WO2022151268A1 - 边链路发送,边链路接收方法及装置 - Google Patents

边链路发送,边链路接收方法及装置 Download PDF

Info

Publication number
WO2022151268A1
WO2022151268A1 PCT/CN2021/071923 CN2021071923W WO2022151268A1 WO 2022151268 A1 WO2022151268 A1 WO 2022151268A1 CN 2021071923 W CN2021071923 W CN 2021071923W WO 2022151268 A1 WO2022151268 A1 WO 2022151268A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resources
side link
drx
terminal device
Prior art date
Application number
PCT/CN2021/071923
Other languages
English (en)
French (fr)
Inventor
张健
纪鹏宇
李国荣
王昕�
Original Assignee
富士通株式会社
张健
纪鹏宇
李国荣
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 纪鹏宇, 李国荣, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2021/071923 priority Critical patent/WO2022151268A1/zh
Publication of WO2022151268A1 publication Critical patent/WO2022151268A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the embodiments of the present application relate to the field of communication technologies.
  • a sidelink is a direct link between a sending device and a receiving device, and the sending device can communicate directly with the receiving device through the sidelink.
  • the side link communications that have been standardized by 3GPP include D2D (Device to Device) and V2X (Vehicle to Everything).
  • side link communication will be extended to more device types, such as VR (Virtual Reality) devices, IoT (Internet of Things) devices, etc.
  • VR Virtual Reality
  • IoT Internet of Things
  • V2X Vehicle to Everything
  • P2X Pedestrian to Everything
  • V2X the sending device can communicate directly with the receiving device through a sidelink.
  • LTE Long Term Evolution
  • NR New Radio
  • V2X communication namely LTE V2X and NR V2X.
  • the side link control information (SCI, Sidelink Control Information) is carried by the Physical Sidelink Control Channel (PSCCH, Physical Sidelink Control Channel), and the side link data information is carried by the Physical Sidelink Shared Channel (PSSCH, Physical Sidelink Control Channel). Sidelink Shared Channel), and the sidelink feedback information (ACK/NACK) is carried by the Physical Sidelink Feedback Channel (PSFCH, Physical Sidelink Feedback Channel).
  • LTE V2X defines PSCCH and PSSCH.
  • NR V2X defines PSCCH, PSSCH and PSFCH.
  • V2X Vehicle to Everything
  • Sidelink Side link resources
  • the side link resources are allocated by network devices (such as base stations), and LTE V2X calls it Mode 3, and NR V2X calls it Mode 1;
  • the terminal device autonomously selects the transmission resources, that is, the transmission resources are obtained through sensing or detection, and the resource selection process, LTE V2X Call it Mode 4 and NR V2X call it Mode 2.
  • the transmitting device in the side link can autonomously select time-frequency resources for information transmission based on the sensing results.
  • the perception includes monitoring (monitor) SCI, measuring Reference Signal Received Power (RSRP, Reference Signal Received Power) and/or measuring Received Signal Strength Indicator (RSSI, Received Signal Strength Indicator), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • the prior art includes the following schemes: full sensing, partial sensing, and random selection.
  • full sensing the device senses in each subframe or time slot, which can effectively avoid interference, but continuous sensing means continuous power consumption, although this is not a problem for vehicle equipment in V2X, but for pedestrians in P2X Equipment, equipment power consumption is also an important factor to consider.
  • partial sensing the device does not need to sense in every subframe or time slot, but only needs to sense in part of the subframe or time slot, which is beneficial to reduce the power consumption of the device (power reduction).
  • the transmission equipment of pedestrians in P2X can greatly save power.
  • random selection the device can be completely silent.
  • Discontinuous Reception is an effective method to save power.
  • the receiving device does not need to continuously receive the physical downlink control channel (PDCCH), but only needs to receive the PDCCH during the activation time, and can choose to go to sleep at other times. Therefore, power consumption can be greatly reduced.
  • PDCCH physical downlink control channel
  • embodiments of the present application provide a side link sending and side link receiving method and apparatus.
  • a method for sending side links including:
  • the first terminal device determines a resource for transmitting side link data, the resource satisfies the following condition: the resource can be passed through the side link by the resource before the resource within the activation time related to the discontinuous reception of the second terminal device or by the resource control information indication;
  • the first terminal device sends sidelink data to the second terminal device based on the resource.
  • a side link receiving method including:
  • the second terminal device receives the side link data sent by the first terminal device based on the resource that satisfies the following condition; the condition is: the resource is within the activation time related to the discontinuous reception of the second terminal device or can be used before the resource
  • the resources are indicated by the side link control information;
  • the second terminal device starts or restarts a timer related to discontinuous reception based on the side link data.
  • an apparatus for sending a side link which is configured in a first terminal device and includes:
  • the resource satisfies the following condition: the resource can be passed through the side link by the resource before the resource within the activation time related to the discontinuous reception of the second terminal device or the resource link control information indication;
  • a sending unit configured to send side link data to the second terminal device based on the resource.
  • an apparatus for receiving a side link which is configured in a second terminal device and includes:
  • a receiving unit configured to receive the side link data sent by the first terminal device based on a resource that satisfies the following condition; the condition is: the resource is within the activation time related to the discontinuous reception of the second terminal device or can be used within the The resource before the resource is indicated by the side link control information;
  • a processing unit configured to start or restart a timer related to discontinuous reception based on the side link data.
  • a communication system including:
  • the first terminal device determines a resource for transmitting side link data, and the resource satisfies the following condition: the resource can be passed by a resource preceding the resource within the activation time associated with the discontinuous reception of the second terminal device or by a resource before the resource. link control information indication;
  • the first terminal device sends sidelink data to the second terminal device based on the resource.
  • One of the beneficial effects of the embodiments of the present application is: when determining the resources used for sending side link data, it can be ensured that the resources used for sending are within the activation time related to the discontinuous reception of the receiving device, or can be passed through by previous resources. Side link control information indication. As a result, side link transmissions that cannot be received by the receiving device can be avoided, thereby saving power, reducing congestion, and reducing interference to other devices.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a side link sending method according to an embodiment of the present application
  • Fig. 3 is the schematic diagram of SCI chain one of the embodiment of the present application.
  • 6A is a schematic diagram of activation time of an embodiment of the present application.
  • 6B is a schematic diagram of a Timer chain according to an embodiment of the present application.
  • FIG. 7A is a schematic diagram of activation time of an embodiment of the present application.
  • FIG. 7B is a schematic diagram of a Timer chain according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of M resources determined by a resource selection process according to an embodiment of the present application.
  • 9A and 9B are a schematic diagram of resource preemption according to an embodiment of the present application.
  • 9C to 9F are schematic diagrams of M resources determined by the resource reselection process according to the embodiment of the present application.
  • 10A and 10B are schematic diagrams of M resources determined by the resource reselection process according to the embodiment of the present application.
  • FIG. 11 is a schematic diagram of M resources determined by the resource reselection process according to the embodiment of the present application.
  • FIG. 12 is a schematic diagram of a resource selection/reselection process method according to an embodiment of the present application.
  • FIG. 13 to 15 are schematic diagrams of M resources determined by the resource discarding process according to the embodiment of the present application.
  • 16 is a schematic diagram of a side link receiving method according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a side link sending apparatus according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a side link receiving apparatus according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelation, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of stated features, elements, elements or components, but do not preclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access) and so on.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to communication protocols at any stage, for example, including but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G , New Radio (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network devices may include but are not limited to the following devices: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobility management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (eg femeto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node eg femeto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” (UE, User Equipment) or “Terminal Equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • a terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the terminal device may include but is not limited to the following devices: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer Cordless phones, smartphones, smart watches, digital cameras, and more.
  • the terminal device may also be a machine or device that performs monitoring or measurement, such as but not limited to: Machine Type Communication (MTC, Machine Type Communication) terminals, In-vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station, and may also include one or more network devices as described above.
  • user side or “terminal side” or “terminal device side” refers to the side of a user or terminal, which may be a certain UE, or may include one or more terminal devices as above.
  • equipment may refer to network equipment or terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application, which schematically illustrates the case of a terminal device and a network device as an example.
  • a communication system 100 may include a network device 101 and terminal devices 102 and 103 .
  • FIG. 1 only takes two terminal devices and one network device as an example for description, but the embodiment of the present application is not limited to this.
  • Enhanced Mobile Broadband eMBB, enhanced Mobile Broadband
  • Massive Machine Type Communication mMTC, massive Machine Type Communication
  • Ultra-Reliable and Low Latency Communication URLLC, Ultra-Reliable and Low.
  • -Latency Communication etc.
  • FIG. 1 shows that both terminal devices 102 and 103 are within the coverage of the network device 101, but the present application is not limited to this. Both end devices 102, 103 may be outside the coverage of the network device 101, or one end device 102 may be within the coverage of the network device 101 and the other end device 103 may be outside the coverage of the network device 101.
  • side link transmission may be performed between the two terminal devices 102 and 103 .
  • the two terminal devices 102 and 103 can both perform side link transmission within the coverage of the network device 101 to implement V2X communication, or both can perform side link transmission outside the coverage of the network device 101 to implement V2X
  • one terminal device 102 is within the coverage of the network device 101 and another terminal device 103 is outside the coverage of the network device 101 to perform side link transmission to implement V2X communication.
  • the terminal devices 102 and/or 103 may autonomously select side link resources (ie, adopt Mode2), and in this case, the side link transmission may be independent of the network device 101, that is, the network device 101 is optional .
  • the embodiment of the present application may also combine the autonomous selection of side link resources (that is, using Mode 2) and the allocation of side link resources by the network device (that is, using Mode 1); the embodiment of the present application does not limit this.
  • a terminal device can obtain side link transmission resources through a process of sensing detection + resource selection, wherein the occupancy of resources in the resource pool can be obtained through sensing. For example, the terminal device can estimate the resource occupancy in a later period of time (called a selection window) according to the resource occupancy in a previous period of time (called a perception window).
  • a selection window the resource occupancy in a later period of time
  • a perception window the resource occupancy in a previous period of time
  • the NR V2X standard supports pre-emption and re-evaluation. After resource selection, the selected resources can be re-confirmed. When the selected resources are no longer suitable for transmission, resource reselection is triggered, so that the selection is more appropriate resources to send. Preemption applies to resources that have been reserved, if it is found that it no longer belongs to the candidate resource set and meets the preemption priority condition (the sending priority is lower than the priority of the preemptive service, or the sending priority is lower than the priority of the preemptive service) , and the priority of preempting services is higher than a certain threshold), then resource reselection is triggered. Re-evaluation is applied to unreserved resources, and if it is found that it no longer belongs to the candidate resource set, resource reselection is triggered.
  • the NR V2X standard supports discarding a transmission. Discards can be due to priority comparison, according to priority rules (eg Section 16.2.4 of TS 38.213V16.4.0, Section 5.4.2.2 of TS 36.321, Section 5.4.2.2 of TS 38.321V16.3.0), low priority transmissions will be discarded. Discarding may or may not trigger resource reselection. Drops can also be caused by congestion. When the channel occupancy rate of the device is too high, the device can discard a certain transmission.
  • priority rules eg Section 16.2.4 of TS 38.213V16.4.0, Section 5.4.2.2 of TS 36.321, Section 5.4.2.2 of TS 38.321V16.3.0
  • the side link is described by taking V2X as an example, but the present application is not limited to this, and can also be applied to a side link transmission scenario other than V2X.
  • the terms “side link” and “V2X” are interchangeable, the terms “PSFCH” and “side link feedback channel” are interchangeable, and the terms “PSCCH” and “ “Sidelink Control Channel” or “Sidelink Control Information” are interchangeable, as are the terms “PSSCH” and “Sidelink Data Channel” or “Sidelink Data”.
  • transmitting or receiving PSCCH can be understood as sending or receiving side link control information carried by PSCCH; sending or receiving PSSCH can be understood as sending or receiving side link data carried by PSSCH; sending or receiving PSFCH can be understood as sending or receiving side link feedback information carried by PSFCH.
  • Sidelink transmission also called sidelink transmission
  • PSCCH/PSSCH transmission or sidelink data/information transmission can be understood as PSCCH/PSSCH transmission or sidelink data/information transmission.
  • an NR terminal device autonomously selects side link resources, it needs to ensure that the number of selected resources is equal to the target number of resources N.
  • the resources that are preferentially selected can be indicated by the resources before the resource through the side link control information. If When N resources cannot be selected, the resource that cannot be indicated by the resource preceding the resource through the side link control information can also be selected.
  • the existing resource selection method does not consider the DRX configuration of the receiving device. The resource is not within the activation time related to the DRX of the receiving device, so it cannot be received by the receiving device, which will lead to increased power consumption, increased interference to other devices, and increased congestion.
  • Sending side link data on the resource also means that the sending device needs to sense before, and this part of the sense will also increase power consumption.
  • an embodiment of the present application proposes a side link sending method.
  • the DRX configuration of the receiving device is also considered, that is, it can ensure that the resources used for sending side link data are also considered.
  • the resource is within the active time related to the discontinuous reception of the receiving device, or can be indicated by the previous resource through the side link control information.
  • An embodiment of the present application provides a method for discontinuous reception of a side link, which is described from a first terminal device.
  • the first terminal device may send side link data to the second terminal device. Therefore, the first terminal device needs to determine the sending resources of the side link data.
  • the first terminal device in this embodiment of the present application is a transmitting device
  • the second terminal device is a receiving device
  • the second terminal device may be a DRX-enabled receiving device.
  • the terminal device can be in the active or on state on the side link, in this state the terminal device performs side link-related channel detection and reception on the corresponding resources; the terminal device can also be on the side link
  • the road is in an inactive (inactive) or off (off) state, and in this state, the terminal device may not perform sidelink-related channel detection and reception on the corresponding resources.
  • the embodiments of the present application are not limited to this, and related technologies may also be referred to regarding the DRX mechanism.
  • FIG. 2 is a schematic diagram of a side link sending method according to an embodiment of the present application. As shown in FIG. 2 , the method includes:
  • the first terminal device determines a resource for sending side link data, and the resource satisfies the following condition: the resource can be passed through the edge by a resource before the resource within an activation time related to the discontinuous reception of the second terminal device or by a resource before the resource. link control information indication;
  • the first terminal device sends sidelink data to the second terminal device based on the resource.
  • FIG. 2 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 2 .
  • the first terminal determines a resource for transmitting sidelink data, where the determination of the resource may be in a process of resource selection, or in a process of resource reselection, or in a process of resource discarding , how the resource is determined in the above process will be described later, and the conditions that the resource satisfies will be described first.
  • the condition may be: the resource is within the activation time associated with the discontinuous reception of the second terminal device, and can be indicated by the resource preceding the resource through the side link control information; The second terminal equipment's DRX-related activation time, but cannot be indicated by the resource preceding the resource through the side link control information; or, the resource is not within the DRX-related activation time of the second terminal equipment, But it can be indicated by the resource preceding the resource through the side link control information.
  • the receiving device can also Knowing the existence of the resource based on the SCI, so that it can be received by the receiving device, this condition means to avoid that the determined resource is neither within the activation time nor can it be indicated by the resource before the resource through the side link control information. In this way, side link transmissions that cannot be received by the receiving device can be avoided, thereby saving power, reducing congestion, and reducing interference to other devices.
  • the resource can be indicated by the resource preceding the resource through the side link control information, and it can also be regarded that the resource is indicated by the previous SCI, for example, the first terminal device can send the information to the second terminal device sending the SCI, the second terminal device in the time unit
  • the SCI (resource m) is received in the SCI
  • the resource m can be regarded as the previous resource
  • the resource can be indicated by the time domain resource assignment (time resource assignment) field in the SCI
  • the resource m 1 in the same period as the resource m may also be the resource m 2 in the period after the period indicated by the resource reservation period (resource reservation period) field in the SCI, that is to say, the resource m is the resource m 1
  • the resources before m 2 , the resources m 1 , m 2 can be indicated by the previous resource m through the SCI, and the resources m 1 , m 2 can also be called reserved resources
  • the resource may be a resource used for sending retransmission, or a resource used for sending new transmission; when the resource is a resource used for sending retransmission, the resource can be used by the time domain resource in the previous SCI
  • the time resource assignment field indicates that the SCI belongs to a previous retransmission or new transmission in the same period, or the resource can be reserved by the resource reservation period field (referred to as the period for short) in the previous SCI. field) indicates that the SCI belongs to the retransmission of the previous cycle.
  • the resource can be indicated by the resource reservation period field in the previous SCI, and the SCI belongs to the new transmission of the previous period. Under the condition of no ambiguity, the following "new biography” and "initial biography" can be used interchangeably.
  • Figure 3 is a schematic diagram of the SCI chain, as shown in Figure 3
  • Figure 3 is a schematic diagram of the SCI chain, as shown in Figure 3
  • the resource when the resource is a retransmission resource (for example, resource 4 in the figure), the resource can be indicated by the time domain resource assignment (time resource assignment) field in the previous SCI, and the SCI belongs to the previous resource 3.
  • Retransmission Or the initial transmission, or the resource can be indicated by the resource reservation period (resource reservation period) field in the previous SCI, and the SCI belongs to the retransmission on resource 2 of the previous period.
  • the resource When the resource is a newly transmitted resource (for example, resource 3 in the figure), the resource can be indicated by the resource reservation period field in the previous SCI, and the SCI belongs to the new transmission on resource 1 in the previous period. That is, resource 3 can be indicated by SCI by resource 1, resource 4 can be indicated by SCI by resource 2 or resource 3, resource 2 can be indicated by SCI by resource 1, but resource 1 cannot be indicated by SCI by the previous resource, also It can be abbreviated as resource 3, 4, 2 can be indicated by the previous SCI (with chain), resource 1 cannot be indicated by the previous SCI (no chain, broken chain).
  • the aforementioned SCI may be one SCI, or may be at least two SCIs detected on different resources, but this application is not limited thereto.
  • the resource may be within the activation time related to the discontinuous reception of the second terminal device, indicating that the start position and the end position of the resource in the time domain are both within the activation time, and the discontinuous reception is related to the activation time.
  • the activation time of the DRX is determined according to a timer related to discontinuous reception, and the timer related to discontinuous reception includes one of the DRX reception timer drx-onDurationTimer, the DRX deactivation timer drx-InactivityTimer, and the DRX retransmission timer drx-RetransmissionTimer or multiple, for example, the activation time may be the running time of one or more of the above-mentioned DRX reception timer drx-onDurationTimer, DRX deactivation timer drx-InactivityTimer, and DRX retransmission timer drx-RetransmissionTimer. set.
  • drx-onDurationTimer is a timer for monitoring sidelink transmissions within the DRX cycle, starting or restarting drx-InactivityTimer when PSCCH or PSSCH initial transmission is received, and feedback is not received correctly (NACK) on PSFCH ), the receiving device starts the DRX Hybrid Automatic Repeat request (HARQ) round-trip time timer drx-HARQ-RTT-Timer in the first symbol after sending the NACK, and stops the drx-RetransmissionTimer, if not successful If received, the terminal device starts the drx-RetransmissionTimer in the first symbol after the drx-HARQ-RTT-Timer expires.
  • HARQ Hybrid Automatic Repeat request
  • the resource used for sending the retransmission data is located after the expiration of the drx-HARQ-RTT-Timer, and the running time length of the above-mentioned timer may be configured by the first terminal device, or may be configured by the network device, or It is pre-configured, and this embodiment of the present application does not limit it. It can be calculated by the number of time slots included, or can be converted into a corresponding millisecond value. For details, reference can be made to the prior art, which will not be repeated here.
  • the activation or restart of the drx-InactivityTimer or the drx-RetransmissionTimer corresponds to a third resource in the resources (M resources) used for transmitting side link data, and the third resource can be used for actual Side link data transmission; may not be used for side link transmission, but can be indicated by the previous SCI, that is: the first terminal device uses the third resource to send the side link data; or, the first terminal device does not The sidelink data is sent using the third resource, and the third resource can be indicated by the resource preceding the third resource through sidelink control information.
  • the start or restart of the above-mentioned timer is determined with reference to one resource, and the above-mentioned timer may be started or restarted for the third resource among the M resources, and the third resource may be one of the M resources Resource or multiple resources or all resources, that is, it is not necessary to start or restart the above timer for each of the M resources, which is not limited in this embodiment of the present application.
  • the activation time will be described below.
  • the activation time includes the running time of the drx-onDurationTimer.
  • FIG. 4 is a schematic diagram of the on and off durations determined based on the drx-onDurationTimer of the side link.
  • the drx-onDurationTimer runs The period belongs to the activation time. During this running period, the receiving device is in an active state and can receive PSCCH or PSSCH.
  • the running time of drx-onDurationTimer can also be called the duration of "on”, and the duration other than "on” is abbreviated as The duration of "off", during the duration of "off", the receiving device can enter an inactive state or a sleep state, so as to achieve the purpose of power saving.
  • Each DRX cycle includes on and off durations, and an on/off pattern as shown in FIG. 4 is formed by periodic repetition, also called an active/inactive pattern.
  • the receiving device periodically starts and closes the drx-onDurationTimer within the DRX cycle.
  • the "on" duration of drx-onDurationTimer can be extended, so that the receiving device can also perform PSCCH or PSSCH reception during the "off" duration, for example, through drx-InactivityTimer and drx-RetransmissionTimer
  • the running time extends the "on" duration of the drx-onDurationTimer, as shown in the following example.
  • Figure 5 is a schematic diagram of the activation time determined based on the side links drx-onDurationTimer and drx-InactivityTimer.
  • the receiving device receives the initial PSCCH/PSSCH transmission within the running time of drx-onDurationTimer (referred to as within drx-onDurationTimer).
  • the receiving device starts or restarts the drx-InactivityTimer.
  • the running period of drx-InactivityTimer also belongs to the activation time, which is equivalent to extending the "on" duration of drx-InactivityTimer.
  • the receiving device may receive PSCCH or PSSCH within the drx-InactivityTimer, for example, the receiving device may wait to receive subsequent possible retransmissions within this time.
  • Figures 6A and 7A are schematic diagrams of activation time further determined in combination with drx-RetransmissionTimer. As shown in Figure 6A, the running time of drx-RetransmissionTimer also belongs to activation time, and the receiving device can receive PSCCH or PSSCH. Time to wait to receive subsequent possible retransmissions.
  • the receiving device can enter the inactive state, but there is an overlapping time for the drx-HARQ-RTT-Timer and the drx-onDurationTimer, drx-InactivityTimer operation period, due to drx-onDurationTimer, drx-InactivityTimer is still running, so the receiving device is still active for the overlapped time.
  • the receiving device may continue to receive retransmissions within the activation time determined by drx-onDurationTimer, drx-InactivityTimer and drx-RetransmissionTimer.
  • the activation time is the union of the three running times. It is assumed that the receiving device receives the PSCCH/PSSCH retransmission (2) at the runtime of drx-onDurationTimer, drx-InactivityTimer and drx-RetransmissionTimer and sends a NACK. Likewise, the receiving device starts the drx-HARQ-RTT-Timer and stops the drx-RetransmissionTimer on the first symbol after sending the NACK.
  • the receiving device starts the drx-RetransmissionTimer on the first symbol after the drx-HARQ-RTT-Timer expires. After sending the NACK for retransmission (2), the receiving device experiences a period of inactivity within the drx-HARQ-RTT-Timer that does not overlap with the drx-InactivityTimer, and then enters the active time determined by the drx-RetransmissionTimer. Since drx-onDurationTimer and drx-InactivityTimer have expired at this time, the activation time is only determined by drx-RetransmissionTimer.
  • the receiving device still determines the inactive time and the activation time according to the method described above. Assuming that the receiving device receives the retransmission (4) within the activation time and feeds back an ACK, that is, it has been successfully received, the receiving device starts the drx-HARQ-RTT-Timer, but no longer starts the drx-RetransmissionTimer.
  • the active/inactive pattern 1 is determined based on drx-onDurationTimer, which is the original "on"/"off" pattern.
  • the activation/inactivation pattern 2 is determined based on drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimer, and drx-HARQ-RTT-Timer. Compared with pattern 1, pattern 2 is equivalent to extending the "on" duration and extending the "on" duration to the "off" duration.
  • Resources (1) to (4) are the resources determined above. The initial transmission (1) is located in drx-onDurationTimer; the retransmission (2) to (4) are located in drx-InactivityTimer and/or drx-RetransmissionTimer. Therefore, the resource ( 1) to (4) are all within the activation time. As shown in FIG. 7A , the difference from FIG. 6A is that the activation/inactivity patterns are different due to the different running time of the drx-InactivityTimer timer.
  • FIGs 6B and 7B are schematic diagrams of the Timer chain.
  • the Timer chain corresponds to the activation/deactivation pattern 2 in Figure 6A. That is, the resources (1)-(4) in Fig. 6A are represented in the activation time as the form in which the resources (1)-(4) in Fig. 6B are located in T0 - T3.
  • the initial transmission (1) is located in drx-onDurationTimer, which is represented as being located in T 0
  • T 0 is an activation time determined by drx-onDurationTimer.
  • a maximum activation time T 1 can be determined based on the initial transmission (1).
  • T 1 starts from the first symbol after initial transmission (1), and the duration includes the running period of drx-onDurationTimer, drx-InactivityTimer and drx-RetransmissionTimer.
  • T1 is an estimate of the longest activation time based on the current situation, which can be regarded as a kind of local activation time. If the receiving device does not receive a retransmission within T1, it will enter an inactive state after T1.
  • the retransmission needs to be after the expiry of the drx-HARQ-RTT-Timer, so the receiving device can only receive the retransmission for a part of T1.
  • the " on " duration of the T1 time waveform shows the time within T1 that retransmissions can be received. As long as the retransmission is within this part of the " on " duration, it can be received by the receiving device, hereinafter referred to as the retransmission within T1.
  • the retransmission ( 2 ) is within T1 and, therefore, can be received by the receiving device.
  • the retransmission (2) can be received by the receiving device regardless of whether the retransmission (2) is indicated by the SCI of the initial transmission (1).
  • the longest activation times T 2 and T 3 can be determined based on retransmissions (2) and (3), respectively.
  • T 1 , T 2 , and T 3 describe the estimation of the longest activation time by the receiving device based on the current situation after receiving the HARQ retransmissions (1), (2), and (3).
  • Figure 6B shows an estimate of the local activation time. Pattern 2 in Fig. 6A shows the actual global activation time.
  • the initial transmission is located within the drx-onDurationTimer, and the retransmission is located within the longest activation time determined by the previous transmission. Therefore, the initial transmission and retransmissions can be received by the receiving device.
  • the Timer chain in FIG. 6B and FIG. 7B is described by taking the aforementioned three timers coexisting as an example, but this embodiment is not limited by this.
  • T i time 0
  • T i time i
  • T i time i
  • the above description takes the receiving device starting the corresponding timer after each initial transmission/retransmission as an example for description, but the embodiment of the present application does not limit this, and the aforementioned timer may not be It is started after each reception, but only when a predetermined condition is met. For example, if the received SCI indicates the next reserved resource, the receiving device may not start the timer.
  • the timer here can be any one of drx-onDurationTimer, drx-InactivityTimer, and drx-RetransmissionTimer, which will not be exemplified here.
  • Figure 8 is a schematic diagram of the resources that meet the conditions.
  • resources 2, 3, and 5 can be The previous SCI indicates that resources 1 and 4 cannot be indicated by the previous SCI.
  • resources 1, 2, 3, 4, and 5 are all located in the Timer chain (that is, within the activation time), that is to say, resource 1, 2, 3, 4, and 5 all satisfy the aforementioned conditions.
  • the number M of resources used for sending side link data is less than or equal to the number N of target resources, the number N of target resources is greater than or equal to 1, and the number N of target resources may also be referred to as required selection , or the number of resources that have been selected.
  • the sending device must determine N resources. For example, the resource is preferentially selected to satisfy the resource that can be indicated by the resource before the resource through the side link control information. When N resources cannot be selected, resources that cannot be indicated by the resources preceding the resource through the side link control information can also be selected.
  • M resources may be determined, where M ⁇ N, and M is the maximum value that satisfies the above conditions.
  • the first terminal determines M resources for transmitting side link data, where the determination of the resources may be in the process of resource selection, or in the process of resource reselection, or in the process of resource discarding In the process, the following describes how to determine the resource in the above process.
  • the number N of the target resources is the number of resources to be selected or the number of HARQ retransmissions determined by the high layer (for example, the number of HARQ retransmissions selected by the MAC layer of the medium access control layer, including the initial transmission, the number of times is one of the values allowed by the radio resource control layer parameter s1-MaxTxTransNumPSSCH, that is, less than or equal to s1-MaxTxTransNumPSSCH), and the first terminal equipment determines the M resources includes: selecting M resources from the candidate resource set, such as the first The MAC layer of the terminal device selects M resources from the candidate resource set reported by the physical layer. Since the candidate resource set may not include enough resources to meet this condition, N resources cannot be selected, and only M resources can be selected. a resource that satisfies this condition.
  • determining the M resources by the first terminal device includes: selecting N resources from the candidate resource set, for example, the MAC layer of the first terminal device selects N resources from the candidate resource set reported by the physical layer, Specifically, reference may be made to the prior art, and then resources that do not meet the condition are reselected or discarded from N resources to obtain M resources that meet the condition.
  • the aforementioned resource selection may include resource reselection, that is, for the aforementioned embodiments, the present application may not distinguish between resource selection and resource reselection.
  • the first terminal device determines the resource size for sending side link data.
  • the steps include: the first terminal device discards the second resource from the selected resources or reselects the second resource, so as to obtain the resource for sending side link data.
  • the above discarding or reselection of the second resource is not based on the trigger condition of the prior art, but is based on a new trigger condition.
  • the new trigger condition is: the second resource does not meet the aforementioned conditions, that is, neither is within the activation time nor can it be indicated by the previous SCI. In other words, if a resource is neither within the active time nor indicated by the previous SCI, the resource is discarded or reselected.
  • the first terminal device when at least one of preemption, re-evaluation, and priority comparison occurs, reselects the first resource (corresponding to a resource reselection process), and the second resource does not satisfy This condition is caused by reselection of the first resource. That is, the process of resource reselection includes: reselection of the first resource and/or reselection of the second resource and/or discarding of the second resource.
  • the first terminal device discards the first resource (corresponding to the resource discarding process), and the second resource does not satisfy the condition It is caused by discarding the first resource for reselection. That is, the process of resource discarding includes: discarding the first resource and/or discarding the second resource and/or reselection of the second resource.
  • the number of selected resources is equal to the number N of the aforementioned target resources, that is, the transmitting device has selected N resources that meet the conditions, and the N resources can be used for retransmission and/or initial transmission, but due to
  • determining the M resources by the first terminal device includes: reselection of one or more resources from the candidate resource set.
  • M resources are obtained after resource reselection, where M ⁇ N, and M is the maximum value that satisfies the foregoing conditions.
  • the M resources obtained after reselection include reselection resources and/or non-reselected resources.
  • some of the M resources obtained after reselection may not be used for actual transmission side links data.
  • the first terminal device reselection of resources for transmitting sidelink data includes reselection of the first resource and/or discarding of the second resource and/or reselection of the second resource.
  • the reselection of the first resource is due to the fact that the first resource is preempted or re-evaluated or discarded based on the priority rule, and the second resource is not within the activation time related to the discontinuous reception of the second terminal device, and also The resource that cannot be indicated by the resource before the second resource is indicated by the side link control information, that is to say, the reselection process includes: the first terminal device reselection and/or discarding the first resource does not meet the aforementioned conditions and/or reselection of the second resource that does not meet the foregoing conditions, wherein the second resource that does not meet the foregoing conditions may be caused by the re-selection of the first resource, which will be exemplified below.
  • the reselection process triggered by preemption is firstly described below with an example.
  • the preempted first resource will cause the second resource not to meet the foregoing conditions, or the preempted first resource will cause the SCI chain and the Timer chain to break, thereby causing the SCI chain and the Timer chain of the second resource to break
  • the sending of the side link data may also be referred to as canceling the sending of the side link data on the resource 2 , and may also be referred to as discarding the resource 2 .
  • FIG. 9B is a schematic diagram of the remaining resources after discarding resource 2.
  • the activation or restart of drx-InactivityTimer or drx-RetransmissionTimer corresponds to the third resource in the resources (M resources) used for transmitting side link data.
  • the third resource can be used for actual side link data transmission. ;
  • the third resource may not be used for side link transmission, but may be indicated by the previous SCI.
  • the SCI of resource 1 can indicate resource 2.
  • drx-RetransmissionTimer can still be started to obtain T 2 . Therefore,
  • the Timer chain also includes T 2 . As shown in Fig.
  • resource 3 (the second resource) cannot be indicated by the previous SCI and is not within the activation time. Therefore, resource 3 cannot be used for The receiving device receives, and thus resources 4 and 5 (second resources) cannot be received.
  • the first terminal device reselects the preempted resources, so that the reselected M resources still meet the foregoing conditions, so that the resources capable of repairing the Timer chain or the SCI chain are reselected, or through Reselection, so that some of the resources in the N resources (the part of the resources do not belong to the Timer chain or the SCI chain due to the preempted resources) belong to the Timer chain or the SCI chain again;
  • Fig. 9C is a schematic diagram of resource reselection, as shown in Fig. 9C For example, the resource 2 in FIG.
  • 9A is reselected to obtain resource 2 ', which is located in T1 and can indicate resource 3 through SCI, or resource 3 is located in T2' determined by resource 2 ' .
  • resources 1, 2', 3, 4, and 5 satisfy the aforementioned conditions, or, in other words, the reselection resources can repair the broken SCI chain and/or Timer chain, or, through resource reselection, make Resource 3,4,5 belong to Timer chain or SCI chain again. That is, the M resources finally obtained after resource reselection include resources 1, 2', 3, 4, and 5.
  • the first terminal device may discard the second resource, where the second resource is caused by the first resource being The preemption does not meet the aforementioned conditions, that is to say, the second resource does not belong to the SCI chain and/or the Timer chain due to the preemption of the first resource;
  • Fig. 9D is a schematic diagram of resource reselection, as shown in Fig. 9D, in the resource If the resource 2' that can repair the SCI chain or the Timer chain cannot be selected during reselection, then resources 3 to 5 (second resources) cannot be received, so the transmission on resources 3 to 5 is also cancelled, that is, resource 2 is discarded ⁇ 5.
  • Fig. 9E is a schematic diagram of resource reselection.
  • resource 2' that can maintain all resources in the SCI chain or Timer chain cannot be selected, but the selected resource 2' can maintain some resources.
  • SCI chain or Timer chain (for example, resources 1 and 2'), and resources 3-5 (second resources) cannot be received, so the transmission on resources 3-5 is canceled, that is, resources 3-5 are discarded.
  • the M resources finally obtained after resource reselection include resource 1 and resource 2'.
  • the first terminal device may also perform reselection of the second resource, so that the M resources obtained after reselection still satisfy the foregoing conditions.
  • the M resources obtained after resource reselection in FIG. 9F are resources 1, 2' and 3', and M is less than N.
  • N resources in the same period for HARQ retransmission as an example for description, but the embodiment of the present application does not limit this.
  • the N resources may also be distributed in different periods. , which may include one or more new transmission resources and/or reselection resources.
  • Figure 10A 4 service cycles are shown in , in which resources 1 and 2 belong to the first cycle, similarly, resources 3 and 4 belong to the second cycle, and so on.
  • Resource 1, 3, 5, and 7 are resources used for new transmission in each cycle, and resources 2, 4, 6, and 8 are corresponding resources used for retransmission.
  • the period field in the SCI can indicate the resources of the next period. Therefore, the resources 3, 5, and 7 used for new transmission can also be indicated by the previous SCI.
  • the specific indication relationship is shown in the SCI chain in Figure 10A.
  • Resources 1, 7 are within the "on" duration of the DRX, i.e. within the drx-onDurationTimer. Other resources are in the "off" duration.
  • resources 3 and 4 first resources
  • resources 5 and 6 second resources
  • resources 3, 4 can be reselected, and furthermore, resources 5 to 6 can be discarded, or resources 5 to 6 can be reselected.
  • the sending device can reselect the first resource and discard the second resource. As shown in FIG.
  • the sending device can reselect the first resource and reselect the second resource. As shown in FIG. 10A , when reselection is performed on resources 3 and 4, no resources 3', 4' that can re-satisfy the conditions are found. 4', so resources 5 and 6 are also discarded. Therefore, the M resources obtained after resource reselection are resources 1, 2, 7, and 8. As shown in FIG. 10B , the reselected resources 3', 4' can only make the resources 1, 2, 3', 4', 7, and 8 satisfy the conditions. Therefore, the M resources obtained after the resource reselection are the resources 1, 2, 4, and 8. 2, 3', 4', 7, 8, resources 5, 6 are discarded. Or, for example, the sending device can reselect the first resource and reselect the second resource. As shown in FIG.
  • the reselection of the selected resources 3' and 4' can only make the resources 1, 2, 3', and 4 possible. 'If the conditions are met, the resources 5 and 6 that do not meet the conditions can be reselected, and the reselected resources 5' and 6' are located in the drx-onDurationTimer, so that the resources 1, 2, 3', 4', 5', 6' satisfies the condition, so the sending device can send on resources 1, 2, 3', 4', 5', 6'.
  • the resource reselection process triggered by the re-evaluation is exemplified below.
  • Fig. 11 is a schematic diagram of resource reselection. As shown in Fig. 11, due to re-evaluation, resource 4 (the first resource) needs to be re-selection.
  • the resource 4' that satisfies the above conditions all of 1 to 3, 4' and 5 can only be selected to make the resources 1 to 3 and 4' satisfy the above conditions. Therefore, the resource 5 that does not satisfy the above conditions is discarded. Therefore, the M resources obtained after resource reselection are resources 1-3 and 4'.
  • the sending device performs resource reselection on both resources 4 and 5 (the first resource and the second resource). Resource 4' and 5' cannot be selected so that resources 1 to 3, 4' and 5' all meet the above conditions, but only resource 4' can be selected that makes resources 1 to 3 and 4' meet the above conditions. Therefore, the M resources obtained after resource reselection are resources 1-3 and 4'.
  • the resource reselection process triggered by the priority rule refers to: after the comparison based on the priority rule, cancel the low-priority transmission, that is, discard the transmission resource corresponding to the low priority, and then discard the transmission resource corresponding to the low priority. Therefore, resource reselection is triggered, and the implementation of determining M resources in the resource reselection process is similar to the aforementioned resource reselection process triggered by preempting the first resource, and will not be exemplified here.
  • the reselection of the second resource may be implemented independently, or may be implemented in combination.
  • the reselection and discarding of the second resource, or the reselection of the first resource and the reselection of the second resource, etc. refer specifically to the aforementioned FIG. 9C to FIG. 9F , which will not be exemplified here.
  • the embodiment of the present application does not limit how to re-determine the activation time when the SCI chain is broken.
  • the longest activation time T corresponding to the resource causing the link disconnection can still be determined according to the previous SCI indication, which will not be repeated here.
  • the activation or restart of drx-InactivityTimer or drx-RetransmissionTimer corresponds to the sending side link
  • the third resource in the data resources (M resources) the third resource may not be used for side link transmission, but may be indicated by the previous SCI.
  • the embodiment in FIG. 9B please refer to the embodiment in FIG. 9B . As shown in FIG.
  • the SCI of resource 1 can indicate resource 2, which corresponds to resource 2 indicated by the previous SCI and can still be started.
  • drx-RetransmissionTimer resulting in T 2 , so the Timer chain also includes T 2 .
  • the method may further include: (optionally, not shown) the first terminal device re-determining the candidate resource set, so that the first terminal can re-determine the candidate resource set. The device performs resource selection or reselection in the candidate resource set again, so that the selection/reselection obtains N resources that meet the foregoing conditions, wherein the candidate resource set can be re-determined by adjusting the RSRP threshold.
  • FIG. 12 is a schematic diagram of a resource selection/reselection process method in this embodiment. As shown in FIG. 12 , the method includes:
  • the physical layer of the first terminal device determines the candidate resource set SA based on the sensing result, and reports the SA to the upper layer;
  • the upper layer (for example, the MAC layer) of the first terminal device performs the following operations: determine the number of HARQ retransmissions N; select M resources in SA, and each resource in the M resources satisfies the foregoing conditions, that is, is located in the active state. time, or can be indicated by the previous resource through SCI;
  • a resource can be randomly selected in SA; if periodic services are sent, the randomly selected resource is used to select a series of periodic resources afterward; if one or more retransmissions need to be sent, the remaining resources in SA Randomly select one or more resources within the network, and the selection process needs to ensure that any selected resource is either within the activation time, or can be indicated by the previous resource through SCI; if sending periodic services, use the randomly selected resource to select a series of subsequent Periodic resource; for the selected resource, the first resource in time and the periodic resource selected based on the resource are initial transmission resources, and other resources are retransmission resources.
  • the first terminal device adjusts the RSRP threshold, and returns to 1201 to re-determine the candidate resource set SA .
  • the number of selected resources is equal to the number N of the aforementioned target resources, that is, the transmitting device has selected N resources that meet the conditions, and the N resources can be used for retransmission and/or initial transmission, but due to The priority rule (prioritization rule), or the congestion (congestion) will cause the cancellation of transmission on some resources (hereinafter referred to as the first resource), but will not trigger resource reselection.
  • the priority rule priority rule
  • the congestion congestion
  • the sending on the resource cannot be performed, which may also be referred to as canceling the sending on the resource, or dropping the sending, or dropping the resource.
  • Drops caused by priority rules or congestion may not trigger resource reselection.
  • existing methods only low-priority transmissions or transmissions causing congestion are cancelled. That is, the sending resources corresponding to the low priority are discarded, or the sending resources that cause congestion are discarded.
  • the above resources when the above resources are discarded, other resources may not meet the above conditions, that is, they cannot be received with DRX enabled.
  • the device receives, so it also needs to cancel the transmission on these resources, or discard these resources, or reselect these resources.
  • the following examples illustrate.
  • determining the M resources by the first terminal device includes: the first terminal device discarding the first resource and/or discarding the second resource and/or reselection of the second resource from the selected resources , so as to obtain the M resources for transmitting side link data, where M is less than N, and M is the maximum value that can satisfy the above conditions. For example, when at least one of congestion or priority comparison occurs, the first terminal device discards the first resource. When discarding the first resource causes the second resource in the remaining resources not to satisfy the condition, the first terminal device discards the second resource, or reselects the second resource.
  • FIG. 13 is a schematic diagram of a resource discarding process.
  • the sending device has selected N resources ranging from 1 to 5, where resource 1 is located within the drx-onDurationTimer, and other resources are located within the "off" duration. Assuming that the sending device does not use resource 1 (the first resource) for transmission due to at least one of congestion or priority comparison, the sending device will discard resource 1. Since the receiving device has not received resource 1, it will be sent in drx-onDurationTimer After expiration, it enters the inactive state and cannot receive subsequent resources 2 to 5 (second resources), or resources 2 to 5 do not meet the aforementioned conditions, that is, discarding resource 1 will cause both the SCI chain and the Timer chain to break.
  • the sending device may perform resource reselection on resources 2 to 5 that do not meet the foregoing conditions. Assuming that the reselection resources 2' and 3' meet the foregoing conditions, the sending device is in the resource 2', 3' to send.
  • the number of reselection resources (2', 3') may be smaller than the number of previously selected resources (2, 3, 4, 5).
  • FIG. 14 is a schematic diagram of a resource discarding process.
  • the sending device has selected N resources ranging from 1 to 5, where resource 1 is located within the drx-onDurationTimer, and other resources are located within the "off" duration. Assuming that at least one of the reasons for congestion or priority comparison occurs, the sending device does not use resource 4 (the first resource) for transmission, the sending device will discard resource 4, and the receiving device will cause subsequent resource 5 because resource 4 is not received. (The second resource) does not meet the aforementioned conditions (not at the activation time, nor can it be indicated by the previous SCI), that is, discarding resource 4 will cause both the SCI chain and the Timer chain to break.
  • the sending device may perform resource reselection on the resource 5 that does not meet the foregoing conditions. Assuming that the reselected resource 5' satisfies the foregoing condition, the sending device sends on the resource 5'. .
  • Figures 13 to 14 above take N resources in the same cycle for HARQ retransmission as an example for description, but the embodiment of the present application does not limit this.
  • the N resources may also be distributed in different cycles. , which may include one or more new transmission resources and/or reselection resources.
  • Figure 15 is a schematic diagram of a resource discarding process. The sending device sends periodic services, and resources 1 to 4 are used to send new transmissions in each cycle. Resources 2-4 can be indicated by the period field in the previous SCI.
  • At least one of congestion or priority comparison causes the sending device not to use resource 2 (first resource) for sending, and the sending device discards resource 2, which will cause subsequent resource 3 (second resource) to fail to meet the aforementioned conditions, That is, it cannot be indicated by the previous SCI, and it is not within the activation time (T 0 , T 1 ), that is, discarding resource 2 will cause both the SCI chain and the Timer chain to break. Therefore, if the sending device does not send on resource 2, it also does not send on resource 3 accordingly, that is, resource 3 is discarded. However, since resource 4 is located within drx-onDurationTimer(T 0 ), that is, resource 4 satisfies the aforementioned condition, resource 4 can be received by the receiving device. Therefore, the transmission on resource 4 can still remain, and resource 4 does not need to be discarded. Similar to before, the sending device may also perform resource reselection for resource 3 that does not meet the foregoing conditions.
  • the aforementioned discarding of the first resource, discarding of the second resource, and reselection of the second resource may be implemented independently or in combination, which is not limited in this embodiment of the present application.
  • the first resource and the second resource may be discarded, or The first resource may also be discarded, the second resource may be reselected, and the like.
  • FIG. 13 to FIG. 15 please refer to the aforementioned FIG. 13 to FIG. 15 , which will not be exemplified here.
  • the second resource may not meet the aforementioned conditions, that is, it cannot be received by the DRX-enabled receiving device. Therefore, in addition to discarding or reselecting the first resource and the second resource In addition to the implementation of the two resources, the discarding or reselection of the first resource can also be prohibited by disabling the discarding or reselection function, so as to avoid causing the second resource not to meet the foregoing conditions.
  • the method may further include: (optionally, not shown) when a predetermined condition is satisfied, the first terminal device disabling the function of discarding or reselection of resources.
  • the predetermined condition is that at least one of preemption, congestion, re-evaluation, and priority comparison occurs, or at least one resource in the selected resources is in the inactive time.
  • the embodiments of the present application are not limited thereto.
  • the sending device when the sending device sends side link data to a receiving device with DRX enabled, the resources used for sending the side link data are within the activation time, or can be indicated by the previous SCI, but due to disabling (disable) Discard or reselection function, so the sending device does not discard or reselection based on preemption, re-evaluation, priority comparison, and congestion; optionally, one or more of the selected N resources can be located at the inactive time For example, when it is within the "off" duration, the discarding or reselection function is disabled, but the embodiment of the present application is not limited to this, and will not be exemplified one by one here.
  • a resource for transmitting side link data is determined, and the resource satisfies the following conditions: the resource is within the activation time related to the discontinuous reception of the second terminal device or can be used before the resource.
  • the resources are indicated by the side link control information, that is, the sending device needs to ensure that the resources used for sending side link data are within the activation time during resource selection, resource reselection, and resource discarding based on some reasons, or Can be indicated by the SCI by the previous resource.
  • the first terminal device sends sidelink data to the second terminal device based on the resource, that is, the first terminal device sends sidelink data on at least one of the M resources data
  • the M resources may all be used for sending side link data, that is, sending side link data to the second terminal device on the M resources, or a part of the M resources may be used for sending side chain data path data, that is, sending side link data to the second terminal device on some of the M resources, and the side link data may be newly transmitted data and/or retransmitted data, which is not the case in this embodiment of the present application. as a limitation.
  • the sending device when the sending device determines the resources used for sending side link data, it can ensure that the resources used for sending are within the activation time related to the discontinuous reception of the receiving device, or can be used by previous resources through the side link. Control information indication. As a result, side link transmissions that cannot be received by the receiving device can be avoided, thereby saving power, reducing congestion, and reducing interference to other devices.
  • An embodiment of the present application provides a side link receiving method, which is described from the second terminal device, and the same content as the embodiment of the first aspect will not be repeated, and the second terminal device is a DRX-enabled device.
  • FIG. 16 is a schematic diagram of a side link receiving method according to an embodiment of the present application. As shown in FIG. 16 , the method includes:
  • the second terminal device receives the side link data sent by the first terminal device based on the resources (M resources) that satisfy the following conditions; the condition is: the resource is within the activation time related to the discontinuous reception of the second terminal device or can be indicated by the resource preceding the resource through side link control information;
  • the second terminal device starts or restarts a timer related to discontinuous reception based on the side link data.
  • the first terminal device transmits sidelink data on at least one of the M resources, for example, the M resources may all be used to transmit sidelink data, and the second terminal The device receives side link data on M resources, or a part of the M resources is used for sending side link data, that is, the second terminal device receives side link data on some resources of the M resources,
  • the side link data may be newly transmitted data and/or retransmitted data, which is not limited in this embodiment of the present application.
  • the DRX-related timers include one or more of a DRX reception timer drx-onDurationTimer, a DRX deactivation timer drx-InactivityTimer, and a DRX retransmission timer drx-RetransmissionTimer .
  • drx-onDurationTimer is a timer for monitoring sidelink transmissions within the DRX cycle, starting or restarting drx-InactivityTimer when PSCCH or PSSCH initial transmission is received, and feedback is not received correctly (NACK) on PSFCH ), the receiving device starts the DRX Hybrid Automatic Repeat request (HARQ) round-trip time timer drx-HARQ-RTT-Timer in the first symbol after sending the NACK, and stops the drx-RetransmissionTimer, if not successful If received, the terminal device starts the drx-RetransmissionTimer in the first symbol after the drx-HARQ-RTT-Timer expires.
  • HARQ Hybrid Automatic Repeat request
  • the running time length may refer to the embodiment of the first aspect, which will not be repeated here.
  • the running time length may be calculated by the number of time slots included, or may be converted into a corresponding millisecond value. Referring to the prior art, details are not repeated here.
  • the activation or restart of the drx-InactivityTimer or the drx-RetransmissionTimer corresponds to a third resource in the resources (M resources) used for transmitting side link data
  • the third resource can be used for actual Side link data transmission may not be used for side link transmission, but can be indicated by the previous SCI, that is, the second terminal device receives the side link data on the third resource, or the second terminal device is not in the The side link data is received on the third resource, and the third resource can be indicated by the resource preceding the third resource through the side link control information.
  • the start or restart of the above-mentioned timer is determined with reference to one resource, and the above-mentioned timer may be started or restarted for the third resource among the M resources, and the third resource may be one of the M resources Resource or multiple resources or all resources, that is, it is not necessary to start or restart the above timer for each of the M resources, which is not limited in this embodiment of the present application.
  • the sending device when the sending device determines the resources used for sending side link data, it can ensure that the resources used for sending are within the activation time related to the discontinuous reception of the receiving device, or can be used by previous resources through the side link. Control information indication. As a result, side link transmissions that cannot be received by the receiving device can be avoided, thereby saving power, reducing congestion, and reducing interference to other devices.
  • An embodiment of the present application provides an apparatus for sending an edge link.
  • the apparatus may be, for example, a terminal device (such as the aforementioned first terminal device), or may be one or some components or components configured in the terminal device, and the same content as the embodiment of the first aspect will not be repeated.
  • FIG. 17 is a schematic diagram of a side link sending apparatus according to an embodiment of the present application. As shown in FIG. 17 , the side link sending apparatus 1700 includes:
  • Determining unit 1701 which is configured to determine a resource for transmitting side link data, the resource satisfies the following condition: the resource can be passed by the resource before the resource within the activation time related to the discontinuous reception of the second terminal device or the resource Side link control information indication;
  • a sending unit 1702 configured to send side link data to the second terminal device based on the resource.
  • the number M of resources for transmitting side link data is less than or equal to the number N of target resources, and the number N of target resources is greater than or equal to one.
  • the determining unit 1701 discards the second resource from the selected resources or reselects the second resource to obtain the resource for sending side link data, wherein the second resource does not satisfy the condition.
  • the failure of the second resource to satisfy the condition is due to resource reselection and/or discarding.
  • the number of selected resources is equal to the number of target resources, and the second resource does not satisfy the condition due to discarding the first resource.
  • the determining unit 1701 is further configured to discard the first resource.
  • the number of selected resources is equal to the number of target resources, and the second resource does not satisfy the condition due to reselection of the first resource.
  • the determining unit 1701 is further configured to reselect the first resource.
  • the reselected M resources include resources that have been reselected and/or resources that have not been reselected.
  • the sidelink data includes newly transmitted data and/or retransmitted data.
  • the DRX-related activation time is determined according to a DRX-related timer, and the DRX-related timer includes a DRX reception timer drx-onDurationTimer, a DRX deactivation timer drx-InactivityTimer, One or more of the DRX retransmission timers drx-RetransmissionTimer.
  • the resource used to send the retransmission data is after the DRX Hybrid Automatic Repeat Request Round Trip Timer drx-HARQ-RTT-Timer expires.
  • the start or restart of the DRX deactivation timer or the DRX retransmission timer corresponds to a third resource in the resources used for sending side link data
  • the sending unit 1702 uses the third resource to send the side link data, or the sending unit 1702 does not use the third resource to send the side link data
  • the third resource can be indicated by the resource preceding the third resource through the side link control information.
  • the second terminal device is enabled for discontinuous reception.
  • the resources satisfying the condition include resources used for transmitting the side link data and resources not used for transmitting the side link data.
  • the apparatus when M is less than N, the apparatus further includes (optionally, not shown): an adjustment unit configured to re-determine the candidate resource set.
  • an adjustment unit configured to re-determine the candidate resource set.
  • the apparatus may further include (optionally, not shown): a disabling unit, which is configured to disable the function of discarding or reselection of resources when a predetermined condition is met.
  • a disabling unit which is configured to disable the function of discarding or reselection of resources when a predetermined condition is met.
  • the side link sending apparatus 1700 may further include other components or modules, and for the specific contents of these components or modules, reference may be made to the related art.
  • FIG. 17 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the sending device when the sending device determines the resources used for sending side link data, it can ensure that the resources used for sending are within the activation time related to the discontinuous reception of the receiving device, or can be used by previous resources through the side link. Control information indication. As a result, side link transmissions that cannot be received by the receiving device can be avoided, thereby saving power, reducing congestion, and reducing interference to other devices.
  • An embodiment of the present application provides an apparatus for receiving a side link.
  • the apparatus may be, for example, a terminal device (eg, the aforementioned second terminal device), or one or some components or components configured in the terminal device, and the same content as the embodiment of the second aspect will not be repeated.
  • FIG. 18 is a schematic diagram of a side link receiving apparatus according to an embodiment of the present application. As shown in FIG. 18 , the side link receiving apparatus 1800 includes:
  • a receiving unit 1801 which is configured to receive side link data sent by the first terminal device based on resources (M resources) that satisfy the following conditions; the condition is: the resource is at an activation time related to discontinuous reception of the second terminal device within or can be indicated by the resource preceding the resource through side link control information;
  • the processing unit 1802 is configured to start or restart a timer related to discontinuous reception based on the side link data.
  • all the M resources may be used for transmitting side link data
  • the receiving unit 1801 may receive side link data on the M resources, or a part of the M resources may be used for transmitting side link data , that is, the receiving unit 1801 receives side link data on some of the M resources, and the side link data may be newly transmitted data and/or retransmitted data, which is not limited in this embodiment of the present application.
  • the DRX-related timers include one or more of a DRX reception timer drx-onDurationTimer, a DRX deactivation timer drx-InactivityTimer, and a DRX retransmission timer drx-RetransmissionTimer.
  • drx-onDurationTimer is a timer for monitoring sidelink transmissions within the DRX cycle, starting or restarting drx-InactivityTimer when PSCCH or PSSCH initial transmission is received, and feedback is not received correctly (NACK) on PSFCH ), the receiving device starts the DRX Hybrid Automatic Repeat request (HARQ) round-trip time timer drx-HARQ-RTT-Timer in the first symbol after sending the NACK, and stops the drx-RetransmissionTimer, if not successful If received, the terminal device starts the drx-RetransmissionTimer in the first symbol after the drx-HARQ-RTT-Timer expires.
  • the running time length of the above timer may be calculated by the number of time slots included, or may be converted into a corresponding millisecond value. For details, reference may be made to the prior art, which will not be repeated here.
  • the activation or restart of the drx-InactivityTimer or the drx-RetransmissionTimer corresponds to a third resource in the resources (M resources) used for transmitting side link data
  • the third resource can be used for actual Side link data transmission may not be used for side link transmission, but can be indicated by the previous SCI, that is, the receiving unit 1801 receives the side link data on the third resource, or the receiving unit 1801 is not on the third resource.
  • the sidelink data is received on the UPS, and the third resource can be indicated by the resource preceding the third resource through the sidelink control information.
  • the start or restart of the above-mentioned timer is determined with reference to one resource, and the above-mentioned timer may be started or restarted for the third resource among the M resources, and the third resource may be one of the M resources Resource or multiple resources or all resources, that is, it is not necessary to start or restart the above timer for each of the M resources, which is not limited in this embodiment of the present application.
  • the side link receiving apparatus 1800 may further include other components or modules. For the specific content of these components or modules, reference may be made to the related art.
  • FIG. 18 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the sending device when the sending device determines the resources used for sending side link data, it can ensure that the resources used for sending are within the activation time related to the discontinuous reception of the receiving device, or can be used by previous resources through the side link. Control information indication. As a result, side link transmissions that cannot be received by the receiving device can be avoided, thereby saving power, reducing congestion, and reducing interference to other devices.
  • An embodiment of the present application further provides a communication system, and reference may be made to FIG. 1 , and the same content as the embodiments of the first aspect to the fourth aspect will not be repeated.
  • the communication system 100 may include at least:
  • the first terminal device 102 determines a resource for transmitting side link data, and the resource satisfies the following condition: the resource is within the activation time associated with the discontinuous reception of the second terminal device 103 or can be passed by the resource before the resource Side link control information indication;
  • the first terminal device 102 sends sidelink data to the second terminal device 103 based on the resource.
  • the second terminal device 103 receives the side link data sent by the first terminal device 102, and starts or restarts a timer related to discontinuous reception based on the side link data.
  • the embodiment of the present application also provides a network device, which may be, for example, a base station, but the present application is not limited to this, and may also be other network devices.
  • a network device which may be, for example, a base station, but the present application is not limited to this, and may also be other network devices.
  • FIG. 18 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 1800 may include: a processor 1810 (eg, a central processing unit CPU) and a memory 1820 ; the memory 1820 is coupled to the processor 1810 .
  • the memory 1820 can store various data; in addition, the program 1830 for information processing is also stored, and the program 1830 is executed under the control of the processor 1810 .
  • the network device 1800 may further include: a transceiver 1840, an antenna 1850, etc.; wherein, the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the network device 1800 does not necessarily include all the components shown in FIG. 18 ; in addition, the network device 1800 may also include components not shown in FIG. 18 , and reference may be made to the prior art.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this, and may also be other devices.
  • FIG. 20 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 2000 may include a processor 2010 and a memory 2020 ; the memory 2020 stores data and programs, and is coupled to the processor 2010 .
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 2010 may be configured to execute a program to implement the side link transmission method described in the embodiment of the first aspect.
  • the processor 2010 may be configured to perform the following control: determine a resource for transmitting side link data, the resource satisfies the following condition: the resource is within the activation time related to the discontinuous reception of the second terminal device or can be used in the The resource before the resource is indicated by the side link control information; the side link data is sent to the second terminal device based on the resource.
  • the processor 2010 may be configured to execute a program to implement the side link receiving method according to the embodiment of the second aspect.
  • the processor 2010 may be configured to perform the following control: receive side link data sent by the first terminal device based on a resource that satisfies the following condition; the condition is: the resource is activated in relation to discontinuous reception of the second terminal device Time or can be indicated by the resource before the resource through the side link control information; start or restart the timer related to the discontinuous reception based on the side link data.
  • the terminal device 2000 may further include: a communication module 2030 , an input unit 2040 , a display 2050 , and a power supply 2060 .
  • the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the terminal device 2000 does not necessarily include all the components shown in FIG. 20 , and the above components are not required; in addition, the terminal device 2000 may also include components not shown in FIG. 20 . There is technology.
  • the embodiment of the present application further provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the side link sending method described in the embodiment of the first aspect.
  • An embodiment of the present application further provides a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the side link sending method described in the embodiment of the first aspect.
  • the embodiment of the present application further provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the side link receiving method according to the embodiment of the second aspect.
  • An embodiment of the present application further provides a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the side link receiving method described in the embodiment of the second aspect.
  • the apparatuses and methods above in the present application may be implemented by hardware, or may be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by logic components, enables the logic components to implement the above-described apparatus or constituent components, or causes the logic components to implement the above-described various methods or steps.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the method/apparatus described in conjunction with the embodiments of this application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figures and/or one or more combinations of the functional block diagrams may correspond to either software modules or hardware modules of the computer program flow.
  • These software modules may respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by, for example, solidifying these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor, such that the processor can read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks and/or one or more combinations of the functional blocks described in the figures can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to the figures can also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a side link sending method comprising:
  • the first terminal device determines a resource for transmitting sidelink data, the resource satisfying the following condition: the resource is within the activation time associated with the discontinuous reception of the second terminal device or can be passed by a resource preceding the resource Side link control information indication;
  • the first terminal device sends sidelink data to the second terminal device based on the resource.
  • Supplement 2 The method according to Supplement 1, wherein the number M of resources for transmitting side link data is less than or equal to the number N of target resources, and the number N of the target resources is greater than or equal to 1, The number M of resources for transmitting side link data is greater than or equal to zero.
  • Supplement 3 The method according to Supplement 1 or 2, wherein the step of the first terminal device determining a resource for sending sidelink data comprises: the first terminal device discarding the selected resources The second resource or the second resource is reselected to obtain the resource for transmitting side link data, wherein the second resource does not satisfy the condition.
  • Supplement 4 The method according to Supplement 3, wherein the fact that the second resource does not satisfy the condition is due to resource reselection and/or discarding.
  • Supplement 5 The method according to Supplement 3 or 4, wherein the number of the selected resources is equal to the number of target resources, and the fact that the second resource does not satisfy the condition is caused by discarding the first resource of.
  • Supplement 6 The method according to Supplement 5, wherein when at least one of preemption, congestion, re-evaluation, and priority comparison occurs, the first terminal device discards the first resource.
  • Supplement 7 The method according to Supplement 3 or 4, wherein the number of the selected resources is equal to the number of target resources, and the fact that the second resource does not satisfy the condition is due to the caused by re-election.
  • Supplement 8 The method according to Supplement 7, wherein the reselected M resources include reselected resources and/or non-reselected resources.
  • Supplement 9 The method according to Supplement 7 or 8, wherein when at least one of preemption, re-evaluation, and priority comparison occurs, the first terminal device reselects the first resource .
  • Supplement 10 The method according to Supplement 1 or 2, wherein the number of target resources is the number of resources to be selected or the number of HARQ retransmissions determined by a high layer, and the first terminal device determines the number of resources used for sending side chains
  • the step of selecting the resources of the road data includes: the first terminal device selects the resources for transmitting the side link data from the candidate resource set.
  • the first terminal device When a predetermined condition is met, the first terminal device disables the function of discarding or reselection of resources.
  • Supplement 12 The method according to Supplement 11, wherein the predetermined condition is that at least one of preemption, congestion, re-evaluation, and priority comparison occurs, or at least one of the selected resources is located in a non- within the activation time.
  • Supplement 13 The method according to any one of Supplements 1 to 13, wherein the side link data includes newly transmitted data and/or retransmitted data.
  • Supplementary Note 14 The method according to any one of Supplementary Notes 1 to 13, wherein the DRX-related activation time is determined according to a DRX-related timer.
  • Supplementary Note 15 The method according to Supplementary Note 14, wherein the DRX-related timers include the DRX reception timer drx-onDurationTimer, the DRX deactivation timer drx-InactivityTimer, and the DRX retransmission timer drx-RetransmissionTimer. one or more.
  • Supplement 16 The method according to Supplement 15, wherein the resource for transmitting the retransmission data is located after the DRX Hybrid Automatic Repeat Request round-trip time timer drx-HARQ-RTT-Timer expires.
  • Supplementary note 17 The method according to supplementary note 15, wherein the activation or restart of the DRX deactivation timer or the DRX retransmission timer corresponds to the third one in the resources for sending side link data. resource, the first terminal device uses the third resource to send the sidelink data, or the first terminal device does not use the third resource to send the sidelink data, and the third The resources can be indicated by the resources preceding the third resource through side link control information.
  • Supplement 18 The method according to any one of Supplementary Notes 2 to 17, wherein the method further comprises: when M is less than N, the first terminal device re-determines the candidate resource set.
  • Supplement 19 The method according to Supplement 18, wherein the first terminal device re-determines the candidate resource set by adjusting a reference signal received power threshold.
  • Supplement 20 The method according to any one of Supplements 1 to 19, wherein the second terminal device is enabled for discontinuous reception.
  • Supplement 21 The method according to any one of Supplementary Notes 1 to 20, wherein the resources satisfying the condition include resources used for sending the side link data and resources not used for sending the side link data. resource.
  • a side link receiving method comprising:
  • the second terminal device receives the side link data sent by the first terminal device based on the resource that satisfies the following condition; the condition is: the resource is within the activation time related to the discontinuous reception of the second terminal device or can be used in the The resource before the resource is indicated by the side link control information;
  • the second terminal device starts or restarts a timer related to discontinuous reception based on the side link data.
  • Supplementary note 23 The method according to supplementary note 22, wherein the side link data includes newly transmitted data and/or retransmitted data.
  • Supplementary note 24 The method according to supplementary note 22 or 23, wherein the DRX-related activation time is determined according to a DRX-related timer.
  • Supplementary Note 25 The method according to any one of Supplementary Notes 22 to 24, wherein the DRX-related timers include a DRX reception timer drx-onDurationTimer, a DRX deactivation timer drx-InactivityTimer, and a DRX retransmission timer One or more of drx-RetransmissionTimer.
  • the DRX-related timers include a DRX reception timer drx-onDurationTimer, a DRX deactivation timer drx-InactivityTimer, and a DRX retransmission timer One or more of drx-RetransmissionTimer.
  • Supplementary note 26 The method according to supplementary note 25, wherein the resource for transmitting the retransmission data is located after the DRX Hybrid Automatic Repeat Request round-trip time timer drx-HARQ-RTT-Timer expires.
  • Supplementary note 27 The method according to supplementary note 25, wherein the activation or restart of the DRX deactivation timer or the DRX retransmission timer corresponds to a third resource in the resources for transmitting side link data,
  • the second terminal device receives the sidelink data on the third resource, or the second terminal device does not receive the sidelink data on the third resource, and the third resource
  • the resources that can be preceded by the third resource are indicated by the side link control information.
  • Supplementary note 28 The method according to any one of supplementary notes 22 to 27, wherein the second terminal device is enabled for discontinuous reception.
  • Supplement 29 The method according to any one of Supplementary Notes 22 to 28, wherein the resources satisfying the condition include resources used for sending the side link data and resources not used for sending the side link data. resource.
  • Supplement 30 The method according to supplementary notes 22 to 29, wherein the number M of resources used for transmitting side link data is less than or equal to the number N of target resources, which is greater than or equal to 1.
  • a communication system comprising a first terminal device and a second terminal device, wherein,
  • the first terminal device determines a resource for transmitting side link data, the resource satisfies the following condition: the resource is within the activation time associated with the discontinuous reception of the second terminal device or can be used within the resource
  • the previous resource is indicated by the side link control information;
  • the first terminal device sends sidelink data to the second terminal device based on the resource.
  • Supplement 32 The communication system according to Supplement 31, wherein the second terminal device receives the side link data sent by the first terminal device, and starts or restarts the Continuously receive the associated timer.
  • a terminal device comprising a memory and a processor, wherein the memory stores a computer program, the processor is configured to execute the computer program to implement the side according to any one of Supplementary Notes 1 to 21 The link sending method, or the side link receiving method described in any one of Supplementary Notes 22 to 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种边链路发送,接收方法以及装置。该边链路发送装置配置于第一终端设备,该装置包括: 确定单元,其用于确定用于发送边链路数据的资源,该资源满足以下条件: 该资源在第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示; 发送单元,其用于基于该资源向该第二终端设备发送边链路数据。

Description

边链路发送,边链路接收方法及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
边链路(sidelink)是发送设备与接收设备之间的直连链路,发送设备可以通过边链路(sidelink)与接收设备直接进行通信。目前已经被3GPP标准化的边链路通信包括D2D(Device to Device)和V2X(Vehicle to Everything)。未来边链路通信将被扩展到更多的设备类型,例如VR(Virtual Reality)设备、IoT(Internet of Things)设备等。未来边链路的标准化主要会基于V2X标准进行演化和增强,以下对V2X标准进行介绍。
对于与车辆通信相关的技术,包括V2X(Vehicle to Everything)、P2X(Pedestrian to Everything)等等(以下也可以统称为V2X),发送设备可以通过边链路(sidelink)与接收设备直接进行通信。目前长期演进(LTE,Long Term Evolution)和新无线(NR,New Radio)***都支持V2X通信,即LTE V2X和NR V2X。
对于边链路,边链路控制信息(SCI,Sidelink Control Information)由物理边链路控制信道(PSCCH,Physical Sidelink Control Channel)承载,边链路数据信息由物理边链路共享信道(PSSCH,Physical Sidelink Shared Channel)承载,边链路反馈信息(ACK/NACK)由物理边链路反馈信道(PSFCH,Physical Sidelink Feedback Channel)承载。LTE V2X定义了PSCCH、PSSCH。NR V2X定义了PSCCH、PSSCH和PSFCH。
在车联网(V2X,Vehicle to Everything)通信中,支持边链路(Sidelink)资源的两种分配方式:对于第一种方式,边链路资源由网络设备(例如基站)进行分配而获得,LTE V2X将其称为Mode 3,NR V2X将其称为Mode 1;对于第二种方式,终端设备自主地选择发送资源,即发送资源通过感知(sensing)或检测,以及资源选择过程获得,LTE V2X将其称为Mode 4,NR V2X将其称为Mode 2。
边链路中的发送设备可以基于感知(sensing)结果,自主地对用于信息发送的时频资源进行选择。其中,感知包括监听(monitor)SCI、测量参考信号接收功率(RSRP,Reference Signal Received Power)和/或测量接收信号强度指示(RSSI,Received Signal Strength Indicator)等。通过感知,可以在资源选择时避开已经被其他设备预留的资源,因此可以避免与其他设备的边链路传输发生碰撞,从而避免干扰。
对于自主资源选择,现有技术包括以下方案:全部感知、部分感知(partial sensing)和随机选择(random selection)。对于全部感知,设备在每个子帧或时隙进行感知,可以有效避免干扰,但持续感知意味着持续的功率消耗,虽然这对于V2X中的车辆设备而言问题不大,但对于P2X中的行人设备,设备功耗也是需要考虑的重要因素。对于部分感知,设备不需要在每个子帧或时隙进行感知,而仅需要在部分子帧或时隙进行感知,这有利于降低设备功耗(power reduction),例如,对于不具备充足电源供应的P2X中行人的发送设备,可以大大节省功率。对于随机选择,设备可以完全不进行感知。这三种方法在不同程度上在避免干扰和节省功率之间进行了折中。LTE V2X支持全部感知、部分感知和随机选择。NR V2X目前没有提供对部分感知的支持。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
节省功率对于没有持续电源供应的边链路设备而言非常重要。非连续接收(DRX,Discontinuous Reception)是节省功率的有效方法,对于Uu DRX,接收设备不需要持续接收物理下行控制信道(PDCCH),只需要在激活时间内接收PDCCH,其他时间可以选择进入休眠,因此,可以大大降低功耗。
发明人发现:基于DRX实现节省功率是边链路的重要设计目标之一。例如,根据Rel-17边链路的立项文件(WID,work item description),需要对边链路非连续接收(DRX,Discontinuous Reception)进行研究。由于在边链路上特别是针对Mode 2,用于发送的资源不再由网络设备分配,而是由发送设备(Tx UE)自行确定,目前没有针对边链路DRX机制下如何进行资源确定的解决方案。
针对上述问题的至少之一,本申请实施例提供一种边链路发送,边链路接收方法及装置。
根据本申请实施例的一个方面,提供一种边链路发送方法,包括:
第一终端设备确定用于发送边链路数据的资源,该资源满足以下条件:该资源在第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
该第一终端设备基于该资源向该第二终端设备发送边链路数据。
根据本申请实施例的另一个方面,提供一种边链路接收方法,包括:
第二终端设备接收第一终端设备基于满足以下条件的资源发送的边链路数据;该条件为:该资源在该第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
该第二终端设备基于该边链路数据启动或重启非连续接收相关的定时器。
根据本申请实施例的另一个方面,提供一种边链路发送装置,配置于第一终端设备,包括:
确定单元,其用于确定用于发送边链路数据的资源,该资源满足以下条件:该资源在第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
发送单元,其用于基于该资源向该第二终端设备发送边链路数据。
根据本申请实施例的另一个方面,提供一种边链路接收装置,配置于第二终端设备,包括:
接收单元,其用于接收第一终端设备基于满足以下条件的资源发送的边链路数据;该条件为:该资源在该第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
处理单元,其用于基于该边链路数据启动或重启非连续接收相关的定时器。
根据本申请实施例的另一个方面,提供一种通信***,包括:
该第一终端设备确定用于发送边链路数据的资源,该资源满足以下条件:该资源在该第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
该第一终端设备基于该资源向该第二终端设备发送边链路数据。
本申请实施例的有益效果之一在于:在确定用于发送边链路数据的资源时,能够保证用于发送的资源位于接收设备非连续接收相关的激活时间内,或者能被之前的资源通过边链路控制信息指示。由此,可以避免进行无法被接收设备接收的边链路发送,从而可以节省功率、降低拥塞和减少对其他设备的干扰。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个 其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信***的示意图;
图2是本申请实施例的边链路发送方法的一示意图;
图3是本申请实施例的SCI链一示意图;
图4和图5是本申请实施例的激活时间一示意图;
图6A是本申请实施例的激活时间一示意图;
图6B是本申请实施例的Timer链一示意图;
图7A是本申请实施例的激活时间一示意图;
图7B是本申请实施例的Timer链一示意图;
图8是本申请实施例的资源选择过程确定的M个资源一示意图;
图9A和图9B是本申请实施例的资源抢占一示意图;
图9C至图9F是本申请实施例的资源重选过程确定的M个资源一示意图;
图10A和图10B是本申请实施例的资源重选过程确定的M个资源一示意图;
图11是本申请实施例的资源重选过程确定的M个资源一示意图;
图12是本申请实施例的资源选择/重选过程方法示意图;
图13至图15是本申请实施例的资源丢弃过程确定的M个资源一示意图;
图16是本申请实施例的边链路接收方法的一示意图;
图17是本申请实施例的边链路发送装置的一示意图;
图18是本申请实施例的边链路接收装置的一示意图;
图19是本申请实施例的网络设备的示意图;
图20是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信***中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信***中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的 地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信***的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信***100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
值得注意的是,图1示出了两个终端设备102、103均处于网络设备101的覆盖范围内,但本申请不限于此。两个终端设备102、103可以均不在网络设备101的覆盖范 围内,或者一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外。
在本申请实施例中,两个终端设备102、103之间可以进行边链路发送。例如,两个终端设备102、103可以都在网络设备101的覆盖范围之内进行边链路发送以实现V2X通信,也可以都在网络设备101的覆盖范围之外进行边链路发送以实现V2X通信,还可以一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外进行边链路发送以实现V2X通信。
在本申请实施例中,终端设备102和/或103可以自主选择边链路资源(即采用Mode2),在这种情况下边链路发送可以与网络设备101无关,即网络设备101是可选的。当然,本申请实施例也可以将自主选择边链路资源(即采用Mode 2)和由网络设备分配边链路资源(即采用Mode 1)结合起来;本申请实施例不对此进行限制。
在V2X中,终端设备能够通过感知检测+资源选择的过程来获得边链路发送资源,其中可以通过感知(sensing)来获得资源池内资源的占用情况。例如,终端设备可以根据前一段时间内(称为感知窗)的资源占用情况来估计后一段时间内(称为选择窗)的资源占用情况。关于NR V2X中感知检测+资源选择的过程,还可以参考现有技术。
NR V2X标准支持抢占(pre-emption)、重评估(re-evaluation),在资源选择后可以对已选资源进行再次确认,当已选资源不再适合发送时触发资源重选,从而选择更加合适的资源进行发送。抢占应用于已经被预留的资源,如果发现其不再属于候选资源集合并且满足抢占的优先级条件(发送优先级低于抢占业务的优先级,或者,发送优先级低于抢占业务的优先级,并且抢占业务的优先级高于某一门限),则触发资源重选。重评估应用于未被预留的资源,如果发现其不再属于候选资源集合,则触发资源重选。
NR V2X标准支持丢弃某次发送。丢弃可以是由于优先级比较造成的,根据优先级规则(例如TS 38.213V16.4.0的16.2.4节、TS 36.321的5.4.2.2节、TS 38.321V16.3.0的5.4.2.2节),低优先级的发送会被丢弃。丢弃可能触发资源重选,也可能不触发资源重选。丢弃也可以是由拥塞造成的。当设备的信道占用率过高时,设备可以丢弃某次发送。
在本申请实施例中,以V2X为例对边链路进行说明,但本申请不限于此,还可以适用于V2X以外的边链路发送场景。在以下的说明中,在不引起混淆的情况下,术语“边链路”和“V2X”可以互换,术语“PSFCH”和“边链路反馈信道”可以互换,术语“PSCCH”和“边链路控制信道”或“边链路控制信息”可以互换,术语“PSSCH”和“边链路数据信道” 或“边链路数据”也可以互换。
另外,发送(transmitting)或接收(receiving)PSCCH可以理解为发送或接收由PSCCH承载的边链路控制信息;发送或接收PSSCH可以理解为发送或接收由PSSCH承载的边链路数据;发送或接收PSFCH可以理解为发送或接收由PSFCH承载的边链路反馈信息。边链路发送(Sidelink transmission,也可称为边链路传输)可以理解为PSCCH/PSSCH发送或者边链路数据/信息发送。
目前,对于NR终端设备自主选择边链路资源时,需要保证被选择的资源数等于目标资源数N,例如,优先选择资源满足能被在该资源之前的资源通过边链路控制信息指示,如果在无法选择出N个资源时,也可以选择不能被在该资源之前的资源通过边链路控制信息指示的资源,现有的资源选择方法没有考虑接收设备的DRX配置,因此,会出现选择出的资源没有位于接收设备DRX相关的激活时间内,因此,无法被接收设备接收这一问题,进而会导致增加功耗,增加对其他设备的干扰以及加剧拥塞,另外,在无法被接收设备接收的资源上发送边链路数据,也意味着发送设备需要在之前就进行感知,这部分感知也会增加功耗。
针对上述问题的至少之一,本申请实施例提出了一种边链路发送方法,在确定用于发送边链路数据的资源时,还考虑了接收设备的DRX配置,即能够保证用于发送的资源位于接收设备非连续接收相关的激活时间内,或者能被之前的资源通过边链路控制信息指示。由此,可以避免进行无法被接收设备接收的边链路发送,从而可以节省功率、降低拥塞和减少对其他设备的干扰。
以下结合实施例进行说明。
第一方面的实施例
本申请实施例提供一种边链路非连续接收方法,从第一终端设备进行说明。其中第一终端设备可以向第二终端设备发送边链路数据,因此,第一终端设备需要确定边链路数据的发送资源。从边链路数据发送的角度,本申请实施例的第一终端设备为发送设备,第二终端设备为接收设备,该第二终端设备可以是使能了DRX的接收设备,使能了DRX表示,终端设备可以在边链路上处于激活(active)或开启(on)状态,在该状态下终端设备在对应的资源上进行边链路相关的信道检测和接收;终端设备还可以在边链路上处于非激活(inactive)或关闭(off)状态,在该状态下终端设备可以不在对应的资源上进行边链路相关的信道检测和接收。本申请实施例不限于此,关于DRX机制还可以 参考相关技术。
图2是本申请实施例的边链路发送方法的一示意图,如图2所示,该方法包括:
201,第一终端设备确定用于发送边链路数据的资源,该资源满足以下条件:该资源在第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
202,该第一终端设备基于该资源向该第二终端设备发送边链路数据。
值得注意的是,以上附图2仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图2的记载。
在一些实施例中,该第一终端确定用于发送边链路数据的资源,其中,确定该资源可以是在资源选择的过程中,或者在资源重选的过程中,或者在资源丢弃的过程中,后述将分别对上述过程中如何确定该资源进行说明,以下先对该资源满足的条件进行说明。
在一些实施例中,该条件可以是:该资源在第二终端设备的非连续接收相关的激活时间内,并且能被在该资源之前的资源通过边链路控制信息指示;或者,该资源在第二终端设备的非连续接收相关的激活时间内,但不能被在该资源之前的资源通过边链路控制信息指示;或者,该资源不在第二终端设备的非连续接收相关的激活时间内,但能被在该资源之前的资源通过边链路控制信息指示。这样,在该资源位于该激活时间内时,能够被接收设备接收,即使该资源不位于该激活时间内,但如果能够被在该资源之前的资源通过边链路控制信息指示,接收设备也能够基于该SCI知晓该资源的存在,从而能够被该接收设备接收,该条件意味着要避免确定的资源既不在激活时间内,又不能被在该资源之前的资源通过边链路控制信息指示,由此,可以避免进行无法被接收设备接收的边链路发送,从而可以节省功率、降低拥塞和减少对其他设备的干扰。
在一些实施例中,该资源能被在该资源之前的资源通过边链路控制信息指示,也可以看作该资源是被之前的SCI指示,例如,第一终端设备可以向该第二终端设备发送SCI,该第二终端设备在时间单元
Figure PCTCN2021071923-appb-000001
中接收到SCI(资源m),资源m可以看作是之前的资源,该SCI属于资源m上的新传或重传,该资源可以是SCI中时域资源分配(time resource assignment)字段指示的与资源m同一周期内的资源m 1,也可以是SCI中资源预留周期(resource reservation period)字段指示的位于该周期后的周期内的资源m 2,也就是说资源m就是资源m 1,m 2之前的资源,资源m 1,m 2,就是能被之前的资源m通过SCI 指示,该资源m 1,m 2也可以被称为被之前的SCI指示的预留资源。其中,该资源可以是用于发送重传的资源,也可以是用于发送新传的资源;当该资源是用于发送重传的资源时,该资源能被之前的SCI中的时域资源分配(time resource assignment)字段指示,该SCI属于同一个周期内之前的某次重传或新传,或者,该资源能被之前的SCI中的资源预留周期(resource reservation period)字段(简称周期字段)指示,该SCI属于前一个周期的重传。当该资源是用于发送新传的资源时,该资源能被之前的SCI中的资源预留周期字段指示,该SCI属于前一个周期的新传。在不产生歧义的条件下,以下“新传”和“初传”可以互换使用。
以下为方便说明,使用“SCI链”抽象描述资源是否能被之前的资源通过边链路控制信息指示,图3是SCI链示意图,如图3所示,图3是SCI链示意图,如图3所示,当该资源是重传资源时(例如图中资源4),该资源能被之前的SCI中的时域资源分配(time resource assignment)字段指示,该SCI属于之前的资源3上重传或初传,或者,该资源能被之前的SCI中的资源预留周期(resource reservation period)字段指示,该SCI属于前一个周期的资源2上的重传。当该资源是新传资源时(例如图中资源3),该资源能被之前的SCI中的资源预留周期字段指示,该SCI属于前一个周期内资源1上的新传。也就是说,资源3能被资源1通过SCI指示,资源4能被资源2或资源3通过SCI指示,资源2能被资源1通过SCI指示,但资源1不能被之前的资源通过SCI指示,也可以简称为资源3,4,2能够被之前的SCI指示(有链),资源1不能被之前的SCI指示(没有链,链断裂)。
在一些实施例中,前述SCI可以是一个SCI,也可以是在不同资源上检测到的至少两个SCI,但本申请并不以此作为限制。
在一些实施例中,该资源可以在第二终端设备的非连续接收相关的激活时间内,表示该资源在时域上的起始位置和结束位置都位于该激活时间内,该非连续接收相关的激活时间根据非连续接收相关的定时器确定,该非连续接收相关的定时器包括DRX接收定时器drx-onDurationTimer、DRX去激活定时器drx-InactivityTimer、DRX重传定时器drx-RetransmissionTimer中的一个或多个,例如该激活时间可以是上述DRX接收定时器drx-onDurationTimer、DRX去激活定时器drx-InactivityTimer、DRX重传定时器drx-RetransmissionTimer中的一个的运行时间或多个的运行时间的并集。
在一些实施例中,drx-onDurationTimer是用于DRX周期内的监控边链路传输的定时器,在接收到PSCCH或PSSCH初传时启动或重启drx-InactivityTimer,在PSFCH上 反馈未正确接收(NACK)时,接收设备在发送NACK后的第一个符号启动DRX混合自动重传请求(Hybrid Automatic Repeat request,HARQ)往返时间定时器drx-HARQ-RTT-Timer,并停止drx-RetransmissionTimer,如果没有成功接收,则终端设备在drx-HARQ-RTT-Timer到期后的第一个符号启动drx-RetransmissionTimer。其中,用于发送重传数据的资源位于drx-HARQ-RTT-Timer到期后,对于上述定时器的运行时间长度可以是第一终端设备配置的,也可以是网络设备侧配置的,也可以是预配置的,本申请实施例并不以此作为限制,其可以以包含的时隙个数计算,也可以转换成对应的毫秒值,具体可以参考现有技术,此处不再赘述。
在一些实施例中,该drx-InactivityTimer或该drx-RetransmissionTimer的启动或重启对应该用于发送边链路数据的资源(M个资源)中的第三资源,该第三资源可以用于实际的边链路数据发送;也可以不用于边链路发送,但可以通过之前的SCI指示,即:该第一终端设备使用该第三资源发送该边链路数据;或者,该第一终端设备不使用该第三资源发送该边链路数据,且该第三资源能被在该第三资源之前的资源通过边链路控制信息指示。也就是说,上述定时器的启动或重启是以一个资源为参考确定的,针对M个资源中的第三资源,可以启动或重启上述定时器,该第三资源可以是M个资源中的一个资源或多个资源或全部资源,即并不一定对M个资源中的每个资源都启动或重启上述定时器,本申请实施例并不以此作为限制。
以下对该激活时间进行说明。
在一些实施例中,该激活时间包括drx-onDurationTimer的运行时间,图4是基于边链路drx-onDurationTimer确定的开启(on)和关闭(off)的持续时间(duration)示意图,drx-onDurationTimer运行期间属于激活时间,在该运行期间,接收设备处于激活状态,可以进行PSCCH或PSSCH接收,drx-onDurationTimer运行时间也可以称为“on”的持续时间,除“on”之外的持续时间简称为“off”的持续时间,在“off”持续时间,接收设备可以进入非激活状态或休眠状态,从而达到省电的目的。每个DRX周期包括on和off的持续时间,通过周期性重复形成如图4所示的on/off图样,也称为激活/非激活图样。接收设备周期性地在DRX周期内启动和关闭drx-onDurationTimer。
在一些实施例中,可以通过对drx-onDurationTimer的“on”的持续时间进行扩展,使得接收设备在“off”持续时间内也可以进行PSCCH或PSSCH接收,例如通过drx-InactivityTimer和drx-RetransmissionTimer的运行时间对drx-onDurationTimer的“on”的持续时间进行扩展,以下举例说明。
图5是基于边链路drx-onDurationTimer和drx-InactivityTimer确定的激活时间示意图,如图5所示,接收设备在drx-onDurationTimer运行时间内(简称在drx-onDurationTimer内)接收到PSCCH/PSSCH初传,接收设备启动(start)或重新启动(restart)drx-InactivityTimer。drx-InactivityTimer运行期间也属于激活时间,相当于drx-InactivityTimer扩展了“on”持续时间。接收设备可以在drx-InactivityTimer内进行PSCCH或PSSCH接收,例如接收设备可以在这段时间内等待接收后续可能的重传。
图6A和图7A是进一步结合drx-RetransmissionTimer确定的激活时间示意图,如图6A所示,drx-RetransmissionTimer运行时间也属于激活时间,接收设备可以进行PSCCH或PSSCH接收,例如,接收设备可以在这段时间内等待接收后续可能的重传。在drx-HARQ-RTT-Timer期间,接收设备可以进入非激活状态,但对于drx-HARQ-RTT-Timer与drx-onDurationTimer、drx-InactivityTimer运行期间存在重叠的时间,由于drx-onDurationTimer、drx-InactivityTimer仍在运行,因此,接收设备在重叠的时间内仍处于激活状态。在接收到PSCCH/PSSCH初传(1)之后,接收设备在由drx-onDurationTimer、drx-InactivityTimer和drx-RetransmissionTimer确定的激活时间内可以继续接收重传。由于此时drx-onDurationTimer、drx-InactivityTimer和drx-RetransmissionTimer都在运行,激活时间是三者运行时间的并集。假设接收设备在drx-onDurationTimer、drx-InactivityTimer和drx-RetransmissionTimer运行时间接收到PSCCH/PSSCH重传(2),并发送NACK。同样地,接收设备在发送NACK后的第一个符号启动drx-HARQ-RTT-Timer,并停止drx-RetransmissionTimer。接收设备在drx-HARQ-RTT-Timer到期后的第一个符号启动drx-RetransmissionTimer。接收设备在发送针对重传(2)的NACK后,在与drx-InactivityTimer不重叠的drx-HARQ-RTT-Timer内经历一段非激活时间,然后进入由drx-RetransmissionTimer确定的激活时间。由于此时drx-onDurationTimer和drx-InactivityTimer已经到期,因此,激活时间仅由drx-RetransmissionTimer确定。假设接收设备在该激活时间内又接收到重传(3)并反馈NACK,则接收设备仍然按照之前所述的方法,确定非激活时间和激活时间。假设接收设备在该激活时间内接收到重传(4)并且反馈ACK,即已经成功接收,则接收设备启动drx-HARQ-RTT-Timer,但不再启动drx-RetransmissionTimer。激活/非激活图样1基于drx-onDurationTimer确定,即为原始的“on”/“off”图样。激活/非激活图样2基于drx-onDurationTimer、drx-InactivityTimer、drx-RetransmissionTimer和drx-HARQ-RTT-Timer确定。相比于图样1,图样2相当于将“on”持续时间进行了扩展,将“on”持续时间扩展到了“off”持续时间内。资源(1)~(4) 是前述确定的资源,初传(1)位于drx-onDurationTimer内;重传(2)~(4)位于drx-InactivityTimer和/或drx-RetransmissionTimer内,因此,资源(1)~(4)都位于激活时间内。如图7A所示,与图6A的不同之处在于,由于drx-InactivityTimer定时器的运行时间不同,从而导致激活/非激活图样不同。
以下为方便说明,使用“Timer链”抽象描述资源是否在激活时间内,图6B和图7B是Timer链示意图,如图6B所示,该Timer链对应图6A中的激活/非激活图样2,即将图6A中资源(1)~(4)位于激活时间内表示为图6B中资源(1)~(4)位于T 0~T 3的形式。激活时间可以看作T 0~T 3的叠加结果,资源位于T i(i=0,1,2,3,…)(构成Timer链)内是资源位于激活时间内的等价表述。其中,初传(1)位于drx-onDurationTimer内,表示为位于T 0内,T 0为一段由drx-onDurationTimer确定的激活时间。基于初传(1)可以确定一段最长激活时间T 1。T 1从初传(1)后的第一个符号开始,持续时间包括drx-onDurationTimer、drx-InactivityTimer和drx-RetransmissionTimer的运行期间。T 1是基于当前情况对最长激活时间的估计,可以看作是一种局部激活时间。如果接收设备在T 1内没有接收到重传,则会在T 1后进入非激活状态。实际上,重传需要位于drx-HARQ-RTT-Timer到期之后,因此,接收设备只能在T 1的一部分时间内接收重传。T 1时间波形的“on”持续时间示出了T 1内能够接收重传的时间。只要重传位于这部分“on”持续时间,就能被接收设备接收,以下将其简称为重传位于T 1内。重传(2)位于T 1内,因此,能够被接收设备接收。当重传(2)位于T 1内时,无论重传(2)能否被初传(1)的SCI指示,重传(2)均能被接收设备接收。类似地,基于重传(2)、(3)可以分别确定最长激活时间T 2、T 3。这里T 1、T 2、T 3描述的是接收设备在接收到HARQ重传(1)、(2)、(3)后,基于当时情况对最长激活时间的估计。随着重传的进行,对最长激活时间的估计是一个不断更新的过程,也就是说T 2会更新T 1,T 3会更新T 2等等,T i(i=0,1,2,3,…)的取值不一定彼此相等。图6B示出的是对局部的激活时间的估计。图6A中的图样2示出的是实际发生的全局的激活时间,图6B中,初传位于drx-onDurationTimer内,重传均位于前次传输所确定的最长激活时间内,因此,初传和重传都能够被接收设备接收。
同样的,图7B中Timer链对应图7A中的激活/非激活图样,由于图6A和图7A的drx-InactivityTimer不同导致激活/非激活图样不同,因此,图7B与图6B中的T i(i=0,1,2,3)不同,在图7B中,T 1≠T 2,图6B中,T 1=T 2
在图6B和图7B中的Timer链以前述三个定时器同时存在为例进行说明,但本实施例并不以此作为限制,例如,针对图4中基于一个定时器确定激活时间的实施方式,Timer 链中仅存在T 0,针对图5中基于两个定时器确定激活时间的实施方式,也存在相应的T i(i=0,1,2,3,…),另外,针对基于其他定时器组合的方式确定的激活时间,也存在相应的T i(i=0,1,2,3,…),此处不再一一举例。
需要说明的是,如图6B和7B所示,发送设备在确定资源时未接收到ACK/NACK,在确定T i(i=0,1,2,3,…)时,以上示例假设PSFCH上发送的是NACK,但本实施例并不以此作为限制。另外,以上图6A,图6B,图7A,图7B中激活时间的确定的前提是存在基于PSFCH的ACK/NACK反馈,但本申请实施例也适用于不存在PSFCH的情况,例如,当不存在PSFCH时,相应的,不会启用drx-HARQ-RTT-Timer,由于此时drx-onDurationTimer、drx-InactivityTimer和drx-RetransmissionTimer都在运行,激活时间是三者运行时间的并集,局部激活时间仍然可以通过使用T i(i=0,1,2,3,…)的方式进行抽象和描述。
另外,需要说明的是,以上以接收设备在每次接收初传/重传后都启动相应的定时器为例进行说明,但本申请实施例并不以此作为限制,前述定时器也可以不是在每次接收后就启动,而是在满足预定条件下才启动,例如,如果接收到的SCI指示了下一个预留的资源,则接收设备可以不启动定时器。这里的定时器可以是drx-onDurationTimer、drx-InactivityTimer和drx-RetransmissionTimer中的任何一种,此处不再一一举例。
另外,前述“SCI链”和“Timer链”并不是指真实存在的链,其仅为是为了便于理解,而对资源满足的条件进行的抽象说明,其并不构成对本申请实施例的限制。
以下结合“SCI链”和“Timer链”以及图8说明满足前述条件的资源,图8是确定满足条件的资源示意图,如图8所示,在SCI链中,资源2,3,5能够被之前的SCI指示,资源1,4不能被之前的SCI指示,在Timer链中,资源1,2,3,4,5都位于Timer链内(即位于激活时间内),也就是说资源1,2,3,4,5都满足前述条件。
在一些实施例中,用于发送边链路数据的资源的数量M小于或等于目标资源的数量N,该目标资源的数量N大于或等于1,目标资源的数量N也可以称为被要求选择的资源的数量,或已经选择的资源的数量。与现有方法的不同之处在于,在现有方法中,发送设备一定会确定出N个资源,例如,优先选择资源满足能被在该资源之前的资源通过边链路控制信息指示,如果在无法选择出N个资源时,也可以选择不能被在该资源之前的资源通过边链路控制信息指示的资源,在本申请实施例中,由于确定的资源需要满足前述条件,无法保证发送设备一定会选择出N个资源,因此,可以确定M个资源,其中M≤N,并且M是能满足上述条件的最大值。
在一些实施例中,该第一终端确定用于发送边链路数据的M个资源,其中,确定该资源可以是在资源选择的过程中,或者在资源重选的过程中,或者在资源丢弃的过程中,以下分别对上述过程中如何确定该资源进行说明。
(一)资源选择过程中确定M个资源
在一些实施例中,该目标资源的数量N是高层确定的待选择的资源数或HARQ重传数(例如媒体接入控制层MAC层选择的HARQ重传次数,包括初传在内,该次数是无线资源控制层参数sl-MaxTxTransNumPSSCH所允许的数值之一,即小于等于sl-MaxTxTransNumPSSCH),并且,该第一终端设备确定M个资源包括:从候选资源集合中选择M个资源,例如第一终端设备的MAC层从物理层上报的该候选资源集合中选择M个资源,由于候选资源集合可能不包括足够的能够满足该条件的资源,因此,无法选择出N个资源,只能选择出M个满足该条件的资源。
在一些实施例中,该第一终端设备确定M个资源包括:从候选资源集合中选择N个资源,例如第一终端设备的MAC层从物理层上报的该候选资源集合中选择N个资源,具体可以参考现有技术,然后再从N个资源重选或丢弃不满足条件的资源,以得到M个满足该条件的资源。
需要说明的是,在不产生混淆的前提下,如前所述的资源选择可以包括资源重选,即针对前述实施方式,本申请可以对资源选择和资源重选不作区分。
以下对资源重选和资源丢弃的过程进行说明。
在一些实施例中,由于资源重选和/或资源丢弃可能会导致已选择的N个资源中出现不满足条件的第二资源,该第一终端设备确定用于发送边链路数据的资源的步骤包括:该第一终端设备从已选择的资源中丢弃第二资源或对第二资源进行重选,以得到该用于发送边链路数据的资源。
也就是说,以上对第二资源的丢弃或重选都不是基于现有技术的触发条件,而是基于新的触发条件。更具体地,该新的触发条件为:第二资源不满足前述条件,即既不位于激活时间内,也不能被之前的SCI指示。换句话说,如果某一资源既不位于激活时间内,也不能被之前的SCI指示,则该资源被丢弃或者被重选。
在一些实施例中,在发生了抢占,重评估,优先级比较中的至少一种时,该第一终端设备对第一资源进行重选(对应资源重选过程),该第二资源不满足该条件是由于对该第一资源进行重选导致的。也就是说,资源重选的过程包括:对第一资源进行重选和/或对第二资源进行重选和/或丢弃第二资源。
在一些实施例中,在发生了抢占,拥塞,重评估,优先级比较中的至少一种时,该第一终端设备丢弃第一资源(对应资源丢弃过程),该第二资源不满足该条件是丢弃该第一资源进行重选导致的。也就是说,资源丢弃的过程包括:丢弃第一资源和/或丢弃第二资源和/或对第二资源进行重选。以下结合(二)和(三)进行详细说明
(二)资源重选过程中确定M个资源
在一些实施例中,已选择的资源的数量等于前述目标资源的数量N,即发送设备已经选择了N个满足条件的资源,该N个资源可以用于重传和/或初传,但由于抢占(pre-emption)或重评估(re-evaluation)或优先规则触发了资源重选时,该第一终端设备确定M个资源包括:从候选资源集合中重选一个或多个资源。在现有方法中,资源重选时,需要保证被重选的资源和未被重选的资源数等于N,与现有方法的不同之处在于,在本申请实施例中,为了保证重选后确定的资源满足前述条件,无法保证发送设备一定会重选得到N个资源,因此,资源重选后得到M个资源,其中M≤N,并且M是能满足上述条件的最大值。其中,重选后得到的M个资源包括被重选的资源和/或未被重选的资源,另外,重选后得到的M个资源中的有些资源可以不被用于实际发送边链路数据。
在一些实施例中,该第一终端设备重选用于发送边链路数据的资源包括对第一资源进行重选和/或对第二资源进行丢弃和/或对第二资源进行重选。其中,对第一资源进行的重选是由于第一资源被抢占或被重评估或基于优先规则被丢弃导致的,该第二资源不在第二终端设备的非连续接收相关的激活时间内,也不能被在该第二资源之前的资源通过边链路控制信息指示,也就是说该重选的过程包括:该第一终端设备对该第一资源进行重选和/或丢弃掉不满足前述条件的第二资源和/或对不满足前述条件的第二资源进行重选,其中,不满足前述条件的第二资源可能是由于第一资源被重选导致的,以下分别进行举例说明。
以下先对由于抢占触发的重选过程进行举例说明。
在一些实施例中,被抢占的第一资源会导致第二资源不满足前述条件,或者说被抢占的第一资源导致SCI链和Timer链断裂,进而导致第二资源的SCI链和Timer链断裂;图9A是发送设备已选择的N=5个资源示意图,如图9A所示,该5个资源满足前述条件,但由于资源2(第一资源)被抢占,所以发送设备不能在资源上进行边链路数据的发送,也可以称为取消在资源2上的边链路数据的发送,也可以称为丢弃资源2。图9B是丢弃资源2后剩余资源示意图。drx-InactivityTimer或drx-RetransmissionTimer的启动 或重启对应用于发送边链路数据的资源(M个资源)中的第三资源,一种情况,该第三资源可以用于实际的边链路数据发送;另一种情况,该第三资源也可以不用于边链路发送,但可以通过之前的SCI指示。如图9B所示,虽然没有在资源2(第三资源)上发送,但资源1的SCI能够指示资源2,对应被指示的资源2,仍然能够启动drx-RetransmissionTimer,从而得到T 2,因此,Timer链也包括T 2。如图9B所示,由于丢弃了资源2,会导致SCI链和Timer链断裂,例如,资源3(第二资源)不能被之前的SCI指示,也没有位于激活时间内,因此,资源3无法被接收设备接收,进而导致资源4和5(第二资源)也无法被接收。
在一些实施例中,该第一终端设备对被抢占的资源进行重选,使得重选后的M个资源仍然满足前述条件,使得重选出能够修复Timer链或SCI链的资源,或者说通过重选,使得N个资源中的部分资源(该部分资源由于被抢占的资源导致不属于Timer链或SCI链)重新属于Timer链或SCI链;图9C是资源重选一示意图,如图9C所示,例如对图9A中的资源2进行重选,得到资源2',该资源2'位于T 1内,且能够通过SCI指示资源3,或者资源3位于由资源2'确定的T 2'内,使得资源重选后,资源1,2',3,4,5满足前述条件,或者说,使得重选的资源能够修复断裂的SCI链和/或Timer链,或者说,通过资源重选使得资源3,4,5重新属于Timer链或SCI链。也即资源重选后最终获得的M个资源包括资源1,2',3,4,5。
在一些实施例中,在资源重选时,无法选出能够修复Timer链或SCI链的资源时,该第一终端设备可以丢弃该第二资源,其中,该第二资源是由于第一资源被抢占导致的不满足前述条件,也就是说第二资源是由于第一资源被抢占导致的不属于SCI链和/或Timer链;图9D是资源重选一示意图,如图9D所示,在资源重选时选择不出能够修复SCI链或Timer链的资源2',那么会导致资源3~5(第二资源)不能被接收,因此也取消在资源3~5上的发送,即丢弃资源2~5。如图9D所示,资源重选后最终获得的M个资源仅包括资源1。图9E是资源重选一示意图,如图9E所示,在资源重选时选择不出能够使全部资源维持SCI链或Timer链的资源2',但选出的资源2'能使部分资源维持SCI链或Timer链(例如资源1和2'),而资源3~5(第二资源)不能被接收,因此取消在资源3~5上的发送,即丢弃资源3~5。如图9E所示,资源重选后最终获得的M个资源包括资源1和资源2'。
在一些实施例中,该第一终端设备还可以对该第二资源进行重选,使得重选后获得的M个资源仍然满足前述条件,图9F是资源重选一示意图,如图9F所示,已选择N=5 个资源,由于资源2(第一资源)被抢占,那么会导致资源3~5(第二资源)不能被接收,因此,可以对资源2~5都进行重选(对第一资源和第二资源都进行重选),但在重选时无法选出满足上述条件的4个资源时,可以选择少于4个资源。这与现有技术中一定要保证重选出4个资源不同,图9F中资源重选后获得的M个资源为资源1、2’和3’,M小于N。
以上图9A至图9F以N个资源在同一周期内,用于HARQ重传为例进行说明,但本申请实施例并不以此作为限制,例如,该N个资源还可以分布在不同周期内,可以包括一个或多个新传资源和/或重选资源,图10A至图10C是资源重选示意图,如图10A所示,已选择的N=8个资源用于周期性发送,图10A中示出了4个业务周期,其中,资源1和2属于第一个周期,同理,资源3和4属于第二个周期,以此类推。资源1、3、5、7是每个周期内用于新传的资源,资源2,4,6,8是对应的用于重传的资源。SCI中的周期字段能指示下一个周期的资源,因此,用于新传的资源3、5、7也能被之前的SCI指示,具体指示关系如图10A中SCI链所示。资源1、7位于DRX的“on”持续时间内,即位于drx-onDurationTimer内。其他资源位于“off”持续时间内。在资源3、4(第一资源)被抢占时会导致资源5、6(第二资源)也无法被接收。因此,可以对资源3,4重选,此外,对资源5至6进行丢弃,或者对资源5至6进行重选。例如,发送设备可以对第一资源进行重选,对第二资源进行丢弃,如图10A所示,在对资源3、4进行重选时,没有找到能使资源重新满足条件的资源3’、4’,于是还要丢弃资源5和6。因此,资源重选后获得的M个资源为资源1、2、7、8。如图10B所示,重新选择的资源3’、4’仅能使资源1、2、3’、4’、7、8满足条件,因此,资源重选后获得的M个资源为资源1、2、3’、4’、7、8,丢弃了资源5、6。或者,例如发送设备可以对第一资源进行重选,对第二资源进行重选,如图10C所示,重选选择的资源3’、4’仅能使资源1、2、3’、4’满足条件,可以对不满足条件的资源5、6进行重选,重选后的资源5’、6’位于drx-onDurationTimer内,从而使得资源1、2、3’、4’、5’、6’满足条件,因此发送设备可以在资源1、2、3’、4’、5’、6’上进行发送。
以下对由于重评估触发的资源重选过程进行举例说明。
在一些实施例中,在对资源重评估后,未被SCI指示的资源不属于候选资源集合且评估值(例如测量的参考信号接收功率RSRP)不满足门限要求时,会对该资源(第一资源)进行重选,对第一资源进行重选会导致第二资源不满足前述条件,或者说该第一资源导致SCI链和Timer链断裂,进而导致第二资源的SCI链和Timer链断裂;图11 是资源重选一示意图,如图11所示,由于重评估的原因,资源4(第一资源)需要被重选,发送设备在对资源4进行资源重选时,无法选出使资源1~3、4'和5都满足上述条件的资源4',只能选出使资源1~3和4'满足上述条件的资源4',因此丢弃不满足上述条件的资源5。因此,资源重选后获得的M个资源为资源1~3和4'。又例如,发送设备对资源4和5(第一资源和第二资源)都进行资源重选。无法选出使资源1~3、4'和5'都满足上述条件的资源4'和5',只能选出使资源1~3和4'满足上述条件的资源4'。因此,资源重选后获得的M个资源为资源1~3和4'。
另外,由于优先规则触发的资源重选过程是指:基于优先规则比较后,取消低优先级的发送,即丢弃低优先级对应的发送资源,然后由于丢弃了该低优先级对应的发送资源,因此,会触发资源重选,该资源重选过程中确定M个资源的实施方式与前述由于抢占第一资源触发的资源重选过程类似,此处不再一一举例。
前述对第一资源进行重选,对第二资源进行丢弃,对第二资源进行重选可以单独实施,也可以组合实施,本申请实施例并不以此作为限制,例如可以对第一资源进行重选和对第二资源进行丢弃,或者对第一资源进行重选和对第二资源进行重选等,具体参考前述图9C至图9F,此处不再一一举例。
另外,本申请实施例对于SCI链断裂时如何重新确定激活时间不做限制。例如,仍然可以根据之前SCI的指示来确定导致断链的资源对应的最长激活时间T,此处不再赘述,例如,drx-InactivityTimer或drx-RetransmissionTimer的启动或重启对应用于发送边链路数据的资源(M个资源)中的第三资源,该第三资源也可以不用于边链路发送,但可以通过之前的SCI指示。具体可以参考图9B的实施方式,如图9B所示,虽然没有在资源2(第三资源)上发送,但资源1的SCI能够指示资源2,对应被之前SCI指示的资源2,仍然能够启动drx-RetransmissionTimer,从而得到T 2,因此Timer链也包括T 2
以上对资源选择过程和资源重选过程中如何确定M个资源进行说明,如前所述,为了保证选择/重选后确定的资源满足前述条件,无法保证发送设备一定会选择/重选得到N个资源,因此,资源选择/重选后得到M个资源,其中M≤N,并且M是能满足上述条件的最大值。在一些实施例中,为了提高传输的可靠性,在M小于N时,该方法还可以包括:(可选,未图示)该第一终端设备重新确定该候选资源集合,以便该第一终端设备重新在该候选资源集合中进行资源选择或重选,使得选择/重选得到满足前述条件的N个资源,其中,可以通过调整RSRP门限来重新确定候选资源集合。
图12是本实施例中资源选择/重选过程方法示意图,如图12所示,该方法包括:
1201,第一终端设备的物理层基于感知结果确定候选资源集合S A,将S A上报给高层;
1202,该第一终端设备的高层(例如,MAC层)进行以下操作:确定HARQ重传次数N;在S A中选择M个资源,M个资源中的每个资源满足前述条件,即位于激活时间内,或者能被之前的资源通过SCI指示;
例如,可以在S A中随机选择一个资源;如果发送周期业务,使用随机选择的资源来选择之后的一系列周期性资源;如果还需要发送一个或多个重传,在S A中剩余的资源内随机选择一个或多个资源,选择过程需要确保任何一个选择的资源或者位于激活时间内,或者能被之前的资源通过SCI指示;如果发送周期业务,使用随机选择的资源来选择之后的一系列周期性资源;对于选择的资源,时间上的第一个资源以及基于该资源选择的周期性资源是初传资源,其他的资源是重传资源。
1203,判断M与N的关系,在M=N时,结束资源选择,如果M<N,且S A中没有满足前述条件的资源可供选择时,执行1204;
1204,该第一终端设备调整RSRP门限,并返回1201,重新确定候选资源集合S A。例如,发送设备将RSRP门限提升XdB(例如X=3),由于放松了RSRP门限,更多的资源可以成为候选资源。第一终端设备在包含了更多资源的S A中选择资源,就有可能选出满足M=N的M个资源,即选出N个资源。如果仍然无法选出N个资源,发送设备可以继续重复上述操作1201-1204,即提升RSRP门限,重新确定候选资源集合S A,直到能够选出N个资源为止。
(三)资源丢弃过程中确定M个资源
在一些实施例中,已选择的资源的数量等于前述目标资源的数量N,即发送设备已经选择了N个满足条件的资源,该N个资源可以用于重传和/或初传,但由于优先规则(prioritization rule),或拥塞(congestion)会导致取消某些资源(以下称第一资源)上的发送,但不会触发资源重选。例如,基于优先规则比较后,当上行发送优先于边链路发送时,不进行边链路发送。又例如,当拥塞发生时,会取消某次发送。以下不能在资源上进行发送,也可以称为取消在资源上的发送,或丢弃(drop)发送,或丢弃(drop)资源。
由优先规则或拥塞导致的丢弃可以不触发资源重选。在现有方法中,只取消低优先级的发送或取消导致拥塞的发送。即丢弃低优先级对应的发送资源,或者丢弃导致拥塞 的发送资源,对于边链路DRX场景,当丢弃上述资源后,可能导致其他资源不满足前述条件,即也无法被使能了DRX的接收设备接收,因此也需要取消这些资源上的发送,或者说丢弃这些资源,或者对这些资源进行重选。以下举例进行说明。
在一些实施例中,该第一终端设备确定M个资源包括:该第一终端设备从该已选择的资源中丢弃第一资源和/或丢弃第二资源和/或对第二资源进行重选,以得到该用于发送边链路数据的M个资源,其中M小于N,并且M是能满足上述条件的最大值。例如在发生了拥塞或优先级比较中的至少一种时,该第一终端设备丢弃该第一资源。在丢弃该第一资源导致剩余资源中的第二资源不满足该条件时,该第一终端设备丢弃该第二资源,或者对该第二资源进行重选。
图13是一种资源丢弃过程示意图。发送设备已选择N个资源为1~5,其中资源1位于drx-onDurationTimer内,其他资源位于“off”持续时间内。假设发生了拥塞或者优先级比较中的至少一种原因导致发送设备不使用资源1(第一资源)进行发送,发送设备会丢弃资源1,接收设备由于没有接收到资源1,会在drx-onDurationTimer到期后进入非激活状态,无法接收后续的资源2~5(第二资源),或者说资源2~5不满足前述条件,也即丢弃资源1会导致SCI链和Timer链都发生断裂。因此,发送设备不在资源1上发送,则也相应地不在资源2~5上进行发送,也即丢弃资源2~5。作为另外一种实施方式(未图示),发送设备可以对不满足前述条件的资源2~5进行资源重选,假设重选后的资源2’、3’满足前述条件,则发送设备在资源2’、3’上进行发送。这里重选后的资源(2’、3’)的个数可以小于之前选择的资源(2、3、4、5)的个数。
图14是一种资源丢弃过程示意图。发送设备已选择N个资源为1~5,其中资源1位于drx-onDurationTimer内,其他资源位于“off”持续时间内。假设发生了拥塞或者优先级比较中的至少一种原因导致发送设备不使用资源4(第一资源)进行发送,发送设备会丢弃资源4,接收设备由于没有接收到资源4,会导致后续资源5(第二资源)不满足前述条件(不位于激活时间,也不能被之前的SCI指示),也即丢弃资源4会导致SCI链和Timer链都发生断裂。因此,发送设备不在资源4上发送,则也相应地不在资源5上进行发送,也即丢弃资源5。作为另外一种实施方式(未图示),发送设备可以对不满足前述条件的资源5进行资源重选,假设重选后的资源5’满足前述条件,则发送设备在资源5’上进行发送。
以上图13至图14以N个资源在同一周期内,用于HARQ重传为例进行说明,但本申请实施例并不以此作为限制,例如,该N个资源还可以分布在不同周期内,可以包 括一个或多个新传资源和/或重选资源,图15是资源丢弃过程一示意图,发送设备发送周期业务,资源1~4用于发送每个周期的新传。资源2~4能被之前的SCI中的周期字段指示。假设发生了拥塞或者优先级比较中的至少一种原因导致发送设备不使用资源2(第一资源)进行发送,发送设备丢弃资源2,会导致后续资源3(第二资源)不满足前述条件,即无法被之前的SCI指示,并且也没有位于激活时间(T 0、T 1)内,也即丢弃资源2会导致SCI链和Timer链都发生断裂。因此,发送设备不在资源2上发送,则也相应地不在资源3上进行发送,也即丢弃资源3。然而,由于资源4位于drx-onDurationTimer(T 0)内,也即资源4满足前述条件,所以资源4能被接收设备接收。因此,可以仍保留在资源4上的发送,不需要丢弃资源4。与之前类似,发送设备也可以对不满足前述条件的资源3进行资源重选。
前述丢弃第一资源,丢弃第二资源,对第二资源进行重选可以单独实施,也可以组合实施,本申请实施例并不以此作为限制,例如可以丢弃第一资源和第二资源,或者也可以丢弃第一资源和对第二资源进行重选等,具体参考前述图13至图15,此处不再一一举例。
如前所述,当丢弃或重选第一资源后,可能导致第二资源不满足前述条件,即也无法被使能了DRX的接收设备接收,因此除了丢弃或重选该第一资源和第二资源的实施方式外,还可以通过去使能丢弃或重选功能的方式禁止丢弃或重选第一资源,从而避免导致第二资源不满足前述条件。
在一些实施例中,该方法还可以包括:(可选,未图示)在满足预定条件时,该第一终端设备去使能丢弃或重选资源的功能。该预定条件是发生了抢占,拥塞,重评估,优先级比较中的至少一种,或者已选择的资源中有至少一个资源位于非激活时间内。但本申请实施例并不以此作为限制。
例如,当发送设备向使能了DRX的接收设备发送边链路数据时,用于发送边链路数据的资源位于激活时间内,或能被之前的SCI指示,但由于去使能(disable)丢弃或重选功能,所以发送设备不基于抢占、重评估、优先级比较以及拥塞进行丢弃或重选;可选的,还可以在已选择的N个资源中一个或多个资源位于非激活时间内,例如位于“off”持续时间内时,去使能丢弃或重选功能,但本申请实施例并不以此作为限制,此处不再一一举例。
由上述实施例可知,在201中,确定用于发送边链路数据的资源,该资源满足以下条件:该资源在第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资 源通过边链路控制信息指示,也就是说,发送设备在资源选择、资源重选以及基于某些原因的资源丢弃时,需要保证用于发送边链路数据的资源位于激活时间内,或者能被之前的资源通过SCI指示。
在一些实施例中,在202中,该第一终端设备基于该资源向该第二终端设备发送边链路数据,即该第一终端设备在M个资源中的至少一个资源上发送边链路数据,例如,该M个资源可以全部用于发送边链路数据,即在M个资源上向该第二终端设备发送边链路数据,或者,该M个资源中的一部分用于发送边链路数据,即在M个资源中的部分资源上向该第二终端设备发送边链路数据,该边链路数据可以是新传数据和/或重传数据,本申请实施例并不以此作为限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,发送设备在确定用于发送边链路数据的资源时,能够保证用于发送的资源位于接收设备非连续接收相关的激活时间内,或者能被之前的资源通过边链路控制信息指示。由此,可以避免进行无法被接收设备接收的边链路发送,从而可以节省功率、降低拥塞和减少对其他设备的干扰。
第二方面的实施例
本申请实施例提供一种边链路接收方法,从第二终端设备进行说明,与第一方面的实施例相同的内容不再赘述,该第二终端设备是使能了DRX的设备。
图16是本申请实施例的边链路接收方法的一示意图,如图16所示,该方法包括:
1601,第二终端设备接收第一终端设备基于满足以下条件的资源(M个资源)发送的边链路数据;该条件为:该资源在该第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
1602,该第二终端设备基于该边链路数据启动或重启非连续接收相关的定时器。
在一些实施例中,该条件的具体含义以及该资源的确定方式请参考第一方面的实施例,重复之处不再赘述。
在一些实施例中,在1601中,该第一终端设备在M个资源中的至少一个资源上发送边链路数据,例如,该M个资源可以全部用于发送边链路数据,第二终端设备在M个资源上接收边链路数据,或者,该M个资源中的一部分用于发送边链路数据,即该 第二终端设备在M个资源中的部分资源上接收边链路数据,该边链路数据可以是新传数据和/或重传数据,本申请实施例并不以此作为限制。
在一些实施例中,在1602中,该非连续接收相关的定时器包括DRX接收定时器drx-onDurationTimer、DRX去激活定时器drx-InactivityTimer、DRX重传定时器drx-RetransmissionTimer中的一个或多个。
在一些实施例中,drx-onDurationTimer是用于DRX周期内的监控边链路传输的定时器,在接收到PSCCH或PSSCH初传时启动或重启drx-InactivityTimer,在PSFCH上反馈未正确接收(NACK)时,接收设备在发送NACK后的第一个符号启动DRX混合自动重传请求(Hybrid Automatic Repeat request,HARQ)往返时间定时器drx-HARQ-RTT-Timer,并停止drx-RetransmissionTimer,如果没有成功接收,则终端设备在drx-HARQ-RTT-Timer到期后的第一个符号启动drx-RetransmissionTimer。对于上述定时器的运行时间长度,该运行时间长度可以参考第一方面实施例,此处不再赘述,其中,可以以包含的时隙个数计算,也可以转换成对应的毫秒值,具体可以参考现有技术,此处不再赘述。
在一些实施例中,该drx-InactivityTimer或该drx-RetransmissionTimer的启动或重启对应该用于发送边链路数据的资源(M个资源)中的第三资源,该第三资源可以用于实际的边链路数据发送,也可以不用于边链路发送,但可以通过之前的SCI指示,即该第二终端设备在该第三资源上接收该边链路数据,或者,该第二终端设备不在该第三资源上接收该边链路数据,且该第三资源能被在该第三资源之前的资源通过边链路控制信息指示。也就是说,上述定时器的启动或重启是以一个资源为参考确定的,针对M个资源中的第三资源,可以启动或重启上述定时器,该第三资源可以是M个资源中的一个资源或多个资源或全部资源,即并不一定对M个资源中的每个资源都启动或重启上述定时器,本申请实施例并不以此作为限制。
由上述实施例可知,发送设备在确定用于发送边链路数据的资源时,能够保证用于发送的资源位于接收设备非连续接收相关的激活时间内,或者能被之前的资源通过边链路控制信息指示。由此,可以避免进行无法被接收设备接收的边链路发送,从而可以节省功率、降低拥塞和减少对其他设备的干扰。
第三方面的实施例
本申请实施例提供一种边链路发送装置。该装置例如可以是终端设备(例如前述的 第一终端设备),也可以是配置于终端设备的某个或某些部件或者组件,与第一方面的实施例相同的内容不再赘述。
图17是本申请实施例的边链路发送装置的一示意图。如图17所示,边链路发送装置1700包括:
确定单元1701,其用于确定用于发送边链路数据的资源,该资源满足以下条件:该资源在第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
发送单元1702,其用于基于该资源向该第二终端设备发送边链路数据。
在一些实施例中,确定单元1701和发送单元1702的实施方式可以参考第一方面实施例中201-202,重复之处不再赘述。
在一些实施例中,该用于发送边链路数据的资源的数量M小于或等于目标资源的数量N,该目标资源的数量N大于或等于1。
在一些实施例中,确定单元1701从已选择的资源中丢弃第二资源或对第二资源进行重选,以得到该用于发送边链路数据的资源,其中,该第二资源不满足该条件。
在一些实施例中,该第二资源不满足该条件是由于资源重选和/或丢弃导致的。
在一些实施例中,已选择的资源的数量等于目标资源的数量,并且,该第二资源不满足该条件是由于丢弃第一资源导致的。
在一些实施例中,其中,在发生了抢占,拥塞,重评估,优先级比较中的至少一种时,确定单元1701还用于丢弃该第一资源。
在一些实施例中,其中,已选择的资源的数量等于目标资源的数量,并且,该第二资源不满足该条件是由于对第一资源进行重选导致的。
在一些实施例中,其中,在发生了抢占,重评估,优先级比较中的至少一种时,确定单元1701还用于对该第一资源进行重选。
在一些实施例中,其中,重选后的M个资源包括被重选的资源和/或未被重选的资源。
在一些实施例中,该边链路数据包括新传数据和/或重传数据。
在一些实施例中,该非连续接收相关的激活时间根据非连续接收相关的定时器确定,该非连续接收相关的定时器包括DRX接收定时器drx-onDurationTimer、DRX去激活定时器drx-InactivityTimer、DRX重传定时器drx-RetransmissionTimer中的一个或多个。
在一些实施例中,用于发送重传数据的资源位于DRX混合自动重传请求往返时间 定时器drx-HARQ-RTT-Timer到期后。
在一些实施例中,该DRX去激活定时器或该DRX重传定时器的启动或重启对应该用于发送边链路数据的资源中的第三资源,发送单元1702使用该第三资源发送该边链路数据,或者,发送单元1702不使用该第三资源发送该边链路数据,且该第三资源能被在该第三资源之前的资源通过边链路控制信息指示。
在一些实施例中,该第二终端设备被使能了非连续接收。
在一些实施例中,满足该条件的资源中包括用于发送该边链路数据的资源和不用于发送该边链路数据的资源。
在一些实施例中,在M小于N时,该装置还包括(可选,未图示):调整单元,其用于重新确定该候选资源集合。其具体实施方式可以参考第一方面的实施例,此处不再赘述。
在一些实施例中,该装置还可以包括(可选,未图示):去使能单元,其用于在满足预定条件时,去使能丢弃或重选资源的功能,其实施方式可以参考第一方面的实施例,此处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。边链路发送装置1700还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图17中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,发送设备在确定用于发送边链路数据的资源时,能够保证用于发送的资源位于接收设备非连续接收相关的激活时间内,或者能被之前的资源通过边链路控制信息指示。由此,可以避免进行无法被接收设备接收的边链路发送,从而可以节省功率、降低拥塞和减少对其他设备的干扰。
第四方面的实施例
本申请实施例提供一种边链路接收装置。该装置例如可以是终端设备(例如前述的第二终端设备),也可以是配置于终端设备的某个或某些部件或者组件,与第二方面的实施例相同的内容不再赘述。
图18是本申请实施例的边链路接收装置的一示意图。如图18所示,边链路接收装置1800包括:
接收单元1801,其用于接收第一终端设备基于满足以下条件的资源(M个资源)发送的边链路数据;该条件为:该资源在该第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
处理单元1802,其用于基于该边链路数据启动或重启非连续接收相关的定时器。
在一些实施例中,该条件的具体含义以及该资源的确定方式请参考第一方面的实施例,重复之处不再赘述。
在一些实施例中,接收单元1801和处理单元1802的实施方式可以参考第二方面实施例中1601-1602,重复之处不再赘述。
在一些实施例中,该M个资源可以全部用于发送边链路数据,接收单元1801在M个资源上接收边链路数据,或者,该M个资源中的一部分用于发送边链路数据,即接收单元1801在M个资源中的部分资源上接收边链路数据,该边链路数据可以是新传数据和/或重传数据,本申请实施例并不以此作为限制。
在一些实施例中,该非连续接收相关的定时器包括DRX接收定时器drx-onDurationTimer、DRX去激活定时器drx-InactivityTimer、DRX重传定时器drx-RetransmissionTimer中的一个或多个。
在一些实施例中,drx-onDurationTimer是用于DRX周期内的监控边链路传输的定时器,在接收到PSCCH或PSSCH初传时启动或重启drx-InactivityTimer,在PSFCH上反馈未正确接收(NACK)时,接收设备在发送NACK后的第一个符号启动DRX混合自动重传请求(Hybrid Automatic Repeat request,HARQ)往返时间定时器drx-HARQ-RTT-Timer,并停止drx-RetransmissionTimer,如果没有成功接收,则终端设备在drx-HARQ-RTT-Timer到期后的第一个符号启动drx-RetransmissionTimer。对于上述定时器的运行时间长度,可以以包含的时隙个数计算,也可以转换成对应的毫秒值,具体可以参考现有技术,此处不再赘述。
在一些实施例中,该drx-InactivityTimer或该drx-RetransmissionTimer的启动或重启对应该用于发送边链路数据的资源(M个资源)中的第三资源,该第三资源可以用于实 际的边链路数据发送,也可以不用于边链路发送,但可以通过之前的SCI指示,即接收单元1801在该第三资源上接收该边链路数据,或者,接收单元1801不在该第三资源上接收该边链路数据,且该第三资源能被在该第三资源之前的资源通过边链路控制信息指示。也就是说,上述定时器的启动或重启是以一个资源为参考确定的,针对M个资源中的第三资源,可以启动或重启上述定时器,该第三资源可以是M个资源中的一个资源或多个资源或全部资源,即并不一定对M个资源中的每个资源都启动或重启上述定时器,本申请实施例并不以此作为限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。边链路接收装置1800还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图18中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,发送设备在确定用于发送边链路数据的资源时,能够保证用于发送的资源位于接收设备非连续接收相关的激活时间内,或者能被之前的资源通过边链路控制信息指示。由此,可以避免进行无法被接收设备接收的边链路发送,从而可以节省功率、降低拥塞和减少对其他设备的干扰。
第五方面的实施例
本申请实施例还提供一种通信***,可以参考图1,与第一方面至第四方面的实施例相同的内容不再赘述。
在一些实施例中,通信***100至少可以包括:
第一终端设备102确定用于发送边链路数据的资源,该资源满足以下条件:该资源在该第二终端设备103的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;
第一终端设备102基于该资源向第二终端设备103发送边链路数据。
第二终端设备103接收第一终端设备102发送的该边链路数据,并基于该边链路数据启动或重启非连续接收相关的定时器。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图18是本申请实施例的网络设备的构成示意图。如图18所示,网络设备1800可以包括:处理器1810(例如中央处理器CPU)和存储器1820;存储器1820耦合到处理器1810。其中该存储器1820可存储各种数据;此外还存储信息处理的程序1830,并且在处理器1810的控制下执行该程序1830。
此外,如图18所示,网络设备1800还可以包括:收发机1840和天线1850等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1800也并不是必须要包括图18中所示的所有部件;此外,网络设备1800还可以包括图18中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图20是本申请实施例的终端设备的示意图。如图20所示,该终端设备2000可以包括处理器2010和存储器2020;存储器2020存储有数据和程序,并耦合到处理器2010。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器2010可以被配置为执行程序而实现如第一方面的实施例所述的边链路发送方法。例如处理器2010可以被配置为进行如下的控制:确定用于发送边链路数据的资源,该资源满足以下条件:该资源在第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;基于该资源向该第二终端设备发送边链路数据。
再例如,处理器2010可以被配置为执行程序而实现如第二方面的实施例所述的边链路接收方法。例如处理器2010可以被配置为进行如下的控制:接收第一终端设备基于满足以下条件的资源发送的边链路数据;该条件为:该资源在该第二终端设备的非连续接收相关的激活时间内或能被在该资源之前的资源通过边链路控制信息指示;基于该边链路数据启动或重启非连续接收相关的定时器。
该处理2010的实施方式可以参考第一方面或第二方面的实施例,此处不再赘述。
如图20所示,该终端设备2000还可以包括:通信模块2030、输入单元2040、显示器2050、电源2060。其中,上述部件的功能与现有技术类似,此处不再赘述。值得 注意的是,终端设备2000也并不是必须要包括图20中所示的所有部件,上述部件并不是必需的;此外,终端设备2000还可以包括图20中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一方面的实施例所述的边链路发送方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一方面的实施例所述的边链路发送方法。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第二方面的实施例所述的边链路接收方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第二方面的实施例所述的边链路接收方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可***移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以 实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1.一种边链路发送方法,包括:
第一终端设备确定用于发送边链路数据的资源,所述资源满足以下条件:所述资源在第二终端设备的非连续接收相关的激活时间内或能被在所述资源之前的资源通过边链路控制信息指示;
所述第一终端设备基于所述资源向所述第二终端设备发送边链路数据。
附记2.根据附记1所述的方法,其中,所述用于发送边链路数据的资源的数量M小于或等于目标资源的数量N,所述目标资源的数量N大于或等于1,所述用于发送边链路数据的资源的数量M大于或等于0。
附记3.根据附记1或2所述的方法,其中,所述第一终端设备确定用于发送边链路数据的资源的步骤包括:所述第一终端设备从已选择的资源中丢弃第二资源或对第二资源进行重选,以得到所述用于发送边链路数据的资源,其中,所述第二资源不满足所述条件。
附记4.根据附记3所述的方法,其中,所述第二资源不满足所述条件是由于资源重选和/或丢弃导致的。
附记5.根据附记3或4所述的方法,其中,所述已选择的资源的数量等于目标资源的数量,并且,所述第二资源不满足所述条件是由于丢弃第一资源导致的。
附记6.根据附记5所述的方法,其中,在发生了抢占,拥塞,重评估,优先级比较中的至少一种时,所述第一终端设备丢弃所述第一资源。
附记7.根据附记3或4所述的方法,其中,所述已选择的资源的数量等于目标资源的数量,并且,所述第二资源不满足所述条件是由于对第一资源进行重选导致的。
附记8.根据附记7所述的方法,其中,重选后的M个资源包括被重选的资源和/或未被重选的资源。
附记9.根据附记7或8所述的方法,其中,在发生了抢占,重评估,优先级比较中的至少一种时,所述第一终端设备对所述第一资源进行重选。
附记10.根据附记1或2所述的方法,其中,目标资源的数量是高层确定的待选择的资源数或HARQ重传数,并且,所述第一终端设备确定用于发送边链路数据的资源的步骤包括:所述第一终端设备从候选资源集合中选择用于发送边链路数据的资源。
附记11.根据附记1或2所述的方法,其中,所述方法还包括:
在满足预定条件时,所述第一终端设备去使能丢弃或重选资源的功能。
附记12.根据附记11所述的方法,其中,所述预定条件是发生了抢占,拥塞,重评估,优先级比较中的至少一种,或者已选择的资源中有至少一个资源位于非激活时间内。
附记13.根据附记1至13中任一项所述的方法,其中,所述边链路数据包括新传数据和/或重传数据。
附记14.根据附记1至13任一项所述的方法,其中所述非连续接收相关的激活时间根据非连续接收相关的定时器确定。
附记15.根据附记14所述的方法,所述非连续接收相关的定时器包括DRX接收定时器drx-onDurationTimer、DRX去激活定时器drx-InactivityTimer、DRX重传定时器drx-RetransmissionTimer中的一个或多个。
附记16.根据附记15所述的方法,其中,用于发送重传数据的资源位于DRX混合自动重传请求往返时间定时器drx-HARQ-RTT-Timer到期后。
附记17.根据附记15所述的方法,其中,所述DRX去激活定时器或所述DRX重传定时器的启动或重启对应所述用于发送边链路数据的资源中的第三资源,所述第一终端设备使用所述第三资源发送所述边链路数据,或者,所述第一终端设备不使用所述第三资源发送所述边链路数据,且所述第三资源能被在所述第三资源之前的资源通过边链路控制信息指示。
附记18.根据附记2至17任一项所述的方法,其中,所述方法还包括:在M小于N时,所述第一终端设备重新确定候选资源集合。
附记19.根据附记18所述的方法,其中,所述第一终端设备通过调整参考信号接收功率门限值重新确定所述候选资源集合。
附记20.根据附记1至19任一项所述的方法,其中,所述第二终端设备被使能了非连续接收。
附记21.根据附记1至20任一项所述的方法,其中,满足所述条件的资源中包括用于发送所述边链路数据的资源和不用于发送所述边链路数据的资源。
附记22.一种边链路接收方法,包括:
第二终端设备接收第一终端设备基于满足以下条件的资源发送的边链路数据;所述条件为:所述资源在所述第二终端设备的非连续接收相关的激活时间内或能被在所述资源之前的资源通过边链路控制信息指示;
所述第二终端设备基于所述边链路数据启动或重启非连续接收相关的定时器。
附记23.根据附记22所述的方法,其中,所述边链路数据包括新传数据和/或重传数据。
附记24.根据附记22或23所述的方法,其中所述非连续接收相关的激活时间根据非连续接收相关的定时器确定。
附记25.根据附记22至24任一项所述的方法,所述非连续接收相关的定时器包括DRX接收定时器drx-onDurationTimer、DRX去激活定时器drx-InactivityTimer、DRX重传定时器drx-RetransmissionTimer中的一个或多个。
附记26.根据附记25所述的方法,其中,用于发送重传数据的资源位于DRX混合自动重传请求往返时间定时器drx-HARQ-RTT-Timer到期后。
附记27.根据附记25所述的方法,其中,所述DRX去激活定时器或所述DRX重传定时器的启动或重启对应用于发送边链路数据的资源中的第三资源,所述第二终端设备在所述第三资源上接收所述边链路数据,或者,所述第二终端设备不在所述第三资源上接收所述边链路数据,且所述第三资源能被在所述第三资源之前的资源通过边链路控制信息指示。
附记28.根据附记22至27任一项所述的方法,其中,所述第二终端设备被使能了非连续接收。
附记29.根据附记22至28任一项所述的方法,其中,满足所述条件的资源中包括用于发送所述边链路数据的资源和不用于发送所述边链路数据的资源。
附记30.根据附记22至29所述的方法,其中,用于发送边链路数据的资源的数量M小于或等于目标资源的数量N,所述目标资源的数量N大于或等于1。
附记31.一种通信***,包括第一终端设备和第二终端设备,其中,
所述第一终端设备确定用于发送边链路数据的资源,所述资源满足以下条件:所述资源在所述第二终端设备的非连续接收相关的激活时间内或能被在所述资源之前的资源通过边链路控制信息指示;
所述第一终端设备基于所述资源向所述第二终端设备发送边链路数据。
附记32.根据附记31所述的通信***,其中,所述第二终端设备接收所述第一终端设备发送的所述边链路数据,并基于所述边链路数据启动或重启非连续接收相关的定时器。
附记33.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至21任一项所述的边链路发送方法,或附记22至30任一项所述的边链路接收方法。

Claims (20)

  1. 一种边链路发送装置,配置于第一终端设备,其特征在于,所述装置包括:
    确定单元,其用于确定用于发送边链路数据的资源,所述资源满足以下条件:所述资源在第二终端设备的非连续接收相关的激活时间内或能被在所述资源之前的资源通过边链路控制信息指示;
    发送单元,其用于基于所述资源向所述第二终端设备发送边链路数据。
  2. 根据权利要求1所述的装置,其中,所述用于发送边链路数据的资源的数量M小于或等于目标资源的数量N,所述目标资源的数量N大于或等于1。
  3. 根据权利要求1所述的装置,其中,所述确定单元从已选择的资源中丢弃第二资源或对第二资源进行重选,以得到所述用于发送边链路数据的资源,其中,所述第二资源不满足所述条件。
  4. 根据权利要求3所述的装置,其中,所述第二资源不满足所述条件是由于资源重选和/或丢弃导致的。
  5. 根据权利要求3所述的装置,其中,所述已选择的资源的数量等于目标资源的数量N,并且,所述第二资源不满足所述条件是由于丢弃第一资源导致的。
  6. 根据权利要求5所述的装置,其中,在发生了抢占,拥塞,重评估,优先级比较中的至少一种时,所述确定单元还用于丢弃所述第一资源。
  7. 根据权利要求3所述的装置,其中,所述已选择的资源的数量等于目标资源的数量N,并且,所述第二资源不满足所述条件是由于对第一资源进行重选导致的。
  8. 根据权利要求7所述的装置,其中,重选后的M个资源包括被重选的资源和/或未被重选的资源。
  9. 根据权利要求7所述的装置,其中,在发生了抢占,重评估,优先级比较中的至少一种时,所述确定单元还用于对所述第一资源进行重选。
  10. 根据权利要求1所述的装置,其中,目标资源的数量是高层确定的待选择的资源数或HARQ重传数,并且,所述确定单元从候选资源集合中选择用于发送边链路数据的资源。
  11. 根据权利要求1所述的装置,其中,所述边链路数据包括新传数据和/或重传数据。
  12. 根据权利要求1所述的装置,其中所述非连续接收相关的激活时间根据非连续接收相关的定时器确定。
  13. 根据权利要求12所述的装置,所述非连续接收相关的定时器包括DRX接收定时器drx-onDurationTimer、DRX去激活定时器drx-InactivityTimer、DRX重传定时器drx-RetransmissionTimer中的一个或多个。
  14. 根据权利要求13所述的装置,其中,用于发送重传数据的资源位于DRX混合自动重传请求往返时间定时器drx-HARQ-RTT-Timer到期后。
  15. 根据权利要求14所述的装置,其中,所述DRX去激活定时器或所述DRX重传定时器的启动或重启对应所述用于发送边链路数据的资源中的第三资源,所述发送单元使用所述第三资源发送所述边链路数据,或者,所述发送单元不使用所述第三资源发送所述边链路数据,且所述第三资源能被在所述第三资源之前的资源通过边链路控制信息指示。
  16. 根据权利要求2所述的装置,其中,所述装置还包括:调整单元,其中,在M小于N时,所述调整单元重新确定候选资源集合。
  17. 根据权利要求1所述的装置,其中,所述第二终端设备被使能了非连续接收。
  18. 根据权利要求1所述的装置,其中,满足所述条件的资源中包括用于发送所述边链路数据的资源和不用于发送所述边链路数据的资源。
  19. 一种边链路接收装置,配置于第二终端设备,其特征在于,包括:
    接收单元,其用于接收第一终端设备基于满足以下条件的资源发送的边链路数据;所述条件为:所述资源在所述第二终端设备的非连续接收相关的激活时间内或能被在所述资源之前的资源通过边链路控制信息指示;
    处理单元,其用于基于所述边链路数据启动或重启非连续接收相关的定时器。
  20. 一种通信***,包括第一终端设备和第二终端设备,其特征在于,
    所述第一终端设备确定用于发送边链路数据的资源,所述资源满足以下条件:所述资源在所述第二终端设备的非连续接收相关的激活时间内或能被在所述资源之前的资源通过边链路控制信息指示;
    所述第一终端设备基于所述资源向所述第二终端设备发送边链路数据。
PCT/CN2021/071923 2021-01-14 2021-01-14 边链路发送,边链路接收方法及装置 WO2022151268A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071923 WO2022151268A1 (zh) 2021-01-14 2021-01-14 边链路发送,边链路接收方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071923 WO2022151268A1 (zh) 2021-01-14 2021-01-14 边链路发送,边链路接收方法及装置

Publications (1)

Publication Number Publication Date
WO2022151268A1 true WO2022151268A1 (zh) 2022-07-21

Family

ID=82446725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071923 WO2022151268A1 (zh) 2021-01-14 2021-01-14 边链路发送,边链路接收方法及装置

Country Status (1)

Country Link
WO (1) WO2022151268A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556590A (zh) * 2020-04-13 2020-08-18 中国信息通信研究院 一种边链路非连续接收方法
CN111567070A (zh) * 2020-04-07 2020-08-21 北京小米移动软件有限公司 唤醒时间控制方法、装置及计算机可读存储介质
WO2020201824A1 (en) * 2019-04-01 2020-10-08 Lenovo (Singapore) Pte. Ltd. Multiple radio access technology communications
CN111800764A (zh) * 2019-08-22 2020-10-20 维沃移动通信有限公司 边链路drx参数配置方法、装置及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201824A1 (en) * 2019-04-01 2020-10-08 Lenovo (Singapore) Pte. Ltd. Multiple radio access technology communications
CN111800764A (zh) * 2019-08-22 2020-10-20 维沃移动通信有限公司 边链路drx参数配置方法、装置及终端设备
CN111567070A (zh) * 2020-04-07 2020-08-21 北京小米移动软件有限公司 唤醒时间控制方法、装置及计算机可读存储介质
CN111556590A (zh) * 2020-04-13 2020-08-18 中国信息通信研究院 一种边链路非连续接收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on physical layer design considering sidelink DRX operation", 3GPP DRAFT; R1-2007897, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946545 *

Similar Documents

Publication Publication Date Title
US20220368467A1 (en) Harq process management method and apparatus, terminal, and storage medium
US11804928B2 (en) Data transmission method, device and computer storage medium
EP2018785A2 (en) Handover optimization in a wireless network
WO2021087874A1 (zh) 边链路资源的预留方法以及装置
JP2022541717A (ja) 方法、及び端末装置
WO2021027804A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022082677A1 (zh) 边链路非连续接收方法及装置
JP2024503648A (ja) リソース選択方法、装置及びシステム
JP2021533603A (ja) コンテンションウィンドウの調整方法、装置及び通信システム
WO2022151060A1 (zh) 数据接收方法、装置和***
JP2023513240A (ja) サイドリンク送信の再送方法及び装置
CN113647182A (zh) 无线通信的方法和设备
WO2020143834A1 (zh) 一种旁链路中的反馈资源确定方法及设备
US11490422B2 (en) Methods, terminal device and base station for channel sensing in unlicensed spectrum
WO2022151268A1 (zh) 边链路发送,边链路接收方法及装置
WO2022082670A1 (zh) 边链路资源选择方法以及装置
WO2021226971A1 (zh) 数据发送方法,资源配置方法以及装置
CN113647171A (zh) 无线通信的方法和设备
WO2023010422A1 (zh) 边链路协作信息的指示和接收装置以及方法
WO2022236633A1 (zh) 边链路资源的重选方法及装置
WO2023184500A1 (en) Methods and apparatuses for sidelink positioning
EP4218352B1 (en) Systems and methods for mac ce based inter-device coordination of sidelink transmissions
WO2022152120A1 (zh) 传输配置方法、装置及相关设备
US20230397293A1 (en) Timer control method and apparatus, and terminal device
WO2024034346A1 (en) Channel access mechanisms in wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918476

Country of ref document: EP

Kind code of ref document: A1