WO2022147799A1 - 确定拥塞程度的方法及终端设备、计算机存储介质 - Google Patents

确定拥塞程度的方法及终端设备、计算机存储介质 Download PDF

Info

Publication number
WO2022147799A1
WO2022147799A1 PCT/CN2021/070974 CN2021070974W WO2022147799A1 WO 2022147799 A1 WO2022147799 A1 WO 2022147799A1 CN 2021070974 W CN2021070974 W CN 2021070974W WO 2022147799 A1 WO2022147799 A1 WO 2022147799A1
Authority
WO
WIPO (PCT)
Prior art keywords
congestion
time
terminal device
frequency
network
Prior art date
Application number
PCT/CN2021/070974
Other languages
English (en)
French (fr)
Inventor
顾昕钰
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180074913.6A priority Critical patent/CN116491144A/zh
Priority to PCT/CN2021/070974 priority patent/WO2022147799A1/zh
Publication of WO2022147799A1 publication Critical patent/WO2022147799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method for determining a degree of congestion, a terminal device, and a computer storage medium.
  • D2D communication technology refers to direct communication between user communication devices within a certain distance. D2D devices can communicate either under the control of a base station or without a network infrastructure. Therefore, compared to similar communication technologies such as Bluetooth (Bluetooth) and Wireless Fidelity (Wi-Fi), D2D technology More advantage and more flexibility.
  • Bluetooth Bluetooth
  • Wi-Fi Wireless Fidelity
  • D2D access to unlicensed spectrum DTD in Unlicensed Spectrum, D2D-U
  • DTD-U Unlicensed Spectrum
  • the unlicensed frequency band can support the use of different communication networks (eg, D2D network, Bluetooth network, and Wi-Fi network, etc.).
  • different communication networks eg, D2D network, Bluetooth network, and Wi-Fi network, etc.
  • the D2D device cannot know the usage of time-frequency resources in the unlicensed frequency band, and thus cannot judge the actual congestion level of the unlicensed frequency band, so that it cannot flexibly control the congestion.
  • Embodiments of the present application provide a method, a terminal device, and a computer storage medium for determining a degree of congestion.
  • a method for determining a degree of congestion which is applied to a first terminal device, and the method includes:
  • the indication information is used to indicate the first terminal device where the first terminal device is located. Time-frequency resources within the first time-frequency range used by a device in the network;
  • LBT listen-before-talk
  • the congestion level corresponding to the first frequency band is determined.
  • a terminal device in a second aspect, includes:
  • a transceiver unit configured to obtain at least one indication information
  • a first processing unit configured to determine, based on the at least one indication information, the remaining time-frequency resources in the first time-frequency range in the first frequency band; the indication information is used to indicate the first terminal device where the first terminal device is located. Time-frequency resources within the first time-frequency range used by a device in the network;
  • a second processing unit configured to perform at least one LBT detection in the second time-frequency range in the first frequency band to obtain at least one LBT detection result
  • a determining unit configured to determine a congestion degree corresponding to the first frequency band based on the remaining time-frequency resources and/or the at least one LBT detection result.
  • a terminal device comprising: a transceiver, a processor and a memory storing a computer program;
  • the processor in combination with the transceiver, executes the steps of the method of the first aspect when running the computer program stored in the memory.
  • a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the steps of the method in the first aspect.
  • At least one indication information is obtained, and based on the at least one indication information, the remaining time-frequency resources in the first time-frequency range in the first frequency band are determined; Perform at least one listen-before-talk LBT detection in a second time-frequency range in a frequency band to obtain at least one LBT detection result. Finally, based on the remaining time-frequency resources and/or non-idle time-frequency resources in the at least one first time-frequency resource, the congestion degree corresponding to the first frequency band is determined. In this way, the usage of time-frequency resources in the first frequency band can be accurately known, the congestion degree corresponding to the first frequency band can be obtained, and the accuracy of the congestion degree judgment can be improved.
  • FIG. 1 is an architecture diagram of a communication network provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart 1 of a method for determining a congestion degree provided by an embodiment of the present application
  • FIG. 3 is a second schematic flowchart of a method for determining a congestion degree according to an embodiment of the present application
  • FIG. 4 is a third schematic flowchart of a method for determining a congestion degree according to an embodiment of the present application
  • FIG. 5 is a fourth schematic flowchart of a method for determining a congestion degree provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart 5 of a method for determining a congestion degree provided by an embodiment of the present application.
  • FIG. 7 is a sixth schematic flowchart of a method for determining a congestion degree according to an embodiment of the present application.
  • FIG. 8 is a seventh schematic flowchart of a method for determining a congestion degree according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram 1 of the structure and composition of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a second schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the congestion detection method and the congestion control mechanism in the communication network play an important role.
  • a congestion detection method and a congestion control mechanism in the related art are introduced by taking a vehicle-to-everything (V2X) network based on a New Radio (NR) as an example.
  • V2X vehicle-to-everything
  • NR New Radio
  • the number of vehicle terminals is large, and high-load data services may cause network congestion, resulting in a rapid decline in communication performance.
  • two congestion detection indicators are defined in NR-V2X: Channel Busy Ratio (CBR) and Channel Occupancy Ratio (CR).
  • CBR Channel Busy Ratio
  • CR Channel Occupancy Ratio
  • CBR is defined as the time-frequency resources for which the Received Signal Strength Indication (RSSI) measured in the interval [n-100, n-1] is higher than the pre-configured threshold, accounting for the proportion of the total number of time-frequency resources in the resource pool .
  • RSSI Received Signal Strength Indication
  • the CBR refers to the measurement of the congestion of the resource pool by the terminal device in a recent period of time
  • the CR is the measurement of the resource used and to be used by the terminal device.
  • NR-V2V completes congestion control according to the measured CBR and CR values.
  • the terminal device may be preconfigured with a set of CBR value intervals, and each interval corresponds to a CR limit (CR-limit) value. If the CR value measured by the terminal device is greater than the CR-limit value corresponding to the CBR value measured by the terminal device, the terminal device needs to perform congestion control to reduce its CR value.
  • CR-limit CR limit
  • Wi-Fi devices can detect congestion based on resource utilization (ie, channel utilization) and buffer occupancy.
  • the terminal device uses the time-frequency resources of the unlicensed frequency band.
  • the unlicensed frequency band can support the use of different communication networks (eg, a Bluetooth network or a Wi-Fi network, etc.). Since there is usually no cooperation mechanism between different networks/systems, the use of the unlicensed frequency band by devices in other networks cannot be clearly learned by continuing to use the congestion detection method of the above-mentioned related art. Therefore, it is impossible to effectively distinguish the source of the congestion by simply detecting the received signal energy on the time-frequency resources to determine the degree of congestion, and thus cannot take effective and flexible congestion mitigation measures.
  • an embodiment of the present application provides a method for determining a degree of congestion. Specifically, a first terminal device obtains at least one indication information, and determines, based on the at least one indication information, within a first time-frequency range in a first frequency band the remaining time-frequency resources of the The range corresponding to at least part of the time-frequency resources in the time-frequency resources, and finally, based on the remaining time-frequency resources, and/or the non-idle time-frequency resources in the at least one first time-frequency resource, determine the corresponding unlicensed frequency band degree of congestion.
  • the usage of time-frequency resources in the unlicensed frequency band can be accurately known, and the accuracy of the congestion degree judgment can be improved.
  • the method for determining the congestion degree provided by the embodiment of the present application may be applied to the schematic diagram of the communication network architecture shown in FIG. 1 .
  • the communication network architecture provided by the embodiment of the present application includes a terminal device 11 , a terminal device 12 , and a terminal device 13 .
  • the terminal device 11 and the terminal device 12 can communicate through the network 14
  • the terminal device 12 and the terminal device 13 can communicate through the network 15 .
  • the network 14 and the network 15 are different communication networks.
  • the network 14 may be a D2D network, a vehicle to vehicle (Vehicle to Vehicle, V2V) network, a V2X network, or the like.
  • the network 15 may be a Bluetooth, Wi-Fi network.
  • the terminal device in this embodiment of the present application may be any device or apparatus configured with a physical layer and a medium access control layer, and the terminal device may also be referred to as an access terminal.
  • UE User Equipment
  • subscriber unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless Communication-enabled handheld devices, computing devices or other linear processing devices connected to wireless modems, in-vehicle devices, wearable devices, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • An embodiment of the present application provides a method for determining a degree of congestion, where the execution subject is a first terminal device.
  • the first terminal device may be any one of the terminal device 11 , the terminal device 12 and the terminal 13 in the communication network architecture shown in FIG. 1 .
  • the method for determining the congestion degree provided by this embodiment of the present application may include steps 210 to 230 .
  • Step 210 Acquire at least one piece of indication information, and based on the at least one piece of indication information, determine the remaining time-frequency resources in the first time-frequency range in the first frequency band.
  • the indication information is used to indicate a time-frequency resource within a first time-frequency range used by a device in the first network where the first terminal device is located.
  • the first terminal device may receive indication information sent by other devices in the first network. That is to say, the first terminal device and the above-mentioned other devices may be devices connected to the same first network, and communicate with each other through the first network.
  • the terminal device 11 can receive the indication information sent by the terminal device 12 .
  • the first network may be a D2D network, a Wi-Fi network, or other communication network, which is not limited in this embodiment of the present application.
  • the above-mentioned other devices may be terminal devices that can communicate directly with the first terminal device, or may be network devices (such as macro base stations, micro base stations, etc. ), which is not limited in the embodiments of the present application.
  • the indication information may be used to indicate time-frequency resources used by a device in the first network.
  • the one device is a device that sends indication information to the first terminal device.
  • the time-frequency resources are resources within the first time-frequency range in the first frequency band.
  • the first frequency band may be a spectrum resource that supports the use of different networks.
  • the first frequency band may be an unlicensed frequency band that supports use by any network, or a high-frequency communication frequency band compatible with multiple networks in the future, and the first frequency band is not limited in this embodiment of the present application.
  • the first frequency band may be divided into multiple time-frequency ranges according to different times.
  • the first time-frequency range may be a part of the time-frequency domain range in the first frequency band.
  • the one device may carry the frequency point information and/or time slot information of the time-frequency resource in the indication information and send it to the first terminal device. After parsing the indication information, the first terminal device may determine the one. Time-frequency resources used by the device.
  • time-frequency resources within the first time-frequency range used by the device may be the time-frequency resources that have been used for data transmission, or the time-frequency resources that have been authorized to be used for data transmission.
  • the application embodiments do not limit this.
  • the first terminal device may receive indication information sent by one or more devices in the first network to obtain one or more indication information (ie, at least one indication information).
  • One device may correspond to one indication information, and the first device may also correspond to more than one indication information, which is not limited in this embodiment of the present application.
  • the first terminal device after the first terminal device receives the indication information, by parsing the above-mentioned indication information, it can learn the situation of other devices in the first network using the time-frequency resources in the first time-frequency range in the first frequency band, so as to obtain information from the first time-frequency Among all the time-frequency resources included in the range, the time-frequency resources that have been used by other devices are excluded, and the remaining time-frequency resources within the first time-frequency range are obtained. In this way, resource collision between devices in the first network can be avoided.
  • Step 220 Perform at least one LBT detection in the second time-frequency range in the first frequency band to obtain at least one LBT detection result.
  • the second time-frequency range may be a range corresponding to at least part of the time-frequency resources in the remaining time-frequency resources.
  • the first terminal device may select at least part of the time-frequency resources from the remaining time-frequency resources to obtain the first terminal device. Two time-frequency range.
  • the above at least part of the time-frequency resources may be time-frequency resources planned to be used by the first terminal device.
  • at least part of the time-frequency resources may include time-frequency resources used when the first terminal device performs data retransmission. That is, the second time-frequency range may be a range corresponding to the time-frequency resource planned to be used by the first terminal device.
  • the first terminal device cannot obtain the time-frequency resources used by devices outside the first network. Therefore, the first terminal device can perform LBT detection on the time-frequency resources corresponding to the second time-frequency range in advance, and determine the first terminal device. Whether the time-frequency resources corresponding to the two time-frequency ranges are occupied by devices outside the first network.
  • the first terminal device may perform LBT detection on the second time-frequency range once within a detection time period. If it is detected through LBT that the time-frequency resource corresponding to the second time-frequency range is not free, it is determined that the LBT detection fails, and the first terminal device determines that the LBT detection fails.
  • the time-frequency resources corresponding to the second time-frequency range are occupied by devices outside the first network; on the contrary, if the time-frequency resources corresponding to the second time-frequency range are detected to be idle through the LBT, it is determined that the LBT detection is successful, and the time-frequency resources corresponding to the second time-frequency range are determined to be successful.
  • the frequency resources are not occupied by devices outside the first network. In this way, the LTB detection result is obtained.
  • the above-mentioned LBT detection process may be performed one or more times in advance on the time-frequency resources corresponding to the second time-frequency range, to obtain at least one LBT detection result.
  • Step 230 Determine the congestion level corresponding to the first frequency band based on the remaining time-frequency resources and/or at least one LBT detection result.
  • the remaining time-frequency resources may be understood as resources not used by devices in the first network (ie, in the system). Therefore, the more time-frequency resources remaining, the fewer devices using the first frequency band in the first network, the less traffic, and no congestion. On the contrary, the fewer remaining time-frequency resources, it indicates that there are more devices using the first frequency band in the first network, the traffic volume is larger, and there is a risk of congestion from the first network.
  • the greater the number of failures in at least one LBT detection result it indicates that there are more devices outside the first network using the first frequency band, the traffic volume is large, and there is a risk of congestion from outside the first network.
  • the smaller the number of failures in at least one LBT detection result it indicates that there are fewer devices outside the first network using the first frequency band, the traffic volume is small, and no congestion is caused.
  • the first terminal device can determine the situation that the device in the first network (ie, in the system) uses the first frequency band according to the remaining time-frequency resources.
  • the use of the first frequency band by a device outside the first network (ie, outside the system) is determined by using non-idle time-frequency resources in the at least one first time-frequency resource.
  • the first terminal device can flexibly control the congestion of different networks.
  • step 230 determines the congestion level corresponding to the first frequency band based on the remaining time-frequency resources and/or at least one LBT detection result, which can be implemented by the following steps:
  • Step 2301 Based on the remaining time-frequency resources, determine the first sub-congestion degree caused by the device in the first network using the first frequency band;
  • Step 2302 Determine, based on at least one LBT detection result, a second sub-congestion degree caused by devices in the second network using the first frequency band; the second network is different from the first network;
  • Step 2303 Determine the congestion level corresponding to the first frequency band based on the first sub-congestion level and/or the second sub-congestion level.
  • the first sub-congestion degree is a measure of the congestion of the first frequency band in the first network (in the system) by the first terminal device.
  • the second sub-congestion degree is a measure of the congestion of the first frequency band in the second network by the first terminal device.
  • the second network may be a network that uses the first frequency band for communication in addition to the first network.
  • the first network is a D2D network
  • the second network is a Wi-Fi network.
  • the first network may also be a Wi-Fi network
  • the second network may be a D2D network. This embodiment of the present application does not limit this.
  • the first terminal device may determine the first sub-congestion degree based on the number of remaining time-frequency resources, and determine the first sub-congestion degree based on the number of failed detection results or the number of successful detection results in at least one LBT detection result.
  • the second sub-congestion level may be determined based on the number of remaining time-frequency resources, and determine the first sub-congestion degree based on the number of failed detection results or the number of successful detection results in at least one LBT detection result.
  • the first terminal device may be preconfigured with a set of value intervals for the number of remaining time-frequency resources, and a value interval for the number of LBT failures or successes, wherein each value interval corresponds to a congestion degree.
  • the first terminal device can obtain the first sub-congestion degree according to the congestion degree corresponding to the interval in which the number of remaining time-frequency resources is located, and obtain the second sub-congestion degree according to the congestion degree corresponding to the interval in which the number of the LBT detection results are failures or successes degree.
  • the value interval of the remaining time-frequency resources may be greater than 5 or less than or equal to 5; wherein, the congestion degree corresponding to the value interval greater than 5 is no congestion, and the congestion degree corresponding to less than or equal to 5 is congestion.
  • the value interval for LBT detection failure may be greater than 3 or less than or equal to 3; wherein, the congestion degree corresponding to the value interval greater than 3 is congestion, and the congestion degree corresponding to less than or equal to 3 is no congestion.
  • the first terminal device determines the first sub-congestion level and the second sub-congestion level according to the number of remaining time-frequency resources determined in real time and the number of failures in at least one LBT detection result.
  • the first terminal device may determine a first proportion of the remaining time-frequency resources in the first time-frequency range of the first frequency band, and determine the first proportion based on the first proportion.
  • Sub-congestion level
  • the first terminal device may determine that in at least one LBT detection result, the LBT detection result is a second proportion of success or failure, and determine the second sub-congestion degree based on the second proportion.
  • the first terminal device may calculate the difference between the number of remaining time-frequency resources and the first The first ratio is obtained from the ratio of the total number of time-frequency resources in the time-frequency range. Based on the number of at least one LBT test result and the number of failed or successful test results in the at least one LBT test result, a ratio of the number of LBT test successes or failures to the total number of at least one LBT test result is calculated to obtain a second ratio.
  • the value of the first proportion may be used to directly represent the first sub-congestion degree, and the value of the second proportion may be used to represent the second sub-congestion degree.
  • the larger the value of the first proportion is it indicates that there are fewer devices using the first frequency band in the first network, no congestion is caused, and the first sub-congestion degree is low; on the contrary, the smaller the value of the first proportion is, the less It indicates that there are many devices using the first frequency band in the first network, and the congestion degree of the first network is relatively high.
  • the second ratio is the LBT detection failure ratio
  • the larger the value of the second ratio the more devices outside the first network use the first frequency band, and the second sub-congestion degree is higher; the value of the second ratio is higher. The smaller the value, the fewer devices outside the first network use the first frequency band, and the second sub-congestion degree is lower.
  • the second ratio is the success ratio of LBT detection
  • the larger the value of the second ratio the less devices outside the first network use the first frequency band, and the second sub-congestion degree is lower; the higher the value of the second ratio If it is small, it indicates that there are many devices using the first frequency band outside the first network, and the second sub-congestion degree is higher.
  • the first terminal device may be configured with a preset first correspondence between the remaining resource ratio and the congestion degree, and a preset first LBT detection failure or LBT detection success ratio and the congestion degree. Two correspondences. In this way, the first terminal device may determine the first sub-congestion level based on the first correspondence and the first ratio; and determine the second sub-congestion level based on the second correspondence and the second ratio.
  • the first correspondence may be as shown in Table 1:
  • the first terminal device can determine the first sub-congestion degree corresponding to the first proportion and the second sub-congestion degree corresponding to the second proportion according to the corresponding relationship in Table 1 and Table 2.
  • the congestion degree of the entire first frequency band can be obtained.
  • step 210 determines the remaining time-frequency resources in the first time-frequency range in the first frequency band based on at least one indication information, which can be implemented by the following steps:
  • Step 2101 Obtain at least one time-frequency resource used by at least one device in the first network based on at least one indication information;
  • Step 2102 Exclude at least one time-frequency resource from the first time-frequency range of the first frequency band to obtain the remaining time-frequency resource.
  • the first terminal device parses the received one or more indication information to obtain time-frequency resources used by the device in the first network. In this way, the first terminal device can directly exclude the used time-frequency resources from the first time-frequency range of the first frequency band to obtain a plurality of remaining time-frequency resources, thereby avoiding resources between different devices in the first network Collision and avoid unnecessary LBT detection within the first network.
  • step 210 determines the remaining time-frequency resources in the first time-frequency range in the first frequency band based on at least one indication information, which can be implemented by the following steps:
  • Step 2101' based on at least one indication information, obtain at least one time-frequency resource occupied by at least one device in the first network;
  • Step 2102' exclude at least one time-frequency resource from the first time-frequency range of the first frequency band to obtain multiple initial time-frequency resources;
  • Step 2103' From a plurality of initial time-frequency resources, obtain the initial time-frequency resources whose received signal strength is less than the first energy threshold, and obtain the remaining time-frequency resources.
  • the first terminal device parses the received one or more indication information, and learns the situation that other devices in the first network use time-frequency resources within the first time-frequency range. In this way, the first terminal device can exclude these time-frequency resources from the first time-frequency range of the first frequency band to obtain multiple initial time-frequency resources, thereby avoiding resource collision between different devices in the first network and avoiding unnecessary resources LBT probes within the first network.
  • the first terminal device may screen a plurality of initial time-frequency resources after excluding resources, so as to obtain effective remaining time-frequency resources.
  • the first terminal device may acquire received signal strengths of multiple initial time-frequency resources, for example, the first terminal device may acquire RSSIs of multiple initial time-frequency resources. In this way, the first terminal device can obtain the initial time-frequency resources whose received signal strength is less than the first energy threshold from the plurality of initial time-frequency resources, and obtain the effective remaining time-frequency resources.
  • the first energy threshold may be a value that can be dynamically changed.
  • the first terminal device may adjust the first energy threshold based on the congestion degree. The specific adjustment method is discussed in detail in the following embodiments.
  • the excluded time-frequency resources are screened based on the first energy threshold, and the effective remaining time-frequency resources are selected.
  • step 220 performs at least one LBT detection in the second time-frequency range in the first frequency band to obtain at least one LBT detection result, including:
  • Step 2201 detecting the received signal strength
  • Step 2202 Determine an LBT detection result based on the received signal strength and the second energy threshold.
  • the first terminal device may perform one or more LBT detections on the second time-frequency range in advance.
  • the first terminal device may detect the received signal strength in the second time-frequency range within a detection period. Before the end of the detection time period arrives, the signal reception strength corresponding to the second time-frequency range is still greater than the second energy threshold, indicating that the time-frequency resources corresponding to the first time-frequency range are not idle, and it is determined that the LBT detection result this time is detection. fail.
  • the signal reception strength corresponding to the second time-frequency range is less than the second energy threshold, indicating that the time-frequency resources corresponding to the first time-frequency range are idle, and the LBT detection result of this time is determined to be successful.
  • the detection time period includes a time period during which the first terminal device performs channel detection.
  • a detection time period is a time period during which a clear channel assessment (Clear Channel Assessment, CCA) detection is performed, and the detection time period may include 4, 9, 16 , or 25 microseconds, etc.
  • CCA Clear Channel Assessment
  • the first terminal device needs to perform multiple LBT detections on the second time-frequency range, and when multiple LBT detection results are obtained, the first terminal device can continue to detect the second time period in the next detection time period after the end of one detection period. LBT detection is performed on the time-frequency resources in the frequency range to obtain another LBT detection result. In this way, multiple LBT detection results can be obtained.
  • the first network is a D2D network
  • the second network is a Wi-Fi network. Based on this, after the congestion degree is determined, the first terminal device may selectively perform congestion control on the D2D network according to the congestion degree. Two different congestion control methods are described below.
  • the first congestion control method :
  • the first congestion control mode may be distributed congestion control, that is, terminal equipment performs congestion control autonomously.
  • the first terminal device may further perform the following steps:
  • Step 240a if the congestion degree satisfies the preset congestion condition, determine the target distance between the first terminal device and the second terminal device; the second terminal device and the first terminal device are a D2D pair;
  • Step 250a in the case that the target distance is less than the distance threshold, perform congestion control based on the first congestion control strategy.
  • the preset congestion condition may be a condition preconfigured by the network side for the first terminal device, or a condition set when the first terminal device leaves the factory, which is not limited in this embodiment of the present application.
  • the congestion degree determined by the first terminal device satisfies the congestion condition, it may be considered that the current first frequency band is congested.
  • the preset congestion condition may be that the sum of the first sub-congestion degree and the second sub-congestion degree is greater than 50%.
  • the preset congestion condition may be that the first sub-congestion level and/or the second sub-congestion level is greater than the medium congestion level degree. This embodiment of the present application does not limit the type of the congestion condition.
  • the first terminal device after detecting congestion, the first terminal device can determine whether it Congestion control is performed.
  • the first terminal device can determine the target distance in the following two ways.
  • the first terminal device may determine the target distance according to the respective position information of itself and the second terminal device.
  • the location information may be longitude and latitude information determined by the terminal device based on a Global Positioning System (Global Positioning System, GPS).
  • the second terminal device may send its location information to the first terminal device through dedicated signaling, or carry its location information in the indication information and send it to the first terminal device, which is not limited in this embodiment of the present application.
  • the first terminal device can also determine the target distance according to the signal received power of the second terminal device.
  • the second terminal device can carry the transmission power information in the indication information sent to the first terminal device. .
  • the first terminal device can determine the transmit power of the second terminal device based on the indication information, and can measure the signal reception power of the signal from the second terminal device within a period of time (for example, the reference signal receiving power (Reference Signal Receiving Power, RSRP)).
  • the target distance between the first terminal device and the second terminal device is estimated by using the transmit power of the second terminal device and the measured signal reception power of the second terminal device.
  • the determined target distance may be fed back to the second terminal device.
  • a device with a closer distance between the transceiver and the transceiver may be selected to perform the congestion control.
  • the first terminal device may be configured with a distance threshold, so that the first terminal device may compare the target distance with the distance threshold to determine whether to perform congestion control.
  • the target distance between the first terminal device and the second terminal device is d
  • the first terminal device may determine whether to perform congestion control according to formula (1).
  • D th is the distance threshold
  • the terminal device can perform congestion control when the distance from the peer end is relatively short, so as to ensure signal coverage between devices in the D2D network and improve the robustness of the D2D system.
  • the distance threshold may be a dynamically changing value, which may change with the congestion degree.
  • the first terminal device may determine the distance threshold according to the congestion degree determined in step 230.
  • step 250a when the target distance is less than the distance threshold, the following steps may also be performed before congestion control is performed based on the first congestion control strategy:
  • the distance threshold is determined; wherein the congestion degree and the distance threshold have a positive correlation.
  • the higher the congestion degree of the first frequency band the larger the distance threshold. In this way, more terminal devices can be selected as congestion control execution devices to perform congestion control to relieve congestion in the first frequency band.
  • the distance threshold is determined according to the congestion degree, and the proportion and number of devices that perform congestion control can be dynamically adjusted, thereby improving the flexibility of congestion control.
  • the first congestion control strategy involved in step 250a may include at least one of the following:
  • the energy threshold is adjusted based on the threshold adjustment parameter; the energy threshold includes the first energy threshold and/or the second energy threshold; so that the remaining time-frequency resources are re-determined by the adjusted first energy threshold, and/or by adjusting After the second energy threshold, the LBT detection result is re-determined;
  • MCS Modulation and Coding Scheme
  • the adjustment of the energy threshold may be to relax the first energy threshold in the time-frequency resource exclusion process in step 2103', and/or the second energy threshold in the LBT detection process in step 2202, so that the pass
  • the adjusted first energy threshold re-determines the remaining time-frequency resources, and/or the LBT detection result is re-determined by using the adjusted second energy threshold.
  • the energy threshold By adjusting the energy threshold, the number of remaining time-frequency resources is increased, and/or the number of LBT failures is reduced (ie, the number of successful LBTs is increased), thereby improving the resource reuse rate and alleviating congestion.
  • the adjustment of the energy threshold may be to gradually relax the first energy threshold and/or the second energy threshold.
  • gradually relaxing the first energy threshold and/or the second energy threshold may be implemented in the following manner:
  • update the congestion level Based on the ith energy threshold, update the congestion level; if the updated congestion level still satisfies the preset congestion condition, continue to adjust the parameters based on the threshold, and adjust the ith energy threshold until the updated congestion level does not meet the preset congestion level condition.
  • the current congestion level of the first spectrum needs to be re-determined. If the current congestion level of the first spectrum still satisfies the preset congestion condition, that is, the congestion still exists, continue to adjust the energy threshold again based on the threshold adjustment parameter until the congestion level of the first spectrum no longer meets the preset congestion condition.
  • the first terminal device may only adjust the first energy threshold, or may only adjust the first energy threshold.
  • the second energy threshold is adjusted, and the first energy threshold and the second energy threshold may also be adjusted at the same time, which is not limited in this embodiment of the present application.
  • the first terminal device after the first terminal device detects that the congestion occurs, it can further determine whether the congestion originates from the first network or the second network. If the congestion originates from the first network, the first energy threshold is adjusted to increase the number of remaining time-frequency resources in the first network. If the congestion originates from the second network, the second energy threshold is adjusted to reduce the number of LBT failures (ie, increase the number of LBT successes). If the congestion originates from the first network and the second network, the first terminal device simultaneously adjusts the first energy threshold and the second energy threshold.
  • the first terminal device may distinguish the source of the congestion based on the first sub-congestion degree and the second sub-congestion degree in the congestion degree, so as to adjust the first energy threshold and/or the second energy threshold in a targeted manner.
  • the parameter is adjusted based on the energy threshold value, and the first energy threshold value is increased, so that the remaining time-frequency resources are re-determined by the adjusted first energy threshold value ;
  • the parameter is adjusted based on the energy threshold value, and the second energy threshold value is decreased, so as to re-determine the LBT detection result according to the adjusted second energy threshold value.
  • the first terminal device can distinguish the source of the congestion, so as to control the congestion in a targeted manner, and effectively relieve the congestion in the first frequency band.
  • reducing the transmission power of the first terminal based on the transmission power adjustment parameter may be to adjust the transmission power of the data sent by the first terminal device to the second terminal device. Reducing the transmit power can reduce the interference to other terminal equipment after resource multiplexing and improve the multiplexing rate.
  • the reduction of the transmit power of the first terminal may also be gradually reduced. Specifically, each time the transmit power of the first terminal is reduced based on the transmit power adjustment parameter, the current congestion degree of the first frequency spectrum needs to be re-determined. If the current congestion degree of the first spectrum still satisfies the preset congestion condition, that is, the congestion still exists, continue to reduce the transmission power of the first terminal device again based on the transmission power adjustment parameter, until the congestion degree of the first spectrum no longer meets the preset congestion condition.
  • the transmit power cannot be reduced indefinitely.
  • the first terminal device needs to compare the reduced transmission power with the limit value of the transmission power after reducing the transmission power each time.
  • the limit value is used as the transmit power of the first terminal device.
  • the limit value may be a transmit power value that guarantees the lowest quality of service for D2D. If the congestion still exists after reducing to the limit value, the congestion degree of the first frequency band can be alleviated by using other congestion strategies.
  • reducing the MCS level of the first terminal device can improve the robustness after the interference is increased.
  • the threshold adjustment parameter, the transmit power adjustment parameter, and the MCS level adjustment parameter in the first congestion control strategy may be pre-configured parameter values, or may be determined by the first terminal device based on the degree of congestion, This embodiment of the present application does not limit this.
  • the following steps may also be performed:
  • At least one of an energy threshold adjustment parameter, a transmit power adjustment parameter, and an MCS level adjustment parameter is determined.
  • the first terminal device may determine at least one of the energy threshold adjustment parameter, the transmit power adjustment parameter, and the MCS level adjustment parameter according to the congestion degree.
  • the first terminal device may also determine at least one of an energy threshold adjustment parameter, a transmit power adjustment parameter, and an MCS level adjustment parameter according to the target distance.
  • the first terminal device may determine at least one of an energy threshold adjustment parameter, a transmit power adjustment parameter, and an MCS level adjustment parameter according to the congestion level and the target distance.
  • the target distance when the target distance is smaller, larger energy threshold adjustment parameters, transmit power adjustment parameters, and MCS level adjustment parameters can be set.
  • the target distance is large, smaller energy threshold adjustment parameters, transmit power adjustment parameters, and MCS level adjustment parameters can be set.
  • the adjustment parameters are dynamically determined based on the congestion level and/or the target distance, which can increase the flexibility of congestion control.
  • the second congestion control method :
  • the second congestion control method can be centralized congestion control, that is, the first terminal device can report the determined congestion degree and the target distance from the second terminal device to the centralized control device, and the centralized control device determines and executes congestion. Controlled terminal equipment and a second congestion control strategy.
  • the centralized control device here may be a network device, such as a base station; the centralized control device may also be a target terminal device with centralized processing capability, such as a D2D cluster head.
  • the first terminal device may further perform the following steps:
  • Step 240b Send the congestion level corresponding to the first frequency band to the network device or the target terminal device.
  • Step 250b Receive the second congestion control policy sent by the network device or the target terminal, and perform congestion control based on the second congestion control policy.
  • the network device may be a base station
  • the target terminal device may be a terminal device with centralized processing capability, such as a D2D cluster head.
  • the D2D cluster head may be a device that is relatively close to a group of D2D devices and has more computing resources and can be managed centrally.
  • the network device or the target terminal device may determine the second congestion control strategy based on the congestion level. and send the second congestion control policy to the first terminal device.
  • the first terminal device relieves the congestion of the first frequency band based on the second congestion control strategy.
  • the first terminal device may also obtain a target distance from the second terminal device, and send the target distance and the determined congestion level of the first frequency band to the network device or the target terminal at the same time
  • the network device or the target terminal device determines whether the first terminal device is a device that performs congestion control based on the congestion degree and the target distance.
  • the process for the network device or the target terminal device to determine whether the first terminal device is a device that performs congestion control based on the congestion degree and the target distance is similar to step 240a, which is not repeated in this embodiment of the present application.
  • the network device or the target terminal device determines that the first terminal device is a device that performs congestion control, it determines a second congestion control policy of the first terminal device, and sends the second congestion control policy to the first terminal device.
  • the second congestion control strategy is similar to the first congestion control strategy. This embodiment of the present application will not be repeated here.
  • the indication information is carried in sidelink control information (Sidelink Control Information, SCI). That is to say, a device in the first network can send its own time-frequency resource information in the first time-frequency range through the SCI, and the first terminal device can decode the SCI to learn the time-frequency resources used by other devices in the first network, and then exclude these resources. time-frequency domain resources, thereby avoiding resource collision between devices in the first network and avoiding unnecessary intra-system LBT detection.
  • SCI Sidelink Control Information
  • the first frequency band includes an unlicensed frequency band.
  • two congestion parameters may be defined: the remaining resource ratio after the resources in the D2D-U user system are excluded (Remaining resource ratio, RRR), and the LBT failure ratio (LBT failure ratio, LFR) of the resource selected by the D2D-U user.
  • RRR residual resource ratio
  • LFR LBT failure ratio
  • RRR refers to the ratio of the number of remaining time-frequency resources in the unlicensed band to the total number of time-frequency resources in the unlicensed band after the terminal device excludes the time-frequency resources used by other D2D-U devices in the unlicensed band.
  • LFR refers to the failure rate of LBT of resources selected by D2D-U users. Among them, RRR can represent the degree of congestion within the D2D network (ie, within the system), and LFR can represent the degree of congestion outside the D2D network (ie, outside the system).
  • the RRR can be obtained in the following ways: D2D-U devices can send the time-frequency domain resource information of the unlicensed frequency band used by themselves through SCI information, and other D2D-U devices can learn other D2D-U devices by decoding the SCI information. In the case where the U device uses unlicensed frequency band resources, these time-frequency domain resources are excluded to obtain RRR.
  • ISCL Intra-system congestion level
  • RRR degree of congestion in the system
  • the ISCL value when the ISCL value is high, it indicates that the degree of congestion in the system is relatively high; when the value of ISCL is middle, it indicates that the degree of congestion in the system is moderate; when the value of ISCL is low, it indicates that the degree of congestion in the system is low.
  • the degree of congestion in the system when the RRR is less than or equal to 40%, the degree of congestion in the system is high; when the RRR is greater than 40% and less than or equal to 60%, the degree of congestion in the system is moderate; when the RRR is greater than 60% and less than or equal to 100 %, the remaining time-frequency resources are more, and the degree of congestion in the system is lower.
  • the LBT is obtained in the following way: after the D2D-U user excludes the unlicensed frequency band resources used by the terminal equipment in the system according to the SCI information, the D2D-U user selects the N time-frequency resources that he plans to use from the determined remaining time-frequency resources (that is, at least one first time-frequency resource), the N time-frequency resources may include resources used for retransmission. Further, the D2D-U device performs LBT detection on the selected N time-frequency resources in advance to ensure that these time-frequency resources are not occupied by Wi-Fi devices.
  • the D2D-U device detects the LBT of the above N time-frequency resources during the listening time period. If the number of detected non-idle time-frequency resources is M when the end time of the listening time period is reached, then the LFR is M/N.
  • the higher the LFR the larger the number of Wi-Fi devices using the unlicensed frequency band, and the danger of congestion from outside the system; on the contrary, the lower the LFR, the smaller the number of Wi-Fi devices using the unlicensed frequency band, which did not cause any problems. congestion.
  • the extra-system congestion level (Extra-system congestion level, ESCL) and the LFR can be defined, and the extra-system congestion level (ie, the second sub-congestion level described above) is represented by the ESCL.
  • the relationship between ESCL and LFR is shown in formula (3):
  • ESCL when the value of ESCL is low, it indicates that the degree of congestion outside the system is low; when the value of ESCL is middle, it indicates that the degree of congestion outside the system is moderate; when the value of ESCL is high, it indicates that the degree of congestion outside the system is high.
  • the LFR when the LFR is less than or equal to 40%, the degree of congestion outside the system is low; when the LFR is greater than 40% and less than or equal to 60%, the degree of congestion outside the system is moderate; when the LFR is greater than 60% and less than or equal to 100 %, the congestion outside the system is low.
  • the first terminal device may perform congestion control based on the following steps:
  • Step 1 The first terminal device collects statistics on RRR and LFR.
  • Step 2 The first terminal device calculates the ISCL based on the RRR, and calculates the ESCL based on the LFR.
  • Step 3 If the ISCL and/or ESCL satisfy the preset congestion condition, go to Step 4, otherwise go to Step 1.
  • Step 4 If the target distance between the first terminal device and the second terminal device is smaller than the distance threshold, step 5 is performed; otherwise, step 1 is performed.
  • the first terminal device can determine whether it acts as a congestion control execution device according to the target distance from the second terminal device. If the target distance is less than the distance threshold, it takes itself as the execution device for congestion control.
  • the first terminal device may determine the target distance based on the location information, or the transmit power of the second terminal device and the measured RSRP value.
  • the distance threshold can be dynamically changed. Specifically, the distance threshold may be determined according to ISCL and/or ESCL. The higher the degree of congestion characterized by ISCL and/or ESCL, the distance threshold will be relaxed and more devices will be selected as congestion control enforcement devices.
  • the distance threshold can be set as a function of ISCL and ESCL, and the higher the congestion level represented by ISCL and ESCL, the higher the distance threshold.
  • Step 5 the first terminal device performs congestion control based on the congestion control policy.
  • the first terminal device may perform at least one of the following operations:
  • the ISCL is relatively high
  • the first energy threshold in the resource exclusion process is relaxed
  • the ESCL is relatively high
  • the second energy threshold in the LBT detection process is relaxed.
  • the method for determining the degree of congestion provided by the embodiment of the present application can determine the congestion of the unlicensed frequency band used by the D2D-U device according to the ratio of the remaining resources after the resource exclusion in the D2D-U device system and the LBT failure ratio of the resources selected by the D2D-U device Therefore, selecting an appropriate D2D pair for targeted congestion control can increase the resource reuse rate while limiting the level of interference, thereby alleviating the degree of congestion.
  • an embodiment of the present application further provides a terminal device.
  • the terminal device may include:
  • the transceiver unit 91 configured to obtain at least one indication information
  • the first processing unit 92 is configured for the at least one indication information to determine the remaining time-frequency resources in the first time-frequency range in the first frequency band; the indication information is used to indicate the first terminal device where the first terminal device is located. Time-frequency resources within the first time-frequency range used by a device in the network;
  • the second processing unit 93 is configured to perform at least one listen-before-talk LBT detection in the second time-frequency range in the first frequency band to obtain at least one LBT detection result;
  • the determining unit 94 is configured to determine the congestion level corresponding to the first frequency band based on the remaining time-frequency resources and/or the at least one LBT detection result.
  • the determining unit 94 is configured to, based on the remaining time-frequency resources, determine a first sub-congestion degree caused by the device in the first network using the first frequency band; detect based on the at least one LBT As a result, a second degree of sub-congestion caused by devices in the second network using the first frequency band is determined; the second network is different from the first network; based on the first degree of sub-congestion, and/or the The second sub-congestion degree is to determine the congestion degree corresponding to the first frequency band.
  • the determining unit 94 is further configured to determine a first proportion of the remaining time-frequency resources in all the time-frequency resources in the first time-frequency range, and based on the first proportion , to determine the first sub-congestion degree; in addition, the determining unit 94 is further configured to determine the second proportion of the LBT detection result being success or failure in at least one LBT detection result corresponding to the second time-frequency range , and based on the second ratio, the second sub-congestion level is determined.
  • the determining unit 94 is further configured to determine the first sub-congestion degree corresponding to the first proportion based on a preset first correspondence between the remaining resource ratio and the congestion degree; and, based on The second ratio is determined according to the preset second correspondence between the LBT detection success or the LBT detection failure and the congestion degree.
  • the first processing unit 92 is configured to obtain, based on the at least one indication information, at least one time-frequency resource used by at least one device in the first network; In the frequency range, the at least one time-frequency resource is excluded to obtain a plurality of initial time-frequency resources; from the plurality of initial time-frequency resources, an initial time-frequency resource whose received signal strength is less than a first energy threshold is obtained, and the initial time-frequency resource is obtained. remaining time-frequency resources.
  • the first processing unit 92 is configured to obtain, based on the at least one indication information, at least one time-frequency resource used by at least one device in the first network; In the frequency range, the at least one time-frequency resource is excluded to obtain the remaining time-frequency resource.
  • the second processing unit 93 is further configured to monitor the received signal strength of the second time-frequency range within a detection time period; based on the received signal strength corresponding to the second time-frequency range and the The second energy threshold determines an LBT detection result.
  • the terminal device may further include a congestion control unit
  • the congestion control unit is configured to determine a target distance between the first terminal device and the second terminal device if the congestion degree satisfies a preset congestion condition; the second terminal device and the first terminal device is a D2D pair; when the target distance is less than the distance threshold, congestion control is performed based on the first congestion control strategy.
  • the congestion control unit is further configured to determine the distance threshold based on the congestion degree; wherein the congestion degree and the distance threshold have a positive correlation.
  • the first congestion control strategy includes at least one of the following:
  • the energy threshold is adjusted based on the threshold adjustment parameter; the energy threshold includes the first energy threshold and/or the second energy threshold; so that the remaining time-frequency resources are re-determined by the adjusted first energy threshold, and/or the adjusted first energy threshold
  • the second energy threshold of re-determining the LBT detection result
  • the MCS level of the first terminal device is lowered.
  • the congestion control unit may be configured to adjust the current energy threshold based on the threshold adjustment parameter to obtain the ith energy threshold; wherein, i is an integer greater than or equal to 1; based on the ith energy threshold, Update the congestion level; if the updated congestion level still satisfies the preset congestion condition, continue to adjust parameters based on the threshold, and adjust the i-th energy threshold until the updated congestion level does not satisfy the preset congestion condition.
  • the congestion control unit may be configured to determine one of the energy threshold adjustment parameter, the transmit power adjustment parameter, and the MCS level adjustment parameter based on the congestion degree and/or the target distance. at least one.
  • the congestion control unit may be configured to adjust parameters based on the energy threshold and increase the first energy threshold if the first sub-congestion degree in the congestion degree satisfies the preset congestion condition, so that the remaining time-frequency resources are re-determined by the adjusted first energy threshold;
  • the second sub-congestion degree in the congestion degree satisfies the preset congestion condition, adjust the parameter based on the energy threshold value to lower the second energy threshold value, so as to re-determine the LBT according to the adjusted second energy threshold value Test results.
  • the congestion control unit may be further configured to obtain the target distance from the second terminal device
  • the indication information is carried in sidelink control information SCI.
  • the first frequency band includes an unlicensed frequency band.
  • each functional unit in this embodiment may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the integrated modules are implemented in the form of software function modules and are not sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this embodiment is essentially or correct. Part of the contribution made by the prior art or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, and includes several instructions to make a computer device (which can be a personal A computer, a server, or a network device, etc.) or a processor (processor) executes all or part of the steps of the method in this embodiment.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (Read Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes.
  • the terminal device provided by the embodiment of the present application may include: a transceiver 1001 , a processor 1002 , a a memory 1003 where the processor can execute instructions;
  • the transceiver 1001, the processor 1002 and the memory 1003 communicate through a communication bus 1004; wherein,
  • the transceiver 100 when running the computer program stored in the execution memory 1003, can execute the following instructions: obtain at least one instruction information;
  • the processor 1002 when running the computer program stored in the execution memory 1003, may execute the following instructions: determine, based on the at least one indication information, the remaining time-frequency resources in the first time-frequency range in the first frequency band ; the indication information is used to indicate the time-frequency resource within the first time-frequency range used by a device in the first network where the first terminal device is located; the second time-frequency resource in the first frequency band
  • the range performs at least one listen-before-talk LBT detection to obtain at least one LBT detection result; based on the remaining time-frequency resources, and/or the at least one LBT detection result, the congestion level corresponding to the first frequency band is determined.
  • the memory in this embodiment may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory may be Read Only Memory (ROM), Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory) , EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Random Access Memory (FRAM), Flash Memory (Flash Memory), Magnetic Surface Memory , CD-ROM, or CD-ROM (Compact Disc Read-Only Memory, CD-ROM); magnetic surface memory can be disk memory or tape memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM random access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • SSRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced Type synchronous dynamic random access memory Enhanced Synchronous Dynamic Random Access Memory, ESDRAM
  • synchronous link dynamic random access memory SyncLink Dynamic Random Access Memory, SLDRAM
  • direct memory bus random access memory Direct Rambus Random Access Memory, DRRAM
  • DRRAM Direct Rambus Random Access Memory
  • Embodiments of the present application further provide a computer storage medium, specifically a computer-readable storage medium.
  • Computer instructions are stored thereon.
  • the computer storage medium is located in the terminal, when the computer instructions are executed by the processor, any step in the above-mentioned method for determining the degree of congestion in the embodiment of the present application is implemented.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种确定拥塞程度的方法,所述方法包括:获取至少一个指示信息,并基于所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源;所述指示信息用于指示所述第一终端设备所处的第一网络中一设备使用的所述第一时频范围内的时频资源;在所述第一频段中的第二时频范围进行至少一次先听后说LBT检测,得到至少一个LBT检测结果;基于所述剩余时频资源,和/或,所述至少一个LBT检测结果,确定所述第一频段对应的拥塞程度。本申请实施例还提供一种终端设备和计算机存储介质。

Description

确定拥塞程度的方法及终端设备、计算机存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种确定拥塞程度的方法及终端设备、计算机存储介质。
背景技术
为了应对无线通信需求的爆发式增长,同时提高频谱使用效率,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出了设备到设备(Device-to-Device,D2D)通信技术。D2D通信技术是指一定距离范围内的用户通信设备直接通信。D2D设备既可以在基站控制下通信,也可在无网络基础设施的情况下通信,因此相比于蓝牙(Bluetooth)和无线保真技术(Wireless Fidelity,Wi-Fi)等类似通信技术,D2D技术更具优势且更加灵活。
由于授权频谱的带宽限制,D2D的通信性能提升有限。D2D接入非授权频谱(DTD in Unlicensed Spectrum,D2D-U)技术成为了进一步提高***吞吐量的解决方案。
实际应用中,非授权频段可以支持不同的通信网络使用(例如D2D网络,蓝牙网络,以及Wi-Fi网络等)。然而,不同的通信网络(或者通信***)之间缺少协作机制。因此,在D2D-U场景中,D2D设备无法获知非授权频段中时频资源的使用情况,进而无法判断非授权频段的实际拥塞程度,从而无法灵活的对拥塞进行控制。
发明内容
本申请实施例提供了一种确定拥塞程度的方法、终端设备、计算机存储介质。
第一方面,提供一种确定拥塞程度的方法,应用于第一终端设备,所述方法包括:
获取至少一个指示信息,并基于所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源;所述指示信息用于指示所述第一终端设备所处的第一网络中一设备使用的所述第一时频范围内的时频资源;
在所述第一频段中的第二时频范围内进行至少一次先听后说(Listen before Talk,LBT)检测,得到至少一个LBT检测结果;
基于所述剩余时频资源,和/或,所述至少一个LBT检测结果,确定所述第一频段对应的拥塞程度。
第二方面,提供一种终端设备,所述终端设备包括:
收发单元,配置为获取至少一个指示信息;
第一处理单元,配置为基于所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源;所述指示信息用于指示所述第一终端设备所处的第一网络中一设备使用的所述第一时频范围内的时频资源;
第二处理单元,配置为在所述第一频段中的第二时频范围内进行至少一次LBT检测,得到至少一个LBT检测结果;
确定单元,配置为基于所述剩余时频资源,和/或,所述至少一个LBT检测结果,确定所述第一频段对应的拥塞程度。
第三方面,提供一种终端设备,所述终端设备包括:收发器、处理器和存储有计 算机程序的存储器;
所述收发器、所述处理器和所述存储器之间通过通信总线进行通信;
所述处理器,还配置为结合所述收发器,运行所述存储器中存储的所述计算机程序时,执行第一方面所述方法的步骤。
第四方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行实现第一方面所述方法的步骤。
本申请实施例提供的确定拥塞程度的方法,获取至少一个指示信息,并基于所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源;接着,在所述第一频段中的第二时频范围内进行至少一次先听后说LBT检测,得到至少一个LBT检测结果。最后,基于所述剩余时频资源,和/或,所述至少一个第一时频资源中的非空闲时频资源,确定所述第一频段对应的拥塞程度。这样,可以准确地获知第一频段中时频资源使用情况,得到所述第一频段对应的拥塞程度,提高拥塞程度判断的准确性。
附图说明
图1为本申请实施例提供的一种通信网络架构图;
图2为本申请实施例提供的一种确定拥塞程度的方法流程示意图一;
图3为本申请实施例提供的一种确定拥塞程度的方法流程示意图二;
图4为本申请实施例提供的一种确定拥塞程度的方法流程示意图三;
图5为本申请实施例提供的一种确定拥塞程度的方法流程示意图四;
图6为本申请实施例提供的一种确定拥塞程度的方法流程示意图五;
图7为本申请实施例提供的一种确定拥塞程度的方法流程示意图六;
图8为本申请实施例提供的一种确定拥塞程度的方法流程示意图七;
图9为本申请实施例提供的一种终端设备结构组成示意图一;
图10为本申请实施例提供的一种终端设备结构组成示意图二。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
另外,本申请的说明书和权利要求书中术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中的步骤编号仅用于举例,可能对应不同的实施方式,在不冲突的情况下,不限制其顺序。本申请提供的实施例、实施方式中的技术特征在不冲突的情况下,可以相互组合。
实际应用中,当通信网络发生拥塞时,会降低通信网络的通信性能及用户体验,因此通信网络中的拥塞检测方法和拥塞控制机制具有重要作用。
下面,以基于新无线(New Radio,NR)车辆到其他设备(Vehicle to Everything, V2X)网络为例,介绍相关技术中的拥塞检测方法以及拥塞控制机制。在NR-V2X的车辆密集场景下,车载终端数量较多,高负载数据业务可能使网络陷入拥塞,导致通信性能急速下降。为了对网络的拥塞情况进行度量,在NR-V2X中定义了两个拥塞检测指标:信道忙碌比(Channel Busy Ratio,CBR)和信道占用比(Channel Occupancy Ratio,CR)。
其中,CBR定义为[n-100,n-1]区间内测量到的接收信号强度指示(Received Signal Strength Indication,RSSI)高于预配置门限的时频资源,占资源池内时频资源总数的比例。CR定义为[n-a,n-1]区间内已经用于侧行传输的时频资源,和[n,n+b]区间内已经授权将要用于侧行传输的时频资源个数之和,占资源池内子时频资源总数的比例;其中a+b+1=1000,b<(a+b+1)/2,并且n+b不能超过最后一次授权的侧行传输。
可见,CBR是指终端设备对最近一段时间内资源池拥塞情况的度量,CR是终端设备对自身使用和将使用的资源情况的度量。
实际应用中,NR-V2V中根据测量所得的CBR值和CR值完成拥塞控制。具体地,终端设备可以被预先配置一组CBR取值区间,每一个区间对应一个CR极限(CR-limit)值。如果该终端设备测量所得CR值大于其测量所得CBR值所对应的CR-limit值,那么该终端设备需要进行拥塞控制来降低其CR值。
另外,在Wi-Fi网络中,Wi-Fi设备可以根据资源利用率(即信道利用率)和缓冲占用量来检测拥塞。
然而,在D2D-U场景中,终端设备使用的是非授权频段的时频资源。具体地,非授权频段可以支持不同的通信网络使用(例如蓝牙网络或者Wi-Fi网络等)。由于不同的网络/***之间通常不存在协作机制,因此,继续沿用上述相关技术的拥塞检测方法,并不能明确获知其他网络中的设备使用非授权频段的情况。因此,单纯通过检测时频资源上的信号接收能量判断拥塞程度,不能有效区分造成拥塞的来源,进而不能采取有效且灵活的拥塞缓解的措施。
基于此,本申请实施例提供一种确定拥塞程度的方法,具体地,第一终端设备设备获取至少一个指示信息,并基于所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源;然后,在所述第一频段中的第二时频范围内进行至少一次先听后说LBT检测,得到至少一个LBT检测结果;所述第二时频范围为所述剩余时频资源中至少部分时频资源对应的范围,最后基于所述剩余时频资源,和/或,所述至少一个第一时频资源中的非空闲时频资源,确定所述非授权频段对应的拥塞程度。这样,可以准确地获知非授权频段中时频资源使用情况,提高拥塞程度判断的准确性。
本申请实施例提供的确定拥塞程度的方法可以应用于图1所示的通信网络架构示意图中。如图1所示,本申请实施例提供的通信网络架构中包括终端设备11、终端设备12和终端设备13。其中,终端设备11和终端设备12可以通过网络14进行通信,终端设备12和终端设备13可以通过网络15进行通信。网络14与网络15为不同的通信网络。示例性的,网络14可以是D2D网络、车辆到车辆(Vehicle to Vehicle,V2V)网络、V2X网络等。网络15可以是蓝牙、Wi-Fi网络。
本申请实施例中的终端设备可以是任何配置有物理层和媒体接入控制层的设备或装置,终端设备也可称为接入终端。例如,用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字线性处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它线性处理设备、车载设备、可穿戴设备等等。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请一实施例提供了一种确定拥塞程度的方法,执行主体为第一终端设备。这里,第一终端设备可以是图1所示的通信网络架构中的终端设备11、终端设备12以及终端13中的任意一个。
参考图2所述的流程示意图,本申请实施例提供的确定拥塞程度的方法,可以包括步骤210至步骤230。
步骤210、获取至少一个指示信息,并基于至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源。
其中,指示信息用于指示第一终端设备所处的第一网络中一设备使用的第一时频范围内的时频资源。
本申请实施例中,第一终端设备可以接收第一网络中其他设备发送的指示信息。也就是说,第一终端设备和上述其他设备可以是接入同一第一网络中的设备,彼此之间通过第一网络进行通信。示例性的,参考图1所示,第一终端设备为图1中终端设备11时,由于终端设备11和终端设备12处于网络14,因此,终端设备11可以接收终端设备12发送的指示信息。
其中,第一网络可以是D2D网络、Wi-Fi网络、或者其他通信网络,本申请实施例对此不做限定。在一种可能的实现方式中,当第一网络为D2D网络时,上述其他设备可以是能够与第一终端设备进行直连通信的终端设备,也可以是网络设备(如宏基站、微基站等),本申请实施例对此不做限定。
这里,指示信息可以用于指示第一网络中一设备使用的时频资源。具体地,所述一设备为向第一终端设备发送指示信息的设备。该时频资源为第一频段中第一时频范围内的资源。
本申请实施例中,第一频段可以是支持不同网络使用的频谱资源。例如,第一频段可以是支持任何网络使用的非授权频段,或者未来兼容多种网络的高频通信频段,本申请实施例对第一频段不做限定。
考虑到时域上时间的连续性,可以将第一频段按照不同的时间划分为多个时频范围。第一时频范围可以是第一频段中的部分时频域范围。
在一实施例中,该一设备可以将时频资源的频点信息和/或时隙信息携带于指示信息中发送给第一终端设备,第一终端设备解析该指示信息后,可以确定该一设备使用的时频资源。
需要说明的是,所述一设备使用的第一时频范围内的时频资源,可以是已经用于传输数据的时频资源,也可以是已经授权将要用于传输数据的时频资源,本申请实施例对此不做限定。
本申请实施例中,第一终端设备可以接收第一网络中一个或者一个以上的设备发送的指示信息,得到一个或者一个以上的指示信息(即至少一个指示信息)。一个设备可以对应一个指示信息,第一设备也可以对应一个以上的指示信息,本申请实施例对此不做限定。
这样,第一终端设备接收到指示信息后,通过解析上述指示信息,可以获知第一网络内其他设备使用第一频段中第一时频范围内的时频资源的情况,从而从第一时频范围内包含的所有时频资源中,排除已被其他设备使用的时频资源,得到第一时频范围内的剩余时频资源。这样,可以避免第一网络内设备之间的资源碰撞。
步骤220、在第一频段中的第二时频范围内进行至少一次LBT检测,得到至少一个LBT检测结果。
其中,第二时频范围可以为剩余时频资源中至少部分时频资源对应的范围。
本申请实施例中,第一终端设备在排除了第一网络内设备使用的第一时频范围内的时频资源之后,可以在剩余时频资源中选择至少部分时频资源,得到所述第二时频范围。
这里,上述至少部分时频资源可以是第一终端设备计划使用的时频资源。其中,至少部分时频资源中可以包括第一终端设备进行数据重传时使用的时频资源。也就是说,第二时频范围可以是第一终端设备计划使用的时频资源对应的范围。
本申请实施例中,第一终端设备无法获取第一网络外的设备使用时频资源的情况,因此,第一终端设备可以提前对第二时频范围对应时频资源,执行LBT检测,判断第二时频范围对应的时频资源是否被第一网络外的设备占用。
具体地,第一终端设备可以在一个检测时间段内,对第二时频范围执行一次LBT检测,若通过LBT检测到第二时频范围对应时频资源不空闲,则确定LBT检测失败,第二时频范围对应的时频资源被第一网络外的设备占用;反之,若通过LBT检测到第二时频范围对应时频资源空闲,则确定LBT检测成功,第二时频范围对应的时频资源没有被第一网络外的设备占用。如此,得到LTB检测结果。
本申请实施例中,可以提前对第二时频范围对应时频资源进行一次或者多次上述LBT检测过程,得到至少一个LBT检测结果。
步骤230、基于剩余时频资源,和/或,至少一个LBT检测结果,确定第一频段对应的拥塞程度。
如前所述,剩余时频资源可以理解为是第一网络内(即***内)设备未使用的资源。因此,剩余时频资源越多,表明第一网络中使用第一频段的设备较少,业务量不大,没有造成拥塞。相反,剩余时频资源越少,则表明第一网络中使用第一频段的设备较多,业务量较大,有来自第一网络的拥塞风险。
另外,至少一个LBT检测结果中失败的数量越多,则表明第一网络外使用第一频段的设备较多,业务量大,有来自第一网络外的拥塞风险。相反,至少一个LBT检测结果中失败的数量越少,则表明第一网络外使用第一频段的设备较少,业务量小,没有造成拥塞。
由此可见,本申请实施例中第一终端设备可以通过剩余时频资源确定出,第一网络内(即***内)设备使用第一频段的情况。通过至少一个第一时频资源中非空闲时频资源,确定出第一网络外(即***外)设备使用第一频段的情况。这样,通过剩余时频资源,和/或,第一时频资源中的非空闲时频资源,可以准确地获知不同网络对第一频段中时频资源使用情况,提高拥塞程度判断的准确性,使得第一终端设备可以灵活地对不同网络的拥塞进行控制。
在本申请一实施例中,参考图3所示的流程示意图,步骤230基于剩余时频资源,和/或,至少一个LBT检测结果,确定第一频段对应的拥塞程度,可以通过以下步骤实现:
步骤2301、基于剩余时频资源,确定第一网络中的设备使用第一频段造成的第一子拥塞程度;
步骤2302、基于至少一个LBT检测结果,确定第二网络中的设备使用第一频段造成的第二子拥塞程度;第二网络与第一网络不同;
步骤2303、基于第一子拥塞程度,和/或第二子拥塞程度,确定第一频段对应的拥塞程度。
可以理解的是,第一子拥塞程度,是第一终端设备对第一网络内(***内)第一频段拥塞情况的度量。第二子拥塞程度,是第一终端设备对第二网络内第一频段拥塞情况的度量。
这里,第二网络可以是除了第一网络外,使用第一频段进行通信的网络。在一种可能的实现方式中,第一网络为D2D网络,第二网络为Wi-Fi网络。第一网络还可以为Wi-Fi网络,第二网络为D2D网络。本申请实施例对此不做限定。
在一种可能的实现方式中,第一终端设备可以基于剩余时频资源的数量确定第一子拥塞程度,基于至少一个LBT检测结果中检测结果为失败的数量或检测结果为成功的数量,确定第二子拥塞程度。
具体地,第一终端设备可以被预先配置一组剩余时频资源数量的取值区间,以及LBT失败或成功数量的取值区间,其中,每个取值区间对应一个拥塞度。这样,第一终端设备可以根据剩余时频资源的数量所在区间对应的拥塞度,得到第一子拥塞程度,根据LBT检测结果为失败或成功的数量所在区间对应的拥塞度,得到第二子拥塞程度。
示例性的,剩余时频资源的取值区间可以为大于5或者小于等于5;其中,大于5的取值区间对应的拥塞度为不拥塞,小于等于5对应的拥塞度为拥塞。LBT检测失败的取值区间可以为大于3或者小于等于3;其中,大于3的取值区间对应的拥塞度为拥塞,小于等于3对应的拥塞度为不拥塞。这样,第一终端设备根据实时确定的剩余时频资源的数量和至少一个LBT检测结果中检测结果为失败的数量,确定第一子拥塞程度以及第二子拥塞程度。
在另一种可能的实现方式中,第一终端设备可以确定在第一频段的第一时频范围内,剩余时频资源所占的第一比例,并基于第一比例,确定所述第一子拥塞程度;
类似的,第一终端设备可以确定在至少一个LBT检测结果中,LBT检测结果为成功或失败所占的第二比例,并基于第二比例,确定第二子拥塞程度。
也就是说,第一终端设备可以基于第一频段中第一时频范围内全部时频资源的数量,以及第一时频范围内剩余时频资源的数量,计算剩余时频资源数量与第一时频范围内全部时频资源数量之比,得到第一比例。基于至少一个LBT检测结果的数量,和至少一个LBT检测结果中检测结果为失败或成功的数量,计算LBT检测成功或失败的数量与至少一个LBT检测结果的总数之比,得到第二比例。
在一实施例中,可以直接使用第一比例的取值大小表征第一子拥塞程度,第二比例的取值大小表征第二子拥塞程度。
具体地,第一比例的取值越大,则表明第一网络中使用第一频段的设备较少,没有造成拥塞,第一子拥塞程度较低;相反,第一比例的取值越小,则表明第一网络中使用第一频段的设备较多,第一网络的拥塞程度较高。对应的,第二比例为LBT检测失败比例时,第二比例的取值越大,表明第一网络外使用第一频段的设备较多,第二子拥塞程度较高;第二比例的取值越小,表明第一网络外使用第一频段的设备较少,第二子拥塞程度较低。相反,第二比例为LBT检测成功比例时,第二比例的取值越大,表明第一网络外使用第一频段的设备较少,第二子拥塞程度较低;第二比例的取值越小,表明第一网络外使用第一频段的设备较多,第二子拥塞程度较高。
在另一实施例中,第一终端设备可以被配置预设的剩余资源比例与拥塞程度之间的第一对应关系,以及预设的LBT检测失败或LBT检测成功比例与拥塞程度之间的第二对应关系。这样,第一终端设备可以基于第一对应关系和第一比例,确定第一子拥塞程度;基于第二对应关系和第二比例,确定第二子拥塞程度。
示例性的,第一对应关系可以如表1所示:
表1
拥塞程度 剩余时频资源比例取值范围
剩余时频资源比例≤40%
40%<剩余时频资源比例≤60%
60%<剩余时频资源比例≤100%
第二对应关系可以如表2所示:
表2
拥塞程度 LTB检测失败比例取值范围
LTB检测失败比例≤40%
40%<LTB检测失败比例≤60%
60%<LTB检测失败比例≤100%
这样,第一终端设备可以根据表1和表2中的对应关系,确定第一比例对应的第一子拥塞程度,以及第二比例可对应的第二子拥塞程度。
在确定第一子拥塞程度和第二子拥塞程度后,可以得到整个第一频段的拥塞程度。
在本申请一实施例中,参考图4所示的流程示意图,步骤210基于至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源,可以通过以下步骤实现:
步骤2101、基于至少一个指示信息,得到第一网络中至少一个设备使用的至少一个时频资源;
步骤2102、从第一频段的第一时频范围中,排除至少一个时频资源,得到所述剩余时频资源。
可以理解的是,第一终端设备对接收到的一个或者一个以上的指示信息进行解析,得到第一网络中设备使用的时频资源。这样,第一终端设备可以直接从第一频段的第一时频范围内,排除这些已经被使用的时频资源,得到多个剩余时频资源,从而避免第一网络中不同设备之间的资源碰撞以及避免不必要的第一网络内的LBT探测。
在本申请一实施例中,参考图5所示的流程示意图,步骤210基于至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源,可以通过以下步骤实现:
步骤2101’、基于至少一个指示信息,得到第一网络中至少一个设备占用的至少一个时频资源;
步骤2102’、从第一频段的第一时频范围中,排除至少一个时频资源,得到多个初始时频资源;
步骤2103’、从多个初始时频资源中,获取接收信号强度小于第一能量阈值的初始时频资源,得到剩余时频资源。
本申请实施例中,第一终端设备对接收到的一个或者一个以上的指示信息进行解析,获知第一网络内其他设备使用第一时频范围内时频资源的情况。这样,第一终端设备可以从第一频段的第一时频范围中,排除这些时频资源,得到多个初始时频资源,从而避免第一网络中不同设备之间的资源碰撞以及避免不必要的第一网络内的LBT探测。
进一步,第一终端设备可以对排除资源后的多个初始时频资源进行筛选,以得到有效的剩余时频资源。
具体地,第一终端设备可以获取多个初始时频资源的接收信号强度,例如,第一终端设备可以获取多个初始时频资源的RSSI。这样,第一终端设备可以从多个初始时频资源中,获取接收信号强度小于第一能量阈值的初始时频资源,得到有效的剩余时频资源。
这里,第一能量阈值可以是能够动态变化的值。具体地,第一终端设备可以基于拥塞程度对第一能量阈值进行调整。具体调整方式在下面的实施例中详细论述。
由此可见,本申请实施例在排除使用的时频资源后,基于第一能量阈值对排除后的时频资源进行筛选,选出有效的剩余时频资源。
本申请另一实施例中,步骤220在第一频段中的第二时频范围内进行至少一次LBT检测,得到至少一个LBT检测结果,包括:
步骤2201、检测接收信号强度;
步骤2202、基于接收信号强度与第二能量阈值,确定一个LBT检测结果。
这里,第一终端设备可以提前对第二时频范围进行一次或者多个LBT检测。
具体地,第一终端设备可以在一个检测时间段内对第二时频范围的接收信号强度进行检测。在该检测时间段的结束时刻到达之前,第二时频范围对应的信号接收强度仍大于第二能量阈值,表明第一时频范围对应的时频资源非空闲,确定本次LBT检测结果为检测失败。
在该检测时间段的结束时刻到达之前,第二时频范围对应的信号接收强度小于第二能量阈值,表明第一时频范围对应的时频资源空闲,确定本次LBT检测结果为检测成功。
这里,检测时间段包括第一终端设备进行信道检测的时间段,例如,一个检测时间段是进行干净信道评估(Clear Channel Assessment,CCA)检测的时间段,检测时间段可以包括4,9,16,或25微秒等。
另外,第一终端设备需要对第二时频范围进行多次LBT检测,得到多个LBT检测结果时,第一终端设备可以在一个检测时间段结束后,在下一个检测时间段继续对第二时频范围的时频资源进行LBT检测,得到另一个LBT检测结果。如此,可以获取多个LBT检测结果。
这样,通过对第二时频范围的时频资源进行上述一次或者多次LBT检测,可以预测第一网络外设备使用第一频段的情况。
在本申请一实施例中,第一网络为D2D网络,第二网络为Wi-Fi网络。基于此,在确定了拥塞程度之后,第一终端设备可以根据拥塞程度,选择性地对D2D网络进行拥塞控制。下面介绍两种不同的拥塞控制方式。
第一种拥塞控制方式:
第一种拥塞控制方式,可以是分布式拥塞控制,即终端设备自主进行拥塞控制。
具体地,参考图6所示的流程示意图,第一终端设备在确定了第一频段对应的拥塞程度之后,还可以执行以下步骤:
步骤240a、若拥塞程度满足预设拥塞条件,则确定第一终端设备与第二终端设备之间的目标距离;第二终端设备与第一终端设备为一D2D对;
步骤250a、在目标距离小于距离阈值的情况下,基于第一拥塞控制策略进行拥塞控制。
这里,预设拥塞条件可以是网络侧为第一终端设备预先配置的条件,或者第一终端设备出厂时设定的条件,本申请实施例对此不作限定。当第一终端设备确定的拥塞程度满足该拥塞条件,则可以认为当前第一频段发生拥塞。
示例性的,当使用第一比例表征第一子拥塞程度,第二比例表征第二子拥塞程度时,预设拥塞条件可以是,第一子拥塞程度和第二子拥塞程度之和大于50%。当使用表1和表2所示的分级的方式标识第一拥塞程度和第二子拥塞程度时,预设拥塞条件可以是,第一子拥塞程度,和/或第二子拥塞程度大于中等拥塞程度。本申请实施例对拥塞条件的类型不做限定。
可以理解的是,本申请实施例中,第一终端设备在检测到拥塞之后,可以根据与对端,即与第一终端设备形成D2D对的第二终端设备之间的目标距离,判断自己是否进行拥塞控制。
第一终端设备可以通过以下两种方式确定目标距离。
在一种方式中,第一终端设备可以根据自己以及第二终端设备的各自的位置信息,确定目标距离。这里,位置信息可以是终端设备基于全球定位***(Global Positioning System,GPS)确定的经纬度信息。第二终端设备可以通过专用信令向第一终端设备发送其位置信息,或者将其位置信息携带在指示信息中,发送给第一终端 设备,本申请实施例对此不做限定。
在另一种方式中,第一终端设备也可以根据第二终端设备的信号接收功率,确定目标距离,具体地,第二终端设备可以在向第一终端设备发送的指示信息中携带发送功率信息。这样,第一终端设备可以基于该指示信息确定第二终端设备的发射功率,并且可以在一时间段内测量来自第二终端设备信号的信号接收功率(例如参考信号接收功率(Reference Signal Receiving Power,RSRP))。通过第二终端设备的发射功率,以及测量到的第二终端设备的信号接收功率,估计第一终端设备和第二终端设备之间的目标距离。另外,第一终端设备向第二终端设备反馈信息时,可以将确定的目标距离反馈给第二终端设备。
在本申请实施例中,为了保证拥塞控制后设备信号的覆盖,以及干扰增加后的鲁棒性,可以选择收发端距离较近的设备执行拥塞控制。
这里,第一终端设备可以被配置一距离阈值,这样,第一终端设备可以将目标距离与该距离阈值进行比较,判断是否执行拥塞控制。
示例性的,第一终端设备和第二终端设备的目标距离为d,布尔变量a表示第一终端设备是否执行拥塞控制。若a=1,则第一终端设备为拥塞控制执行设备,若a=0,则第一终端设备不是拥塞执行设备。具体地,第一终端设备可以根据公式(1),确定是否执行拥塞控制。
Figure PCTCN2021070974-appb-000001
其中,D th为距离阈值。
在本申请实施例提供的分布式拥塞控制机制中,终端设备可以在与对端距离较近的情况下进行拥塞控制,保证D2D网络中设备之间的信号覆盖,提高D2D***的鲁棒性。
在本申请一实施例中,距离阈值可以是以动态变化的值,其可以随着拥塞程度是进行变化。第一终端设备可以根据步骤230确定的拥塞程度,确定距离阈值。
具体地,步骤250a在目标距离小于距离阈值的情况下,基于第一拥塞控制策略进行拥塞控制之前,还可以执行以下步骤:
基于拥塞程度,确定距离阈值;其中,拥塞程度与距离阈值具有正相关的关系。
可以理解的是,第一频段的拥塞程度越高,距离阈值随之增大。这样,有更多的终端设备可以被选作拥塞控制执行设备,执行拥塞控制,来缓解第一频段的拥塞情况。
也就是说,本申请实施例中根据拥塞程度确定距离阈值,可以动态调整执行拥塞控制的设备的比例和数量,提高拥塞控制的灵活性。
在本申请一实施例中,步骤250a所涉及的第一拥塞控制策略,可以包括以下至少之一:
1)、基于阈值调整参数对能量阈值进行调整;能量阈值包括第一能量阈值和/或第二能量阈值;以使得通过调整后的第一能量阈值重新确定剩余时频资源,和/或通过调整后的第二能量阈值重新确定LBT检测结果;
2)、基于发射功率调整参数,降低第一终端的发射功率;
3)、基于调制与编码策略(Modulation and Coding Scheme,MCS)等级调整参数,所述第一终端的MCS等级。
在本申请实施例中,对能量阈值进行调整,可以是放宽步骤2103’时频资源排除过程中的第一能量阈值,和/或步骤2202中LBT检测过程中的第二能量阈值,以使得通过调整后的第一能量阈值重新确定剩余时频资源,和/或通过调整后的第二能量 阈值重新确定LBT检测结果。通过对能量阈值的调整,增加剩余时频资源的数量,和/或降低LBT失败的数量(即增加LBT成功的数量),从而提高资源复用率,缓解拥塞。
这里,对能量阈值进行调整,可以是逐步放宽第一能量阈值和/或第二能量阈值。具体地,逐步放宽第一能量阈值和/或第二能量阈值可以通过以下方式实现:
基于阈值调整参数对当前能量阈值进行调整,得到第i个能量阈值;其中,i为大于等于1的整数;
基于第i个能量阈值,更新拥塞程度;若更新后的拥塞程度仍满足预设拥塞条件,继续基于阈值调整参数,对第i个能量阈值进行调整,直至更新后的拥塞程度不满足预设拥塞条件。
可以理解的是,每一次基于阈值调整参数对能量阈值进行调整后,都需要重新确定当前第一频谱的拥塞程度。若当前第一频谱的拥塞程度依然满足预设拥塞条件,即拥塞依然存在,则继续基于阈值调整参数再次调整能量阈值,直至第一频谱的拥塞程度不再满足预设拥塞条件。
在一种实现方式中,当第一终端设备检测到拥塞发生后,不管拥塞来源于第一网络内还是第二网络,第一终端设备可以仅对第一能量阈值进行调整,也可以仅对第二能量阈值进行调整,还可以同时对第一能量阈值和第二能量阈值进行调整,本申请实施例对此不做限定。
在另一种实现方式中,当第一终端设备检测到拥塞发生后,可以进一步判断拥塞来源于第一网络还是第二网络。若拥塞来源于第一网络,则对第一能量阈值进行调整,增加第一网络中的剩余时频资源数量。若拥塞来源于第二网络,则对第二能量阈值进行调整,降低LBT失败的数量(即增加LBT成功的数量)。若拥塞来源于第一网络和第二网络,则第一终端设备同时对第一能量阈值和第二能量阈值同时进行调整。
也就是说,第一终端设备可以基于拥塞程度中的第一子拥塞程度和第二子拥塞程度区分拥塞的来源,从而针对性的对第一能量阈值和/或第二能量阈值进行调整。
具体地,若拥塞程度中的第一子拥塞程度满足预设拥塞条件,则基于能量阈值调整参数,增加第一能量阈值,以使得通过调整后的第一能量阈值重新确定所述剩余时频资源;
若拥塞程度中第二子拥塞程度满足预设拥塞条件,则基于能量阈值调整参数,降低第二能量阈值,以通过调整后的第二能量阈值重新确定LBT检测结果。
如此,第一终端设备可以区分拥塞的来源,从而针对性的对拥塞进行控制,有效缓解第一频段的拥塞。
在本申请实施例中,基于发射功率调整参数,降低第一终端的发射功率,可以是对第一终端设备向第二终端设备发送数据的发射功率进行调整。降低发射功率,可以降低资源复用后对其他终端设备的干扰,提高复用率。
这里,降低第一终端的发射功率,也可以是逐步降低。具体地,每一次基于发射功率调整参数降低第一终端的发射功率后,都需要重新确定当前第一频谱的拥塞程度。若当前第一频谱的拥塞程度依然满足预设拥塞条件,即拥塞依然存在,则继续基于发射功率调整参数再次降低第一终端设备的发射功率,直至第一频谱的拥塞程度不再满足预设拥塞条件。
需要说明的是,发射功率并不能够无限降低。为了保证D2D设备之间的通信,第一终端设备在每次降低发射功率后,需要将降低后的发射功率与发射功率的极限值进行比较,若降低后的发射功率小于该极限值,则将该极限值作为第一终端设备的发射功率。该极限值可以是保证D2D最低服务质量的发射功率值。若降低至极限值后, 拥塞仍然存在,可以通过使用其他拥塞策略缓解第一频段的拥塞程度。
在本申请实施例中,降低第一终端设备的MCS等级,可以提高干扰增加后的鲁棒性。
在本申请实施例中,第一拥塞控制策略中的阈值调整参数、发射功率调整参数、以及MCS等级调整参数,可以是预先配置的参数值,也可以是第一终端设备基于拥塞程度确定的,本申请实施例对此不做限定。
在一可能的实现方式中,步骤250a中基于第一拥塞控制策略进行拥塞控制之前,还可以执行以下步骤:
基于拥塞程度和/或目标距离,确定能量阈值调整参数、发射功率调整参数、以及MCS等级调整参数中的至少一个。
也就是说,第一终端设备可以根据拥塞程度,确定能量阈值调整参数、发射功率调整参数、以及MCS等级调整参数中的至少一个。第一终端设备还可以根据目标距离,确定能量阈值调整参数、发射功率调整参数、以及MCS等级调整参数中的至少一个。另外,第一终端设备可以根据拥塞程度和目标距离,确定能量阈值调整参数、发射功率调整参数、以及MCS等级调整参数中的至少一个。
可以理解的是,当拥塞程度越高,可以设置较大的能量阈值调整参数、发射功率调整参数、以及MCS等级调整参数。当拥塞程度较低,可以设置较小的能量阈值调整参数、发射功率调整参数、以及MCS等级调整参数。
另外,当目标距离越小,可以设置较大的能量阈值调整参数、发射功率调整参数、以及MCS等级调整参数。当目标距离较大,可以设置较小的能量阈值调整参数、发射功率调整参数、以及MCS等级调整参数。
如此,基于拥塞程度和/或目标距离,动态确定调整参数,可以增加拥塞控制的灵活性。
第二种拥塞控制方式:
第二种拥塞控制方式,可以是集中式拥塞控制,即第一终端设备可以将确定的拥塞程度,以及与第二终端设备的目标距离上报至集中式控制设备,由集中式控制设备确定执行拥塞控制的终端设备以及第二拥塞控制策略。这里的集中式控制设备可以是网络设备,例如基站;集中式控制设备也可以是具有集中处理能力的目标终端设备,例如D2D簇头。
具体地,参考图7所示的流程示意图,第一终端设备在确定了第一频段对应的拥塞程度之后,还可以执行以下步骤:
步骤240b、向网络设备或目标终端设备,发送第一频段对应的拥塞程度。
步骤250b、接收网络设备或目标终端发送的第二拥塞控制策略,并基于第二拥塞控制策略,执行拥塞控制。
这里,网络设备可以是基站,目标终端设备可以是具有集中处理能力的终端设备,例如D2D簇头。D2D簇头可以是对一组D2D设备距离较近,且计算资源较多的,可以进行集中式管理的设备。
在本申请一实施例中,网络设备或目标终端设备接收到第一频段对应的拥塞程度后,可以基于该拥塞程度确定第二拥塞控制策略。并将该第二拥塞控制策略发送给第一终端设备。第一终端设备则基于该第二拥塞控制策略,缓解第一频段的拥塞。
在本申请另一实施例中,第一终端设备还可以获取与第二终端设备之间的目标距离,并将该目标距离与确定的第一频段的拥塞程度同时发送给上述网络设备或目标终端设备,由网络设备或者目标终端设备基于拥塞程度以及目标距离,确定第一终端设备是否为执行拥塞控制的设备。
这里,网络设备或目标终端设备基于拥塞程度和目标距离,确定第一终端设备是否为执行拥塞控制的设备的过程与步骤240a类似,本申请实施例这里不再赘述。
若网络设备或者目标终端设备确定,第一终端设备为执行拥塞控制的设备,则确定第一终端设备的第二拥塞控制策略,并将第二拥塞控制策略发送至第一终端设备。这里,第二拥塞控制策略与第一拥塞控制策略类似。本申请实施例这里不再赘述。
在一种可能的实现方式中,指示信息承载于侧行链路控制信息(Sidelink Control Information,SCI)中。也就是说,第一网络中的设备可以通过SCI发送自己第一时频范围中时频域资源信息,第一终端设备解码SCI可以获知第一网络中其他设备使用的时频资源,进而排除这些时频域资源,从而避免第一网络中设备之间的资源碰撞以及避免不必要的***内的LBT探测。
在一种可能的实现方式中,所述第一频段包括非授权频段。
下面,结合D2D-U场景对本申请实施例提供的方法进行详细的阐述。
本申请实施例为了区分非授权频段发生拥塞的来源是来自于D2D-U设备还是Wi-Fi设备,可以定义两个拥塞参数:D2D-U用户***内资源排除后剩余资源比例(Remaining resource ratio,RRR),以及D2D-U用户所选择资源LBT失败比例(LBT failure ratio,LFR)。这里,RRR对应上文中的“第一比例”,LFR对应上文中的“第二比例”。
RRR是指终端设备排除非授权频段中被其他D2D-U设备使用的时频资源后,剩余的时频域资源数量与非授权频段全部时频域资源数量之比。LFR是指D2D-U用户所选择资源LBT失败比例。其中,RRR可以表征D2D网络内(即***内)的拥塞程度,LFR可以表征D2D网络外(即***外)的拥塞程度。
具体地,RRR可以通过以下方式得到:D2D-U设备之间可以通过SCI信息发送自己所使用的非授权频段时频域资源信息,而其它D2D-U设备通过解码SCI信息可以获知别的D2D-U设备使用非授权频段资源的情况,进而排除这些时频域资源,得到RRR。
其中,RRR越高,说明使用非授权频段的D2D-U设备数量不多,业务量不大,没有造成拥塞;相反,RRR越低,说明使用非授权频段的D2D-U设备数量多,业务量大,有***内拥塞的危险。
这里,可以定义***内拥塞等级(Intra-system congestion level,ISCL)与RRR之间的关系,通过ISCL表征***内的拥塞程度(即上文所述的第一子拥塞程度)。具体地,ISCL与RRR之间的关系如公式(2)所示:
Figure PCTCN2021070974-appb-000002
其中,当ISCL取值为high时,表征***内拥塞程度较高;当ISCL取值为middle时,表征***内拥塞程度较中等;当ISCL取值为low时,表征***内拥塞程度较低。
也就是说,当RRR小于等于40%的情况下,***内拥塞程度较高;当RRR大于40%且小于等于60%的情况下,***内拥塞程度中等;当RRR大于60%且小于等于100%,剩余时频资源较多,则***内拥塞程度较低。
另外,LBT由以下方式得到:D2D-U用户根据SCI信息排除了***内终端设备所使用的非授权频段资源后,在确定的剩余时频资源中选择自己计划使用的N个时频资源(即至少一个第一时频资源),该N个时频资源中可以包括重传使用的资源。进一步,D2D-U设备提前对选择的N个时频资源进行LBT探测,以确保这些时频资源没有被Wi-Fi设备占用。
具体地,D2D-U设备在监听时间段内,对上述N个时频资源的LBT探测,若在监听时间段结束时刻达到时,探测到的非空闲的时频资源个数为M,则LFR为M/N。
其中,LFR越高,说明使用非授权频段的Wi-Fi设备数量较多,有来自***外的拥塞危险;相反,LFR越低,说明使用非授权频段的Wi-Fi设备数量不多,没有造成拥塞。
类似的,可以定义***外拥塞等级(Extra-system congestion level,ESCL)与LFR之间的关系,通过ESCL表征***外的拥塞程度(即上文所述的第二子拥塞程度)。具体地,ESCL与LFR之间的关系如公式(3)所示:
Figure PCTCN2021070974-appb-000003
其中,当ESCL取值为low时,表征***外拥塞程度较低;当ESCL取值为middle时,表征***外拥塞程度较中等;当ESCL取值为high时,表征***外拥塞程度较高。
也就是说,当LFR小于等于40%的情况下,***外拥塞程度较低;当LFR大于40%且小于等于60%的情况下,***外拥塞程度中等;当LFR大于60%且小于等于100%,则***外拥塞程度较低。
基于上述拥塞参数,结合图8所示的流程示意图,第一终端设备可以基于以下步骤进行拥塞控制:
步骤1、第一终端设备统计RRR和LFR。
步骤2、第一终端设备基于RRR,计算ISCL,并基于LFR计算ESCL。
步骤3、若ISCL和/或ESCL满足预设拥塞条件,则执行步骤4,否者执行步骤1。
步骤4、若第一终端设备与第二终端设备之间的目标距离,小于距离阈值,执行步骤5,否则执行步骤1。
具体地,第一终端设备在检测到拥塞后,可以根据与第二终端设备之间的目标距离判断自己是否作为拥塞控制的执行设备。若目标距离小于距离阈值,则将自己作为执行拥塞控制的执行设备。
第一终端设备可以基于位置信息、或者第二终端设备发送功率以及测量的RSRP值,确定目标距离。
这里,距离阈值可以是动态变化的。具体地,可以根据ISCL和/或ESCL确定距离阈值。ISCL和/或ESCL表征的拥塞程度越高,距离阈值将被放宽,有更多设备被选作拥塞控制执行设备。
距离阈值可以设置为ISCL和ESCL的函数,且ISCL和ESCL表征的拥塞程度越高,则距离阈值越高。
步骤5,第一终端设备基于拥塞控制策略,进行拥塞控制。
具体地,第一终端设备通过步骤4判断自己作为拥塞控制执行用户后,可以将执行以下操作中的至少一个:
A、逐步放宽能量检测阈值,以提高资源复用率,缓解拥塞。
具体地,如果是ISCL较高,则放宽资源排除过程中的第一能量阈值;如果是ESCL较高高,则放宽LBT探测过程中的第二能量阈值。
B、逐步降低发送功率以降低资源复用后的干扰。
C、降低MCS等级以提高干扰增加后的鲁棒性。
如果拥塞依然存在,则继续上述步骤A至C。
本申请实施例提供的确定拥塞程度的方法,可以根据D2D-U设备***内资源排除 后剩余资源比例,和D2D-U设备所选择资源LBT失败比例来判断D2D-U设备使用非授权频段的拥塞情况,进而选择合适的D2D对进行有针对性的拥塞控制,能够增加资源复用率的同时限制干扰水平,从而缓解拥塞程度。
基于前述实施例,本申请实施例还提供一种终端设备,如图9所示,所述终端设备可以包括:
收发单元91,配置为获取至少一个指示信息;
第一处理单元92,配置为所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源;所述指示信息用于指示所述第一终端设备所处的第一网络中一设备使用的所述第一时频范围内的时频资源;
第二处理单元93,配置为在所述第一频段中的第二时频范围进行至少一次先听后说LBT检测,得到至少一个LBT检测结果;
确定单元94,配置为基于所述剩余时频资源,和/或,所述至少一个LBT检测结果,确定所述第一频段对应的拥塞程度。
在一实施例中,确定单元94,配置为基于所述剩余时频资源,确定所述第一网络中的设备使用所述第一频段造成的第一子拥塞程度;基于所述至少一个LBT检测结果,确定第二网络中的设备使用所述第一频段造成的第二子拥塞程度;所述第二网络与所述第一网络不同;基于所述第一子拥塞程度,和/或所述第二子拥塞程度,确定所述第一频段对应的拥塞程度。
在一实施例中,确定单元94,还配置为确定在所述第一时频范围内的全部时频资源中,所述剩余时频资源所占的第一比例,并基于所述第一比例,确定所述第一子拥塞程度;另外,确定单元94,还配置为确定在所述第二时频范围对应的至少一个LBT检测结果中,LBT检测结果为成功或失败所占的第二比例,并基于所述第二比例,确定所述第二子拥塞程度。
在一实施例中,确定单元94,还配置为基于预设的剩余资源比例与拥塞程度之间的第一对应关系,确定所述第一比例对应的所述第一子拥塞程度;以及,基于预设的LBT检测成功或LBT检测失败与拥塞程度之间的第二对应关系,确定所述第二比例。
在一实施例中,第一处理单元92,配置为基于所述至少一个指示信息,得到所述第一网络中至少一个设备使用的至少一个时频资源;从所述第一频段的第一时频范围中,排除所述至少一个时频资源,得到多个初始时频资源;从所述多个初始时频资源中,获取接收信号强度小于第一能量阈值的初始时频资源,得到所述剩余时频资源。
在一实施例中,第一处理单元92,配置为基于所述至少一个指示信息,得到所述第一网络中至少一个设备使用的至少一个时频资源;从所述第一频段的第一时频范围中,排除所述至少一个时频资源,得到所述剩余时频资源。
在一实施例中,第二处理单元93,还配置为在一个检测时间段内,侦听所述第二时频范围的接收信号强度;基于所述第二时频范围对应的接收信号强度与第二能量阈值,确定一个LBT检测结果。
在一实施例中,终端设备还可以包括拥塞控制单元;
该拥塞控制单元,配置为若所述拥塞程度满足预设拥塞条件,则确定所述第一终端设备与第二终端设备之间的目标距离;所述第二终端设备与所述第一终端设备为一D2D对;在所述目标距离小于距离阈值的情况下,基于第一拥塞控制策略进行拥塞控制。
在一实施例中,所述拥塞控制单元,还配置为基于所述拥塞程度,确定所述距离阈值;其中,所述拥塞程度与所述距离阈值具有正相关的关系。
在一实施例中,所述第一拥塞控制策略,包括以下至少之一:
基于阈值调整参数对能量阈值进行调整;能量阈值包括第一能量阈值和/或第二能量阈值;以使得通过调整后的第一能量阈值重新确定所述剩余时频资源,和/或通过调整后的第二能量阈值重新确定所述LBT检测结果;
基于发射功率调整参数,降低所述第一终端设备的发射功率;
基于调制与编码策略MCS等级调整参数,降低所述第一终端设备的MCS等级。
在一实施例中,拥塞控制单元,可以配置为基于阈值调整参数对当前能量阈值进行调整,得到第i个能量阈值;其中,i为大于等于1的整数;基于所述第i个能量阈值,更新拥塞程度;若所述更新后的拥塞程度仍满足所述预设拥塞条件,继续基于所述阈值调整参数,对所述第i个能量阈值进行调整,直至所述更新后的拥塞程度不满足所述预设拥塞条件。
在一实施例中,拥塞控制单元,可以配置为基于所述拥塞程度和/或所述目标距离,确定所述能量阈值调整参数、所述发射功率调整参数、以及所述MCS等级调整参数中的至少一个。
在一实施例中,拥塞控制单元,可以配置为若所述拥塞程度中的第一子拥塞程度满足所述预设拥塞条件,则基于所述能量阈值调整参数,增加所述第一能量阈值,以使得通过调整后的第一能量阈值重新确定所述剩余时频资源;以及,
若所述拥塞程度中第二子拥塞程度满足所述预设拥塞条件,则基于所述能量阈值调整参数,降低所述第二能量阈值,以通过调整后的第二能量阈值重新确定所述LBT检测结果。
在一实施例中,拥塞控制单元,还可以配置为获取与第二终端设备之间的目标距离;
向网络设备或目标终端设备,发送所述第一频段对应的拥塞程度;
接收所述网络设备或所述目标终端发送的所述第二拥塞控制策略,并基于所述第二拥塞控制策略,执行拥塞控制。
在一实施例中,所述指示信息承载于侧行链路控制信息SCI中。
在一实施例中,所述第一频段包括非授权频段。
需要说明的是,在本实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的模块如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于前述实施例,在本申请的另一实施例中还提供一种终端设备,如图10示,本申请实施例提供的终端设备可以包括:收发器1001、处理器1002、存储有所述处理器可执行指令的存储器1003;
所述收发器1001、所述处理器1002和所述存储器1003通过通信总线1004进行通信;其中,
所述收发器1001,用于运行所述执行存储器1003中存储的计算机程序时,可以执 行以下指令:获取至少一个指示信息;
所述处理器1002,用于运行所述执行存储器1003中存储的计算机程序时,可以执行以下指令:基于所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源;所述指示信息用于指示所述第一终端设备所处的第一网络中一设备使用的所述第一时频范围内的时频资源;在所述第一频段中的第二时频范围进行至少一次先听后说LBT检测,得到至少一个LBT检测结果;基于所述剩余时频资源,和/或,所述至少一个LBT检测结果,确定所述第一频段对应的拥塞程度。
应理解,本实施例中的存储器可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性随机存取存储器(Ferromagnetic Random Access Memory,FRAM)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static Random Access Memory,SRAM)、同步静态随机存取存储器(Synchronous Static Random Access Memory,SSRAM)、动态随机存取存储器(Dynamic Random Access Memory,DRAM)、同步动态随机存取存储器(Synchronous Dynamic Random Access Memory,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate Synchronous Dynamic Random Access Memory,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced Synchronous Dynamic Random Access Memory,ESDRAM)、同步连接动态随机存取存储器(SyncLink Dynamic Random Access Memory,SLDRAM)、直接内存总线随机存取存储器(Direct Rambus Random Access Memory,DRRAM)。本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机存储介质,具体为计算机可读存储介质。其上存储有计算机指令,作为第一种实施方式,在计算机存储介质位于终端时,该计算机指令被处理器执行时实现本申请实施例上述拥塞程度确定方法中的任意步骤。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置 或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种确定拥塞程度的方法,应用于第一终端设备,所述方法包括:
    获取至少一个指示信息,并基于所述至少一个指示信息,确定在第一频段中第一时频范围内的剩余时频资源;所述指示信息用于指示所述第一终端设备所处的第一网络中一设备使用的所述第一时频范围内的时频资源;
    在所述第一频段中的第二时频范围进行至少一次先听后说LBT检测,得到至少一个LBT检测结果;
    基于所述剩余时频资源,和/或,所述至少一个LBT检测结果,确定所述第一频段对应的拥塞程度。
  2. 根据权利要求1所述的方法,其中,所述基于所述剩余时频资源,和/或,基于所述至少一个LBT检测结果,确定所述第一频段对应的拥塞程度,包括:
    基于所述剩余时频资源,确定所述第一网络中的设备使用所述第一频段造成的第一子拥塞程度;
    基于所述至少一个LBT检测结果,确定第二网络中的设备使用所述第一频段造成的第二子拥塞程度;所述第二网络与所述第一网络不同;
    基于所述第一子拥塞程度,和/或所述第二子拥塞程度,确定所述第一频段对应的拥塞程度。
  3. 根据权利要求2所述的方法,其中,所述基于所述剩余时频资源,确定所述第一网络中的设备使用所述第一频段造成的第一子拥塞程度,包括:
    确定在所述第一时频范围的全部时频资源中,所述剩余时频资源所占的第一比例,并基于所述第一比例,确定所述第一子拥塞程度;
    所述基于所述至少一个LBT检测结果,确定第二网络中的设备使用所述第一频段造成的第二子拥塞程度,包括:
    确定在所述第二时频范围对应的至少一个LBT检测结果中,LBT检测结果为成功或失败所占的第二比例,并基于所述第二比例,确定所述第二子拥塞程度。
  4. 根据权利要求3所述的方法,其中,所述基于所述第一比例,确定所述第一子拥塞程度,包括:
    基于预设的剩余资源比例与拥塞程度之间的第一对应关系,确定所述第一比例对应的所述第一子拥塞程度;
    所述基于所述第二比例,确定所述第二子拥塞程度,包括:
    基于预设的LBT检测成功或LBT检测失败的比例与拥塞程度之间的第二对应关系,确定所述第二比例。
  5. 根据权利要求1-4任一项所述的方法,其中,所述基于所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源,包括:
    基于所述至少一个指示信息,得到所述第一网络中至少一个设备使用的至少一个时频资源;
    从所述第一频段的第一时频范围中,排除所述至少一个时频资源,得到多个初始时频资源;
    从所述多个初始时频资源中,获取接收信号强度小于第一能量阈值的初始时频资源,得到所述剩余时频资源。
  6. 根据权利要求1-4任一项所述的方法,其中,所述基于所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源,包括:
    基于所述至少一个指示信息,得到所述第一网络中至少一个设备使用的至少一个 时频资源;
    从所述第一频段的第一时频范围中,排除所述至少一个时频资源,得到所述剩余时频资源。
  7. 根据权利要求1-4任一项所述的方法,其中,所述在所述第一频段中的第二时频范围内进行至少一次LBT检测,得到至少一个LBT检测结果,包括:
    检测接收信号强度;
    基于所述接收信号强度与第二能量阈值,确定一个LBT检测结果。
  8. 根据权利要求1-7任一项所述的方法,其中,所述第一网络为设备到设备D2D网络,所述确定所述第一频段对应的拥塞程度之后,还包括:
    若所述拥塞程度满足预设拥塞条件,则确定所述第一终端设备与第二终端设备之间的目标距离;所述第二终端设备与所述第一终端设备为一D2D对;
    在所述目标距离小于距离阈值的情况下,基于第一拥塞控制策略进行拥塞控制。
  9. 根据权利要求8所述的方法,其中,所述在所述目标距离小于距离阈值的情况下,基于第一拥塞控制策略进行拥塞控制之前,还包括:
    基于所述拥塞程度,确定所述距离阈值;其中,所述拥塞程度与所述距离阈值具有正相关的关系。
  10. 根据权利要求8或9所述的方法,其中,所述第一拥塞控制策略,包括以下至少之一:
    基于阈值调整参数对能量阈值进行调整;能量阈值包括第一能量阈值和/或第二能量阈值;以使得通过调整后的第一能量阈值重新确定所述剩余时频资源,和/或通过调整后的第二能量阈值重新确定所述LBT检测结果;
    基于发射功率调整参数,降低所述第一终端设备的发射功率;
    基于调制与编码策略MCS等级调整参数,降低所述第一终端设备的MCS等级。
  11. 根据权利要求10所述的方法,其中,所述基于阈值调整参数对能量阈值进行调整,包括:
    基于阈值调整参数对当前能量阈值进行调整,得到第i个能量阈值;其中,i为大于等于1的整数;
    基于所述第i个能量阈值,更新拥塞程度;若更新后的拥塞程度仍满足所述预设拥塞条件,继续基于所述阈值调整参数,对所述第i个能量阈值进行调整,直至所述更新后的拥塞程度不满足所述预设拥塞条件。
  12. 根据权利要求10或11所述的方法,其中,所述基于第一拥塞控制策略进行拥塞控制之前,还包括:
    基于所述拥塞程度和/或所述目标距离,确定所述能量阈值调整参数、所述发射功率调整参数、以及所述MCS等级调整参数中的至少一个。
  13. 根据权利要求10-12任一项所述的方法,其中,所述基于阈值调整参数对能量阈值进行调整,包括:
    若所述拥塞程度中的第一子拥塞程度满足所述预设拥塞条件,则基于所述能量阈值调整参数,增加所述第一能量阈值,以使得通过调整后的第一能量阈值重新确定所述剩余时频资源;以及,
    若所述拥塞程度中第二子拥塞程度满足所述预设拥塞条件,则基于所述能量阈值调整参数,降低所述第二能量阈值,以通过调整后的第二能量阈值重新确定所述至少一个LBT检测结果。
  14. 根据权利要求1-7任一项所述的方法,其中,所述第一网络为设备到设备D2D网络,所述确定所述第一频段对应的拥塞程度之后,还包括:
    向网络设备或目标终端设备,发送所述第一频段对应的拥塞程度;
    接收所述网络设备或所述目标终端发送的所述第二拥塞控制策略,并基于所述第二拥塞控制策略,执行拥塞控制。
  15. 根据权利要求1-14任一项所述的方法,其中,所述指示信息承载于侧行链路控制信息SCI中。
  16. 根据权利要求1-15任一项所述的方法,其中,所述第一频段包括非授权频段。
  17. 一种终端设备,所述终端设备包括:
    收发单元,配置为获取至少一个指示信息;
    第一处理单元,配置为基于所述至少一个指示信息,确定第一频段中第一时频范围内的剩余时频资源;所述指示信息用于指示所述终端设备所处的第一网络中一设备使用的所述第一时频范围内的时频资源;
    第二处理单元,配置为在所述第一频段中的第二时频范围内进行至少一次先听后说LBT检测,得到至少一个LBT检测结果;
    确定单元,配置为基于所述剩余时频资源,和/或,所述至少一个LBT检测结果,确定所述第一频段对应的拥塞程度。
  18. 一种终端设备,所述终端设备包括:收发器、处理器和存储有计算机程序的存储器;
    所述收发器、所述处理器和所述存储器之间通过通信总线进行通信;
    所述处理器,还配置为结合所述收发器,运行所述存储器中存储的所述计算机程序时,执行权利要求1至16任一项所述方法的步骤。
  19. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行实现权利要求1至16任一项所述方法的步骤。
PCT/CN2021/070974 2021-01-08 2021-01-08 确定拥塞程度的方法及终端设备、计算机存储介质 WO2022147799A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180074913.6A CN116491144A (zh) 2021-01-08 2021-01-08 确定拥塞程度的方法及终端设备、计算机存储介质
PCT/CN2021/070974 WO2022147799A1 (zh) 2021-01-08 2021-01-08 确定拥塞程度的方法及终端设备、计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070974 WO2022147799A1 (zh) 2021-01-08 2021-01-08 确定拥塞程度的方法及终端设备、计算机存储介质

Publications (1)

Publication Number Publication Date
WO2022147799A1 true WO2022147799A1 (zh) 2022-07-14

Family

ID=82357610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070974 WO2022147799A1 (zh) 2021-01-08 2021-01-08 确定拥塞程度的方法及终端设备、计算机存储介质

Country Status (2)

Country Link
CN (1) CN116491144A (zh)
WO (1) WO2022147799A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116684407A (zh) * 2023-08-01 2023-09-01 腾讯科技(深圳)有限公司 资源下载方法、装置、设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205211A (zh) * 2017-05-19 2017-09-26 北京交通大学 在非授权频段与WiFi共存的D2D通信中的信道分配方法
WO2017165405A2 (en) * 2016-03-22 2017-09-28 Intel IP Corporation Co-existence of grantless uplink and scheduled transmissions
CN108810905A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 传输上行信道的方法和装置及传输下行信道的方法和装置
US20180368090A1 (en) * 2017-06-07 2018-12-20 Samsung Electronics Co., Ltd. Methods and systems for d2d operation in unlicensed spectrum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017165405A2 (en) * 2016-03-22 2017-09-28 Intel IP Corporation Co-existence of grantless uplink and scheduled transmissions
CN108810905A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 传输上行信道的方法和装置及传输下行信道的方法和装置
CN107205211A (zh) * 2017-05-19 2017-09-26 北京交通大学 在非授权频段与WiFi共存的D2D通信中的信道分配方法
US20180368090A1 (en) * 2017-06-07 2018-12-20 Samsung Electronics Co., Ltd. Methods and systems for d2d operation in unlicensed spectrum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116684407A (zh) * 2023-08-01 2023-09-01 腾讯科技(深圳)有限公司 资源下载方法、装置、设备及可读存储介质
CN116684407B (zh) * 2023-08-01 2023-10-27 腾讯科技(深圳)有限公司 资源下载方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN116491144A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
JP5770310B2 (ja) ワイヤレス通信ネットワークへの非通信期間(dtx、drx)のモバイルデバイス要求
EP2957124B1 (en) Receiver measurement assisted access point control
TWI726996B (zh) 無線通訊媒體上的上行鏈路程序
US20160095040A1 (en) Transmission power reduction for co-existence on a shared communication medium
US20160095039A1 (en) Transmission puncturing for co-existence on a shared communication medium
US11552749B2 (en) Data transmission method and terminal device
JP5265675B2 (ja) オープンループ電力オフセットの更新
TWI716594B (zh) 設備間通信的方法和裝置
US20180368163A1 (en) Method and apparatus for transmitting feedback information
US9806836B2 (en) Co-existence-aware communication in shared spectrum
WO2020154836A1 (en) Dynamic packet duplication convergence protocol configuration
JP7333827B2 (ja) 直流成分の周波数領域の位置を決定するための方法および装置、記憶媒体、端末、ならびに基地局
JP7271684B2 (ja) 干渉又は信号受信電力の測定の方法及び装置
JP7140261B2 (ja) コンテンションウィンドウの調整方法、装置及び通信システム
US11750349B2 (en) Telecommunications apparatus and methods
WO2022127489A1 (zh) 信道估计方法及装置、计算机可读存储介质、终端
WO2017019243A1 (en) Techniques for managing sounding intervals of a wireless communications device
WO2022147799A1 (zh) 确定拥塞程度的方法及终端设备、计算机存储介质
TW202013918A (zh) 一種訊號傳輸方法及裝置、終端、網路設備
EP3391564A1 (en) Techniques for adapting a rate of data transmission
KR20210146880A (ko) 슬롯 오프셋 정보 관리를 위한 시스템 및 방법
WO2022082670A1 (zh) 边链路资源选择方法以及装置
WO2017166982A1 (zh) 上行功率的控制方法、装置及存储介质
WO2020206622A1 (zh) 无线通信的方法和设备
WO2020051903A1 (zh) 一种链路恢复过程的处理方法及装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180074913.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21916854

Country of ref document: EP

Kind code of ref document: A1