WO2022147765A1 - A method for scheduling transmission - Google Patents

A method for scheduling transmission Download PDF

Info

Publication number
WO2022147765A1
WO2022147765A1 PCT/CN2021/070857 CN2021070857W WO2022147765A1 WO 2022147765 A1 WO2022147765 A1 WO 2022147765A1 CN 2021070857 W CN2021070857 W CN 2021070857W WO 2022147765 A1 WO2022147765 A1 WO 2022147765A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
downlink
channels
communication method
wireless communication
Prior art date
Application number
PCT/CN2021/070857
Other languages
French (fr)
Inventor
Xincai LI
Li Tian
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN202180089613.5A priority Critical patent/CN116746097A/en
Priority to PCT/CN2021/070857 priority patent/WO2022147765A1/en
Publication of WO2022147765A1 publication Critical patent/WO2022147765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This document is directed generally to wireless communications.
  • Using unlicensed carriers to transmit data can increase a utilization rate of available transmission resources.
  • a device needs to perform a Clear Channel Assessment (CCA) and have a successful result prior to data transmissions.
  • CCA Clear Channel Assessment
  • the channel access procedure and control signaling may need to be reconsidered.
  • the downlink (DL) control information (DCI) for either a DL grant or an uplink (UL) grant is carried on a physical DL control channel (PDCCH) and a physical downlink shared channel (PDSCH) only carries the DL data.
  • DCI downlink control information
  • PDCH physical DL control channel
  • PDSCH physical downlink shared channel
  • This document relates to methods, systems, and devices for scheduling transmissions, and in particular to methods, systems, and devices for scheduling transmissions of multiple downlink channels and uplink channels.
  • the present disclosure relates to a wireless communication method for use in a wireless terminal.
  • the method comprises:
  • a carried downlink channel in the plurality of downlink channels comprises second DCI
  • the second DCI is carried on the carried downlink channel.
  • the wireless communication method further comprises receiving, from the wireless network node, a parameter associated with the carried downlink channel doing a rate matching.
  • the wireless communication method further comprises receiving, from the wireless network node, a parameter indicating that the first DCI comprises a bit field associated with whether the plurality of downlink channels comprises the second DCI.
  • the carried downlink channel is:
  • M is the number of the plurality downlink channels.
  • the carried downlink channel is a downlink channel with a predefined index in the plurality of downlink channels.
  • the first DCI comprises a bit field of indicating which one of the plurality of downlink channels is the carried downlink channel.
  • the wireless communication method further comprises receiving, from the wireless network node, a parameter indicating which one of the plurality of downlink channels is the carried downlink channel.
  • each of the first DCI and second DCI comprises at least one of:
  • a third offset value associated with a slot offset between DCI of an uplink channel and the uplink channel is a third offset value associated with a slot offset between DCI of an uplink channel and the uplink channel.
  • the second information is determined based on a time domain resource assignment, TDRA, table, wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
  • TDRA time domain resource assignment
  • the maximum value of the start and length indicator is greater than 14.
  • the maximum value of the start and length indicator is smaller than 14*8.
  • the second information comprises at least one of a first offset value associated with a slot offset between the first DCI and the first downlink channel in the plurality downlink channels or a third offset value associated with a slot offset between the second DCI and the first uplink channel in the plurality of uplink channels.
  • the first offset value, the second offset value and the third offset value are determined from a configured value set, wherein a scope of the configured value set is from 2 to 30.
  • the first offset value is equal to a first value indicated by the corresponding DCI plus an offset.
  • the second offset value is equal to a second value indicated by the corresponding DCI plus the offset.
  • the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
  • the third information is associated with a reference sub-carrier spacing.
  • the first DCI comprises a downlink beam indication for the plurality of downlink channels and/or the second DCI comprises an uplink beam indication for the plurality of uplink channels.
  • the first DCI comprises a plurality of downlink beam indications respectively corresponding to the plurality of downlink channels and/or the second DCI comprises a plurality of uplink beam indications respectively corresponding to the plurality of uplink channels.
  • the plurality of downlink channels is divided into a plurality downlink channel groups which are respectively corresponding to a plurality of downlink group beam indications in the first DCI
  • the plurality of uplink channels is divided into a plurality uplink channel groups which are respectively corresponding to a plurality of uplink group beam indications in the second DCI.
  • the present disclosure relates to a wireless communication method for use in a wireless network node, the method comprising:
  • the second DCI is carried on the carried downlink channel.
  • the wireless communication method further comprises transmitting, to the wireless terminal, a parameter associated with the carried downlink channel doing a rate matching.
  • the wireless communication method further comprises transmitting, to the wireless terminal, a parameter indicating that the first DCI comprises a bit field associated with whether the plurality of downlink channels comprises the second DCI.
  • the carried downlink channel is:
  • M is the number of the plurality downlink channels.
  • the carried downlink channel is a downlink channel with a predefined index in the plurality of downlink channels.
  • the first DCI comprises a bit field of indicating which one of the plurality of downlink channels is the carried downlink channel.
  • the wireless communication method further comprises transmitting, to the wireless terminal, a parameter indicating which one of the plurality of downlink channels is the carried downlink channel.
  • each of the first DCI and second DCI comprises at least one of:
  • a third offset value associated with a slot offset between DCI of an uplink channel and the uplink channel is a third offset value associated with a slot offset between DCI of an uplink channel and the uplink channel.
  • the second information is determined based on a time domain resource assignment, TDRA, table, wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
  • TDRA time domain resource assignment
  • the maximum value of the start and length indicator is greater than 14.
  • the maximum value of the start and length indicator is smaller than 8*14.
  • the second information comprises at least one of a first offset value associated with a slot offset between the first DCI and the first downlink channel in the plurality downlink channels or a third offset value associated with a slot offset between the second DCI and the first uplink channel in the plurality of uplink channels.
  • the first offset value, the second offset value and the third offset value are determined from a configured value set, wherein a scope of the configured value set is from 2 to 30.
  • the first offset value is equal to a first value indicated by the corresponding DCI plus an offset.
  • the second offset value is equal to a second value indicated by the corresponding DCI plus the offset.
  • the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
  • the third information is associated with a reference sub-carrier spacing.
  • the first DCI comprises a downlink beam indication for the plurality of downlink channels and/or the second DCI comprises an uplink beam indication for the plurality of uplink channels.
  • the first DCI comprises a plurality of downlink beam indications respectively corresponding to the plurality of downlink channels and/or the second DCI comprises a plurality of uplink beam indications respectively corresponding to the plurality of uplink channels.
  • the plurality of downlink channels is divided into a plurality downlink channel groups which are respectively corresponding to a plurality of downlink group beam indications in the first DCI
  • the plurality of uplink channels is divided into a plurality uplink channel groups which are respectively corresponding to a plurality of uplink group beam indications in the second DCI.
  • the present disclosure relates to a wireless terminal.
  • the wireless terminal comprises a communication unit configured to:
  • a carried downlink channel in the plurality of downlink channels comprises second DCI
  • Various embodiments may preferably implement the following feature:
  • the wireless terminal further comprises a processor configured to perform any of the aforementioned wireless communication methods.
  • the present disclosure relates to a wireless network node.
  • the wireless network node comprises a communication unit configured to:
  • a carried downlink channel in the plurality of downlink channels comprises second DCI
  • the wireless network node further comprises a processor configured to perform any of the aforementioned wireless communication methods.
  • the present disclosure relates to a computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any one of foregoing methods.
  • the present disclosure is not limited to the exemplary embodiments and applications described and illustrated herein. Additionally, the specific order and/or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
  • FIG. 1 shows a flowchart of a method according to an embodiment of the present disclosure.
  • FIG. 2 shows a schematic diagram of the multiple physical downlink shared channels and physical uplink shared channels scheduling and transmission according to an embodiment of the present disclosure.
  • FIG. 3 shows a timing diagram according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure.
  • FIG. 5 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure.
  • FIG. 7 shows a flowchart of a process according to an embodiment of the present disclosure.
  • FIG. 8 shows a flowchart of a process according to an embodiment of the present disclosure.
  • FIG. 9 shows an example of a schematic diagram of a wireless terminal according to an embodiment of the present disclosure.
  • FIG. 10 shows an example of a schematic diagram of a wireless network node according to an embodiment of the present disclosure.
  • a large sub-carrier spacing (e.g. 240 kHz, 480 kHz, or 960 kHz) may need to be used.
  • SCS sub-carrier spacing
  • a slot duration becomes very short.
  • the slot duration may be only 15.625us when the SCS of 960 kHz is configured.
  • supporting multi-PDSCH/PUSCH physical downlink share channel/physical uplink share channel
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a method for both scheduling and transmitting (multiple) PUSCH (s) and (multiple) PDSCH (s) at the same time is provided.
  • the number of scheduled PDSCHs/PUSCHs by one DCI can be 1 to 16.
  • FIG. 1 shows a flowchart of a method according to an embodiment of the present disclosure.
  • a user equipment first monitors a PDCCH (monitoring occasion) and decodes DL grant information for subsequent multiple PDSCHs (step 101) .
  • the UE receives multiple PDSCHs and decodes a UL grant (information) for subsequent multiple PUSCH (s) , wherein the UL grant (information) is carried in one of the received PDSCHs (step 102) .
  • the UE transmits the multiple PUSCHs in subsequent slots (step 103) .
  • the PDCCH monitoring occasions can be reduced and the UE power can be saved.
  • the first DCI is for scheduling the multiple PDSCHs and transmitted on the PDCCH and the second DCI is for scheduling multiple PUSCHs and transmitted (e.g. carried or piggybacked) on one of the PDSCHs which are scheduled by the first DCI.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment describes how the UE determines which PDSCH carrying the DCI/UL grant information for the subsequent multiple PUSCHs transmission.
  • single DCI carried on the PDCCH schedules one or more PDSCHs and one of the scheduled PDSCHs contains (e.g. comprises) the UL grant information for the subsequent one or more PUSCHs.
  • the UL grant scheduling the subsequent one or more PUSCHs can be piggybacked on one of the PDSCHs.
  • FIG. 2 shows a schematic diagram of the multiple PDSCH and PUSCH scheduling and transmission according to an embodiment of the present disclosure.
  • the UE blindly detects a PDCCH in the PDCCH monitoring occasion according to the PDCCH configuration and decodes a DL grant that schedules 4 PDSCHs PDCCH1 to PDSCH4.
  • the UE decodes a UL grant that schedules 4 PUSCHs PUSCH1 to PUSCH4 in the subsequent slots.
  • At least one of the below methods may be adopt:
  • One parameter may be configured by a radio resource control (RRC) signaling, to indicate the UE that one bit is included in the DL grant for indicating whether the UL grant is carried in one of the scheduled PDSCHs of the DL grant. For example, if the value of the bit field in the DCI/DL grant is “1” , the UL grant is carried in one of the scheduled PDSCHs; and if the value of the bit field in the DCI/DL grant is “0” , the UL grant is not carried in one of the scheduled PDSCHs and the PDSCHs only contains data.
  • RRC radio resource control
  • the PDSCH index carrying the UL grant is determined by the below rule:
  • the PDSCH that carries the UL grant is:
  • the UL grant is carried on the 2 nd (i.e. (3-1) -th) scheduled PDSCH.
  • the PDSCH carrying the UL grant is the PDSCH of a predefined index.
  • the UL grant is always carried on the PDSCH with the predefined index (e.g. the 2 nd scheduled PDSCH (i.e. the PDSCH with the index 2) ) .
  • the index of the PDSCH carrying the UL grant is indicated by the DCI that schedules the PDSCHs.
  • the DCI may comprise 3 bits of indicating which scheduled PDSCH carrying the UL grant. For example, if these 3 bits are “110” , the 6 th scheduled PDSCH carries the UL grant.
  • the index of the PDSCH carrying the UL grant is configured by the RRC signaling. For example, if the RRC signaling configures that the PDSCH carrying the UL grant is the 3 rd scheduled PDSCH, the UE decodes the UL grant on the 3 rd scheduled PDSCH.
  • the UE is able to determine the PDSCH carrying the UL grant in the multiple scheduled PDSCHs and the UE can transmit the multiple PUSCHs in the subsequent slots according to the UL grant.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment describes how the UL grant scheduling the subsequent multiple PUSCHs is piggybacked (e.g. carried) on the PDSCH in the DL multiple PDSCH (s) scheduling case.
  • the DCI (e.g. UL grant) that piggybacked on the PDSCH is processed independently. That is, the DCI does not use the scheduled and transmission information indicated in the first DCI as the DL data.
  • a modulation and coding scheme (MCS) of the DCI piggybacked on the PDSCH may be predefined.
  • the UL grant is independent coded by using low-density parity-check (LDPC) and the modulation scheme is quadrature phase-shift keying (QPSK) .
  • LDPC low-density parity-check
  • QPSK quadrature phase-shift keying
  • the UE decodes the UL grant on the determined PDSCH based on the predefined MCS and transmits multiple PUSCHs according to the UL grant information.
  • the PDSCH carrying the DCI may carry only the DCI without additional data.
  • the UL grant is piggybacked on the PDSCH.
  • the DCI symbol is mapped to OFDM symbols that next to demodulation reference signal (DMRS) of the PDSCH.
  • DMRS demodulation reference signal
  • the DL transmitted data may be interrupted or do rate matching.
  • one RRC parameter e.g. DCI beta offset
  • DCI beta offset may be defined for the PDSCH making rate matching for the case that the DCI is piggybacked on the PDSCH.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment describes an information design of the DCI for multiple PUSCH (s) /PDSCH (s) scheduling case.
  • the DCI scheduling the multiple PDSCHs and/or the DCI/UL grant piggybacked (carried) on the PDSCH includes at least one of the below information:
  • This information is used to schedule multiple PDSCH (s) /PUSCH (s) doing an inter-slot frequency hopping.
  • the frequency domain resource allocation is applied to the first scheduled PDSCH/PUSCH
  • the frequency domain resource allocation position of the second PDSCH/PUSCH is that of the first transmitted PDSCH/PUSCH adding one frequency offset
  • the frequency domain resource allocation position of the third PDSCH/PUSCH is that of the first transmitted PDSCH/PUSCH adding two frequency offsets, and so on.
  • a time domain resource assignment (TDRA) table may be configured by the RRC signaling.
  • the TDRA table configuration indicates single or multiple continuous PDSCHs/PUSCHs in any slot of the multiple scheduled slots.
  • Each row in the TDRA table indicates multiple PUSCHs/PDSCHs scheduled.
  • the PUSCHs/PDSCHs are contiguous (or continuous) in time-domain and each PDSCH/PUSCH has a separate start and length indicator (SLIV) and a mapping type.
  • the number of scheduled PUSCHs/PDSCHs is signaled by the number of indicated valid SLIVs in the row of the TDRA table signaled in the DCI.
  • a value k0 is applied to the first scheduled PDSCH and a value K2 is applied to the first scheduled PUSCH, wherein the value k0 is the offset between the DL slot where the PDCCH (DCI) is received and the DL slot where the corresponding PDSCH is scheduled and the value k2 is the offset between the DL slot where the DCI for UL scheduling is received and the UL slot of the corresponding PUSCH.
  • the value k0 is the offset between the DL slot where the PDCCH (DCI) is received and the DL slot where the corresponding PDSCH is scheduled
  • the value k2 is the offset between the DL slot where the DCI for UL scheduling is received and the UL slot of the corresponding PUSCH.
  • the value k0 is associated with the offset between the DL slot where the PDCCH (DCI) is received and the DL slot where the corresponding PDSCH is scheduled.
  • the value k1 is associated with the offset between the DL slot of the PDSCH and the UL slot at where acknowledge/non-acknowledge message (ACK/NACK) feedback (e.g. hybrid automatic repeat request (HARQ) ACK feedback) for the scheduled PDSCH data need to be sent.
  • ACK/NACK acknowledge/non-acknowledge message
  • HARQ hybrid automatic repeat request
  • the value k2 is associated with the offset between the DL slot where the DCI for UL scheduling is received and the UL slot of the corresponding PUSCH.
  • the values k0, k1 and k2 are choose from a configured value set.
  • the scope of the configured value set is ⁇ 2 whil30 ⁇ and the applied k0/k1/k2 is indicated in the DCI.
  • the applied value of k0/k1/k2 for PDSCH/PUSCH and/or the HARQ ACK feedback slot are equal to corresponding values indicated in the DL/UL grant plus an offset.
  • the offset value is associated with the reference SCS (e.g. 120kHz) .
  • FIG. 3 shows a timing diagram according to an embodiment of the present disclosure.
  • the value k1 which is the PDSCH-to-HARQ_feedback timing indicator in the DL grant, is 4 for the reference SCS of 120kHz.
  • the SCS of the PDSCH is 960kHz.
  • the value k1 of the PDSCH is 4*8 based on the relationship between the configured SCS and the reference SCS (i.e. 4*960/120) .
  • the UE feedbacks the HARQ-ACK for one PDSCH in slot (n+4*8) , where the slot n is the slot where the DL grant is transmitted.
  • the UE feedbacks the HARQ-ACK for those scheduled PDSCHs in slot (m+4*8) , where the slot m is the slot of the last scheduled PDSCH.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment describes a beam indication design of the DCI information for multiple PUSCH/PDSCH (s) scheduling.
  • the beam indication information for each scheduled PDSCH/PUSCH may be determined by one of the below methods.
  • One beam indication is included in the DL grant and another beam indication is included in the UL grant.
  • all the transmitted PDSCHs use the same beam indicated by the beam indication in the DL grant and all the transmitted PUSCHs use the same beam indicated by the beam indication in the UL grant.
  • Each scheduled PUSCH/PDSCH has one independent beam indication in the DCI. That is, multiple beams indications are included in the UL/DL grant for the scheduled multiple PUSCHs/PDSCHs.
  • multiple sounding reference signal resource indicators may be included in the UL grant and each scheduled PUSCH is separately corresponding to one independent SRI.
  • multiple transmission configuration indicators (TCIs) may be included in the DL grant and each scheduled PDSCH is separately corresponding to one TCI.
  • FIG. 4 shows a timing diagram according to an embodiment of the present disclosure.
  • the UL grant carried (e.g. piggybacked) on the PDSCH schedules the transmission of 4 PUSCHs (i.e. PUSCH1 to PUSCH4) .
  • the UL grant comprises 4 SRIs (i.e. SRI1 to SRI4) and each of SRI1 to SRI4 indicates one beam for each transmitted PUSCHs.
  • the multiple PUSCH/PDSCH are divided into k groups, and k beam indications are included in the DCI and each group of continuation PUSCH/PDSCH shares one of the beam indications.
  • a group of contiguous PUSCHs shares the same SRI and another group of PUSCHs shares another SRI, and so on.
  • the same method can be used.
  • FIG. 5 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure.
  • 6 PDSCHs are scheduled by one DCI and 2 TCIs TCI1 and TCI2 are included in the DCI.
  • the beam of transmitting the first 3 PDSCH e.g. first group of PDSCHs
  • the beam of transmitting the second 3 PDSCH is based on the TCI2.
  • FIG. 6 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure.
  • 6 PUSCHs are scheduled by one DCI piggybacked on the second scheduled PDSCH2.
  • 3 SRIs SRI1 to SRI3 are included in the DCI and every two scheduled PUSCHs belong to the same PUSCH group and share the same SRI. That is, the first two scheduled PUSCHs belong to a PUSCH group 0 and use the beam indicated by the SRI1 for the PUSCH transmission, the second two scheduled PUSCHs belong to a PUSCH group 1 and use the beam indicated by the SRI2 for PUSCH transmission, and so on.
  • FIG. 7 shows a flowchart of a process according to an embodiment of the present disclosure.
  • the process shown in FIG. 7 may be used in a wireless terminal (e.g. UE) and comprises the following steps:
  • Step 701 Receive, from a wireless network node, first DCI of scheduling a plurality of downlink channels in a downlink channel monitoring occasion.
  • Step 702 Receive, from the wireless network node, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI.
  • Step 703 Transmit, to the wireless network node, a plurality of uplink channels based on the second DCI.
  • the wireless terminal monitors a DL channel (e.g. PDCCH) monitoring occasion and receives (e.g. decodes) first DCI in this DL channel monitoring occasion from a wireless network node (e.g. gNB) .
  • the first DCI is configured to schedule a plurality of DL channels (e.g. PDSCHs) .
  • the wireless terminal receives the plurality of DL channels.
  • one of the plurality of DL channels i.e. carried DL channel
  • comprises second DCI configured to schedule subsequent UL channels (e.g. UL transmissions) .
  • the wireless terminal transmits the UL channels to the wireless network node based on the second DCI.
  • the second DCI is carried (e.g. piggybacked) on the carried DL channel.
  • the wireless terminal receives a parameter associated with the carried DL channel doing a rate matching (e.g. for carrying the second DCI on the carried DL channel) .
  • the wireless terminal receives a parameter indicating that the first DCI comprises a bit field associated with whether the plurality of DL channels comprises the second DCI.
  • the carried DL channel is:
  • M is the number of the plurality DL channels (e.g. scheduled by the first DCI) .
  • the carried DL channel is a DL channel with a predefined index (e.g. 2) in the plurality of DL channels (e.g. scheduled by the first DCI) .
  • the first DCI comprises a bit field of indicating which one of the plurality of DL channels is the carried DL channel.
  • the bit length of this bit field may be 3 bits, to indicate one of 1 st to 8 th DL channel scheduled by the first DCI as the carried DL channel.
  • the wireless terminal receives a parameter (e.g. RRC parameter, RRC signaling, RRC message) indicating which one of the plurality of DL channels is the carried DL channel.
  • a parameter e.g. RRC parameter, RRC signaling, RRC message
  • each of the first DCI and second DCI comprises at least one of:
  • a first offset value (e.g. k0) associated with a slot offset between DCI of a DL channel and this DL channel
  • a second offset value (e.g. k1) associated with a slot offset between a DL channel and an acknowledge message of this DL channel, or
  • a third offset value (e.g. k2) associated with a slot offset between DCI of a UL channel and this UL channel.
  • the second information is determined based on a TDRA table, wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
  • the maximum value of the start and length indicator is greater than or equal to 14.
  • the maximum value of the start and length indicator is smaller than or equal to 8*14.
  • the second information comprises at least one of a first offset value (e.g. k0) associated with a slot offset between the first DCI and the first DL channel in the plurality DL channels or a third offset value (e.g. k2) associated with a slot offset between the second DCI and the first UL channel in the plurality of UL channels.
  • a first offset value e.g. k0
  • a third offset value e.g. k2
  • the first offset value, the second offset value and the third offset value are determined from a configured value set, and a scope of the configured value set is from 2 to 30 (i.e. ⁇ 2, 3, ..., 30 ⁇ ) .
  • the first offset value is equal to a first value indicated by the corresponding DCI plus an offset
  • the second offset value is equal to a second value indicated by the corresponding DCI plus the offset
  • the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
  • the third information is associated with a reference SCS. That is, the third information for a specific SCS may be determined based on the third information of the reference SCS and a relationship between the specific SCS and the reference SCS.
  • the first DCI comprises a plurality of DL beam indications respectively corresponding to the plurality of DL channels and the second DCI comprises a plurality of UL beam indications respectively corresponding to the plurality of UL channels.
  • the plurality of DL channels is divided into a plurality DL channel groups which are respectively corresponding to a plurality of DL group beam indications in the first DCI.
  • the plurality of UL channels is divided into a plurality UL channel groups which are respectively corresponding to a plurality of UL group beam indications in the second DCI.
  • FIG. 8 shows a flowchart of a process according to an embodiment of the present disclosure.
  • the process shown in FIG. 8 may be used in a wireless network node (e.g. gNB) and comprises the following steps:
  • Step 801 Transmit, to a wireless terminal, first DCI of scheduling a plurality of downlink channels in a downlink channel monitoring occasion.
  • Step 802 Transmit, to a wireless terminal, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI.
  • Step 803 Receive, from a wireless terminal, a plurality of uplink channels based on the second DCI.
  • the wireless network node transmits first DCI in a DL channel (e.g. PDCCH) monitoring occasion to a wireless terminal (e.g. UE) .
  • the first DCI is configured to schedule a plurality of DL channels (e.g. PDSCHs) .
  • the wireless network node transmits the plurality of DL channels based on the first DCI.
  • one of the plurality of DL channels i.e. carried DL channel
  • comprises second DCI configured to schedule subsequent UL channels (e.g. UL transmissions) .
  • the wireless terminal Based on the second DCI, transmits the UL channels to the wireless network node.
  • the second DCI is carried (e.g. piggybacked) on the carried DL channel.
  • the wireless network node transmits a parameter associated with the carried DL channel doing a rate matching (e.g. for carrying the second DCI on the carried DL channel) .
  • the wireless network node transmits a parameter indicating that the first DCI comprises a bit field associated with whether the plurality of DL channels comprises the second DCI.
  • the carried DL channel is:
  • M is the number of the plurality DL channels (e.g. scheduled by the first DCI) .
  • the carried DL channel is a DL channel with a predefined index (e.g. 2) in the plurality of DL channels (e.g. scheduled by the first DCI) .
  • the first DCI comprises a bit field of indicating which one of the plurality of DL channels is the carried DL channel.
  • the bit length of this bit field may be 3 bits, to indicate one of 1 st to 8 th DL channel scheduled by the first DCI as the carried DL channel.
  • the wireless network node transmits a parameter (e.g. RRC parameter, RRC signaling, RRC message) indicating which one of the plurality of DL channels is the carried DL channel.
  • a parameter e.g. RRC parameter, RRC signaling, RRC message
  • each of the first DCI and second DCI comprises at least one of:
  • a first offset value (e.g. k0) associated with a slot offset between DCI of a DL channel and this DL channel
  • a second offset value (e.g. k1) associated with a slot offset between a DL channel and an acknowledge message of this DL channel, or
  • a third offset value (e.g. k2) associated with a slot offset between DCI of a UL channel and this UL channel.
  • the second information is determined based on a TDRA table, wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
  • the maximum value of the start and length indicator is greater than or equal to 14.
  • the maximum value of the start and length indicator is smaller than or equal to 8*14.
  • the second information comprises at least one of a first offset value (e.g. k0) associated with a slot offset between the first DCI and the first DL channel in the plurality DL channels or a third offset value (e.g. k2) associated with a slot offset between the second DCI and the first UL channel in the plurality of UL channels.
  • a first offset value e.g. k0
  • a third offset value e.g. k2
  • the first offset value, the second offset value and the third offset value are determined from a configured value set, and a scope of the configured value set is from 2 to 30 (i.e. ⁇ 2, 3, ..., 30 ⁇ ) .
  • the first offset value is equal to a first value indicated by the corresponding DCI plus an offset
  • the second offset value is equal to a second value indicated by the corresponding DCI plus the offset
  • the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
  • the third information is associated with a reference SCS. That is, the third information for a specific SCS may be determined based on the third information of the reference SCS and a relationship between the specific SCS and the reference SCS.
  • the first DCI comprises a plurality of DL beam indications respectively corresponding to the plurality of DL channels and the second DCI comprises a plurality of UL beam indications respectively corresponding to the plurality of UL channels.
  • the plurality of DL channels is divided into a plurality DL channel groups which are respectively corresponding to a plurality of DL group beam indications in the first DCI.
  • the plurality of UL channels is divided into a plurality UL channel groups which are respectively corresponding to a plurality of UL group beam indications in the second DCI.
  • FIG. 9 relates to a schematic diagram of a wireless terminal 90 according to an embodiment of the present disclosure.
  • the wireless terminal 90 may be a user equipment (UE) , a mobile phone, a laptop, a tablet computer, an electronic book or a portable computer system and is not limited herein.
  • the wireless terminal 90 may include a processor 900 such as a microprocessor or Application Specific Integrated Circuit (ASIC) , a storage unit 910 and a communication unit 920.
  • the storage unit 910 may be any data storage device that stores a program code 912, which is accessed and executed by the processor 900.
  • Embodiments of the storage unit 912 include but are not limited to a subscriber identity module (SIM) , read-only memory (ROM) , flash memory, random-access memory (RAM) , hard-disk, and optical data storage device.
  • SIM subscriber identity module
  • ROM read-only memory
  • RAM random-access memory
  • the communication unit 920 may a transceiver and is used to transmit and receive signals (e.g. messages or packets) according to processing results of the processor 900. In an embodiment, the communication unit 920 transmits and receives the signals via at least one antenna 922 shown in FIG. 9.
  • the storage unit 910 and the program code 912 may be omitted and the processor 900 may include a storage unit with stored program code.
  • the processor 900 may implement any one of the steps in exemplified embodiments on the wireless terminal 90, e.g., by executing the program code 912.
  • the communication unit 920 may be a transceiver.
  • the communication unit 920 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a wireless network node (e.g. a base station) .
  • a wireless network node e.g. a base station
  • FIG. 10 relates to a schematic diagram of a wireless network node 100 according to an embodiment of the present disclosure.
  • the wireless network node 100 may be a satellite, a base station (BS) , a network entity, a Mobility Management Entity (MME) , Serving Gateway (S-GW) , Packet Data Network (PDN) Gateway (P-GW) , a radio access network (RAN) , a next generation RAN (NG-RAN) , a data network, a core network or a Radio Network Controller (RNC) , and is not limited herein.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • PDN Packet Data Network Gateway
  • RAN radio access network
  • NG-RAN next generation RAN
  • RNC Radio Network Controller
  • the wireless network node 100 may comprise (perform) at least one network function such as an access and mobility management function (AMF) , a session management function (SMF) , a user place function (UPF) , a policy control function (PCF) , an application function (AF) , etc.
  • the wireless network node 100 may include a processor 1000 such as a microprocessor or ASIC, a storage unit 1010 and a communication unit 1020.
  • the storage unit 1010 may be any data storage device that stores a program code 1012, which is accessed and executed by the processor 1000. Examples of the storage unit 1012 include but are not limited to a SIM, ROM, flash memory, RAM, hard-disk, and optical data storage device.
  • the communication unit 1020 may be a transceiver and is used to transmit and receive signals (e.g. messages or packets) according to processing results of the processor 1000.
  • the communication unit 1020 transmits and receives the signals via at least one antenna 1022 shown in FIG. 10.
  • the storage unit 1010 and the program code 1012 may be omitted.
  • the processor 1000 may include a storage unit with stored program code.
  • the processor 1000 may implement any steps described in exemplified embodiments on the wireless network node 100, e.g., via executing the program code 1012.
  • the communication unit 1020 may be a transceiver.
  • the communication unit 1020 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a wireless terminal (e.g. a user equipment) .
  • a wireless terminal e.g. a user equipment
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any one of the various illustrative logical blocks, units, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a “software unit” ) , or any combination of these techniques.
  • a processor, device, component, circuit, structure, machine, unit, etc. can be configured to perform one or more of the functions described herein.
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, units, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein. If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • unit refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various units are described as discrete units; however, as would be apparent to one of ordinary skill in the art, two or more units may be combined to form a single unit that performs the associated functions according embodiments of the present disclosure.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication method for use in a wireless terminal is disclosed. The method comprises receiving, from a wireless network node, first downlink control information, DCI, of scheduling a plurality of downlink channels in a downlink channel monitoring occasion, receiving, from the wireless network node, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI, and transmitting, to the wireless network node, a plurality of uplink channels based on the second DCI.

Description

A METHOD FOR SCHEDULING TRANSMISSION
This document is directed generally to wireless communications.
Using unlicensed carriers to transmit data can increase a utilization rate of available transmission resources. According to regulatory requirements for unlicensed operations, a device needs to perform a Clear Channel Assessment (CCA) and have a successful result prior to data transmissions. To improve efficiency of the data transmissions, the channel access procedure and control signaling may need to be reconsidered.
In the existing technology, the downlink (DL) control information (DCI) for either a DL grant or an uplink (UL) grant is carried on a physical DL control channel (PDCCH) and a physical downlink shared channel (PDSCH) only carries the DL data.
This document relates to methods, systems, and devices for scheduling transmissions, and in particular to methods, systems, and devices for scheduling transmissions of multiple downlink channels and uplink channels.
The present disclosure relates to a wireless communication method for use in a wireless terminal. The method comprises:
receiving, from a wireless network node, first downlink control information, DCI, of scheduling a plurality of downlink channels in a downlink channel monitoring occasion,
receiving, from the wireless network node, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI, and
transmitting, to the wireless network node, a plurality of uplink channels based on the second DCI.
Various embodiments may preferably implement the following features:
Preferably, the second DCI is carried on the carried downlink channel.
Preferably, the wireless communication method further comprises receiving, from the wireless network node, a parameter associated with the carried downlink channel doing a rate matching.
Preferably, the wireless communication method further comprises receiving, from the wireless network node, a parameter indicating that the first DCI comprises a bit field associated with whether the plurality of downlink channels comprises the second DCI.
Preferably, the carried downlink channel is:
the M th downlink channel in the plurality of downlink channels when M is equal to 2, or
the (M-1)  th downlink channel in the plurality of downlink channels when M is greater than 2,
wherein M is the number of the plurality downlink channels.
Preferably, the carried downlink channel is a downlink channel with a predefined index in the plurality of downlink channels.
Preferably, the first DCI comprises a bit field of indicating which one of the plurality of downlink channels is the carried downlink channel.
Preferably, the wireless communication method further comprises receiving, from the wireless network node, a parameter indicating which one of the plurality of downlink channels is the carried downlink channel.
Preferably, each of the first DCI and second DCI comprises at least one of:
first information associated with a frequency domain resource allocation and a frequency offset,
second information associated with a time-domain resource allocation, or
third information associated with at least one of:
a first offset value associated with a slot offset between DCI of a downlink channel and  the downlink channel,
a second offset value associated with a slot offset between a downlink channel and an acknowledge message of the downlink channel, or
a third offset value associated with a slot offset between DCI of an uplink channel and the uplink channel.
Preferably, the second information is determined based on a time domain resource assignment, TDRA, table, wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
Preferably, the maximum value of the start and length indicator is greater than 14.
Preferably, the maximum value of the start and length indicator is smaller than 14*8.
Preferably, the second information comprises at least one of a first offset value associated with a slot offset between the first DCI and the first downlink channel in the plurality downlink channels or a third offset value associated with a slot offset between the second DCI and the first uplink channel in the plurality of uplink channels.
Preferably, the first offset value, the second offset value and the third offset value are determined from a configured value set, wherein a scope of the configured value set is from 2 to 30.
Preferably, the first offset value is equal to a first value indicated by the corresponding DCI plus an offset.
Preferably, the second offset value is equal to a second value indicated by the corresponding DCI plus the offset.
Preferably, the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
Preferably, the third information is associated with a reference sub-carrier spacing.
Preferably, the first DCI comprises a downlink beam indication for the plurality of  downlink channels and/or the second DCI comprises an uplink beam indication for the plurality of uplink channels.
Preferably, the first DCI comprises a plurality of downlink beam indications respectively corresponding to the plurality of downlink channels and/or the second DCI comprises a plurality of uplink beam indications respectively corresponding to the plurality of uplink channels.
Preferably, the plurality of downlink channels is divided into a plurality downlink channel groups which are respectively corresponding to a plurality of downlink group beam indications in the first DCI, and/or the plurality of uplink channels is divided into a plurality uplink channel groups which are respectively corresponding to a plurality of uplink group beam indications in the second DCI.
The present disclosure relates to a wireless communication method for use in a wireless network node, the method comprising:
transmitting, to a wireless terminal, first downlink control information, DCI, of scheduling a plurality of downlink channels in a downlink channel monitoring occasion,
transmitting, to the wireless terminal, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI, and
receiving, from the wireless terminal, a plurality of uplink channels based on the second DCI.
Various embodiments may preferably implement the following features:
Preferably, the second DCI is carried on the carried downlink channel.
Preferably, the wireless communication method further comprises transmitting, to the wireless terminal, a parameter associated with the carried downlink channel doing a rate matching.
Preferably, the wireless communication method further comprises transmitting, to the wireless terminal, a parameter indicating that the first DCI comprises a bit field associated with  whether the plurality of downlink channels comprises the second DCI.
Preferably, the carried downlink channel is:
M th downlink channel in the plurality of downlink channels when M is equal to 2, or
(M-1)  th downlink channel in the plurality of downlink channels when M is greater than 2,
wherein M is the number of the plurality downlink channels.
Preferably, the carried downlink channel is a downlink channel with a predefined index in the plurality of downlink channels.
Preferably, the first DCI comprises a bit field of indicating which one of the plurality of downlink channels is the carried downlink channel.
Preferably, the wireless communication method further comprises transmitting, to the wireless terminal, a parameter indicating which one of the plurality of downlink channels is the carried downlink channel.
Preferably, each of the first DCI and second DCI comprises at least one of:
first information associated with a frequency domain resource allocation and a frequency offset,
second information associated with a time-domain resource allocation, or
third information associated with at least one of:
a first offset value associated with a slot offset between DCI of a downlink channel and the downlink channel,
a second offset value associated with a slot offset between a downlink channel and an acknowledge message of the downlink channel, or
a third offset value associated with a slot offset between DCI of an uplink channel and the uplink channel.
Preferably, the second information is determined based on a time domain resource assignment, TDRA, table, wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
Preferably, the maximum value of the start and length indicator is greater than 14.
Preferably, the maximum value of the start and length indicator is smaller than 8*14.
Preferably, the second information comprises at least one of a first offset value associated with a slot offset between the first DCI and the first downlink channel in the plurality downlink channels or a third offset value associated with a slot offset between the second DCI and the first uplink channel in the plurality of uplink channels.
Preferably, the first offset value, the second offset value and the third offset value are determined from a configured value set, wherein a scope of the configured value set is from 2 to 30.
Preferably, the first offset value is equal to a first value indicated by the corresponding DCI plus an offset.
Preferably, the second offset value is equal to a second value indicated by the corresponding DCI plus the offset.
Preferably, the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
Preferably, the third information is associated with a reference sub-carrier spacing.
Preferably, the first DCI comprises a downlink beam indication for the plurality of downlink channels and/or the second DCI comprises an uplink beam indication for the plurality of uplink channels.
Preferably, the first DCI comprises a plurality of downlink beam indications respectively corresponding to the plurality of downlink channels and/or the second DCI comprises a plurality of uplink beam indications respectively corresponding to the plurality of uplink channels.
Preferably, the plurality of downlink channels is divided into a plurality downlink channel groups which are respectively corresponding to a plurality of downlink group beam indications in the first DCI, and/or the plurality of uplink channels is divided into a plurality uplink channel groups which are respectively corresponding to a plurality of uplink group beam indications in the second DCI.
The present disclosure relates to a wireless terminal. The wireless terminal comprises a communication unit configured to:
receive, from a wireless network node, first downlink control information, DCI, of scheduling a plurality of downlink channels in a downlink channel monitoring occasion,
receive, from the wireless network node, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI, and
transmit, to the wireless network node, a plurality of uplink channels based on the second DCI.
Various embodiments may preferably implement the following feature:
Preferably, the wireless terminal further comprises a processor configured to perform any of the aforementioned wireless communication methods.
The present disclosure relates to a wireless network node. The wireless network node comprises a communication unit configured to:
transmit, to a wireless terminal, first downlink control information, DCI, of scheduling a plurality of downlink channels in a downlink channel monitoring occasion,
transmit, to the wireless terminal, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI, and
receive, from the wireless terminal, a plurality of uplink channels based on the second DCI.
Various embodiments may preferably implement the following features:
Preferably, the wireless network node further comprises a processor configured to perform any of the aforementioned wireless communication methods.
The present disclosure relates to a computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any one of foregoing methods.
The exemplary embodiments disclosed herein are directed to providing features that will become readily apparent by reference to the following description when taken in conjunction with the accompany drawings. In accordance with various embodiments, exemplary systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and not limitation, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of the present disclosure.
Thus, the present disclosure is not limited to the exemplary embodiments and applications described and illustrated herein. Additionally, the specific order and/or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
FIG. 1 shows a flowchart of a method according to an embodiment of the present disclosure.
FIG. 2 shows a schematic diagram of the multiple physical downlink shared channels  and physical uplink shared channels scheduling and transmission according to an embodiment of the present disclosure.
FIG. 3 shows a timing diagram according to an embodiment of the present disclosure.
FIG. 4 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure.
FIG. 5 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure.
FIG. 6 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure.
FIG. 7 shows a flowchart of a process according to an embodiment of the present disclosure.
FIG. 8 shows a flowchart of a process according to an embodiment of the present disclosure.
FIG. 9 shows an example of a schematic diagram of a wireless terminal according to an embodiment of the present disclosure.
FIG. 10 shows an example of a schematic diagram of a wireless network node according to an embodiment of the present disclosure.
For new radio (NR) operation on a high frequency spectrum above 52.6GHz, a large sub-carrier spacing (SCS) (e.g. 240 kHz, 480 kHz, or 960 kHz) may need to be used. Under such conditions, a slot duration becomes very short. For example, the slot duration may be only 15.625us when the SCS of 960 kHz is configured. In this case, supporting multi-PDSCH/PUSCH (physical downlink share channel/physical uplink share channel) scheduled by one downlink control information (DCI) is beneficial for network coverage, overhead reduction and physical downlink control channel (PDCCH) monitoring. Thus, the DCI design for scheduling the multi-PDSCH/PUSCH should be specified.
Embodiment 1:
To reduce PDCCH monitoring occasions and DCI overhead, a method for both scheduling and transmitting (multiple) PUSCH (s) and (multiple) PDSCH (s) at the same time is provided. In an embodiment, the number of scheduled PDSCHs/PUSCHs by one DCI can be 1 to 16.
FIG. 1 shows a flowchart of a method according to an embodiment of the present disclosure. In this embodiment, a user equipment (UE) first monitors a PDCCH (monitoring occasion) and decodes DL grant information for subsequent multiple PDSCHs (step 101) . According to the DL grant information, the UE receives multiple PDSCHs and decodes a UL grant (information) for subsequent multiple PUSCH (s) , wherein the UL grant (information) is carried in one of the received PDSCHs (step 102) . Based on the UL grant, the UE transmits the multiple PUSCHs in subsequent slots (step 103) .
Through this method, the PDCCH monitoring occasions can be reduced and the UE power can be saved.
Note that, two DCIs are needed in this embodiment, wherein the first DCI is for scheduling the multiple PDSCHs and transmitted on the PDCCH and the second DCI is for scheduling multiple PUSCHs and transmitted (e.g. carried or piggybacked) on one of the PDSCHs which are scheduled by the first DCI.
Embodiment 2:
This embodiment describes how the UE determines which PDSCH carrying the DCI/UL grant information for the subsequent multiple PUSCHs transmission.
In this embodiment, single DCI carried on the PDCCH schedules one or more PDSCHs and one of the scheduled PDSCHs contains (e.g. comprises) the UL grant information for the subsequent one or more PUSCHs. In an embodiment, the UL grant scheduling the subsequent one or more PUSCHs can be piggybacked on one of the PDSCHs.
FIG. 2 shows a schematic diagram of the multiple PDSCH and PUSCH scheduling and transmission according to an embodiment of the present disclosure. In FIG. 2, the UE blindly detects a PDCCH in the PDCCH monitoring occasion according to the PDCCH configuration and decodes a DL grant that schedules 4 PDSCHs PDCCH1 to PDSCH4. In the PDSCH3, the UE  decodes a UL grant that schedules 4 PUSCHs PUSCH1 to PUSCH4 in the subsequent slots.
To determine the PDSCH that carries the UL grant, at least one of the below methods may be adopt:
Method 1:
One parameter (e.g. UL-grant-onPDSCH) may be configured by a radio resource control (RRC) signaling, to indicate the UE that one bit is included in the DL grant for indicating whether the UL grant is carried in one of the scheduled PDSCHs of the DL grant. For example, if the value of the bit field in the DCI/DL grant is “1” , the UL grant is carried in one of the scheduled PDSCHs; and if the value of the bit field in the DCI/DL grant is “0” , the UL grant is not carried in one of the scheduled PDSCHs and the PDSCHs only contains data.
Method 2:
In an embodiment, the PDSCH index carrying the UL grant is determined by the below rule:
When the DCI schedules M PDSCHs (M is a positive integer) , the PDSCH that carries the UL grant is:
when M ≤ 2: the (M) -th scheduled PDSCH carrying the UL grant;
when M > 2: the (M-1) -th scheduled PDSCH carrying the UL grant.
For example, when 3 PDSCHs are scheduled by the DCI, the UL grant is carried on the 2 nd (i.e. (3-1) -th) scheduled PDSCH.
Method 3:
The PDSCH carrying the UL grant is the PDSCH of a predefined index. In this embodiment, no matter how much PDSCHs are scheduled by the DCI, the UL grant is always carried on the PDSCH with the predefined index (e.g. the 2 nd scheduled PDSCH (i.e. the PDSCH with the index 2) ) .
Method 4:
The index of the PDSCH carrying the UL grant is indicated by the DCI that schedules  the PDSCHs. In an embodiment, the DCI may comprise 3 bits of indicating which scheduled PDSCH carrying the UL grant. For example, if these 3 bits are “110” , the 6 th scheduled PDSCH carries the UL grant.
Method 5:
The index of the PDSCH carrying the UL grant is configured by the RRC signaling. For example, if the RRC signaling configures that the PDSCH carrying the UL grant is the 3 rd scheduled PDSCH, the UE decodes the UL grant on the 3 rd scheduled PDSCH.
Through at least one of the above methods, the UE is able to determine the PDSCH carrying the UL grant in the multiple scheduled PDSCHs and the UE can transmit the multiple PUSCHs in the subsequent slots according to the UL grant.
Embodiment 3:
This embodiment describes how the UL grant scheduling the subsequent multiple PUSCHs is piggybacked (e.g. carried) on the PDSCH in the DL multiple PDSCH (s) scheduling case.
The DCI (e.g. UL grant) that piggybacked on the PDSCH is processed independently. That is, the DCI does not use the scheduled and transmission information indicated in the first DCI as the DL data. In an embodiment, a modulation and coding scheme (MCS) of the DCI piggybacked on the PDSCH may be predefined. For example, the UL grant is independent coded by using low-density parity-check (LDPC) and the modulation scheme is quadrature phase-shift keying (QPSK) . The UE decodes the UL grant on the determined PDSCH based on the predefined MCS and transmits multiple PUSCHs according to the UL grant information.
In an embodiment, the PDSCH carrying the DCI may carry only the DCI without additional data. As an alternative, the UL grant is piggybacked on the PDSCH. After the QPSK modulation, the DCI symbol is mapped to OFDM symbols that next to demodulation reference signal (DMRS) of the PDSCH. In addition, the DL transmitted data may be interrupted or do rate matching. In an embodiment, one RRC parameter (e.g. DCI beta offset) may be defined for the PDSCH making rate matching for the case that the DCI is piggybacked on the PDSCH.
Embodiment 4:
This embodiment describes an information design of the DCI for multiple PUSCH (s) /PDSCH (s) scheduling case. The DCI scheduling the multiple PDSCHs and/or the DCI/UL grant piggybacked (carried) on the PDSCH includes at least one of the below information:
Information 1: frequency domain resource allocation and frequency offset information for PDSCH/PUSCH transmission
This information is used to schedule multiple PDSCH (s) /PUSCH (s) doing an inter-slot frequency hopping. For example, the frequency domain resource allocation is applied to the first scheduled PDSCH/PUSCH, the frequency domain resource allocation position of the second PDSCH/PUSCH is that of the first transmitted PDSCH/PUSCH adding one frequency offset, the frequency domain resource allocation position of the third PDSCH/PUSCH is that of the first transmitted PDSCH/PUSCH adding two frequency offsets, and so on.
Information 2: time domain resource allocation information
For the time domain resource allocation information of the scheduled multiple PDSCH (s) /PUSCH (s) , a time domain resource assignment (TDRA) table may be configured by the RRC signaling. The TDRA table configuration indicates single or multiple continuous PDSCHs/PUSCHs in any slot of the multiple scheduled slots. Each row in the TDRA table indicates multiple PUSCHs/PDSCHs scheduled. Note that, the PUSCHs/PDSCHs are contiguous (or continuous) in time-domain and each PDSCH/PUSCH has a separate start and length indicator (SLIV) and a mapping type. The number of scheduled PUSCHs/PDSCHs is signaled by the number of indicated valid SLIVs in the row of the TDRA table signaled in the DCI. In an embodiment, the length in the SLIV indication may be not smaller than (i.e. larger than and/or equal to) 14. In an embodiment, the length in the SLIV indication may be not greater than (i.e. smaller than and/or equal to) 14*8=112.
In addition, a value k0 is applied to the first scheduled PDSCH and a value K2 is applied to the first scheduled PUSCH, wherein the value k0 is the offset between the DL slot where the PDCCH (DCI) is received and the DL slot where the corresponding PDSCH is scheduled and the value k2 is the offset between the DL slot where the DCI for UL scheduling is received and the  UL slot of the corresponding PUSCH.
Information 3: k0/k1/k2 information implication
In this embodiment, the value k0 is associated with the offset between the DL slot where the PDCCH (DCI) is received and the DL slot where the corresponding PDSCH is scheduled.
The value k1 is associated with the offset between the DL slot of the PDSCH and the UL slot at where acknowledge/non-acknowledge message (ACK/NACK) feedback (e.g. hybrid automatic repeat request (HARQ) ACK feedback) for the scheduled PDSCH data need to be sent.
The value k2 is associated with the offset between the DL slot where the DCI for UL scheduling is received and the UL slot of the corresponding PUSCH.
The values k0, k1 and k2 are choose from a configured value set. In an embodiment, the scope of the configured value set is {2……30} and the applied k0/k1/k2 is indicated in the DCI.
As an alternative or in addition, the applied value of k0/k1/k2 for PDSCH/PUSCH and/or the HARQ ACK feedback slot are equal to corresponding values indicated in the DL/UL grant plus an offset. The offset value is associated with the reference SCS (e.g. 120kHz) .
FIG. 3 shows a timing diagram according to an embodiment of the present disclosure. In this embodiment, the value k1, which is the PDSCH-to-HARQ_feedback timing indicator in the DL grant, is 4 for the reference SCS of 120kHz. In FIG. 3, the SCS of the PDSCH is 960kHz. The value k1 of the PDSCH is 4*8 based on the relationship between the configured SCS and the reference SCS (i.e. 4*960/120) . As shown in FIG. 3, the UE feedbacks the HARQ-ACK for one PDSCH in slot (n+4*8) , where the slot n is the slot where the DL grant is transmitted. As an alternative, the UE feedbacks the HARQ-ACK for those scheduled PDSCHs in slot (m+4*8) , where the slot m is the slot of the last scheduled PDSCH.
Embodiment 5:
This embodiment describes a beam indication design of the DCI information for multiple PUSCH/PDSCH (s) scheduling.
More specifically, the beam indication information for each scheduled PDSCH/PUSCH may be determined by one of the below methods.
Method 1:
One beam indication is included in the DL grant and another beam indication is included in the UL grant. In this embodiment, all the transmitted PDSCHs use the same beam indicated by the beam indication in the DL grant and all the transmitted PUSCHs use the same beam indicated by the beam indication in the UL grant.
Method 2:
Each scheduled PUSCH/PDSCH has one independent beam indication in the DCI. That is, multiple beams indications are included in the UL/DL grant for the scheduled multiple PUSCHs/PDSCHs.
For example, multiple sounding reference signal resource indicators (SRIs) may be included in the UL grant and each scheduled PUSCH is separately corresponding to one independent SRI. In addition, multiple transmission configuration indicators (TCIs) may be included in the DL grant and each scheduled PDSCH is separately corresponding to one TCI.
FIG. 4 shows a timing diagram according to an embodiment of the present disclosure. In FIG. 4, the UL grant carried (e.g. piggybacked) on the PDSCH schedules the transmission of 4 PUSCHs (i.e. PUSCH1 to PUSCH4) . In this embodiment, the UL grant comprises 4 SRIs (i.e. SRI1 to SRI4) and each of SRI1 to SRI4 indicates one beam for each transmitted PUSCHs.
Method 3:
The multiple PUSCH/PDSCH are divided into k groups, and k beam indications are included in the DCI and each group of continuation PUSCH/PDSCH shares one of the beam indications.
For example, a group of contiguous PUSCHs shares the same SRI and another group of PUSCHs shares another SRI, and so on. Regarding to the multiple PDSCH scheduling, the same method can be used.
FIG. 5 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure. In FIG. 5, 6 PDSCHs are scheduled by one DCI and 2 TCIs TCI1 and TCI2 are included in the DCI. the beam of transmitting the first 3 PDSCH (e.g. first  group of PDSCHs) is determined based on the TCI1. In addition, the beam of transmitting the second 3 PDSCH (i.e. second group of PDSCHs) is based on the TCI2.
FIG. 6 shows a schematic diagram of a beam indication design according to an embodiment of the present disclosure. In FIG. 6, 6 PUSCHs are scheduled by one DCI piggybacked on the second scheduled PDSCH2. In this embodiment, 3 SRIs SRI1 to SRI3 are included in the DCI and every two scheduled PUSCHs belong to the same PUSCH group and share the same SRI. That is, the first two scheduled PUSCHs belong to a PUSCH group 0 and use the beam indicated by the SRI1 for the PUSCH transmission, the second two scheduled PUSCHs belong to a PUSCH group 1 and use the beam indicated by the SRI2 for PUSCH transmission, and so on.
FIG. 7 shows a flowchart of a process according to an embodiment of the present disclosure. The process shown in FIG. 7 may be used in a wireless terminal (e.g. UE) and comprises the following steps:
Step 701: Receive, from a wireless network node, first DCI of scheduling a plurality of downlink channels in a downlink channel monitoring occasion.
Step 702: Receive, from the wireless network node, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI.
Step 703: Transmit, to the wireless network node, a plurality of uplink channels based on the second DCI.
In FIG. 7, the wireless terminal monitors a DL channel (e.g. PDCCH) monitoring occasion and receives (e.g. decodes) first DCI in this DL channel monitoring occasion from a wireless network node (e.g. gNB) . The first DCI is configured to schedule a plurality of DL channels (e.g. PDSCHs) . Based on the first DCI, the wireless terminal receives the plurality of DL channels. In this embodiment, one of the plurality of DL channels (i.e. carried DL channel) comprises second DCI configured to schedule subsequent UL channels (e.g. UL transmissions) . Next, the wireless terminal transmits the UL channels to the wireless network node based on the second DCI. By adopting this process, the number of monitoring occasions monitored by the  wireless terminal is reduced. The power consumption of the wireless terminal is therefore decreased.
In an embodiment, the second DCI is carried (e.g. piggybacked) on the carried DL channel.
In an embodiment, from the wireless network node, the wireless terminal receives a parameter associated with the carried DL channel doing a rate matching (e.g. for carrying the second DCI on the carried DL channel) .
In an embodiment, from the wireless network node, the wireless terminal receives a parameter indicating that the first DCI comprises a bit field associated with whether the plurality of DL channels comprises the second DCI.
In an embodiment, the carried DL channel is:
the M th DL channel in the plurality of DL channels when M is equal to 2, or
the (M-1)  th DL channel in the plurality of DL channels when M is greater than 2,
wherein M is the number of the plurality DL channels (e.g. scheduled by the first DCI) .
In an embodiment, the carried DL channel is a DL channel with a predefined index (e.g. 2) in the plurality of DL channels (e.g. scheduled by the first DCI) .
In an embodiment, the first DCI comprises a bit field of indicating which one of the plurality of DL channels is the carried DL channel. For example, the bit length of this bit field may be 3 bits, to indicate one of 1 st to 8 th DL channel scheduled by the first DCI as the carried DL channel.
In an embodiment, from the wireless network node, the wireless terminal receives a parameter (e.g. RRC parameter, RRC signaling, RRC message) indicating which one of the plurality of DL channels is the carried DL channel.
In an embodiment, each of the first DCI and second DCI comprises at least one of:
first information associated with a frequency domain resource allocation and a frequency offset,
second information associated with a time-domain resource allocation, or
third information associated with at least one of:
a first offset value (e.g. k0) associated with a slot offset between DCI of a DL channel and this DL channel,
a second offset value (e.g. k1) associated with a slot offset between a DL channel and an acknowledge message of this DL channel, or
a third offset value (e.g. k2) associated with a slot offset between DCI of a UL channel and this UL channel.
In an embodiment, the second information is determined based on a TDRA table, wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
In an embodiment, the maximum value of the start and length indicator is greater than or equal to 14.
In an embodiment, the maximum value of the start and length indicator is smaller than or equal to 8*14.
In an embodiment, the second information comprises at least one of a first offset value (e.g. k0) associated with a slot offset between the first DCI and the first DL channel in the plurality DL channels or a third offset value (e.g. k2) associated with a slot offset between the second DCI and the first UL channel in the plurality of UL channels.
In an embodiment, the first offset value, the second offset value and the third offset value are determined from a configured value set, and a scope of the configured value set is from 2 to 30 (i.e. {2, 3, …, 30} ) .
In an embodiment, the first offset value is equal to a first value indicated by the corresponding DCI plus an offset, the second offset value is equal to a second value indicated by the corresponding DCI plus the offset, and the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
In an embodiment, the third information is associated with a reference SCS. That is, the third information for a specific SCS may be determined based on the third information of the reference SCS and a relationship between the specific SCS and the reference SCS.
In an embodiment, the first DCI comprises a plurality of DL beam indications respectively corresponding to the plurality of DL channels and the second DCI comprises a plurality of UL beam indications respectively corresponding to the plurality of UL channels.
In an embodiment, the plurality of DL channels is divided into a plurality DL channel groups which are respectively corresponding to a plurality of DL group beam indications in the first DCI.
In an embodiment, the plurality of UL channels is divided into a plurality UL channel groups which are respectively corresponding to a plurality of UL group beam indications in the second DCI.
FIG. 8 shows a flowchart of a process according to an embodiment of the present disclosure. The process shown in FIG. 8 may be used in a wireless network node (e.g. gNB) and comprises the following steps:
Step 801: Transmit, to a wireless terminal, first DCI of scheduling a plurality of downlink channels in a downlink channel monitoring occasion.
Step 802: Transmit, to a wireless terminal, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI.
Step 803: Receive, from a wireless terminal, a plurality of uplink channels based on the second DCI.
In FIG. 8, the wireless network node transmits first DCI in a DL channel (e.g. PDCCH) monitoring occasion to a wireless terminal (e.g. UE) . The first DCI is configured to schedule a plurality of DL channels (e.g. PDSCHs) . The wireless network node transmits the plurality of DL channels based on the first DCI. Note that, one of the plurality of DL channels (i.e. carried DL channel) comprises second DCI configured to schedule subsequent UL channels (e.g. UL  transmissions) . Based on the second DCI, the wireless terminal transmits the UL channels to the wireless network node.
In an embodiment, the second DCI is carried (e.g. piggybacked) on the carried DL channel.
In an embodiment, to the wireless terminal, the wireless network node transmits a parameter associated with the carried DL channel doing a rate matching (e.g. for carrying the second DCI on the carried DL channel) .
In an embodiment, to the wireless terminal, the wireless network node transmits a parameter indicating that the first DCI comprises a bit field associated with whether the plurality of DL channels comprises the second DCI.
In an embodiment, the carried DL channel is:
the M th DL channel in the plurality of DL channels when M is equal to 2, or
the (M-1)  th DL channel in the plurality of DL channels when M is greater than 2,
wherein M is the number of the plurality DL channels (e.g. scheduled by the first DCI) .
In an embodiment, the carried DL channel is a DL channel with a predefined index (e.g. 2) in the plurality of DL channels (e.g. scheduled by the first DCI) .
In an embodiment, the first DCI comprises a bit field of indicating which one of the plurality of DL channels is the carried DL channel. For example, the bit length of this bit field may be 3 bits, to indicate one of 1 st to 8 th DL channel scheduled by the first DCI as the carried DL channel.
In an embodiment, to the wireless terminal, the wireless network node transmits a parameter (e.g. RRC parameter, RRC signaling, RRC message) indicating which one of the plurality of DL channels is the carried DL channel.
In an embodiment, each of the first DCI and second DCI comprises at least one of:
first information associated with a frequency domain resource allocation and a frequency offset,
second information associated with a time-domain resource allocation, or
third information associated with at least one of:
a first offset value (e.g. k0) associated with a slot offset between DCI of a DL channel and this DL channel,
a second offset value (e.g. k1) associated with a slot offset between a DL channel and an acknowledge message of this DL channel, or
a third offset value (e.g. k2) associated with a slot offset between DCI of a UL channel and this UL channel.
In an embodiment, the second information is determined based on a TDRA table, wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
In an embodiment, the maximum value of the start and length indicator is greater than or equal to 14.
In an embodiment, the maximum value of the start and length indicator is smaller than or equal to 8*14.
In an embodiment, the second information comprises at least one of a first offset value (e.g. k0) associated with a slot offset between the first DCI and the first DL channel in the plurality DL channels or a third offset value (e.g. k2) associated with a slot offset between the second DCI and the first UL channel in the plurality of UL channels.
In an embodiment, the first offset value, the second offset value and the third offset value are determined from a configured value set, and a scope of the configured value set is from 2 to 30 (i.e. {2, 3, …, 30} ) .
In an embodiment, the first offset value is equal to a first value indicated by the corresponding DCI plus an offset, the second offset value is equal to a second value indicated by the corresponding DCI plus the offset, and the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
In an embodiment, the third information is associated with a reference SCS. That is, the third information for a specific SCS may be determined based on the third information of the reference SCS and a relationship between the specific SCS and the reference SCS.
In an embodiment, the first DCI comprises a plurality of DL beam indications respectively corresponding to the plurality of DL channels and the second DCI comprises a plurality of UL beam indications respectively corresponding to the plurality of UL channels.
In an embodiment, the plurality of DL channels is divided into a plurality DL channel groups which are respectively corresponding to a plurality of DL group beam indications in the first DCI.
In an embodiment, the plurality of UL channels is divided into a plurality UL channel groups which are respectively corresponding to a plurality of UL group beam indications in the second DCI.
FIG. 9 relates to a schematic diagram of a wireless terminal 90 according to an embodiment of the present disclosure. The wireless terminal 90 may be a user equipment (UE) , a mobile phone, a laptop, a tablet computer, an electronic book or a portable computer system and is not limited herein. The wireless terminal 90 may include a processor 900 such as a microprocessor or Application Specific Integrated Circuit (ASIC) , a storage unit 910 and a communication unit 920. The storage unit 910 may be any data storage device that stores a program code 912, which is accessed and executed by the processor 900. Embodiments of the storage unit 912 include but are not limited to a subscriber identity module (SIM) , read-only memory (ROM) , flash memory, random-access memory (RAM) , hard-disk, and optical data storage device. The communication unit 920 may a transceiver and is used to transmit and receive signals (e.g. messages or packets) according to processing results of the processor 900. In an embodiment, the communication unit 920 transmits and receives the signals via at least one antenna 922 shown in FIG. 9.
In an embodiment, the storage unit 910 and the program code 912 may be omitted and the processor 900 may include a storage unit with stored program code.
The processor 900 may implement any one of the steps in exemplified embodiments on the wireless terminal 90, e.g., by executing the program code 912.
The communication unit 920 may be a transceiver. The communication unit 920 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a wireless network node (e.g. a base station) .
FIG. 10 relates to a schematic diagram of a wireless network node 100 according to an embodiment of the present disclosure. The wireless network node 100 may be a satellite, a base station (BS) , a network entity, a Mobility Management Entity (MME) , Serving Gateway (S-GW) , Packet Data Network (PDN) Gateway (P-GW) , a radio access network (RAN) , a next generation RAN (NG-RAN) , a data network, a core network or a Radio Network Controller (RNC) , and is not limited herein. In addition, the wireless network node 100 may comprise (perform) at least one network function such as an access and mobility management function (AMF) , a session management function (SMF) , a user place function (UPF) , a policy control function (PCF) , an application function (AF) , etc. The wireless network node 100 may include a processor 1000 such as a microprocessor or ASIC, a storage unit 1010 and a communication unit 1020. The storage unit 1010 may be any data storage device that stores a program code 1012, which is accessed and executed by the processor 1000. Examples of the storage unit 1012 include but are not limited to a SIM, ROM, flash memory, RAM, hard-disk, and optical data storage device. The communication unit 1020 may be a transceiver and is used to transmit and receive signals (e.g. messages or packets) according to processing results of the processor 1000. In an example, the communication unit 1020 transmits and receives the signals via at least one antenna 1022 shown in FIG. 10.
In an embodiment, the storage unit 1010 and the program code 1012 may be omitted. The processor 1000 may include a storage unit with stored program code.
The processor 1000 may implement any steps described in exemplified embodiments on the wireless network node 100, e.g., via executing the program code 1012.
The communication unit 1020 may be a transceiver. The communication unit 1020 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a wireless terminal (e.g. a user equipment) .
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand exemplary features and functions of the present disclosure. Such persons would understand, however, that the present disclosure is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any one of the above-described exemplary embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any one of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A skilled person would further appreciate that any one of the various illustrative logical blocks, units, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software unit” ) , or any combination of these techniques.
To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, units, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure. In accordance with various embodiments, a processor, device, component, circuit, structure, machine, unit, etc. can be configured to perform one or more of the functions described herein. The term “configured to” or “configured for” as used herein with respect to a specified operation or function refers to a processor, device, component, circuit, structure, machine, unit, etc. that is physically constructed, programmed and/or arranged to perform the specified operation or function.
Furthermore, a skilled person would understand that various illustrative logical blocks, units, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, units, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein. If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium.
Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer.  By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "unit" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various units are described as discrete units; however, as would be apparent to one of ordinary skill in the art, two or more units may be combined to form a single unit that performs the associated functions according embodiments of the present disclosure.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present disclosure. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present disclosure with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other implementations without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (41)

  1. A wireless communication method for use in a wireless terminal, the method comprising:
    receiving, from a wireless network node, first downlink control information, DCI, of scheduling a plurality of downlink channels in a downlink channel monitoring occasion,
    receiving, from the wireless network node, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI, and
    transmitting, to the wireless network node, a plurality of uplink channels based on the second DCI.
  2. The wireless communication method of claim 1, wherein the second DCI is carried on the carried downlink channel.
  3. The wireless communication method of claim 1 or 2, further comprising:
    receiving, from the wireless network node, a parameter associated with the carried downlink channel doing a rate matching.
  4. The wireless communication method of any of claims 1 to 3, further comprising:
    receiving, from the wireless network node, a parameter indicating that the first DCI comprises a bit field associated with whether the plurality of downlink channels comprises the second DCI.
  5. The wireless communication method of any of claims 1 to 4, wherein the carried downlink channel is:
    the M th downlink channel in the plurality of downlink channels when M is equal to 2, or
    the (M-1)  th downlink channel in the plurality of downlink channels when M is greater than 2,
    wherein M is the number of the plurality downlink channels.
  6. The wireless communication method of any of claims 1 to 5, wherein the carried downlink channel is a downlink channel with a predefined index in the plurality of downlink channels.
  7. The wireless communication method of any of claims 1 to 6, wherein the first DCI comprises a bit field of indicating which one of the plurality of downlink channels is the carried downlink channel.
  8. The wireless communication method of any of claims 1 to 7, further comprising:
    receiving, from the wireless network node, a parameter indicating which one of the plurality of downlink channels is the carried downlink channel.
  9. The wireless communication method of any of claims 1 to 8, wherein each of the first DCI and second DCI comprises at least one of:
    first information associated with a frequency domain resource allocation and a frequency offset,
    second information associated with a time-domain resource allocation, or
    third information associated with at least one of:
    a first offset value associated with a slot offset between DCI of a downlink channel and the downlink channel,
    a second offset value associated with a slot offset between a downlink channel and an acknowledge message of the downlink channel, or
    a third offset value associated with a slot offset between DCI of an uplink channel and the uplink channel.
  10. The wireless communication method of claim 9, wherein the second information is determined based on a time domain resource assignment, TDRA, table,
    wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
  11. The wireless communication method of claim 10, wherein the maximum value of the start and length indicator is greater than 14.
  12. The wireless communication method of any of claims 9 to 11, wherein the second information comprises at least one of a first offset value associated with a slot offset between the first DCI and the first downlink channel in the plurality downlink channels or a third offset value associated with a slot offset between the second DCI and the first uplink channel in the plurality of uplink channels.
  13. The wireless communication method of any of claims 9 to 12, wherein the first offset value, the second offset value and the third offset value are determined from a configured value set, and
    wherein a scope of the configured value set is from 2 to 30.
  14. The wireless communication method of any of claims 9 to 12, wherein the first offset value is equal to a first value indicated by the corresponding DCI plus an offset,
    wherein the second offset value is equal to a second value indicated by the corresponding DCI plus the offset, and
    wherein the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
  15. The wireless communication method of any of claims 9 to 14, wherein the third information is associated with a reference sub-carrier spacing.
  16. The wireless communication method of any of claims 1 to 15, wherein the first DCI comprises a downlink beam indication for the plurality of downlink channels and the second DCI comprises an uplink beam indication for the plurality of uplink channels.
  17. The wireless communication method of any of claims 1 to 15, wherein the first DCI comprises a plurality of downlink beam indications respectively corresponding to the plurality of downlink channels and the second DCI comprises a plurality of uplink beam indications respectively corresponding to the plurality of uplink channels.
  18. The wireless communication method of any of claims 1 to 15, wherein the plurality of downlink channels is divided into a plurality downlink channel groups which are respectively corresponding to a plurality of downlink group beam indications in the first DCI, and
    wherein the plurality of uplink channels is divided into a plurality uplink channel groups which are respectively corresponding to a plurality of uplink group beam indications in the second DCI.
  19. A wireless communication method for use in a wireless network node, the method comprising:
    transmitting, to a wireless terminal, first downlink control information, DCI, of scheduling a plurality of downlink channels in a downlink channel monitoring occasion,
    transmitting, to the wireless terminal, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI, and
    receiving, from the wireless terminal, a plurality of uplink channels based on the second DCI.
  20. The wireless communication method of claim 19, wherein the second DCI is carried on the carried downlink channel.
  21. The wireless communication method of claim 19 or 20, further comprising:
    transmitting, to the wireless terminal, a parameter associated with the carried downlink channel doing a rate matching.
  22. The wireless communication method of any of claims 19 to 21, further comprising:
    transmitting, to the wireless terminal, a parameter indicating that the first DCI comprises a bit field associated with whether the plurality of downlink channels  comprises the second DCI.
  23. The wireless communication method of any of claims 19 to 22, wherein the carried downlink channel is:
    the M th downlink channel in the plurality of downlink channels when M is equal to 2, or
    the (M-1)  th downlink channel in the plurality of downlink channels when M is greater than 2,
    wherein M is the number of the plurality downlink channels.
  24. The wireless communication method of any of claims 19 to 23, wherein the carried downlink channel is a downlink channel with a predefined index in the plurality of downlink channels.
  25. The wireless communication method of any of claims 19 to 24, wherein the first DCI comprises a bit field of indicating which one of the plurality of downlink channels is the carried downlink channel.
  26. The wireless communication method of any of claims 19 to 25, further comprising:
    transmitting, to the wireless terminal, a parameter indicating which one of the plurality of downlink channels is the carried downlink channel.
  27. The wireless communication method of any of claims 19 to 26, wherein each of the first DCI and second DCI comprises at least one of:
    first information associated with a frequency domain resource allocation and a frequency offset,
    second information associated with a time-domain resource allocation, or
    third information associated with at least one of:
    a first offset value associated with a slot offset between DCI of a downlink channel and the downlink channel,
    a second offset value associated with a slot offset between a downlink channel and an acknowledge message of the downlink channel, or
    a third offset value associated with a slot offset between DCI of an uplink channel and the uplink channel.
  28. The wireless communication method of claim 27, wherein the second information is determined based on a time domain resource assignment, TDRA, table,
    wherein each row of the TDRA table indicates at least one start and length indicator and at least one mapping type of at least one channel.
  29. The wireless communication method of claim 28, wherein the maximum value of the start and length indicator is greater than 14.
  30. The wireless communication method of any of claims 27 to 29, wherein the second information comprises at least one of a first offset value associated with a slot offset between the first DCI and the first downlink channel in the plurality downlink channels or a third offset value associated with a slot offset between the second DCI and the first uplink channel in the plurality of uplink channels.
  31. The wireless communication method of any of claims 27 to 30, wherein the first offset value, the second offset value and the third offset value are determined from a configured value set, and
    wherein a scope of the configured value set is from 2 to 30.
  32. The wireless communication method of any of claims 27 to 30, wherein the first offset value is equal to a first value indicated by the corresponding DCI plus an offset,
    wherein the second offset value is equal to a second value indicated by the corresponding DCI plus the offset, and
    wherein the third offset value is equal to a third value indicated by the corresponding DCI plus the offset.
  33. The wireless communication method of any of claims 27 to 32, wherein the third information is associated with a reference sub-carrier spacing.
  34. The wireless communication method of any of claims 19 to 33, wherein the first DCI comprises a downlink beam indication for the plurality of downlink channels and the second DCI comprises an uplink beam indication for the plurality of uplink channels.
  35. The wireless communication method of any of claims 19 to 33, wherein the first DCI comprises a plurality of downlink beam indications respectively corresponding to the plurality of downlink channels and the second DCI comprises a plurality of uplink beam indications respectively corresponding to the plurality of uplink channels.
  36. The wireless communication method of any of claims 19 to 33, wherein the plurality of  downlink channels is divided into a plurality downlink channel groups which are respectively corresponding to a plurality of downlink group beam indications in the first DCI,
    wherein the plurality of uplink channels is divided into a plurality uplink channel groups which are respectively corresponding to a plurality of uplink group beam indications in the second DCI.
  37. A wireless terminal, comprising:
    a communication unit, configured to:
    receive, from a wireless network node, first downlink control information, DCI, of scheduling a plurality of downlink channels in a downlink channel monitoring occasion,
    receive, from the wireless network node, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI, and
    transmit, to the wireless network node, a plurality of uplink channels based on the second DCI.
  38. The wireless terminal of claim 37, further comprising a processor configured to perform a wireless communication method of any one of claims 2 to 18.
  39. A wireless network node, comprising:
    a communication unit, configured to:
    transmit, to a wireless terminal, first downlink control information, DCI, of scheduling a plurality of downlink channels in a downlink channel  monitoring occasion,
    transmit, to the wireless terminal, the plurality of downlink channels based on the first DCI, wherein a carried downlink channel in the plurality of downlink channels comprises second DCI, and
    receive, from the wireless terminal, a plurality of uplink channels based on the second DCI.
  40. The wireless network node according to claim 39, further comprising a processor configured to perform the wireless communication method of any of claims 20 to 36.
  41. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any one of claims 1 to 36.
PCT/CN2021/070857 2021-01-08 2021-01-08 A method for scheduling transmission WO2022147765A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180089613.5A CN116746097A (en) 2021-01-08 2021-01-08 Method for scheduling transmission
PCT/CN2021/070857 WO2022147765A1 (en) 2021-01-08 2021-01-08 A method for scheduling transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070857 WO2022147765A1 (en) 2021-01-08 2021-01-08 A method for scheduling transmission

Publications (1)

Publication Number Publication Date
WO2022147765A1 true WO2022147765A1 (en) 2022-07-14

Family

ID=82357797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070857 WO2022147765A1 (en) 2021-01-08 2021-01-08 A method for scheduling transmission

Country Status (2)

Country Link
CN (1) CN116746097A (en)
WO (1) WO2022147765A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180124753A1 (en) * 2016-11-03 2018-05-03 Qualcomm Incorporated Downlink control information piggyback in physical downlink shared channel
CN109088707A (en) * 2017-06-14 2018-12-25 ***通信有限公司研究院 Transmission method, detection method, device and the equipment of grading control channel
WO2019222922A1 (en) * 2018-05-22 2019-11-28 Nokia Shanghai Bell Co., Ltd. Two-stage pdcch design to support multiple bwps
WO2020040179A1 (en) * 2018-08-21 2020-02-27 株式会社Nttドコモ Terminal and wireless communication method
WO2020164618A1 (en) * 2019-02-15 2020-08-20 华为技术有限公司 Transmission method and apparatus for random access process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180124753A1 (en) * 2016-11-03 2018-05-03 Qualcomm Incorporated Downlink control information piggyback in physical downlink shared channel
CN109088707A (en) * 2017-06-14 2018-12-25 ***通信有限公司研究院 Transmission method, detection method, device and the equipment of grading control channel
WO2019222922A1 (en) * 2018-05-22 2019-11-28 Nokia Shanghai Bell Co., Ltd. Two-stage pdcch design to support multiple bwps
WO2020040179A1 (en) * 2018-08-21 2020-02-27 株式会社Nttドコモ Terminal and wireless communication method
WO2020164618A1 (en) * 2019-02-15 2020-08-20 华为技术有限公司 Transmission method and apparatus for random access process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM: "E-mail discussions on 2-stage DCI for NR", 3GPP DRAFT; R1-1702629 E-MAIL DISC 2-STAGE DCI FOR NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 15 February 2017 (2017-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051222023 *

Also Published As

Publication number Publication date
CN116746097A (en) 2023-09-12

Similar Documents

Publication Publication Date Title
US11870730B2 (en) Method and apparatus for reporting channel state
EP3540997B1 (en) Method for transmitting uplink signal in wireless communication system and device therefor
US10193681B2 (en) Method, apparatus and computer program for wireless communications
US20230058672A1 (en) Method for a transport block size determination procedure
CN113498627B (en) Signal receiving or transmitting method, device and system
CN105393624A (en) Terminal device, base station device, communications method, and integrated circuit
CN111699722B (en) Method for operating in idle mode and apparatus using the same
WO2022032661A1 (en) Method for a relaxed ue processing time
CN106550445B (en) Method and apparatus for low latency in wireless communications
US11153858B2 (en) Uplink communication method, terminal device, and network device
US20220272557A1 (en) Systems and methods for determining information indicative of cancelation
CN111713039A (en) User equipment, base station and method for downlink semi-persistent scheduling
EP2685640A1 (en) Communication method and device used in time division duplex system
WO2021230193A1 (en) User equipments, base stations and methods for priority rules of channel state information reports
CN110505042B (en) HARQ feedback method and device for uplink data
US20220361206A1 (en) Signaling solution on reliability enhancement for uplink transmission
CN113273295A (en) User equipment, base station and method for physical Side Link (SL) control channel listening
US20220330321A1 (en) Signaling solution for fast beam diversity
WO2022147765A1 (en) A method for scheduling transmission
US20220304013A1 (en) Super-slot based data transmission in wireless communication
CN110557228B (en) HARQ feedback method for uplink data, terminal equipment and network equipment
CN111654356B (en) Downlink control information transmission method and device
CN116868634A (en) Systems and methods for power headroom reporting for uplink transmissions in single DCI-based multi-TRP operation
WO2023201630A1 (en) Method for resource indication
CN115004602A (en) System and method for determining downlink control information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089613.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)