WO2022151099A1 - 一种反馈信息传输方法和装置 - Google Patents

一种反馈信息传输方法和装置 Download PDF

Info

Publication number
WO2022151099A1
WO2022151099A1 PCT/CN2021/071597 CN2021071597W WO2022151099A1 WO 2022151099 A1 WO2022151099 A1 WO 2022151099A1 CN 2021071597 W CN2021071597 W CN 2021071597W WO 2022151099 A1 WO2022151099 A1 WO 2022151099A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
cbs
cbg
ldpc decoding
terminal device
Prior art date
Application number
PCT/CN2021/071597
Other languages
English (en)
French (fr)
Inventor
高飞
焦淑蓉
孙宇佳
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180089774.4A priority Critical patent/CN116803029A/zh
Priority to PCT/CN2021/071597 priority patent/WO2022151099A1/zh
Publication of WO2022151099A1 publication Critical patent/WO2022151099A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for transmitting feedback information.
  • a new radio (NR) system follows an adaptive modulation and coding (adaptive modulation and coding, AMC) scheme in a long term evolution (LTE) system.
  • the core of the AMC scheme is a modulation and coding scheme (modulation coding scheme, MCS) selection scheme based on a channel quality indicator (CQI), that is, adjusting the MCS according to the CQI.
  • CQI channel quality indicator
  • Due to CQI errors such as CQI calculation errors, feedback errors, channel variability, and time delay between the time of CQI calculation and the time of MCS application, the CQI feedback in actual systems is inaccurate and delayed.
  • the success rate of the first transmission can be stabilized based on the outer loop link adaptation (OLLA), and the performance loss caused by the CQI error can be reduced.
  • the main principle of OLLA is to adjust the CQI according to the HARQ feedback result of the first transmission of the data packet of each user equipment (user equipment, UE).
  • the HARQ feedback result includes an acknowledgement (acknowledge, ACK)/negative acknowledgement (negative acknowledge, NACK). If the feedback of the first transmission is ACK, the OLLA offset (offset) can be increased, and the SINR used to determine the CQI can be slightly increased, thereby improving the MCS in the next transmission.
  • the OLLA offset can be reduced, and the SINR used to determine the CQI can be slightly reduced, thereby reducing the MCS in the next transmission.
  • the OLLA offset reflects the estimation of the current wireless channel environment between the base station and the UE, that is, the estimation result after the UE receives the measurement pilot.
  • An offset ⁇ OLLA can be used between the base station and one UE, and the initial value of the offset is set to ⁇ init .
  • ⁇ OLLA may be updated.
  • ⁇ ACK is the OLLA adjustment amount corresponding to ACK
  • ⁇ NACK is the OLLA adjustment amount corresponding to NACK
  • the relationship between ⁇ ACK and ⁇ NACK is as follows:
  • the embodiments of the present application provide a method and apparatus for transmitting feedback information, which can improve decoding success rate and spectrum utilization rate.
  • an embodiment of the present application provides a method for transmitting feedback information, including: a terminal device receives a physical downlink shared channel (PDSCH) from a network device; the terminal device sends feedback information to the network device, where the feedback information includes an indication information, the indication information includes the first information or the second information; wherein, the first information and the first code block (code block, CB) corresponding to the low density parity check code (low density parity check code, LDPC) decoding iteration times The average value is related; or, the first information is related to the maximum value of the number of LDPC decoding iterations corresponding to the first CB; or, the first information is related to the number of the first CBs; the second information is used to indicate the first adjustment amount, the first An adjustment amount includes a signal noise ratio (SNR) adjustment, a signal to interference noise ratio (SINR) adjustment, a channel quality indication (CQI) adjustment, or a modulation and coding method (modulation coding scheme, MCS) adjustment
  • SNR signal
  • the terminal device may send indication information to the network device.
  • the content of the first indication may reflect the PDSCH decoding margin, and the PDSCH decoding margin may be Make OLLA adjustments.
  • the content indicated by the second information may directly reflect the adjustment amount related to the OLLA adjustment (for example, the SNR adjustment amount, the SINR adjustment amount, the CQI adjustment amount or the MCS adjustment amount). In this way, by feeding back different indication information to the network device, it is helpful for the network device to adjust the OLLA, accurately track the channel or interference, and update the appropriate MCS, which can improve the decoding success rate and spectrum utilization rate of new transmission and retransmission. .
  • the first CB includes all CBs in a transport block (transport block, TB), or a correctly decoded CB in a TB, or a CB incorrectly decoded in a TB; or the first CB CB includes all CBs in a code block group (code block group, CBG), or CBs decoded correctly in a CBG, or CBs decoded incorrectly in a CBG.
  • the terminal device may feed back the indication information with TB as the granularity, or may feed back the indication information with CBG as the granularity.
  • the network device can adjust the OLLA according to the indication information, accurately track the channel or interference, and update the appropriate MCS, which can improve the decoding success rate and spectrum utilization rate of new transmission and retransmission.
  • the first information is used to indicate an average value of LDPC decoding iteration times corresponding to all CBs in a TB, or a first normalization determined according to the average value and a preset LDPC decoding iteration number value; or the first information is used to indicate the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB, or the second normalized value determined according to the maximum value and the preset number of LDPC decoding iterations; Or the first information is used to indicate the number of correctly decoded CBs in a TB, or a third normalized value determined according to the number of correctly decoded CBs and the number of all CBs in a TB; or the first information It is used to indicate the number of CBs with decoding errors in a TB, or a fourth normalized value determined according to the number of CBs with decoding errors and the number of all CBs in a TB. That is, the first information is used to indicate
  • the feedback information further includes third information, and the third information includes a positive acknowledgement ACK or a negative acknowledgement NACK, and when the third information includes an ACK, the first information is used to indicate that all CBs in a TB correspond to The average value of the number of LDPC decoding iterations, the first normalized value, the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB, or the second normalized value; the second The information is used to indicate the first adjustment amount; when the third information includes NACK, the first information is used to indicate the average value of the number of LDPC decoding iterations corresponding to all CBs in a TB, the first normalized value, and the decoding in one TB.
  • the third information includes a positive acknowledgement ACK or a negative acknowledgement NACK
  • the third information includes an ACK
  • the first information is used to indicate that all CBs in a TB correspond to The average value of the number of LDPC decoding iter
  • the maximum value in the number of LDPC decoding iterations corresponding to the correct CB, the second normalized value, the number of correctly decoded CBs in a TB, the third normalized value, and the incorrectly decoded CB in a TB Either the number of , or the fourth normalized value; the second information is used to indicate the first adjustment amount. That is to say, when the third information is different, the same or different first information or second information can be fed back, so that the network device can perform OLLA adjustment according to the first information or the second information, accurately track the channel or interference, and update the appropriate MCS can improve the decoding success rate and spectrum utilization of new transmission and retransmission.
  • the indication information and the third information are encoded independently; and the indication information and the third information are transmitted on the same physical uplink control channel (physical uplink control channel, PUCCH), or the indication information and the third information are transmitted on the same physical uplink control channel (PUCCH). Transmission on different PUCCHs. In this way, the indication information and the third information can be parsed separately.
  • PUCCH physical uplink control channel
  • PUCCH physical uplink control channel
  • PUCCH physical uplink control channel
  • the indication information and the third information are jointly encoded, and the indication information and the third information are transmitted on the same PUCCH. In this way, the indication information and the third information can be jointly parsed.
  • the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, the first normalized value, Either the maximum value of the number of LDPC decoding iterations corresponding to the correctly decoded CB in one TB or the second normalized value. That is, when the terminal device is not configured with CBG, the first information can be fed back with TB as the granularity.
  • the terminal device is not configured with CBG, and when the third information includes ACK, the first information is used to indicate the average value of LDPC decoding iteration times corresponding to all CBs in a TB, and the first normalization value, the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB or the second normalized value; the second information is used to indicate the first adjustment amount; when the third information includes When NACK, the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, the first normalized value, and the maximum of the LDPC decoding iteration times corresponding to the correctly decoded CB in a TB value, the second normalized value, the number of correctly decoded CBs in a TB, the third normalized value, the number of incorrectly decoded CBs in a TB, or the fourth normalized value
  • the second information is used to indicate the first
  • the terminal device when the terminal device is not configured with CBG and the feedback information includes the third information, when the third information is different, the same or different first information or second information can be fed back, so that the network device can feed back the same or different first information or second information according to the first information or second information.
  • Performing OLLA adjustment, accurately tracking the channel or interference and updating the appropriate MCS, can improve the decoding success rate and spectrum utilization of new transmissions and retransmissions.
  • the first information is used to indicate the average number of LDPC decoding iterations corresponding to all CBs in a CBG, and the LDPC corresponding to all CBs in a CBG.
  • the normalized value corresponding to the average value of the number of decoding iterations, the maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG, or the maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG The corresponding normalized value. That is, when the terminal device is configured with CBG, the first information can be fed back with CBG as the granularity.
  • the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in one TB, the first normalized value, and the number of times of LDPC decoding in one TB.
  • the maximum value or the second normalized value in the number of LDPC decoding iterations corresponding to the correctly decoded CB; the second information is used to indicate the first adjustment amount. That is, when the terminal device is configured with CBG, the first information can be fed back with TB as the granularity.
  • a CBG is configured on the terminal device, and when the third information includes ACK, the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, and the first normalization value, the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB or the second normalized value; the second information is used to indicate the first adjustment amount; when the third information includes When NACK, the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, the first normalized value, and the maximum of the LDPC decoding iteration times corresponding to the correctly decoded CB in a TB value, the second normalized value, the number of correctly decoded CBs in a TB, the third normalized value, the number of incorrectly decoded CBs in a TB, or the fourth normalized value
  • the second information is used to indicate
  • the terminal device when the terminal device is configured with CBG and the feedback information includes the third information, when the third information is different, the same or different first information or second information can be fed back, so that the network device can perform the operation according to the first information or the second information.
  • OLLA adjustment can accurately track the channel or interference and update the appropriate MCS, which can improve the decoding success rate and spectrum utilization of new transmission and retransmission.
  • the terminal device receives fourth information, where the fourth information is used to indicate the granularity of the terminal device feeding back the first information or the second information, and the granularity may be TB level or CBG level.
  • the fourth information may be high-layer signaling, that is, the granularity of the terminal device to feed back the first information or the second information may be instructed through the high-layer signaling.
  • the method further includes: the terminal device reports a capability parameter, where the capability parameter is used to indicate that the terminal device supports feeding back the first information or the second information.
  • the network device can determine whether to configure the terminal device to feed back the first information or the second information according to the capability of the terminal device.
  • the terminal device when the terminal device is configured to feed back the first information and the terminal device is configured for CBG transmission, the terminal device performs TB-level data transmission; or when the terminal device is configured to feed back the first information, the terminal device is not configured CBG transmission. That is, the feedback of the first information and the CBG transmission do not coexist, or the priorities are different.
  • an embodiment of the present application provides a method for transmitting feedback information, including: a network device sends a downlink physical shared channel PDSCH to a terminal device; the network device receives feedback information from the terminal device, where the feedback information includes indication information, and the indication information includes first information or second information; wherein, the first information is related to the average value of the LDPC decoding iteration times of the low density parity check code corresponding to the first code block CB; or, the first information and the LDPC decoding iteration times corresponding to the first CB Or, the first information is related to the number of the first CB; the second information is used to indicate the first adjustment amount, and the first adjustment amount includes the signal-to-noise ratio SNR adjustment amount, the signal-to-interference noise ratio SINR adjustment amount, the channel
  • the quality indicates the CQI adjustment amount or the modulation and coding mode MCS adjustment amount; the first adjustment amount is determined according to the first information.
  • the network device after the network device sends the PDSCH, it can receive indication information from the terminal device.
  • the content of the first indication can reflect the PDSCH decoding margin, and the PDSCH decoding margin can be Make OLLA adjustments.
  • the content indicated by the second information may directly reflect the adjustment amount related to the OLLA adjustment (for example, the SNR adjustment amount, the SINR adjustment amount, the CQI adjustment amount or the MCS adjustment amount).
  • the network device can perform OLLA adjustment according to the indication information, accurately track the channel or interference, and update the appropriate MCS, which can improve the decoding success rate and spectrum utilization rate of new transmissions and retransmissions.
  • the first CB includes all CBs in a TB, or a correctly decoded CB in a TB, or a CB incorrectly decoded in a TB; or the first CB includes all of a CBG CB, or a correctly decoded CB in a CBG, or an incorrectly decoded CB in a CBG.
  • the first information is used to indicate an average value of LDPC decoding iteration times corresponding to all CBs in a TB, or a first normalization determined according to the average value and a preset LDPC decoding iteration number value; or the first information is used to indicate the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB, or the second normalized value determined according to the maximum value and the preset number of LDPC decoding iterations; Or the first information is used to indicate the number of correctly decoded CBs in a TB, or a third normalized value determined according to the number of correctly decoded CBs and the number of all CBs in a TB; or the first information It is used to indicate the number of CBs with decoding errors in a TB, or a fourth normalized value determined according to the number of CBs with decoding errors and the number of all CBs in a TB.
  • the feedback information further includes third information, and the third information includes a positive acknowledgement ACK or a negative acknowledgement NACK, and when the third information includes an ACK, the first information is used to indicate that all CBs in a TB correspond to The average value of the number of LDPC decoding iterations, the first normalized value, the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB, or the second normalized value; the second The information is used to indicate the first adjustment amount; when the third information includes NACK, the first information is used to indicate the average value of the number of LDPC decoding iterations corresponding to all CBs in a TB, the first normalized value, and the decoding in one TB.
  • the third information includes a positive acknowledgement ACK or a negative acknowledgement NACK
  • the third information includes an ACK
  • the first information is used to indicate that all CBs in a TB correspond to The average value of the number of LDPC decoding iter
  • the maximum value in the number of LDPC decoding iterations corresponding to the correct CB, the second normalized value, the number of correctly decoded CBs in a TB, the third normalized value, and the incorrectly decoded CB in a TB Either the number of , or the fourth normalized value; the second information is used to indicate the first adjustment amount.
  • the indication information and the third information are independently encoded; and the indication information and the third information are transmitted on the same physical uplink control channel PUCCH, or the indication information and the third information are transmitted on different PUCCHs.
  • the indication information and the third information are jointly encoded, and the indication information and the third information are transmitted on the same PUCCH.
  • the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, the first normalized value, Either the maximum value of the number of LDPC decoding iterations corresponding to the correctly decoded CB in one TB or the second normalized value.
  • the terminal device is not configured with CBG.
  • the first information is used to indicate the average number of LDPC decoding iterations corresponding to all CBs in a CBG, and the LDPC corresponding to all CBs in a CBG.
  • the normalized value corresponding to the average value of the number of decoding iterations, the maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG, or the maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG The corresponding normalized value.
  • the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in one TB, the first normalized value, and the number of times of LDPC decoding in one TB.
  • the maximum value or the second normalized value in the number of LDPC decoding iterations corresponding to the correctly decoded CB; the second information is used to indicate the first adjustment amount.
  • the CBG is configured on the terminal device.
  • the network device sends fourth information, where the fourth information is used to indicate the granularity of the terminal device feeding back the first information or the second information, and the granularity may be TB level or CBG level.
  • the method further includes: the network device receives a capability parameter from the terminal device, where the capability parameter is used to indicate that the terminal device supports feeding back the first information or the second information.
  • an embodiment of the present application provides a communication device, which may be a terminal device, including: a receiving unit, configured to receive a downlink physical shared channel PDSCH from a network device; a sending unit, configured to send feedback information to the network device , the feedback information includes indication information, and the indication information includes first information or second information; wherein the first information is related to the average value of the LDPC decoding iteration times of the low-density parity check code corresponding to the first code block CB; or, the first The information is related to the maximum value of the number of LDPC decoding iterations corresponding to the first CB; or, the first information is related to the number of the first CBs; the second information is used to indicate the first adjustment amount, and the first adjustment amount includes the signal-to-noise ratio SNR Adjustment amount, signal-to-interference and noise ratio SINR adjustment amount, channel quality indication CQI adjustment amount or modulation and coding mode MCS adjustment amount; the first adjustment amount is determined according to the first
  • the first CB includes all CBs in a TB, or a correctly decoded CB in a TB, or a CB incorrectly decoded in a TB; or the first CB includes all of a CBG CB, or a correctly decoded CB in a CBG, or an incorrectly decoded CB in a CBG.
  • the first information is used to indicate an average value of LDPC decoding iteration times corresponding to all CBs in a TB, or a first normalization determined according to the average value and a preset LDPC decoding iteration number value; or the first information is used to indicate the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB, or the second normalized value determined according to the maximum value and the preset number of LDPC decoding iterations; Or the first information is used to indicate the number of correctly decoded CBs in a TB, or a third normalized value determined according to the number of correctly decoded CBs and the number of all CBs in a TB; or the first information It is used to indicate the number of CBs with decoding errors in a TB, or a fourth normalized value determined according to the number of CBs with decoding errors and the number of all CBs in a TB.
  • the feedback information further includes third information, and the third information includes a positive acknowledgement ACK or a negative acknowledgement NACK, and when the third information includes an ACK, the first information is used to indicate that all CBs in a TB correspond to The average value of the number of LDPC decoding iterations, the first normalized value, the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB, or the second normalized value; the second The information is used to indicate the first adjustment amount; when the third information includes NACK, the first information is used to indicate the average value of the number of LDPC decoding iterations corresponding to all CBs in a TB, the first normalized value, and the decoding in one TB.
  • the third information includes a positive acknowledgement ACK or a negative acknowledgement NACK
  • the third information includes an ACK
  • the first information is used to indicate that all CBs in a TB correspond to The average value of the number of LDPC decoding iter
  • the maximum value in the number of LDPC decoding iterations corresponding to the correct CB, the second normalized value, the number of correctly decoded CBs in a TB, the third normalized value, and the incorrectly decoded CB in a TB Either the number of , or the fourth normalized value; the second information is used to indicate the first adjustment amount.
  • the indication information and the third information are independently encoded; and the indication information and the third information are transmitted on the same physical uplink control channel PUCCH, or the indication information and the third information are transmitted on different PUCCHs.
  • the indication information and the third information are jointly encoded, and the indication information and the third information are transmitted on the same PUCCH.
  • the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, the first normalized value, Either the maximum value of the number of LDPC decoding iterations corresponding to the correctly decoded CB in one TB or the second normalized value.
  • the terminal device is not configured with CBG.
  • the first information is used to indicate the average number of LDPC decoding iterations corresponding to all CBs in a CBG, and the LDPC corresponding to all CBs in a CBG.
  • the normalized value corresponding to the average value of the number of decoding iterations, the maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG, or the maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG The corresponding normalized value.
  • the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in one TB, the first normalized value, and the number of times of LDPC decoding in one TB.
  • the maximum value or the second normalized value in the number of LDPC decoding iterations corresponding to the correctly decoded CB; the second information is used to indicate the first adjustment amount.
  • the CBG is configured on the terminal device.
  • the receiving unit is further configured to receive fourth information, where the fourth information is used to indicate the granularity of the terminal device feeding back the first information or the second information, and the granularity may be TB level or CBG level.
  • the sending unit is further configured to report a capability parameter, where the capability parameter is used to indicate that the terminal device supports feeding back the first information or the second information.
  • the terminal device when the terminal device is configured to feed back the first information and the terminal device is configured for CBG transmission, the terminal device performs TB-level data transmission; or when the terminal device is configured to feed back the first information, the terminal device is not configured CBG transmission.
  • an embodiment of the present application provides a communication device, which may be a network device, including: a sending unit, configured to send a downlink physical shared channel PDSCH to a terminal device; a receiving unit, configured to receive feedback information from the terminal device , the feedback information includes indication information, and the indication information includes first information or second information; wherein the first information is related to the average value of the LDPC decoding iteration times of the low-density parity check code corresponding to the first code block CB; or, the first The information is related to the maximum value of the number of LDPC decoding iterations corresponding to the first CB; or, the first information is related to the number of the first CBs; the second information is used to indicate the first adjustment amount, and the first adjustment amount includes the signal-to-noise ratio SNR Adjustment amount, signal-to-interference and noise ratio SINR adjustment amount, channel quality indication CQI adjustment amount or modulation and coding mode MCS adjustment amount; the first adjustment amount is determined according to the first
  • the first CB includes all CBs in a TB, or a correctly decoded CB in a TB, or a CB incorrectly decoded in a TB; or the first CB includes all of a CBG CB, or a correctly decoded CB in a CBG, or an incorrectly decoded CB in a CBG.
  • the first information is used to indicate an average value of LDPC decoding iteration times corresponding to all CBs in a TB, or a first normalization determined according to the average value and a preset LDPC decoding iteration number value; or the first information is used to indicate the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB, or the second normalized value determined according to the maximum value and the preset number of LDPC decoding iterations; Or the first information is used to indicate the number of correctly decoded CBs in a TB, or a third normalized value determined according to the number of correctly decoded CBs and the number of all CBs in a TB; or the first information It is used to indicate the number of CBs with decoding errors in a TB, or a fourth normalized value determined according to the number of CBs with decoding errors and the number of all CBs in a TB.
  • the feedback information further includes third information, and the third information includes a positive acknowledgement ACK or a negative acknowledgement NACK, and when the third information includes an ACK, the first information is used to indicate that all CBs in a TB correspond to The average value of the number of LDPC decoding iterations, the first normalized value, the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB, or the second normalized value; the second The information is used to indicate the first adjustment amount; when the third information includes NACK, the first information is used to indicate the average value of the number of LDPC decoding iterations corresponding to all CBs in a TB, the first normalized value, and the decoding in one TB.
  • the third information includes a positive acknowledgement ACK or a negative acknowledgement NACK
  • the third information includes an ACK
  • the first information is used to indicate that all CBs in a TB correspond to The average value of the number of LDPC decoding iter
  • the maximum value in the number of LDPC decoding iterations corresponding to the correct CB, the second normalized value, the number of correctly decoded CBs in a TB, the third normalized value, and the incorrectly decoded CB in a TB Either the number of , or the fourth normalized value; the second information is used to indicate the first adjustment amount.
  • the indication information and the third information are independently encoded; and the indication information and the third information are transmitted on the same physical uplink control channel PUCCH, or the indication information and the third information are transmitted on different PUCCHs.
  • the indication information and the third information are jointly encoded, and the indication information and the third information are transmitted on the same PUCCH.
  • the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, the first normalized value, Either the maximum value of the number of LDPC decoding iterations corresponding to the correctly decoded CB in one TB or the second normalized value.
  • the terminal device is not configured with CBG.
  • the first information is used to indicate the average number of LDPC decoding iterations corresponding to all CBs in a CBG, and the LDPC corresponding to all CBs in a CBG.
  • the normalized value corresponding to the average value of the number of decoding iterations, the maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG, or the maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG The corresponding normalized value.
  • the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in one TB, the first normalized value, and the number of times of LDPC decoding in one TB.
  • the maximum value or the second normalized value in the number of LDPC decoding iterations corresponding to the correctly decoded CB; the second information is used to indicate the first adjustment amount.
  • the CBG is configured on the terminal device.
  • the sending unit is further configured to send fourth information, where the fourth information is used to indicate the granularity of the terminal device feeding back the first information or the second information, and the granularity may be TB level or CBG level.
  • the receiving unit is further configured for the network device to receive a capability parameter from the terminal device, where the capability parameter is used to indicate that the terminal device supports feeding back the first information or the second information.
  • an embodiment of the present application further provides a communication apparatus, where the communication apparatus may be a terminal device or a chip.
  • the communication apparatus includes a processor configured to implement any one of the feedback information transmission methods provided in the first aspect.
  • the communication device may further include a memory for storing program instructions and data, and the memory may be a memory integrated in the communication device or an off-chip memory provided outside the communication device.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to implement any one of the feedback information transmission methods provided in the first aspect above.
  • the communication apparatus may also include a communication interface for the communication apparatus to communicate with other devices (eg, network devices).
  • an embodiment of the present application further provides a communication apparatus, where the communication apparatus may be a network device or a chip.
  • the communication apparatus includes a processor configured to implement any one of the feedback information transmission methods provided in the second aspect above.
  • the communication device may further include a memory for storing program instructions and data, and the memory may be a memory integrated in the communication device or an off-chip memory provided outside the communication device.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to implement any one of the feedback information transmission methods provided in the second aspect above.
  • the communication apparatus may also include a communication interface for the communication apparatus to communicate with other devices (eg, terminal devices).
  • an embodiment of the present application provides a computer-readable storage medium, including instructions that, when executed on a computer, cause the computer to execute any one of the feedback information provided in the first aspect or the second aspect. transfer method.
  • an embodiment of the present application provides a computer program product including instructions, which, when run on a computer, enables the computer to execute any one of the feedback information transmission provided in the first aspect or the second aspect. method.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing any feedback information transmission provided in any one of the first aspect or the second aspect. method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the system includes the communication device in the third aspect and the communication device in the fourth aspect.
  • Fig. 1 is the feedback schematic diagram of a kind of existing MCS adjustment
  • FIG. 2 is a schematic structural diagram of a TB provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a CBG provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of signal interaction provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a bit field corresponding to a third information and indication information according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of signal interaction provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a resource related to first information provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of yet another resource related to the first information provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of still another network device provided by an embodiment of the present application.
  • URLLC is one of the three typical services of the fifth generation (5th generation, 5G) mobile communication system. Its main application scenarios include: unmanned driving, telemedicine, etc. These application scenarios put forward stricter requirements in terms of reliability and delay.
  • the specific requirements of the URLLC service include: the reliability of data transmission reaches 99.999%, the transmission delay is less than 1ms, and the instruction overhead is reduced as much as possible while meeting the requirements of high reliability and low delay.
  • the three typical services of 5G include enhanced mobile broadband (eMBB), massive machine type communication (mMTC) and URLLC.
  • each TB can be divided into multiple CBs according to the rules predefined by the standard protocol, and each TB and CB has its own corresponding CRC.
  • CRC can be used to introduce certain redundant information to ensure that the transmitted information has a certain error detection or error correction capability.
  • the TB can also pass its own CRC check, that is, the TBs are decoded correctly.
  • the HARQ feedback corresponding to the TB by the UE can be ACK; if one or more CBs in a TB cannot pass their respective CRC checks, that is, when at least one CB is decoded incorrectly, the TB cannot pass its own CRC. CRC check, that is, TB decoding error.
  • the UE can NACK the HARQ feedback corresponding to this TB.
  • CBG transmission In the NR system, when the data transmission rate is relatively large, the size of each TB will be very large. Once the TB is decoded incorrectly, the entire TB will be retransmitted. Since the TB can be divided into multiple code blocks (code blocks, CB) before encoding, some CBs may be decoded correctly at the receiving end, and some CBs may be decoded incorrectly. It is unwise to retransmit the entire TB, resulting in a comparison of resource utilization. Low. Therefore, ACK/NAK feedback can be performed for each CB, so that if a certain TB fails to be decoded, the terminal only needs to retransmit the erroneous CB without retransmitting the entire TB.
  • code blocks code blocks
  • CB-based feedback reduces the redundant information of retransmission and can improve resource utilization, it needs to feed back a lot of uplink ACK/NAK, which will result in a very large uplink signaling overhead and waste of resources.
  • a compromise solution based on TB feedback and CB feedback is introduced in NR: as shown in Figure 3, multiple CBs in a TB can be grouped, and the grouped CBs can be called (code block group, CBG). The corresponding ACK/NACK can be fed back for each CBG and retransmitted based on the CBG.
  • CBG transmission is configurable, and only users configured with CBG-based transmission can perform retransmission based on CBG.
  • the base station can configure TB-based transmission or CBG-based transmission for the UE through high-level signaling.
  • high-level signaling please refer to codeBlockGroupTransmission in PDSCH-Config in section 6.3.2 of the communication standard protocol TS38.331.
  • the base station may notify the UE that CBG transmission is enabled through codeBlockGroupTransmission, otherwise it is equivalent to enabling TB transmission.
  • the base station does not configure and enable the high-level parameter codeBlockGroupTransmission for a UE, the UE can perform CBG-based transmission, that is, one TB contains at least one CBG, and the UE can determine the high-level parameter maxCodeBlockGroupsPerTransportBlock within one TB.
  • HARQ-ACK Contains the maximum number of CBGs, and generates one-bit HARQ-ACK information for each CBG; when the base station does not configure and enable the high-level parameter codeBlockGroupTransmission for a UE, the UE can perform TB-based transmission, that is, the UE can perform TB-based transmission for each TB.
  • One-bit HARQ-ACK information is generated.
  • AMC technology has been widely used in wireless transmission systems. This technology adapts to changing wireless channel quality by adaptively adjusting the MCS used by the communication system, thereby improving the reliability of wireless transmission. and system throughput. Specifically, this technology can measure the quality of the wireless channel by monitoring the SINR of the wireless channel, and predict the channel quality in the future according to the measurement result. Finally, based on the prediction result, by looking up the preset SINR threshold table, an appropriate one can be selected. MCS.
  • OLLA can be used to adjust the predicted SINR. Due to the imperfect factors in the actual system and the time-varying characteristics of the wireless channel, there is an unavoidable error between the predicted SINR and the actual corresponding SINR. In order to reduce the influence of the prediction error of SINR on the system performance and improve the robustness of the whole system, the predicted SINR can be adjusted by OLLA. For example, an initial SINR adjustment amount (also called an OLLA initial value) can be set first, and then convergence adjustment is performed in small steps until the user's initial block error rate (IBLER) meets the IBLER target value.
  • an initial SINR adjustment amount also called an OLLA initial value
  • OLLA adjustment needs to compensate for two parts of the error, one part is the difference between the measured SINR (or SINR threshold) at the current moment and the actual demodulation and decoding SINR, which is called measurement error; the other part is due to the wireless channel. SINR fluctuations caused by time-varying, etc. Under different wireless environments or channel conditions, the amount of error that needs to be compensated is often different.
  • the existing OLLA initial value adopts a fixed initial value, which cannot reflect the situation of all wireless environments. Inappropriate selection of the initial value of OLLA will directly lead to a longer time required for OLLA to adjust to a convergent state, thereby affecting the performance of the system.
  • MBB mobile broadband
  • the existing OLLA technology cannot work normally in the URLLC scenario, including the following reasons: (1)
  • the target BLER of URLLC is usually very low, generally around 10 -5 .
  • ⁇ NACK 99999 ⁇ ACK .
  • the OLLA adjustment amount ⁇ ACK corresponding to ACK is very small, and the ability to track channel or interference changes has been lost.
  • the probability of NACK triggering OLLA adjustment in URLLC is very low, especially for scenarios where low latency is required to avoid retransmission, there is not enough NACK to make OLLA converge.
  • the base station can only adjust the OLLA according to the ACK fed back by the UE.
  • the ACK does not carry additional information.
  • the base station can only adjust the MCS according to the fixed adjustment amount ⁇ ACK corresponding to the ACK .
  • the present application provides a feedback information transmission method. After receiving a TB from a network device, a terminal device can send feedback information to the network device.
  • the feedback information includes first information, and the first information is used to indicate the LDPC decoding iterations corresponding to all CBs in the TB.
  • the average value of the number of times, or the first normalized value determined according to the average value and the preset number of LDPC decoding iterations (the normalized value may also be referred to as a normalized quantized value, which is not limited in this application);
  • a piece of information is used to indicate the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in the TB, or a second normalized value determined according to the maximum value and the preset number of LDPC decoding iterations; or, the first information Used to indicate the number of correctly decoded CBs in the TB, or a third normalized value determined according to the number of correctly decoded CBs and the number of all CBs in the TB; or, the first information is used to indicate the number of correctly decoded CBs in the TB The number of CBs with decoding errors, or the fourth normalized value determined according to the number of CBs with decoding errors and the number of all CBs in the TB; or
  • the content indicated by the first information can reflect the PDSCH decoding margin, and feed back different first information to the network device, which helps the network device to perform OLLA adjustment according to the decoding situation of the UE, and adjust the channel or Accurately track the interference and update the appropriate MCS, which helps to improve the decoding success rate of new transmissions and retransmissions and improve the spectrum utilization.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system and/or an independent (standalone, SA) 5G mobile communication system.
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may also be a future evolved public land mobile network (PLMN) network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, an object Internet of things (IoT) network or other network.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT object Internet of things
  • the communication system includes a network device 110 and a terminal device 120 , and point-to-point transmission can be performed between the network device 110 and the terminal device 120 .
  • the communication system includes a network device 110 , a terminal device 120 , a relay node 140 and a relay node 150 , and the network device 110 and the terminal device 120 pass through a multi-hop relay node (eg, relay Node 140 and relay node 150) communicate.
  • the communication system includes a network device 110 , a terminal device 120 and a network device 130 .
  • the network device 110, the terminal device 120 and the network device 130 may be in a dual link/dual connectivity (DC) or coordinated multipoint transmission/reception (CoMP) scenario.
  • the network device 110 may be a network device when the terminal device 120 initially accesses, and is responsible for RRC communication with the terminal device 120.
  • the network device 130 is added during RRC reconfiguration to provide additional radio resources.
  • the terminal device 120 configured with CA is connected to the network device 110 and the network device 130.
  • the link between the network device 110 and the terminal device 120 can be called the first link, and the link between the network device 130 and the terminal device 120
  • the path can be called the second link. As shown in (d) of FIG.
  • the communication system includes a network device 110 , a terminal device 120 , a relay node 140 and a relay node 150 , and the network device 110 and the terminal device 120 pass through different relay nodes (eg, relay node 140 or relay node 150) to communicate.
  • relay nodes eg, relay node 140 or relay node 150
  • FIG. 4 is an example of a scenario of a communication system to which the embodiments of the present application are applied, and does not limit the network architecture applicable to the present application.
  • the number of network devices and terminal devices included in the communication system may also be other numbers.
  • the present application does not limit the transmission of uplink, downlink, access link, backhaul link, sidelink, etc.
  • the terminal device involved in the embodiments of this application may also be referred to as a terminal, which may be a device with a wireless transceiver function, which may be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it may also be deployed on water (such as ships, etc.); can also be deployed in the air (such as on airplanes, balloons, satellites, etc.).
  • the terminal device may be a UE, wherein the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with wireless communication capabilities.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, intelligent Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device for realizing the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device for realizing the functions of the terminal is a terminal, and the terminal is a UE as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network devices or relay nodes involved in the embodiments of the present application include access network devices, such as a base station (base station, BS).
  • the BS may be a device deployed in a wireless access network and capable of wirelessly communicating with a terminal.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the base station involved in the embodiments of the present application may be a base station in 5G or an evolved base station (Evolved Node B, eNB) in LTE, where the base station in 5G may also be referred to as a transmission reception point (transmission reception point). , TRP) or 5G base station (Next-Generation Node B, gNB).
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the device for implementing the functions of the network device is a network device, and the network device is a base station as an example to describe the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided in the embodiments of the present application can be applied to wireless communication between communication devices.
  • the wireless communication between communication devices may include: wireless communication between a network device and a terminal, wireless communication between a network device and a network device, and wireless communication between a terminal and a terminal.
  • wireless communication may also be referred to as "communication” for short, and the term “communication” may also be described as "data transmission", "information transmission” or “transmission”.
  • Air interface resources can be used for wireless communication between communication devices.
  • the communication equipment may include network equipment and terminal equipment, and the network equipment may also be referred to as base station equipment.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources and space resources.
  • the terminal device or network device in FIG. 4 in this embodiment of the present application may be implemented by one device, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application. It is to be understood that the above functions can be either network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (eg, a cloud platform), or a system-on-a-chip. . In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 5 is a schematic diagram of a hardware structure of an apparatus 500 according to an embodiment of the present application.
  • the apparatus 500 includes at least one processor 501, configured to implement the functions of the terminal device provided by the embodiments of the present application.
  • the apparatus 500 may also include a bus 502 and at least one communication interface 504 .
  • a memory 503 may also be included in the apparatus 500 .
  • the processor may be a central processing unit (CPU), a general-purpose processor, a network processor (NP), a digital signal processor (DSP), a microprocessor, or a controller, microcontroller, programmable logic device (PLD).
  • the processor can also be any other device with processing functions, such as an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices , hardware components, software modules, or any combination thereof.
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the bus 502 may be used to transfer information between the aforementioned components.
  • the communication interface 504 is used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN) and the like.
  • the communication interface 504 may be an interface, a circuit, a transceiver or other devices capable of implementing communication, which is not limited in this application.
  • Communication interface 504 may be coupled to processor 501 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory may be a read-only memory (ROM) or other types of static storage devices capable of storing static information and instructions, a random access memory (RAM) or a storage device capable of storing static information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • Other optical disc storage optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or capable of being used to carry or store desired in the form of instructions or data structures
  • Program code and any other medium that can be accessed by a computer but is not limited thereto.
  • the memory can exist independently or be coupled to the processor, such as through bus 502 .
  • the memory can also be integrated with the processor.
  • the memory 503 is used for storing program instructions, and can be controlled and executed by the processor 501, thereby implementing the feedback information transmission method provided by the following embodiments of the present application.
  • the processor 501 is configured to call and execute the instructions stored in the memory 503, thereby implementing the feedback information transmission method provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • memory 503 may be included in processor 501 .
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5 .
  • the apparatus 500 may include multiple processors, such as the processor 501 and the processor 507 in FIG. 5 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the apparatus 500 may further include an output device 505 and an input device 506 .
  • Output device 505 is coupled to processor 501 and can display information in a variety of ways.
  • the output device 505 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • Input device 506 is coupled to processor 501 and can receive user input in a variety of ways.
  • the input device 506 may be a touch screen device or a sensing device or the like.
  • the above-mentioned apparatus 500 may be a general-purpose device or a special-purpose device.
  • the terminal device 500 may be a vehicle-mounted terminal or a transportation device with a built-in computer (processor) or a device with a similar structure in FIG. 5 .
  • This embodiment of the present application does not limit the type of the apparatus 500 .
  • FIG. 6 is a schematic diagram of a hardware structure of an apparatus 600 according to an embodiment of the present application.
  • the apparatus 600 includes at least one processor 601, configured to implement the functions of the terminal device provided by the embodiments of the present application.
  • a bus 602 and at least one communication interface 604 may also be included in the apparatus 600 .
  • a memory 603 may also be included in the apparatus 600 .
  • the bus 602 may be used to transfer information between the aforementioned components.
  • a communication interface 604 for communicating with other devices or communication networks, such as Ethernet, RAN, WLAN, and the like.
  • the communication interface 604 may be an interface, a circuit, a transceiver or other devices capable of implementing communication, which is not limited in this application.
  • Communication interface 604 may be coupled to processor 601 .
  • the memory 603 is used for storing program instructions, and can be controlled and executed by the processor 601, thereby implementing the feedback information transmission method provided by the following embodiments of the present application.
  • the processor 601 is configured to call and execute the instructions stored in the memory 603, thereby implementing the feedback information transmission method provided by the following embodiments of the present application.
  • memory 603 may be included in processor 601 .
  • the processor 601 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 6 .
  • the apparatus 600 may include multiple processors, such as the processor 601 and the processor 605 in FIG. 6 . Each of these processors can be a single-core processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the above-mentioned apparatus 600 may be a general-purpose device or a special-purpose device.
  • the apparatus 600 may be a vehicle-mounted terminal or a traffic device with a built-in computer (processor) or a device with a similar structure in FIG. 6 .
  • This embodiment of the present application does not limit the type of the apparatus 600 .
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as CPU, memory management unit (MMU), and memory (also known as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, CDs, digital versatile discs (DVDs), etc.), smart cards, and flash memory devices (eg EPROM, card, stick or key drive, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • an embodiment of the present application provides a method for transmitting feedback information, including:
  • the network device sends the PDSCH to the terminal device.
  • the PDSCH can carry the TB.
  • the network device may schedule the PDSCH by sending downlink control information (DCI) to the terminal device (eg, UE).
  • DCI downlink control information
  • the DCI may be carried in a physical downlink control channel (PDCCH), and the DCI may be used to indicate related scheduling information such as time-frequency resources of the TB.
  • PDCH physical downlink control channel
  • the terminal device receives the PDSCH from the network device.
  • TB is carried in PDSCH.
  • the terminal equipment can decode the PDSCH to determine whether the TB is received correctly.
  • the terminal device sends feedback information to the network device.
  • the feedback information includes indication information, and the indication information includes first information or second information.
  • the first information is related to the average value of the LDPC decoding iteration times corresponding to the first CB; or, the first information is related to the maximum value of the LDPC decoding iteration times corresponding to the first CB; or, the first information is related to the first The number of CBs is related; the second information is used to indicate the first adjustment amount, and the first adjustment amount includes SNR adjustment amount, SINR adjustment amount, CQI adjustment amount or MCS adjustment amount; the first adjustment amount is determined according to the first information.
  • the first CB may include all CBs in one TB, or CBs decoded correctly in one TB, or CBs decoded incorrectly in one TB.
  • the first CB may include all CBs in a CBG, or a correctly decoded CB in a CBG, or an incorrectly decoded CB in a CBG.
  • the content indicated by the first information may include the following situations:
  • the first information may be used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, or the first normalized value corresponding to the average value.
  • LDPC usually adopts iterative decoding, and a higher number of iterations can achieve better system performance.
  • Different iteration times reflect different decoding margins.
  • the low PDSCH decoding margin means that the MCS needs to be adjusted relatively small, because the UE can decode the correct margin is low, try not to increase the MCS to cause a significant increase in the code rate.
  • a high PDSCH decoding margin means that the MCS needs to be adjusted relatively large, because the UE can decode correctly with a large margin, and it can appropriately increase some MCS to increase the code rate, thereby improving the transmission efficiency.
  • the medium PDSCH decoding margin is somewhere in between.
  • the base station can determine the decoding situation of the UE, and the base station can adjust the OLLA according to the decoding situation of the UE, accurately track the channel or interference and update the appropriate MCS, which helps to improve the efficiency of new transmission and retransmission. Decoding success rate, improve spectrum utilization.
  • a number of iterations may be preset, and once the actual number of iterations exceeds the preset number of iterations, iterative decoding will be stopped. Since the specific implementation of each manufacturer is different, the number of LDPC decoding iterations implemented is also different. Therefore, the terminal of each manufacturer may not provide valid information by reporting one LDPC decoding iteration number, so it may be considered to report a normalized value (for example, the first normalized value).
  • the first normalized value r K can be defined as the average value of the actual LDPC decoding iteration times corresponding to all CBs in the TB
  • the ratio to the preset number of iterations K default , that is In this way, the influence of different vendors on the implementation can be eliminated.
  • the terminal device may directly report the average value of the LDPC decoding iteration times corresponding to all CBs in the TB, or the first normalized value corresponding to the average value.
  • direct reporting may cause a lot of overhead, so the interval [0, 1] of the first normalized value can be quantified and reported.
  • the communication protocol can be predefined to The result of quantization is divided into four intervals, and the mapping relationship between different bit fields or bit states and quantization intervals can be shown in Table 1.
  • the bit field may not be limited to 2 bits, but may also be more bits.
  • the division ratio of the quantization interval may not be equal, but may be divided according to other ratios, which is not limited in this application.
  • the above-mentioned average of the number of LDPC decoding iterations is based on statistics of CBs included in one TB.
  • Each CB in 1 TB corresponds to one LDPC iteration value.
  • the average value may be a statistical average of all CBs in a TB, or may be a statistical average of CBs correctly decoded in a TB.
  • CBs with decoding errors in a TB are not counted, because the UE will try to decode each CB, that is, the preset number of iterations is reached. If the CB still fails the CRC check, it is considered that the CB is decoded incorrectly. Therefore, the number of LDPC decoding iterations corresponding to each erroneous CB is usually equal to the preset number of LDPC decoding iterations.
  • 1 TB includes 8 CBs, 6 of the 8 CBs are correctly decoded, and 2 are decoded incorrectly.
  • the number of LDPC decoding iterations corresponding to the correct CBs can be different, for example, can be respectively The number of LDPC decoding iterations corresponding to the CB with the decoding error equal to the preset number of iterations, assuming If the statistics of the average number of LDPC decoding iterations are performed for all CBs in the TB, then It corresponds to "11" in Table 2. If statistics are performed on the average number of LDPC decoding iterations corresponding to all correctly decoded CBs in several TBs, then It corresponds to "10" in the table.
  • the first information is used to indicate the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in one TB, or the second normalized value corresponding to the maximum value.
  • the number of LDPC decoding iterations corresponding to different CBs in a TB may be different.
  • the number of LDPC decoding iterations corresponding to the CB refers to the actual number of LDPC decoding iterations corresponding to the CB.
  • the CB with the largest number of iterations reflects the worst decoding conditions of the CB and requires the most decoding iterations.
  • the UE reports this information to the gNB, which can tell the gNB that although the current TB decoding is correct, the effort for correct decoding is "easy", "moderate”, or "very difficult", which corresponds to the channel environment. Excellent, good, or bad.
  • the gNB After the gNB obtains this information, it can measure future OLLA adjustments or MCS adjustments. In the prior art, after the gNB determines that the UE feeds back ACK, it can only adjust the MCS according to a fixed step size, but it may be that all the CB iteration times have already approached or reached the preset value. One TB decoding failed.
  • the terminal device may directly report the maximum value of the number of LDPC decoding iterations corresponding to the correctly decoded CB in the TB, or the normalized value (eg, the second normalized value) corresponding to the maximum value.
  • the actual number of LDPC decoding iterations corresponding to the ith CB is K actual, i
  • the preset number of iterations K default then the actual LDPC decoding iteration corresponding to the ith CB is K actual , i .
  • the actual number of LDPC decoding iterations corresponding to all correctly decoded CBs in the TB can be expressed as Among them, the maximum number of LDPC decoding iterations the second normalized value corresponding to the maximum value Exemplarily, it is assumed that 1 TB includes 8 CBs, and all 8 CBs are correctly decoded, but the LDPC decoding iteration times corresponding to the correctly decoded CBs are not the same. If the maximum value of the actual LDPC decoding iteration times corresponding to all correctly decoded CBs in the TB is 12, the second normalized value corresponding to the maximum value is 12. UE can report directly to gNB.
  • the interval [0] covered by the second normalized value can be , 1] quantize, and report the bit field or bit state corresponding to the corresponding interval.
  • the predefined communication protocol can be The quantization is divided into four intervals, and the mapping relationship between the bit field or the bit state and the quantization interval may be as shown in Table 2. when When given, the UE may report "11" to the gNB. This example is a possible implementation method, and the bit field is not limited to 2 bits, but can also be more bits. The division ratio of the quantization interval may not be equal, but may be divided according to other ratios, which is not limited in this application.
  • the first information is used to indicate the number of correctly decoded CBs in a TB, or a third normalized value corresponding to the number of correctly decoded CBs.
  • the UE can clearly know which CBs in the TB are correctly decoded during the decoding process, so that the proportion of the correctly decoded CB in the TB can be obtained. In this way, if one TB is decoded incorrectly, the base station receives the NACK fed back by the UE, and the base station can also obtain the proportion of the correctly decoded CB in the TB, and it can be known that the wrong TB is only due to a small number (for example, one) CB If the decoding error causes the whole TB to fail the CRC check, or a large number (for example, all) of the CBs are decoded incorrectly and the TB fails the CRC check, it is possible to know whether the channel environment in which the UE is located is moderate or bad, and the OLLA or CQI Or the adjustment of the MCS can be compensated by a corresponding range to avoid the problems of low resource utilization and low spectral efficiency caused by excessive adjustment.
  • the terminal device may directly report the number of correctly decoded CBs in the TB, or the third normalized value corresponding to the number of correctly decoded CBs.
  • the third normalized value p ACK corresponding to the correctly decoded CB can be defined as the value of the correctly decoded CB.
  • the ratio of the number of n ACKs to the number of CBs T included in the TB, that is, p ACK n ACK /T.
  • the terminal device may report the bit state or bit field corresponding to the third normalization value corresponding to the number of correctly decoded CBs. Since the third normalized value has many values, it is considered that the direct reporting of the third normalized value will cause a large overhead. Therefore, the interval [0, 1] covered by the third normalized value can be quantified and only reported The bit field or bit state corresponding to the corresponding interval.
  • This example is a possible implementation method, and the bit field is not limited to 2 bits, but can also be more bits.
  • the division ratio of the quantization interval may not be equal, but may be divided according to other ratios, which is not limited in this application.
  • the first information is used to indicate the number of CBs with decoding errors in a TB, or a fourth normalized value corresponding to the number of CBs with decoding errors.
  • Case (4) is similar to case (3), so the reporting method is also similar, and will not be repeated here.
  • the content indicated by the first information can reflect the PDSCH decoding margin (that is, the decoding situation of the UE). ), feedback different first information to the network device, which helps the network device to adjust the OLLA according to the decoding situation of the UE, accurately track the channel or interference and update the appropriate MCS, which helps to improve the efficiency of new transmission and retransmission. Decoding success rate, improve spectrum utilization.
  • the second information may be used to indicate a first adjustment amount
  • the first adjustment amount may include an SNR adjustment amount, an SINR adjustment amount, a CQI adjustment amount or an MCS adjustment amount.
  • the first adjustment amount may also be referred to as the adjustment amount of the OLLA.
  • the first adjustment amount may be determined according to the first information. For example, after determining different normalization values based on the situation (1), (2), (3) or (4), the terminal device may further determine the first adjustment amount (SNR adjustment amount, SINR adjustment amount, SINR adjustment amount) corresponding to the different normalization values. adjustment, CQI adjustment or MCS adjustment). Wherein, the SNR adjustment amount, the SINR adjustment amount, the CQI adjustment amount or the MCS adjustment amount may be determined by performing simulation or testing on different normalization values.
  • the terminal device may further determine the first adjustment amount corresponding to the first normalized value. That is, the communication protocol may specify that the UE determines the first adjustment amount (eg, the CQI adjustment amount) according to the first normalized value corresponding to the average value of the LDPC decoding iteration times corresponding to all the CBs in the TB. For example, the communication protocol may specify that the UE may report 4 types of CQI adjustment amounts (each type of CQI adjustment amount may be represented by 2-bit information). It can be pre-defined according to the UE's own implementation or protocol.
  • the first adjustment amount eg, the CQI adjustment amount
  • the communication protocol may specify that the UE may report 4 types of CQI adjustment amounts (each type of CQI adjustment amount may be represented by 2-bit information). It can be pre-defined according to the UE's own implementation or protocol.
  • the result is quantized into four intervals, and the mapping relationship between different bit fields or bit states and the quantization interval may be as shown in the table, or the four intervals may also be unequal intervals different from those in Table 1.
  • the mapping relationship between different bit fields or bit states and the CQI adjustment amount may be as shown in Table 4.
  • the mapping relationship between the CQI adjustment amount and different quantization intervals may be as shown in Table 5 or Table 6. Wherein, Table 5 may belong to UE implementation, or may be a table predefined by a protocol, and Table 4 or Table 6 may be a mapping relationship predefined by a protocol.
  • the terminal device may further determine the first adjustment amount corresponding to the second normalized value.
  • the first adjustment amount corresponding to the third normalized value may be further determined.
  • the fourth normalization value is determined based on the situation (4), the first adjustment amount corresponding to the fourth normalization value may be further determined.
  • reference may be made to the process of determining the first adjustment amount based on the first normalized value, which will not be repeated here.
  • the content indicated by the first information may also include: an average value of the number of LDPC decoding iterations corresponding to all CBs in a CBG, or a normalized value ( The fifth normalized value); or, the first information is used to indicate the maximum value in the LDPC decoding iteration times corresponding to the correct CB decoded in a CBG, or is determined according to the maximum value and the preset LDPC decoding iteration times
  • the normalized value (sixth normalized value); or, the first information is used to indicate the number of correctly decoded CBs in a CBG, or according to the number of correctly decoded CBs and all of the CBGs
  • the normalized value (the seventh normalized value) determined by the number of CBs; or, the first information is used to indicate the number of CBs with decoding errors in a CBG, or according to the number of CBs with decoding errors and A normalized value determined by the number of all CBs in a CBG (the eighth normal
  • the feedback information further includes third information, and the third information includes ACK or NACK.
  • the third information includes ACK or NACK.
  • the UE needs to feed back NACK for this TB, so that the base station can retransmit the TB.
  • the indication information is fed back.
  • the indication information can assist the gNB to perform OLLA adjustment.
  • the OLLA adjustment includes SNR adjustment, SINR adjustment, CQI adjustment or MCS adjustment, which is helpful for the successful retransmission of the TB.
  • the UE needs to feed back an ACK for this TB, so that the base station can continue to transmit the next TB.
  • the indication information is fed back.
  • the indication information can assist the gNB to perform OLLA adjustment.
  • the OLLA adjustment includes SNR adjustment, SINR adjustment, CQI adjustment or MCS adjustment, which is helpful for the success of the next TB new transmission.
  • the relationship between the first information and the third information includes the following features.
  • the same indication information (the first information or the second information) may be associated, or different indication information may be associated respectively.
  • the first information can be used to indicate the average value of LDPC decoding iteration times corresponding to all CBs in one TB, the first normalized value, the LDPC decoding corresponding to the correctly decoded CB in one TB Either the maximum value in the number of code iterations or the second normalized value; the second information is used to indicate the first adjustment amount.
  • the first information may be used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, the first normalization value, and the LDPC decoding corresponding to the correctly decoded CB in a TB.
  • the third information includes an ACK
  • the first information usually does not exist to indicate the number of correctly decoded CBs in one TB, the third normalization value, the number of incorrectly decoded CBs in one TB, or
  • the reason is: when one TB is correct, all CBs are decoded correctly, and the number of correctly decoded CBs at this time is the number of all CBs included in the TB.
  • the third normalized value is 1, the number of CBs with decoding errors is 0, and the fourth normalized value is 0. Feeding back these values is meaningless and does not help the adjustment of the base station.
  • the first information may indicate the number of correctly decoded CBs in one TB, the third normalization value, the number of incorrectly decoded CBs in one TB, or the fourth normalization any of the values. This is because the number or proportion of CBs that can be decoded correctly in a TB with a decoding error (ie, the third normalized value), or the number or proportion of CBs that can be decoded incorrectly (ie, the fourth normalized value) is fed back. , which can tell the gNB the current margin for the UE to perform PDSCH decoding, so as to know the channel environment where the UE is located, and can assist the gNB to perform OLLA adjustment.
  • this erroneous TB may be caused by the fact that the whole TB cannot pass the CRC check due to only one CB decoding error, or a large number of CBs or all CBs are incorrectly decoded.
  • the TB cannot pass the CRC check, and the base station can know the location of the UE based on the number of correctly decoded CBs in the TB, the third normalization value, the number of CBs with incorrect decoding in the TB, or the fourth normalization value. If the channel environment is moderate or bad, the adjustment of OLLA, CQI or MCS should be compensated according to the corresponding amplitude, so as to avoid the problems of low resource utilization and low spectral efficiency caused by excessive adjustment.
  • the indication information and the third information may be jointly indicated by multiple bits, and different bit states may indicate different first information and third information.
  • the number of bit states corresponding to ACK and the number of bit states corresponding to NACK may be different.
  • the BLER is 10-5, and the probability of the terminal device feeding back NACK is very low under high reliability transmission. It is mainly carried out in the scenario of feeding back ACK. Therefore, compared with NACK, the indication information (first information or second information) associated with ACK can be more detailed. In this way, the number of bit states corresponding to ACK can be more than that corresponding to NACK. number.
  • the PDSCH decoding margin information carried by the UE when feeding back the NACK should greatly help the retransmission scheduling of the gNB, so as to ensure that the gNB takes into account both frequency efficiency and BLER. Therefore, the indication information associated with NACK can be more detailed, so that the number of bit states corresponding to NACK can be more than the number of bit states corresponding to ACK.
  • the case where the number of bit states corresponding to NACK is larger than that of ACK is taken as an example for description.
  • the last state “111" can be reserved (Reserved) for future feature extensions.
  • 3 bit states such as "000", “001", and “010” correspond to ACK
  • 4 bit states such as "011”, "100", "101", and "110” correspond to NACK, that is, correspond to ACK.
  • the number of bit states of , and the number of bit states corresponding to NACK may be different.
  • the indication information (eg, the first information) corresponding to the ACK may be the second normalized value.
  • the first information corresponding to the NACK may be the third normalized value.
  • the third information and the indication information may be independently encoded.
  • the third information (ACK or NACK) may be represented by 1 bit, and the following 2 bits may represent indication information.
  • the value of the indication information for example, the first information
  • reference may be made to the bit information shown in Table 1 to Table 3.
  • the value of the indication information for example, the second information
  • the bit field representing the indication information may not be limited to 2 bits, for example, may include 3 bits, 4 bits, and so on.
  • the position of the bit field representing the indication information is not limited to after ACK/NACK, and is not specifically limited in this application.
  • the indication information and the third information may be transmitted on the same PUCCH, or the indication information and the third information may be transmitted on different PUCCHs.
  • the terminal device After the terminal device receives the PDCCH of the scheduling TB (the PDCCH includes DCI) and the PDSCH of the transmission TB from the network device, it can perform PDSCH decoding, and then convert the indication information (for example, the first information), the third The information and/or CSI is fed back to the network device.
  • the first information and the third information may be fed back on the same PUCCH, that is, the UE may transmit the first information and the third information on the same PUCCH.
  • the first information and the third information may be fed back on different PUCCHs, for example, may be fed back on PUCCH2 and PUCCH1 respectively.
  • the third information on one PUCCH (for example, PUCCH1) may trigger the reporting of the first information on another PUCCH (for example, PUCCH2).
  • the indication information and the third information may be encoded jointly, that is, the third information and the indication information may be jointly indicated by multiple bits, and different bit states may indicate different indication information (eg, the first information) and the third information.
  • a bit field or bit state indicates both ACK and new reporting amount. For example, if the UE feeds back "110", it means that the decoding of the TB fails, and the number of correctly decoded CBs accounts for more than 75% of the total number of CBs in the TB.
  • the indication information and the third information are jointly encoded, the indication information and the third information are transmitted on the same PUCCH.
  • soft-ACK The way of feedback after the indication information and the third information are encoded independently or jointly can be called soft-ACK or soft-NACK, where "soft" (soft) means other information (for example, indication information) other than ACK or NACK. ).
  • the flexibility of network scheduling can be further improved by designing a multiplexing manner and an association manner of the indication information and the third information.
  • the terminal equipment when the terminal device is not configured with CBG (or not configured with CBG transmission), that is, when the network device is not configured or enabled for CBG transmission (Not configured code-block-group (CBG) based transmission) , the terminal equipment performs TB-level data transmission, that is, sends feedback information with TB as the granularity, that is, the third information (HARQ-ACK information) feedback and indication information feedback with TB as the granularity (at this time, HARQ-ACK information feedback and indication Information feedback can be bound, and the feedback granularity of the two is the same).
  • CBG code-block-group
  • the first information can be used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in one TB, the first normalized value, and the number of LDPC decoding iteration times corresponding to the correctly decoded CB in one TB. Either the maximum value or the second normalized value; the second information is used to indicate the first adjustment amount.
  • the third information when the third information includes ACK, the first information is used to indicate the average number of LDPC decoding iterations corresponding to all CBs in a TB, and the first normalization value, the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB or the second normalized value; the second information is used to indicate the first adjustment amount; when the third information includes When NACK, the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, the first normalized value, and the maximum of the LDPC decoding iteration times corresponding to the correctly decoded CB in a TB value, the second normalized value, the number of correctly decoded CBs in a TB, the third normalized value, the number of incorrectly decoded CBs in a TB, or the fourth normalized value
  • the second information is used to indicate the first
  • the terminal device when the terminal device is configured with a CBG, the terminal device may perform statistics and feedback based on each CBG in the TB. That is, the terminal device can send feedback information with CBG as the granularity. For example, assuming that there are N CBGs in one TB, the UE may perform statistics on the N CBGs, and feed back N sets/pieces of feedback information.
  • the first information can be used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a CBG, the normalized value corresponding to the average value of the LDPC decoding iteration times corresponding to all CBs in a CBG, a The maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG, the normalized value corresponding to the maximum value in the number of LDPC decoding iterations corresponding to all CBs in a CBG, the value of the correctly decoded CB in a CBG. The number, the normalized value determined according to the number of correctly decoded CBs and the number of all CBs in a CBG, the number of CBs with incorrect decoding in a CBG, or the number of CBs with decoding errors and a The normalized value determined by the number of all CBs in the CBG; the second information is used to indicate the first adjustment amount.
  • the HARQ feedback may be based on CBG, that is, the terminal device may perform statistics on N CBGs and feed back N sets/pieces of third information.
  • the third information may be ACK or NACK.
  • the terminal device may feed back ACK for all CBGs in the TB. For example, ACK may be fed back for all CBGs in the TB, or NACK may be fed back for all CBGs in the TB, or ACK may be fed back for some CBGs in the TB, and NACKs may be fed back for some CBGs.
  • the first information when the terminal device is configured with CBG, the first information may be used to indicate the average value of LDPC decoding iteration times corresponding to all CBs in one TB, the first normalized value, and the decoding in one TB.
  • the maximum value in the number of LDPC decoding iterations corresponding to the correct CB or the second normalized value; the second information may be used to indicate the first adjustment amount. That is, the terminal device can feed back the first information or the second information with TB as the granularity. For 1 TB, the UE feeds back 1 set/piece of first information or second information.
  • the terminal device when the terminal device is configured with CBG, when the third information includes ACK, the first information is used to indicate the average value of LDPC decoding iteration times corresponding to all CBs in one TB, and the first normalization value, the maximum value in the number of LDPC decoding iterations corresponding to the correctly decoded CB in a TB or the second normalized value; the second information is used to indicate the first adjustment amount; when the third information includes When NACK, the first information is used to indicate the average value of the LDPC decoding iteration times corresponding to all CBs in a TB, the first normalized value, and the maximum of the LDPC decoding iteration times corresponding to the correctly decoded CB in a TB value, the second normalized value, the number of correctly decoded CBs in a TB, the third normalized value, the number of incorrectly decoded CBs in a TB, or the fourth normalized value
  • the second information is used to indicate the first adjustment amount.
  • the CBG transmission configuration and the reporting of the first information may not coexist, including the following two implementation manners.
  • An implementation method is that when the terminal device is configured to feed back the first information and the terminal device is configured for CBG transmission, the terminal device performs TB-level data transmission, and the terminal device can generate a HARQ-ACK information bit for each TB, that is, the HARQ feedback is Based on TB granularity. It can also be understood that the priority of feeding back the first information is higher than the priority of CBG transmission.
  • Another implementation manner is that when the terminal device supports feeding back the first information, the terminal device is not configured with CBG transmission.
  • the network equipment configures the terminal equipment to feed back the first information (the network equipment configures the terminal equipment to feed back the first information, which means that the terminal equipment needs to feed back the first information), the terminal equipment does not configure CBG transmission, and the terminal equipment performs TB-level data transmission ( That is, If a UE is not provided PDSCH-CodeBlockGroupTransmission, the UE generates one HARQ-ACK information bit per transport block).
  • the design of the judgment mechanism for the scenario where the CBG transmission configuration and the first information cannot coexist can effectively ensure the validity of the first information and the improvement of the system performance.
  • a network device eg, base station/gNB
  • a network device eg, base station/gNB
  • high-level parameters eg, codeBlockGroupTransmission
  • the UE can perform CBG-based transmission (that is, send feedback information with CBG as granularity).
  • CBG-based transmission that is, send feedback information with CBG as granularity.
  • the base station may configure the granularity of the UE to feed back the first information through the fourth information.
  • the fourth information is a high-level parameter (for example, it may be an RRC parameter, PdschDecodingMessage ENUMERATED ⁇ CBG,TB ⁇ ).
  • the base station may explicitly instruct the UE to send feedback information according to the granularity of TB.
  • the UE feeds back one piece of feedback information corresponding to each TB.
  • the base station explicitly instructs the UE to feed back the first information according to the granularity of CBG.
  • the UE needs to feed back the third information (HARQ-ACK information) corresponding to the N CBGs, it also needs to feed back the indication information (the first information or the second information) corresponding to the N CBGs, that is, the N first information information or secondary information.
  • the base station may indicate the granularity of the UE to feed back the first information through a high-layer parameter (RRC parameter).
  • RRC parameter a high-layer parameter
  • the high-layer parameter may be PdschDecodingMessage enable ⁇ CBG ⁇ . Send feedback for granularity.
  • the base station does not configure the high-level parameter, the UE sends feedback information with TB as the granularity by default.
  • This combination of CBG transmission scenarios and different feedback scenarios of ACK or NACK jointly designs a specific feedback method, so that the UE can combine the decoding situation (correct decoding or decoding error) of the receiving TB according to the configuration of the base station for CBG transmission. , and feed back the corresponding first information. It is beneficial to optimize the reporting manner of the first information for different scenarios, thereby improving the effectiveness and system performance of the first information.
  • the terminal device may report a capability parameter to the network device, where the capability parameter is used to indicate that the terminal device supports feeding back the first information or the second information.
  • the network device may configure whether the UE feeds back the first information or the second information through the RRC parameter.
  • the network device receives feedback information from the terminal device.
  • step 703 For the feedback information, reference may be made to the relevant description in step 703, which is not repeated here.
  • the terminal device may send indication information to the network device.
  • the content of the first indication may reflect the PDSCH decoding margin, and the PDSCH decoding margin may be Make OLLA adjustments.
  • the content indicated by the second information may directly reflect the adjustment amount related to the OLLA adjustment (for example, the SNR adjustment amount, the SINR adjustment amount, the CQI adjustment amount or the MCS adjustment amount). In this way, different indication information is fed back to the network device, which helps the network device to adjust the OLLA, accurately track the channel or interference, and update the appropriate MCS, which can improve the decoding success rate and spectrum utilization rate of new transmission and retransmission.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of the terminal device, the network device, and the interaction between the terminal device and the network device.
  • the terminal device and the network device may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 12 shows a possible schematic structural diagram of the apparatus 12 involved in the above embodiment
  • the apparatus may be a terminal device
  • the terminal device includes: a receiving unit 1201 and sending unit 1202.
  • the receiving unit 1201 is configured to receive the downlink physical shared channel PDSCH from the network device
  • the sending unit 1202 is configured to send feedback information to the network device, where the feedback information includes indication information, and the indication information includes the first information or the first information.
  • the first information is related to the average value of the LDPC decoding iteration times of the low density parity check code corresponding to the first code block CB; or, the first information is the maximum value of the LDPC decoding iteration times corresponding to the first CB or, the first information is related to the number of the first CBs; the second information is used to indicate the first adjustment amount, and the first adjustment amount includes the signal-to-noise ratio SNR adjustment amount, the signal-to-interference-to-noise ratio SINR adjustment amount, and the channel quality indicator CQI
  • the adjustment amount or the modulation and coding mode MCS adjustment amount; the first adjustment amount is determined according to the first information.
  • the receiving unit 1201 is configured to support the terminal device to perform the process 702 in FIG. 7 .
  • the sending unit 1202 is configured to support the terminal device to perform the process 703 in FIG. 7 .
  • FIG. 13 shows a possible schematic structural diagram of the apparatus 13 involved in the above embodiment
  • the apparatus may be a network device
  • the network device includes: a sending unit 1301 and receiving unit 1302.
  • the sending unit 1301 is configured to send the downlink physical shared channel PDSCH to the terminal device
  • the receiving unit 1302 is configured to receive feedback information from the terminal device, where the feedback information includes indication information, and the indication information includes the first information or the first information.
  • the first information is related to the average value of the LDPC decoding iteration times of the low density parity check code corresponding to the first code block CB; or, the first information is the maximum value of the LDPC decoding iteration times corresponding to the first CB or, the first information is related to the number of the first CBs; the second information is used to indicate the first adjustment amount, and the first adjustment amount includes the signal-to-noise ratio SNR adjustment amount, the signal-to-interference-to-noise ratio SINR adjustment amount, and the channel quality indicator CQI
  • the adjustment amount or the modulation and coding mode MCS adjustment amount; the first adjustment amount is determined according to the first information.
  • the sending unit 1301 is configured to support the terminal device to perform the process 701 in FIG. 7 .
  • the receiving unit 1302 is configured to support the terminal device to perform the process 704 in FIG. 7 .
  • the terminal equipment or network equipment in the above apparatus embodiments and the terminal equipment or network equipment in the method embodiments may completely correspond, and corresponding steps may be performed by corresponding modules or units, for example, a communication module (transceiver) may perform the corresponding steps.
  • a communication module transmitter
  • a processing unit processor
  • the sending unit and the receiving unit can form a transceiver unit, the transmitter and the receiver can form a transceiver, and jointly realize the sending and receiving function; the processor can be one or more.
  • the functions of the above-mentioned terminal equipment or network equipment may be implemented by chips, and the processing unit may be implemented by hardware or software.
  • the processing unit may be a logic circuit, an integrated circuit, etc. ;
  • the processing unit can be a general-purpose processor, and is implemented by reading the software code stored in the storage unit, which can be integrated in the processor or located outside the processor, exist independently.
  • the terminal equipment or network equipment in the above-mentioned apparatus embodiments completely corresponds to the terminal equipment and network equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units, for example, the sending module (transmitter) method in the method execution method embodiments sends
  • the receiving module (receiver) performs the receiving steps in the method embodiment, and other steps except the sending and receiving may be performed by the processing module (processor).
  • the sending module and the receiving module can form a transceiver module, and the transmitter and the receiver can form a transceiver to jointly realize the sending and receiving function; the processor can be one or more.
  • each functional module in each embodiment of the present application may be integrated in the In a processor, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the receiving unit and the sending unit may be integrated into the transceiver unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVDs)), or semiconductor media (eg, solid state drives (SSDs) )Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请实施例提供一种反馈信息传输方法和装置,涉及通信领域,能够提升译码成功率和频谱利用率。其方法为:终端设备从网络设备接收PDSCH;终端设备向网络设备发送反馈信息,反馈信息包括指示信息,指示信息包括第一信息或第二信息;其中,第一信息与第一CB对应的LDPC译码迭代次数的平均值相关;或者,第一信息与第一CB对应的LDPC译码迭代次数的最大值相关;或者,第一信息与第一CB的数量相关;第二信息用于指示第一调整量,第一调整量包括SNR调整量、SINR调整量、CQI调整量或MCS调整量;第一调整量是根据第一信息确定的。本申请实施例应用于5G。

Description

一种反馈信息传输方法和装置 技术领域
本申请涉及通信领域,尤其涉及一种反馈信息传输方法和装置。
背景技术
目前,新无线(new radio,NR)***沿用了长期演进(long term evolution,LTE)***中的自适应调制编码(adaptive modulation and coding,AMC)方案。AMC方案的核心是基于信道质量指示(channel quality indicator,CQI)的调制和编码方式(modulation coding scheme,MCS)选择方案,即根据CQI调整MCS。由于CQI计算的误差、反馈误差、信道的时变性以及CQI计算时刻到MCS应用时刻之间的时延等CQI误差,实际***中的CQI反馈是不精确和滞后的。为了对抗CQI误差,可以基于外环链路自适应(outer loop link adaptation,OLLA)稳定第一次传输(首传)的成功率,减小CQI误差引起的性能损失。如图1所示,OLLA的主要原理是:根据每个用户设备(user equipment,UE)的数据包第一次传输的HARQ反馈结果进行CQI调整。其中,HARQ反馈结果包括肯定应答(acknowledge,ACK)/否定应答(negative acknowledge,NACK)。如果第一次传输的反馈为ACK,可以提高OLLA偏置(offset),并且稍微提高用于确定CQI的SINR,从而提升下次传输时的MCS。反之,如果第一次传输的反馈为NACK,可以降低OLLA偏置,并且稍微降低用于确定CQI的SINR,从而降低下次传输时的MCS。其中,OLLA偏置反应的是当前基站和UE之间无线信道环境的估计,即UE接收到测量导频后估计的结果。基站和1个UE之间可以使用一个偏置Δ OLLA,偏置的初始值设定为Δ init。当基站接收到该UE发送的一个HARQ进程首传的反馈时可以更新Δ OLLA。例如,基站接收到UE首传反馈为ACK时,可以减少Δ OLLA值,Δ OLLA=Δ OLLAACK;如果基站接收到UE首传反馈为NACK时,可以增加Δ OLLA值,Δ OLLA=Δ OLLANACK。其中,Δ ACK为ACK对应的OLLA调整量,同理Δ NACK为NACK对应的OLLA调整量,Δ ACK和Δ NACK为之间的关系如下式所示:
Figure PCTCN2021071597-appb-000001
其中,BLER为目标误块率。假设NR中下行传输的目标误块率为10%,则Δ ACK和Δ NACK为之间的关系为Δ NACK=9·Δ ACK
但是,对时延和可靠性的要求高的场景,例如超可靠低延迟通信(ultra-reliable and low-latency communication,URLLC)场景,上述OLLA框架不够适用,会导致译码成功率和频谱利用率低。
发明内容
本申请实施例提供一种反馈信息传输方法和装置,能够提升译码成功率和频谱利用率。
第一方面,本申请实施例提供一种反馈信息传输方法,包括:终端设备从网络设备接收下行物理共享信道(physical downlink shared channel,PDSCH);终端设备向网络设备发送反馈信息,反馈信息包括指示信息,指示信息包括第一信息或第二信息; 其中,第一信息与第一码块(code block,CB)对应的低密度奇偶检查码(low density parity check code,LDPC)译码迭代次数的平均值相关;或者,第一信息与第一CB对应的LDPC译码迭代次数的最大值相关;或者,第一信息与第一CB的数量相关;第二信息用于指示第一调整量,第一调整量包括信噪比(signal noise ratio,SNR)调整量、信干噪比(signal to interference noise ratio,SINR)调整量、信道质量指示(channel quality indication,CQI)调整量或调制和编码方式(modulation coding scheme,MCS)调整量;第一调整量是根据第一信息确定的。
基于本申请实施例提供的方法,终端设备接收PDSCH后,可以向网络设备发送指示信息,应该理解的是,第一指示的内容可以反应PDSCH译码的余量,根据PDSCH译码的余量可以进行OLLA调整。第二信息指示的内容可以直接反映与OLLA调整相关的调整量(例如,SNR调整量、SINR调整量、CQI调整量或MCS调整量)。这样,通过向网络设备反馈不同的指示信息,有助于网络设备进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,能够提升新传和重传的译码成功率以及频谱利用率。
在一种可能的实现方式中,第一CB包括一个传输块(transport block,TB)中的全部CB,或者一个TB中译码正确的CB,或者一个TB中译码错误的CB;或者第一CB包括一个码块组(code block group,CBG)中的全部CB,或者一个CBG中译码正确的CB,或者一个CBG中译码错误的CB。也就是说,终端设备可以以TB为粒度反馈指示信息,或者可以以CBG为粒度反馈指示信息。网络设备可以根据指示信息进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,能够提升新传和重传的译码成功率以及频谱利用率。
在一种可能的实现方式中,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,或根据平均值和预设LDPC译码迭代次数确定的第一归一化值;或者第一信息用于指示一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值,或根据最大值和预设LDPC译码迭代次数确定的第二归一化值;或者第一信息用于指示一个TB中译码正确的CB的个数,或根据译码正确的CB的个数和一个TB中全部CB的数目确定的第三归一化值;或者第一信息用于指示一个TB中译码错误的CB的个数,或根据译码错误的CB的个数和一个TB中全部CB的数目确定的第四归一化值。即终端设备可以以TB为粒度反馈第一信息,第一指示的内容可以反应PDSCH译码的余量,以便网络设备可以根据PDSCH译码的余量可以进行OLLA调整。
在一种可能的实现方式中,反馈信息还包括第三信息,第三信息包括肯定应答ACK或否定应答NACK,当第三信息包括ACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量;当第三信息包括NACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、第二归一化值、一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种;第二信息用于指示第一调整量。也就是说,第三信息不同时,可以反馈相同或不同的第一信 息或第二信息,以便网络设备根据第一信息或第二信息进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,能够提升新传和重传的译码成功率以及频谱利用率。
在一种可能的实现方式中,指示信息与第三信息独立编码;且指示信息和第三信息在相同物理上行控制信道(physical uplink control channel,PUCCH)上传输,或者指示信息和第三信息在不同PUCCH上传输。这样,可以分别解析指示信息与第三信息。
在一种可能的实现方式中,指示信息与第三信息联合编码,指示信息和第三信息在相同PUCCH上传输。这样,可以联合解析指示信息与第三信息。
在一种可能的实现方式中,终端设备未配置码块组CBG的情况下,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种。即当终端设备未配置CBG的情况下,可以以TB为粒度反馈第一信息。
在一种可能的实现方式中,终端设备未配置CBG,当第三信息包括ACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量;当第三信息包括NACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、第二归一化值、一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种;第二信息用于指示第一调整量。即当终端设备未配置CBG且反馈信息包括第三信息的情况下,当第三信息不同时,可以反馈相同或不同的第一信息或第二信息,以便网络设备根据第一信息或第二信息进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,能够提升新传和重传的译码成功率以及频谱利用率。
在一种可能的实现方式中,在终端设备配置CBG的情况下,第一信息用于指示一个CBG中的全部CB对应的LDPC译码迭代次数的平均值、一个CBG中的全部CB对应的LDPC译码迭代次数的平均值对应的归一化值、一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值,或一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值对应的归一化值。即当终端设备配置CBG的情况下,可以以CBG为粒度反馈第一信息。
在一种可能的实现方式中,在终端设备配置CBG的情况下,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值;第二信息用于指示第一调整量。即当终端设备配置CBG的情况下,可以以TB为粒度反馈第一信息。
在一种可能的实现方式中,在终端设备配置CBG,当第三信息包括ACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量;当第三信息包括NACK时,第一信息用 于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、第二归一化值、一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种;第二信息用于指示第一调整量。即当终端设备配置CBG且反馈信息包括第三信息的情况下,当第三信息不同时,可以反馈相同或不同的第一信息或第二信息,以便网络设备根据第一信息或第二信息进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,能够提升新传和重传的译码成功率以及频谱利用率。
在一种可能的实现方式中,终端设备接收第四信息,第四信息用于指示终端设备反馈第一信息或第二信息的粒度,粒度可以是TB级别或CBG级别。第四信息可以是高层信令,即可以通过高层信令指示终端设备反馈第一信息或第二信息的粒度。
在一种可能的实现方式中,方法还包括:终端设备上报能力参数,能力参数用于指示终端设备支持反馈第一信息或第二信息。这样,网络设备可以根据终端设备的能力确定是否为终端设备配置反馈第一信息或第二信息。
在一种可能的实现方式中,终端设备被配置反馈第一信息且终端设备配置CBG传输时,终端设备进行TB级的数据传输;或者终端设备被配置反馈第一信息时,终端设备未被配置CBG传输。即反馈第一信息以及CBG传输不共存,或者优先级不同。
第二方面,本申请实施例提供一种反馈信息传输方法,包括:网络设备向终端设备发送下行物理共享信道PDSCH;网络设备从终端设备接收反馈信息,反馈信息包括指示信息,指示信息包括第一信息或第二信息;其中,第一信息与第一码块CB对应的低密度奇偶检查码LDPC译码迭代次数的平均值相关;或者,第一信息与第一CB对应的LDPC译码迭代次数的最大值相关;或者,第一信息与第一CB的数量相关;第二信息用于指示第一调整量,第一调整量包括信噪比SNR调整量、信干噪比SINR调整量、信道质量指示CQI调整量或调制和编码方式MCS调整量;第一调整量是根据第一信息确定的。
基于本申请实施例提供的方法,网络设备发送PDSCH后,可以从终端设备接收指示信息,应该理解的是,第一指示的内容可以反应PDSCH译码的余量,根据PDSCH译码的余量可以进行OLLA调整。第二信息指示的内容可以直接反映与OLLA调整相关的调整量(例如,SNR调整量、SINR调整量、CQI调整量或MCS调整量)。这样,网络设备可以根据指示信息进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,能够提升新传和重传的译码成功率以及频谱利用率。
在一种可能的实现方式中,第一CB包括一个TB中的全部CB,或者一个TB中译码正确的CB,或者一个TB中译码错误的CB;或者第一CB包括一个CBG中的全部CB,或者一个CBG中译码正确的CB,或者一个CBG中译码错误的CB。
在一种可能的实现方式中,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,或根据平均值和预设LDPC译码迭代次数确定的第一归一化值;或者第一信息用于指示一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值,或根据最大值和预设LDPC译码迭代次数确定的第二归一化值;或者第一信息用于指示一个TB中译码正确的CB的个数,或根据译码正确的CB的个数和一个TB中全部CB的数目确定的第三归一化值;或者第一信息用于指示一个TB中译码错 误的CB的个数,或根据译码错误的CB的个数和一个TB中全部CB的数目确定的第四归一化值。
在一种可能的实现方式中,反馈信息还包括第三信息,第三信息包括肯定应答ACK或否定应答NACK,当第三信息包括ACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量;当第三信息包括NACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、第二归一化值、一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种;第二信息用于指示第一调整量。
在一种可能的实现方式中,指示信息与第三信息独立编码;且指示信息和第三信息在相同物理上行控制信道PUCCH上传输,或者指示信息和第三信息在不同PUCCH上传输。
在一种可能的实现方式中,指示信息与第三信息联合编码,指示信息和第三信息在相同PUCCH上传输。
在一种可能的实现方式中,终端设备未配置码块组CBG的情况下,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种。
在一种可能的实现方式中,终端设备未配置CBG。
在一种可能的实现方式中,在终端设备配置CBG的情况下,第一信息用于指示一个CBG中的全部CB对应的LDPC译码迭代次数的平均值、一个CBG中的全部CB对应的LDPC译码迭代次数的平均值对应的归一化值、一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值,或一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值对应的归一化值。
在一种可能的实现方式中,在终端设备配置CBG的情况下,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值;第二信息用于指示第一调整量。
在一种可能的实现方式中,在终端设备配置CBG。
在一种可能的实现方式中,网络设备发送第四信息,第四信息用于指示终端设备反馈第一信息或第二信息的粒度,粒度可以是TB级别或CBG级别。
在一种可能的实现方式中,方法还包括:网络设备从终端设备接收能力参数,能力参数用于指示终端设备支持反馈第一信息或第二信息。
第三方面,本申请实施例提供一种通信装置,该通信装置可以为终端设备,包括:接收单元,用于从网络设备接收下行物理共享信道PDSCH;发送单元,用于向网络设备发送反馈信息,反馈信息包括指示信息,指示信息包括第一信息或第二信息;其中,第一信息与第一码块CB对应的低密度奇偶检查码LDPC译码迭代次数的平均值相关; 或者,第一信息与第一CB对应的LDPC译码迭代次数的最大值相关;或者,第一信息与第一CB的数量相关;第二信息用于指示第一调整量,第一调整量包括信噪比SNR调整量、信干噪比SINR调整量、信道质量指示CQI调整量或调制和编码方式MCS调整量;第一调整量是根据第一信息确定的。
在一种可能的实现方式中,第一CB包括一个TB中的全部CB,或者一个TB中译码正确的CB,或者一个TB中译码错误的CB;或者第一CB包括一个CBG中的全部CB,或者一个CBG中译码正确的CB,或者一个CBG中译码错误的CB。
在一种可能的实现方式中,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,或根据平均值和预设LDPC译码迭代次数确定的第一归一化值;或者第一信息用于指示一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值,或根据最大值和预设LDPC译码迭代次数确定的第二归一化值;或者第一信息用于指示一个TB中译码正确的CB的个数,或根据译码正确的CB的个数和一个TB中全部CB的数目确定的第三归一化值;或者第一信息用于指示一个TB中译码错误的CB的个数,或根据译码错误的CB的个数和一个TB中全部CB的数目确定的第四归一化值。
在一种可能的实现方式中,反馈信息还包括第三信息,第三信息包括肯定应答ACK或否定应答NACK,当第三信息包括ACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量;当第三信息包括NACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、第二归一化值、一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种;第二信息用于指示第一调整量。
在一种可能的实现方式中,指示信息与第三信息独立编码;且指示信息和第三信息在相同物理上行控制信道PUCCH上传输,或者指示信息和第三信息在不同PUCCH上传输。
在一种可能的实现方式中,指示信息与第三信息联合编码,指示信息和第三信息在相同PUCCH上传输。
在一种可能的实现方式中,终端设备未配置码块组CBG的情况下,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种。
在一种可能的实现方式中,终端设备未配置CBG。
在一种可能的实现方式中,在终端设备配置CBG的情况下,第一信息用于指示一个CBG中的全部CB对应的LDPC译码迭代次数的平均值、一个CBG中的全部CB对应的LDPC译码迭代次数的平均值对应的归一化值、一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值,或一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值对应的归一化值。
在一种可能的实现方式中,在终端设备配置CBG的情况下,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值;第二信息用于指示第一调整量。
在一种可能的实现方式中,在终端设备配置CBG。
在一种可能的实现方式中,接收单元还用于,接收第四信息,第四信息用于指示终端设备反馈第一信息或第二信息的粒度,粒度可以是TB级别或CBG级别。
在一种可能的实现方式中,发送单元还用于,上报能力参数,能力参数用于指示终端设备支持反馈第一信息或第二信息。
在一种可能的实现方式中,终端设备被配置反馈第一信息且终端设备配置CBG传输时,终端设备进行TB级的数据传输;或者终端设备被配置反馈第一信息时,终端设备未被配置CBG传输。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为网络设备,包括:发送单元,用于向终端设备发送下行物理共享信道PDSCH;接收单元,用于从终端设备接收反馈信息,反馈信息包括指示信息,指示信息包括第一信息或第二信息;其中,第一信息与第一码块CB对应的低密度奇偶检查码LDPC译码迭代次数的平均值相关;或者,第一信息与第一CB对应的LDPC译码迭代次数的最大值相关;或者,第一信息与第一CB的数量相关;第二信息用于指示第一调整量,第一调整量包括信噪比SNR调整量、信干噪比SINR调整量、信道质量指示CQI调整量或调制和编码方式MCS调整量;第一调整量是根据第一信息确定的。
在一种可能的实现方式中,第一CB包括一个TB中的全部CB,或者一个TB中译码正确的CB,或者一个TB中译码错误的CB;或者第一CB包括一个CBG中的全部CB,或者一个CBG中译码正确的CB,或者一个CBG中译码错误的CB。
在一种可能的实现方式中,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,或根据平均值和预设LDPC译码迭代次数确定的第一归一化值;或者第一信息用于指示一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值,或根据最大值和预设LDPC译码迭代次数确定的第二归一化值;或者第一信息用于指示一个TB中译码正确的CB的个数,或根据译码正确的CB的个数和一个TB中全部CB的数目确定的第三归一化值;或者第一信息用于指示一个TB中译码错误的CB的个数,或根据译码错误的CB的个数和一个TB中全部CB的数目确定的第四归一化值。
在一种可能的实现方式中,反馈信息还包括第三信息,第三信息包括肯定应答ACK或否定应答NACK,当第三信息包括ACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量;当第三信息包括NACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、第二归一化值、一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种;第二信 息用于指示第一调整量。
在一种可能的实现方式中,指示信息与第三信息独立编码;且指示信息和第三信息在相同物理上行控制信道PUCCH上传输,或者指示信息和第三信息在不同PUCCH上传输。
在一种可能的实现方式中,指示信息与第三信息联合编码,指示信息和第三信息在相同PUCCH上传输。
在一种可能的实现方式中,终端设备未配置码块组CBG的情况下,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种。
在一种可能的实现方式中,终端设备未配置CBG。
在一种可能的实现方式中,在终端设备配置CBG的情况下,第一信息用于指示一个CBG中的全部CB对应的LDPC译码迭代次数的平均值、一个CBG中的全部CB对应的LDPC译码迭代次数的平均值对应的归一化值、一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值,或一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值对应的归一化值。
在一种可能的实现方式中,在终端设备配置CBG的情况下,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值;第二信息用于指示第一调整量。
在一种可能的实现方式中,在终端设备配置CBG。
在一种可能的实现方式中,发送单元还用于,发送第四信息,第四信息用于指示终端设备反馈第一信息或第二信息的粒度,粒度可以是TB级别或CBG级别。
在一种可能的实现方式中,接收单元还用于,网络设备从终端设备接收能力参数,能力参数用于指示终端设备支持反馈第一信息或第二信息。
第五方面,本申请实施例还提供了一种通信装置,该通信装置可以是终端设备或芯片。该通信装置包括处理器,用于实现上述第一方面提供的任意一种反馈信息传输方法。该通信装置还可以包括存储器,用于存储程序指令和数据,存储器可以是集成在该通信装置内的存储器,或设置在该通信装置外的片外存储器。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面提供的任意一种反馈信息传输方法。该通信装置还可以包括通信接口,该通信接口用于该通信装置与其它设备(例如,网络设备)进行通信。
第六方面,本申请实施例还提供了一种通信装置,该通信装置可以是网络设备或芯片。该通信装置包括处理器,用于实现上述第二方面提供的任意一种反馈信息传输方法。该通信装置还可以包括存储器,用于存储程序指令和数据,存储器可以是集成在该通信装置内的存储器,或设置在该通信装置外的片外存储器。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二方面提供的任意一种反馈信息传输方法。该通信装置还可以包括通信接口,该通信接口用于该通信装置与其它设备(例如,终端设备)进行通信。
第七方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一方面提供的任意一种反馈信息传输方法。
第八方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一方面提供的任意一种反馈信息传输方法。
第九方面,本申请实施例提供了一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现上述第一方面或第二方面中任一方面提供的任意一种反馈信息传输方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请实施例提供了一种通信***,该***包括第三方面中的通信装置和第四方面中的通信装置。
附图说明
图1为现有的一种MCS调整的反馈示意图;
图2为本申请实施例提供的一种TB的结构示意图;
图3为本申请实施例提供的一种CBG的结构示意图;
图4为本申请实施例提供的一种***架构示意图;
图5为本申请实施例提供的一种终端设备的结构示意图;
图6为本申请实施例提供的一种网络设备的结构示意图;
图7为本申请实施例提供的一种信号交互示意图;
图8为本申请实施例提供的一种第三信息和指示信息对应的比特域的示意图;
图9为本申请实施例提供的又一种信号交互示意图;
图10为本申请实施例提供的一种与第一信息相关的资源的示意图;
图11为本申请实施例提供的又一种与第一信息相关的资源的示意图;
图12为本申请实施例提供的又一种终端设备的结构示意图;
图13为本申请实施例提供的又一种网络设备的结构示意图。
具体实施方式
为了下述各实施例的描述清楚简洁,首先给出相关概念或技术的简要介绍:
(1)、URLLC:URLLC是第五代(5 th generation,5G)移动通信***的三大典型业务之一。其主要应用场景包括:无人驾驶,远程医疗等,这些应用场景在可靠性及时延方面提出了更加严格的需求。URLLC业务具体的需求包括:数据传输可靠性达到99.999%,传输时延低于1ms,以及在满足高可靠性及低时延要求下,尽可能减小指令开销。其中,5G的三大典型业务包括增强型移动宽带(enhanced Mobile broadband,eMBB),海量机器类型通信(massive Machine Type communication,mMTC)和URLLC。
(2)、TB传输:上行和下行数据共享通道可以是以TB为基本单位进行数据传输的。由于NR***需要支持与LTE相比明显更大的TB尺寸,如图2所示,可以根据标准协议预定义的规则将每个TB划分成多个CB,每个TB和CB都带有各自对应的CRC。CRC可以用于引入一定的冗余信息以保证传输信息具有一定的检错或者纠错能力。一般来说,当一个TB内的所有CB都通过各自的CRC校验,即所有CB都译码正确时,这个TB也能通过自己的CRC校验,即TB译码正确。则此时UE对这个 TB对应的HARQ反馈可以是ACK;若一个TB内的一个或者多个CB无法通过各自的CRC校验,即至少有一个CB译码错误时,这个TB也无法通过自己的CRC校验,即TB译码错误。这个时候UE对这个TB对应的HARQ反馈是可以NACK。示例性的,可以参考TR38.824中附录A.2章节***仿真假设表格得到R16 URLLC典型应用场景下的数据包大小,通过NR协议对CB大小的划分规定得到各应用场景数据包大小对应的CB个数。
(3)、CBG传输:在NR***中,当数据传输速率比较大时,每个TB的尺寸都会很大。一旦这个TB译码出错,便会造成整个TB重传。由于TB在编码前,可以被划分为多个编码块(code block,CB),在接收端可能有些CB译码正确,有些CB译码错误,重传整个TB是不明智,造成资源利用率比较低。因此,可以对每个CB进行ACK/NAK反馈,这样如果某个TB译码失败,终端只需对传输错误的CB进行重传,不用重传整个TB。基于CB的反馈虽然减少了重传的冗余信息,可以提高资源利用率,但是需要反馈很多的上行ACK/NAK,这样会导致上行信令的开销非常大,同样也会造成资源的浪费。为了解决这个问题,在NR中引入了一种基于TB反馈和基于CB反馈的折中方案:如图3所示,可以将TB中的多个CB进行分组,分组后的CB可以称为(code block group,CBG)。可以针对每一个CBG反馈对应的ACK/NACK,并且基于CBG进行重传。为保证后向兼容,CBG传输是可配置的,只有配置了基于CBG传输的用户才可以基于CBG进行重传。需要注意的是,即使是针对CBG进行ACK/NACK的反馈,但是只有TB和CB才会携带自己对应的CRC,UE通过译码只知道CB和TB是否译码正确,而CBG是不携带CRC的。当CBG内的CB都正确时,这个CBG才被认为是正确译码或者正确接收,这个CBG对应的HARQ反馈为ACK。反之当CBG内至少有一个CB错误时,这个CBG被认为是译码错误或接收错误,这个CBG对应的HARQ反馈为NACK,需要进行重传。
基站可以通过高层信令为UE配置基于TB传输或者基于CBG传输,具体高层信令可以参考通信标准协议TS38.331中6.3.2小节的PDSCH-Config中的codeBlockGroupTransmission。例如,基站可以通过codeBlockGroupTransmission通知UE使能了CBG传输,否则相当于使能了TB传输。需要注意的是,当基站没有为一个UE配置和使能高层参数codeBlockGroupTransmission时,UE可以进行基于CBG的传输,即1个TB内包含至少1个CBG,UE可以通过高层参数maxCodeBlockGroupsPerTransportBlock确定1个TB内包含最大CBG的个数,并针对每个CBG生成一比特的HARQ-ACK信息;当基站没有为一个UE配置和使能高层参数codeBlockGroupTransmission时,UE可以进行基于TB的传输,即UE针对每个TB生成一比特的HARQ-ACK信息。
(4)、AMC技术:AMC技术在无线传输***中得到了广泛的应用,该技术通过自适应地调整通信***使用的MCS来适配不断变化的无线信道质量,从而可以提高无线传输的可靠性和***吞吐率。具体地,该技术可以通过监测无线信道的SINR来度量无线信道质量,并根据测量结果对未来时刻的信道质量进行预测,最后,基于预测结果,通过查找预设的SINR门限表格,可以选择合适的MCS。
(5)、OLLA:OLLA可以用于对预测的SINR进行调整。由于实际***中的不 理想因素和无线信道的时变特性,预测的SINR和实际对应的SINR之间存在不可消除的误差。为了降低SINR的预测误差对***性能的影响,以及提升整个***的鲁棒性,可以通过OLLA对预测SINR进行调整。例如,可以先设置一个SINR初始调整量(也可以称为OLLA初始值),然后以小步长进行收敛调整,直至用户的初传误块率(initial block error rate,IBLER)满足IBLER目标值。为了达到IBLER目标值,OLLA调整需要弥补两部分误差,一部分是当前时刻的测量SINR(或SINR门限)和实际解调译码SINR之间的差异,称为测量误差;另一部分是由于无线信道的时变等导致的SINR波动。在不同的无线环境或信道条件下,需要弥补的误差量往往是不同的。
但是现有的OLLA初始值采用固定的初始值,并不能反映所有无线环境的情况。不恰当的OLLA初始值的选择,将直接导致OLLA调整至收敛状态所需要的时间变长,从而影响***的性能。尤其,对于移动宽带(mobile broad band,MBB)业务中的小包业务而言,数据业务的传输时间较短,没有充足的数据用于OLLA的调整收敛。所以,在小包业务的整个传输过程中,由于OLLA调整量的偏差,大大降低了AMC的性能。
并且,现有的OLLA技术在URLLC场景下无法正常工作,包括以下几点原因:(1)、URLLC的目标BLER通常很低,一般在10 -5左右。根据Δ ACK和Δ NACK之间的关系可知,在URLLC场景下Δ NACK=99999·Δ ACK。一旦出现NACK(即UE反馈NACK),那么MCS向下的调整幅度非常大,再通过ACK(即UE反馈ACK)去进行OLLA调整回到原来的MCS需要很多次的传输迭代调整,这就意味着平均MCS在大部分时间都会非常低,导致频谱效率很低。换句话说,相较于NACK对应的OLLA调整量Δ NACK,ACK对应的OLLA调整量Δ ACK非常小,已经失去了跟踪信道或干扰变化的能力。(2)、URLLC中NACK触发OLLA调整的概率很低,尤其是对于低时延要求避免重传的场景,没有足够的NACK使OLLA收敛。在这种场景下,基站只能根据UE反馈的ACK进行OLLA调整,然而现有技术中,ACK不携带额外信息基站只能根据固定的ACK对应的调整量Δ ACK进行MCS调整。(3)、考虑到URLLC的低时延传输,数据传输失败需要重传会增加整体的时延,根据各公司的分析讨论,最多可以容忍一次重传,那么这次重传非常关键,基站必须保证UE能够成功译码。在一种可能的设计中,可以大幅降低OLLA或CQI或MCS,使得传输码率变得极低。虽然这样能够大概率保证UE成功接收重传信息,但是可能因为过度调整导致分配给UE的资源过多,造成频谱效率极低,从而影响其他UE的传输。
本申请提供一种反馈信息传输方法,终端设备从网络设备接收TB后,可以向网络设备发送反馈信息,反馈信息包括第一信息,第一信息用于指示TB中全部CB对应的LDPC译码迭代次数的平均值,或根据平均值和预设LDPC译码迭代次数确定的第一归一化值(归一化值也可以称为归一化量化值,本申请不做限定);或者,第一信息用于指示TB中译码正确的CB对应的LDPC译码迭代次数中的最大值,或根据最大值和预设LDPC译码迭代次数确定的第二归一化值;或者,第一信息用于指示TB中译码正确的CB的个数,或根据译码正确的CB的个数和TB中全部CB的数目确定的第三归一化值;或者,第一信息用于指示TB中译码错误的CB的个数,或根据译码错误的CB的个数和TB中全部CB的数目确定的第四归一化值;或者,第一信息用于指示OLLA的调整量。可应该理解的是,第一信息指示的内容都可以反应PDSCH译码 的余量,向网络设备反馈不同的第一信息,有助于网络设备根据UE的译码情况进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,有助于提升新传和重传的译码成功率,提升频谱利用率。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(univeRMal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、5G移动通信***或新无线(new radio,NR)等,本申请所述的5G移动通信***包括非独立组网(non-standalone,NSA)的5G移动通信***和/或独立组网(standalone,SA)的5G移动通信***。本申请提供的技术方案还可以应用于未来的通信***,如第六代移动通信***。通信***还可以是未来演进的公用陆地移动通信网络(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。
如图4中的(a)所示,本申请实施例提供的通信***包括网络设备110和终端设备120,网络设备110与终端设备120之间可以进行点对点传输。如图4中的(b)所示,通信***包括网络设备110、终端设备120、中继节点140和中继节点150,网络设备110与终端设备120通过多跳中继节点(例如,中继节点140和中继节点150)进行通信。如图4中的(c)所示,通信***包括网络设备110、终端设备120和网络设备130。网络设备110、终端设备120和网络设备130可以处于双链接/双连接(dual connectivity,DC)或多点协作传输(coordinated multipoint transmission/reception,CoMP)的场景中。网络设备110可以为终端设备120初始接入时的网络设备,负责与终端设备120之间的RRC通信,网络设备130是在RRC重配置时添加的,用于提供额外的无线资源。配置了CA的终端设备120与网络设备110和网络设备130相连,网络设备110和终端设备120之间的链路可以为称之为第一链路,网络设备130和终端设备120之间的链路可以称之为第二链路。如图4中的(d)所示,通信***包括网络设备110、终端设备120、中继节点140和中继节点150,网络设备110与终端设备120通过不同的中继节点(例如,中继节点140或中继节点150)进行通信。
需要注意的是,图4是对本申请实施例应用的通信***的场景的示例,不对适用于本申请的网络架构产生限制。例如,通信***中包括的网络设备和终端设备的数量还可以是其它的数量。而且,本申请不限制上行、下行、接入链路、回传(backhaul)链路、侧链路(sidelink)等传输。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是UE,其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算 设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片***,该装置可以被安装在终端中。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备或中继节点包括接入网设备,例如基站(base station,BS),BS可以是一种部署在无线接入网中能够和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的演进的基站(Evolved Node B,eNB),其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或5G基站(Next-Generation Node B,gNB)。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端间的无线通信、网络设备和网络设备间的无线通信以及终端和终端间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备,网络设备还可以称为基站设备。空口资源可以包括时域资源、频域资源、码资源和空间资源中至少一个。
本申请实施例图4中的终端设备或网络设备,可以由一个设备实现,也可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,或者是芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
例如,用于实现本申请实施例提供的终端设备的功能的装置可以通过图5中的装置500来实现。图5所示为本申请实施例提供的装置500的硬件结构示意图。该装置500中包括至少一个处理器501,用于实现本申请实施例提供的终端设备的功能。装置500中还可以包括总线502以及至少一个通信接口504。装置500中还可以包括存储器503。
在本申请实施例中,处理器可以是中央处理器(central processing unit,CPU),通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device, PLD)。处理器还可以是其它任意具有处理功能的装置,例如专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、软件模块或者其任意组合。
总线502可用于在上述组件之间传送信息。
通信接口504,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口504可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口504可以和处理器501耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
在本申请实施例中,存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,也可以与处理器耦合,例如通过总线502。存储器也可以和处理器集成在一起。
其中,存储器503用于存储程序指令,并可以由处理器501来控制执行,从而实现本申请下述实施例提供的反馈信息传输方法。处理器501用于调用并执行存储器503中存储的指令,从而实现本申请下述实施例提供的反馈信息传输方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
可选地,存储器503可以包括于处理器501中。
在具体实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置500可以包括多个处理器,例如图5中的处理器501和处理器507。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,装置500还可以包括输出设备505和输入设备506。输出设备505和处理器501耦合,可以以多种方式来显示信息。例如,输出设备505可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备506和处理器501耦合,可以以多种方式接收用户的输入。例如,输入设备506可以是触摸屏设备或传感设备等。
上述的装置500可以是一个通用设备或者是一个专用设备。在具体实现中,终端 设备500可以是车载终端或内置计算机(处理器)的交通设备或有图5中类似结构的设备。本申请实施例不限定装置500的类型。
例如,用于实现本申请实施例提供的网络设备的功能的装置可以通过图6中的装置600来实现。图6所示为本申请实施例提供的装置600的硬件结构示意图。该装置600中包括至少一个处理器601,用于实现本申请实施例提供的终端设备的功能。装置600中还可以包括总线602以及至少一个通信接口604。装置600中还可以包括存储器603。
总线602可用于在上述组件之间传送信息。
通信接口604,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。通信接口604可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口604可以和处理器601耦合。
其中,存储器603用于存储程序指令,并可以由处理器601来控制执行,从而实现本申请下述实施例提供的反馈信息传输方法。例如,处理器601用于调用并执行存储器603中存储的指令,从而实现本申请下述实施例提供的反馈信息传输方法。
可选地,存储器603可以包括于处理器601中。
在具体实现中,作为一种实施例,处理器601可以包括一个或多个CPU,例如图6中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置600可以包括多个处理器,例如图6中的处理器601和处理器605。这些处理器中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的装置600可以是一个通用设备或者是一个专用设备。在具体实现中,装置600可以为车载终端或内置计算机(处理器)的交通设备或有图6中类似结构的设备。本申请实施例不限定装置600的类型。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括CPU、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,EPROM、卡、棒或钥匙驱动器等)。另外,本文描 述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“至少一个”是指一个或多个。“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,信令和消息有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请下述实施例中各个网元之间的消息名字或者消息中各参数的名字仅是一个示例,具体实现中也可以是其他名字,本申请实施例对此不作具体限定。
为了便于理解,以下结合附图对本申请实施例提供的反馈信息传输方法进行具体介绍。
如图7所示,本申请实施例提供一种反馈信息传输方法,包括:
701、网络设备向终端设备发送PDSCH。
其中,PDSCH中可以承载TB。网络设备发送PDSCH之前,可以通过发送下行控制信息(downlink control information,DCI)给终端设备(例如,UE)来调度PDSCH。DCI可以承载在物理下行控制信道(physical downlink control channel,PDCCH)中,DCI可以用于指示TB的时频资源等相关调度信息。
702、终端设备从网络设备接收PDSCH。
其中,PDSCH中承载TB。终端设备可以对PDSCH进行译码,确定TB是否正确接收。
703、终端设备向网络设备发送反馈信息。
其中,反馈信息包括指示信息,指示信息包括第一信息或第二信息。其中,第一信息与第一CB对应的LDPC译码迭代次数的平均值相关;或者,第一信息与第一CB对应的LDPC译码迭代次数的最大值相关;或者,第一信息与第一CB的数量相关;第二信息用于指示第一调整量,第一调整量包括SNR调整量、SINR调整量、CQI调整量或MCS调整量;第一调整量是根据第一信息确定的。
其中,第一CB可以包括一个TB中的全部CB,或者一个TB中译码正确的CB,或者一个TB中译码错误的CB。或者,第一CB可以包括一个CBG中的全部CB,或 者一个CBG中译码正确的CB,或者一个CBG中译码错误的CB。
示例性的,第一信息指示的内容可以包括以下几种情况:
(一)、第一信息可以用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,或平均值对应的第一归一化值。
其中,LDPC通常采用迭代译码,迭代次数较高可以实现较好的***性能。不同的迭代次数反映了不同的译码余量(decoding margin)。其中,低PDSCH译码余量表示MCS需要调整的幅度比较小,因为UE能够译码正确的余量低,尽量不要升高MCS导致码率大幅升高。高PDSCH译码余量表示MCS需要调整的幅度比较大,因为UE能够译码正确的余量较大,可以适当多升一些MCS提高码率,从而提升传输效率。中等PDSCH译码余量则是介于两者之间的。示例性的,假设LDPC最大译码次数为20次,迭代15次以上能够译码正确表示PDSCH译码余量比较低,迭代5次左右能够译码正确表示PDSCH译码余量比较高。因此,基于迭代次数,基站可以确定UE的译码情况,基站可以根据UE的译码情况进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,有助于提升新传和重传的译码成功率,提升频谱利用率。
在一种可能的情况中,考虑到成本、复杂度等因素,可以预先设定一个迭代次数,一旦实际迭代次数超过预先设置的迭代次数,将停止迭代译码。由于各个厂商具体实现不同,所以实现的LDPC译码迭代次数也各不相同。因此各个厂商的终端上报一个LDPC译码迭代次数可能并不能提供有效信息,因此可以考虑上报一个归一化值(例如,第一归一化值)。第一归一化值r K可以定义为TB中全部CB对应的实际LDPC译码迭代次数的平均值
Figure PCTCN2021071597-appb-000002
与预设迭代次数K default的比值,即
Figure PCTCN2021071597-appb-000003
这样,可以消除不同厂商在实现上的影响。
终端设备可以直接上报TB中全部CB对应的LDPC译码迭代次数的平均值,或该平均值对应的第一归一化值。在一种可能的情况中,由于第一归一化值的取值较多,直接上报可能造成很大的开销,因此可以对第一归一化值的区间[0,1]进行量化,上报相应区间对应的比特域(bit field)或比特状态(codepoint)。
例如,通信协议可以预定义将
Figure PCTCN2021071597-appb-000004
的结果量化为四个区间,不同比特域或比特状态与量化区间之间的映射关系可以如表1所示。当UE对一个TB译码,假设这个TB包括10个CB,如果这10个CB的平均LDPC译码迭代次数
Figure PCTCN2021071597-appb-000005
预设迭代次数为K default=15,可得
Figure PCTCN2021071597-appb-000006
根据映射关系可知对应的比特域或比特状态为“01”,则UE可以上报“01”。本例是一种可能的实现方法,比特域可以不仅限于2比特,还可以是更多比特。量化区间的划分比例也可以不是均分,可以是按照其他的比例进行划分,本申请不做限定。
表1
Figure PCTCN2021071597-appb-000007
上述LDPC译码迭代次数的平均值是对1个TB中包含的CB进行统计的。1个TB中的每个CB对应一个LDPC迭代值。该平均值可以是对一个TB内所有的CB进行统计平均,也可以是对一个TB内译码正确的CB进行统计。一般不会对一个TB内译码错误的CB进行统计,因为UE会尽力对每个CB进行译码,即达到预设的迭代次数,如果CB仍然不能通过CRC校验则认为CB译码错误。因此,每个错误的CB对应的LDPC译码迭代次数通常等于预设LDPC译码迭代次数。
示例性的,假设1个TB包括8个CB,8个CB中译码正确的有6个,译码错误的有2个。译码正确的CB分别对应的LDPC译码迭代次数
Figure PCTCN2021071597-appb-000008
可以不相同,例如可以分别为
Figure PCTCN2021071597-appb-000009
译码错误的CB对应的LDPC译码迭代次数
Figure PCTCN2021071597-appb-000010
等于预设迭代次数,假设
Figure PCTCN2021071597-appb-000011
如果针对TB内的所有CB进行LDPC译码迭代次数平均值的统计,则
Figure PCTCN2021071597-appb-000012
则对应表2中的“11”。如果针对数TB内所有译码正确的CB对应的LDPC译码迭代次数平均值进行统计,则
Figure PCTCN2021071597-appb-000013
则对应表格中的“10”。
(二)、第一信息用于指示一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值,或最大值对应的第二归一化值。
可以理解的是,一个TB中不同CB分别对应的LDPC译码迭代次数可以不相同。本申请实施例中,CB对应的LDPC译码迭代次数是指CB对应的实际LDPC译码迭代次数。迭代次数最大的CB反映了该CB译码的条件最恶劣,所需要译码迭代的次数最多。那么UE上报这个信息给gNB,可以告诉gNB虽然当前TB译码正确,但译码正确所付出的努力是“轻松的”,还是“中等的”,还是“非常困难”的,对应了信道环境是优,还是良,还是差。gNB获取该信息后,可以对未来的OLLA调整或MCS调整进行衡量。而现有技术中,gNB确定UE反馈ACK后,仅能按照固定的步长调整MCS,但可能此时所有的CB迭代次数都已经接近或达到预设值,如果升高MCS很有可能导致下一次的TB译码失败。
终端设备可以直接上报TB中译码正确的CB对应的LDPC译码迭代次数中的最大值,或该最大值对应的归一化值(例如,第二归一化值)。
示例性的,假设1个TB包含T个CB,第i个CB对应的实际LDPC译码迭代次数为K actual,i,预设迭代次数K default,则第i个CB对应的实际LDPC译码迭代次数的第二归一化值ri可以定义为实际LDPC译码迭代次数K actual,i与预设迭代次数K default的比值,即r i=K actual,i/K default。TB内所有译码正确的CB对应的实际LDPC译码迭代次数可以表示为
Figure PCTCN2021071597-appb-000014
其中LDPC译码迭代次数的最大值
Figure PCTCN2021071597-appb-000015
Figure PCTCN2021071597-appb-000016
该最大值对应的第二归一化值
Figure PCTCN2021071597-appb-000017
示例性的,假设1个TB包括8个CB,8个CB全部译码正确,但译码正确的CB分别对应的LDPC译码迭代次数并不相同,假设分别为
Figure PCTCN2021071597-appb-000018
如果TB内的所有译码正确的CB对应的实际LDPC译码迭代次数中的最大值为12,该最大值对应的第二归一化值
Figure PCTCN2021071597-appb-000019
UE可以直接上报
Figure PCTCN2021071597-appb-000020
给gNB。
在一种可能的设计中,由于第二归一化值的取值较多,直接上报第二归一化值会造成较大的开销,因此可以对第二归一化值覆盖的区间[0,1]进行量化,上报相应区间对应的比特域或比特状态。例如,通信协议预定义可以将
Figure PCTCN2021071597-appb-000021
量化为四个区间,比特域或比特状态与量化区间之间的映射关系可以如表2所示。当
Figure PCTCN2021071597-appb-000022
给时,UE可以向gNB上报“11”。本例是一种可能的实现方法,比特域不仅限于2比特,还可以是更多比特。量化区间的划分比例也可以不是均分,可以是按照其他的比例进行划分,本申请不做限定。
表2
Figure PCTCN2021071597-appb-000023
(三)、第一信息用于指示一个TB中译码正确的CB的个数,或译码正确的CB的个数对应的第三归一化值。
由于TB和CB携带对应的CRC,UE在译码过程中可以明确知道TB中哪些CB译码是正确的,从而可以得到译码正确的CB在TB中的比例。这样,若1个TB译码错误,基站接收到UE反馈的NACK,基站也可以获得译码正确的CB在TB中的比例,可以得知错误的TB是仅仅因为少量(例如,1个)CB译码错误导致整体TB无法通过CRC校验,还是大量(例如,全部)CB都译码不正确导致TB无法通过CRC校验,从而可以知道UE所处的信道环境中等还是恶劣,对OLLA或CQI或MCS的调整可以采取对应幅度的补偿,避免过度调整导致资源利用率低,频谱效率过低的问题。
可以理解的是,当UE对1个TB译码正确时,这个TB内包含的所有CB也都是译码正确的。这是由于如果有1个或1个以上的CB出现错误时,这个TB译码正确的概率是极低的。因此当TB译码正确时,可以上报所述TB包含的所有CB对应的实际LDPC译码迭代次数中的最大值,或最大值对应的第二归一化值。当TB译码错误时,可以上报所述TB包含的所有CB中所有译码正确CB对应的实际LDPC译码迭代次数中的最大值,或最大值对应的第二归一化值。
终端设备可以直接上报TB中译码正确的CB的个数,或译码正确的CB的个数对应的第三归一化值。
示例性的,假设1个TB包含T个CB,译码正确的CB的个数为n ACK,则译码正确的CB对应的第三归一化值p ACK可以定义为译码正确的CB的个数n ACK与所述TB内包含的CB个数T的比值,即p ACK=n ACK/T。例如,1个TB可以包括10个CB,其中2个CB译码正确,8个CB译码错误,TB无法通过CRC校验,译码错误,UE可以反馈NACK。此时,译码正确的CB在所述TB中的比例为
Figure PCTCN2021071597-appb-000024
针对所述TB,UE可以直接上报p ACK=0.2给gNB。
或者,终端设备可以上报译码正确的CB的个数对应的第三归一化值对应的比特状 态或比特域。由于第三归一化值的取值较多,考虑直接上报第三归一化值造成较大的开销,因此可以对第三归一化值覆盖的区间[0,1]进行量化,只上报相应区间对应的比特域或比特状态。例如,通信协议可以预定义将第三归一化值p ACK的结果量化为四个区间,比特域或比特状态与量化区间之间的映射关系可以如表3所示。当p ACK=0.2给时,UE可以向gNB上报“00”。本例是一种可能的实现方法,比特域不仅限于2比特,还可以是更多比特。量化区间的划分比例也可以不是均分,可以是按照其他的比例进行划分,本申请不做限定。
表3
比特域或比特状态 p ACK的量化区间
00 0≤p ACK<0.25
01 0.25≤p ACK<0.5
10 0.5≤p ACK<0.75
11 p ACK≥0.75
(四)、第一信息用于指示一个TB中译码错误的CB的个数,或译码错误的CB的个数对应的第四归一化值。
情况(四)与情况(三)类似,因此上报方式也是类似的,这里就不再赘述。
需要说明的是,在上述(一)、(二)、(三)、(四)等四种情况中,第一信息指示的内容都可以反应PDSCH译码的余量(即UE的译码情况),向网络设备反馈不同的第一信息,有助于网络设备根据UE的译码情况进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,有助于提升新传和重传的译码成功率,提升频谱利用率。
第二信息可以用于指示第一调整量,第一调整量可以包括SNR调整量、SINR调整量、CQI调整量或MCS调整量。第一调整量也可以称为OLLA的调整量。第一调整量可以是根据第一信息确定的。例如,终端设备基于情况(一)、(二)、(三)或(四)确定出不同归一化值后,可以进一步确定不同归一化值对应的第一调整量(SNR调整量、SINR调整量、CQI调整量或MCS调整量)。其中,SNR调整量、SINR调整量、CQI调整量或MCS调整量可以是对不同归一化值进行仿真或测试确定的。
例如,终端设备基于情况(一)确定出第一归一化值后,可以进一步确定第一归一化值对应的第一调整量。即通信协议可以规定UE根据TB中全部CB对应的LDPC译码迭代次数的平均值对应的第一归一化值来确定第一调整量(例如,CQI调整量)。例如,通信协议可以规定UE可以上报4种CQI调整量(每种CQI调整量可以用2比特信息表示)。可以根据UE自身实现方式或协议预定义将
Figure PCTCN2021071597-appb-000025
的结果量化为四个区间,不同比特域或比特状态与量化区间之间的映射关系可以如表所示,或者四个区间也可以是不同于表1的非等分区间。不同比特域或比特状态与CQI调整量之间的映射关系可以如表4所示。CQI调整量与不同量化区间的映射关系可以如表5或表6所示。其中,表5可以属于UE实现,也可以是协议预定义的表格,表4或表6可以是协议预定的映射关系。当UE对接收到的TB进行译码后,假设这个TB包括10个CB,如果这10个CB的平均LDPC译码迭代次数
Figure PCTCN2021071597-appb-000026
预设迭代次数为K default=15,可得
Figure PCTCN2021071597-appb-000027
UE根据表1和表4可知对应的比特域或比特状态为“01”,则UE可以上报第二信息(“01”)。 或者,UE根据表4和表5可知对应的比特域或比特状态为“01”,则UE可以上报第二信息(“01”)。或者,UE根据表6的映射关系可知对应的比特域或比特状态为“01”,则UE可以上报第二信息(“01”)。
表4
比特域或比特状态 CQI调整量(dB)
00 0
01 2
10 4
11 6
表5
Figure PCTCN2021071597-appb-000028
表6
Figure PCTCN2021071597-appb-000029
在一些实施例中,终端设备基于情况(二)确定出第二归一化值后,可以进一步确定第二归一化值对应的第一调整量。或者,基于情况(三)确定出第三归一化值后,可以进一步确定第三归一化值对应的第一调整量。或者,基于情况(四)确定出第四归一化值后,可以进一步确定第四归一化值对应的第一调整量。其过程可以参考基于第一归一化值确定第一调整量的过程,在此不做赘述。
可选的,第一信息指示的内容还可以包括:一个CBG中全部CB对应的LDPC译码迭代次数的平均值,或根据该平均值和预设LDPC译码迭代次数确定的归一化值(第五归一化值);或者,第一信息用于指示一个CBG中译码正确的CB对应的LDPC译码迭代次数中的最大值,或根据该最大值和预设LDPC译码迭代次数确定的归一化值(第六归一化值);或者,第一信息用于指示一个CBG中译码正确的CB的个数,或根据该译码正确的CB的个数和一个CBG中全部CB的数目确定的归一化值(第七归一化值);或者,第一信息用于指示一个CBG中译码错误的CB的个数,或根据该译码错误的CB的个数和一个CBG中全部CB的数目确定的归一化值(第八归一化值)。上述第五归一化值至第八归一化值的算法可以参考第一归一化值至第四归一化值,仅粒度不同,在此不做赘述。
在一种可能的设计中,反馈信息还包括第三信息,第三信息包括ACK或NACK。当一个TB译码失败,UE针对这个TB需要反馈NACK,以便基站对TB进行重传。在反馈NACK的基础上再反馈指示信息,指示信息可以辅助gNB进行OLLA调整, OLLA调整包括SNR调整、SINR调整、CQI调整或MCS调整,有助于所述TB重传成功。当一个TB译码成功,UE针对这个TB需要反馈ACK,这样基站可以继续传输下一个TB。在反馈ACK的基础上再反馈指示信息,指示信息可以辅助gNB进行OLLA调整,OLLA调整包括SNR调整、SINR调整、CQI调整或MCS调整,有助于下一个TB新传成功。
第一信息与第三信息的关系包括以下几种特征。
a)、第三信息的内容不同的情况下,即当第三信息分别包括ACK或NACK时,可以关联相同的指示信息(第一信息或第二信息),或者可以分别关联不同的指示信息。
当第三信息包括ACK时,第一信息可以用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量。
当第三信息包括NACK时,第一信息可以用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、第二归一化值、一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种;第二信息用于指示第一调整量。
可以看出,当第三信息包括ACK时,第一信息通常不存在指示一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种的情况,其原因是:当一个TB正确时,所有的CB均译码正确,此时译码正确的CB的个数为TB包括的全部CB的个数,第三归一化值为1,译码错误的CB的个数为0,第四归一化值为0,反馈这些值没有太大意义,对基站的调整帮助不大。
而当第三信息包括NACK时,第一信息可以指示一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种。这是由于反馈一个译码错误的TB内可以正确译码的CB个数或者比例(即第三归一化值),或者错误译码的CB个数或比例(即第四归一化值),可以告诉gNB目前UE进行PDSCH译码的余量,从而可以得知UE所处的信道环境,可以辅助gNB进行OLLA调整。
例如,当1个TB译码错误时,这个错误的TB可能是仅仅因为1个CB译码错误导致整体TB无法通过CRC校验,或者是大量的CB或者是全部的CB都译码不正确导致TB无法通过CRC校验,基站基于TB中译码正确的CB的个数、第三归一化值、TB中译码错误的CB的个数或第四归一化值可以知道UE所处的信道环境中等还是恶劣,对OLLA或CQI或MCS的调整采取对应幅度的补偿,避免过度调整导致资源利用率低,频谱效率过低的问题。
在一种可能的设计中,可以通过多个比特联合指示指示信息和第三信息,不同的比特状态可以指示不同的第一信息和第三信息。
在一些实施例中,与ACK对应的比特状态个数和与NACK对应的比特状态个数可以不同。在一种可能的实现方式中,例如,在URLLC场景下,BLER是10-5,高可靠传输下,终端设备反馈NACK的概率很低,大多数情况下终端设备都是反馈ACK,OLLA的调整主要在反馈ACK的场景下进行,因此相较于NACK,与ACK关联的指 示信息(第一信息或第二信息)可以更细致,这样,ACK对应的比特状态数可以多于NACK对应的比特状态数。在另一种可能的情况中,UE在反馈NACK时携带的PDSCH译码余量信息要对gNB的重传调度帮助非常大,才能保证gNB兼顾频率效率以及BLER。因此对于NACK关联的指示信息可以更细致,这样,NACK对应的比特状态数可以多于ACK对应的比特状态数。
下面以NACK对应的比特状态数多于ACK的情况为例进行说明。如表7所示,8种比特状态中,最后一个状态“111”可以预留(Reserved)给未来的特性扩展使用。其余7个比特状态中,“000”、“001”“010”等3个比特状态对应ACK,“011”、“100”“101”“110”等4个比特状态对应NACK,即与ACK对应的比特状态个数和与NACK对应的比特状态个数可以不同。并且,ACK对应的指示信息(例如,第一信息)可以是第二归一化值。NACK对应的第一信息可以是第三归一化值。
表7
Figure PCTCN2021071597-appb-000030
第三信息与指示信息可以独立编码。如图8所示,第三信息(ACK或NACK)可以用1比特表示,之后的2个比特可以表示指示信息。指示信息(例如,第一信息)的取值可以参考表1~表3所示的比特信息。指示信息(例如,第二信息)的取值可以参考表4或表6所示的比特信息。当然,表示指示信息的比特域可以不限于2比特,例如可以包括3个比特、4个比特等。并且,表示指示信息的比特域的位置也不限于ACK/NACK之后,本申请不做具体限定。
指示信息与第三信息独立编码时,指示信息和第三信息可以在相同PUCCH上传输,或者指示信息和第三信息在不同PUCCH上传输。
如图9所示,终端设备从网络设备接收到调度TB的PDCCH(PDCCH中包括DCI)和传输TB的PDSCH后,可以进行PDSCH译码,然后将指示信息(例如,第一信息)、第三信息和/或CSI反馈给网络设备。示例性的,如图10所示,第一信息和第三信息可以在同一个PUCCH上反馈,即UE可以将第一信息和第三信息放在同一个PUCCH上传输。如图11所示,第一信息和第三信息可以在不同的PUCCH上反馈,例如,可以分别在PUCCH2和PUCCH1上反馈。可选的,可以通过一个PUCCH(例如,PUCCH1)上的第三信息触发第一信息在另一个PUCCH(例如,PUCCH2)上报。
或者,指示信息与第三信息可以联合编码,即可以通过多个比特联合指示第三信息和指示信息,不同的比特状态可以指示不同的指示信息(例如,第一信息)和第三信息。示例性的,类似表6的比特信息,一个比特域或比特状态同时指示ACK和新上 报量。例如UE反馈“110”,则表示所述TB译码失败,其中译码正确的CB个数占所述TB内CB总数的75%以上。
指示信息与第三信息联合编码时,指示信息和第三信息在相同PUCCH上传输。
指示信息与第三信息独立编码或者联合编码后反馈的方式可以称为soft-ACK或soft-NACK,其中“soft”(软)表示的是除了ACK或NACK之外的其他信息(例如,指示信息)。
这样,通过对指示信息和第三信息的复用方式和关联方式的设计,可以进一步提升网络调度的灵活性。
在一些实施例中,终端设备未配置CBG(或未配置CBG传输)的情况下,即网络设备未配置或未使能CBG传输(Not configured code-block-group(CBG)based transmission)的情况下,终端设备进行TB级的数据传输,即以TB为粒度发送反馈信息,即以TB为粒度进行第三信息(HARQ-ACK信息)反馈和指示信息反馈(此时,HARQ-ACK信息反馈和指示信息反馈可以绑定,两者的反馈粒度是相同的)。此时,第一信息可以用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量。
在一些实施例中,终端设备未配置CBG的情况下,当第三信息包括ACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量;当第三信息包括NACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、第二归一化值、一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种;第二信息用于指示第一调整量。
在一些实施例中,在终端设备配置CBG的情况下,终端设备可以基于TB中每个CBG进行统计并反馈。即终端设备可以以CBG为粒度发送反馈信息。例如,假设1个TB内有N个CBG,则UE可以针对N个CBG进行统计,并反馈N套/条反馈信息。其中,第一信息可以用于指示一个CBG中的全部CB对应的LDPC译码迭代次数的平均值、一个CBG中的全部CB对应的LDPC译码迭代次数的平均值对应的归一化值、一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值、一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值对应的归一化值、一个CBG中译码正确的CB的个数、根据译码正确的CB的个数和一个CBG中全部CB的数目确定的归一化值、一个CBG中译码错误的CB的个数或根据译码错误的CB的个数和一个CBG中全部CB的数目确定的归一化值;第二信息用于指示第一调整量。
可以理解的是,在终端设备配置CBG的情况下,HARQ反馈可以是基于CBG的,即终端设备可以针对N个CBG进行统计,并反馈N套/条第三信息。其中,第三信息可以是ACK或NACK。终端设备可以针对TB中全部CBG都反馈ACK。例如,可以针对TB中全部CBG都反馈ACK,或者可以针对TB中全部CBG都反馈NACK,或者针对TB中部分CBG反馈ACK,部分CBG反馈NACK。
在一些实施例中,在终端设备配置CBG的情况下,第一信息可以用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值;第二信息可以用于指示第一调整量。即终端设备可以以TB为粒度反馈第一信息或第二信息。对于1个TB,UE反馈1套/条第一信息或第二信息。
在一些实施例中,在终端设备配置CBG的情况下,当第三信息包括ACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或第二归一化值中的任一种;第二信息用于指示第一调整量;当第三信息包括NACK时,第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值、第一归一化值、一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、第二归一化值、一个TB中译码正确的CB的个数、第三归一化值、一个TB中译码错误的CB的个数或第四归一化值中的任一种;第二信息用于指示第一调整量。对于1个TB,UE反馈1套/条第一信息或第二信息。
在一些实施例中,CBG传输配置与第一信息的上报可以不共存,包括以下两种实现方式。一种实现方式是,终端设备被配置反馈第一信息且终端设备配置CBG传输时,终端设备进行TB级的数据传输,终端设备可以针对每个TB生成一个HARQ-ACK信息位,即HARQ反馈是基于TB粒度的。也可以理解为反馈第一信息的优先级高于CBG传输的优先级。另一种实现方式是,终端设备支持反馈第一信息时,终端设备未配置CBG传输。即网络设备配置终端设备反馈第一信息(网络设备配置终端设备反馈第一信息,是指终端设备需要反馈第一信息)时,不为终端设备配置CBG传输,终端设备进行TB级的数据传输(即If a UE is not provided PDSCH-CodeBlockGroupTransmission,the UE generates one HARQ-ACK information bit per transport block)。这种针对CBG传输配置和第一信息不能共存的场景进行判断机制的设计,可以有效地保证第一信息的有效性和***性能的提升。
可选的,网络设备(例如,基站/gNB)为终端设备(例如,UE)配置和使能高层参数(例如,codeBlockGroupTransmission)时,UE可以进行基于CBG的传输(即以CBG为粒度发送反馈信息)。例如,假设1个TB内包含N个CBG。基站可以通过第四信息配置UE反馈第一信息的粒度。假设第四信息是一个高层参数(例如,可以是RRC参数,PdschDecodingMessage ENUMERATED{CBG,TB})。一种可能的实现方法中,基站可以显式指示UE按照TB为粒度进行发送反馈信息。在这种情况下,UE反馈每个TB对应的一个反馈信息。另一种可能的实现方法中,基站显式地指示UE按照CBG为粒度进行第一信息反馈。这种情况下,UE需要反馈N个CBG对应的第三信息(HARQ-ACK信息)的同时,还需要反馈N个CBG对应的指示信息(第一信息或第二信息),即N个第一信息或第二信息。
在又一种可能的实现方式中,基站可以通过高层参数(RRC参数)指示UE反馈第一信息的粒度,例如高层参数可以为PdschDecodingMessage enable{CBG},当配置使能高层参数时,UE以CBG为粒度发送反馈信息。当基站没有配置该高层参数,UE默认以TB为粒度发送反馈信息。
这种结合CBG传输场景,以及ACK或NACK的不同反馈场景联合设计具体的反馈方法,使得UE可以根据基站对CBG传输的配置情况,结合接收TB的译码情况(译码正确或译码错误),反馈相应的第一信息。有利于针对不同场景对第一信息的上报方式进行优化,进而提升第一信息的有效性和***性能。
可选的,终端设备可以向网络设备上报能力参数,能力参数用于指示终端设备支持反馈第一信息或第二信息。网络设备可以通过RRC参数配置UE是否反馈第一信息或第二信息。
704、网络设备从终端设备接收反馈信息。
反馈信息可以参考步骤703中的相关描述,在此不做赘述。
基于本申请实施例提供的方法,终端设备接收PDSCH后,可以向网络设备发送指示信息,应该理解的是,第一指示的内容可以反应PDSCH译码的余量,根据PDSCH译码的余量可以进行OLLA调整。第二信息指示的内容可以直接反映与OLLA调整相关的调整量(例如,SNR调整量、SINR调整量、CQI调整量或MCS调整量)。这样,向网络设备反馈不同的指示信息,有助于网络设备进行OLLA调整,对信道或干扰进行准确跟踪并更新适合的MCS,能够提升新传和重传的译码成功率以及频谱利用率。
上述本申请提供的实施例中,分别从终端设备、网络设备以及终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中所涉及的装置12的一种可能的结构示意图,该装置可以为终端设备,该终端设备包括:接收单元1201和发送单元1202。在本申请实施例中,接收单元1201,用于从网络设备接收下行物理共享信道PDSCH;发送单元1202,用于向网络设备发送反馈信息,反馈信息包括指示信息,指示信息包括第一信息或第二信息;其中,第一信息与第一码块CB对应的低密度奇偶检查码LDPC译码迭代次数的平均值相关;或者,第一信息与第一CB对应的LDPC译码迭代次数的最大值相关;或者,第一信息与第一CB的数量相关;第二信息用于指示第一调整量,第一调整量包括信噪比SNR调整量、信干噪比SINR调整量、信道质量指示CQI调整量或调制和编码方式MCS调整量;第一调整量是根据第一信息确定的。
在图7所示的方法实施例中,接收单元1201用于支持终端设备执行图7中的过程702。发送单元1202用于支持终端设备执行图7中的过程703。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图13示出了上述实施例中所涉及的装置13的一种可能的结构示意图,该装置可以为网络设备,该网络设备包括:发送单元1301和接收单元1302。在本申请实施例中,发送单元1301,用于向终端设备发送下行物理共享信道PDSCH;接收单元1302,用于从终端设备接收反馈信息,反 馈信息包括指示信息,指示信息包括第一信息或第二信息;其中,第一信息与第一码块CB对应的低密度奇偶检查码LDPC译码迭代次数的平均值相关;或者,第一信息与第一CB对应的LDPC译码迭代次数的最大值相关;或者,第一信息与第一CB的数量相关;第二信息用于指示第一调整量,第一调整量包括信噪比SNR调整量、信干噪比SINR调整量、信道质量指示CQI调整量或调制和编码方式MCS调整量;第一调整量是根据第一信息确定的。
在图7所示的方法实施例中,发送单元1301用于支持终端设备执行图7中的过程701。接收单元1302用于支持终端设备执行图7中的过程704。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,上述各个装置实施例中终端设备或网络设备和方法实施例中的终端设备或网络设备可以完全对应,由相应的模块或单元执行相应的步骤,例如通信模块(收发器)可以执行方法实施例中发送和/或接收的步骤,除发送接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。发送单元和接收单元可以组成收发单元,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
示例性的,上述终端设备或者网络设备的功能可以通过芯片来实现,处理单元可以通过硬件来实现,也可以通过软件来实现,当通过硬件实现时,该处理单元可以是逻辑电路、集成电路等;当通过软件来实现时,该处理单元可以是一个通用处理器,通过读取存储单元中存储的软件代码来实现,该存储单元可以集成在处理器中,也可以位于该处理器之外,独立存在。
上述各个装置实施例中终端设备或网络设备和方法实施例中的终端设备、网络设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
本申请实施例中对模块或单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。示例性地,在本申请实施例中,接收单元和发送单元可以集成至收发单元中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、 计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drives,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (32)

  1. 一种反馈信息传输方法,其特征在于,包括:
    终端设备从网络设备接收下行物理共享信道PDSCH;
    所述终端设备向所述网络设备发送反馈信息,所述反馈信息包括指示信息,所述指示信息包括第一信息或第二信息;
    其中,所述第一信息与第一码块CB对应的低密度奇偶检查码LDPC译码迭代次数的平均值相关;或者,所述第一信息与所述第一CB对应的LDPC译码迭代次数的最大值相关;或者,所述第一信息与所述第一CB的数量相关;
    所述第二信息用于指示第一调整量,所述第一调整量包括信噪比SNR调整量、信干噪比SINR调整量、信道质量指示CQI调整量或调制和编码方式MCS调整量;所述第一调整量是根据所述第一信息确定的。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一CB包括一个传输块TB中的全部CB,或者一个TB中译码正确的CB,或者一个TB中译码错误的CB;或者
    所述第一CB包括一个码块组CBG中的全部CB,或者一个CBG中译码正确的CB,或者一个CBG中译码错误的CB。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,或根据所述平均值和预设LDPC译码迭代次数确定的第一归一化值;或者
    所述第一信息用于指示一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值,或根据所述最大值和所述预设LDPC译码迭代次数确定的第二归一化值;或者
    所述第一信息用于指示一个TB中译码正确的CB的个数,或根据所述译码正确的CB的个数和一个TB中全部CB的数目确定的第三归一化值;或者
    所述第一信息用于指示一个TB中译码错误的CB的个数,或根据所述译码错误的CB的个数和一个TB中全部CB的数目确定的第四归一化值。
  4. 根据权利要求3所述的方法,其特征在于,所述反馈信息还包括第三信息,所述第三信息包括肯定应答ACK或否定应答NACK,
    当所述第三信息包括ACK时,所述第一信息用于指示所述一个TB中全部CB对应的LDPC译码迭代次数的平均值,所述第一归一化值、所述一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或所述第二归一化值中的任一种;所述第二信息用于指示所述第一调整量;
    当所述第三信息包括NACK时,所述第一信息用于指示所述一个TB中全部CB对应的LDPC译码迭代次数的平均值、所述第一归一化值、所述一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、所述第二归一化值、所述一个TB中译码正确的CB的个数、所述第三归一化值、所述一个TB中译码错误的CB的个数或所述第四归一化值中的任一种;所述第二信息用于指示所述第一调整量。
  5. 根据权利要求4所述的方法,其特征在于,
    所述指示信息与所述第三信息独立编码;且所述指示信息和所述第三信息在相同 物理上行控制信道PUCCH上传输,或者所述指示信息和所述第三信息在不同PUCCH上传输。
  6. 根据权利要求4所述的方法,其特征在于,
    所述指示信息与所述第三信息联合编码,所述指示信息和所述第三信息在相同PUCCH上传输。
  7. 根据权利要求3-6任一项所述的方法,其特征在于,
    所述终端设备未配置CBG的情况下,所述第一信息用于指示所述一个TB中全部CB对应的LDPC译码迭代次数的平均值、所述第一归一化值、所述一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或所述第二归一化值中的任一种。
  8. 根据权利要求4所述的方法,其特征在于,
    所述终端设备未配置CBG。
  9. 根据权利要求1-6任一项所述的方法,其特征在于,
    在所述终端设备配置CBG的情况下,所述第一信息用于指示一个CBG中的全部CB对应的LDPC译码迭代次数的平均值、所述一个CBG中的全部CB对应的LDPC译码迭代次数的平均值对应的归一化值、一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值,或所述一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值对应的归一化值。
  10. 根据权利要求3-6任一项所述的方法,其特征在于,
    在所述终端设备配置CBG的情况下,所述第一信息用于指示所述一个TB中全部CB对应的LDPC译码迭代次数的平均值、所述第一归一化值、所述一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或所述第二归一化值;所述第二信息用于指示所述第一调整量。
  11. 根据权利要求4所述的方法,其特征在于,
    在所述终端设备配置CBG。
  12. 根据权利要求9或10所述的方法,其特征在于,
    所述终端设备接收第四信息,所述第四信息用于指示所述终端设备反馈所述第一信息或所述第二信息的粒度,所述粒度可以是TB级别或CBG级别。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备上报能力参数,所述能力参数用于指示所述终端设备支持反馈所述第一信息或所述第二信息。
  14. 根据权利要求1-6任一项所述的方法,其特征在于,
    所述终端设备被配置反馈所述第一信息且所述终端设备配置CBG传输时,所述终端设备进行TB级的数据传输;或者
    所述终端设备被配置反馈所述第一信息时,所述终端设备未被配置CBG传输。
  15. 一种反馈信息传输方法,其特征在于,包括:
    网络设备向终端设备发送下行物理共享信道PDSCH;
    所述网络设备从所述终端设备接收反馈信息,所述反馈信息包括指示信息,所述指示信息包括第一信息或第二信息;
    其中,所述第一信息与第一码块CB对应的低密度奇偶检查码LDPC译码迭代次 数的平均值相关;或者,所述第一信息与所述第一CB对应的LDPC译码迭代次数的最大值相关;或者,所述第一信息与所述第一CB的数量相关;
    所述第二信息用于指示第一调整量,所述第一调整量包括信噪比SNR调整量、信干噪比SINR调整量、信道质量指示CQI调整量或调制和编码方式MCS调整量;所述第一调整量是根据所述第一信息确定的。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第一CB包括一个传输块TB中的全部CB,或者一个TB中译码正确的CB,或者一个TB中译码错误的CB;或者
    所述第一CB包括一个码块组CBG中的全部CB,或者一个CBG中译码正确的CB,或者一个CBG中译码错误的CB。
  17. 根据权利要求15或16所述的方法,其特征在于,
    所述第一信息用于指示一个TB中全部CB对应的LDPC译码迭代次数的平均值,或根据所述平均值和预设LDPC译码迭代次数确定的第一归一化值;或者
    所述第一信息用于指示一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值,或根据所述最大值和所述预设LDPC译码迭代次数确定的第二归一化值;或者
    所述第一信息用于指示一个TB中译码正确的CB的个数,或根据所述译码正确的CB的个数和一个TB中全部CB的数目确定的第三归一化值;或者
    所述第一信息用于指示一个TB中译码错误的CB的个数,或根据所述译码错误的CB的个数和一个TB中全部CB的数目确定的第四归一化值。
  18. 根据权利要求17所述的方法,其特征在于,所述反馈信息还包括第三信息,所述第三信息包括肯定应答ACK或否定应答NACK,
    当所述第三信息包括ACK时,所述第一信息用于指示所述一个TB中全部CB对应的LDPC译码迭代次数的平均值,所述第一归一化值、所述一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或所述第二归一化值中的任一种;所述第二信息用于指示所述第一调整量;
    当所述第三信息包括NACK时,所述第一信息用于指示所述一个TB中全部CB对应的LDPC译码迭代次数的平均值、所述第一归一化值、所述一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值、所述第二归一化值、所述一个TB中译码正确的CB的个数、所述第三归一化值、所述一个TB中译码错误的CB的个数或所述第四归一化值中的任一种;所述第二信息用于指示所述第一调整量。
  19. 根据权利要求18所述的方法,其特征在于,
    所述指示信息与所述第三信息独立编码;且所述指示信息和所述第三信息在相同物理上行控制信道PUCCH上传输,或者所述指示信息和所述第三信息在不同PUCCH上传输。
  20. 根据权利要求18所述的方法,其特征在于,
    所述指示信息与所述第三信息联合编码,所述指示信息和所述第三信息在相同PUCCH上传输。
  21. 根据权利要求17-20任一项所述的方法,其特征在于,
    所述终端设备未配置CBG的情况下,所述第一信息用于指示所述一个TB中全部CB对应的LDPC译码迭代次数的平均值、所述第一归一化值、所述一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或所述第二归一化值中的任一种。
  22. 根据权利要求18所述的方法,其特征在于,
    所述终端设备未配置CBG。
  23. 根据权利要求15-20任一项所述的方法,其特征在于,
    在所述终端设备配置CBG的情况下,所述第一信息用于指示一个CBG中的全部CB对应的LDPC译码迭代次数的平均值、所述一个CBG中的全部CB对应的LDPC译码迭代次数的平均值对应的归一化值、一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值,或所述一个CBG中的全部CB对应的LDPC译码迭代次数中的最大值对应的归一化值。
  24. 根据权利要求17-20任一项所述的方法,其特征在于,
    在所述终端设备配置CBG的情况下,所述第一信息用于指示所述一个TB中全部CB对应的LDPC译码迭代次数的平均值、所述第一归一化值、所述一个TB中译码正确的CB对应的LDPC译码迭代次数中的最大值或所述第二归一化值;所述第二信息用于指示所述第一调整量。
  25. 根据权利要求18所述的方法,其特征在于,
    在所述终端设备配置CBG。
  26. 根据权利要求23或24所述的方法,其特征在于,
    所述网络设备发送第四信息,所述第四信息用于指示所述终端设备反馈所述第一信息或所述第二信息的粒度,所述粒度可以是TB级别或CBG级别。
  27. 根据权利要求15-26任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备从所述终端设备接收能力参数,所述能力参数用于指示所述终端设备支持反馈所述第一信息或所述第二信息。
  28. 一种通信装置,其特征在于,包括用于执行如权利要求1-14或者权利要求15-27中任一项所述的反馈信息传输方法的单元。
  29. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器和存储器耦合;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述计算机执行指令,以使所述通信装置执行如权利要求1-14或者权利要求15-27中任一项所述的反馈信息传输方法。
  30. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行权利要求1-14或者权利要求15-27中任一项所述的反馈信息传输方法。
  31. 一种芯片***,其特征在于,包括处理器,所述处理器和存储器耦合,所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1-14或者权利要求15-27中任一项所述的反馈信息传输方法。
  32. 一种通信***,其特征在于,包括终端设备和网络设备,
    所述终端设备用于执行如权利要求1-14中任一项所述的反馈信息传输方法,所述 网络设备用于执行如权利要求15-27中任一项所述的反馈信息传输方法。
PCT/CN2021/071597 2021-01-13 2021-01-13 一种反馈信息传输方法和装置 WO2022151099A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180089774.4A CN116803029A (zh) 2021-01-13 2021-01-13 一种反馈信息传输方法和装置
PCT/CN2021/071597 WO2022151099A1 (zh) 2021-01-13 2021-01-13 一种反馈信息传输方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071597 WO2022151099A1 (zh) 2021-01-13 2021-01-13 一种反馈信息传输方法和装置

Publications (1)

Publication Number Publication Date
WO2022151099A1 true WO2022151099A1 (zh) 2022-07-21

Family

ID=82446674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071597 WO2022151099A1 (zh) 2021-01-13 2021-01-13 一种反馈信息传输方法和装置

Country Status (2)

Country Link
CN (1) CN116803029A (zh)
WO (1) WO2022151099A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024781A (zh) * 2014-04-30 2015-11-04 中兴通讯股份有限公司 一种反馈信息的处理方法、装置及***
CN107409008A (zh) * 2015-03-05 2017-11-28 瑞典爱立信有限公司 基于解码余量的传输属性的配置
CN107534512A (zh) * 2015-03-05 2018-01-02 瑞典爱立信有限公司 限定解码余量的多等级ack
CN108141308A (zh) * 2015-10-23 2018-06-08 瑞典爱立信有限公司 解码裕度估计

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024781A (zh) * 2014-04-30 2015-11-04 中兴通讯股份有限公司 一种反馈信息的处理方法、装置及***
CN107409008A (zh) * 2015-03-05 2017-11-28 瑞典爱立信有限公司 基于解码余量的传输属性的配置
CN107534512A (zh) * 2015-03-05 2018-01-02 瑞典爱立信有限公司 限定解码余量的多等级ack
CN108141308A (zh) * 2015-10-23 2018-06-08 瑞典爱立信有限公司 解码裕度估计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "CSI feedback enhancements", 3GPP DRAFT; R1-2007850, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946529 *

Also Published As

Publication number Publication date
CN116803029A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
EP3550752B1 (en) Method device and system for feedback
US20180098345A1 (en) Dynamic codebook adaptation for enhanced carrier aggregation
US20220224452A1 (en) Feedback Information Transmission Method and Apparatus
WO2020244645A1 (zh) 一种通信方法及装置
WO2018059181A1 (en) Method and device for determining uplink control channel
US9467258B2 (en) Methods and arrangements for supporting retransmission
US20220006566A1 (en) Data transmission method and device
WO2019157996A1 (zh) 数据传输方法、通信装置及存储介质
WO2020249031A1 (zh) 应答信息的传输方法及装置
KR20120032563A (ko) 무선 시스템의 링크 버짓을 개선하는 방법 및 시스템
WO2020164503A1 (zh) 信息传输方法、终端设备及网络设备
WO2019114730A1 (zh) 数据收发的方法、装置和通信***
WO2022040964A1 (zh) 生成混合自动重复请求harq码本的方法和装置
WO2019134140A1 (zh) 反馈应答信息发送方法、接收方法、装置及***
WO2020143813A1 (zh) 传输信息的方法和装置
US20230084145A1 (en) Communication method and apparatus
WO2022151099A1 (zh) 一种反馈信息传输方法和装置
WO2022117102A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2022009702A1 (en) Multiplexing of harq-ack with different priorities on pucch
WO2021227981A1 (zh) 一种信息发送的方法及设备
WO2021027383A1 (zh) 一种反馈信息传输方法和装置
WO2020156002A1 (zh) 通信方法及通信装置
WO2021035541A1 (zh) 一种数据传输方法及相关设备
CN114846755A (zh) 一种数据的反馈方法及装置
WO2020000234A1 (zh) 一种数据解析的方法以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089774.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918314

Country of ref document: EP

Kind code of ref document: A1