relationship is a mapping relationship between each range of the number of LBT failures and each candidate CWS in the CWS set.
  • next level refers to selecting a candidate CWS whose value is greater than the smallest CWS currently used in the CWS set.
  • the above-mentioned preset mapping relationship may be stored locally at the receiving end, and retrieved and obtained when step S101 is performed.
  • the preset mapping relationship may be preset through a protocol, and fixed in the memory of the receiving end when the receiving end leaves the factory.
  • the preset mapping relationship may be configured through high-level signaling, and the high-level signaling may at least include: RRC signaling; PC5 RRC signaling; MAC-CE; PC5 MAC-CE.
  • the step S101 may include the step of: determining the CWS used in the current LBT according to the preset mapping relationship between the number of LBT failures and the CWS set.
  • the number of LBT failures may be obtained by statistics of the sender.
  • the number of LBT failures may be the number of LBT failures within a preset time window. That is, a time window is added for the statistics of the number of LBT failures, and the number of LBT failures in this time window is counted as the basis for determining the CWS.
  • the preset mapping relationship may be the corresponding relationship between the two reference parameters of CBR and the number of LBT failures and the CWS set. That is, a column is added in Table 1 to divide the number of LBT failures by segment and configure the corresponding CWS.
  • the corresponding CWS is 15.
  • the reference parameter may be measured by the receiver itself.
  • the step S101 may include the step of: receiving indication information, wherein the indication information is selected from: downlink control information (Downlink Control Information, referred to as DCI), sidelink control information (Sidelink Control Information, referred to as short) SCI), RRC signaling, PC5 RRC signaling, MAC-CE and PC5 MAC-CE; determine the CWS used in this LBT according to the indication information.
  • DCI Downlink Control Information
  • SCI Sidelink Control Information
  • RRC signaling PC5 RRC signaling
  • MAC-CE MAC-CE
  • PC5 MAC-CE PC5 MAC-CE
  • the indication information may be sent by the opposite end (ie, the base station or the transmitting end) connected by the secondary link.
  • the opposite end executes the method described in the above specific implementation to determine the CWS used in the current LBT according to the reference parameters, and then generates the indication information based on the CWS used in the current LBT and sends it to the receiving end.
  • the opposite end may execute other methods to determine the CWS adopted by the LBT this time, which is not limited in this embodiment.
  • the step S102 may include the step of: randomly selecting the contention window of the current LBT from the contention window selection interval, wherein the upper limit of the contention window selection interval is the CWS used in the LBT this time.
  • the contention window selection interval is [0, the CWS used in this LBT determined in step S101], and when step S102 is performed, a value is randomly selected from the contention window selection interval as the duration of the contention window of this LBT.
  • the LBT may include multiple priorities, and LBTs with different priorities correspond to different CWS sets.
  • Channel Access Type 4 Channel Access Type 4, CAT4 for short
  • LBTs with different priorities can correspond to different CWS sets.
  • the selected CWS value when determining the CWS used in this LBT according to the reference parameters, may be applicable to the four priorities of CAT4 at the same time.
  • this embodiment adjusts the CWS based on other reference parameters (such as CBR, LBT failure times), so that the CWS in the LBT process can still be reasonably adjusted when the secondary link transmission scenario without HARQ feedback is combined with the LBT.
  • the busyness of the channel during the transmission of the secondary link is measured by the number of CBR, LBT failures, or a combination of the two, so as to reasonably determine the duration of the contention window during the next LBT.
  • FIG. 2 is a schematic structural diagram of an apparatus for determining a CWS of a secondary link according to an embodiment of the present invention.
  • the apparatus 2 for determining the CWS of the secondary link in this embodiment may be used to implement the method and technical solution described in the embodiment shown in FIG. 1 above.
  • the secondary link is transmitted on an unlicensed spectrum.
  • the apparatus 2 for determining the CWS of the secondary link in this embodiment may include: a first determining module 21, configured to determine the CWS adopted by the LBT this time, wherein the reference parameters include CBR and/or LBT The number of failures, the CWS used in this LBT is determined according to reference parameters; the second determination module 22 is used to determine the contention window of this LBT according to the CWS used in this LBT, and within the contention window Perform LBT operations.
  • the CWS determining apparatus 2 of the above-mentioned auxiliary link may correspond to a processing chip with LBT function in the user equipment; or a chip with a data processing function, such as a baseband chip; or a processing chip included in the user equipment
  • the chip module or corresponding to a chip module with a data processing function chip, or corresponding to user equipment.
  • each module/unit included in each device and product described in the above embodiments it may be a software module/unit, a hardware module/unit, or a part of a software module/unit, a part of which is a software module/unit. is a hardware module/unit.
  • each module/unit included therein may be implemented by hardware such as circuits, or at least some of the modules/units may be implemented by a software program.
  • Running on the processor integrated inside the chip the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the chip module, the modules/units contained therein can be They are all implemented by hardware such as circuits, and different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components, or at least some of the modules/units can be implemented by software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the terminal, each module contained in it
  • the units/units may all be implemented in hardware such as circuits, and different modules/units may be located in the same component (eg, chip, circuit module, etc.) or in different components in the terminal, or at least some of the modules/units may be implemented by software programs Realization, the software program runs on the processor integrated inside the terminal, and the remaining (if any) part of the modules/units can be implemented in hardware such as circuits.
  • An embodiment of the present invention further provides a computer-readable storage medium, where the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, on which a computer program is stored, and the computer program is executed by a processor At runtime, the steps of the method for determining the CWS of the secondary link provided by any of the foregoing embodiments are executed.
  • An embodiment of the present invention further provides another apparatus for determining the CWS of a secondary link, including a memory and a processor, where the memory stores a computer program that can run on the processor, and the processor runs the computer During the program, the steps of the method for determining the CWS of the secondary link provided by the above-mentioned embodiment corresponding to FIG. 1 are executed.
  • the technical solution of the present invention can be applied to 5G (5 generation) communication systems, 4G and 3G communication systems, and various communication systems that will evolve later, such as 6G and 7G.
  • the technical solution of the present invention is also applicable to different network architectures, including but not limited to relay network architectures, dual-link architectures, and Vehicle-to-Everything (vehicle-to-anything communication) architectures.
  • the 5G CN described in the embodiments of this application may also be referred to as a new core network (new core), or 5G New Core, or a next generation core network (next generation core, NGC), or the like.
  • 5G-CN is set up independently of an existing core network, such as an evolved packet core (EPC).
  • EPC evolved packet core
  • a base station (base station, BS) in the embodiments of the present application is a device deployed in a wireless access network to provide a wireless communication function.
  • the devices that provide base station functions in 2G networks include base transceiver stations (English: base transceiver station, referred to as: BTS) and base station controllers (base station controllers, BSC), and the devices that provide base station functions in 3G networks include Node B ( NodeB) and radio network controller (RNC), the equipment that provides base station function in 4G network includes evolved NodeB (evolved NodeB, eNB), in wireless local area networks (WLAN),
  • the equipment that provides base station functions is an access point (AP), and the equipment that provides base station functions in 5G New Radio (NR) includes the evolving Node B (gNB), as well as those provided in future new communication systems.
  • the terminal in the embodiments of this application may refer to various forms of user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station (mobile station, MS), remote station, remote terminal, Mobile equipment, user terminal, terminal equipment, wireless communication equipment, user agent or user equipment.
  • user equipment user equipment
  • MS mobile station
  • remote station remote terminal
  • Mobile equipment user terminal
  • terminal equipment wireless communication equipment
  • user agent user equipment
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or future evolved Public Land Mobile Networks (PLMN)
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a terminal device, etc. is not limited in this embodiment of the present application.
  • the embodiment of the present application defines the unidirectional communication link from the access network to the terminal as the downlink, the data transmitted on the downlink is the downlink data, and the transmission direction of the downlink data is called the downlink direction;
  • the unidirectional communication link is the uplink, the data transmitted on the uplink is the uplink data, and the transmission direction of the uplink data is called the uplink direction.
  • connection in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in the embodiments of the present application.
  • Network and "system” appearing in the embodiments of this application express the same concept, and a communication system is a communication network.
  • the processor may be a central processing unit (central processing unit, CPU for short), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP for short) , application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like containing one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed method, apparatus and system may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included individually, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated units implemented in the form of software functional units can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, and includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute some steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or CD, etc. that can store program codes medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种辅链路的CWS确定方法及装置、计算机可读存储介质,所述辅链路在非授权频谱上传输,所述方法包括:确定本次LBT采用的CWS,其中,所述本次LBT采用的CWS是根据参考参数确定的,所述参考参数包括CBR和/或LBT失败次数;根据所述本次LBT采用的CWS确定本次LBT的竞争窗,并在所述竞争窗内执行LBT操作。通过本发明方案能够在辅链路与LBT相结合时合理调整LBT流程中的CWS。

Description

辅链路的CWS确定方法及装置、计算机可读存储介质 技术领域
本发明涉及通信技术领域,具体地涉及一种辅链路的CWS确定方法及装置、计算机可读存储介质。
背景技术
现有辅链路(Sidelink)的传输无论是***移动通信技术(The Fourth-Generation mobile communications,简称4G)还是5G都仍工作在授权频谱上。未来协议会将辅链路传输扩展到未授权频谱(即非授权频谱)上,而非授权频谱的一个显著特征就是会采用先听后说(Listen Before Talk,简称LBT)的数据传输策略。
终端在竞争窗(Contention Window,简称CW)内进行LBT监听,且在使用非授权频谱进行数据传输期间,竞争窗是可调的。竞争窗大小(Contention Window Size,简称CWS)是调整竞争窗的重要参数,通过调整CWS可以达到调整竞争窗的效果。目前授权频谱辅助接入(Licensed-Assisted Access,简称LAA)以及工作于免许可频段的空中接口(New Radio in Unlicensed Spectrum,简称NR-U)针对CWS的调整无论是上行(Uplink,简称UL)还是下行(Downlink,简称DL),都是根据参考时间窗内反馈的混合自动重传请求确认(Hybrid Automatic Repeat request ACKnowledgement,简称HARQ-ACK)来进行调整。
但是,辅链路在某些配置情况下可能出现不需要HARQ-ACK反馈的场景,此时如何调整CWS就是一个问题。
综上,现有技术无法在辅链路与LBT相结合时合理调整LBT流程中的CWS。
发明内容
本发明解决的技术问题是如何在辅链路与LBT相结合时合理调整LBT流程中的CWS。
为解决上述技术问题,本发明实施例提供一种辅链路的CWS确定方法,所述辅链路在非授权频谱上传输,所述方法包括:确定本次LBT采用的CWS,其中,所述本次LBT采用的CWS是根据参考参数确定的,所述参考参数包括CBR和/或LBT失败次数;根据所述本次LBT采用的CWS确定本次LBT的竞争窗,并在所述竞争窗内执行LBT操作。
可选的,所述确定本次LBT采用的CWS包括:根据参考参数与CWS集合的预设映射关系,确定本次LBT采用的CWS,其中,所述CWS集合包括至少一个候选的CWS。
可选的,所述参考参数与CWS集合的预设映射关系通过协议预先设定,或者获取自高层信令。
可选的,所述参考参数的数值包括多个区间范围,所述预设映射关系为所述参考参数的各区间范围与CWS集合中各候选的CWS之间的映射关系。
可选的,所述参考参数用于表征所述非授权频谱上的信道繁忙程度,信道越繁忙,对应的所述CWS的数值越大。
可选的,不同优先级的LBT对应不同的CWS集合。
可选的,所述确定本次LBT采用的CWS包括:接收指示信息,其中,所述指示信息 选自:DCI、SCI、RRC信令、PC5 RRC信令、MAC-CE以及PC5 MAC-CE;根据所述指示信息确定本次LBT采用的CWS。
可选的,所述CBR是由所述辅链路连接的接收端或发送端测量得到的。
可选的,所述LBT失败次数是预设时间窗内的LBT失败次数。
可选的,所述根据所述本次LBT采用的CWS确定本次LBT的竞争窗包括:从竞争窗选取区间内随机选择得到本次LBT的竞争窗,其中,所述竞争窗选取区间的上限为所述本次LBT采用的CWS。
为解决上述技术问题,本发明实施例还提供一种辅链路的CWS确定装置,所述辅链路在非授权频谱上传输,所述装置包括:第一确定模块,用于确定本次LBT采用的CWS,其中,所述本次LBT采用的CWS是根据参考参数确定的,所述参考参数包括CBR和/或LBT失败次数;第二确定模块,用于根据所述本次LBT采用的CWS确定本次LBT的竞争窗,并在所述竞争窗内执行LBT操作。
为解决上述技术问题,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述方法的步骤。
为解决上述技术问题,本发明实施例还提供一种辅链路的CWS确定装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例提供一种辅链路的CWS确定方法,所述辅链路在非授权频谱上传输,所述方法包括:确定本次LBT采用的CWS,其中,所述本次LBT采用的CWS是根据参考参数确定的,所述参考参数包括CBR和/或LBT失败次数;根据所述本次LBT采用的CWS确定本次LBT的竞争窗,并在所述竞争窗内执行LBT操作。
较之现有基于HARQ反馈信息调整CWS的技术方案,本实施方案基于其他的参考参数(如CBR、LBT失败次数)调整CWS,使得未配置HARQ反馈的辅链路传输场景与LBT相结合时仍能合理调整LBT流程中的CWS。具体而言,以CBR、LBT失败次数或两者结合的方式衡量辅链路传输时信道的繁忙程度,进而合理确定接下来LBT时竞争窗的时长。
进一步,根据参考参数与CWS集合的预设映射关系,确定本次LBT采用的CWS,其中,所述CWS集合包括至少一个候选的CWS。例如,参考参数在数值上的不同区间范围对应CWS集合中不同的CWS候选值。由此,能够根据当前获取的参考参数的具体数值快速确定对应的CWS。
附图说明
图1是本发明实施例一种辅链路的CWS确定方法的流程图;
图2是本发明实施例一种辅链路的CWS确定装置的结构示意图。
具体实施方式
如背景技术所言,现有技术无法在辅链路与LBT相结合时合理调整LBT流程中的CWS。
为解决上述技术问题,本发明实施例提供一种辅链路的CWS确定方法,所述辅链路在非授权频谱上传输,所述方法包括:确定本次LBT采用的CWS,其中,所述本次LBT采用的CWS是根据参考参数确定的,所述参考参数包括CBR和/或LBT失败次数;根据所述本次LBT采用的CWS确定本次LBT的竞争窗,并在所述竞争窗内执行LBT操作。
本实施方案基于其他的参考参数(如CBR、LBT失败次数)调整CWS,使得未配置HARQ反馈的辅链路传输场景与LBT相结合时仍能合理调整LBT流程中的CWS。具体而言,以CBR、LBT失败次数或两者结合的方式衡量辅链路传输时信道的繁忙程度,进而合理确定接下来LBT时竞争窗的时长。
本实施方案适用的LBT类型可以包括但不限于:类型2A的信道接入类型(Channel Access Type,简称CAT2 Type 2A);类型2B的信道接入类型(简称CAT2 Type 2B);类型2C的信道接入类型(简称CAT2 Type 2C);类型1的信道接入类型(简称CAT4 Type 1)。其中,CAT2 Type 2A/CAT2 Type 2B/CAT2 Type 2C/CAT4 Type 1都可以各自包含1到4的信道接入优先级等级(Channel Access Priority Class,简称CAPC)。关于各种LBT类型的具体内容,可以参考现有协议37.213中的相关描述,在此不与赘述。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明实施例一种辅链路的CWS确定方法的流程图。
具体地,所述辅链路可以连接发送端(Transmitter,简称Tx)和接收端(Receiver,简称Rx)。或者,所述辅链路还可以连接基站(gNB),所述基站通过发送端向接收端发送信息。
本实施方案可以由所述发送端执行,所述发送端可以为用户设备(User Equipment,简称UE)。具体而言,本实施方案可以由用户设备中的具有LBT功能的芯片执行,也可以由用户设备中的基带芯片执行。
进一步,所述辅链路在非授权频谱上传输。相应的,为了在所述非授权频谱上传输数据,发送端需要执行LBT流程。
参考图1,本实施例所述辅链路的CWS确定方法可以包括如下步骤:
步骤S101,确定本次LBT采用的CWS,其中,所述本次LBT采用的CWS是根据参考参数确定的,所述参考参数包括CBR和/或LBT失败次数;
步骤S102,根据所述本次LBT采用的CWS确定本次LBT的竞争窗,并在所述竞争窗内执行LBT操作。
在一个具体实施中,所述参考参数可以包括信道繁忙比例(Channel Busy Ratio,简称CBR),用于表征最近一段时间内子信道的繁忙程度。
具体地,CBR的取值范围可以为0到1,CBR的数值越大,相应的子信道越繁忙。
进一步,CBR与CWS集合可以存在预设映射关系,其中,所述CWS集合包括至少一个候选的CWS。
进一步,所述CBR的数值可以包括多个区间范围,所述预设映射关系为所述CBR的各区间范围与CWS集合中各候选的CWS之间的映射关系。
表1
CBR范围 CWS
0-0.1 15
0.1-0.6 31
0.6-1.0 64
例如,参考表1,表1包含两列元素,第一列为CBR的取值范围(简称CBR范围),第二列为CWS集合。表1中,将CBR的取值范围划分为3个区间段,其中每一区间段对应一个候选的CWS。在实际应用中,可以根据需要调整表1中CBR的区段划分方式,以及CWS集合中各候选的CWS的具体数值。
进一步,不同的LBT类型可以对应着不同的CBR与CWS的映射关系;或者,对于同一种LBT类型,对应不同CAPC时也可以对应着不同的CBR与CWS的映射关系。又或者,对于同一种LBT类型同一种CAPC,对应不同循环前缀扩展(Cyclic Prefix extension,简称CPE)时也可以对应着不同的CBR与CWS的映射关系。
进一步,上述预设映射关系可以存储于接收端的本地,并在执行步骤S101时调取获得。例如,所述预设映射关系可以通过协议预先设定,并在接收端出厂时固设于接收端的存储器中。又例如,预设映射关系可以通过高层信令进行配置,所述高层信令至少可以包括:无线资源控制(Radio Resource Control,简称RRC)信令;使用车对外界的信息交换(vehicle to everything,简称V2X)业务的UE之间用户面进行端到端(Device to Device,简称D2D)直接通信的接口传输的RRC(PC5 RRC)信令;媒体访问控制层控制单元(Media Access Control-Control Element,简称MAC-CE);使用PC5接口的MAC-CE(PC5 MAC-CE)。
相应的,所述步骤S101可以包括步骤:根据CBR与CWS集合的预设映射关系,确定本次LBT采用的CWS。
进一步,所述CBR可以是由所述接收端测量得到的。或者,所述CBR也可以是由发送端测量得到后通过辅链路发送给接收端的。
在一个具体实施中,所述参考参数可以包括LBT失败次数,其同样可以表征最近一段时间内子信道的繁忙程度。例如,统计最近执行LBT的结果,若超过最大尝试时间仍未LBT成功,则记作一次LBT失败。又例如,LBT尝试时间超过待传数据包的最大传输时延,则记作一次LBT失败。由此,通过辅链路传输数据至今的LBT失败次数,以判断子信道的繁忙程度。
具体地,LBT失败次数的数值越大,相应的子信道越繁忙。
进一步,LBT失败次数与CWS集合可以存在预设映射关系。
进一步,所述LBT失败次数的数值可以包括多个区间范围,所述预设映射关系为所述LBT失败次数的各区间范围与CWS集合中各候选的CWS之间的映射关系。
也就是说,LBT失败次数达到一定阈值的时候才会触发CWS增加到下一个等级,所述下一个等级是指选取CWS集合中数值大于当前所采用CWS的最小的一个候选的CWS。
进一步,上述预设映射关系可以存储于接收端的本地,并在执行步骤S101时调取获得。例如,所述预设映射关系可以通过协议预先设定,并在接收端出厂时固设于接收端的存储器中。又例如,预设映射关系可以通过高层信令进行配置,所述高层信令至少可以包括:RRC信令;PC5 RRC信令;MAC-CE;PC5 MAC-CE。
相应的,所述步骤S101可以包括步骤:根据LBT失败次数与CWS集合的预设映射关系,确定本次LBT采用的CWS。
进一步,所述LBT失败次数可以是由所述发送端统计得到的。
在一个变化例中,所述LBT失败次数可以是预设时间窗内的LBT失败次数。也即,针对LBT失败次数的统计增设时间窗,统计该时间窗的LBT失败次数作为确定CWS的基础。
在一个具体实施中,所述预设映射关系可以为CBR和LBT失败次数这两个参考参数,与CWS集合之间的对应关系。也即,表1中增加一列,将LBT失败次数也按区段划分并配置对应的CWS。
例如,CBR范围为0-0.1且LBT失败次数为2次时,对应的CWS为15。
在一个具体实施中,所述参考参数可以是由接收端自行测量得到的。
在一个变化例中,所述步骤S101可以包括步骤:接收指示信息,其中,所述指示信息选自:下行控制信息(Downlink Control Information,简称DCI)、辅链路控制信息(Sidelink Control Information,简称SCI)、RRC信令、PC5 RRC信令、MAC-CE以及PC5 MAC-CE;根据所述指示信息确定本次LBT采用的CWS。
具体地,所述指示信息可以由辅链路连接的对端(即基站或者发送端)发送。
例如,对端执行上述具体实施所述的方法,以根据参考参数确定本次LBT采用的CWS,然后基于所述本次LBT采用的CWS生成所述指示信息并发送至接收端。
又例如,对端可以执行其他方法确定本次LBT采用的CWS,本实施方案对此不做限制。
在一个具体实施中,所述步骤S102可以包括步骤:从竞争窗选取区间内随机选择得到本次LBT的竞争窗,其中,所述竞争窗选取区间的上限为所述本次LBT采用的CWS。
例如,竞争窗选取区间为[0,步骤S101确定的本次LBT采用的CWS],在执行步骤S102时,从该竞争窗选取区间内随机选取一数值作为本次LBT的竞争窗的时长。
在一个具体实施中,LBT可以包括多个优先级,不同优先级的LBT对应不同的CWS集合。例如,信道接入类型4(Channel Access Type 4,简称CAT4)定义了4种优先级的LBT,相应的,各优先级的LBT可以对应不同的CWS集合。
可选的,在本具体实施中,在根据参考参数确定本次LBT采用的CWS时,所选择的CWS数值可以同时适用于CAT4的4种优先级。
由上,本实施方案基于其他的参考参数(如CBR、LBT失败次数)调整CWS,使得未配置HARQ反馈的辅链路传输场景与LBT相结合时仍能合理调整LBT流程中的CWS。具体而言,以CBR、LBT失败次数或两者结合的方式衡量辅链路传输时信道的繁忙程度,进而合理确定接下来LBT时竞争窗的时长。
图2是本发明实施例一种辅链路的CWS确定装置的结构示意图。本领域技术人员理解,本实施例所述辅链路的CWS确定装置2可以用于实施上述图1所述实施例中所述的方法技术方案。
具体地,所述辅链路在非授权频谱上传输。
进一步,参考图2,本实施例所述辅链路的CWS确定装置2可以包括:第一确定模块21,用于确定本次LBT采用的CWS,其中,所述参考参数包括CBR和/或LBT失败次数,所述本次LBT采用的CWS是根据参考参数确定的;第二确定模块22,用于根据所述本次LBT采用的CWS确定本次LBT的竞争窗,并在所述竞争窗内执行LBT操作。
关于所述辅链路的CWS确定装置2的工作原理、工作方式的更多内容,可以参照上述图1中的相关描述,这里不再赘述。
在具体实施中,上述辅链路的CWS确定装置2可以对应于用户设备中具有LBT功能的处理芯片;或者对应于具有数据处理功能的芯片,如基带芯片;或者对应于用户设备中包括处理芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于用户设备。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述任一实施例提供的辅链路的CWS确定方法的步骤。
本发明实施例还提供了另一种辅链路的CWS确定装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图1对应实施例所提供的辅链路的CWS确定方法的步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指示相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质 可以包括:ROM、RAM、磁盘或光盘等。
本方明技术方案可适用于5G(5 generation)通信***,还可适用于4G、3G通信***,还可适用于后续演进的各种通信***,例如6G、7G等。
本方明技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构,Vehicle-to-Everything(车辆到任何物体的通信)架构。
本申请实施例中所述的5G CN也可以称为新型核心网(new core)、或者5G New Core、或者下一代核心网(next generation core,NGC)等。5G-CN独立于现有的核心网,例如演进型分组核心网(evolved packet core,EPC)而设置。
本申请实施例中的基站(base station,BS),也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(英文:base transceiver station,简称:BTS)和基站控制器(base station controller,BSC),3G网络中提供基站功能的设备包括节点B(NodeB)和无线网络控制器(radio network controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,WLAN)中,提供基站功能的设备为接入点(access point,AP),5G新无线(New Radio,NR)中的提供基站功能的设备包括继续演进的节点B(gNB),以及未来新的通信***中提供基站功能的设备等。
本申请实施例中的终端可以指各种形式的用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、终端设备(terminal equipment)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例定义接入网到终端的单向通信链路为下行链路,在下行链路上传输的数据为下行数据,下行数据的传输方向称为下行方向;而终端到接入网的单向通信链路为上行链路,在上行链路上传输的数据为上行数据,上行数据的传输方向称为上行方向。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“网络”与“***”表达的是同一概念,通信***即为通信网 络。
应理解,本申请实施例中,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和***,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (24)

  1. 一种辅链路的CWS确定方法,其特征在于,所述辅链路在非授权频谱上传输,所述方法包括:
    确定本次LBT采用的CWS,其中,所述本次LBT采用的CWS是根据参考参数确定的,所述参考参数包括CBR和/或LBT失败次数;
    根据所述本次LBT采用的CWS确定本次LBT的竞争窗,并在所述竞争窗内执行LBT操作。
  2. 根据权利要求1所述方法,其特征在于,所述确定本次LBT采用的CWS包括:
    根据参考参数与CWS集合的预设映射关系,确定本次LBT采用的CWS,其中,所述CWS集合包括至少一个候选的CWS。
  3. 根据权利要求2所述方法,其特征在于,所述参考参数与CWS集合的预设映射关系通过协议预先设定,或者获取自高层信令。
  4. 根据权利要求2所述方法,其特征在于,所述参考参数的数值包括多个区间范围,所述预设映射关系为所述参考参数的各区间范围与CWS集合中各候选的CWS之间的映射关系。
  5. 根据权利要求2所述方法,其特征在于,所述参考参数用于表征所述非授权频谱上的信道繁忙程度,信道越繁忙,对应的所述CWS的数值越大。
  6. 根据权利要求2所述方法,其特征在于,不同优先级的LBT对应不同的CWS集合。
  7. 根据权利要求1所述方法,其特征在于,所述确定本次LBT采用的CWS包括:
    接收指示信息,其中,所述指示信息选自:DCI、SCI、RRC信令、PC5 RRC信令、MAC-CE以及PC5 MAC-CE;
    根据所述指示信息确定本次LBT采用的CWS。
  8. 根据权利要求1所述方法,其特征在于,所述CBR是由所述辅链路连接的接收端或发送端测量得到的。
  9. 根据权利要求1所述方法,其特征在于,所述LBT失败次数是预设时间窗内的LBT失败次数。
  10. 根据权利要求1所述方法,其特征在于,所述根据所述本次LBT采用的CWS确定本次LBT的竞争窗包括:
    从竞争窗选取区间内随机选择得到本次LBT的竞争窗,其中,所述竞争窗选取区间的上限为所述本次LBT采用的CWS。
  11. 一种辅链路的CWS确定装置,其特征在于,所述辅链路在非授权频谱上传输,所述装置包括:
    第一确定模块,用于确定本次LBT采用的CWS,其中,所述本次LBT采用的CWS是根据参考参数确定的,所述参考参数包括CBR和/或LBT失败次数;
    第二确定模块,用于根据所述本次LBT采用的CWS确定本次LBT的竞争窗,并在所述竞争窗内执行LBT操作。
  12. 根据权利要求11所述的装置,其特征在于,所述第一确定模块用于:
    根据参考参数与CWS集合的预设映射关系,确定本次LBT采用的CWS,其中,所述CWS集合包括至少一个候选的CWS。
  13. 根据权利要求12所述的装置,其特征在于,所述参考参数与CWS集合的预设映射关系通过协议预先设定,或者获取自高层信令。
  14. 根据权利要求12所述的装置,其特征在于,所述参考参数的数值包括多个区间范围,所述预设映射关系为所述参考参数的各区间范围与CWS集合中各候选的CWS之间的映射关系。
  15. 根据权利要求12所述的装置,其特征在于,所述参考参数用于表征所述非授权频谱上的信道繁忙程度,信道越繁忙,对应的所述CWS的数值越大。
  16. 根据权利要求12所述的装置,其特征在于,不同优先级的LBT对应不同的CWS集合。
  17. 根据权利要求11所述的装置,其特征在于,所述第一确定模块用于:
    接收指示信息,其中,所述指示信息选自:DCI、SCI、RRC信令、PC5 RRC信令、MAC-CE以及PC5 MAC-CE;
    根据所述指示信息确定本次LBT采用的CWS。
  18. 根据权利要求11所述的装置,其特征在于,所述CBR是由所述辅链路连接的接收端或发送端测量得到的。
  19. 根据权利要求11所述的装置,其特征在于,所述LBT失败次数是预设时间窗内的LBT失败次数。
  20. 根据权利要求11所述的装置,其特征在于,所述第二确定模块用于:
    从竞争窗选取区间内随机选择得到本次LBT的竞争窗,其中,所述竞争窗选取区间的上限为所述本次LBT采用的CWS。
  21. 一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1至10中任一项所述方法的步骤。
  22. 一种辅链路的CWS确定装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至10中任一项所述方法的步骤。
  23. 一种芯片,其特征在于,所述芯片包括处理器与接口,所述处理器和所述接口耦合;所述接口用于接收或输出信号,所述处理器用于执行代码指令,以使权利要求1至10中任一项所述的方法被执行。
  24. 一种模组设备,其特征在于,所述模组设备包括通信模组、电源模组、存储模组以及芯片模组,其中:
    所述电源模组用于为所述模组设备提供电能;
    所述存储模组用于存储数据和指令;
    所述通信模组用于进行模组设备内部通信,或者用于所述模组设备与外部设备进行通 信;
    所述芯片模组用于执行如权利要求1至10中任一项所述的方法。
PCT/CN2022/077085 2021-01-15 2022-02-21 辅链路的cws确定方法及装置、计算机可读存储介质 WO2022152331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110057768.2 2021-01-15
CN202110057768.2A CN114765899A (zh) 2021-01-15 2021-01-15 辅链路的cws确定方法及装置、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022152331A1 true WO2022152331A1 (zh) 2022-07-21

Family

ID=82365491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077085 WO2022152331A1 (zh) 2021-01-15 2022-02-21 辅链路的cws确定方法及装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN114765899A (zh)
WO (1) WO2022152331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124926A1 (en) * 2023-08-11 2024-06-20 Lenovo (Beijing) Limited Harq feedback associated with pssch transmission

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045136A1 (zh) * 2022-09-01 2024-03-07 深圳传音控股股份有限公司 处理方法、通信设备及存储介质
KR20240045113A (ko) * 2022-09-29 2024-04-05 현대자동차주식회사 비면허 대역의 사이드링크 통신에서 cw 크기의 조절 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852752A (zh) * 2015-07-16 2018-03-27 三星电子株式会社 用于在laa中竞争窗口的自适应控制的方法和装置
CN109565692A (zh) * 2016-05-13 2019-04-02 惠州Tcl移动通信有限公司 使用非授权频谱的上行传输方法、资源分配方法、用户设备及基站
US20200100284A1 (en) * 2018-09-24 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for contention window size adaptation of nr unlicensed
WO2020161332A1 (en) * 2019-02-08 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Transmission in unlicensed frequency spectrum
US20200359230A1 (en) * 2019-05-10 2020-11-12 Qualcomm Incorporated Methods and apparatuses for sharing a transmission opportunity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933765B (zh) * 2018-09-19 2021-09-21 维沃移动通信有限公司 竞争窗大小cws调节方法和设备
US11811540B2 (en) * 2018-09-21 2023-11-07 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for adjusting contention window size, and data transmission device
CN110800360B (zh) * 2019-09-27 2024-05-03 小米通讯技术有限公司 竞争窗长度调整方法及装置、通信设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852752A (zh) * 2015-07-16 2018-03-27 三星电子株式会社 用于在laa中竞争窗口的自适应控制的方法和装置
CN109565692A (zh) * 2016-05-13 2019-04-02 惠州Tcl移动通信有限公司 使用非授权频谱的上行传输方法、资源分配方法、用户设备及基站
US20200100284A1 (en) * 2018-09-24 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for contention window size adaptation of nr unlicensed
WO2020161332A1 (en) * 2019-02-08 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Transmission in unlicensed frequency spectrum
US20200359230A1 (en) * 2019-05-10 2020-11-12 Qualcomm Incorporated Methods and apparatuses for sharing a transmission opportunity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124926A1 (en) * 2023-08-11 2024-06-20 Lenovo (Beijing) Limited Harq feedback associated with pssch transmission

Also Published As

Publication number Publication date
CN114765899A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2022152331A1 (zh) 辅链路的cws确定方法及装置、计算机可读存储介质
EP3043501B1 (en) Method, user equipment, and base station for transmission of hybrid automatic repeat request-acknowledgement
US10931334B2 (en) Beam recovery method and apparatus
WO2022152329A1 (zh) 辅链路的psfch传输方法、装置及存储介质
US20220046720A1 (en) Random access method, terminal device and network device
TW202008834A (zh) 一種訊號傳輸方法及適用該方法的裝置、終端設備及網路設備
WO2015096377A1 (zh) 一种功率处理的方法及终端
US10819397B2 (en) Information transmission method and related device
US10827480B2 (en) Method for transmitting control information, user equipment, and network device
KR102647538B1 (ko) 무선 통신 방법, 단말기 디바이스 및 네트워크 디바이스
US20210168636A1 (en) Method for assessing radio link quality, parameter configuration method, apparatuses thereof and system
WO2020259662A1 (zh) 一种随机接入的方法及通信装置
US20240040594A1 (en) Method for Determining Sidelink Feedback Resource, Terminal, and Network Side Device
US20220353921A1 (en) Communication method and apparatus
WO2021087929A1 (zh) 一种随机接入的方法和装置
WO2021056702A1 (zh) 上行信号的发送和接收方法以及装置
WO2020186490A1 (zh) 信道检测机制的确定方法、装置、设备及存储介质
TW202014015A (zh) 傳輸訊息的方法和終端設備
WO2018201584A1 (zh) 基于竞争的传输方法和设备
WO2020030008A1 (zh) 一种传输信号的方法和装置
US10887827B2 (en) Communication message sending method and apparatus based on backoff duration
WO2020147049A1 (zh) 处理上行覆盖弱化的方法及装置、终端、网络设备
KR20160134527A (ko) 통신 네트워크에서 lbt에 기초한 통신 노드의 동작 방법
WO2022193972A1 (zh) 前导码发送方法及装置、计算机可读存储介质
WO2019242378A1 (zh) 确定信道接入类型的方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739206

Country of ref document: EP

Kind code of ref document: A1