WO2022149455A1 - Power generation system using difference in potential caused by different solvents, and power generation method using difference in potential caused by different solvents - Google Patents

Power generation system using difference in potential caused by different solvents, and power generation method using difference in potential caused by different solvents Download PDF

Info

Publication number
WO2022149455A1
WO2022149455A1 PCT/JP2021/047079 JP2021047079W WO2022149455A1 WO 2022149455 A1 WO2022149455 A1 WO 2022149455A1 JP 2021047079 W JP2021047079 W JP 2021047079W WO 2022149455 A1 WO2022149455 A1 WO 2022149455A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
electrolytic solution
tank
power generation
generation system
Prior art date
Application number
PCT/JP2021/047079
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 松井
誠 河瀬
Original Assignee
一般財団法人電力中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021178995A external-priority patent/JP2022107506A/en
Application filed by 一般財団法人電力中央研究所 filed Critical 一般財団法人電力中央研究所
Publication of WO2022149455A1 publication Critical patent/WO2022149455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells

Definitions

  • the present invention relates to a power generation system using a potential difference between different solvents and a power generation method using a potential difference from different solvents, which is characterized by using a potential difference formed by a difference in solvent composition between electrodes.
  • the present invention has been made in view of the above circumstances, and provides a power generation system and a power generation method using a difference in solvent composition between electrodes, which can achieve both a stable supply of electric power and a reduction in carbon dioxide emissions. With the goal.
  • the electrolytic solution of the first solvent is accommodated, and the active material has one electrode and the active material reacts with the electrode. It is provided with one tank and a second tank in which an electrolytic solution of a second solvent different from the electrolytic solution contained in the first tank is contained, the other electrode is provided, and the active material reacts with the electrode. It is a feature.
  • the first solvent, which is the electrolytic solution in the first tank, and the second solvent, which is the electrolytic solution in the second tank, are selected according to the active material that reacts with the electrodes. , It is possible to increase the potential difference formed between the electrodes as compared with the case where the first solvent and the second solvent have the same composition. Further, between the first tank and the second tank, a solid electrolyte and a gel-like electrolyte are used for the purpose of suppressing the mixing of the electrolytic solution of the first tank and the electrolytic solution of the second tank and ensuring ionic conductivity. It can be partitioned by a porous body or the like.
  • the first solvent and the second solvent may each be a solvent composed of a single substance, or may be a mixed solvent each composed of a plurality of substances. Further, the electrode reaction in the first tank and the second tank may be a reaction with different redox pairs or a reverse reaction with the same redox pair.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 2 is the electrode reaction by the active material in the first tank in the power generation system using the potential difference due to the different solvent according to claim 1.
  • the electrode reaction by the active material in the second tank is characterized by being a reverse reaction by the same redox pair.
  • the electrode reaction in the first tank and the electrode reaction in the second tank are reverse reactions due to the same redox pair.
  • hexacyanoferrate (II) acid ion ([Fe (CN) 6 ] 4- ) and hexacyanoferrate (III) acid ion ([Fe (CN) 6 ] 3- ) can be used as active materials.
  • the power generation system using the potential difference between different solvents of the present invention according to claim 3 is the power generation system using the potential difference between different solvents according to claim 1 or 2, wherein the first solvent and the first solvent are used.
  • the solvent of 2 is characterized by containing at least one of the same substances.
  • a mixed solvent of solvent A and solvent B is used as the first solvent, and solvent A is used as the second solvent. Further, it is conceivable that the first solvent and the second solvent are both mixed solvents of the solvent A and the solvent B, and the mixing ratio of the solvent A and the solvent B is different between the first solvent and the second solvent. ..
  • water can be used as the solvent A, and acetone can be used as the solvent B.
  • the power generation system using the potential difference due to the different solvent of the present invention is the power generation system using the potential difference due to the different solvent according to any one of claims 1 to 3, wherein the first power generation system is used.
  • the solvent of the second solvent is water, ethanol, methanol, acetonitrile, dimethyl sulfoxide, acetone, pyridine, dimethylacetamide, dimethylformamide, hexamethylphosphoramide, propylene carbonate, tetrahydrofuran, N-methyl-2- It is characterized by containing at least one of pyrrolidone.
  • the first solvent and the second solvent can be specified and appropriately selected according to the type of the active material that reacts with the electrodes.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 5 is the power generation system using the potential difference due to the different solvent according to any one of claims 1 to 3.
  • a salt having a melting point of 200 ° C. or lower at 1 atm is used as at least one of the above-mentioned solvent and the second solvent.
  • a salt having a melting point of 200 ° C. or lower at 1 atm may be appropriately used as the substance constituting the first solvent and the second solvent according to the type of the active material that reacts with the electrode. can.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 6 is the power generation system using the potential difference due to the different solvent according to any one of claims 1 to 5.
  • An electrolytic solution is supplied from the outside to the inside of the tank and the second tank, and the electrolytic solution after the (part or all) active material reacts with the electrodes is discharged to the outside of the first tank and the second tank. , It is characterized by being equipped with supply / discharge means.
  • the unused electrolytic solution is continuously supplied from the outside to maintain the composition difference between the solvents in the first tank and the second tank, so that the potential difference in the power generation system is increased. It is retained and can generate electricity continuously.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 7 is the power generation system using the potential difference due to the different solvent according to claim 6, wherein the first solvent and the second solvent are used.
  • the first solvent is a mixture of the solvent A and the solvent B
  • the first solvent contains a larger amount of the solvent B than the second solvent
  • the supply / discharge means is the first solvent A and the solvent B.
  • the electrolytic solution of the solvent is supplied from the outside to the first tank, the electrolytic solution after the active material reacts with the electrode is discharged from the first tank, and a part or all of the solvent B is separated from the discharged electrolytic solution.
  • the electrolytic solution after recovery and separation of a part or all of the solvent B is supplied to the second tank, and the active material undergoes an electrode reaction opposite to the electrode reaction in the first tank.
  • the liquid is discharged to the outside, the solvent B separated and recovered from the discharged electrolytic liquid is remixed, and the electrolytic solution after the solvent B is remixed is supplied to the first tank. ..
  • an electrolytic solution regenerating means that enables the electrolytic solution used in the reaction at one electrode to be reused in the reaction at the other electrode.
  • the electrolytic solution after being used for the electrode reaction in the first tank is used for the electrode reaction in the second tank after separating a part or all of the solvent B.
  • the electrolytic solution after being used for the electrode reaction in the second tank is used again for the electrode reaction in the first tank after the solvent B is remixed.
  • the separation of the solvent B can be performed, for example, by inputting the thermal energy required for raising the temperature of the electrolytic solution to the boiling point or higher of the solvent B and the thermal energy required for the vaporization of the solvent B from the outside. Further, it can be performed by applying mechanical energy for pressurizing the electrolytic solution and separating the solvent B by a pressure difference from the outside.
  • This power generation system is made possible by inputting the thermal energy and mechanical energy required for the separation of the solvent B. Therefore, when inputting thermal energy, use heat sources such as waste heat, geothermal heat, hot spring heat, and solar heat, and when inputting mechanical energy, use renewable energy such as wind power, hydraulic power, wave power, and tidal power. Therefore, a stable supply of energy is possible without emitting carbon dioxide.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 8 is the power generation system using the potential difference due to the different solvent according to claim 7, wherein the electrolytic solution discharged from the first tank is said to be the same.
  • a second electrolytic solution regenerating means is provided, and the electrolytic solution discharged from the second tank is provided.
  • the first method is used as a means for remixing the solvent B separated and recovered from the electrolytic solution discharged from the first tank and supplying the electrolytic solution after the solvent B is remixed to the first tank. It is characterized by having the electrolyte regenerating means of the above.
  • the solvent B is separated and recovered from the electrolytic solution discharged from the first tank by the second electrolytic solution regenerating means, and the electrolytic solution after the solvent B is separated is placed in the second tank. Be supplied. Then, the solvent B separated and recovered from the electrolytic solution discharged from the first tank was remixed with the electrolytic solution discharged from the second tank by the first electrolytic solution regenerating means, and the solvent B was remixed. The later electrolytic solution is supplied to the first tank.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 9 is the power generation system using the potential difference due to the different solvent according to claim 8, wherein the first electrolytic solution regenerating means, the second.
  • the separation of the solvent B and the remixing of the solvent B in the electrolytic solution regenerating means are characterized by being composed of means using thermal energy.
  • the solvent B can be separated and the solvent B can be remixed by using thermal energy.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 10 is the power generation system using the potential difference due to the different solvent according to claim 9, and the means using the thermal energy is the first.
  • the electrolytic solution discharged from the tank is heated to evaporate the solvent B, and the evaporating means for supplying the electrolytic solution after the solvent B is separated to the second tank and the evaporating means evaporating by the evaporating means. It is characterized by having a condensing means for condensing the solvent B, remixing the solvent B with the electrolytic solution discharged from the second tank, and supplying the solvent B to the first tank.
  • the electrolytic solution discharged from the first tank is heated by the evaporation means to evaporate and separate the solvent B, and the electrolytic solution after the solvent B is separated is transferred to the second tank. Be supplied.
  • the evaporated solvent B is condensed by the condensing means, and the condensed solvent B is remixed with the electrolytic solution discharged from the second tank and supplied to the first tank.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 11 is the power generation system using the potential difference due to the different solvent according to claim 9 or 10, wherein the electrolytic solution in the supply / discharge means is used. It is characterized by being provided with an internal pressure adjusting means for adjusting the pressure inside the flow path.
  • the boiling point of the solvent can be adjusted by pressurizing or depressurizing the electrolytic solution by the internal pressure adjusting means, and the electrolytic solution regenerating means as the supply / discharge means can be provided with a heat source in a wide temperature range. It can be used.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 12 is the power generation system using the potential difference due to the different solvent according to claim 8, wherein the first electrolyte regenerating means and the second one.
  • the separation of the solvent B and the remixing of the solvent B in the electrolytic solution regenerating means of the above are characterized in that they are composed of means using mechanical energy.
  • the solvent B can be separated and the solvent B can be remixed by using mechanical energy.
  • the power generation system using the potential difference due to the different solvent of the present invention according to claim 13 is the power generation system using the potential difference due to the different solvent according to claim 12, and the means using the mechanical energy is the above-mentioned first.
  • the separation and supply means for separating the solvent B by pressurizing the electrolytic solution discharged from the first tank and allowing the separation means to permeate, and supplying the electrolytic solution after the solvent B is separated to the second tank, and the above. It is characterized by having a mixing and supplying means for remixing the solvent B that has permeated the separating means with the electrolytic solution discharged from the second tank and supplying the solvent B to the first tank.
  • the electrolytic solution discharged from the first tank is pressurized by the separation and supply means and permeated through the separation means to separate the solvent B, and the electrolysis after the solvent B is separated.
  • the liquid is supplied (decompressed) to the second tank. Then, the solvent B permeated through the separation means is remixed with the electrolytic solution discharged from the second tank by the mixing supply means and supplied to the first tank.
  • power generation is performed using the potential difference formed by the composition difference of the solvent of the electrolytic solution between the positive electrode and the negative electrode. It is characterized by.
  • the power generation system using the potential difference of the present invention and the power generation method using the potential difference using different solvents can achieve both a stable supply of electric power and a reduction in carbon dioxide emissions.
  • FIGS. 1 to 6 An example of an embodiment of a power generation system using the potential difference of the present invention will be described with reference to FIGS. 1 to 6.
  • FIG. 1 is an overall configuration conceptually representing the power generation system of the present invention
  • FIG. 2 is a concept for explaining the state of the solvent-containing structure of the electrolytic solution in the first tank
  • FIG. 3 is the electrolytic solution in the second tank.
  • FIG. 4 (a) the active material hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- or hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3-
  • FIG. 4 (b) shows the concept of the molecular structure of water (H 2 O), which is an example of solvent A (first solvent, second solvent),
  • FIG. 1 is an overall configuration conceptually representing the power generation system of the present invention
  • FIG. 2 is a concept for explaining the state of the solvent-containing structure of the electrolytic solution in the first tank
  • FIG. 3 is the electrolytic solution in the second tank.
  • FIG. 4 (a) the active material hexacyanoferrate (II) acid ion [F
  • FIG. 5 shows an overall configuration conceptually showing the power generation system of the present invention showing the solvent and the active material
  • FIG. 6 shows a graph showing the relationship between the electromotive force and the solvent B.
  • the first active material active material
  • hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- solvent A (water (H 2 O)) and solvent B (acetone).
  • It is provided with a first tank 1 containing a first solvent mixed with [(CH 3 ) 2 CO]).
  • a second solvent composed of hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- which is a second active material (active material), and solvent A (water (H 2 O)) is contained.
  • the second tank 2 is provided.
  • the first tank 1 and the second tank 2 are partitioned by, for example, a partition member such as a solid electrolyte, a gel-like electrolyte, or a porous body.
  • the second solvent is composed of solvent A and solvent B, but since the amount of solvent B is small, it is described below that the second solvent is composed of solvent A. That is, the first solvent contains a larger amount of solvent B than the second solvent, and is a mixture of solvent A and solvent B.
  • the first tank 1 is provided with a negative electrode (negative electrode) 3 as one electrode
  • the second tank 2 is provided with a positive electrode (positive electrode) 4 as the other electrode.
  • the negative electrode 3 and the positive electrode 4 are connected to a power circuit (external circuit) 5, and the first solvent (solvent A + solvent B) of the first tank 1 and the second tank 2 of the second tank 2 are connected to the power circuit 5.
  • a current flows due to the potential difference formed by the composition difference of the solvent (solvent A) of 2.
  • the first active material and the second active material which are active substances, can be applied to the same redox pair or different redox pairs. Further, which of the electrode in the first tank 1 and the electrode in the second tank 2 becomes the positive electrode (negative electrode) differs depending on the type of the active material, the type of the solvent A, the type of the solvent B, and the like.
  • a second composed of solvent A water (H 2 O) having hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- or hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- .
  • the solvate structure of the iron (III) acid ion [Fe (CN) 6 ] 3- is as shown in FIG.
  • the solvation structure shown in FIG. 3 is an image, and the positional relationship, number, and orientation of the solvent molecules (water) are arbitrary.
  • FIG. 4 (a) The molecular structure of hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- or hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- is as shown in FIG. 4 (a).
  • the molecular structure of water (H 2 O) is as shown in FIG. 4 (b)
  • the molecular structure of acetone [(CH 3 ) 2 CO] is as shown in FIG. 4 (c).
  • Solvent A water (H 2 O)
  • solvent B with hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- or hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3-
  • the situation of the first electrolytic solution electrolytic solution X
  • acetone [(CH 3 ) 2 CO] that is, solvent A (water (H 2 O)) and solvent B (acetone [(CH 3 ) 2 CO]).
  • hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- is oxidized in the first tank 1 and hexacyanoferrate (III) acid ion [Fe (CN) 6 ]. It becomes 3- .
  • hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- undergoes a reduction reaction to become hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- .
  • Negative electrons (e ⁇ ) move from the negative electrode 3 to the positive electrode 4, so that a current flows through the power circuit 5.
  • the first solvent having the active material hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- , hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3-
  • the second solvent By controlling the solvent, it is possible to eliminate the emission of carbon dioxide and maintain power generation.
  • the power generation system described above makes it possible to achieve both a stable supply of electric power and a reduction in carbon dioxide emissions.
  • the first solvent and the second solvent include water, ethanol, methanol, acetonitrile, dimethyl sulfoxide, acetone, pyridine, dimethylacetamide, dimethylformamide, hexamethylphosphoramide, propylene carbonate, tetrahydrofuran, and N-methyl-. It can be selected to contain at least one of 2-pyrrolidone.
  • a salt having a melting point of 200 ° C. or less at 1 atm can be appropriately used.
  • FIG. 7 shows the overall configuration of the power generation system according to the first embodiment of the present invention.
  • the same components as those of the power generation system shown in FIG. 1 are designated by the same reference numerals.
  • the first tank 1 contains the electrolytic solution X made of the solvent and the active material before the reaction
  • the second tank 2 contains the electrolytic solution Y made of the solvent and the active material before the reaction. ing.
  • the electrolytic solution X having the active material before the reaction is supplied from the first tank 11 to the first tank 1 via the pump 12, and the electrolytic solution X after the reaction is housed in the first recovery tank 13.
  • the electrolytic solution Y having the active material before the reaction is supplied from the second tank 15 to the second tank 2 via the pump 16, and the electrolytic solution Y after the reaction is housed in the second recovery tank 17.
  • Reference numeral 19 in the figure is a temperature detecting means for detecting the temperature of the electrolytic solution inside the first tank 11 and the second tank 15.
  • the active material that reacts with the negative electrode 3 and the positive electrode 4 and the first solvent (electrolyte solution X), and the active material and the second solvent (electrolyte solution Y) have electromotive forces. It is appropriately selected so as to be large (to obtain the desired potential difference).
  • the electrode reaction of the negative electrode 3 and the positive electrode 4 does not necessarily have to be a reverse reaction due to the same redox pair.
  • FIG. 8 shows the overall configuration of the power generation system according to the second embodiment of the present invention
  • FIG. 9 shows the change over time of the voltage.
  • the same components as those of the power generation system shown in FIG. 1 are designated by the same reference numerals.
  • the solvent of the electrolytic solution contained in the first tank 1 and the second tank 2 is the same as that of the power generation system shown in FIG. 1, and the active material is also the same as that of the power generation system shown in FIG. It is the same.
  • the solvent A water (H 2 O)
  • the solvent B acetone [(CH 3 ) 2 ) having the active material hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4-
  • a first tank 1 in which an electrolytic solution X mixed with CO]
  • a second tank 2 containing an electrolytic solution Y composed of a solvent A (water (H 2 O)) having a hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- as an active material is provided.
  • an electrolytic solution Y composed of a solvent A (water (H 2 O)) having a hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- as an active material is provided.
  • the liquid X may contain a part of [Fe (CN) 6 ] 3-
  • the electrolytic solution Y may contain a part of [Fe (CN) 6 ] 4- . Further, since it may not be possible to separate all the solvent B in the process of separating the solvent B in the supply / discharge means described later, the electrolytic solution Y may contain a part of the solvent B.
  • the first tank 1 is provided with a negative electrode (negative electrode) 3, and the second tank 2 is provided with a positive electrode (positive electrode) 4.
  • the negative electrode 3 and the positive electrode 4 are connected to the power circuit (external circuit) 5, and the first solvent (solvent A + solvent B) in the first tank 1 and the second solvent in the second tank 2 are connected to the power circuit 5.
  • the current flows due to the potential difference caused by the composition difference of the solvent (solvent A).
  • An evaporator 21 is provided as a separation means for extracting the electrolytic solution X from the first tank 1 and separating the solvent B after the active material of the electrolytic solution X composed of the solvent A and the solvent B has completed the electrode reaction. ing.
  • the evaporator 21 is provided with a high-temperature heat exchanger 22 for heating the electrolytic solution X composed of the solvent A and the solvent B, and in the evaporator 21, the high-temperature heat exchanger 22 that exchanges heat with the high-temperature heat source is heated.
  • Solvent B is separated by evaporating solvent B from electrolytic solution X (means using heat energy).
  • the electrolytic solution X from which the solvent B is separated by the evaporator 21 is charged into the second tank 2 as the electrolytic solution Y by the pump 23 (supply / discharge means: second electrolytic solution regenerating means).
  • 24 is a heat exchanger (heat exchanger with a high temperature heat source) that heats the electrolytic solution X on the inflow side of the evaporator 21, and 25 detects the temperature of the electrolytic solution X on the inflow side of the evaporator 21.
  • 26 is a pressure detecting means for detecting the pressure of the electrolytic solution Y charged in the second tank 2
  • 27 is a temperature detecting means for detecting the temperature of the electrolytic solution Y charged in the second tank 2.
  • a condenser 31 for condensing the solvent B separated by the evaporator 21 is provided, and in the condenser 31, the solvent B separated by the evaporator 21 is heat-exchanged and condensed by the heat exchanger 32 of the low temperature heat source.
  • a mixer 33 to be sent after the electrolytic solution Y after the reaction is discharged from the second tank 2 is provided, and the solvent B condensed by the condenser 31 is sent to the mixer 33.
  • the electrolytic solution Y after the reaction and the solvent B condensed in the condenser 31 are mixed (referred to as the electrolytic solution X) and charged into the first tank 1 (supply / discharge means: first electrolytic solution regeneration). means).
  • a temperature detecting means 35, a pressure detecting means 36, and a relief valve 37 are provided in the flow path 34 for sending the solvent B separated by the evaporator 21 to the condenser 31.
  • the condenser 31 is provided with a temperature detecting means 38 for detecting the temperature of the condensed solvent B.
  • the electrolytic solution Y after the reaction extracted from the second tank 2 is heat-exchanged by the heat exchanger 39 of the low-temperature heat source and sent to the mixer 33.
  • the solvent B condensed in the condenser 31 is sent to the mixer 33 by the pump 41, mixed with the electrolytic solution Y after the reaction from the second tank 2, and sent to the first tank 1 by the pump 42 (supply / discharge means). ..
  • 45 is a pressure detecting means for detecting the pressure of the solvent B sent to the mixer 33
  • 46 is a temperature detecting means for detecting the temperature of the solvent B
  • reference numeral 47 in the figure is a temperature detecting means for detecting the temperature of the electrolytic solution Y after the reaction sent from the second tank 2 to the mixer 33
  • reference numerals 48 in the figure are pressure detecting means for detecting the pressure of the electrolytic solution X (solvent A + solvent B) sent from the mixer 33 to the first tank 1
  • 49 is the temperature of the electrolytic solution X (solvent A + solvent B). It is a temperature detecting means for detecting.
  • hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- is oxidized in the first tank 1, and hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- Become. Further, in the second tank 2, hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- undergoes a reduction reaction to become hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- . When negative electrons (e ⁇ ) move from the first tank 1 to the second tank 2, a current flows through the power circuit 5.
  • the reaction between the positive electrode and the negative electrode is the reverse of the same redox pair (hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- , hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- ).
  • This is a reaction, and a potential difference is generated due to a difference in the interaction between the active material and the solvent due to the difference in the composition of the solvent between the electrodes, and the oxidation or reduction reaction proceeds at each electrode.
  • the solvent A and the solvent B after the reaction are extracted from the first tank 1, and the solvent B is separated by the evaporator 21.
  • the electrolytic solution X from which the solvent B is separated by the evaporator 21 is charged into the second tank 2 as the electrolytic solution Y by the pump 23 (supply / discharge means: second electrolytic solution regenerating means).
  • the electrolytic solution Y after the reaction is extracted from the second tank 2 and sent to the mixer 33.
  • the solvent B that has been evaporated by the evaporator 21 and condensed by the condenser 31 is sent to the mixer 33, and in the mixer 33, the electrolytic solution Y and the solvent B are mixed to obtain the electrolytic solution X.
  • the electrolytic solution X from the mixer 33 is sent to the first tank 1 (supply / discharge means: first electrolytic solution regenerating means).
  • the solvent B is vaporized and separated from the electrolytic solution X after the electrode reaction, sent to the second tank 2 as the electrolytic solution Y, and mixed with the electrolytic solution Y after the electrode reaction for electrolysis.
  • the liquid X is sent to the first tank 1 again.
  • the high temperature heat exchanger 22 high temperature heat source
  • the heat exchanger 32 low temperature heat source
  • the same as the heat engine can be operated and continuous power generation can be performed.
  • a heat source having a temperature of about 100 ° C. can also be used as the high-temperature heat source. Examples of the substance having a relatively low boiling point include acetone.
  • the effective use of heat sources of about 100 ° C or less which were not sufficiently effectively used such as industrial waste heat, geothermal heat, and hot spring heat, will dramatically progress.
  • the equipment that has the first tank 1, the second tank 2, the negative electrode 3, and the positive electrode 4 that generate electricity and the equipment that recovers heat and regenerates and circulates the electrolyte are separated, so there is a degree of freedom in design. It is highly expensive and can be easily applied to large-scale power generation systems. Further, by storing the electrolytic solution in a state where the solvent B has been separated and remixed, energy can be stored and the amount of power generation can be controlled according to the demand.
  • the above-mentioned power generation system can eliminate carbon dioxide emissions and maintain power generation, and can achieve both a stable supply of electric power and a reduction in carbon dioxide emissions.
  • the electrolytic solution is regenerated by the first electrolytic solution regenerating means and the second electrolytic solution regenerating means.
  • An example of the change with time of the voltage when the electrolytic solution is regenerated will be described with reference to FIG.
  • the voltage (V) decreases as the reaction progresses, and reaches the voltage threshold value V1 at time t1.
  • the electrolytic solution X after the reaction is sent to the evaporator 21, and the electrolytic solution Y after the reaction is sent to the mixer 33.
  • the solvent B is separated by the evaporator 21 and sent to the mixer 33, the electrolytic solution X (solvent A + solvent B) is regenerated, and the electrolytic solution X having the active material before the reaction is supplied to the first tank 1 (time). From t1 to time t2). After the solvent B is separated by the evaporator 21, the solvent A is supplied to the second tank 2 as the electrolytic solution Y having the active material before the reaction (time t1 to time t2).
  • the voltage is sufficiently recovered at time t2, and the desired voltage (electromotive force of the threshold value V1 or higher) is maintained until time t3.
  • FIG. 9 shows an example of the change with time in which the regeneration was carried out after the discharge accompanying the reaction
  • FIG. 10 shows the overall configuration of the power generation system using the potential difference according to the third embodiment of the present invention.
  • the same components as those of the power generation system shown in FIG. 8 are designated by the same reference numerals.
  • the power generation system shown in FIG. 10 has a pressure adjusting unit 52 (internal pressure adjustment) that adjusts the pressure in the flow path 34 (closed flow path of the supply / discharge means) with respect to the power generation system of the second embodiment shown in FIG. Means) are provided.
  • a pressure adjusting unit 52 internal pressure adjustment
  • a three-way valve 51 is provided in the flow path 34 on the upstream side of the relief valve 37, and a pressure regulating portion 52 (internal pressure adjusting means) for adjusting the pressure in the flow path 34 is connected to the three-way valve 51.
  • a pressure regulating portion 52 internal pressure adjusting means for adjusting the pressure in the flow path 34 is connected to the three-way valve 51.
  • the pressure adjusting unit 52 for example, a cylinder, a pump, or the like is used, and a device that pressurizes or depressurizes the inside of the flow path 34 (solvent B) is applied.
  • the inside of the flow path 34 (solvent B) is pressurized or depressurized by the pressure adjusting unit 52.
  • the boiling point of the solvent B can be adjusted, and as the heat source of the high temperature heat exchanger 22, a heat source having a temperature corresponding to the adjusted boiling point of the solvent B can be applied. Further, the boiling point of the solvent B can be controlled according to the temperature of the heat source of the high temperature heat exchanger 22. Therefore, it becomes possible to effectively use a wide range of heat sources.
  • FIG. 11 shows the overall configuration of the power generation system according to the fourth embodiment of the present invention.
  • the same components as those of the power generation system shown in FIG. 1 are designated by the same reference numerals.
  • the solvent of the electrolytic solution contained in the first tank 1 and the second tank 2 is the same as that of the power generation system shown in FIG. 1, and the active material is also the same as that of the power generation system shown in FIG. It is the same.
  • the separation of the solvent B and the remixing of the solvent B in the first electrolytic solution regenerating means, the second electrolytic solution regenerating means are composed of means using mechanical energy.
  • the electrolytic solution X discharged from the first tank 1 is pressurized and the separation means (permeation membrane) is permeated to separate the solvent B, and the electrolytic solution Y after the solvent B is separated is used.
  • the separation and supply means for supplying (depressurized) to the second tank 2 and the low-pressure side solvent B which has passed through the separation means with respect to the electrolytic solution Y discharged from the second tank 2 are remixed into the first tank 1. It has a mixed supply means for supplying.
  • the first tank 1 in which the electrolytic solution X in which the solvent A and the solvent B are mixed is housed is provided.
  • the second tank 2 in which the electrolytic solution Y made of the solvent A is housed is provided.
  • the first tank 1 is provided with a negative electrode (negative electrode) 3, and the second tank 2 is provided with a positive electrode (positive electrode) 4.
  • the negative electrode 3 and the positive electrode 4 are connected to the power circuit (external circuit) 5, and the first solvent (solvent A + solvent B) in the first tank 1 and the second solvent in the second tank 2 are connected to the power circuit 5.
  • the current flows due to the potential difference caused by the composition difference of the solvent (solvent A).
  • a separation means is provided for extracting the electrolytic solution X from the first tank 1 and separating the solvent B after the active material of the electrolytic solution X composed of the solvent A and the solvent B has completed the electrode reaction.
  • the separation means is a means using mechanical energy, and includes a compression means 61 that pressurizes the electrolytic solution X extracted from the first tank 1.
  • the compression means 61 is driven by renewable energy such as wind power, hydraulic power, wave power, and tidal power.
  • the compressed electrolytic solution X is sent to the room 62a on the high pressure side of the separation tank 62.
  • the separation tank 62 is provided with a room 62b on the low pressure side via a permeable membrane 63 that allows only the solvent B to permeate.
  • the compressed electrolytic solution X is sent to the room 62a on the high pressure side, only the solvent B permeates the permeable membrane 63, and the solvent B is sent to the room 62b on the low pressure side for separation (separation and supply means).
  • electrolytic solution electrolytic solution from which the solvent B is separated: electrolytic solution Y
  • electrolytic solution Y electrolytic solution from which the solvent B is separated
  • Means Second electrolyte regenerating means
  • 64 is a temperature detecting means for detecting the temperature of the electrolytic solution X on the inflow side of the compression means 61
  • 65 is a pressure detecting means for detecting the pressure of the electrolytic solution X on the inflow side of the compression means 61
  • 66 is.
  • 67 is a pressure detecting means for detecting the pressure of the electrolytic solution X on the outflow side of the compression means 61
  • 68 is a relief valve.
  • the electrolytic solution Y discharged from the second tank 2 is supplied to the room 62b on the low pressure side via the pump 69, and the solvent B that has permeated the permeable membrane 63 is remixed (mixing and supplying means).
  • the solvent B is remixed to obtain the electrolytic solution X, which is sent to the first tank 1 by the pump 42 (supply / discharge means: first electrolytic solution regenerating means).
  • 71 is a temperature detecting means for detecting the temperature of the electrolytic solution Y on the outflow side of the pump 69
  • 72 is a pressure detecting means for detecting the pressure of the electrolytic solution Y on the outflow side of the pump 69.
  • 75 is a storage tank for storing the electrolytic solution X after the reaction
  • 76 is a storage tank for storing the electrolytic solution Y after the reaction
  • 77 is a storage tank for storing the electrolytic solution X after regeneration.
  • Reference numeral 78 is a storage tank for storing the regenerated electrolytic solution Y.
  • the supply of the electrolytic solution after the reaction to be sent to the separation tank 62 is adjusted with respect to the output fluctuation of the compression means 61 driven by the renewable energy. be able to. Further, by storing the regenerated electrolytic solution in the storage tanks 77 and 78, the output can be adjusted according to the fluctuation of the electric power demand.
  • the solvent A and the electrolytic solution X after the reaction composed of the solvent B are extracted from the first tank 1, pressurized by the compression means 61 and sent to the separation tank 62, and the solvent B is separated in the separation tank 62.
  • the electrolytic solution X from which the solvent B has been separated is depressurized by the depressurizing means 70 and charged into the second tank 2.
  • the electrolytic solution Y after the reaction is extracted from the second tank 2, sent to the room 62b on the low pressure side of the separation tank 62, mixed with the solvent B to form the electrolytic solution X, and the electrolytic solution X is sent to the first tank 1. ..
  • the solvent B is separated from the electrolytic solution X after the electrode reaction by utilizing the mechanical energy, and the electrolytic solution from which the solvent B is separated is sent to the second tank 2 as the electrolytic solution Y, and the electrolytic solution Y after the electrode reaction is sent. On the other hand, by mixing the separated solvent B, the electrolytic solution is sent to the first tank 1 again as the electrolytic solution X.
  • the above-mentioned power generation system can eliminate carbon dioxide emissions and maintain power generation, and can achieve both a stable supply of electric power and a reduction in carbon dioxide emissions.
  • the present invention can be used in the industrial field of a power generation system and a power generation method capable of stably supplying electric power without emitting carbon dioxide.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

In the present invention, power is generated using a difference in potential formed by the difference in composition between solvents in electrolytes of a negative electrode 3 and a positive electrode 4. By managing the solvents in the electrolytes of the negative electrode 3 and the positive electrode 4, power generation is maintained while eliminating emission of carbon dioxide.

Description

異種溶媒による電位差を用いた発電システム、異種溶媒による電位差を用いた発電方法Power generation system using potential difference due to different solvents, power generation method using potential difference due to different solvents
 本発明は、電極間の溶媒組成差によって形成される電位差を用いることを特徴とする異種溶媒による電位差を用いた発電システム、異種溶媒による電位差を用いた発電方法に関する。 The present invention relates to a power generation system using a potential difference between different solvents and a power generation method using a potential difference from different solvents, which is characterized by using a potential difference formed by a difference in solvent composition between electrodes.
 二酸化炭素排出量の削減は地球規模で取り組むべき課題であり、発電の分野では、化石燃料依存からの脱却が求められるようになってきている。例えば、再生可能エネルギー発電設備や地熱などの熱エネルギーを用いた発電設備を併用する技術が提案されている(例えば、特許文献1参照)。 Reducing carbon dioxide emissions is an issue that should be addressed on a global scale, and in the field of power generation, it is becoming necessary to break away from fossil fuel dependence. For example, a technique has been proposed in which a renewable energy power generation facility or a power generation facility using thermal energy such as geothermal energy is used in combination (see, for example, Patent Document 1).
 再生可能エネルギー発電設備等を併用することで、二酸化炭素の排出量が削減される状況になってきている。発電の分野では、電力の安定供給と二酸化炭素排出量の削減とを両立させることが課題として取り上げられているのが実情であり、化石燃料に依存せずに安定して電力供給ができる技術の構築が望まれているのが現状である。 By using renewable energy power generation equipment together, carbon dioxide emissions are being reduced. In the field of power generation, the fact is that achieving both a stable supply of electric power and a reduction in carbon dioxide emissions has been taken up as an issue, and the technology that can stably supply electric power without depending on fossil fuels. The current situation is that construction is desired.
特開2020-167798号公報Japanese Unexamined Patent Publication No. 2020-167798
 本発明は上記状況に鑑みてなされたもので、電力の安定供給と二酸化炭素排出量の削減とを両立させることができる、電極間の溶媒組成差を利用した発電システム、発電方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a power generation system and a power generation method using a difference in solvent composition between electrodes, which can achieve both a stable supply of electric power and a reduction in carbon dioxide emissions. With the goal.
 上記目的を達成するための請求項1に係る本発明の異種溶媒による電位差を用いた発電システムは、第1の溶媒の電解液が収容され、一方の電極を有し活物質が電極反応する第1槽と、前記第1槽に収容された電解液と異なる、第2の溶媒の電解液が収容され、他方の電極を有し、活物質が電極反応する第2槽とを備えたことを特徴とする。 In the power generation system using the potential difference between different solvents of the present invention according to claim 1 for achieving the above object, the electrolytic solution of the first solvent is accommodated, and the active material has one electrode and the active material reacts with the electrode. It is provided with one tank and a second tank in which an electrolytic solution of a second solvent different from the electrolytic solution contained in the first tank is contained, the other electrode is provided, and the active material reacts with the electrode. It is a feature.
 請求項1に係る本発明では、電極反応する活物質に応じて、第1槽の電解液である第1の溶媒と、第2槽の電解液である第2の溶媒をそれぞれ選定することで、第1の溶媒、第2の溶媒が同一の組成である場合と比較して、電極間に形成される電位差を大きくすることが可能となる。また、第1槽、第2槽の間は、第1槽の電解液と第2槽の電解液の混合の抑制、イオン伝導性の確保の両立を目的とし、固体電解質、ゲル状の電解質、多孔体等で仕切ることができる。 In the present invention according to claim 1, the first solvent, which is the electrolytic solution in the first tank, and the second solvent, which is the electrolytic solution in the second tank, are selected according to the active material that reacts with the electrodes. , It is possible to increase the potential difference formed between the electrodes as compared with the case where the first solvent and the second solvent have the same composition. Further, between the first tank and the second tank, a solid electrolyte and a gel-like electrolyte are used for the purpose of suppressing the mixing of the electrolytic solution of the first tank and the electrolytic solution of the second tank and ensuring ionic conductivity. It can be partitioned by a porous body or the like.
 第1の溶媒、第2の溶媒は、それぞれが単一の物質からなる溶媒であっても良く、それぞれが複数の物質で構成される混合溶媒であっても良い。また、前記第1槽、第2槽での電極反応は、異なる酸化還元対による反応であっても、同一の酸化還元対による逆反応であっても良い。 The first solvent and the second solvent may each be a solvent composed of a single substance, or may be a mixed solvent each composed of a plurality of substances. Further, the electrode reaction in the first tank and the second tank may be a reaction with different redox pairs or a reverse reaction with the same redox pair.
 そして、請求項2に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項1に記載の異種溶媒による電位差を用いた発電システムにおいて、前記第1槽での活物質による電極反応、前記第2槽での活物質による電極反応が、同一の酸化還元対による逆反応であることを特徴とする。 The power generation system using the potential difference due to the different solvent of the present invention according to claim 2 is the electrode reaction by the active material in the first tank in the power generation system using the potential difference due to the different solvent according to claim 1. The electrode reaction by the active material in the second tank is characterized by being a reverse reaction by the same redox pair.
 請求項2に係る本発明では、第1槽での電極反応、第2槽での電極反応が同一の酸化還元対による逆反応である。例えば、ヘキサシアノ鉄(II)酸イオン([Fe(CN)]4-)、ヘキサシアノ鉄(III)酸イオン([Fe(CN)]3-)を活物質として用いることができる。 In the present invention according to claim 2, the electrode reaction in the first tank and the electrode reaction in the second tank are reverse reactions due to the same redox pair. For example, hexacyanoferrate (II) acid ion ([Fe (CN) 6 ] 4- ) and hexacyanoferrate (III) acid ion ([Fe (CN) 6 ] 3- ) can be used as active materials.
 また、請求項3に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項1または請求項2に記載の異種溶媒による電位差を用いた発電システムにおいて、前記第1の溶媒と前記第2の溶媒が、同じ物質を少なくとも1種類含むことを特徴とする。 Further, the power generation system using the potential difference between different solvents of the present invention according to claim 3 is the power generation system using the potential difference between different solvents according to claim 1 or 2, wherein the first solvent and the first solvent are used. The solvent of 2 is characterized by containing at least one of the same substances.
 請求項3に係る本発明では、第1の溶媒として溶媒Aと溶媒Bの混合溶媒、第2の溶媒として溶媒Aを用いる場合が考えられる。また、第1の溶媒及び第2の溶媒がいずれも溶媒Aと溶媒Bの混合溶媒であり、溶媒Aと溶媒Bの混合割合が第1の溶媒と第2の溶媒とで異なる場合が考えられる。例えば、溶媒Aとして水を用いることができ、溶媒Bとしてアセトンを用いることができる。 In the present invention according to claim 3, it is conceivable that a mixed solvent of solvent A and solvent B is used as the first solvent, and solvent A is used as the second solvent. Further, it is conceivable that the first solvent and the second solvent are both mixed solvents of the solvent A and the solvent B, and the mixing ratio of the solvent A and the solvent B is different between the first solvent and the second solvent. .. For example, water can be used as the solvent A, and acetone can be used as the solvent B.
 また、請求項4に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項1から請求項3のいずれか一項に記載の異種溶媒による電位差を用いた発電システムにおいて、前記第1の溶媒、前記第2の溶媒の物質は、水、エタノール、メタノール、アセトニトリル、ジメチルスルホキシド、アセトン、ピリジン、ジメチルアセトアミド、ジメチルホルムアミド、ヘキサメチルホスホルアミド、炭酸プロピレン、テトラヒドロフラン、N-メチル-2-ピロリドンの少なくとも一つを含むことを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 4 is the power generation system using the potential difference due to the different solvent according to any one of claims 1 to 3, wherein the first power generation system is used. The solvent of the second solvent is water, ethanol, methanol, acetonitrile, dimethyl sulfoxide, acetone, pyridine, dimethylacetamide, dimethylformamide, hexamethylphosphoramide, propylene carbonate, tetrahydrofuran, N-methyl-2- It is characterized by containing at least one of pyrrolidone.
 請求項4に係る本発明では、電気化学デバイスにおいて、電極反応する活物質の種類に応じて、第1の溶媒、第2の溶媒を特定して適宜選択することができる。 In the present invention according to claim 4, in the electrochemical device, the first solvent and the second solvent can be specified and appropriately selected according to the type of the active material that reacts with the electrodes.
 また、請求項5に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項1から請求項3のいずれか一項に記載の異種溶媒による電位差を用いた発電システムにおいて、前記第1の溶媒、前記第2の溶媒の少なくともいずれかに、1atmで融点が200℃以下の塩が用いられることを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 5 is the power generation system using the potential difference due to the different solvent according to any one of claims 1 to 3. A salt having a melting point of 200 ° C. or lower at 1 atm is used as at least one of the above-mentioned solvent and the second solvent.
 請求項5に係る本発明では、電極反応する活物質の種類に応じて、第1の溶媒、第2の溶媒を構成する物質として、適宜、1atmで融点が200℃以下の塩を用いることができる。 In the present invention according to claim 5, a salt having a melting point of 200 ° C. or lower at 1 atm may be appropriately used as the substance constituting the first solvent and the second solvent according to the type of the active material that reacts with the electrode. can.
 また、請求項6に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項1から請求項5のいずれか一項に記載の異種溶媒による電位差を用いた発電システムにおいて、前記第1槽、前記第2槽の内部に、外部から電解液を供給し、(一部もしくは全部の)活物質が電極反応した後の電解液を前記第1槽、前記第2槽の外部に排出する、供給排出手段を備えたことを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 6 is the power generation system using the potential difference due to the different solvent according to any one of claims 1 to 5. An electrolytic solution is supplied from the outside to the inside of the tank and the second tank, and the electrolytic solution after the (part or all) active material reacts with the electrodes is discharged to the outside of the first tank and the second tank. , It is characterized by being equipped with supply / discharge means.
 請求項6に係る本発明では、外部から未使用の電解液が連続的に供給されることで、第1槽と第2槽の溶媒の組成差が保持されることで、発電システムの電位差が保持され、連続的に発電を行うことができる。 In the present invention according to claim 6, the unused electrolytic solution is continuously supplied from the outside to maintain the composition difference between the solvents in the first tank and the second tank, so that the potential difference in the power generation system is increased. It is retained and can generate electricity continuously.
 また、請求項7に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項6に記載の異種溶媒による電位差を用いた発電システムにおいて、前記第1の溶媒、前記第2の溶媒は、溶媒A及び溶媒Bの混合物であり、前記第1の溶媒は、前記第2の溶媒より多量の溶媒Bを含み、前記供給排出手段は、前記溶媒A及び前記溶媒Bからなる前記第1の溶媒の電解液を外部から前記第1槽に供給し、活物質が電極反応した後の電解液を前記第1槽から排出し、排出された電解液から一部もしくは全部の前記溶媒Bを分離回収し、一部もしくは全部の前記溶媒Bが分離された後の電解液を前記第2槽に供給し、活物質が前記第1槽での前記電極反応と逆の電極反応をした後の電解液を外部に排出し、排出された電解液に対し分離回収した前記溶媒Bを再混合し、前記溶媒Bが再混合された後の電解液を前記第1槽に供給することを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 7 is the power generation system using the potential difference due to the different solvent according to claim 6, wherein the first solvent and the second solvent are used. , The first solvent is a mixture of the solvent A and the solvent B, the first solvent contains a larger amount of the solvent B than the second solvent, and the supply / discharge means is the first solvent A and the solvent B. The electrolytic solution of the solvent is supplied from the outside to the first tank, the electrolytic solution after the active material reacts with the electrode is discharged from the first tank, and a part or all of the solvent B is separated from the discharged electrolytic solution. The electrolytic solution after recovery and separation of a part or all of the solvent B is supplied to the second tank, and the active material undergoes an electrode reaction opposite to the electrode reaction in the first tank. The liquid is discharged to the outside, the solvent B separated and recovered from the discharged electrolytic liquid is remixed, and the electrolytic solution after the solvent B is remixed is supplied to the first tank. ..
 請求項7に係る本発明では、供給排出手段として、一方の電極での反応で使用した電解液を他方の電極での反応で再使用できるようにする電解液再生手段を備えている。具体的には、第1槽での電極反応に使用した後の電解液が、溶媒Bの一部もしくは全部を分離した後に第2槽での電極反応に使用される。また、第2槽での電極反応に使用された後の電解液が、溶媒Bを再混合した後に第1槽での電極反応に再び使用される。溶媒Bの分離は、例えば、電解液を溶媒Bの沸点以上に昇温するために必要な熱エネルギー、溶媒Bの気化に必要な熱エネルギーを外部から投入することで行うことができる。また、電解液を加圧すると共に圧力差により溶媒Bを分離する機械的エネルギーを外部から投入することで行うことができる。 In the present invention according to claim 7, as the supply / discharge means, an electrolytic solution regenerating means that enables the electrolytic solution used in the reaction at one electrode to be reused in the reaction at the other electrode is provided. Specifically, the electrolytic solution after being used for the electrode reaction in the first tank is used for the electrode reaction in the second tank after separating a part or all of the solvent B. Further, the electrolytic solution after being used for the electrode reaction in the second tank is used again for the electrode reaction in the first tank after the solvent B is remixed. The separation of the solvent B can be performed, for example, by inputting the thermal energy required for raising the temperature of the electrolytic solution to the boiling point or higher of the solvent B and the thermal energy required for the vaporization of the solvent B from the outside. Further, it can be performed by applying mechanical energy for pressurizing the electrolytic solution and separating the solvent B by a pressure difference from the outside.
 即ち、請求項7に係る異種溶媒による電位差を用いた発電システムでは、第2槽での電極反応は第1槽での電極反応の逆反応であるため、全体として化学物質の消費がなく、閉じた流路の中を電解液が循環しながら、連続的に発電が行われる。また、溶媒Bの分離や再混合を終えた状態で電解液を保管しておくことで、エネルギーの貯蔵を行うこともできるため、発電量を要求に応じて制御することができる。 That is, in the power generation system using the potential difference between different solvents according to claim 7, since the electrode reaction in the second tank is the reverse reaction of the electrode reaction in the first tank, no chemical substance is consumed as a whole and the power generation system is closed. Power is continuously generated while the electrolytic solution circulates in the flow path. Further, by storing the electrolytic solution in a state where the solvent B has been separated and remixed, energy can be stored, so that the amount of power generation can be controlled as required.
 本発電システムは、溶媒Bの分離に必要な熱エネルギーや機械的エネルギーを投入することで可能となる。したがって、熱エネルギーの投入においては廃熱、地熱、温泉熱、太陽熱などの熱源を利用し、機械的エネルギーの投入においては、風力・水力・波力・潮力などの再生可能エネルギーを利用することで、二酸化炭素を排出することなく電力の安定供給が可能となる。 This power generation system is made possible by inputting the thermal energy and mechanical energy required for the separation of the solvent B. Therefore, when inputting thermal energy, use heat sources such as waste heat, geothermal heat, hot spring heat, and solar heat, and when inputting mechanical energy, use renewable energy such as wind power, hydraulic power, wave power, and tidal power. Therefore, a stable supply of energy is possible without emitting carbon dioxide.
 また、請求項8に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項7に記載の異種溶媒による電位差を用いた発電システムにおいて、前記第1槽から排出された電解液から前記溶媒Bを分離回収し、前記溶媒Bが分離された後の電解液を前記第2槽に供給する手段として、第2の電解液再生手段を有し、前記第2槽から排出された電解液に対し、前記第1槽から排出された電解液から分離回収した前記溶媒Bを再混合し、前記溶媒Bが再混合された後の電解液を前記第1槽に供給する手段として、第1の電解液再生手段を有することを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 8 is the power generation system using the potential difference due to the different solvent according to claim 7, wherein the electrolytic solution discharged from the first tank is said to be the same. As a means for separating and recovering the solvent B and supplying the electrolytic solution after the solvent B is separated to the second tank, a second electrolytic solution regenerating means is provided, and the electrolytic solution discharged from the second tank is provided. On the other hand, as a means for remixing the solvent B separated and recovered from the electrolytic solution discharged from the first tank and supplying the electrolytic solution after the solvent B is remixed to the first tank, the first method is used. It is characterized by having the electrolyte regenerating means of the above.
 請求項8に係る本発明では、第2の電解液再生手段により、第1槽から排出された電解液から溶媒Bが分離回収され、溶媒Bが分離された後の電解液が第2槽に供給される。そして、第1の電解液再生手段により、第2槽から排出された電解液に対し、第1槽から排出された電解液から分離回収した溶媒Bが再混合され、溶媒Bが再混合された後の電解液が第1槽に供給される。 In the present invention according to claim 8, the solvent B is separated and recovered from the electrolytic solution discharged from the first tank by the second electrolytic solution regenerating means, and the electrolytic solution after the solvent B is separated is placed in the second tank. Be supplied. Then, the solvent B separated and recovered from the electrolytic solution discharged from the first tank was remixed with the electrolytic solution discharged from the second tank by the first electrolytic solution regenerating means, and the solvent B was remixed. The later electrolytic solution is supplied to the first tank.
 また、請求項9に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項8に記載の異種溶媒による電位差を用いた発電システムにおいて、前記第1の電解液再生手段、前記第2の電解液再生手段における前記溶媒Bの分離、前記溶媒Bの再混合は、熱エネルギーを用いた手段で構成されることを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 9 is the power generation system using the potential difference due to the different solvent according to claim 8, wherein the first electrolytic solution regenerating means, the second. The separation of the solvent B and the remixing of the solvent B in the electrolytic solution regenerating means are characterized by being composed of means using thermal energy.
 請求項9に係る本発明では、熱エネルギーを用いて、溶媒Bの分離、溶媒Bの再混合を行うことができる。 In the present invention according to claim 9, the solvent B can be separated and the solvent B can be remixed by using thermal energy.
 また、請求項10に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項9に記載の異種溶媒による電位差を用いた発電システムにおいて、前記熱エネルギーを用いた手段は、前記第1槽から排出された電解液を加熱して前記溶媒Bを蒸発させると共に、前記溶媒Bが分離された後の電解液を前記第2槽に供給する蒸発手段と、前記蒸発手段で蒸発させた前記溶媒Bを凝縮し、前記第2槽から排出された電解液に対し前記溶媒Bを再混合して前記第1槽に供給する凝縮手段とを有することを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 10 is the power generation system using the potential difference due to the different solvent according to claim 9, and the means using the thermal energy is the first. The electrolytic solution discharged from the tank is heated to evaporate the solvent B, and the evaporating means for supplying the electrolytic solution after the solvent B is separated to the second tank and the evaporating means evaporating by the evaporating means. It is characterized by having a condensing means for condensing the solvent B, remixing the solvent B with the electrolytic solution discharged from the second tank, and supplying the solvent B to the first tank.
 請求項10に係る本発明では、蒸発手段により、第1槽から排出された電解液が加熱されて溶媒Bが蒸発して分離され、溶媒Bが分離された後の電解液が第2槽に供給される。凝縮手段により、蒸発させた溶媒Bが凝縮され、第2槽から排出された電解液に対し、凝縮された溶媒Bが再混合され第1槽に供給される。 In the present invention according to claim 10, the electrolytic solution discharged from the first tank is heated by the evaporation means to evaporate and separate the solvent B, and the electrolytic solution after the solvent B is separated is transferred to the second tank. Be supplied. The evaporated solvent B is condensed by the condensing means, and the condensed solvent B is remixed with the electrolytic solution discharged from the second tank and supplied to the first tank.
 また、請求項11に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項9もしくは請求項10に記載の異種溶媒による電位差を用いた発電システムにおいて、前記供給排出手段における電解液の流路の内部の圧力を調整する内圧調整手段を備えたことを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 11 is the power generation system using the potential difference due to the different solvent according to claim 9 or 10, wherein the electrolytic solution in the supply / discharge means is used. It is characterized by being provided with an internal pressure adjusting means for adjusting the pressure inside the flow path.
 請求項11に係る本発明では、内圧調整手段により電解液を加圧、もしくは、減圧して溶媒の沸点を調節することができ、供給排出手段としての電解液再生手段に広い温度範囲の熱源を利用することができる。 In the present invention according to claim 11, the boiling point of the solvent can be adjusted by pressurizing or depressurizing the electrolytic solution by the internal pressure adjusting means, and the electrolytic solution regenerating means as the supply / discharge means can be provided with a heat source in a wide temperature range. It can be used.
 また、請求項12に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項8に記載の異種溶媒による電位差を用いた発電システムにおいて、前記第1の電解液再生手段、前記第2の電解液再生手段における前記溶媒Bの分離、前記溶媒Bの再混合は、機械的エネルギーを用いた手段で構成されることを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 12 is the power generation system using the potential difference due to the different solvent according to claim 8, wherein the first electrolyte regenerating means and the second one. The separation of the solvent B and the remixing of the solvent B in the electrolytic solution regenerating means of the above are characterized in that they are composed of means using mechanical energy.
 請求項12に係る本発明では、機械的エネルギーを用いて、溶媒Bの分離、溶媒Bの再混合を行うことができる。 In the present invention according to claim 12, the solvent B can be separated and the solvent B can be remixed by using mechanical energy.
 また、請求項13に係る本発明の異種溶媒による電位差を用いた発電システムは、請求項12に記載の異種溶媒による電位差を用いた発電システムにおいて、前記機械的エネルギーを用いた手段は、前記第1槽から排出された電解液を加圧すると共に分離手段を透過させて前記溶媒Bを分離し、前記溶媒Bが分離された後の電解液を前記第2槽に供給する分離供給手段と、前記第2槽から排出された電解液に対し前記分離手段を透過した前記溶媒Bを再混合して前記第1槽に供給する混合供給手段とを有することを特徴とする。 Further, the power generation system using the potential difference due to the different solvent of the present invention according to claim 13 is the power generation system using the potential difference due to the different solvent according to claim 12, and the means using the mechanical energy is the above-mentioned first. The separation and supply means for separating the solvent B by pressurizing the electrolytic solution discharged from the first tank and allowing the separation means to permeate, and supplying the electrolytic solution after the solvent B is separated to the second tank, and the above. It is characterized by having a mixing and supplying means for remixing the solvent B that has permeated the separating means with the electrolytic solution discharged from the second tank and supplying the solvent B to the first tank.
 請求項13に係る本発明では、分離供給手段により、第1槽から排出された電解液が加圧されると共に分離手段に透過されて溶媒Bが分離され、溶媒Bが分離された後の電解液が(減圧されて)第2槽に供給される。そして、混合供給手段により、第2槽から排出された電解液に対し分離手段に透過された溶媒Bが再混合されて第1槽に供給される。 In the present invention according to claim 13, the electrolytic solution discharged from the first tank is pressurized by the separation and supply means and permeated through the separation means to separate the solvent B, and the electrolysis after the solvent B is separated. The liquid is supplied (decompressed) to the second tank. Then, the solvent B permeated through the separation means is remixed with the electrolytic solution discharged from the second tank by the mixing supply means and supplied to the first tank.
 上記目的を達成するための請求項14に係る本発明の異種溶媒による電位差を用いた発電方法は、正極・負極間の電解液の溶媒の組成差により形成される電位差を用いて発電を行うことを特徴とする。 In the power generation method using the potential difference between different solvents of the present invention according to claim 14 for achieving the above object, power generation is performed using the potential difference formed by the composition difference of the solvent of the electrolytic solution between the positive electrode and the negative electrode. It is characterized by.
 請求項14に係る本発明では、正極・負極間の電解液の溶媒の組成差により形成される電位差により発電を行うので、電力の安定供給と二酸化炭素排出量の削減とを両立させることが可能になる。 In the present invention according to claim 14, since power generation is performed by the potential difference formed by the composition difference of the solvent of the electrolytic solution between the positive electrode and the negative electrode, it is possible to achieve both a stable supply of electric power and a reduction in carbon dioxide emissions. become.
 本発明の電位差を用いた発電システム、及び、異種溶媒による電位差を用いた発電方法は、電力の安定供給と二酸化炭素排出量の削減とを両立させることが可能になる。 The power generation system using the potential difference of the present invention and the power generation method using the potential difference using different solvents can achieve both a stable supply of electric power and a reduction in carbon dioxide emissions.
本発明の発電システムの概念図である。It is a conceptual diagram of the power generation system of this invention. 第1槽の電解液の溶媒和構造の概念図である。It is a conceptual diagram of the solvation structure of the electrolytic solution of 1st tank. 第2槽の電解液の溶媒和構造の概念図である。It is a conceptual diagram of the solvation structure of the electrolytic solution of the 2nd tank. 溶媒及び活物質の分子構造の概念図である。It is a conceptual diagram of the molecular structure of a solvent and an active material. 溶媒及び活物質を表した本発明の発電システムの概念図である。It is a conceptual diagram of the power generation system of this invention showing a solvent and an active material. 起電力と溶媒Bの関係を表すグラフである。It is a graph which shows the relationship between an electromotive force and a solvent B. 本発明の第1実施例に係る発電システムの全体構成図である。It is an overall block diagram of the power generation system which concerns on 1st Embodiment of this invention. 本発明の第2実施例に係る発電システムの全体構成図である。It is an overall block diagram of the power generation system which concerns on 2nd Embodiment of this invention. 電圧の経時変化を表すグラフである。It is a graph which shows the time-dependent change of voltage. 本発明の第3実施例に係る発電システムの全体構成図である。It is an overall block diagram of the power generation system which concerns on 3rd Embodiment of this invention. 本発明の第4実施例に係る発電システムの全体構成図である。It is an overall block diagram of the power generation system which concerns on 4th Embodiment of this invention.
 図1から図6に基づいて本発明の電位差を用いた発電システムの実施の態様例を説明する。 An example of an embodiment of a power generation system using the potential difference of the present invention will be described with reference to FIGS. 1 to 6.
 図1には本発明の発電システムを概念的に表した全体の構成、図2には第1槽の電解液の溶媒和構造の状態を説明する概念、図3には第2槽の電解液の溶媒和構造の状態を説明する概念、図4(a)には活物質であるヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-またはヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-の分子構造の概念、図4(b)には溶媒A(第1の溶媒、第2の溶媒)の一例である水(HO)の分子構造の概念、図4(c)には溶媒B(第1の溶媒)の一例であるアセトン[(CHCO]の分子構造の概念を示してある。また、図5には溶媒及び活物質を表した本発明の発電システムを概念的に表した全体の構成、図6には起電力と溶媒Bの関係を表すグラフを示してある。 FIG. 1 is an overall configuration conceptually representing the power generation system of the present invention, FIG. 2 is a concept for explaining the state of the solvent-containing structure of the electrolytic solution in the first tank, and FIG. 3 is the electrolytic solution in the second tank. In FIG. 4 (a), the active material hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- or hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- The concept of molecular structure, FIG. 4 (b) shows the concept of the molecular structure of water (H 2 O), which is an example of solvent A (first solvent, second solvent), FIG. 4 ( In c), the concept of the molecular structure of acetone [(CH 3 ) 2 CO], which is an example of the solvent B (first solvent), is shown. Further, FIG. 5 shows an overall configuration conceptually showing the power generation system of the present invention showing the solvent and the active material, and FIG. 6 shows a graph showing the relationship between the electromotive force and the solvent B.
 図1に示すように、第1の活物質(活物質)であるヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-と溶媒A(水(HO))及び溶媒B(アセトン[(CHCO])を混合した第1の溶媒が収容される第1槽1を備えている。また、第2の活物質(活物質)であるヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-と溶媒A(水(HO))からなる第2の溶媒が収容される第2槽2を備えている。第1槽1と第2槽2は、例えば、固体電解質、ゲル状の電解質、多孔体等の仕切り部材で仕切られている。 As shown in FIG. 1, the first active material (active material), hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- , solvent A (water (H 2 O)) and solvent B (acetone). It is provided with a first tank 1 containing a first solvent mixed with [(CH 3 ) 2 CO]). Further, a second solvent composed of hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- , which is a second active material (active material), and solvent A (water (H 2 O)) is contained. The second tank 2 is provided. The first tank 1 and the second tank 2 are partitioned by, for example, a partition member such as a solid electrolyte, a gel-like electrolyte, or a porous body.
 尚、第2の溶媒は溶媒Aと溶媒Bとからなるが、溶媒Bはわずかであるため、以下、第2の溶媒は溶媒Aからなると記載する。つまり、第1の溶媒は、第2の溶媒より多量の溶媒Bを含み、溶媒Aと溶媒Bを混合したものとなっている。 The second solvent is composed of solvent A and solvent B, but since the amount of solvent B is small, it is described below that the second solvent is composed of solvent A. That is, the first solvent contains a larger amount of solvent B than the second solvent, and is a mixture of solvent A and solvent B.
 第1槽1には一方の電極として負極の電極(負電極)3が設けられ、第2槽2には他方の電極として正極の電極(正電極)4が設けられている。負電極3と正電極4は電力回路(外部回路)5に接続され、電力回路5には、第1槽1の第1の溶媒(溶媒A+溶媒B)、及び、第2槽2の第2の溶媒(溶媒A)の組成差により形成された電位差によって電流が流れる。 The first tank 1 is provided with a negative electrode (negative electrode) 3 as one electrode, and the second tank 2 is provided with a positive electrode (positive electrode) 4 as the other electrode. The negative electrode 3 and the positive electrode 4 are connected to a power circuit (external circuit) 5, and the first solvent (solvent A + solvent B) of the first tank 1 and the second tank 2 of the second tank 2 are connected to the power circuit 5. A current flows due to the potential difference formed by the composition difference of the solvent (solvent A) of 2.
 尚、活物質である第1の活物質、第2の活物質は、同一の酸化還元対でも異なる酸化還元対でも適用することができる。また、第1槽1の電極と第2槽2の電極とでは、どちらが正電極(負電極)になるかは、活物質の種類、溶媒A、溶媒Bの種類などにより異なる。 The first active material and the second active material, which are active substances, can be applied to the same redox pair or different redox pairs. Further, which of the electrode in the first tank 1 and the electrode in the second tank 2 becomes the positive electrode (negative electrode) differs depending on the type of the active material, the type of the solvent A, the type of the solvent B, and the like.
 ヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-またはヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-を有する、溶媒A(水(HO))からなる第2の電解液(電解液Y)の状況、即ち、溶媒A(水(HO))からなる第2の溶媒に溶解したヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-またはヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-の溶媒和構造は、図3に示すようになっている。尚、図3に示した溶媒和構造はイメージであり、溶媒分子(水)の相互の位置関係、数、向きは任意の状態となる。 A second composed of solvent A (water (H 2 O)) having hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- or hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- . Hexacyanoferrate ( II ) acid ion [Fe (CN) 6 ] 4- or hexacyano The solvate structure of the iron (III) acid ion [Fe (CN) 6 ] 3- is as shown in FIG. The solvation structure shown in FIG. 3 is an image, and the positional relationship, number, and orientation of the solvent molecules (water) are arbitrary.
 尚、ヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-またはヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-の分子構造は図4(a)に示した通りであり、水(HO)の分子構造は図4(b)に示した通りであり、アセトン[(CHCO]の分子構造は図4(c)に示した通りである。 The molecular structure of hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- or hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- is as shown in FIG. 4 (a). , The molecular structure of water (H 2 O) is as shown in FIG. 4 (b), and the molecular structure of acetone [(CH 3 ) 2 CO] is as shown in FIG. 4 (c).
 つまり、負の電荷を有するヘキサシアノ鉄酸イオン([Fe(CN)]4-、[Fe(CN)]3-は、電子受容性が強い水(HO)の分子と強く作用し、安定した溶媒和構造を形成する。 That is, the negatively charged hexacyanoferrate ions ([Fe (CN) 6 ] 4- , [Fe (CN) 6 ] 3- strongly act on water ( H2O ) molecules with strong electron acceptability. , Form a stable solvate structure.
 ヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-またはヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-を有する、溶媒A(水(HO))及び溶媒B(アセトン[(CHCO])を混合した第1の電解液(電解液X)の状況、即ち、溶媒A(水(HO))及び溶媒B(アセトン[(CHCO])を混合した第1の溶媒に溶解したヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-またはヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-の溶媒和構造は、図2に示すようになっている。尚、図2に示した溶媒和構造はイメージであり、溶媒分子(水、アセトン)の相互の位置関係、数、向きは任意の状態となる。 Solvent A (water (H 2 O)) and solvent B (with hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- or hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- The situation of the first electrolytic solution (electrolytic solution X) mixed with acetone [(CH 3 ) 2 CO]), that is, solvent A (water (H 2 O)) and solvent B (acetone [(CH 3 ) 2 CO]). ]) Dissolved in the first solvent mixed with hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- or hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- , As shown in FIG. The solvation structure shown in FIG. 2 is an image, and the positional relationship, number, and orientation of the solvent molecules (water, acetone) are arbitrary.
 つまり、異なる溶媒の混合により、水(HO)の分子による安定な溶媒和構造が変化する。例えば、水(HO)よりも電子受容性が弱いアセトン[(CHCO]を混合した場合、電荷量が大きいヘキサシアノ鉄(II)酸イオン([Fe(CN)]4-が相対的に大きな影響を受けて不安定化する。 That is, mixing of different solvents changes the stable solvation structure of water ( H2O ) molecules. For example, when acetone [(CH 3 ) 2 CO], which has weaker electron acceptability than water (H 2 O), is mixed, hexacyanoferrate (II) acid ion ([Fe (CN) 6 ] 4- Is relatively greatly affected and becomes unstable.
 図1、図5に示すように、第1槽1でヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-が酸化反応し、ヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-となる。第2槽2でヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-が還元反応し、ヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-となる。マイナスの電子(e-)が負電極3から正電極4に移動することで、電力回路5に電流が流れる。 As shown in FIGS. 1 and 5, hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- is oxidized in the first tank 1 and hexacyanoferrate (III) acid ion [Fe (CN) 6 ]. It becomes 3- . In the second tank 2, hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- undergoes a reduction reaction to become hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- . Negative electrons (e ) move from the negative electrode 3 to the positive electrode 4, so that a current flows through the power circuit 5.
 つまり、負電極3と正電極4の間で形成される電位差を用いて発電が行われる。組成が異なる第1の溶媒(溶媒Aと溶媒Bの混合物)、及び、第2の溶媒(溶媒A)を用いているので、溶媒の組成差により大きな電位差を形成させて、電力回路5で電力を生じさせることができる。 That is, power generation is performed using the potential difference formed between the negative electrode 3 and the positive electrode 4. Since the first solvent (mixture of solvent A and solvent B) and the second solvent (solvent A) having different compositions are used, a large potential difference is formed by the composition difference of the solvent, and the electric power is generated in the power circuit 5. Can be caused.
 図6に示すように、溶媒A(水(HO))及び溶媒B(アセトン[(CHCO])を混合した電解液Xにおいて、溶媒B(アセトン[(CHCO])の物質量を多くすることで、起電力が高くなることが確認されている。したがって、溶媒B(アセトン[(CHCO])の量を適宜選定することで、任意の(所望の)起電力を生じさせることができる。 As shown in FIG. 6, in the electrolytic solution X in which the solvent A (water (H 2 O)) and the solvent B (acetone [(CH 3 ) 2 CO]) are mixed, the solvent B (acetone [(CH 3 ) 2 CO]) is mixed. ]) It has been confirmed that the electrolysis power increases by increasing the amount of the substance. Therefore, an arbitrary (desired) electromotive force can be generated by appropriately selecting the amount of the solvent B (acetone [(CH 3 ) 2 CO]).
 このため、活物質(ヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-、ヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-)を有する第1の溶媒、第2の溶媒を管理することで、二酸化炭素の排出を無くして発電を維持することができる。上述した発電システムにより、電力の安定供給と二酸化炭素排出量の削減とを両立させることが可能になる。 Therefore, the first solvent having the active material (hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- , hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- ), the second solvent. By controlling the solvent, it is possible to eliminate the emission of carbon dioxide and maintain power generation. The power generation system described above makes it possible to achieve both a stable supply of electric power and a reduction in carbon dioxide emissions.
 尚、第1の溶媒、第2の溶媒としては、水、エタノール、メタノール、アセトニトリル、ジメチルスルホキシド、アセトン、ピリジン、ジメチルアセトアミド、ジメチルホルムアミド、ヘキサメチルホスホルアミド、炭酸プロピレン、テトラヒドロフラン、N-メチル-2-ピロリドンの少なくとも一つを含むように選択することができる。 The first solvent and the second solvent include water, ethanol, methanol, acetonitrile, dimethyl sulfoxide, acetone, pyridine, dimethylacetamide, dimethylformamide, hexamethylphosphoramide, propylene carbonate, tetrahydrofuran, and N-methyl-. It can be selected to contain at least one of 2-pyrrolidone.
 また、第1の溶媒、第2の溶媒を構成する物質として、適宜、1atmで融点が200℃以下の塩を用いることができる。 Further, as the substance constituting the first solvent and the second solvent, a salt having a melting point of 200 ° C. or less at 1 atm can be appropriately used.
 図7に基づいて本発明の第1実施例を説明する。図7には本発明の第1実施例に係る発電システムの全体構成を示してある。尚、図1に示した発電システムと同一の構成部材には同一の符号を付してある。 The first embodiment of the present invention will be described with reference to FIG. 7. FIG. 7 shows the overall configuration of the power generation system according to the first embodiment of the present invention. The same components as those of the power generation system shown in FIG. 1 are designated by the same reference numerals.
 図7に示した発電システムは、第1槽1に溶媒と反応前の活物質からなる電解液Xが収容され、第2槽2に溶媒と反応前の活物質からなる電解液Yが収容されている。 In the power generation system shown in FIG. 7, the first tank 1 contains the electrolytic solution X made of the solvent and the active material before the reaction, and the second tank 2 contains the electrolytic solution Y made of the solvent and the active material before the reaction. ing.
 第1槽1には、第1タンク11からポンプ12を介して反応前の活物質を有する電解液Xが供給され、反応後の電解液Xは第1回収タンク13に収容される。一方、第2槽2には、第2タンク15からポンプ16を介して反応前の活物質を有する電解液Yが供給され、反応後の電解液Yは第2回収タンク17に収容される。図中の符号で19は、第1タンク11、第2タンク15の内部の電解液の温度を検出する温度検出手段である。 The electrolytic solution X having the active material before the reaction is supplied from the first tank 11 to the first tank 1 via the pump 12, and the electrolytic solution X after the reaction is housed in the first recovery tank 13. On the other hand, the electrolytic solution Y having the active material before the reaction is supplied from the second tank 15 to the second tank 2 via the pump 16, and the electrolytic solution Y after the reaction is housed in the second recovery tank 17. Reference numeral 19 in the figure is a temperature detecting means for detecting the temperature of the electrolytic solution inside the first tank 11 and the second tank 15.
 上述した実施例の発電システムでは、負電極3、正電極4で電極反応する活物質と第1の溶媒(電解液X)、活物質と第2の溶媒(電解液Y)は、起電力が大きくなるように(所望の電位差が得られるように)適宜選定される。必ずしも、負電極3、正電極4の電極反応が同一の酸化還元対による逆反応でなくてもよい。 In the power generation system of the above-described embodiment, the active material that reacts with the negative electrode 3 and the positive electrode 4 and the first solvent (electrolyte solution X), and the active material and the second solvent (electrolyte solution Y) have electromotive forces. It is appropriately selected so as to be large (to obtain the desired potential difference). The electrode reaction of the negative electrode 3 and the positive electrode 4 does not necessarily have to be a reverse reaction due to the same redox pair.
 図8、図9に基づいて本発明の第2実施例を説明する。図8には本発明の第2実施例に係る発電システムの全体構成、図9には電圧の経時変化を示してある。尚、図1に示した発電システムと同一の構成部材には同一の符号を付してある。図8に示した発電システムは、第1槽1、第2槽2に収容される電解液の溶媒は図1に示した発電システムと同一であり、活物質も図1に示した発電システムと同一である。 A second embodiment of the present invention will be described with reference to FIGS. 8 and 9. FIG. 8 shows the overall configuration of the power generation system according to the second embodiment of the present invention, and FIG. 9 shows the change over time of the voltage. The same components as those of the power generation system shown in FIG. 1 are designated by the same reference numerals. In the power generation system shown in FIG. 8, the solvent of the electrolytic solution contained in the first tank 1 and the second tank 2 is the same as that of the power generation system shown in FIG. 1, and the active material is also the same as that of the power generation system shown in FIG. It is the same.
 図8に示すように、活物質であるヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-を有する溶媒A(水(HO))及び溶媒B(アセトン[(CHCO])を混合した電解液Xが収容される第1槽1を備えている。また、活物質であるヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-を有する溶媒A(水(HO))からなる電解液Yが収容される第2槽2を備えている。 As shown in FIG. 8, the solvent A (water (H 2 O)) and the solvent B (acetone [(CH 3 ) 2 ) having the active material hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- It is provided with a first tank 1 in which an electrolytic solution X mixed with CO]) is housed. Further, a second tank 2 containing an electrolytic solution Y composed of a solvent A (water (H 2 O)) having a hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- as an active material is provided. There is.
 尚、活物質であるヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-、ヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-の全てが反応できないこともあるので、電解液Xには[Fe(CN)]3-が一部含まれることもあり、電解液Yには[Fe(CN)]4-が一部含まれることもある。また、後述する供給排出手段における溶媒Bの分離過程で、全ての溶媒Bを分離できないこともあるので、電解液Yには溶媒Bが一部含まれることもある。 Since all of the active materials, hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- and hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- , may not react, electrolysis is performed. The liquid X may contain a part of [Fe (CN) 6 ] 3- , and the electrolytic solution Y may contain a part of [Fe (CN) 6 ] 4- . Further, since it may not be possible to separate all the solvent B in the process of separating the solvent B in the supply / discharge means described later, the electrolytic solution Y may contain a part of the solvent B.
 第1槽1には負極の電極(負電極)3が設けられ、第2槽2には正極の電極(正電極)4が設けられている。負電極3と正電極4は電力回路(外部回路)5に接続され、電力回路5には、第1槽1の第1の溶媒(溶媒A+溶媒B)、及び、第2槽2の第2の溶媒(溶媒A)の組成差により生じる電位差によって電流が流れる。 The first tank 1 is provided with a negative electrode (negative electrode) 3, and the second tank 2 is provided with a positive electrode (positive electrode) 4. The negative electrode 3 and the positive electrode 4 are connected to the power circuit (external circuit) 5, and the first solvent (solvent A + solvent B) in the first tank 1 and the second solvent in the second tank 2 are connected to the power circuit 5. The current flows due to the potential difference caused by the composition difference of the solvent (solvent A).
 溶媒A、及び、溶媒Bからなる電解液Xの活物質が電極反応を終えた後、第1槽1から電解液Xを抽出し、溶媒Bを分離する分離手段としての蒸発器21が備えられている。蒸発器21には、溶媒A、及び、溶媒Bからなる電解液Xを加熱する高温熱交換器22が設けられ、蒸発器21では、高温熱源と熱交換される高温熱交換器22の加熱により電解液Xから溶媒Bを蒸発させて溶媒Bが分離される(熱エネルギーを用いた手段)。蒸発器21で溶媒Bが分離された電解液Xはポンプ23により、電解液Yとして第2槽2に投入される(供給排出手段:第2の電解液再生手段)。 An evaporator 21 is provided as a separation means for extracting the electrolytic solution X from the first tank 1 and separating the solvent B after the active material of the electrolytic solution X composed of the solvent A and the solvent B has completed the electrode reaction. ing. The evaporator 21 is provided with a high-temperature heat exchanger 22 for heating the electrolytic solution X composed of the solvent A and the solvent B, and in the evaporator 21, the high-temperature heat exchanger 22 that exchanges heat with the high-temperature heat source is heated. Solvent B is separated by evaporating solvent B from electrolytic solution X (means using heat energy). The electrolytic solution X from which the solvent B is separated by the evaporator 21 is charged into the second tank 2 as the electrolytic solution Y by the pump 23 (supply / discharge means: second electrolytic solution regenerating means).
 図中の符号で、24は蒸発器21の流入側で電解液Xを加熱する熱交換器(高温熱源との熱交換器)、25は蒸発器21の流入側の電解液Xの温度を検出する温度検出手段、26は第2槽2に投入される電解液Yの圧力を検出する圧力検出手段、27は第2槽2に投入される電解液Yの温度を検出する温度検出手段である。 In the reference numerals in the figure, 24 is a heat exchanger (heat exchanger with a high temperature heat source) that heats the electrolytic solution X on the inflow side of the evaporator 21, and 25 detects the temperature of the electrolytic solution X on the inflow side of the evaporator 21. 26 is a pressure detecting means for detecting the pressure of the electrolytic solution Y charged in the second tank 2, and 27 is a temperature detecting means for detecting the temperature of the electrolytic solution Y charged in the second tank 2. ..
 蒸発器21で分離された溶媒Bを凝縮する凝縮器31が備えられ、凝縮器31では、蒸発器21で分離された溶媒Bが低温熱源の熱交換器32で熱交換されて凝縮される。一方、第2槽2から反応後の電解液Yが排出された後に送られるミキサー33が備えられ、ミキサー33には凝縮器31で凝縮された溶媒Bが送られる。ミキサー33では、反応後の電解液Yと凝縮器31で凝縮された溶媒Bが混合され(電解液Xとされ)、第1槽1に投入される(供給排出手段:第1の電解液再生手段)。 A condenser 31 for condensing the solvent B separated by the evaporator 21 is provided, and in the condenser 31, the solvent B separated by the evaporator 21 is heat-exchanged and condensed by the heat exchanger 32 of the low temperature heat source. On the other hand, a mixer 33 to be sent after the electrolytic solution Y after the reaction is discharged from the second tank 2 is provided, and the solvent B condensed by the condenser 31 is sent to the mixer 33. In the mixer 33, the electrolytic solution Y after the reaction and the solvent B condensed in the condenser 31 are mixed (referred to as the electrolytic solution X) and charged into the first tank 1 (supply / discharge means: first electrolytic solution regeneration). means).
 蒸発器21で分離された溶媒Bを凝縮器31に送る流路34には温度検出手段35、圧力検出手段36、リリーフ弁37が設けられている。また、凝縮器31には凝縮された溶媒Bの温度を検出する温度検出手段38が設けられている。また、第2槽2から抽出された反応後の電解液Yは低温熱源の熱交換器39で熱交換されてミキサー33に送られる。凝縮器31で凝縮された溶媒Bはポンプ41でミキサー33に送られ、第2槽2からの反応後の電解液Yと混合されてポンプ42で第1槽1に送られる(供給排出手段)。 A temperature detecting means 35, a pressure detecting means 36, and a relief valve 37 are provided in the flow path 34 for sending the solvent B separated by the evaporator 21 to the condenser 31. Further, the condenser 31 is provided with a temperature detecting means 38 for detecting the temperature of the condensed solvent B. Further, the electrolytic solution Y after the reaction extracted from the second tank 2 is heat-exchanged by the heat exchanger 39 of the low-temperature heat source and sent to the mixer 33. The solvent B condensed in the condenser 31 is sent to the mixer 33 by the pump 41, mixed with the electrolytic solution Y after the reaction from the second tank 2, and sent to the first tank 1 by the pump 42 (supply / discharge means). ..
 図中の符号で45はミキサー33に送られる溶媒Bの圧力を検出する圧力検出手段、46は溶媒Bの温度を検出する温度検出手段である。また、図中の符号で47は第2槽2からミキサー33に送られる反応後の電解液Yの温度を検出する温度検出手段である。また、図中の符号で48はミキサー33から第1槽1に送られる電解液X(溶媒A+溶媒B)の圧力を検出する圧力検出手段、49は電解液X(溶媒A+溶媒B)の温度を検出する温度検出手段である。 In the figure, 45 is a pressure detecting means for detecting the pressure of the solvent B sent to the mixer 33, and 46 is a temperature detecting means for detecting the temperature of the solvent B. Further, reference numeral 47 in the figure is a temperature detecting means for detecting the temperature of the electrolytic solution Y after the reaction sent from the second tank 2 to the mixer 33. Further, in reference numerals 48 in the figure are pressure detecting means for detecting the pressure of the electrolytic solution X (solvent A + solvent B) sent from the mixer 33 to the first tank 1, and 49 is the temperature of the electrolytic solution X (solvent A + solvent B). It is a temperature detecting means for detecting.
 上記構成の発電システムでは、第1槽1でヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-が酸化反応し、ヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-となる。また、第2槽2でヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-が還元反応し、ヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-となる。マイナスの電子(e-)が第1槽1から第2槽2に移動することで、電力回路5に電流が流れる。 In the power generation system having the above configuration, hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- is oxidized in the first tank 1, and hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- Become. Further, in the second tank 2, hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- undergoes a reduction reaction to become hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- . When negative electrons (e ) move from the first tank 1 to the second tank 2, a current flows through the power circuit 5.
 つまり、正極と負極の反応は同一の酸化還元対(ヘキサシアノ鉄(II)酸イオン[Fe(CN)]4-、ヘキサシアノ鉄(III)酸イオン[Fe(CN)]3-)の逆反応であり、電極間の溶媒の組成差に起因する活物質-溶媒間相互作用の違いにより電位差が生じ、各々の電極において酸化もしくは還元反応が進行する。 That is, the reaction between the positive electrode and the negative electrode is the reverse of the same redox pair (hexacyanoferrate (II) acid ion [Fe (CN) 6 ] 4- , hexacyanoferrate (III) acid ion [Fe (CN) 6 ] 3- ). This is a reaction, and a potential difference is generated due to a difference in the interaction between the active material and the solvent due to the difference in the composition of the solvent between the electrodes, and the oxidation or reduction reaction proceeds at each electrode.
 第1槽1から溶媒A、及び、溶媒Bからなる反応後の電解液Xが抽出され、蒸発器21で溶媒Bが分離される。蒸発器21で溶媒Bが分離された電解液Xは、ポンプ23により、電解液Yとして第2槽2に投入される(供給排出手段:第2の電解液再生手段)。 The solvent A and the solvent B after the reaction are extracted from the first tank 1, and the solvent B is separated by the evaporator 21. The electrolytic solution X from which the solvent B is separated by the evaporator 21 is charged into the second tank 2 as the electrolytic solution Y by the pump 23 (supply / discharge means: second electrolytic solution regenerating means).
 第2槽2から反応後の電解液Yが抽出され、ミキサー33に送られる。ミキサー33には、蒸発器21で蒸発されて凝縮器31で凝縮された溶媒Bが送られ、ミキサー33では、電解液Yと溶媒Bが混合されて電解液Xとされる。ミキサー33からの電解液Xは第1槽1に送られる(供給排出手段:第1の電解液再生手段)。 The electrolytic solution Y after the reaction is extracted from the second tank 2 and sent to the mixer 33. The solvent B that has been evaporated by the evaporator 21 and condensed by the condenser 31 is sent to the mixer 33, and in the mixer 33, the electrolytic solution Y and the solvent B are mixed to obtain the electrolytic solution X. The electrolytic solution X from the mixer 33 is sent to the first tank 1 (supply / discharge means: first electrolytic solution regenerating means).
 熱エネルギーを活用して、電極反応後の電解液Xから溶媒Bを気化・分離し、電解液Yとして第2槽2に送液し、電極反応後の電解液Yに混合することで、電解液Xとして第1槽1に再度送液される。 By utilizing the heat energy, the solvent B is vaporized and separated from the electrolytic solution X after the electrode reaction, sent to the second tank 2 as the electrolytic solution Y, and mixed with the electrolytic solution Y after the electrode reaction for electrolysis. The liquid X is sent to the first tank 1 again.
 このため、全体として化学物質の消費がなく、溶媒Bを気化できる高温熱交換器22(高温熱源)、及び、凝縮できる熱交換器32(低温熱源)を用いることで、熱機関と同じように動作させることができ、連続的に発電を実施することが可能になる。溶媒Bとして、比較的沸点が低い物質を用いることで、100℃程度の熱源も上記高温熱源として利用することが可能となる。比較的沸点が低い物質として、例えば、アセトンが挙げられる。 Therefore, by using the high temperature heat exchanger 22 (high temperature heat source) that can vaporize the solvent B and the heat exchanger 32 (low temperature heat source) that can condense without consuming chemical substances as a whole, the same as the heat engine. It can be operated and continuous power generation can be performed. By using a substance having a relatively low boiling point as the solvent B, a heat source having a temperature of about 100 ° C. can also be used as the high-temperature heat source. Examples of the substance having a relatively low boiling point include acetone.
 つまり、産業廃熱や地熱・温泉熱等、十分に有効利用できていない状態であった、100℃以下程度の熱源の有効利用が飛躍的に進展することになる。また、発電を行う第1槽1、第2槽2、負電極3、正電極4を有する設備と、熱回収を行って電解液を再生・循環させる設備が分かれているため、設計の自由度が高く大型発電システムへの応用が容易に可能になる。また、溶媒Bの分離や再混合を終えた状態で、電解液を保管しておくことで、エネルギーの貯蔵を行うこともでき、要求に応じた発電量に制御することができる。 In other words, the effective use of heat sources of about 100 ° C or less, which were not sufficiently effectively used such as industrial waste heat, geothermal heat, and hot spring heat, will dramatically progress. In addition, the equipment that has the first tank 1, the second tank 2, the negative electrode 3, and the positive electrode 4 that generate electricity and the equipment that recovers heat and regenerates and circulates the electrolyte are separated, so there is a degree of freedom in design. It is highly expensive and can be easily applied to large-scale power generation systems. Further, by storing the electrolytic solution in a state where the solvent B has been separated and remixed, energy can be stored and the amount of power generation can be controlled according to the demand.
 上述した発電システムは、二酸化炭素の排出を無くして発電を維持することができ、電力の安定供給と二酸化炭素排出量の削減とを両立させることが可能になる。 The above-mentioned power generation system can eliminate carbon dioxide emissions and maintain power generation, and can achieve both a stable supply of electric power and a reduction in carbon dioxide emissions.
 上記実施例では、第1の電解液再生手段、第2の電解液再生手段により、電解液が再生される。図9に基づいて、電解液を再生した時の電圧の経時変化の一例を説明する。図9に示すように、反応が進むにつれ電圧(V)が低下し、時刻t1で電圧のしきい値V1に達する。電圧がしきい値V1に達した際に、反応後の電解液Xが蒸発器21に送られると共に、反応後の電解液Yがミキサー33に送られる。 In the above embodiment, the electrolytic solution is regenerated by the first electrolytic solution regenerating means and the second electrolytic solution regenerating means. An example of the change with time of the voltage when the electrolytic solution is regenerated will be described with reference to FIG. As shown in FIG. 9, the voltage (V) decreases as the reaction progresses, and reaches the voltage threshold value V1 at time t1. When the voltage reaches the threshold value V1, the electrolytic solution X after the reaction is sent to the evaporator 21, and the electrolytic solution Y after the reaction is sent to the mixer 33.
 蒸発器21で溶媒Bが分離されてミキサー33に送られ、電解液X(溶媒A+溶媒B)が再生されて第1槽1に反応前の活物質を有する電解液Xが供給される(時刻t1から時刻t2)。蒸発器21で溶媒Bが分離された後の溶媒Aが、反応前の活物質を有する電解液Yとして第2槽2に供給される(時刻t1から時刻t2)。 The solvent B is separated by the evaporator 21 and sent to the mixer 33, the electrolytic solution X (solvent A + solvent B) is regenerated, and the electrolytic solution X having the active material before the reaction is supplied to the first tank 1 (time). From t1 to time t2). After the solvent B is separated by the evaporator 21, the solvent A is supplied to the second tank 2 as the electrolytic solution Y having the active material before the reaction (time t1 to time t2).
 これにより、図9に示すように、時刻t2で電圧が十分に回復し、時刻t3まで所望の電圧(しきい値V1以上の起電力)が維持される。 As a result, as shown in FIG. 9, the voltage is sufficiently recovered at time t2, and the desired voltage (electromotive force of the threshold value V1 or higher) is maintained until time t3.
 尚、図9では、反応に伴う放電の後に再生を実施した経時変化の一例を示したが、反応に伴う放電を実施しながら(放電と並行して)で、再生を実施することも可能である。 In addition, although FIG. 9 shows an example of the change with time in which the regeneration was carried out after the discharge accompanying the reaction, it is also possible to carry out the regeneration while carrying out the discharge accompanying the reaction (in parallel with the discharge). be.
 図10に基づいて本発明の第3実施例を説明する。図10には本発明の第3実施例に係る電位差を用いた発電システムの全体構成を示してある。尚、図8に示した発電システムと同一の構成部材には同一の符号を付してある。 A third embodiment of the present invention will be described with reference to FIG. FIG. 10 shows the overall configuration of the power generation system using the potential difference according to the third embodiment of the present invention. The same components as those of the power generation system shown in FIG. 8 are designated by the same reference numerals.
 図10に示した発電システムは、図8に示した第2実施例の発電システムに対し、流路34内(供給排出手段の閉じた流路)の圧力を調整する調圧部52(内圧調整手段)を設けた構成となっている。 The power generation system shown in FIG. 10 has a pressure adjusting unit 52 (internal pressure adjustment) that adjusts the pressure in the flow path 34 (closed flow path of the supply / discharge means) with respect to the power generation system of the second embodiment shown in FIG. Means) are provided.
 図に示すように、リリーフ弁37の上流側の流路34には三方弁51が設けられ、三方弁51には流路34内の圧力を調整する調圧部52(内圧調整手段)が接続されている。調圧部52は、例えば、シリンダ、ポンプ等が用いられ、流路34内(溶媒B)を加圧、もしくは、減圧する機器が適用される。 As shown in the figure, a three-way valve 51 is provided in the flow path 34 on the upstream side of the relief valve 37, and a pressure regulating portion 52 (internal pressure adjusting means) for adjusting the pressure in the flow path 34 is connected to the three-way valve 51. Has been done. For the pressure adjusting unit 52, for example, a cylinder, a pump, or the like is used, and a device that pressurizes or depressurizes the inside of the flow path 34 (solvent B) is applied.
 調圧部52により流路34の内部(溶媒B)が加圧、もしくは、減圧される。これにより、溶媒Bの沸点を調節することができ、高温熱交換器22の熱源として、溶媒Bの調節後の沸点に対応する温度の熱源を適用することができる。また、高温熱交換器22の熱源の温度に合わせて、溶媒Bの沸点を制御することができる。従って、広い範囲の熱源を有効利用することが可能になる。 The inside of the flow path 34 (solvent B) is pressurized or depressurized by the pressure adjusting unit 52. Thereby, the boiling point of the solvent B can be adjusted, and as the heat source of the high temperature heat exchanger 22, a heat source having a temperature corresponding to the adjusted boiling point of the solvent B can be applied. Further, the boiling point of the solvent B can be controlled according to the temperature of the heat source of the high temperature heat exchanger 22. Therefore, it becomes possible to effectively use a wide range of heat sources.
 図11に基づいて本発明の第4実施例を説明する。図11には本発明の第4実施例に係る発電システムの全体構成を示してある。尚、図1に示した発電システムと同一の構成部材には同一の符号を付してある。図11に示した発電システムは、第1槽1、第2槽2に収容される電解液の溶媒は図1に示した発電システムと同一であり、活物質も図1に示した発電システムと同一である。 A fourth embodiment of the present invention will be described with reference to FIG. FIG. 11 shows the overall configuration of the power generation system according to the fourth embodiment of the present invention. The same components as those of the power generation system shown in FIG. 1 are designated by the same reference numerals. In the power generation system shown in FIG. 11, the solvent of the electrolytic solution contained in the first tank 1 and the second tank 2 is the same as that of the power generation system shown in FIG. 1, and the active material is also the same as that of the power generation system shown in FIG. It is the same.
 第4実施例は、第1の電解液再生手段、第2の電解液再生手段における溶媒Bの分離、溶媒Bの再混合は、機械的エネルギーを用いた手段により構成される。第4実施例は、第1槽1から排出された電解液Xを加圧すると共に分離手段(透過膜)を透過させて溶媒Bを分離し、溶媒Bが分離された後の電解液Yを第2槽2に(減圧して)供給する分離供給手段と、前記第2槽2から排出された電解液Yに対し分離手段を透過した低圧側の溶媒Bを再混合して第1槽1に供給する混合供給手段とを有している。 In the fourth embodiment, the separation of the solvent B and the remixing of the solvent B in the first electrolytic solution regenerating means, the second electrolytic solution regenerating means are composed of means using mechanical energy. In the fourth embodiment, the electrolytic solution X discharged from the first tank 1 is pressurized and the separation means (permeation membrane) is permeated to separate the solvent B, and the electrolytic solution Y after the solvent B is separated is used. The separation and supply means for supplying (depressurized) to the second tank 2 and the low-pressure side solvent B which has passed through the separation means with respect to the electrolytic solution Y discharged from the second tank 2 are remixed into the first tank 1. It has a mixed supply means for supplying.
 図11に示すように、溶媒A及び溶媒Bを混合した電解液Xが収容される第1槽1を備えている。また、溶媒Aからなる電解液Yが収容される第2槽2を備えている。第1槽1には負極の電極(負電極)3が設けられ、第2槽2には正極の電極(正電極)4が設けられている。負電極3と正電極4は電力回路(外部回路)5に接続され、電力回路5には、第1槽1の第1の溶媒(溶媒A+溶媒B)、及び、第2槽2の第2の溶媒(溶媒A)の組成差により生じる電位差によって電流が流れる。 As shown in FIG. 11, the first tank 1 in which the electrolytic solution X in which the solvent A and the solvent B are mixed is housed is provided. Further, the second tank 2 in which the electrolytic solution Y made of the solvent A is housed is provided. The first tank 1 is provided with a negative electrode (negative electrode) 3, and the second tank 2 is provided with a positive electrode (positive electrode) 4. The negative electrode 3 and the positive electrode 4 are connected to the power circuit (external circuit) 5, and the first solvent (solvent A + solvent B) in the first tank 1 and the second solvent in the second tank 2 are connected to the power circuit 5. The current flows due to the potential difference caused by the composition difference of the solvent (solvent A).
 溶媒A、及び、溶媒Bからなる電解液Xの活物質が電極反応を終えた後、第1槽1から電解液Xを抽出し、溶媒Bを分離する分離手段が備えられている。分離手段は、機械的エネルギーを用いた手段であり、第1槽1から抽出された電解液Xを加圧する圧縮手段61を備えている。圧縮手段61は、風力・水力・波力・潮力などの再生可能エネルギーにより駆動される。 A separation means is provided for extracting the electrolytic solution X from the first tank 1 and separating the solvent B after the active material of the electrolytic solution X composed of the solvent A and the solvent B has completed the electrode reaction. The separation means is a means using mechanical energy, and includes a compression means 61 that pressurizes the electrolytic solution X extracted from the first tank 1. The compression means 61 is driven by renewable energy such as wind power, hydraulic power, wave power, and tidal power.
 圧縮された電解液Xは分離槽62の高圧側の部屋62aに送られる。分離槽62には、溶媒Bだけを透過する透過膜63を介して低圧側の部屋62bが備えられている。圧縮された電解液Xが高圧側の部屋62aに送られることで、溶媒Bだけが透過膜63を透過し、溶媒Bが低圧側の部屋62bに送られて分離される(分離供給手段)。 The compressed electrolytic solution X is sent to the room 62a on the high pressure side of the separation tank 62. The separation tank 62 is provided with a room 62b on the low pressure side via a permeable membrane 63 that allows only the solvent B to permeate. When the compressed electrolytic solution X is sent to the room 62a on the high pressure side, only the solvent B permeates the permeable membrane 63, and the solvent B is sent to the room 62b on the low pressure side for separation (separation and supply means).
 高圧側の部屋62aの電解液(溶媒Bが分離された電解液:電解液Y)は、減圧手段70で減圧されてポンプ23により、電解液Yとして第2槽2に投入される(供給排出手段:第2の電解液再生手段)。 The electrolytic solution (electrolyte solution from which the solvent B is separated: electrolytic solution Y) in the room 62a on the high pressure side is depressurized by the depressurizing means 70 and charged into the second tank 2 as the electrolytic solution Y by the pump 23 (supply and discharge). Means: Second electrolyte regenerating means).
 図中の符号で、64は圧縮手段61の流入側の電解液Xの温度を検出する温度検出手段、65は圧縮手段61の流入側の電解液Xの圧力を検出する圧力検出手段、66は圧縮手段61の流出側の電解液Xの温度を検出する温度検出手段、67は圧縮手段61の流出側の電解液Xの圧力を検出する圧力検出手段、68はリリーフ弁である。 In the reference numerals in the figure, 64 is a temperature detecting means for detecting the temperature of the electrolytic solution X on the inflow side of the compression means 61, 65 is a pressure detecting means for detecting the pressure of the electrolytic solution X on the inflow side of the compression means 61, and 66 is. The temperature detecting means for detecting the temperature of the electrolytic solution X on the outflow side of the compression means 61, 67 is a pressure detecting means for detecting the pressure of the electrolytic solution X on the outflow side of the compression means 61, and 68 is a relief valve.
 低圧側の部屋62bには、ポンプ69を介して第2槽2から排出された電解液Yが供給され、透過膜63を透過した溶媒Bが再混合される(混合供給手段)。溶媒Bが再混合されて電解液Xとされ、ポンプ42で第1槽1に送られる(供給排出手段:第1の電解液再生手段)。 The electrolytic solution Y discharged from the second tank 2 is supplied to the room 62b on the low pressure side via the pump 69, and the solvent B that has permeated the permeable membrane 63 is remixed (mixing and supplying means). The solvent B is remixed to obtain the electrolytic solution X, which is sent to the first tank 1 by the pump 42 (supply / discharge means: first electrolytic solution regenerating means).
 図中の符号で、71はポンプ69の流出側の電解液Yの温度を検出する温度検出手段、72はポンプ69の流出側の電解液Yの圧力を検出する圧力検出手段である。 In the reference numerals in the figure, 71 is a temperature detecting means for detecting the temperature of the electrolytic solution Y on the outflow side of the pump 69, and 72 is a pressure detecting means for detecting the pressure of the electrolytic solution Y on the outflow side of the pump 69.
 また、図中の符号で、75は反応後の電解液Xを貯留する貯留タンク、76は反応後の電解液Yを貯留する貯留タンク、77は再生後の電解液Xを貯留する貯留タンク、78は再生後の電解液Yを貯留する貯留タンクである。 Further, in reference numerals in the figure, 75 is a storage tank for storing the electrolytic solution X after the reaction, 76 is a storage tank for storing the electrolytic solution Y after the reaction, and 77 is a storage tank for storing the electrolytic solution X after regeneration. Reference numeral 78 is a storage tank for storing the regenerated electrolytic solution Y.
 貯留タンク75、76に反応後の電解液を貯留することで、再生可能エネルギーにより駆動される圧縮手段61の出力変動に対して、分離槽62に送る反応後の電解液の送給を調整することができる。また、貯留タンク77、78に再生後の電解液を貯留することで、電力需要の変動に応じた出力調整を行うことができる。 By storing the electrolytic solution after the reaction in the storage tanks 75 and 76, the supply of the electrolytic solution after the reaction to be sent to the separation tank 62 is adjusted with respect to the output fluctuation of the compression means 61 driven by the renewable energy. be able to. Further, by storing the regenerated electrolytic solution in the storage tanks 77 and 78, the output can be adjusted according to the fluctuation of the electric power demand.
 第1槽1から溶媒A、及び、溶媒Bからなる反応後の電解液Xが抽出され、圧縮手段61で加圧されて分離槽62に送られ、分離槽62で溶媒Bが分離される。溶媒Bが分離された電解液Xは、減圧手段70により減圧されて第2槽2に投入される。第2槽2から反応後の電解液Yが抽出され、分離槽62の低圧側の部屋62bに送られ溶媒Bに混合されて電解液Xとされ、電解液Xは第1槽1に送られる。機械的エネルギーを活用して、電極反応後の電解液Xから溶媒Bを分離し、溶媒Bを分離した電解液を電解液Yとして第2槽2に送液し、電極反応後の電解液Yに対し、分離された溶媒Bを混合することで、電解液は電解液Xとして第1槽1に再度送液される。 The solvent A and the electrolytic solution X after the reaction composed of the solvent B are extracted from the first tank 1, pressurized by the compression means 61 and sent to the separation tank 62, and the solvent B is separated in the separation tank 62. The electrolytic solution X from which the solvent B has been separated is depressurized by the depressurizing means 70 and charged into the second tank 2. The electrolytic solution Y after the reaction is extracted from the second tank 2, sent to the room 62b on the low pressure side of the separation tank 62, mixed with the solvent B to form the electrolytic solution X, and the electrolytic solution X is sent to the first tank 1. .. The solvent B is separated from the electrolytic solution X after the electrode reaction by utilizing the mechanical energy, and the electrolytic solution from which the solvent B is separated is sent to the second tank 2 as the electrolytic solution Y, and the electrolytic solution Y after the electrode reaction is sent. On the other hand, by mixing the separated solvent B, the electrolytic solution is sent to the first tank 1 again as the electrolytic solution X.
 このため、全体として化学物質の消費がなく、例えば、水力、風力、波力、潮力などの機械的な再生可能エネルギーを用いて、熱エネルギーを用いた場合と同じように、連続的に発電を実施することが可能になる。 Therefore, there is no consumption of chemical substances as a whole, and continuous power generation is performed using mechanical renewable energy such as hydraulic power, wind power, wave power, and tidal power, as in the case of using thermal energy. Will be possible.
 上述した発電システムは、二酸化炭素の排出を無くして発電を維持することができ、電力の安定供給と二酸化炭素排出量の削減とを両立させることが可能になる。 The above-mentioned power generation system can eliminate carbon dioxide emissions and maintain power generation, and can achieve both a stable supply of electric power and a reduction in carbon dioxide emissions.
 本発明は、二酸化炭素を排出せずに電力の安定供給が可能な発電システム、発電方法の産業分野で利用することができる。 The present invention can be used in the industrial field of a power generation system and a power generation method capable of stably supplying electric power without emitting carbon dioxide.
  1 第1槽
  2 第2槽
  3 負電極
  4 正電極
  5 電力回路
 11 第1タンク
 12、16、23、41、42、69 ポンプ
 13 第1回収タンク
 15 第2タンク
 17 第2回収タンク
 19、25、27、35、38、46、47、49、64、66、71 温度検出手段
 21 蒸発器
 22、24 高温熱交換器
 32、39 熱交換器
 26、36、45、48、65、67、72 圧力検出手段
 31 凝縮器
 33 ミキサー
 34 流路
 37、68 リリーフ弁
 51 三方弁
 52 調圧部
 61 圧縮手段
 62 分離槽
 63 透過膜
 70 減圧手段
 75、76、77、78 貯留タンク
1 1st tank 2 2nd tank 3 Negative electrode 4 Positive electrode 5 Power circuit 11 1st tank 12, 16, 23, 41, 42, 69 Pump 13 1st recovery tank 15 2nd tank 17 2nd recovery tank 19, 25 , 27, 35, 38, 46, 47, 49, 64, 66, 71 Temperature detecting means 21 Evaporator 22, 24 High temperature heat exchanger 32, 39 Heat exchanger 26, 36, 45, 48, 65, 67, 72 Pressure detection means 31 Condensator 33 Mixer 34 Flow path 37, 68 Relief valve 51 Three-way valve 52 Pressure regulator 61 Compression means 62 Separation tank 63 Transmission film 70 Decompression means 75, 76, 77, 78 Storage tank

Claims (14)

  1.  第1の溶媒の電解液が収容され、一方の電極を有し活物質が電極反応する第1槽と、
     前記第1槽に収容された電解液と異なる、第2の溶媒の電解液が収容され、他方の電極を有し、活物質が電極反応する第2槽とを備えた
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    A first tank in which the electrolytic solution of the first solvent is housed, which has one electrode and the active material reacts with the electrode,
    A heterogeneous type characterized by containing an electrolytic solution of a second solvent different from the electrolytic solution contained in the first tank, having the other electrode, and having a second tank in which the active material reacts with the electrode. A power generation system that uses a potential difference due to a solvent.
  2.  請求項1に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記第1槽での活物質による電極反応、前記第2槽での活物質による電極反応が、同一の酸化還元対による逆反応である
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to claim 1.
    A power generation system using a potential difference between different solvents, wherein the electrode reaction by the active material in the first tank and the electrode reaction by the active material in the second tank are reverse reactions by the same redox pair.
  3.  請求項1または請求項2に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記第1の溶媒と前記第2の溶媒が、同じ物質を少なくとも1種類含む
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to claim 1 or 2.
    A power generation system using a potential difference between different solvents, wherein the first solvent and the second solvent contain at least one kind of the same substance.
  4.  請求項1から請求項3のいずれか一項に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記第1の溶媒、前記第2の溶媒の物質は、水、エタノール、メタノール、アセトニトリル、ジメチルスルホキシド、アセトン、ピリジン、ジメチルアセトアミド、ジメチルホルムアミド、ヘキサメチルホスホルアミド、炭酸プロピレン、テトラヒドロフラン、N-メチル-2-ピロリドンの少なくとも一つを含む
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to any one of claims 1 to 3.
    The substances of the first solvent and the second solvent are water, ethanol, methanol, acetonitrile, dimethyl sulfoxide, acetone, pyridine, dimethylacetamide, dimethylformamide, hexamethylphosphoramide, propylene carbonate, tetrahydrofuran, N-methyl. -A power generation system using a potential difference with different solvents characterized by containing at least one of pyrrolidone.
  5.  請求項1から請求項3のいずれか一項に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記第1の溶媒、前記第2の溶媒の少なくともいずれかに、1atmで融点が200℃以下の塩が用いられる
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to any one of claims 1 to 3.
    A power generation system using a potential difference between different solvents, wherein a salt having a melting point of 200 ° C. or lower at 1 atm is used for at least one of the first solvent and the second solvent.
  6.  請求項1から請求項5のいずれか一項に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記第1槽、前記第2槽の内部に、外部から電解液を供給し、活物質が電極反応した後の電解液を前記第1槽、前記第2槽の外部に排出する、供給排出手段を備えた
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to any one of claims 1 to 5.
    Supply / discharge means for supplying an electrolytic solution to the inside of the first tank and the second tank from the outside and discharging the electrolytic solution after the active material has an electrode reaction to the outside of the first tank and the second tank. A power generation system using a potential difference between different solvents.
  7.  請求項6に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記第1の溶媒、前記第2の溶媒は、溶媒A及び溶媒Bの混合物であり、
     前記第1の溶媒は、前記第2の溶媒より多量の溶媒Bを含み、
     前記供給排出手段は、
     前記溶媒A及び前記溶媒Bからなる前記第1の溶媒の電解液を外部から前記第1槽に供給し、活物質が電極反応した後の電解液を前記第1槽から排出し、排出された電解液から一部もしくは全部の前記溶媒Bを分離回収し、一部もしくは全部の前記溶媒Bが分離された後の電解液を前記第2槽に供給し、活物質が前記第1槽での前記電極反応と逆の電極反応をした後の電解液を外部に排出し、排出された電解液に対し分離回収した前記溶媒Bを再混合し、前記溶媒Bが再混合された後の電解液を前記第1槽に供給する
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to claim 6.
    The first solvent and the second solvent are a mixture of solvent A and solvent B.
    The first solvent contains a larger amount of solvent B than the second solvent, and contains a larger amount of solvent B.
    The supply / discharge means
    The electrolytic solution of the first solvent composed of the solvent A and the solvent B was supplied from the outside to the first tank, and the electrolytic solution after the active material had an electrode reaction was discharged from the first tank and discharged. A part or all of the solvent B is separated and recovered from the electrolytic solution, and the electrolytic solution after the partial or all of the solvent B is separated is supplied to the second tank, and the active material is used in the first tank. The electrolytic solution after the electrode reaction opposite to the electrode reaction is discharged to the outside, the solvent B separated and recovered is remixed with the discharged electrolytic solution, and the electrolytic solution after the solvent B is remixed. A power generation system using a potential difference due to a different solvent, which is characterized by supplying the above-mentioned first tank.
  8.  請求項7に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記第1槽から排出された電解液から前記溶媒Bを分離回収し、前記溶媒Bが分離された後の電解液を前記第2槽に供給する手段として、第2の電解液再生手段を有し、
     前記第2槽から排出された電解液に対し、前記第1槽から排出された電解液から分離回収した前記溶媒Bを再混合し、前記溶媒Bが再混合された後の電解液を前記第1槽に供給する手段として、第1の電解液再生手段を有する
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to claim 7.
    A second electrolytic solution regenerating means is provided as a means for separating and recovering the solvent B from the electrolytic solution discharged from the first tank and supplying the electrolytic solution after the solvent B is separated to the second tank. death,
    The solvent B separated and recovered from the electrolytic solution discharged from the first tank is remixed with the electrolytic solution discharged from the second tank, and the electrolytic solution after the solvent B is remixed is the first. A power generation system using a potential difference due to a different solvent, which comprises a first electrolyte regenerating means as a means for supplying to one tank.
  9.  請求項8に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記第1の電解液再生手段、前記第2の電解液再生手段における前記溶媒Bの分離、前記溶媒Bの再混合は、熱エネルギーを用いた手段で構成される
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to claim 8.
    The separation of the solvent B and the remixing of the solvent B in the first electrolytic solution regenerating means and the second electrolytic solution regenerating means are carried out by a different solvent, which is composed of means using thermal energy. Power generation system using potential difference.
  10.  請求項9に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記熱エネルギーを用いた手段は、
     前記第1槽から排出された電解液を加熱して前記溶媒Bを蒸発させると共に、前記溶媒Bが分離された後の電解液を前記第2槽に供給する蒸発手段と、
     前記蒸発手段で蒸発させた前記溶媒Bを凝縮し、前記第2槽から排出された電解液に対し前記溶媒Bを再混合して前記第1槽に供給する凝縮手段とを有する
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to claim 9.
    The means using the heat energy is
    Evaporation means for heating the electrolytic solution discharged from the first tank to evaporate the solvent B and supplying the electrolytic solution after the solvent B is separated to the second tank.
    It is characterized by having a condensing means for condensing the solvent B evaporated by the evaporating means, remixing the solvent B with the electrolytic solution discharged from the second tank, and supplying the solvent B to the first tank. A power generation system that uses the potential difference between different solvents.
  11.  請求項9もしくは請求項10に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記供給排出手段における電解液の流路の内部の圧力を調整する内圧調整手段を備えた
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to claim 9 or 10.
    A power generation system using a potential difference between different solvents, which comprises an internal pressure adjusting means for adjusting the pressure inside the flow path of the electrolytic solution in the supply / discharge means.
  12.  請求項8に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記第1の電解液再生手段、前記第2の電解液再生手段における前記溶媒Bの分離、前記溶媒Bの再混合は、機械的エネルギーを用いた手段で構成される
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to claim 8.
    Dissimilar solvents characterized in that the separation of the solvent B and the remixing of the solvent B in the first electrolytic solution regenerating means, the second electrolytic solution regenerating means are composed of means using mechanical energy. Power generation system using the potential difference due to.
  13.  請求項12に記載の異種溶媒による電位差を用いた発電システムにおいて、
     前記機械的エネルギーを用いた手段は、
     前記第1槽から排出された電解液を加圧すると共に分離手段を透過させて前記溶媒Bを分離し、前記溶媒Bが分離された後の電解液を前記第2槽に供給する分離供給手段と、
     前記第2槽から排出された電解液に対し前記分離手段を透過した前記溶媒Bを再混合して前記第1槽に供給する混合供給手段とを有する
     ことを特徴とする異種溶媒による電位差を用いた発電システム。
    In the power generation system using the potential difference between different solvents according to claim 12.
    The means using the mechanical energy is
    With the separation and supply means, which pressurizes the electrolytic solution discharged from the first tank and allows the separation means to permeate to separate the solvent B, and supplies the electrolytic solution after the solvent B is separated to the second tank. ,
    A potential difference due to a different solvent is used, which comprises a mixed supply means for remixing the solvent B that has permeated the separation means with the electrolytic solution discharged from the second tank and supplying the electrolytic solution to the first tank. The power generation system that was there.
  14.  正極・負極間の電解液の溶媒の組成差により形成される電位差を用いて発電を行うことを特徴とする異種溶媒による電位差を用いた発電方法。
     
    A power generation method using a potential difference between different solvents, which comprises using a potential difference formed by a composition difference of a solvent of an electrolytic solution between a positive electrode and a negative electrode.
PCT/JP2021/047079 2021-01-08 2021-12-20 Power generation system using difference in potential caused by different solvents, and power generation method using difference in potential caused by different solvents WO2022149455A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-002412 2021-01-08
JP2021002412 2021-01-08
JP2021178995A JP2022107506A (en) 2021-01-08 2021-11-01 Power generation system arranged by use of electric potential difference owing to heterogeneous solvent, and power generation method by use of electric potential difference owing to heterogeneous solvent
JP2021-178995 2021-11-01

Publications (1)

Publication Number Publication Date
WO2022149455A1 true WO2022149455A1 (en) 2022-07-14

Family

ID=82357702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047079 WO2022149455A1 (en) 2021-01-08 2021-12-20 Power generation system using difference in potential caused by different solvents, and power generation method using difference in potential caused by different solvents

Country Status (1)

Country Link
WO (1) WO2022149455A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810596A (en) * 1985-10-18 1989-03-07 Hughes Aircraft Company Sulfuric acid thermoelectrochemical system and method
US10586997B1 (en) * 2016-09-21 2020-03-10 National Technology & Engineering Solutions Of Sandia, Llc Aqueous Na-ion redox flow battery with ceramic NaSICON membrane
JP2020198289A (en) * 2019-05-29 2020-12-10 国立研究開発法人産業技術総合研究所 Electrochemical device containing three-layer electrolyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810596A (en) * 1985-10-18 1989-03-07 Hughes Aircraft Company Sulfuric acid thermoelectrochemical system and method
US10586997B1 (en) * 2016-09-21 2020-03-10 National Technology & Engineering Solutions Of Sandia, Llc Aqueous Na-ion redox flow battery with ceramic NaSICON membrane
JP2020198289A (en) * 2019-05-29 2020-12-10 国立研究開発法人産業技術総合研究所 Electrochemical device containing three-layer electrolyte

Similar Documents

Publication Publication Date Title
RU2670991C2 (en) Electrolysis method and electrolysis apparatus
Hatzell et al. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents
JP5750220B2 (en) System and method for CO2 capture by aqueous carbonate flue gas capture and high efficiency bipolar membrane electrodialysis
US7781083B2 (en) Hydrogen/hydrogen peroxide fuel cell
Zhang et al. A combined heat-and power-driven membrane capacitive deionization system
JP2007282449A (en) Thermoelectric converter
Tamburini et al. Salinity gradient engines
CN117597471A (en) Recovery process of carbon oxide electrolyzer
EP2923404B1 (en) Electricity generation
US7575823B2 (en) Fuel cell system, fuel cell system drive method and fuel container for power generation
GB2594202A (en) Electrochemical cell and method of processing a gaseous stream containing hydrogen
US5208112A (en) Thermally regenerated fuel cell
KR20210143196A (en) Redox flow battery
GB2271665A (en) Thermoelectrochemical system & method
WO2022149455A1 (en) Power generation system using difference in potential caused by different solvents, and power generation method using difference in potential caused by different solvents
JP2023540467A (en) Heat recovery during electrolysis process
JP6419790B2 (en) Hydrogen recycling apparatus and operation method
JP2013097870A (en) Alkaline fuel cell system
KR102153995B1 (en) Continuous capacitive deionization process using electroytes for redox flow cells
JP2022107506A (en) Power generation system arranged by use of electric potential difference owing to heterogeneous solvent, and power generation method by use of electric potential difference owing to heterogeneous solvent
US20220064030A1 (en) Deionization fuel cell system
KR20170131531A (en) Method for operating regenerative bipolar membrane fuel cell and regenerative bipolar membrane fuel cell therefor
US20220033981A1 (en) Rechargeable electrolysis cell
JP4505325B2 (en) Electric drive device for automobile, method of using fuel cell, and automobile
JP4066173B2 (en) Reforming system and fuel cell system including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917675

Country of ref document: EP

Kind code of ref document: A1