WO2022148440A1 - 双锥台嵌挤预应力约束遮弹层 - Google Patents

双锥台嵌挤预应力约束遮弹层 Download PDF

Info

Publication number
WO2022148440A1
WO2022148440A1 PCT/CN2022/070776 CN2022070776W WO2022148440A1 WO 2022148440 A1 WO2022148440 A1 WO 2022148440A1 CN 2022070776 W CN2022070776 W CN 2022070776W WO 2022148440 A1 WO2022148440 A1 WO 2022148440A1
Authority
WO
WIPO (PCT)
Prior art keywords
cone
double
truncated
frustum
ferrule
Prior art date
Application number
PCT/CN2022/070776
Other languages
English (en)
French (fr)
Inventor
王子国
孙宇雁
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2022148440A1 publication Critical patent/WO2022148440A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/14Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass
    • E04F13/141Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass with an outer layer of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0875Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements having a basic insulating layer and at least one covering layer
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/14Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass
    • E04F13/142Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass with an outer layer of ceramics or clays
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/44Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages for storing aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/06Shields

Definitions

  • the invention relates to a double-cone frustum embedded and extruded prestressed constraining elastic shielding layer.
  • ceramic materials such as Al 2 O 3 , B 4 C, SiC, TiB 2 and AlN, etc.
  • ceramic materials have the characteristics of low density, high hardness, high compressive strength, etc., they can effectively passivate and erode the projectile, combined with the ductile backing plate to The absorption of the kinetic energy of the fragments significantly improves the penetration resistance of the armor, making the ceramic composite armor widely used.
  • ceramics are brittle materials with low toughness and low tensile strength, they are prone to collapse and splash under the impact of the projectile. If ductile materials are used to restrain them, this phenomenon can be significantly improved.
  • the high-strength and high-hardness segmented ceramic target can effectively restrain the crack propagation of the ceramic target and improve the penetration resistance of the ceramic target.
  • the ceramic target is further applied with biaxial prestress (confining pressure) on the basis of lateral plate restraint, and its static and dynamic strength and hardness all increase with the increase of prestress.
  • the prestress applied on the ceramic target can offset the local impact transient tensile stress of the projectile, and effectively inhibit the initiation and propagation of cracks inside the target.
  • the prestressing restraint of the block ceramics mainly adopts the mechanical extrusion method and the hot charging method.
  • the mechanical extrusion method is to push the lateral plate in the direction of the ceramic panel to directly squeeze the side of the ceramic plate, and to apply transverse prestress to the ceramic;
  • the hot-loading method is to assemble the ceramic block and metal confinement ring with a margin difference at high temperature.
  • a metal with a larger thermal expansion coefficient and a faster shrinkage compresses the ceramic to apply a prestress after the overall cooling, such as a constrained ceramic-metal composite bulletproof armor plate and a preparation method thereof disclosed in the Chinese patent application with application number 201810777211.4.
  • these methods are difficult to apply prestress to ceramic materials, and it is more difficult to prestress brittle materials such as concrete and glass with poor heat resistance.
  • the Chinese invention patent application with application number 202010591444.2 discloses a prestressed constraining block for a composite armor structure.
  • the single-cone frustum filler body is matched with the conical surface of the confinement ring to be wedged tightly, and radial prestress is applied to the filler body, which can Prestressing of filling materials such as ceramics, concrete or glass is achieved at room temperature.
  • the single-cone truncated packing body is pushed in from the large port of the confinement ring, if the single-cone truncated truncated trough is not effectively fixed, under the action of impact load, the packing body is easy to loosen, and may move or pop out from the large port of the confinement ring.
  • the side wall of the confinement ring is gradually thickened from the large port to the small port.
  • the higher the confinement ring the greater the difference in wall thickness between the two ports. Therefore, for a thicker constraining block, the wall thickness difference between the large port and the small port of the confinement ring is too large, which will cause waste of material and excessive and uneven distribution of prestress.
  • the technical problem solved by the present invention is: aiming at the above problems existing in the existing bulletproof armor structure, a new type of double-cone frustum embedded prestressed constraining ballistic shielding layer is provided.
  • the present invention adopts the following technical scheme to realize:
  • the double-cone frustum inserting and extruding the prestressed confinement elastic shielding layer comprises a double-cone frustum filling block and a ferrule for inserting the double-cone frustum filling block, wherein the double-cone frustum filling block comprises two coaxial opposite frustums, The two inverted cones of the double-cone truncated filling block are connected by large end faces to form a double frustum with large and small ends in the middle.
  • the ferrule has an inner ring with the same shape as the outer conical surface of the corresponding truncated cone, and the inner ring of the ferrule and the outer cone surface of the corresponding truncated cone are wedged tightly by the conical surface; Fixed connection between hoops.
  • the ferrule is a cylindrical ferrule, and the cylindrical ferrule has a continuous through-tube cavity with both ends open. After the cylindrical ferrule and the corresponding truncated cone are wedged in place, The small end face of the corresponding frustum is flush with the end face of the cylindrical cavity of the cylindrical ferrule.
  • the ferrule is a groove ferrule
  • the large end of the cylinder cavity of the trough ferrule is open, and the small end is closed by a panel
  • the groove ferrule is connected to the corresponding truncated cone wedge. After being in place, the small end face of the corresponding frustum is abutted against the panel.
  • a holding layer or a buffer cushion layer is placed between the small ends of the two opposite frustum of the double-cone frustum filling block and the panel.
  • the ferrule is a clip-edge ferrule
  • the large end of the cylinder cavity of the clip-edge ferrule is open, and the circumference of the small end is provided with an annular clip edge, and the grooved ferrule is connected to the corresponding cone. After the table wedge is in place, the small end face of the corresponding cone is limited by the annular clamping edge.
  • the double-cone truncated filling blocks are respectively fixed by welding or bonding between the ferrules corresponding to two opposite truncated truncated cones.
  • the double-cone frustum is embedded with a prestressed constraining elastic shielding layer, and further, a wrapping layer is provided outside the wedge-tight double-cone frustum filling block and the ferrule.
  • the ferrule is provided with an anchoring plate extending in the circumferential direction, and the ferrules corresponding to two opposite truncated cones on the same double-cone truncated filling block are respectively anchored There are one-to-one corresponding screw holes on the plate, and the ferrules are fixedly connected by bolts passing through the screw holes on the anchor plate.
  • the double-cone frustum inserts the prestressed confinement shielding layer, and further, a plurality of the ferrules are arranged on the constraining frame, and the corresponding ferrules on the two groups of constraining frames are respectively sleeved on the two sides of the several frustum filling blocks.
  • all the ferrules are fixedly connected through the anchor plates set on the restraint frame.
  • the double-cone truncated truncated frustum is embedded with prestressed constraining the shielding layer, and further, the frustum outer side wall of the double-cone frustum filling block and the inner ring wall of the ferrule are respectively matching conical surfaces, or matching conical surfaces.
  • a polygonal pyramid surface, the small end surface of the frustum of the double-cone frustum filling block facing outward is a plane or an external convex surface.
  • the double-cone frustum filling block is a multi-layer structure, which is formed by superimposing one or more materials among ceramics, concrete and glass.
  • a holding layer, a buffer cushion layer or a toughness enhancing layer are arranged between the materials of each layer or on the end faces.
  • the double-cone frustum is embedded with a prestressed constraining elastic shielding layer, and further, the surface of the double-cone frustum filling block is wrapped with fiber-reinforced polymer or metal sheet to form a surface reinforcement layer.
  • two double-cone truncated ferrules are matched with the double-cone frustum filling block, the double-cone frustum filling block is pushed into the upper and lower ferrules, the two are wedged together through the cooperation of the conical surfaces, and the ferrule is applied with the side of the conical frustum filling block.
  • the prestress increases with the penetration depth.
  • the joint between the two ferrules is very easy to form a weak band of the constraining block, which in turn causes fracture and damage.
  • the ferrule can also be connected by bolt anchoring, and the size of the prestress can be adjusted more conveniently through the tightening of the bolts, and it is easy to realize the three-way prestress constraint.
  • the bolted anchor connection generally requires an anchor plate with screw holes on the outside of the ferrule to anchor each component.
  • the welding can be rapidly welded by cold welding technologies such as laser and electric arc, so as to reduce the influence of temperature on the strength of the ferrule.
  • ferrules have different restraining effects
  • the types of ferrules used in the present invention include cylindrical ferrules, grooved ferrules, and clip-edge ferrules.
  • the cylindrical ferrule has side plates but no panel, which can provide lateral prestressing restraint;
  • the grooved ferrule is an integrated restraint member with a panel of the cylindrical ferrule, which can be used in combination with another grooved ferrule to achieve three-way Prestressing constraint;
  • Clamping ferrule is to open a hole smaller than the panel size in the center area of the panel of the grooved ferrule, and form a circular clamping edge at the small end of the ferrule, which mainly provides lateral prestressing restraint, leaving a ring of clamping edge for use It is used to support and fix the truncated truncated filler block, increase the bending resistance and impact resistance of the truncated truncated filler block, and can be used for transparent armor.
  • the armor cannot have coverings, and is generally two-way prestressed restraint, while other armors are preferably three-way prestressed restraint.
  • the wall thickness variation of the ferrule includes variable wall thickness and constant wall thickness. Generally, the ferrule of small size or thinner constraining block can be selected as a ferrule with variable wall thickness, and the ferrule of large size or thick constraining block can be selected. Equal wall thickness ferrules.
  • the double-cone frustum filling block is a single-layer structure or a multi-layer structure, which can be made of at least one main material such as ceramics, concrete, glass, etc. Flexible polymer materials) and other functional materials to achieve higher protection performance; the ferrule can be selected from metal or fiber-reinforced composite materials, wherein the fiber-reinforced composite materials include fiber-reinforced metal matrix composite materials or fiber-reinforced polymers. Since the frustum filler block made of ceramics, concrete and other materials is pushed into the ferrule, the corner area of the filler block in contact with the ferrule is prone to local damage.
  • the Wrap the fiber reinforced polymer or set the metal sheet material for surface reinforcement to prevent the local stress from being too large and damage during the pushing process, or to prevent the fragments of the non-panel-constrained filling block from splashing.
  • the double-cone frustum filling block and the matching ferrule are combined to form a prestressed restraint block of the elastic shielding layer, which is assembled into an integral door, plate, wall and other structures, or a multi-lattice restraint frame is made with a certain ferrule as a unit. , and then fill in the cone frustum filling block and install various other supporting components to assemble into a larger area of prestressed restraint prefabricated protective plate body structure.
  • the use of two pairs of ferrules to constrain the double-cone truncated filler block can reduce the unevenness of the ferrule wall thickness to a certain extent, save materials, and also limit the position. When any side of the prestressed restraint block is impacted, the two pairs The ferrule of the buckle can effectively prevent the cone frustum from coming out of the ferrule.
  • the present invention uses the confinement principle of the ferrule, and the ferrule constrains the frustum filling block with self-tightening function. .
  • the present invention controls and adjusts the radial prestress by two parameters of the push-in depth or the inclination angle of the conical surface of the frustum filling block, so that the prestress in the third direction can be applied by the tightening force of the bolt. It is very simple to apply radial prestress or three-way prestress to brittle materials such as concrete, ceramics, glass, etc. at room temperature. It is suitable for prestressing protective components of various sizes. It can also use more lightweight and high-strength fiber-reinforced polymers. as restraint material.
  • FIG. 1 is a top view of the double-cone frustum embedded prestressed constrained elastic shielding layer according to the first embodiment.
  • FIG. 2 is an A-direction front view of a double-cone truncated truncated prestressed constraining elastic shielding layer according to the first embodiment.
  • FIG 3 is an A-direction front view of another double-cone frustum embedded prestressed constraining elastic shielding layer according to the first embodiment.
  • FIG. 4 shows the force relationship between the frustum and the ferrule before wedging in the first embodiment.
  • FIG. 5 shows the force relationship between the frustum and the ferrule after wedging in the first embodiment.
  • FIG. 6 is a top view of the double-cone frustum embedded prestressed constrained elastic shielding layer according to the second embodiment.
  • FIG. 7 is an A-direction front view of a double-cone truncated truncated prestressed constraining elastic shielding layer according to the second embodiment.
  • FIG. 8 is a front view of the second type of double-cone frustum inserting and extruding the prestressed constrained elastic shielding layer in the second embodiment.
  • FIG. 9 is a front view of the third type of double-cone frustum inserting prestressed constrained elastic shielding layer according to the second embodiment.
  • FIG. 10 is a top view of a double-cone frustum embedded prestressed constrained elastic shielding layer in the third embodiment.
  • FIG. 11 is a top view of another double-cone frustum embedded prestressed constrained elastic shielding layer in the third embodiment.
  • FIG. 12 is a front view of the double-cone frustum inserting and extruding the prestressed constraining elastic shielding layer in the third embodiment.
  • FIG. 13 is a front view of the B-direction of the double-cone frustum inserting and extruding the prestressed constrained elastic shielding layer in the third embodiment.
  • FIG. 14 is a top view of a double-cone frustum embedded prestressed and constrained elastic shielding layer in the fourth embodiment.
  • FIG. 15 is a top view of another double-cone frustum embedded prestressed and constrained elastic shielding layer in the fourth embodiment.
  • FIG. 16 is a front view of the double-cone frustum inserting and extruding the prestressed constrained elastic shielding layer in the fourth embodiment.
  • 17 is a front view of the B-direction of the double-cone truncated truncated prestressed constrained elastic shielding layer in the fourth embodiment.
  • FIG. 18 is a top view of a double-cone frustum embedded prestressed and constrained elastic shielding layer in the fifth embodiment.
  • FIG. 19 is a top view of another double-cone frustum embedded prestressed and constrained elastic shielding layer in the fifth embodiment.
  • FIG. 20 is a front view of the double-cone frustum inserting and extruding the prestressed constrained elastic shielding layer in the fifth embodiment.
  • 21 is a front view of the B-direction of the double-cone truncated truncated prestressed constrained elastic shielding layer in the fifth embodiment.
  • FIG. 22 is a top view of a double-cone frustum embedded prestressed constraining elastic shielding layer in the sixth embodiment.
  • FIG. 23 is a top view of another double-cone frustum embedded prestressed constrained elastic shielding layer in the sixth embodiment.
  • FIG. 24 is a front view of the double-cone frustum inserting and extruding the prestressed constrained elastic shielding layer in the sixth embodiment.
  • 25 is a front view of the B-direction of the double-cone truncated truncated prestressed constraining elastic shielding layer in the sixth embodiment.
  • FIG. 26 is a schematic diagram of the double-cone frustum inserting and extruding the prestressed constrained elastic shielding layer in the seventh embodiment before assembly.
  • FIG. 27 is a schematic diagram of the double-cone frustum inserting and extruding the prestressed constrained elastic shielding layer in the seventh embodiment.
  • 29 is a cross-section of the central axis of the double-cone frustum filling block of the surface reinforcement layer in the ninth embodiment.
  • FIG. 30 is a plot of prestress versus push-in depth in the simulation.
  • Figure 31 is the stress cloud diagram of the concrete truncated cone penetration process in the simulation.
  • Figure 32 shows the relationship between the penetration depth of the projectile and the rate of decrease of the penetration depth and the prestress in the simulation.
  • the double-cone frustum inlaid prestressed constraining elastic shielding layer is a specific embodiment of the present invention.
  • the cylindrical ferrule 21 for inserting and extruding the truncated cone filling block 1, as shown in Figure 2, the double cone truncated truncated filling block 1 is a double cone truncated structure, including two coaxial reverse cones, two reverse cones
  • the big ends of the truncated cones between the troughs are integrally connected, and the small ends face both sides of the biconical truncated truncated truncated block 1, that is, the two ends of the biconical truncated truncated truncated block 1 are the small ends of two opposite truncated cones, and the same biconical truncated truncated truncated
  • the block 1 is equipped with two cylindrical ferrules 21 that are fixedly connected together, and are respectively wrapped around the outer con
  • the cylindrical ferrule 21 has a The cone surface and inner ring of the same shape of the outer cone surface, the inner ring cone surface of the cylindrical ferrule 21 on the same double-cone frustum filling block 1 is a reverse cone surface, which is the same as the two reverse cones on the double-cone frustum filling block 1.
  • the inner ring of the cylindrical ferrule 21 and the outer conical surface of the corresponding truncated cone are matched and wedged by the conical surface; The fixed connection between them is assembled to form the whole of the prestressed constraining block of this embodiment.
  • the inner ring of the cylindrical ferrule 21 is a continuous through-tube cavity with openings at both ends, and the inner ring is a conical surface.
  • the inner ring of the cylindrical ferrule 21 corresponds to the truncated cone wedge with the double-cone truncated filling block 1 through the inner ring.
  • the end face of the small end of the corresponding frustum is flush with the end face of the cylinder cavity of the small end of the cylindrical ferrule, and the big end of the cylindrical ferrule 21 does not exceed the big end of the corresponding frustum, so as to ensure that the double-cone frustum filling block 1 has another Normal assembly of a cylindrical ferrule on a frustum.
  • the double-cone frustum filler blocks 1 in this embodiment are respectively corresponding to the cylindrical ferrules 21 of the two opposite conical frustums, respectively, after wedging and assembling, the cylindrical ferrules 21 are connected by cold welding or adhesively fixed between the large ends of the inner ring. 2, in order to further improve the integrity of the prestressed constraining block, a layer of fiber cloth is bonded and wrapped as a wrapping layer 31 outside the wedged double-cone frustum filling block 1 and the cylindrical ferrule 21, As shown in Figure 3.
  • the double-conical frustum filling block can be made of at least one main material such as ceramics, concrete, glass, etc. Since the frustum of ceramics, concrete and other materials is pushed into the cylindrical ferrule, the corner area of the filling block in contact with the cylindrical ferrule Local damage is easy to occur, so before the frustum packing block is pushed into the ferrule, the surface of the frustum packing block can be wrapped with fiber-reinforced polymer or set with metal sheet material for surface reinforcement to prevent damage or delamination due to excessive local stress during the pushing process .
  • the gap between the frustum of the double-cone frustum packing block 1 and the cylindrical ferrule 21 is Dimensions should meet the following conditions:
  • the outer side wall of the truncated cone is a cone surface, that is, the large end and the small end of the truncated cone are respectively set at both axial ends, and the diameter of the large end of the truncated cone is set to be d 1 , the diameter of the small end of the truncated cone is d 2 , d 1 >d 2 , the diameters referred to here are the diameter of the outer circle of the cross section of the truncated cone and the diameter of the regular hexagonal circumscribed circle of the cross section of the truncated cone;
  • the inner ring wall of the cylindrical ferrule 21 is a tapered surface, and the large end and the small end are respectively set at the axial ends of the inner ring wall of the cylindrical ferrule 21, wherein the diameter of the large end of the cylindrical ferrule 21 is set as R 1 , The diameter of the small end of the ferrule 21 is R
  • the conical inclination angle ⁇ of the outer side wall of the frustum is 0.5° ⁇ 10°, preferably 2° ⁇ 6°.
  • the cone inclination angle ⁇ ranges from 0.5° to 10°, preferably 2° to 6°.
  • the cone inclination here refers to the angle between the outer side wall of the cone frustum and the conical generatrix of the inner ring wall of the cylindrical ferrule 21 and the vertical direction. Or the included angle between the outer side wall of the frustum and the inner ring wall of the cylindrical ferrule 21 between the pyramid ridgeline and the vertical direction.
  • the axial heights of a single frustum and its corresponding cylindrical ferrule 21 are set as h 1 and h 2 , where h 1 ⁇ h 2 .
  • the assembly method and prestressing principle of the double-cone frustum packing block 1 and the cylindrical ferrule 21 are as follows:
  • the large end of the inner ring of the cylindrical ferrule 21 is generally opened upward, and the double-cone frustum Push the inner ring of the cylindrical ferrule 21 downward with one end of the ferrule, and then apply a thrust to the truncated cone in the height direction, and the elastic restoring force of the cylindrical ferrule 21 squeezes the pre-tight truncated cone inward, and applies a pre-compression in its radial direction.
  • the truncated cone can be pushed in by means of jacks, hydraulic presses or bolts. In order to reduce the push-in resistance, temporary lubricant can be applied to the contact cone surfaces of the two, and the lubricant can be removed after pushing into the predetermined position.
  • the radial prestress of the frustum can be adjusted by designing the included angle between the conical generatrix of the outer sidewall of the frustum or the ridgeline of the pyramid and the height, as well as the insertion depth of the filling frustum.
  • the cylindrical ferrule 21 does not yield. Or before failure, the greater the penetration depth of the frustum, the greater the prestress.
  • the frustum can be made of ceramic, concrete or glass material
  • the cylindrical ferrule 21 is made of metal or fiber reinforced composite material
  • the fiber reinforced composite material includes fiber reinforced metal matrix composite material or fiber reinforced polymer.
  • the truncated cone can be directly formed by using the cylindrical ferrule 21 as a template. Before the concrete is poured, the inner side of the cylindrical ferrule 21 should be painted with isolation oil or arranged for isolation. The bottom of the film, the cylindrical ferrule 21 retains the push-in space after the concrete is formed. When the concrete reaches the strength, the bottom of the cylindrical ferrule is supported or fixed, and the truncated cone is further pushed into the cylindrical ferrule 21, so that the truncated cone has a diameter. to prestress.
  • the diameter-to-thickness ratio or the diameter-to-height ratio d 1 /(2h 1 ) of the frustum is 0.5 to 40, preferably 3 to 12.
  • the wall thickness of the inner ring of the cylindrical ferrule 21 may be variable thickness, or may be equal thickness, that is, the top wall thickness t 1 of the cylindrical ferrule 21 ⁇ the bottom wall thickness t 2 .
  • the wall thickness and yield strength of the cylindrical ferrule 21 are determined according to the pre-stress to be applied by the frustum. The greater the ratio t/d of the wall thickness of the cylindrical ferrule 21 to the diameter of the frustum, and the The greater the strength, the greater the potential for constraining prestress that can be provided.
  • the prestress of the truncated cone is not uniform in the height direction.
  • the small difference of the angle ⁇ of the inner ring wall of the ferrule 21 can adjust the size change of the upper and lower prestress.
  • the prestress of the prestressed constraining block gradually increases from top to bottom, and appropriately increasing the angle difference ⁇ between ⁇ and ⁇ can reduce the upper and lower prestress of the trough body
  • the value of ⁇ ranges from 0° to 0.5°, preferably from 0° to 0.2°.
  • the contact stress between the outer wall of the truncated cone and the inner ring wall of the cylindrical ferrule 21 is very small.
  • the difference is h, that is, the push-in depth, and the height difference between the connecting surface of the double-cone frustum and the small end surface of the cylindrical ferrule is h 3 .
  • the double-cone truncated truncated prestressed constraining elastic shielding layer is another specific embodiment of the present invention.
  • the grooved ferrule 22 in which the filling block 1 is inserted and assembled, as shown in FIG. 7 the double-cone frustum filling block 1 in this embodiment has the same double-cone frustum structure as the first embodiment, and the same double-cone frustum filling block 1 is in the same double-cone frustum filling block 1.
  • the grooved ferrule 22 has a corresponding cone shape.
  • the cone surface inner ring of the same shape as the outer cone surface of the truncated cone and the panel 27 covering the small end face of the truncated cone, the inner ring cone surface of the grooved ferrule 22 on the same double cone truncated filling block 1 is a reverse cone surface, Corresponding to the two reverse truncated truncated cones on the double-cone truncated filling block 1, the inner ring of the grooved ferrule 22 and the outer cone surface of the corresponding truncated truncated cone are fitted and wedged tightly by the conical surface, and the panel 27 of the truncated cone is at the same time The small end face is covered, and the force of the cone on the side of the inner ring of the grooved ferrule 22 is the same as that of the cylindrical ferrule; The two grooved ferrules 22 of the frustum of the frustum filling block 1 are fixedly connected, that is, assembled to form the whole of the prestre
  • the grooved ferrule 22 in this embodiment is based on the cylindrical ferrule 21 of the first embodiment, and a panel 27 is added to cover the small end panel of the frustum.
  • the panel 27 is closed to form an open slot for accommodating the frustum. After the slot ferrule 22 and the corresponding frustum are wedged in place, the small end face of the corresponding frustum abuts against the panel 27, and the large end of the slot ferrule 22 also does not exceed Corresponding to the big end of the frustum, ensure the normal assembly of the grooved ferrule on the other frustum of the double-cone frustum filling block 1.
  • the grooved ferrules 22 are connected by cold welding or bonding through the big ends, such as As shown in FIG. 7 , in order to further improve the integrity of the prestressed constraining block, a layer of fiber cloth is bonded and wrapped as a wrapping layer 31 on the wedge-tightened bi-conical frustum filling block 1 and the grooved ferrule 22 , as shown in FIG. 7 . 8 shown.
  • the double-cone frustum filling block 1 adopts a multi-layer structure, and a holding layer is padded between the small end of a section of the conical frustum and the panel 27 of the corresponding grooved ferrule 22 32.
  • a buffer layer 33 is placed between the small end of the other truncated cone and the panel 27 of the corresponding grooved ferrule 22, as shown in FIG. 9 .
  • the retaining layer 32 is made of graphite layer, and the buffer layer 33 is made of functional materials such as foamed aluminum, honeycomb material, polymer flexible material, etc., to achieve higher protection performance.
  • the prestressed constraining block includes a double The truncated cone packing block 1 and the cylindrical ferrule 21 for inserting and extruding the double truncated cone packing block 1 are shown in Figure 12 and Figure 13.
  • the prestressed constraining block includes a double The truncated cone packing block 1 and the cylindrical ferrule 21 for inserting and extruding the double truncated cone packing block 1 are shown in Figure 12 and Figure 13.
  • There are two reverse cones the big ends of the cones between the two reverse cones are integrally connected, and the small ends face both sides of the double cone filling block 1, that is, the two ends of the double cone filling block 1 are two opposite sides.
  • the same double-cone frustum filling block 1 is equipped with two cylindrical ferrules 21 that are fixedly connected together, which are respectively wrapped around the outer conical surfaces of the two opposite frustum of the double-cone frustum filling block 1,
  • the cylindrical ferrule 21 has a conical inner ring with the same shape as the outer conical surface of the corresponding frustum.
  • the two opposite conical frustums on the frustum filling block 1 correspond to each other, and the inner ring of the cylindrical ferrule 21 and the outer conical surface of the corresponding frustum are wedge-fitted by the conical surface;
  • the fixed connection between the two cylindrical ferrules 21 of the truncated cones forms the whole of the prestressed constraining block of this embodiment.
  • the fixed connection between the cylindrical ferrules 21 is realized by providing an anchor plate 24 extending circumferentially of the cylindrical ferrule 21 .
  • the frustum of the double-cone frustum filling block 1 and the inner ring of the cylindrical ferrule 21 are respectively described with a pyramidal surface with a regular octagonal cross-section and a conical surface with a circular cross-section.
  • the frustum of the double-cone frustum filling block 1 is a pyramid frustum with a regular octagonal cross section
  • the inner ring of the corresponding cylindrical ferrule 21 is a matching regular octagonal pyramid surface
  • the regular octagon of the cylindrical ferrule 21 Four triangular anchoring plates 24 extend outward from the outer ring, forming a square frame with the other four sides of the regular octagon.
  • the end faces are flush, the four anchoring plates are respectively provided with screw holes, and the screw holes set on the cylindrical ferrule anchoring plates 24 corresponding to the two opposite conical frustums on the same double-cone frustum filling block 1 correspond to each other one by one.
  • the screw holes 3 on the anchor plate 24 can be bolt through holes, which can be locked by bolts and nuts, or can be bolt through holes on one side of the anchor plate and threaded holes on the other side. After the bolt passes through the hole, it is directly screwed and locked with the threaded screw hole on the anchor plate on the other side, as shown in Figure 13.
  • the frustum of the double-cone frustum filling block 1 is a frustum with a circular cross section
  • the inner ring of the corresponding cylindrical ferrule 21 is a matching conical surface
  • the circular outer ring of the cylindrical ferrule 21 is outward Extending to form a positive frame
  • the side length of the square frame is the same as the diameter of the circular outer ring of the cylindrical ferrule 21
  • the anchoring plates 24 are respectively located at the four corners of the square frame, and the anchoring plates 24 are close to the large end of the cylindrical ferrule 21, and
  • the end face is flush with the large end face of the cylindrical ferrule 21, and the four corner anchoring plates of the square frame are respectively provided with screw holes.
  • the screw holes set in 24 correspond one by one. After the two cylindrical ferrules 21 on the double-cone frustum filling block 1 are assembled in place, align the screw holes on the anchor plate 24 in the circumferential direction, and pass the bolts 3 through the double-cone. The screw holes on the two cylindrical ferrules 21 on the table filling block 1 are locked and fixed.
  • the screw holes 3 on the anchor plate 24 can be bolt through holes, which can be locked by bolts and nuts, or can be bolt through holes on one side of the anchor plate and threaded holes on the other side.
  • the double-cone frustum filler block 1 is tried to be radially prestressed through the cylindrical ferrule 21, and the prestressed
  • the size can be adjusted by the tightening force of the bolts, so as to ensure the embedding and extrusion effect of the cylinder ferrules 21 on the respective truncated cone structures, and at the same time effectively prevent the ferrules from coming out.
  • the double-cone truncated prestressed constraining elastic shielding layer in the figures is another specific embodiment of the present invention, and this embodiment is an extension of the second embodiment.
  • the prestressed constraining block includes double The frustum packing block 1 and the grooved ferrule 22 for inserting and extruding the double-cone frustum packing block 1 are shown in Fig. 16 and Fig. 17 .
  • the double-cone frustum packing block 1 of this embodiment is the same as that of the second embodiment.
  • Double-cone frustum structure two grooved ferrules 22 fixedly connected together are assembled on the same double-cone frustum filling block 1, respectively surrounding the outer conical surfaces and the small
  • the grooved ferrule 22 has a conical inner ring with the same shape as the outer conical surface of the corresponding frustum and a panel 27 covering the small end face of the conical frustum.
  • the inner ring cone surface of the ferrule 22 is a reverse cone surface, which corresponds to the two reverse truncated cones on the double-cone truncated filling block 1.
  • the inner ring of the grooved ferrule 22 and the outer cone surface of the corresponding truncated cone pass through the cone.
  • the surface is wedged tightly, and at the same time its panel 27 covers the small end face of the frustum, and the force of the frustum on the inner ring side of the grooved ferrule 22 is the same as that of the cylindrical ferrule;
  • the fixed connection between the grooved ferrules 22 is realized by providing an anchor plate 24 extending circumferentially of the grooved ferrules 22 .
  • the truncated cone of the double-cone truncated filling block 1 and the inner ring of the grooved collar 22 are respectively described as a pyramidal surface with a regular octagonal cross-section and a conical surface with a circular cross-section.
  • the frustum of the double-cone frustum filling block 1 is a pyramid frustum with a regular octagonal cross section
  • the inner ring of the corresponding grooved ferrule 22 is a matching regular octagonal pyramidal surface
  • the regular octagonal side of the grooved ferrule 22
  • Four triangular anchoring plates 24 are extended outward from the outer ring, forming a square frame with the other four sides of the regular octagon.
  • the end faces are flush, the four anchoring plates are respectively provided with screw holes, and the screw holes set on the cylindrical ferrule anchoring plates 24 corresponding to the two opposite conical frustums on the same double-cone frustum filling block 1 correspond to each other one by one.
  • the screw holes 3 on the anchor plate 24 can be bolt through holes, which can be locked by bolts and nuts, or can be bolt through holes on one side of the anchor plate and threaded holes on the other side.
  • the frustum of the double-cone frustum packing block 1 is a frustum with a circular cross section
  • the inner ring of the corresponding grooved ferrule 22 is a matching conical surface
  • the circular outer ring of the grooved ferrule 22 is outward Extending to form a positive frame
  • the side length of the square frame is the same as the diameter of the circular outer ring of the grooved ferrule 22
  • the anchoring plates 24 are respectively located at the four corners of the square frame, and the anchoring plates 24 are close to the large end of the grooved ferrule 22
  • the end face is flush with the large end face of the grooved ferrule 22
  • screw holes are respectively provided on the four-corner anchoring plates of the square frame
  • the same double-cone frustum filling block 1 corresponds to the cylindrical ferrule anchoring plates of two reverse frustums respectively.
  • the screw holes set in 24 correspond one by one. After the two grooved ferrules 22 on the double-cone frustum filling block 1 are assembled in place, align the screw holes on the anchor plate 24 in the circumferential direction, and pass the bolts 3 through the double-cone. The screw holes on the two grooved ferrules 22 on the table filling block 1 are locked and fixed.
  • the screw holes 3 on the anchor plate 24 can be bolt through holes, which can be locked by bolts and nuts, or can be bolt through holes on one side of the anchor plate and threaded holes on the other side.
  • the double-cone truncated prestressed constraining elastic shielding layer in the figures is another specific embodiment of the present invention.
  • This embodiment is an extension of the fourth embodiment.
  • the prestressed constraining block includes double The frustum packing block 1 and the grooved ferrule 22 for inserting and extruding the double-cone frustum packing block 1 are shown in FIG. 20 and FIG. 21 .
  • the double-cone frustum packing block 1 of this embodiment is the same as that of the second embodiment.
  • Double-cone frustum structure two grooved ferrules 22 fixedly connected together are assembled on the same double-cone frustum filling block 1, respectively surrounding the outer conical surfaces and the small
  • the grooved ferrule 22 has a conical inner ring with the same shape as the outer conical surface of the corresponding frustum and a panel 27 covering the small end face of the conical frustum.
  • the inner ring cone surface of the ferrule 22 is a reverse cone surface, which corresponds to the two reverse truncated cones on the double-cone truncated filling block 1.
  • the inner ring of the grooved ferrule 22 and the outer cone surface of the corresponding truncated cone pass through the cone.
  • the surface is wedged tightly, and at the same time its panel 27 covers the small end face of the frustum, and the force of the frustum on the inner ring side of the grooved ferrule 22 is the same as that of the cylindrical ferrule;
  • the small end faces of the two opposite frustums of the double-cone frustum filling block 1 in the fourth embodiment are planes, and the panels 27 on the corresponding grooved ferrules 22 are corresponding flat plates.
  • the small end faces of the two opposite frustums of the double-cone truncated filling block 1 in the embodiment are external convex surfaces, and the external convex surfaces include external convex arc spherical cap surfaces or external convex pyramid surfaces, which is conducive to projectile yaw and improves prestress. Constrains the block's resistance to penetration.
  • the double-cone truncated prestressed constraining elastic shielding layer in the figure is another specific embodiment of the present invention, and this embodiment adopts a card edge ferrule different from the above embodiment 23
  • the prestressed restraint block includes the double-cone frustum filling block 1 and the clamping edge ferrule 23 for inserting and assembling the double-cone frustum filling block 1, as shown in Figure 24 and Figure 25
  • the double-cone frustum filling block 1 of the present embodiment has the same double-cone frustum structure as the second embodiment, and two clamping edge ferrules 23 that are fixedly connected together are assembled on the same double-cone frustum filling block 1, which are respectively wrapped around the sleeve.
  • the clamp ferrule 23 On the outer conical surfaces and the small end faces of the two reversed conical frustum of the double-cone frustum packing block 1, the clamp ferrule 23 has a conical inner ring with the same shape as the outer conical surface of the corresponding frustum and a
  • the annular clamping edge 28 provided on the circumference of the small end face, the annular clamping edge 28 can be regarded as the grooved ferrule 22 in the second embodiment.
  • the inner ring cone surface of the clamp ferrule 23 on 1 is a reverse cone surface, which corresponds to the two reverse cone truncated cones on the double-cone truncated filling block 1.
  • the inner ring of the clamp ferrule 23 and the outer cone of the corresponding cone The taper surfaces are wedged together through the taper surfaces, and the edge ferrule 23 positions the outer circumference of the small end face of the frustum, but exposes most of the center of the small end face of the frustum, and the frustum is on the card edge.
  • the force on the side of the inner ring of the ferrule 23 is the same as that of the cylindrical ferrule;
  • the fixed connection between the clamp ferrules 23 of the table, that is, assembly, forms the whole of the prestressed constraining block of this embodiment.
  • the fixed connection between the edge ferrules 23 in this embodiment is achieved by circumferentially extending the anchor plates 24 on the edge ferrules 23 , which will not be repeated in this embodiment.
  • Embodiments 1 to 6 provide a prestressed constraining block unit of an elastic shield layer composed of a single double-cone frustum filling block. On this basis, the implementation of this embodiment adopts a prestressed constraining block unit with multiple double-cone frustum filling blocks.
  • the double-cone truncated truncated prestressed constraining elastic shielding layer in the illustration includes seven double-cone frustum filling blocks 1 and two constraining frames 2.
  • the constraining frame 2 is a circular plate-like structure, which constrains
  • the frame 2 is provided with seven cylindrical ferrules 21 for inserting and extruding the double-cone frustum filling block 1.
  • the conical frustum of the double-cone frustum filling block 1 adopts a hexagonal frustum with a regular hexagonal cross-section, and the inner ring of the cylindrical ferrule 21 is
  • the assembly between the single cylindrical ferrule 21 and the double-cone frustum packing block 1 is the same as the first embodiment, which is the corresponding hexagonal pyramidal surface of the regular hexagonal cross-section.
  • the six cylindrical ferrules 21 on the constraining frame 2 are laid in a continuous plane according to a center and six peripheral modes, and the adjacent cylindrical ferrules 21 share side edges.
  • the cylindrical ferrules 21 are connected to each other, and an anchoring plate 24 is provided in the area of the outer circumference avoiding the peripheral cylindrical ferrule 21.
  • the anchoring plate 24 is provided with screw holes, and six screw holes are evenly distributed along the circumferential direction of the constraining frame 2.
  • the multiple double-cone frustum filling blocks in the prestressed constraining block of this embodiment share a set of constraining frames, which increases the protection area and at the same time, when only a certain filling block is damaged, other prestressed constraining blocks do not need to be replaced , it is only necessary to take out and replace the damaged filling block, which is more cost-effective than replacing the entire large-area prestressed constraining block.
  • the double-cone frustum filling block 1 in the above-mentioned scheme is an upper and lower two-layer structure.
  • the materials are superimposed by ceramics, a graphite accommodating layer 32 is arranged between the truncated cones of the two-layer structure, and a graphite accommodating layer 32 is arranged on the surface of the ceramic plate of the first layer structure 11 in the projectile direction.
  • a buffer layer or toughness can also be installed between the small end face of the conical frustum of the two-layered structure and the panel 27 of the grooved ferrule 22 enhancement layer.
  • one or more materials of ceramics, concrete and glass materials can be selected for stacking combination according to the application of the shielding layer.
  • the surface of the double-conical truncated truncated filling block 1 shown in the eighth embodiment is wrapped with the surface reinforcement layer 34 for overall reinforcement, as shown in the following example:
  • the surface reinforcement layer 34 is made of one or more materials of polymer, fiber-reinforced polymer or metal sheet.
  • the multi-layer main material is made of transparent materials such as transparent ceramics and glass
  • the surface reinforcement layer 34 is made of transparent polymer materials such as plexiglass (polymethyl methacrylate) ; or just wrap the non-transparent surface reinforcement layer 34 on the sides, leaving the upper and lower surface layers missing.
  • the holding layer is made of transparent materials, such as PVB (polyvinyl butyral ester) or plexiglass, or other interlayer film materials (SGP, EVA, PU).
  • the materials of the ferrule and the double conical frustum of the prestressed constraining block are taken as steel and concrete, respectively.
  • the height of a single steel hoop and the inner diameter of the large port are 50mm and 100mm respectively, the height of the double conical frustum is 100mm, and the inclination angle ⁇ of each cone surface is taken as 3°.
  • the design of prestressed working conditions is shown in Table 1. There are 8 working conditions in total.
  • the push-in depth h of a single steel ferrule designed for each working condition corresponds to the surplus difference ⁇ .
  • the push-in depth of the target body is divided into 7 grades, 2mm As a grade, the radial prestress of the target increases with the push-in depth in turn, and the maximum push-in depth is 14mm.
  • the tolerance range between the diameter of the small end of the truncated cone and the inner diameter of the large end of the ferrule in each working condition is 3.8 to 5.2 mm.
  • the impact projectile is a round-nose projectile with a diameter of 7.62mm and a length of 25mm.
  • the finite element model is established according to the geometrical ruler of the steel ferrule and the double-cone truncated concrete target.
  • the entire model consists of ferrules, double conical frustums, projectiles, backing plates and thrust blocks, with a total of 5 parts, and is modeled with 8-node solid hexahedron elements (*SECTION_SOLID). 1/4 model with XZ plane symmetry.
  • the average grid size of the projectile is 1mm, and it is divided into 284 cells.
  • the double-cone frustum core area where the projectile is incident is subjected to mesh refinement, and the rest of the meshes are gradually thickened toward the surrounding area.
  • the unit size is 0.5mm ⁇ 0.5mm ⁇ 0.5mm, and there are 171,600 units in total. unit.
  • the average unit size of a single steel ferrule is about 2mm ⁇ 2mm ⁇ 0.5, and there are 14,400 units in total.
  • the entire finite element model has a total of 266,484 elements.
  • the concrete material adopts the HJC model, the concrete density is 2400kg/m 3 , and the axial compressive strength is 120MPa.
  • the specific parameters are shown in Table 2.
  • the *MAT_ADD_EROSION erosion failure criterion is introduced to avoid the hourglass effect caused by the element distortion from affecting the stability of the calculation, and the maximum principal strain is used to control the failure of the element. When the maximum principal strain of the target element exceeds the set failure strain, the element failure is disabled. delete.
  • the steel ferrule material uses the plasticity-dynamic model in LS-DYNA (*MAT_PLASTIC_KINEMATIC/MAT_003) to simulate the dynamic behavior of the ferrule. According to the von Mises yield criterion, an elastic-plastic model with dynamic hardening plasticity is established. The main parameters of the model are shown in Table 3.
  • the loading system and the test process are divided into two stages.
  • the first stage is to push the conical frustum to apply the prestress simulation test, and then the second stage is to carry out the anti-penetration simulation test.
  • the keyword *BOUNDARY_PRESCRIBED_MOTION_SET is used to give the thrust block displacement to push the concrete cone into the steel ferrule, the loading rate is 1mm/ms, and the specified depth of the ferrule is stabilized for 10ms, and the corresponding restart file is generated.
  • the projectile penetration stage (second stage), use the full restart function in LS-DYNA to perform the second stage simulation, modify the original k-file, delete elements and boundaries that are not related to the penetration process, and add projectile cells and its corresponding material parameters and speed parameters.
  • the projectile velocity is given by the keyword *CHANGE_VELOCITY_GENERATION, and the stress state of each component in the previous process is transmitted to the corresponding component in the restart process by the keyword *STRESS_INITIALIZATION.
  • the magnitude of prestress can also be predicted by establishing the relationship between thrust and prestress, so as to control the magnitude of prestress by pushing depth and thrust. It is noted that when the target body is pushed in by 12mm, the average prestress applied to the target body is 253MPa, which is 2.1 times the compressive strength of the concrete axis, and the concrete target body is almost not damaged. This is due to the hoop effect of the steel ring. The strength is improved, coupled with the effect of prestress, the strength of the concrete is further improved, and there is almost no damage even if the radial stress reaches 253MPa.
  • the penetration simulation is carried out with a round-headed projectile with a speed of 1000m/s.
  • the stress cloud map of each target at 0.025ms after the projectile penetration starts and 0.225ms after the end of penetration is shown in Figure 31.
  • Figure 32 The relationship curve between the penetration depth of the target body, the penetration depth decline rate and the prestress, it can be seen that with the increase of the prestress, the penetration depth gradually decreases.
  • the penetration depth is 12mm
  • the average prestress applied to the truncated cone is At 253 MPa
  • the penetration depth is 35% lower than that of the constrained and non-prestressed concrete double conical frustum respectively, and the penetration resistance is the best.
  • its anti-penetration performance decreased rapidly. Therefore, applying appropriate prestressing force by the method of the present invention can significantly improve the anti-penetration performance of the filling block.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

本发明公开了一种双锥台嵌挤预应力约束遮弹层,主要由双锥台填充块和与其匹配约束的套箍装配而成。采用两个对扣的套箍分别装配在双锥台填充块的两锥台面上,套箍的内圈和对应锥台的外锥面之间通过锥面配合楔紧,两锥台的套箍之间固定连接。本发明在室温条件下对陶瓷、混凝土、玻璃等脆性材料施加径向预应力或者三向预应力非常简便,适合各种尺寸的防护构件施加预应力,还可以采用更加轻质高强的纤维增强聚合物作为约束材料,在一定程度上减少套箍壁厚的不均匀性,节省材料,并且具有限位的作用,当预应力约束块任意一面受到冲击时,两个对扣的套箍均能有效防止锥台从套箍中脱出。

Description

双锥台嵌挤预应力约束遮弹层 技术领域
本发明涉及一种双锥台嵌挤预应力约束遮弹层。
背景技术
随着反装甲武器装备的不断升级和发展,以及人工智能自动瞄准枪械的开发和应用,对坦克、步兵战车、防弹车等装甲设备的防护性能以及防护结构提出更为严峻地挑战,研发更轻盈、更有效的防护装甲和防护结构任重道远。自Wilkins等人对陶瓷薄板、有限厚度的铝背板进行小长径比穿甲弹试验这一开创性研究工作以来,在过去的几十年里,陶瓷装甲的抗弹性能研究一直受到大家的关注。由于陶瓷材料(如Al 2O 3、B 4C、SiC、TiB 2和AlN等)具有低密度、高硬度、高抗压强度等特点,能够有效地钝化和磨蚀弹丸,结合韧性背板对碎片动能的吸收,显著提高了装甲的抗侵彻性能,使得陶瓷复合装甲得到广泛地应用。然而,由于陶瓷为低韧性和低抗拉强度的脆性材料,其在弹体的冲击下很容易出现崩塌和飞溅等现象,如果采用韧性材料对其进行约束,这种现象可以得到显著的改善。
研究表明,高强度、高硬度分块陶瓷靶在侧向板的约束下,弹丸侵彻过程中产生的约束力有效遏制陶瓷靶的裂纹扩展,提高陶瓷靶的抗侵彻性能。随着研究的深入,陶瓷靶在侧向板约束的基础上进一步施加双轴预应力(围压),其静态、动态强度以及硬度都随着预应力的增大而增大。施加在陶瓷靶上的预应力可以抵消弹丸局部冲击瞬态拉应力,有效抑制靶体内部裂纹萌生和扩展。即使在高速冲击下陶瓷内部发生断裂或者破碎,但各裂块之间挤压紧密,只有裂纹而没有扩容,使得破碎陶瓷区域内部存在更大的侵彻阻力,十分有效的提高陶瓷的抗侵彻和抗冲击性能。
而目前分块陶瓷预应力约束主要采用机械挤压法和热装法。机械挤压法是在陶瓷面板面内方向推动侧向板直接挤压陶瓷板的侧面,对陶瓷施加横向预应力;热装法是将存在盈差的陶瓷块和金属约束环在高温下装配,热膨胀系数较大、收缩更快的金属在整体降温后压缩陶瓷施加预应力,如申请号为201810777211.4的中国专利申请公开的一种约束陶瓷-金属复合防弹装甲板及其制备方法。但这些方法对陶瓷材料施加预应力比较困难,对耐热性能较差的混凝土和玻璃等脆性材料进行分块预应力约束更为困难。
申请号为202010591444.2的中国发明专利申请公开了一种用于复合装甲结构的预应力约束块,通过单锥台填充体与约束环锥面配合而楔紧,对填充体施加径向预应力,可以在室温条件下实现对陶瓷、混凝土或者玻璃等填充材料施加预应力。但是由于单锥台填充体从约束环的大端口推入后,如果单锥台没有得到有效的固定,在冲击荷载作用下,填充台体容易松动,可能从约束环的大端口移动或者弹出,造成预应力损失,对抗多发打击性能造成不利影响。而且对于外侧面与端面垂直的约束环(套箍),其侧壁由大端口至小端口逐渐增厚,约束环越高,两个端口的壁厚差距越大。因此对于较厚的约束块,约束环的大端口与小端口壁厚差距过大,将会造成材料的浪费和预应力分布过度不均匀。
发明内容
本发明解决的技术问题是:针对现有防弹装甲结构存在的上述问题,提供一种新型的双锥台嵌挤预应力约束遮弹层。
本发明采用如下技术方案实现:
双锥台嵌挤预应力约束遮弹层,包括双锥台填充块以及对双锥台填充块进行嵌挤的套箍,所述双锥台填充块包括同轴的两个反向锥台,所述双锥台填充块的两个反向锥台以大端面相连接,构成中间大两端小的双平截头体,两个反向锥台的外锥面上分别环绕套装有套箍,所述套箍具有与对应锥台的外锥面相同形状的内圈,所述套箍的内圈和对应锥台的外锥面之间通过锥面配合楔紧;两个锥台的套箍之间固定连接。
作为本发明的一种优选方案,所述套箍为筒形套箍,所述筒形套箍具有两端开口的连续贯穿筒腔,所述筒形套箍与对应锥台楔紧到位后,对应锥台的小端端面与筒形套箍的筒腔端面平齐。
作为本发明的又一种优选方案,所述套箍为槽式套箍,所述槽式套箍的筒腔大端开口,小端通过面板封闭,所述槽式套箍与对应锥台楔紧到位后,对应锥台的小端端面与面板抵接。
上述方案中的双锥台嵌挤预应力约束遮弹层,进一步的,所述双锥台填充块的两个反向锥台的小端与面板之间垫设容留层或缓冲垫层。
作为本发明的又一种优选方案,所述套箍为卡边套箍,所述卡边套箍的筒腔大端开口,小端圆周设置环形卡边,所述槽式套箍与对应锥台楔紧到位后,对应锥台的小端端面通过环形卡边限位。
在本发明的双锥台嵌挤预应力约束遮弹层中,优选的,所述双锥台填充块分别对应两个反向锥台的套箍之间通过焊接或粘结固定。
上述方案中的双锥台嵌挤预应力约束遮弹层,进一步的,楔紧的所述双锥台填充块和套箍外设置包裹层。
在本发明的双锥台嵌挤预应力约束遮弹层中,优选的,所述套箍周向延伸设置锚固板,同一双锥台填充块上分别对应两个反向锥台的套箍锚固板上设有一一对应的螺孔,所述套箍之间通过穿过锚固板上螺孔的螺栓固定连接。
上述方案中的双锥台嵌挤预应力约束遮弹层,进一步的,若干所述套箍排列设置在约束框架上,两组约束框架上对应的套箍分别套装在若干锥台填充块的两个反向锥台上,所有套箍通过约束框架上设置的锚固板进行固定连接。
上述方案中的双锥台嵌挤预应力约束遮弹层,进一步的,所述双锥台填充块的锥台外侧壁和套箍的内圈壁分别为相匹配的圆锥面,或相匹配的多边形棱锥面,所述双锥台填充块朝外的锥台小端面为平面或外凸面。
上述方案中的双锥台嵌挤预应力约束遮弹层,进一步的,所述双锥台填充块为多层结构,采用陶瓷、混凝土、玻璃中的一种或者多种材料叠合而成双锥台填充块,所述各层材料之间或者端面设置容留层、缓冲垫层或者韧性增强层。
上述方案中的双锥台嵌挤预应力约束遮弹层,进一步的,所述双锥台填充块表面包裹纤维增强聚合物或者金属薄板形成表面加固层。
本发明将两个对扣的套箍配合双锥台填充块,将双锥台填充块推入上下的套箍内,两者通过锥面配合相互楔紧,套箍施加锥台填充块侧面的预应力随着推入深度的增大而增大。然而双套箍预应力约束双锥台填充块在受到高速冲击后,两个套箍之间的接缝非常容易形成约束块的薄弱带,继而引发断裂破坏,因此为了防止填充块在接缝处破坏,最好通过冷焊接或者粘结包裹层连接两个套箍,使两个套箍连为整体起到更好的约束作用。除了通过焊接或者粘结的方法,还可以通过螺栓锚固方式连接套箍,而通过螺栓的松紧可以更为方便的调整预应力的大小,容易实现三向预应力约束。采用螺栓锚固连接一般需要在套箍外侧设置螺孔的锚固板,用于锚固各个组件。所述的焊接可以采用激光、电弧等冷焊技术快速焊接,以减少温度对套箍强度的影响。
对于不同的套箍种类有不同的约束效果,本发明采用的套箍种类有筒形套箍、槽式套箍、卡边套箍。筒形套箍存在侧板而无面板,能够提供侧向预应力约束;槽式套箍是筒形套箍自带面板一体式约束构件,跟另一个槽式套箍组合使用,可以实现三向预应力约束;卡边套箍是将槽式套箍的面板中心区域开小于面板尺寸的孔,在套箍小端形成圆环卡边,主要提供侧向预应力约束,留有一圈卡边用于支撑和固定约束锥台填充块,增加锥台填充块的抗弯和抗冲击性能,可以用于透明装甲。结合本发明的双锥台填充块,采用两种相同的套箍构成约束组件约束,或者采用三种套箍两两组合对扣约束双锥台填充块。对锥台填充块施加径向预应力,在一定程度上可以提高其抗侵彻性能,如果锥台填充块能得到三向预应力约束,其抗侵彻性能将会得到进一步地提高,由于透明装甲不能有遮盖物,一般为双向预应力约束,而其它装甲优选三向预应力约束。套箍的壁厚变化形式有变壁厚和等壁厚,小尺寸或者较薄的约束块其套箍一般可以选取变壁厚套箍,对于大尺寸或者较厚的约束块其套箍可以选取等壁厚套箍。
双锥台填充块为单层结构或者多层结构,可以采用陶瓷、混凝土、玻璃等至少一种主体材料,多层结构可以结合容留层(石墨层)、缓冲垫层(泡沫铝、蜂窝材料、高分子柔性材料)等功能材料,实现更高防护性能;套箍可以选取金属或者纤维增强复合材料,其中纤维增强复合材料包括纤维增强金属基复合材料或纤维增强聚合物。由于陶瓷、混凝土等材料的锥台填充块在推入套箍过程中,与套箍接触的填充块边角区域容易出现局部破损,因此可以在锥台填充块推入套箍之前,在其表面包裹纤维增强聚合物或者设置金属薄板材料进行表面加固,防止推挤过程中局部应力过大而破坏,或者防止无面板约束填充块碎片飞溅。
本发明通过双锥台填充块与配套的套箍组合成遮弹层的预应力约束块,拼装成整体的门、板、墙等结构,或者以某种套箍为单元制成多格约束框架,然后往里填塞锥台填充块和安装其它各种配套构件,装配成更大面积的预应力约束装配式防护板体结构。采用两个对扣的套箍约束双锥台填充块在一定程度上减少套箍壁厚的不均匀性,节省材料,还有限位作用,当预应力约束块任意一面受到冲击时,两个对扣的套箍均能有效防止锥台从套箍中脱出。
本发明与现有技术相比,通过套箍约束原理,套箍约束锥台填充块具有自紧功能,越压越紧,越打越紧,填充块的强度随着预应力的增大相应增大。本发明通过推入深度或者锥台填充块的锥面倾角两种参数控制和调节径向预应力大小,可以通过螺栓的紧固力施加第三个方向的预应力。在室温条件下非常简便的对混凝土、陶瓷、玻璃等脆性材料施加径向预应力或者三向预应力,适合各种尺寸的防护构件施加预应力,还可以采用更加轻质高强的纤维增强聚合物作为约束材料。由于锥台填充块的底面外径与套箍顶面内径具有更大的容差,可以容许更高的加工误差,相比其它装配方式更环保、更容易实现,施加预应力或者调节预应力大小更为简便。由多块锥台填充块拼装而成的装配式防护结构,在分块预应力约束作用下,受侵彻后损伤范围将得到很大程度地减少,可以经受多次打击,而且受损锥台填充块容易拆卸取出更换,修复简便快捷,在飞机洞库、导弹井盖、舰船、武装直升机、装甲车和坦克等多种防护领域具有广阔的应用前景。
以下结合附图和具体实施方式对本发明作进一步说明。
附图说明
图1为实施例一的双锥台嵌挤预应力约束遮弹层的俯视图。
图2为实施例一的一种双锥台嵌挤预应力约束遮弹层的A向主视图。
图3为实施例一的另一种双锥台嵌挤预应力约束遮弹层的A向主视图。
图4为实施例一中的锥台和套箍楔紧之前的受力关系。
图5为实施例一中的锥台和套箍楔紧之后的受力关系。
图6为实施例二的双锥台嵌挤预应力约束遮弹层的俯视图。
图7为实施例二的一种双锥台嵌挤预应力约束遮弹层的A向主视图。
图8为实施例二的第二种双锥台嵌挤预应力约束遮弹层的A向主视图。
图9为实施例二的第三种双锥台嵌挤预应力约束遮弹层的A向主视图。
图10为实施例三中的一种双锥台嵌挤预应力约束遮弹层的俯视图。
图11为实施例三中的另一种双锥台嵌挤预应力约束遮弹层的俯视图。
图12为实施例三中的双锥台嵌挤预应力约束遮弹层的A向主视图。
图13为实施例三中的双锥台嵌挤预应力约束遮弹层的B向主视图。
图14为实施例四中的一种双锥台嵌挤预应力约束遮弹层的俯视图。
图15为实施例四中的另一种双锥台嵌挤预应力约束遮弹层的俯视图。
图16为实施例四中的双锥台嵌挤预应力约束遮弹层的A向主视图。
图17为实施例四中的双锥台嵌挤预应力约束遮弹层的B向主视图。
图18为实施例五中的一种双锥台嵌挤预应力约束遮弹层的俯视图。
图19为实施例五中的另一种双锥台嵌挤预应力约束遮弹层的俯视图。
图20为实施例五中的双锥台嵌挤预应力约束遮弹层的A向主视图。
图21为实施例五中的双锥台嵌挤预应力约束遮弹层的B向主视图。
图22为实施例六中的一种双锥台嵌挤预应力约束遮弹层的俯视图。
图23为实施例六中的另一种双锥台嵌挤预应力约束遮弹层的俯视图。
图24为实施例六中的双锥台嵌挤预应力约束遮弹层的A向主视图。
图25为实施例六中的双锥台嵌挤预应力约束遮弹层的B向主视图。
图26为实施例七中的双锥台嵌挤预应力约束遮弹层装配前的示意图。
图27为实施例七中的双锥台嵌挤预应力约束遮弹层装配后的示意图。
图28为实施例八中的双结构层双锥台填充块中心轴线剖面。
图29为实施例九中的表面加固层双锥台填充块中心轴线剖面。
图30为模拟中的预应力-推入深度的关系曲线。
图31为模拟中的混凝土圆锥台侵彻过程应力云图。
图32为模拟中的弹丸侵彻深度以及侵彻深度下降率与预应力的关系曲线。
图中标号:1-双锥台填充块,11-第一结构层,12-第二结构层,2-约束框架,21-筒形套箍,22-槽式套箍,23-卡边套箍,24-锚固板,27-面板,28-卡边;
3-螺栓,31-包裹层,32-容留层,33-缓冲垫层,34-表面加固层。
具体实施方式
实施例一
参见图1和图2,图示中的双锥台嵌挤预应力约束遮弹层为本发明的一种具体实施方案,该遮弹层的预应力结构包括双锥台填充块1以及对双锥台填充块1进行嵌挤装配的筒形套箍21,如图2所示,双锥台填充块1为双锥台结构,包括同轴的两个反向锥台,两个反向锥台之间的锥台大端一体连接,小端朝双锥台填充块1的两侧,即双锥台填充块1的两端面均为两个反向锥台的小端,同一双锥台填充块1装配两个固定连接在一起的筒形套箍21,分别环绕套装在双锥台填充块1的两个反向锥台的外锥面上,筒形套箍21具有与对应锥台的外锥面相同形状的锥面内圈,同一双锥台填充块1上的筒形套箍21的内圈锥面为反向锥面,与双锥台填充块1上的两个反向锥台对应,筒形套箍21的内圈和对应锥台的外锥面之间通过锥面配合楔紧;然后将同一双锥台填充块1上的两个锥台的筒形套箍21之间固定连接即装配形成本实施例的预应力约束块整体。
本实施例中的筒形套箍21的内圈为具有两端开口的连续贯穿筒腔,内圈为锥面,在筒形套箍21通过内圈与双锥台填充块1对应锥台楔紧到位后,对应锥台的小端端面与筒形套箍的小端筒腔端面平齐,筒形套箍21的大端不超过对应锥台的大端,保证双锥台填充块1另一锥台上筒形套箍的正常装配。
本实施例中的双锥台填充块1分别对应两个反向锥台的筒形套箍21楔紧装配之后,筒形套箍21在内圈大端之间进行冷焊连接或粘结固定,如图2中所示,为了进一步提高预应力约束块的整体性,在楔紧的 所述双锥台填充块1和筒形套箍21外粘结包裹一层纤维布作为包裹层31,如图3所示。
双锥台填充块可以采用陶瓷、混凝土、玻璃等至少一种主体材料,由于陶瓷、混凝土等材料的锥台在推入筒形套箍过程中,与筒形套箍接触的填充块边角区域容易出现局部破损,因此可以在锥台填充块推入套箍之前,在其表面包裹纤维增强聚合物或者设置金属薄板材料进行表面加固,防止推挤过程中局部应力过大而破坏或者出现分层。
结合参见图4和图5,为了保证双锥台填充块1压嵌到筒形套箍21内部能够产生挤压预应力,双锥台填充块1的锥台与筒形套箍21之间的尺寸应当满足以下条件:
对于锥台和对应筒形套箍21的横截面尺寸,锥台外侧壁为锥面,即锥台在轴向两端分别设定为大端和小端,设定锥台的大端直径为d 1,锥台的小端直径为d 2,d 1>d 2,这里所指的直径为锥台横截面的外圆直径和锥台横截面的正六边形外接圆直径;同样的,筒形套箍21内圈壁为锥面,在筒形套箍21内圈壁轴向两端分别设定大端和小端,其中设定筒形套箍21的大端直径为R 1,筒形套箍21的小端直径为R 2,R 1>R 2,这里所指的直径为筒形套箍21内圈壁横截面内圆直径和筒形套箍21内圈壁横截面的正六边形外接圆直径,优选,R 2<d 2<R 1≤d 1。δ为锥台与对应筒形套箍21的盈差,δ=htanα。
对于锥台和筒形套箍21楔合的锥面倾角尺寸,锥台外侧壁的锥面倾角α范围为0.5°~10°,优选2°~6°,筒形套箍21内圈壁的锥面倾角β范围为0.5°~10°,优选2°~6°,这里所指的锥面倾角为锥台外侧壁和筒形套箍21内圈壁的圆锥母线与竖直方向的夹角或锥台外侧壁和筒形套箍21内圈壁的棱锥棱线与竖直方向的夹角。
对于锥台和筒形套箍21的轴向尺寸,设定单个锥台与其对应的筒形套箍21的轴向高度分别为h 1和h 2,其中h 1≤h 2
双锥台填充块1和筒形套箍21装配方法和预应力基本原理具体如下:
首先将双锥台填充块1一侧的锥台放入对应的筒形套箍21内圈内,为了便于施压,一般将筒形套箍21的内圈大端开口朝上,双锥台的一端朝下推入筒形套箍21的内圈,然后对锥台沿高度方向施加推力,筒形套箍21的弹性恢复力向内挤压预紧锥台,在其径向施加预压应力,锥台在筒形套箍21内圈中的推入深度越大,筒形套箍21施加到锥台径向预压应力就越大,填充台体推入预定位置后即得到预应力约束块。锥台推入的方式可以采用千斤顶、液压机或者螺栓紧固等方式,为了减少推入阻力,可以在两者的接触锥面涂抹临时润滑剂,待推入预定位置后,去除润滑剂。锥台的径向预应力大小可以通过设计调整台体外侧壁圆锥母线或者棱锥棱线与高的夹角,以及填充台体的推入深度,当夹角一定,在筒形套箍21未屈服或者未失效之前,锥台的推入深度越大,预应力就越大。在完成双锥台填充块1一侧的锥台与对应的筒形套箍21的安装后,调转双锥台填充块1,对双锥台填充块1的另一侧锥台与另一筒形套箍21进行相同的安装。双锥台填充块1上的两个筒形套箍21均安装到位后,通过冷焊将两个筒形套箍21固定连接在一起。
锥台可以采用陶瓷、混凝土或者玻璃材料,筒形套箍21为金属或者纤维增强复合材料,纤维增强复合材料包括纤维增强金属基复合材料或纤维增强聚合物。
对于采用混凝土材质的锥台的预应力约束块,可以直接以筒形套箍21为模板进行锥台的浇筑成型,在混凝土浇筑之前,事先在筒形套箍21内侧涂刷隔离油或者布置隔离薄膜,筒形套箍21底部保留混凝土成型后的推入空间,待混凝土达到强度,支承或者固定筒形套箍的底部,将锥台进一步推入筒形套箍21内,使锥台产生径向预应力。
锥台和筒形套箍21在装配过程中,锥台的底面小端直径d 2<筒形套箍21内圈顶部的大端开口直径R 1,以便于台体装入筒形套箍内。锥台的径厚比或者径高比d 1/(2h 1)为0.5~40,优选3~12。筒形套箍21的内圈壁厚可以为变厚度,也可以为等厚度,即筒形套箍21的顶部壁厚t 1≤底部壁厚t 2。根据锥台需要施加的预应力确定筒形套箍21的壁厚和屈服强度,筒形套箍21的壁厚与锥台的直径之比t/d越大,以及筒形套箍21的屈服强度越大,可提供的约束预应力的潜力就越大。受到锥台上下横截面直径不一致和筒形套箍21高度方向壁厚不一致的因素影响,锥台的预应力在高度方向不均匀,可以通过设计调整锥台的外侧壁锥面夹角α与筒形套箍21的内圈壁锥面夹角β的微小差别来调整上下预应力大小变化。将锥台推入筒形套箍21内的过程中,预应力约束块的预应力从上至下逐渐增加,适当调大α和β之间的角度差Δα,可以减少台体的上下预应力差距,Δα的取值范围为0°~0.5°,优选0°~0.2°。当α=β,锥台放入筒形套箍21内,锥台的外侧壁和约束块12内圈壁接触面贴合。将锥台放入筒形套箍21内,锥台外侧壁与筒形套箍21内圈壁接触应力非常小,此时锥台的顶面与筒形套箍21的顶面之间的高差为h,即推入深度,双锥台的连接面与筒形套箍的小端面之间的高差为h 3
实施例二
参见图6和图7,图示中的双锥台嵌挤预应力约束遮弹层为本发明的又一种具体实施方案,该预应力约束块包括双锥台填充块1以及对双锥台填充块1进行嵌挤装配的槽式套箍22,如图7所示,本实施例的双锥台填充块1与实施例一为相同的双锥台结构,在同一双锥台填充块1装配两个固定连接在一起的槽式套箍22,分别环绕套装在双锥台填充块1的两个反向锥台的外锥面和小端端面上,槽式套箍22具有与对应锥台的外锥面相同形状的锥面内圈以及对锥台的小端端面覆盖的面板27,同一双锥台填充块1上的槽式套箍22的内圈锥面为反向锥面,与双锥台填充块1上的两个反向锥台对应,槽式套箍22的内圈和对应锥台的外锥面之间通过锥面配合楔紧,同时其面板27将锥台的小端端面覆盖,锥台在槽式套箍22的内圈侧面受力情况与筒形套箍相同;将双锥台填充块1的两个锥台均装配槽式套箍22后,同一双锥台填充块1上的两个锥台的槽式套箍22之间固定连接即装配形成本实施例的预应力约束块整体。
本实施例中的槽式套箍22在实施例一的筒形套箍21基础上增设对锥台小端面板进行覆盖的面板27,槽式套箍22的筒腔大端开口,小端通过面板27封闭,形成容纳锥台的开口槽,槽式套箍22与对应锥台楔紧到位后,对应锥台的小端端面与面板27抵接,槽式套箍22的大端同样不超过对应锥台的大端,保证 双锥台填充块1另一锥台上槽式套箍的正常装配。
本实施例中的双锥台填充块1分别对应两个反向锥台的槽式套箍22楔紧装配之后,槽式套箍22之间通过大端进行冷焊连接或粘结固定,如图7中所示,为了进一步提高预应力约束块的整体性,在楔紧的所述双锥台填充块1和槽式套箍22外粘结包裹一层纤维布作为包裹层31,如图8所示。
本实施例为了实现预应力约束块更高的防护性能,双锥台填充块1采用多层结构,其中的一段锥台的小端与对应槽式套箍22的面板27之间垫设容留层32,另一段锥台的小端与对应槽式套箍22的面板27之间垫设缓冲垫层33,如图9中所示。容留层32采用石墨层、缓冲垫层33采用泡沫铝、蜂窝材料、高分子柔性材料等功能材料,实现更高防护性能。
实施例三
参见图10-13,图示中的双锥台嵌挤预应力约束遮弹层为本发明的又一种具体实施方案,本实施例为实施例一的延伸方案,该预应力约束块包括双锥台填充块1以及对双锥台填充块1进行嵌挤装配的筒形套箍21,如图12和图13所示,双锥台填充块1为双锥台结构,包括同轴的两个反向锥台,两个反向锥台之间的锥台大端一体连接,小端朝双锥台填充块1的两侧,即双锥台填充块1的两端面均为两个反向锥台的小端,同一双锥台填充块1装配两个固定连接在一起的筒形套箍21,分别环绕套装在双锥台填充块1的两个反向锥台的外锥面上,筒形套箍21具有与对应锥台的外锥面相同形状的锥面内圈,同一双锥台填充块1上的筒形套箍21的内圈锥面为反向锥面,与双锥台填充块1上的两个反向锥台对应,筒形套箍21的内圈和对应锥台的外锥面之间通过锥面配合楔紧;然后将同一双锥台填充块1上的两个锥台的筒形套箍21之间固定连接即装配形成本实施例的预应力约束块整体。
在本实施例中,筒形套箍21之间的固定连接方式是通过筒形套箍21周向延伸设置锚固板24来实现。本实施例以双锥台填充块1的锥台和筒形套箍21的内圈横截面为正八边形的棱锥面和横截面为圆形的圆锥面分别进行说明。
参见图10,双锥台填充块1的锥台为横截面为正八边形的棱锥台,对应的筒形套箍21内圈为匹配的正八边形棱锥面,筒形套箍21的正八边形外圈向外延伸四个三角形的锚固板24,与正八边形的另外四边形成一个正方形框架,锚固板24靠近筒形套箍21的大端,并且端面与筒形套箍21的大端端面平齐,四个锚固板上分别开设螺孔,同一双锥台填充块1上分别对应两个反向锥台的筒形套箍锚固板24设置的螺孔一一对应,在双锥台填充块1上的两个筒形套箍21装配到位后,在周向方向将锚固板24上的螺孔对齐,将螺栓3穿过双锥台填充块1上的两个筒形套箍21上的螺孔锁紧固定。锚固板24上的螺孔3可以采用螺栓通孔,通过螺栓和螺母配合锁紧,也可以采用一侧锚固板螺栓通孔,另一侧螺纹丝孔,螺栓3穿过一侧锚固板上的螺栓通孔后直接与另一侧锚固板上的螺纹丝孔螺接锁紧,如图13所示。
参见图11,双锥台填充块1的锥台为横截面为圆形的圆锥台,对应的筒形套箍21内圈为匹配的圆锥面,筒形套箍21的圆形外圈向外延伸形成一个正方向框架,正方形框架的边长与筒形套箍21的圆形外圈 直径相同,锚固板24分别位于正方形框架的四角,锚固板24靠近筒形套箍21的大端,并且端面与筒形套箍21的大端端面平齐,在正方形框架的四角锚固板上分别开设螺孔,同一双锥台填充块1上分别对应两个反向锥台的筒形套箍锚固板24设置的螺孔一一对应,在双锥台填充块1上的两个筒形套箍21装配到位后,在周向方向将锚固板24上的螺孔对齐,将螺栓3穿过双锥台填充块1上的两个筒形套箍21上的螺孔锁紧固定。锚固板24上的螺孔3可以采用螺栓通孔,通过螺栓和螺母配合锁紧,也可以采用一侧锚固板螺栓通孔,另一侧螺纹丝孔,螺栓3穿过一侧锚固板上的螺栓通孔后直接与另一侧锚固板上的螺纹丝孔螺接锁紧,如图13所示,通过筒形套箍21对双锥台填充块1试加径向预应力,预应力的大小可以通过螺栓的紧固力进行调节,保证筒体套箍21对各自锥台结构的嵌挤作用同时,有效防止套箍脱出。
实施例四
参见图14-17,图示中的双锥台嵌挤预应力约束遮弹层为本发明的又一种具体实施方案,本实施例为实施例二的延伸方案,该预应力约束块包括双锥台填充块1以及对双锥台填充块1进行嵌挤装配的槽式套箍22,如图16和图17所示,本实施例的双锥台填充块1与实施例二为相同的双锥台结构,在同一双锥台填充块1装配两个固定连接在一起的槽式套箍22,分别环绕套装在双锥台填充块1的两个反向锥台的外锥面和小端端面上,槽式套箍22具有与对应锥台的外锥面相同形状的锥面内圈以及对锥台的小端端面覆盖的面板27,同一双锥台填充块1上的槽式套箍22的内圈锥面为反向锥面,与双锥台填充块1上的两个反向锥台对应,槽式套箍22的内圈和对应锥台的外锥面之间通过锥面配合楔紧,同时其面板27将锥台的小端端面覆盖,锥台在槽式套箍22的内圈侧面受力情况与筒形套箍相同;将双锥台填充块1的两个锥台均装配槽式套箍22后,同一双锥台填充块1上的两个锥台的槽式套箍22之间固定连接即装配形成本实施例的预应力约束块整体。
在本实施例中,槽式套箍22之间的固定连接方式是通过槽式套箍22周向延伸设置锚固板24来实现。本实施例以双锥台填充块1的锥台和槽式套箍22的内圈横截面为正八边形的棱锥面和横截面为圆形的圆锥面分别进行说明。
参见图14,双锥台填充块1的锥台为横截面为正八边形的棱锥台,对应的槽式套箍22内圈为匹配的正八边形棱锥面,槽式套箍22的正八边形外圈向外延伸四个三角形的锚固板24,与正八边形的另外四边形成一个正方形框架,锚固板24靠近槽式套箍22的大端,并且端面与槽式套箍22的大端端面平齐,四个锚固板上分别开设螺孔,同一双锥台填充块1上分别对应两个反向锥台的筒形套箍锚固板24设置的螺孔一一对应,在双锥台填充块1上的两个槽式套箍22装配到位后,在周向方向将锚固板24上的螺孔对齐,将螺栓3穿过双锥台填充块1上的两个槽式套箍22上的螺孔锁紧固定。锚固板24上的螺孔3可以采用螺栓通孔,通过螺栓和螺母配合锁紧,也可以采用一侧锚固板螺栓通孔,另一侧螺纹丝孔,螺栓3穿过一侧锚固板上的螺栓通孔后直接与另一侧锚固板上的螺纹丝孔螺接锁紧,通过螺栓3将双锥台填充块1上的两个槽式套箍22轴向锁紧,如图16所示。
参见图15,双锥台填充块1的锥台为横截面为圆形的圆锥台,对应的槽式套箍22内圈为匹配的圆锥面,槽式套箍22的圆形外圈向外延伸形成一个正方向框架,正方形框架的边长与槽式套箍22的圆形外圈直径相同,锚固板24分别位于正方形框架的四角,锚固板24靠近槽式套箍22的大端,并且端面与槽式套箍22的大端端面平齐,在正方形框架的四角锚固板上分别开设螺孔,同一双锥台填充块1上分别对应两个反向锥台的筒形套箍锚固板24设置的螺孔一一对应,在双锥台填充块1上的两个槽式套箍22装配到位后,在周向方向将锚固板24上的螺孔对齐,将螺栓3穿过双锥台填充块1上的两个槽式套箍22上的螺孔锁紧固定。锚固板24上的螺孔3可以采用螺栓通孔,通过螺栓和螺母配合锁紧,也可以采用一侧锚固板螺栓通孔,另一侧螺纹丝孔,螺栓3穿过一侧锚固板上的螺栓通孔后直接与另一侧锚固板上的螺纹丝孔螺接锁紧,如图17所示,通过槽式套箍22对双锥台填充块1试加相向的轴向预应力,预应力的大小可以通过螺栓的紧固力进行调节,保证槽式套箍22对各自锥台结构的嵌挤作用同时,有效防止套箍脱出。
实施例五
参见图18-21,图示中的双锥台嵌挤预应力约束遮弹层为本发明的又一种具体实施方案,本实施例为实施例四的延伸方案,该预应力约束块包括双锥台填充块1以及对双锥台填充块1进行嵌挤装配的槽式套箍22,如图20和图21所示,本实施例的双锥台填充块1与实施例二为相同的双锥台结构,在同一双锥台填充块1装配两个固定连接在一起的槽式套箍22,分别环绕套装在双锥台填充块1的两个反向锥台的外锥面和小端端面上,槽式套箍22具有与对应锥台的外锥面相同形状的锥面内圈以及对锥台的小端端面覆盖的面板27,同一双锥台填充块1上的槽式套箍22的内圈锥面为反向锥面,与双锥台填充块1上的两个反向锥台对应,槽式套箍22的内圈和对应锥台的外锥面之间通过锥面配合楔紧,同时其面板27将锥台的小端端面覆盖,锥台在槽式套箍22的内圈侧面受力情况与筒形套箍相同;将双锥台填充块1的两个锥台均装配槽式套箍22后,同一双锥台填充块1上的两个锥台的槽式套箍22之间固定连接即装配形成本实施例的预应力约束块整体。
与实施例四不同的是,实施例四中的双锥台填充块1的两个反向锥台的小端端面为平面,对应的槽式套箍22上的面板27为相应的平板,本实施例中的双锥台填充块1的两个反向锥台的小端端面为外凸面,外凸面包括外凸圆弧球冠面或外凸棱锥面,有利于弹丸偏航,提高预应力约束块抗侵彻的能力。
实施例六
参见图22-25,图示中的图示中的双锥台嵌挤预应力约束遮弹层为本发明的又一种具体实施方案,本实施例采用不同于以上实施例的卡边套箍23对双锥台填充块1进行嵌挤装配,该预应力约束块包括双锥台填充块1以及对双锥台填充块1进行嵌挤装配的卡边套箍23,如图24和图25所示,本实施例的双锥台填充块1与实施例二为相同的双锥台结构,在同一双锥台填充块1装配两个固定连接在一起的卡边套箍23,分别环绕套装在双锥台填充块1的两个反向锥台的外锥面和小端端面上,卡边套箍23具有与对应锥台的外锥面相同形状的锥面内圈以及在锥台的小端端面圆周设置的环形卡边28,环形卡边28可以看作是实施 例二中的槽式套箍22在面板27圆心去处一小于内圈直径圆形区域形成,同一双锥台填充块1上的卡边套箍23的内圈锥面为反向锥面,与双锥台填充块1上的两个反向锥台对应,卡边套箍23的内圈和对应锥台的外锥面之间通过锥面配合楔紧,同时卡边套箍23对锥台的小端端面外周一圈进行定位,但是将锥台的小端端面中心大部分区域暴露出来,锥台在卡边套箍23的内圈侧面受力情况与筒形套箍相同;将双锥台填充块1的两个锥台均装配卡边套箍23后,同一双锥台填充块1上的两个锥台的卡边套箍23之间固定连接即装配形成本实施例的预应力约束块整体。
参见图24和图25,在本实施例的卡边套箍23之间的固定连接方式是通过卡边套箍23周向延伸设置锚固板24来实现,本实施例在此不做赘述。
由于本实施例的双锥台填充块1的两端面大部分区域没有被卡边遮挡,在通过螺栓连接提供轴向预应力的同时,可以用于透明装甲。
实施例七
实施例一至六提供了一种单一双锥台填充块构成的遮弹层预应力约束块单元,本实施例的实施方案在此基础上采用多双锥台填充块的预应力约束块单元。
参见图26和图27,图示中的双锥台嵌挤预应力约束遮弹层包括七个双锥台填充块1和两个约束框架2,在约束框架2为圆形板状结构,约束框架2设置七个用于嵌挤双锥台填充块1的筒形套箍21,双锥台填充块1的锥台采用横截面为正六边形的六棱锥台,筒形套箍21内圈为对应的正六边形横截面的六棱锥面,单个筒形套箍21和双锥台填充块1之间的装配与实施例一。约束框架2上的六个筒形套箍21按照一个中心,六个***的方式,相邻筒形套箍21之间共用侧边,铺设成一个连续平面,在约束框架2的外圆周与***的筒形套箍21相接,在外周避开***筒形套箍21的区域设置成锚固板24,在锚固板24上设置螺孔,沿约束框架2的圆周方向均匀分布六个螺孔。装配时,先将所有的双锥台填充块1推入下方的约束框架2内所有筒形套箍,将上部的约束框架2盖上并施加推力,将所有双锥台填充块1的另一锥台推入上部的约束框架2内所有筒形套箍,然后通过螺栓依次穿过两个约束框架2上对齐的螺孔将两个约束框架锁紧。
本实施例的预应力约束块中的多个双锥台填充块共用一组约束框架,增加了防护面积的同时,在只出现某一块填充块破坏的情况下,不需要更换其它预应力约束块,只需要取出更换破坏的填充块,相比较更换整个大面积预应力约束块更节省成本。
实施例八
参见图28,上述方案中的双锥台填充块1为上下两层结构,两层结构以双锥台的最大横截面为分隔面,分成两个反向锥台,锥台的两层结构的材质采用陶瓷进行叠合,两层结构的锥台之间设置石墨容留层32,射弹方向的第一层结构11陶瓷板表面设置石墨容留层32。如果两层结构的双锥台填充块1是与槽式套箍22装配,在两层结构的锥台小端端面与槽式套箍22的面板27之间还可以垫装缓冲垫层或者韧性增强层。 对于多层结构的锥台,根据遮弹层的应用场合可以选取陶瓷、混凝土、玻璃材料中的一种或者多种材质进行叠层组合。
实施例九
为了防止多层结构锥台在推入套箍内施加预应力过程中,出现分层或者局部破坏,在实施例八所示的双锥台填充块1表面包裹表面加固层34进行整体加固,如图29所示,表面加固层34为聚合物、纤维增强聚合物或者金属薄板中的一种或者多种材质。如果双锥台嵌挤预应力约束遮弹层为透明装甲,那么多层主材选取透明陶瓷、玻璃等透明材料,表面加固层34采用透明聚合物材料如有机玻璃(聚甲基丙烯酸甲酯);或者仅在侧面包裹非透明表面加固层34,而上下表面层则缺失。容留层采用透明材质,如PVB(聚乙烯醇缩丁醛酯)或者有机玻璃,或者其它夹层胶片材料(SGP、EVA、PU)。
上述仅为本发明的若干具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护的范围的行为。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
以下通过对实施例一进行模型模拟来对本发明的技术效果进行说明。
预应力约束块的套箍和双圆锥台的材质分别以钢材和混凝土为例,单个钢套箍的高度和大端口内径分别为50mm和100mm,双圆锥台高100mm,各锥面倾角α均取3°。预应力工况设计如表1所示,共设8种工况,每种工况设计的单个钢套箍推入深度h与盈差δ相对应,靶体推入深度分为7级,2mm为一个等级,靶体的径向预应力随着推入深度依次增大,推入深度最大的工况为14mm。各工况的圆锥台的小端直径与套箍大端内径的容差范围为3.8~5.2mm。
表1 预应力工况
Figure PCTCN2022070776-appb-000001
采用显式有限元程序LS-DYNA进行数值模拟。撞击弹丸为圆头弹,直径为7.62mm,长度为25mm。根据上述钢套箍和双圆锥台混凝土靶的几何尺建立有限元模型。整个模型由套箍、双圆锥台、弹丸、垫板和推力块组成,共计5个部分,以8结点实体六面体单元(*SECTION_SOLID)进行建模,根据对称条件,仅 建立了沿YZ平面和XZ平面对称的1/4模型。弹丸的平均网格尺寸为1mm,共划分284个单元。为了提升模拟精度,弹丸入射处的双圆锥台核心区域进行网格加密处理,其余部分网格向四周逐渐加粗。双圆锥台核心混凝土中心半径(15mm)范围内,单元尺寸为0.5mm×0.5mm×0.5mm,共划分171600个单元,双圆锥台边缘单元尺寸约为5mm×0.5mm×0.5mm,共划分65800个单元。单个钢套箍的单元平均尺寸约2mm×2mm×0.5,共划分14400个单元。整个有限元模型共有266484个单元。套箍、双圆锥台、垫板、推力块之间采用自动面面接触(关键字*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE),两者之间的静摩擦系数设为0.1,动摩擦系数为0.08。弹丸与混凝土的接触采用关键字*CONTACT_ERODING_SURFACE_TO_SURFACE实现。
混凝土材料采用HJC模型,混凝土密度为2400kg/m 3,轴心抗压强度为120MPa,具体参数如表2所示。引入*MAT_ADD_EROSION侵蚀失效准则,以避免单元畸变引起的沙漏效应影响计算的稳定性,采用最大主应变来控制单元的失效,当靶体单元最大主应变超过设定的失效应变时,该单元失效被删除。
表2 混凝土HJC本构模型参数
Figure PCTCN2022070776-appb-000002
钢套箍材料采用LS-DYNA中的塑性–动态模型(*MAT_PLASTIC_KINEMATIC/MAT_003)来模拟套箍的动态行为。根据冯米塞斯屈服准则,建立具有动力硬化塑性的弹塑性模型,模型主要参数如表3所示。
表3 钢套箍材料参数
Figure PCTCN2022070776-appb-000003
弹丸在侵彻过程中存在大应变、高应变率、高温环境下的失效过程,本模拟采用Johnson-Cook材料模型钨合金弹丸,具体参数如表4所示。
表4 圆头长杆弹材料模型主要参数
Figure PCTCN2022070776-appb-000004
加载制度和试验流程分为两个阶段,第一阶段推入圆锥台施加预应力模拟试验,然后第二阶段再进行抗侵彻模拟试验。第一阶段采用关键字*BOUNDARY_PRESCRIBED_MOTION_SET赋予推力块位移推动混凝土圆锥台推入钢套箍内,加载速率为1mm/ms,到达套箍的指定深度稳定10ms,生成相应的重启文件。随后,进入弹丸侵彻阶段(第二个阶段),使用LS-DYNA中的完全重启动功能进行第二阶段模拟,对原始k文件进行修改,删除与侵彻过程无关单元和边界,添加弹丸单元和其相应的材料参数、速度参数。通过关键字*CHANGE_VELOCITY_GENERATION赋予弹丸速度,同时通过关键字*STRESS_INITIALIZATION将上一过程中各个部件的应力状态传递到重启动过程中相应部件上。
(1)预应力加载
各工况预应力加载后,可以发现,混凝土双圆锥台的预应力随着推入深度的增大而增大,除了最后一个工况中的圆锥台锥面下端单元由于预应力过大而出现局部损伤和裂纹,其它各工况的圆锥台均未见损伤情况。取双圆锥台中心轴线上25mm和75mm高度的单元平均预应力与推入深度关系曲线如图30所示,预应力随着推入深度的增大呈线性增大,预应力大小可以通过推入深度调整,可以施加足够大的预应力。除了通过推入深度预测预应力的大小,还可以通过建立推力与预应力的关系预测预应力的大小,以推入深度和推力控制预应力大小。注意到靶体推入12mm时,施加在靶体平均预应力为253MPa,是混凝土轴心抗压强度2.1倍,而且混凝土靶体几乎未出现破坏,这是由于钢环的套箍效应使得混凝土的强度得到提高,再加上预应力的作用,混凝土的强度得到更大幅度的提升,即使径向应力达到253MPa也几乎没有破坏。
(2)侵彻模拟结果分析
以速度为1000m/s的圆头弹进行侵彻模拟,各靶体在弹丸侵彻开始后0.025ms时刻和侵彻结束后0.225ms时刻的应力云图如图31所示,结合图32所示的靶体侵彻深度和侵深下降率与预应力的关系曲线,可以看出,随着预应力的增加,侵彻深度逐渐减少,当推入深度为12mm,即施加在圆锥台平均预应力为253MPa时,其侵彻深度比有约束而无预应力的混凝土双圆锥台分别下降了35%,抗侵彻性能达到最佳。但随着预应力的进一步增大,其抗侵彻性能快速下降。因此采用本发明的方法施加适当的预应力能够显著地改善填充块的抗侵彻性能。

Claims (12)

  1. 双锥台嵌挤预应力约束遮弹层,其特征在于:包括双锥台填充块以及对双锥台填充块进行嵌挤的套箍,
    所述双锥台填充块包括同轴的两个反向锥台,所述双锥台填充块的两个反向锥台以大端面相连接,构成中间大两端小的双平截头体,两个反向锥台的外锥面上分别环绕套装有套箍,所述套箍具有与对应锥台的外锥面相同形状的内圈,所述套箍的内圈和对应锥台的外锥面之间通过锥面配合楔紧;两个锥台的套箍之间固定连接。
  2. 根据权利要求1所述的双锥台嵌挤预应力约束遮弹层,所述套箍为筒形套箍,所述筒形套箍具有两端开口的连续贯穿筒腔,所述筒形套箍与对应锥台楔紧到位后,对应锥台的小端端面与筒形套箍的筒腔端面平齐。
  3. 根据权利要求1所述的双锥台嵌挤预应力约束遮弹层,所述套箍为槽式套箍,所述槽式套箍的筒腔大端开口,小端通过面板封闭,所述槽式套箍与对应锥台楔紧到位后,对应锥台的小端端面与面板抵接。
  4. 根据权利要求3所述的双锥台嵌挤预应力约束遮弹层,所述双锥台填充块的两个反向锥台的小端与面板之间垫设容留层或缓冲垫层。
  5. 根据权利要求1所述的双锥台嵌挤预应力约束遮弹层,所述套箍为卡边套箍,所述卡边套箍的筒腔大端开口,小端圆周设置环形卡边,所述槽式套箍与对应锥台楔紧到位后,对应锥台的小端端面通过环形卡边限位。
  6. 根据权利要求2或3或5所述的双锥台嵌挤预应力约束遮弹层,所述双锥台填充块分别对应两个反向锥台的套箍之间通过焊接或粘结固定。
  7. 根据权利要求6所述的双锥台嵌挤预应力约束遮弹层,楔紧的所述双锥台填充块和套箍外设置包裹层。
  8. 根据权利要求2或3或5所述的双锥台嵌挤预应力约束遮弹层,所述套箍周向延伸设置锚固板,同一双锥台填充块上分别对应两个反向锥台的套箍锚固板上设有一一对应的螺孔,所述套箍之间通过穿过锚固板上螺孔的螺栓固定连接。
  9. 根据权利要求8所述的双锥台嵌挤预应力约束遮弹层,若干所述套箍排列设置在约束框架上,两组约束框架上对应的套箍分别套装在若干锥台填充块的两个反向锥台上,所有套箍通过约束框架上设置的锚固板进行固定连接。
  10. 根据权利要求1所述的双锥台嵌挤预应力约束遮弹层,所述双锥台填充块的锥台外侧壁和套箍的内圈壁分别为相匹配的圆锥面,或相匹配的多边形棱锥面,所述双锥台填充块朝外的锥台小端面为平面或外凸面。
  11. 根据权利要求1所述的双锥台嵌挤预应力约束遮弹层,所述双锥台填充块为多层结构,采用陶瓷、混凝土、玻璃中的一种或者多种材料叠合而成双锥台填充块,所述各层材料之间或者端面设置容留层、缓 冲垫层或者韧性增强层。
  12. 根据权利要求11所述的双锥台嵌挤预应力约束遮弹层,所述双锥台填充块表面包裹纤维增强聚合物或者金属薄板形成表面加固层。
PCT/CN2022/070776 2021-01-08 2022-01-07 双锥台嵌挤预应力约束遮弹层 WO2022148440A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110027834.1 2021-01-08
CN202110027834.1A CN112814315A (zh) 2021-01-08 2021-01-08 双锥台嵌挤预应力约束遮弹层

Publications (1)

Publication Number Publication Date
WO2022148440A1 true WO2022148440A1 (zh) 2022-07-14

Family

ID=75868565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070776 WO2022148440A1 (zh) 2021-01-08 2022-01-07 双锥台嵌挤预应力约束遮弹层

Country Status (2)

Country Link
CN (1) CN112814315A (zh)
WO (1) WO2022148440A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112814315A (zh) * 2021-01-08 2021-05-18 青岛理工大学 双锥台嵌挤预应力约束遮弹层
US12055369B2 (en) 2021-11-09 2024-08-06 Trelleborg Sealing Solutions Albany, Inc. Lightweight composite armor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH666958A5 (en) * 1985-07-15 1988-08-31 Fischer Ag Georg Bullet proof device esp. for armoured vehicle - comprises metallic modules contg. chambers filled with non-metallic hard material, assembled on metallic base plate
CN2618965Y (zh) * 2003-05-24 2004-06-02 中国人民解放军后勤工程学院 高抗冲击混凝土-纤维复合材料防护结构
US20100071537A1 (en) * 2006-11-10 2010-03-25 Weber Juergen Composite Armor Element, And Effective Body Element for Insertion in a Composite Armor Element
US20120144987A1 (en) * 2010-12-09 2012-06-14 Ficht Fahrzeug + Marinetechnik Gmbh & Co. Kg Composite plate and armor having at least one of the composite plates
CN108916515A (zh) * 2018-07-28 2018-11-30 南通市鑫海自动化设备有限公司 一种玻璃管连接装置
CN110744064A (zh) * 2019-11-20 2020-02-04 中国人民解放军军事科学院国防科技创新研究院 一种三维约束结构的金属陶瓷复合点阵装甲及其制备方法和应用
CN111705993A (zh) * 2020-06-24 2020-09-25 王子国 预应力约束块和复合装甲结构
CN112814315A (zh) * 2021-01-08 2021-05-18 青岛理工大学 双锥台嵌挤预应力约束遮弹层
CN215484252U (zh) * 2021-01-08 2022-01-11 青岛理工大学 双锥台嵌挤预应力约束遮弹层

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH666958A5 (en) * 1985-07-15 1988-08-31 Fischer Ag Georg Bullet proof device esp. for armoured vehicle - comprises metallic modules contg. chambers filled with non-metallic hard material, assembled on metallic base plate
CN2618965Y (zh) * 2003-05-24 2004-06-02 中国人民解放军后勤工程学院 高抗冲击混凝土-纤维复合材料防护结构
US20100071537A1 (en) * 2006-11-10 2010-03-25 Weber Juergen Composite Armor Element, And Effective Body Element for Insertion in a Composite Armor Element
US20120144987A1 (en) * 2010-12-09 2012-06-14 Ficht Fahrzeug + Marinetechnik Gmbh & Co. Kg Composite plate and armor having at least one of the composite plates
CN108916515A (zh) * 2018-07-28 2018-11-30 南通市鑫海自动化设备有限公司 一种玻璃管连接装置
CN110744064A (zh) * 2019-11-20 2020-02-04 中国人民解放军军事科学院国防科技创新研究院 一种三维约束结构的金属陶瓷复合点阵装甲及其制备方法和应用
CN111705993A (zh) * 2020-06-24 2020-09-25 王子国 预应力约束块和复合装甲结构
CN112814315A (zh) * 2021-01-08 2021-05-18 青岛理工大学 双锥台嵌挤预应力约束遮弹层
CN215484252U (zh) * 2021-01-08 2022-01-11 青岛理工大学 双锥台嵌挤预应力约束遮弹层

Also Published As

Publication number Publication date
CN112814315A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022148440A1 (zh) 双锥台嵌挤预应力约束遮弹层
Liu et al. Ultra-high performance concrete targets against high velocity projectile impact–a-state-of-the-art review
CN111705993B (zh) 预应力约束块和复合装甲结构
WO2022179380A1 (zh) 一种锥台嵌挤装配式复合防护结构
US7694621B1 (en) Lightweight composite armor
US7490539B2 (en) Lightweight composite armor
US7736729B2 (en) Blast energy mitigating composite
CN107130988B (zh) 一种液态二氧化碳***增透注浆复合锚杆
CN108487490B (zh) 抗***冲击的复合防护结构
CN110438362B (zh) 一种多尺度多形状陶瓷相增强铝基抗弹结构复合材料及其制备方法
US8071206B1 (en) Blast energy mitigating composite
Cao et al. Experiments and simulations of the ballistic response of ceramic composite armors
CN214792793U (zh) 一种锥台嵌挤装配式复合防护结构
DK178289B1 (en) Light weight composite armor with structural strength
CN215484252U (zh) 双锥台嵌挤预应力约束遮弹层
CN108661197B (zh) 一种抗航弹侵彻的钢管陶瓷球玄武岩纤维混凝土防护板
Langdon et al. Blast response of sandwich structures: The influence of curvature
CN210031904U (zh) 一种分层式综合管廊防爆层
Zhang et al. Normal and oblique impact on polyurea-coated ASTM1045 steel plates by small-arms projectiles
CN116518780A (zh) 一种抗14.5mm穿甲弹的功能梯度装甲结构
CN114347591B (zh) 一种uhpc/泡沫铝抗爆复合结构及其制备方法
CN113758375B (zh) 一种双切削消能防护结构以及消能防弹板
CN214842777U (zh) 一种新型飞行器用防弹复合板
EP3140194B1 (en) Liquid storage system
Sun et al. Anti-penetration performance of novel double steel ferrules confined and prestressed concrete

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22736601

Country of ref document: EP

Kind code of ref document: A1