WO2022145328A1 - 遮熱コーティングの施工方法及び耐熱部材 - Google Patents

遮熱コーティングの施工方法及び耐熱部材 Download PDF

Info

Publication number
WO2022145328A1
WO2022145328A1 PCT/JP2021/047784 JP2021047784W WO2022145328A1 WO 2022145328 A1 WO2022145328 A1 WO 2022145328A1 JP 2021047784 W JP2021047784 W JP 2021047784W WO 2022145328 A1 WO2022145328 A1 WO 2022145328A1
Authority
WO
WIPO (PCT)
Prior art keywords
coat layer
spraying
forming
heat
bond coat
Prior art date
Application number
PCT/JP2021/047784
Other languages
English (en)
French (fr)
Inventor
芳史 岡嶋
草介 川澄
泰治 鳥越
貴洋 関川
孝治 水谷
新 木内
Original Assignee
三菱重工航空エンジン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工航空エンジン株式会社 filed Critical 三菱重工航空エンジン株式会社
Priority to US18/031,529 priority Critical patent/US20230374644A1/en
Priority to CN202180072964.5A priority patent/CN116457492A/zh
Priority to EP21915188.3A priority patent/EP4215640A4/en
Publication of WO2022145328A1 publication Critical patent/WO2022145328A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/14Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet
    • B05B12/1454Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet separate units comprising both a material container and a spray device permanently connected thereto being removably attached to a part of the spray apparatus, e.g. to a robot arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/14Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet
    • B05B12/1472Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet separate supply lines supplying different materials to separate outlets of the spraying apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0442Installation or apparatus for applying liquid or other fluent material to separate articles rotated during spraying operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof

Definitions

  • This disclosure relates to a method of applying a heat shield coating and a heat resistant member.
  • This application claims priority based on Japanese Patent Application No. 2020-218460 filed with the Japan Patent Office on December 28, 2020, the contents of which are incorporated herein by reference.
  • Thermal barrier coating is provided on heat-resistant members exposed to high-temperature combustion gas, such as combustor panels and turbine blades in aircraft engines, turbine blades and split rings in industrial gas turbines. It is known.
  • a heat-shielding coating includes a bond coat layer formed on a heat-resistant alloy base material and a top coat layer as a heat-shielding layer formed on the bond coat layer (see, for example, Patent Document 1). ..
  • the adhesive force with the heat-resistant alloy base material is large. Therefore, there is a need to form a bond coat layer by high-speed frame spraying, which can obtain a relatively large adhesion force by colliding the raw material powder of the bond coat layer with the heat-resistant alloy base material at a supersonic speed.
  • the top coat layer has different required properties and materials from the bond coat layer, there is a need to form a ceramic layer by a thermal spraying method different from the thermal spraying method for forming the bond coat layer.
  • the bond coat layer and the top coat layer are each formed by different thermal spraying methods, they are the same due to the difference in the device configuration and the required peripheral devices and utilities such as the gas used. It is difficult to perform thermal spraying at the thermal spray booth. Therefore, it is necessary to take time and effort to move the thermal spraying object to a different thermal spray booth, and to set up the object until the start of thermal spraying after the object is moved.
  • At least one embodiment of the present disclosure is intended to improve work efficiency when forming a heat shield coating in view of the above circumstances.
  • the method of applying the heat-shielding coating according to at least one embodiment of the present disclosure is as follows.
  • the top coat layer is formed by spraying a suspension containing ceramic powder by high-speed flame spraying on the bond coat layer of the object placed in the spray booth by a spray gun placed in the spray booth.
  • the heat-resistant member according to at least one embodiment of the present disclosure has the bond coat layer and the top coat layer formed by the method of applying the heat shield coating by the method of (1) above.
  • FIG. 1 It is a schematic diagram of the cross section of the heat-resistant member provided with the heat-shielding coating applied by the construction method of the heat-shielding coating which concerns on some embodiments. It is a figure which shows the appearance of the combustor panel for an aircraft engine as an example of a heat-resistant member. It is a flowchart which shows the procedure of the construction method of the thermal barrier coating which concerns on some Embodiments. It is a figure for demonstrating the outline of the apparatus which concerns on the construction method of the thermal barrier coating which concerns on one Embodiment. It is a figure for demonstrating the outline of the apparatus which concerns on the construction method of the thermal barrier coating which concerns on other embodiment.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • an expression representing a shape such as a square shape or a cylindrical shape not only represents a shape such as a square shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfering within a range where the same effect can be obtained. It shall also represent the shape including the part and the like.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions excluding the existence of other components.
  • FIG. 1 is a schematic cross-sectional view of a heat-resistant member 1 provided with a heat-shielding coating 3 applied by the method of applying the heat-shielding coating according to some embodiments.
  • FIG. 2 is a diagram showing the appearance of a combustor panel 1A for an aircraft engine as an example of the heat-resistant member 1.
  • Thermal barrier coating (TBC) is applied to the heat-resistant members 1 such as the combustor panel 1A and turbine blades for aircraft engines, turbine blades and split rings for industrial gas turbines, to shield the heat-shielding members 1. 3 is formed.
  • a metal bonding layer (bond coat layer) 7 and a top coat layer 9 as a heat shield layer are sequentially formed on the heat-resistant alloy base material (base material) 5 of the heat-resistant member 1 according to some embodiments. That is, in some embodiments, the thermal barrier coating 3 includes a bond coat layer 7 and a top coat layer 9.
  • the bond coat layer 7 is composed of an MCrAlY alloy (M indicates a metal element such as Ni, Co, Fe, or a combination of two or more of these).
  • the topcoat layer 9 is composed of a ZrO2 based material, for example, YSZ ( yttria - stabilized zirconia) , which is ZrO2 partially or fully stabilized with Y2O3. It is good. Further, the top coat layer 9 according to some embodiments is made of any one of DySZ (dyspria-stabilized zirconia), ErSZ (elvia-stabilized zirconia), Gd 2 Zr 2 O 7 , or Gd 2 Hf 2 O 7 . It may be configured. As a result, the heat-shielding coating 3 having excellent heat-shielding properties can be obtained.
  • the vertical cracks Cv extending in the thickness direction of the top coat layer 9 are dispersed in the surface direction, that is, in the left-right direction shown in FIG. 1 and the depth direction of the paper surface. Further, in the top coat layer 9 according to some embodiments, lateral cracking Ch extending in the plane direction is dispersed.
  • the structure having a plurality of vertical cracks Cv in the top coat layer 9 can alleviate the generation of thermal stress due to the difference in linear expansion coefficient from the heat resistant alloy base material 5. Excellent thermal cycle durability.
  • FIG. 3 is a flowchart showing a procedure of a method of applying a heat shield coating according to some embodiments.
  • the method of applying the heat shield coating according to some embodiments includes a step S10 for forming the bond coat layer 7 and a step S20 for forming the top coat layer 9.
  • the step S10 for forming the bond coat layer 7 is arranged in the thermal spraying booth 20 on the heat-resistant alloy base material 5 of the object (heat-resistant member 1) arranged in the thermal spraying booth 20 described later.
  • the step S20 for forming the top coat layer 9 is the bond coat layer of the object (heat resistant member 1) arranged in the thermal spraying booth 20 in which the step S10 for forming the bond coat layer 7 is carried out.
  • This is a step of forming the top coat layer 9 by spraying a suspension containing ceramic powder by high-speed flame spraying with a thermal spray gun 30 arranged on the thermal spray booth 20. That is, in some embodiments, the thermal spraying carried out in step S20 for forming the topcoat layer 9 is high speed flame spraying (S-HVOF) with a suspension.
  • S-HVOF high speed flame spraying
  • step S20 for forming the topcoat layer 9 a suspension in which ceramic powder as a thermal spraying material is dispersed in a solvent is sprayed onto the surface of the bondcoat layer 7 by high-speed flame spraying.
  • the spray material TM supplied as a suspension is sprayed onto the surface of the sprayed object by the combustion flame jet flow CF (see FIGS. 5A and 5B described later).
  • the supply form of the raw material (spraying material) used for thermal spraying is a suspension in which the raw material (spraying material) is still powdered or dispersed in a solvent.
  • the raw material (spraying material) is still powdered or dispersed in a solvent.
  • thermal spraying methods using a high-speed frame thermal spraying device there is a difference in the device configuration such as the thermal spray gun 30 between the high-speed frame spraying and the high-speed frame spraying by suspension, there is almost no difference in the required peripheral devices and utilities such as the gas used.
  • the thermal spray gun 30 for performing high-speed flame spraying and the thermal spray gun 30 for performing high-speed frame thermal spraying by suspension can be arranged in the same thermal spray booth 20 to perform thermal spraying. Therefore, according to the method of applying the heat-shielding coating according to some embodiments, the heat-resistant member 1 as an object does not have to be moved to another thermal spraying booth after the bond coat layer 7 is formed. Since it is not necessary to move the heat-resistant member to a different thermal spraying booth, and the setup work such as setting of the heat-resistant member 1 until the start of thermal spraying by high-speed frame spraying by suspension can be significantly reduced, the work when forming the heat-shielding coating 3 Efficiency can be improved and manufacturing costs can be reduced.
  • the topcoat layer 9 includes cracks (vertical cracks Cv) called vertical cracks extending in the thickness direction of the topcoat layer 9 in the layer. Therefore, it was often formed by electron beam physical vapor deposition (EB-PVD).
  • EB-PVD electron beam physical vapor deposition
  • the device for performing electron beam physical vapor deposition is more than 10 times more expensive than the thermal spraying device at the initial cost of the device.
  • the running cost for forming the layer by electron beam physical vapor deposition is as high as about 10 times the running cost for forming the layer by thermal spraying or the like.
  • the layer formation rate by electron beam physical vapor deposition is as low as about a fraction of the layer formation rate by thermal spraying or the like.
  • a top coat layer is formed on the bond coat layer 7 by electron beam physical vapor deposition. It was found that the same performance as the case of forming the above, such as heat insulation and heat cycle durability, can be ensured.
  • the running cost is lower and the time is shorter than the case where the top coat layer 9 is formed on the bond coat layer 7 by electron beam physical vapor deposition. Can form a top coat layer. Further, according to the method of applying the heat shield coating according to some embodiments, the introduction cost of the equipment for forming the top coat layer 9 can be significantly suppressed.
  • the heat-resistant member 1 has a bond coat layer 7 and a top coat layer 9 formed by the method of applying the heat-shielding coating according to some embodiments. As a result, the manufacturing cost of the heat-resistant member 1 can be suppressed.
  • FIG. 4A is a diagram for explaining an outline of an apparatus according to a method for applying a heat shield coating according to an embodiment.
  • FIG. 4B is a diagram for explaining an outline of an apparatus according to a method for applying a heat shield coating according to another embodiment.
  • FIG. 4C is a diagram for explaining an outline of an apparatus according to a method of applying a heat shield coating according to still another embodiment.
  • FIG. 5A is a schematic diagram for explaining the structure of the internally supplied thermal spray gun 30I.
  • FIG. 5B is a schematic diagram for explaining the structure of the externally supplied thermal spray gun 30E.
  • the thermal spray gun 30, the moving device 50 of the thermal spray gun 30, and the dust collecting hood 70 are used for the heat shield coating. 3 is constructed.
  • the drive of the thermal spray control panel and the moving device 50 is controlled, although not shown, in addition to these devices shown in FIGS. 4A to 4C.
  • a control device to be used and a spraying material supply device are also included in the device configuration.
  • a fixing jig 91 may be used to continuously rotate the heat-shielding member 1. If it is necessary to make it, a rotation drive device (not shown) may be used.
  • the moving device 50 is, for example, an industrial robot, but may be a scanning device having a slide axis that can move in a plurality of directions, such as an NC device.
  • the thermal spray gun 30 in the method of applying the heat shield coating according to some embodiments, for example, the thermal spray gun 30, the moving device 50, and the dust collecting hood 70 are inside one thermal spray booth 20. Be placed.
  • the thermal spraying booth 20 forms a space separated from the surroundings for sound insulation and prevention of dust scattering to the surroundings.
  • the thermal spraying booth 20 may be a box-shaped one arranged in the work room, or may be a section in which a part of the work room is divided by a wall or the like, or is a dedicated room provided in the building. There may be.
  • the heat-shielding coating 3 that is, the bond coat layer 7 and the top coat layer 9 are formed in the thermal spraying booth 20.
  • the bond coat layer 7 is moved at high speed while the first thermal spray gun 30A is moved by the moving device 50. It may be formed by flame spraying. Then, in the step of forming the top coat layer 9, the top coat layer is formed while moving the second thermal spray gun 30B different from the first thermal spray gun 30A by the moving device 50 used in the step S10 of forming the bond coat layer 7. You may. That is, in the method of applying the heat shield coating according to the embodiment shown in FIG. 4A, the thermal spray gun 30 (on the moving device 50) used in the step S10 for forming the bond coat layer 7 and the step for forming the top coat layer 9. Replace the thermal spray gun 30) to be attached. Thereby, the step S10 for forming the bond coat layer 7 and the step for forming the top coat layer 9 can be carried out in the same thermal spraying booth 20.
  • the step S10 and the top for forming the bond coat layer 7 are used.
  • the thermal spray gun 30 to be used may be replaced in the step of forming the coat layer 9.
  • the thermal spray gun 30 to be attached to the moving device 50 after the bond coat layer 7 is formed and before the formation of the top coat layer 9 is started is first. If the thermal spraying gun 30A is changed to the second thermal spraying gun 30B, the moving device 50 does not need to be changed, so that the setup work from the formation of the bond coat layer 7 to the start of the formation of the top coat layer 9 can be simplified. ..
  • the bond coat layer 7 is formed into a high-speed frame while the thermal spray gun 30 is moved by the moving device 50. It may be formed by thermal spraying. Then, in the step S20 for forming the top coat layer 9, the spraying gun 30 used in the step S10 for forming the bond coat layer 7 is moved by the moving device 50 used in the step S10 for forming the bond coat layer 7. The coat layer 9 may be formed. That is, in the method of applying the heat shield coating according to another embodiment shown in FIG.
  • the thermal spray gun 30 (moving device) used in the step S10 for forming the bond coat layer 7 and the step S20 for forming the top coat layer 9
  • the step S10 for forming the bond coat layer 7 and the step S20 for forming the top coat layer 9 are carried out with the same thermal spray gun 30 without replacing the thermal spray gun 30) attached to the 50.
  • the bond coat layer 7 is formed. If the supply unit 35 for supplying the thermal spray material TM is changed to the supply unit 35 for supplying the thermal spray material TM of the top coat layer 9, the moving device 50 and the thermal spray gun 30 do not need to be changed. This makes it possible to simplify the setup work from the formation of the bond coat layer 7 to the start of the formation of the top coat layer 9.
  • the thermal spray material is different between the bond coat layer 7 and the top coat layer 9, and there is a difference in the supply form of the thermal spray material, whether it is a powder or a suspension. Therefore, in the method of applying the heat shield coating according to the other embodiment shown in FIG. 4B, the thermal spraying gun 30 is configured to supply the thermal spraying material TM, for example, as shown in FIG. 5B, outside the thermal spraying gun 30. It is preferable to use an externally supplied thermal spray gun 30E. Then, the supply unit 35 for supplying the thermal spray material TM to the combustion flame jet flow CF, which is attached to the outside of the external supply type thermal spray gun 30E, is provided with the step S10 for forming the bond coat layer 7 and the top coat layer 9.
  • the bond coat layer 7 is attached to the externally supplied thermal spray gun 30E. It is advisable to attach a first supply unit 35A for supplying the thermal spray material TM. Further, when the step S20 for forming the top coat layer 9 is carried out, it is preferable to attach a second supply unit 35B for supplying the thermal spray material TM of the top coat layer 9 to the external supply type thermal spray gun 30E. Thereby, the step S10 for forming the bond coat layer 7 and the step for forming the top coat layer 9 can be carried out in the same thermal spraying booth 20.
  • the first supply unit 35A and the second supply unit 35B are connected to a supply device (not shown) for supplying the thermal spray material TM to the first supply unit 35A and the second supply unit 35B, respectively.
  • the first supply unit 35A is provided with the second supply unit. If it is changed to 35B, the moving device 50 and the spraying gun 30 do not need to be changed, so that the setup work from forming the bond coat layer 7 to starting the formation of the top coat layer 9 can be simplified.
  • the bond coat is performed while the first thermal spray gun 30A is moved by the first moving device 50A.
  • the layer 7 may be formed by high speed flame spraying.
  • the step S20 for forming the top coat layer 9 is formed while moving the second spraying gun 30B different from the first spraying gun 30A by the second moving device 50B different from the first moving device 50A. You may.
  • the thermal spray gun 30 and the moving device 50 used in the step S10 for forming the bond coat layer 7 and the step for forming the top coat layer 9 are used. Take turns. Thereby, the step S10 for forming the bond coat layer 7 and the step for forming the top coat layer 9 can be carried out in the same thermal spraying booth 20.
  • a first moving device 50A and a first thermal spraying gun 30A are used as a device for forming the bond coat layer 7, and a top coat is used.
  • the second moving device 50B and the second thermal spraying gun 30B as a device for forming the layer 9, in the setup work after forming the bond coat layer 7 until the formation of the top coat layer 9 is started.
  • the replacement work of the thermal spray gun 30 and the replacement work of the supply unit 35 can be omitted.
  • the present disclosure is not limited to the above-mentioned embodiment, and includes a form in which the above-mentioned embodiment is modified and a form in which these forms are appropriately combined.
  • the contents described in each of the above embodiments are grasped as follows, for example.
  • (1) The method of applying the heat-shielding coating according to at least one embodiment of the present disclosure is arranged in the thermal spraying booth 20 on the heat-resistant alloy base material 5 of the object (heat-resistant member 1) arranged in the thermal spraying booth 20.
  • a step (S10) of forming the bond coat layer 7 by high-speed flame spraying is provided by the thermal spraying gun 30.
  • the method of applying the heat shield coating according to at least one embodiment of the present disclosure is arranged in the thermal spraying booth 20 on the bond coat layer 7 of the object (heat resistant member 1) arranged in the thermal spraying booth 20.
  • the step (S20) of forming the top coat layer 9 by spraying a suspension containing ceramic powder by thermal spraying with a high-speed flame spraying is provided.
  • the method (1) above it is not necessary to move the object (heat-resistant member 1) to another thermal spraying booth after the bond coat layer 7 is formed, so that the object to be sprayed (heat-resistant member 1) is sprayed differently. Since it is not necessary to move it to the booth and the setup work such as setting of the object (heat resistant member 1) until the start of thermal spraying by high-speed frame spraying by suspension can be significantly reduced, the heat shield coating 3 is formed. Work efficiency can be improved and manufacturing costs can be reduced. Further, according to the method (1) above, the top coat layer 9 has a lower running cost and a shorter time than the case where the top coat layer 9 is formed on the bond coat layer 7 by electron beam physical vapor deposition. Can be formed. Further, according to the method (1) above, the introduction cost of the equipment for forming the top coat layer 9 can be significantly suppressed.
  • the first spraying gun 30A is moved by the first moving device 50A.
  • the bond coat layer 7 may be formed by high-speed flame spraying.
  • the top coat layer 9 is moved by the second thermal spraying device 50B different from the first moving device 50A while the second thermal spraying gun 30B different from the first thermal spraying gun 30A is moved. May be formed.
  • the first moving device 50A and the first thermal spray gun 30A are used as the device for forming the bond coat layer 7, and the first device for forming the top coat layer 9 is the first.
  • the replacement work of the thermal spray gun 30 and the supply unit 35 Replacement work etc. can be omitted.
  • the bond coat is performed while the first spray gun 30A is moved by the moving device 50.
  • the layer 7 may be formed by high speed flame spraying.
  • the top coat layer 9 may be formed while the second spraying gun 30B, which is different from the first spraying gun 30A, is moved by the moving device 50.
  • the spraying gun 30 to be mounted on the moving device 50 is mounted on the first spraying gun 30A to the second spraying gun 30B. If it is changed to, the moving device 50 does not need to be changed, so that the setup work from the formation of the bond coat layer 7 to the start of the formation of the top coat layer 9 can be simplified.
  • the bond coat layer 7 is moved while the spray gun 30 is moved by the moving device 50. May be formed by high speed flame spraying. Then, in the step (S20) of forming the top coat layer 9, the top coat layer 9 may be formed while the thermal spray gun 30 is moved by the moving device 50.
  • the supply unit 35 for supplying the thermal spray material TM of the bond coat layer 7 is top coated. If the supply unit 35 for supplying the thermal spray material TM of the layer 9 is changed, the moving device 50 and the thermal spray gun 30 do not need to be changed, so that the formation of the top coat layer 9 is started after the bond coat layer 7 is formed.
  • the setup work up to the point can be simplified.
  • the step of forming the bond coat layer 7 by high-speed flame spraying (S10) and the step of forming the top coat layer 9 (S20) are sprayed. It is advisable to change the supply unit 35 of the thermal spray material TM to be sprayed by the gun 30.
  • the supply unit (first supply unit 35A) of the thermal spray material TM for forming the bond coat layer 7 is formed. If is changed to the supply unit (second supply unit 35B) of the thermal spraying material TM for forming the top coat layer 9, the moving device 50 and the thermal spray gun 30 do not need to be changed, so that the top is formed after the bond coat layer 7 is formed.
  • the setup work until the formation of the coat layer 9 is started can be simplified.
  • the heat-resistant member 1 includes a bond coat layer 7 and a top coat layer 9 formed by the method of applying a heat-shielding coating by any of the above methods (1) to (5). And have.
  • the manufacturing cost of the heat-resistant member 1 can be suppressed.
  • TBC Thermal barrier coating
  • base material base material
  • Metal bond layer bond coat layer
  • Top coat layer 20
  • Thermal spray booth 30 Thermal spray gun 35 Supply unit 50 Moving device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Robotics (AREA)
  • Combustion & Propulsion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本開示の少なくとも一実施形態に係る遮熱コーティングの施工方法は、溶射ブース内に配置された対象物の耐熱合金基材上に該溶射ブース内に配置された溶射ガンによって、ボンドコート層を高速フレーム溶射によって形成する工程と、該溶射ブース内に配置された対象物のボンドコート層上に該溶射ブース内に配置された溶射ガンによって、セラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することでトップコート層を形成する工程と、を備える。

Description

遮熱コーティングの施工方法及び耐熱部材
 本開示は、遮熱コーティングの施工方法及び耐熱部材に関する。本願は、2020年12月28日に日本国特許庁に出願された特願2020-218460号に基づき優先権を主張し、その内容をここに援用する。
 航空機エンジンにおける燃焼器パネルやタービン翼、産業用ガスタービンにおけるタービン翼や分割環等のように、高温の燃焼ガスに曝される耐熱部材には、遮熱コーティング(Thermal Barrier Coating,TBC)を設けることが知られている。このような遮熱コーティングでは、耐熱合金基材上に形成されるボンドコート層と、ボンドコート層上に形成される遮熱層としてのトップコート層とを含んでいる(例えば特許文献1参照)。
特開2011-117012号公報
 例えばボンドコート層では、耐熱合金基材との密着力が大きいことが望まれている。そのため、ボンドコート層の原料粉末を超音速度で耐熱合金基材に衝突させることで比較的大きい密着力が得られる高速フレーム溶射によってボンドコート層を形成したいというニーズがある。
 また、トップコート層は、ボンドコート層とは求められる性質や材料が異なるため、ボンドコート層を形成する溶射方法とは異なる溶射方法でセラミック層を形成したいというニーズがある。
 このように、ボンドコート層とトップコート層とで異なる溶射方法によってそれぞれを形成する場合、装置構成の違いや、使用するガス等のような必要とされる周辺装置やユーティリティの違いにより、同一の溶射ブースで溶射を行うことが困難である。そのため、溶射の対象物を異なる溶射ブースに移動させる手間や、対象物を移動させた後の溶射開始までの対象物のセッティング等の段取り作業が必要である。
 本開示の少なくとも一実施形態は、上述の事情に鑑みて、遮熱コーティングを形成する際の作業効率向上を目的とする。
(1)本開示の少なくとも一実施形態に係る遮熱コーティングの施工方法は、
 溶射ブース内に配置された対象物の耐熱合金基材上に該溶射ブース内に配置された溶射ガンによって、ボンドコート層を高速フレーム溶射によって形成する工程と、
 該溶射ブース内に配置された前記対象物の前記ボンドコート層上に該溶射ブース内に配置された溶射ガンによって、セラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することでトップコート層を形成する工程と、
を備える。
(2)本開示の少なくとも一実施形態に係る耐熱部材は、上記(1)の方法による遮熱コーティングの施工方法によって形成された前記ボンドコート層と前記トップコート層とを有する。
 本開示の少なくとも一実施形態によれば、遮熱コーティングを形成する際の作業効率を向上できる。
幾つかの実施形態に係る遮熱コーティングの施工方法によって施工された遮熱コーティングを備える耐熱部材の断面の模式図である。 耐熱部材の一例としての航空機エンジン向けの燃焼器パネルの外観を表す図である。 幾つかの実施形態に係る遮熱コーティングの施工方法の手順を示すフローチャートである。 一実施形態に係る遮熱コーティングの施工方法に係る装置の概略を説明するための図である。 他の実施形態に係る遮熱コーティングの施工方法に係る装置の概略を説明するための図である。 さらに他の実施形態に係る遮熱コーティングの施工方法に係る装置の概略を説明するための図である。 内部供給式の溶射ガンの構造を説明するための模式的な図である。 外部供給式の溶射ガンの構造を説明するための模式的な図である。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
(遮熱コーティング3について)
 図1は、幾つかの実施形態に係る遮熱コーティングの施工方法によって施工された遮熱コーティング3を備える耐熱部材1の断面の模式図である。
 図2は、耐熱部材1の一例としての航空機エンジン向けの燃焼器パネル1Aの外観を表す図である。
 航空機エンジン向けの燃焼器パネル1Aやタービン翼、産業用ガスタービン向けのタービン翼や分割環等の耐熱部材1には、耐熱部材1の遮熱のための遮熱コーティング(Thermal Barrier Coating : TBC)3が形成されている。
 幾つかの実施形態に係る耐熱部材1の耐熱合金基材(母材)5上には、金属結合層(ボンドコート層)7と、遮熱層としてのトップコート層9が順に形成される。即ち、幾つかの実施形態では、遮熱コーティング3は、ボンドコート層7と、トップコート層9を含んでいる。
 幾つかの実施形態に係るボンドコート層7は、MCrAlY合金(Mは、Ni,Co,Fe等の金属元素またはこれらのうち2種類以上の組合せを示す)などで構成される。
 幾つかの実施形態に係るトップコート層9は、ZrO系の材料、例えば、Yで部分安定化または完全安定化したZrOであるYSZ(イットリア安定化ジルコニア)で構成されているとよい。また、幾つかの実施形態に係るトップコート層9は、DySZ(ジスプロシア安定化ジルコニア)、ErSZ(エルビア安定化ジルコニア)、GdZr、又は、GdHfの何れかで構成されていてもよい。
 これにより、遮熱性に優れた遮熱コーティング3が得られる。
 幾つかの実施形態に係るトップコート層9では、トップコート層9の厚さ方向に延在する縦割れCvが面方向、すなわち図1における図示左右方向及び紙面奥行き方向に分散している。また、幾つかの実施形態に係るトップコート層9では、面方向に延在する横割れChが分散している。
 幾つかの実施形態に係る遮熱コーティング3では、トップコート層9における複数の縦割れCvを有する構造により、耐熱合金基材5との線膨張係数の違いによる熱応力の発生を緩和できるので、熱サイクル耐久性に優れる。
(フローチャート)
 図3は、幾つかの実施形態に係る遮熱コーティングの施工方法の手順を示すフローチャートである。幾つかの実施形態に係る遮熱コーティングの施工方法は、ボンドコート層7を形成する工程S10と、トップコート層9を形成する工程S20とを含んでいる。
 幾つかの実施形態において、ボンドコート層7を形成する工程S10は、後述する溶射ブース20内に配置された対象物(耐熱部材1)の耐熱合金基材5上に該溶射ブース20内に配置された後述する溶射ガン30によって、ボンドコート層7を高速フレーム溶射によって形成する工程である。
 すなわち、幾つかの実施形態において、ボンドコート層7を形成する工程S10では、溶射材としてのMCrAlY合金等の粉末を高速フレーム溶射によって耐熱合金基材5の表面に溶射する。
 幾つかの実施形態において、トップコート層9を形成する工程S20は、ボンドコート層7を形成する工程S10を実施した溶射ブース20内に配置された上記対象物(耐熱部材1)のボンドコート層7上に該溶射ブース20内に配置された溶射ガン30によって、セラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することでトップコート層9を形成する工程である。
 すなわち、幾つかの実施形態において、トップコート層9を形成する工程S20で実施する溶射は、懸濁液による高速フレーム溶射(S-HVOF)である。幾つかの実施形態において、トップコート層9を形成する工程S20では、溶射材としてのセラミックス粉末を溶媒に分散した懸濁液を高速フレーム溶射によってボンドコート層7の表面に溶射する。懸濁液による高速フレーム溶射では、懸濁液として供給された溶射材TMは、燃焼炎ジェット流CFによって溶射対象物の表面に吹き付けられる(後述する図5A、図5B参照)。
 高速フレーム溶射(HVOF)と懸濁液による高速フレーム溶射(S-HVOF)とでは、溶射に用いる原料(溶射材)の供給形態が粉体のままであるか溶媒に分散させた懸濁液であるかの違いがあるが、共に高速フレーム溶射装置を用いた溶射方法である。そのため、高速フレーム溶射と懸濁液による高速フレーム溶射とでは、溶射ガン30等の装置構成の違いがあるものの、使用するガス等のような必要とされる周辺装置やユーティリティの違いはほとんどない。そのため、高速フレーム溶射を行うため溶射ガン30と懸濁液による高速フレーム溶射を行うための溶射ガン30とを同一の溶射ブース20内に配置して、それぞれ溶射を行うことができる。
 したがって、幾つかの実施形態に係る遮熱コーティングの施工方法によれば、ボンドコート層7の形成後に対象物としての耐熱部材1を他の溶射ブースに移動させなくてもよいので、耐熱部材1を異なる溶射ブースに移動させる手間が不要となり、懸濁液による高速フレーム溶射による溶射開始までの耐熱部材1のセッティング等の段取り作業が大幅に削減できるので、遮熱コーティング3を形成する際の作業効率が向上し、製造コストを削減できる。
 なお、従来、トップコート層9は、熱サイクル耐久性を確保するため、トップコート層9の厚さ方向に延在する縦割れと称される亀裂(縦割れCv)を層内に含むようにするため、電子ビーム物理蒸着(EB-PVD)によって形成されることが多かった。しかし、電子ビーム物理蒸着を行うための装置は、装置のイニシャルコストが溶射装置等と比べて10倍以上高価である。また、電子ビーム物理蒸着による層の形成のためのランニングコストは、溶射等による層の形成のためのランニングコストの10倍程度と高価である。さらに、電子ビーム物理蒸着による層の形成速度は、溶射等による層の形成速度の数分の1程度と低い。
 発明者らが鋭意検討した結果、セラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することでトップコート層を形成するようにすれば、電子ビーム物理蒸着によってボンドコート層7上にトップコート層を形成した場合と同等の遮熱性や熱サイクル耐久性等の性能を確保できることが判明した。
 幾つかの実施形態に係る遮熱コーティングの施工方法によれば、電子ビーム物理蒸着によってボンドコート層7上にトップコート層9を形成した場合と比べて、低いランニングコストで、且つ、より短時間でトップコート層を形成できる。また、幾つかの実施形態に係る遮熱コーティングの施工方法によれば、トップコート層9を形成するための設備の導入コストも大幅に抑制できる。
 また、幾つかの実施形態に係る耐熱部材1は、幾つかの実施形態に係る遮熱コーティングの施工方法によって形成されたボンドコート層7とトップコート層9とを有する。
 これにより、耐熱部材1の製造コストを抑制できる。
 図4Aは、一実施形態に係る遮熱コーティングの施工方法に係る装置の概略を説明するための図である。
 図4Bは、他の実施形態に係る遮熱コーティングの施工方法に係る装置の概略を説明するための図である。
 図4Cは、さらに他の実施形態に係る遮熱コーティングの施工方法に係る装置の概略を説明するための図である。
 図5Aは、内部供給式の溶射ガン30Iの構造を説明するための模式的な図である。
 図5Bは、外部供給式の溶射ガン30Eの構造を説明するための模式的な図である。
 図4A乃至図4Cに示すように、幾つかの実施形態に係る遮熱コーティングの施工方法では、溶射ガン30と、溶射ガン30の移動装置50と、集塵フード70とを用いて遮熱コーティング3を施工する。なお、幾つかの実施形態に係る遮熱コーティングの施工方法では、図4A乃至図4Cに示したこれらの装置以外にも、図示はしていないが、溶射制御盤、移動装置50の駆動を制御する制御装置や、溶射材の供給装置なども装置構成中に含まれる。
 遮熱コーティング3の施工に際し、遮熱コーティング3の施工の対象物である耐熱部材1を固定する必要がある場合には、固定治具91を用いてもよく、耐熱部材1を連続的に回転させる必要がある場合には、不図示の回転駆動装置を用いてもよい。
 幾つかの実施形態に係る移動装置50は、例えば産業用ロボットであるが、例えばNC装置のように複数の方向に移動可能なスライド軸を有する走査装置であってもよい。
 図4A乃至図4Cに示すように、幾つかの実施形態に係る遮熱コーティングの施工方法では、例えば、溶射ガン30、移動装置50、及び集塵フード70は、1つの溶射ブース20の内部に配置される。溶射ブース20は、遮音のためや粉塵の周囲への飛散防止のために周囲とは仕切られた空間を形成するものである。例えば溶射ブース20は、作業室内に配置された箱状のものであってもよく、作業室の一部を壁等で区切った一区画であってもよく、建屋内に設けた専用の部屋であってもよい。
 遮熱コーティング3の施工の対象物である耐熱部材1は、この溶射ブース20内で遮熱コーティング3、すなわち、ボンドコート層7とトップコート層9とが形成される。
 図4Aに示すように、一実施形態に係る遮熱コーティングの施工方法において、ボンドコート層7を形成する工程S10では、移動装置50で第1溶射ガン30Aを移動させながらボンドコート層7を高速フレーム溶射によって形成してもよい。そして、トップコート層9を形成する工程では、ボンドコート層7を形成する工程S10で使用した移動装置50で第1溶射ガン30Aとは異なる第2溶射ガン30Bを移動させながらトップコート層を形成してもよい。
 すなわち、図4Aに示す一実施形態に係る遮熱コーティングの施工方法では、ボンドコート層7を形成する工程S10とトップコート層9を形成する工程とで、使用する溶射ガン30(移動装置50に取り付ける溶射ガン30)を交換する。これにより、ボンドコート層7を形成する工程S10とトップコート層9を形成する工程とを同一の溶射ブース20内で実施できる。
 例えば、図5Aに示すような、溶射材TMを溶射ガン30の内部に供給するように構成された内部供給式の溶射ガン30Iを用いる場合には、ボンドコート層7を形成する工程S10とトップコート層9を形成する工程とで、使用する溶射ガン30を交換すればよい。
 図4Aに示す一実施形態に係る遮熱コーティングの施工方法によれば、ボンドコート層7を形成後、トップコート層9の形成を開始する前に移動装置50に装着する溶射ガン30を第1溶射ガン30Aから第2溶射ガン30Bに変更すれば、移動装置50は変更しなくてもよいので、ボンドコート層7を形成後にトップコート層9の形成を開始するまでの段取り作業を簡素化できる。
 図4Bに示すように、他の実施形態に係る遮熱コーティングの施工方法において、ボンドコート層7を形成する工程S10では、移動装置50で溶射ガン30を移動させながらボンドコート層7を高速フレーム溶射によって形成してもよい。そして、トップコート層9を形成する工程S20では、ボンドコート層7を形成する工程S10で使用した移動装置50によって、ボンドコート層7を形成する工程S10で使用した溶射ガン30を移動させながらトップコート層9を形成してもよい。
 すなわち、図4Bに示す他の実施形態に係る遮熱コーティングの施工方法では、ボンドコート層7を形成する工程S10とトップコート層9を形成する工程S20とで、使用する溶射ガン30(移動装置50に取り付ける溶射ガン30)を交換せず、同一の溶射ガン30でボンドコート層7を形成する工程S10とトップコート層9を形成する工程S20とを実施する。
 図4Bに示す他の実施形態に係る遮熱コーティングの施工方法よれば、ボンドコート層7を形成後、トップコート層9の形成を開始する前に、後述するように、例えばボンドコート層7の溶射材TMを供給するための供給部35をトップコート層9の溶射材TMを供給するための供給部35に変更すれば、移動装置50及び溶射ガン30は変更しなくてもよい。これにより、ボンドコート層7を形成後にトップコート層9の形成を開始するまでの段取り作業を簡素化できる。
 なお、ボンドコート層7とトップコート層9とでは溶射材が異なる他、溶射材の供給形態が、粉末のままであるか、懸濁液であるのかの違いがある。そのため、図4Bに示す他の実施形態に係る遮熱コーティングの施工方法では、溶射ガン30として、例えば、図5Bに示すような、溶射材TMを溶射ガン30の外部で供給するように構成された外部供給式の溶射ガン30Eを用いるとよい。そして、外部供給式の溶射ガン30Eの外部に取り付けられた、溶射材TMを燃焼炎ジェット流CFに供給するための供給部35を、ボンドコート層7を形成する工程S10とトップコート層9を形成する工程とで交換するとよい。すなわち、図4Bに示す他の実施形態に係る遮熱コーティングの施工方法では、ボンドコート層7を形成する工程S10と、トップコート層9を形成する工程S20とでは、溶射ガン30で溶射する溶射材TMの供給部35を変更するとよい。
 具体的には、図4Bに示す他の実施形態に係る遮熱コーティングの施工方法では、ボンドコート層7を形成する工程S10を実施する場合、外部供給式の溶射ガン30Eにボンドコート層7の溶射材TMを供給するための第1供給部35Aを取り付けるとよい。また、トップコート層9を形成する工程S20を実施する場合、外部供給式の溶射ガン30Eにトップコート層9の溶射材TMを供給するための第2供給部35Bを取り付けるとよい。
 これにより、ボンドコート層7を形成する工程S10とトップコート層9を形成する工程とを同一の溶射ブース20内で実施できる。
 なお、第1供給部35A及び第2供給部35Bは、それぞれ溶射材TMを第1供給部35A及び第2供給部35Bに供給するための不図示の供給装置に接続されている。
 図4Bに示す他の実施形態に係る遮熱コーティングの施工方法によれば、ボンドコート層7を形成後、トップコート層9の形成を開始する前に、第1供給部35Aを第2供給部35Bに変更すれば、移動装置50及び溶射ガン30は変更しなくてもよいので、ボンドコート層7を形成後にトップコート層9の形成を開始するまでの段取り作業を簡素化できる。
 図4Cに示すように、さらに他の実施形態に係る遮熱コーティングの施工方法において、ボンドコート層7を形成する工程S10では、第1移動装置50Aで第1溶射ガン30Aを移動させながらボンドコート層7を高速フレーム溶射によって形成してもよい。そして、トップコート層9を形成する工程S20では、第1移動装置50Aとは異なる第2移動装置50Bで第1溶射ガン30Aとは異なる第2溶射ガン30Bを移動させながらトップコート層9を形成してもよい。
 図4Cに示すさらに他の実施形態に係る遮熱コーティングの施工方法では、ボンドコート層7を形成する工程S10とトップコート層9を形成する工程とで、使用する溶射ガン30及び移動装置50を交代する。これにより、ボンドコート層7を形成する工程S10とトップコート層9を形成する工程とを同一の溶射ブース20内で実施できる。
 図4Cに示すさらに他の実施形態に係る遮熱コーティングの施工方法によれば、ボンドコート層7を形成するための装置として、第1移動装置50Aと第1溶射ガン30Aとを用い、トップコート層9を形成するための装置として、第2移動装置50Bと第2溶射ガン30Bとを用いることで、ボンドコート層7を形成後、トップコート層9の形成を開始するまでの段取り作業において、溶射ガン30の交換作業や供給部35の交換作業等を省略できる。
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の少なくとも一実施形態に係る遮熱コーティングの施工方法は、溶射ブース20内に配置された対象物(耐熱部材1)の耐熱合金基材5上に該溶射ブース20内に配置された溶射ガン30によって、ボンドコート層7を高速フレーム溶射によって形成する工程(S10)を備える。本開示の少なくとも一実施形態に係る遮熱コーティングの施工方法は、該溶射ブース20内に配置された上記対象物(耐熱部材1)のボンドコート層7上に該溶射ブース20内に配置された溶射ガン30によって、セラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することでトップコート層9を形成する工程(S20)を備える。
 上記(1)の方法によれば、ボンドコート層7の形成後に対象物(耐熱部材1)を他の溶射ブースに移動させなくてもよいので、溶射の対象物(耐熱部材1)を異なる溶射ブースに移動させる手間が不要となり、懸濁液による高速フレーム溶射による溶射開始までの対象物(耐熱部材1)のセッティング等の段取り作業が大幅に削減できるので、遮熱コーティング3を形成する際の作業効率が向上し、製造コストを削減できる。
 また、上記(1)の方法によれば、電子ビーム物理蒸着によってボンドコート層7上にトップコート層9を形成した場合と比べて、低いランニングコストで、且つ、より短時間でトップコート層9を形成できる。また、上記(1)の方法によれば、トップコート層9を形成するための設備の導入コストも大幅に抑制できる。
(2)幾つかの実施形態では、上記(1)の方法において、ボンドコート層7を高速フレーム溶射によって形成する工程(S10)では、第1移動装置50Aで第1溶射ガン30Aを移動させながらボンドコート層7を高速フレーム溶射によって形成してもよい。そして、トップコート層9を形成する工程(S20)では、第1移動装置50Aとは異なる第2移動装置50Bで第1溶射ガン30Aとは異なる第2溶射ガン30Bを移動させながらトップコート層9を形成してもよい。
 上記(2)の方法によれば、ボンドコート層7を形成するための装置として、第1移動装置50Aと第1溶射ガン30Aとを用い、トップコート層9を形成するための装置として、第2移動装置50Bと第2溶射ガン30Bとを用いることで、ボンドコート層7を形成後、トップコート層9の形成を開始するまでの段取り作業において、溶射ガン30の交換作業や供給部35の交換作業等を省略できる。
(3)幾つかの実施形態では、上記(1)の方法において、ボンドコート層7を高速フレーム溶射によって形成する工程(S10)では、移動装置50で第1溶射ガン30Aを移動させながらボンドコート層7を高速フレーム溶射によって形成してもよい。そして、トップコート層9を形成する工程(S20)では、該移動装置50で第1溶射ガン30Aとは異なる第2溶射ガン30Bを移動させながらトップコート層9を形成してもよい。
 上記(3)の方法によれば、ボンドコート層7を形成後、トップコート層9の形成を開始する前に移動装置50に装着する溶射ガン30を第1溶射ガン30Aから第2溶射ガン30Bに変更すれば、移動装置50は変更しなくてもよいので、ボンドコート層7を形成後にトップコート層9の形成を開始するまでの段取り作業を簡素化できる。
(4)幾つかの実施形態では、上記(1)の方法において、ボンドコート層7を高速フレーム溶射によって形成する工程(S10)では、移動装置50で溶射ガン30を移動させながらボンドコート層7を高速フレーム溶射によって形成してもよい。そして、トップコート層9を形成する工程(S20)では、該移動装置50で該溶射ガン30を移動させながらトップコート層9を形成してもよい。
 上記(4)の方法によれば、ボンドコート層7を形成後、トップコート層9の形成を開始する前に、例えばボンドコート層7の溶射材TMを供給するための供給部35をトップコート層9の溶射材TMを供給するための供給部35に変更すれば、移動装置50及び溶射ガン30は変更しなくてもよいので、ボンドコート層7を形成後にトップコート層9の形成を開始するまでの段取り作業を簡素化できる。
(5)幾つかの実施形態では、上記(4)の方法において、ボンドコート層7を高速フレーム溶射によって形成する工程(S10)と、トップコート層9を形成する工程(S20)とでは、溶射ガン30で溶射する溶射材TMの供給部35を変更するとよい。
 上記(5)の方法によれば、ボンドコート層7を形成後、トップコート層9の形成を開始する前に、ボンドコート層7形成用の溶射材TMの供給部(第1供給部35A)をトップコート層9形成用の溶射材TMの供給部(第2供給部35B)に変更すれば、移動装置50及び溶射ガン30は変更しなくてもよいので、ボンドコート層7を形成後にトップコート層9の形成を開始するまでの段取り作業を簡素化できる。
(6)本開示の少なくとも一実施形態に係る耐熱部材1は、上記(1)乃至(5)の何れかの方法による遮熱コーティングの施工方法によって形成されたボンドコート層7とトップコート層9とを有する。
 上記(6)の構成によれば、耐熱部材1の製造コストを抑制できる。
1 耐熱部材
3 遮熱コーティング(Thermal Barrier Coating : TBC)
5 耐熱合金基材(母材)
7 金属結合層(ボンドコート層)
9 トップコート層
20 溶射ブース
30 溶射ガン
35 供給部
50 移動装置

Claims (6)

  1.  溶射ブース内に配置された対象物の耐熱合金基材上に該溶射ブース内に配置された溶射ガンによって、ボンドコート層を高速フレーム溶射によって形成する工程と、
     該溶射ブース内に配置された前記対象物の前記ボンドコート層上に該溶射ブース内に配置された溶射ガンによって、セラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することでトップコート層を形成する工程と、
    を備える
    遮熱コーティングの施工方法。
  2.  ボンドコート層を高速フレーム溶射によって形成する工程では、第1移動装置で第1溶射ガンを移動させながら前記ボンドコート層を高速フレーム溶射によって形成し、
     トップコート層をセラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することで形成する工程では、前記第1移動装置とは異なる第2移動装置で前記第1溶射ガンとは異なる第2溶射ガンを移動させながら前記トップコート層を形成する
    請求項1に記載の遮熱コーティングの施工方法。
  3.  ボンドコート層を高速フレーム溶射によって形成する工程では、移動装置で第1溶射ガンを移動させながら前記ボンドコート層を高速フレーム溶射によって形成し、
     トップコート層をセラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することで形成する工程では、該移動装置で前記第1溶射ガンとは異なる第2溶射ガンを移動させながら前記トップコート層を形成する
    請求項1に記載の遮熱コーティングの施工方法。
  4.  ボンドコート層を高速フレーム溶射によって形成する工程では、移動装置で溶射ガンを移動させながら前記ボンドコート層を高速フレーム溶射によって形成し、
     トップコート層をセラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することで形成する工程では、該移動装置で該溶射ガンを移動させながら前記トップコート層を形成する
    請求項1に記載の遮熱コーティングの施工方法。
  5.  ボンドコート層を高速フレーム溶射によって形成する工程と、トップコート層をセラミックス粉末を含む懸濁液を高速フレーム溶射によって溶射することで形成する工程とでは、前記溶射ガンで溶射する溶射材の供給部を変更する
    請求項4に記載の遮熱コーティングの施工方法。
  6.  請求項1乃至5の何れか一項に記載の遮熱コーティングの施工方法によって形成された前記ボンドコート層と前記トップコート層とを有する耐熱部材。
PCT/JP2021/047784 2020-12-28 2021-12-23 遮熱コーティングの施工方法及び耐熱部材 WO2022145328A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/031,529 US20230374644A1 (en) 2020-12-28 2021-12-23 Method for applying thermal barrier coating and heat-resistant member
CN202180072964.5A CN116457492A (zh) 2020-12-28 2021-12-23 热障涂层的施工方法以及耐热部件
EP21915188.3A EP4215640A4 (en) 2021-12-23 Method for applying heat-shield coating, and heat-resistant member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-218460 2020-12-28
JP2020218460A JP2022103682A (ja) 2020-12-28 2020-12-28 遮熱コーティングの施工方法及び耐熱部材

Publications (1)

Publication Number Publication Date
WO2022145328A1 true WO2022145328A1 (ja) 2022-07-07

Family

ID=82260719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047784 WO2022145328A1 (ja) 2020-12-28 2021-12-23 遮熱コーティングの施工方法及び耐熱部材

Country Status (4)

Country Link
US (1) US20230374644A1 (ja)
JP (1) JP2022103682A (ja)
CN (1) CN116457492A (ja)
WO (1) WO2022145328A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117012A (ja) 2009-11-30 2011-06-16 Mitsubishi Heavy Ind Ltd 遮熱コーティングの施工方法、耐熱部材及びガスタービン
US20130224453A1 (en) * 2012-02-29 2013-08-29 United Technologies Corporation Spallation-Resistant Thermal Barrier Coating
US20160083829A1 (en) * 2014-09-23 2016-03-24 General Electric Company Coating process
US20180371600A1 (en) * 2017-06-26 2018-12-27 Rolls-Royce Corporation High density bond coat for ceramic or ceramic matrix composites
WO2019081870A1 (fr) * 2017-10-26 2019-05-02 Safran Piece comportant un revetement de protection a composition graduelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117012A (ja) 2009-11-30 2011-06-16 Mitsubishi Heavy Ind Ltd 遮熱コーティングの施工方法、耐熱部材及びガスタービン
US20130224453A1 (en) * 2012-02-29 2013-08-29 United Technologies Corporation Spallation-Resistant Thermal Barrier Coating
US20160083829A1 (en) * 2014-09-23 2016-03-24 General Electric Company Coating process
US20180371600A1 (en) * 2017-06-26 2018-12-27 Rolls-Royce Corporation High density bond coat for ceramic or ceramic matrix composites
WO2019081870A1 (fr) * 2017-10-26 2019-05-02 Safran Piece comportant un revetement de protection a composition graduelle

Also Published As

Publication number Publication date
EP4215640A1 (en) 2023-07-26
JP2022103682A (ja) 2022-07-08
CN116457492A (zh) 2023-07-18
US20230374644A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
US7833586B2 (en) Alumina-based protective coatings for thermal barrier coatings
JP5357494B2 (ja) 空気冷却ガスタービン構成要素及びその製造並びに補修方法
Vaßen et al. Recent activities in the field of thermal barrier coatings including burner rig testing in the European Union
JP2016089831A (ja) 遮熱システムおよび遮熱システムを構成要素に塗布する方法
CN102534460A (zh) 用于制造热障涂层结构的方法
US20080044663A1 (en) Dual layer ceramic coating
EP2312012A1 (en) Method for producing a crack-free abradable coating with enhanced adhesion
Lima Porous APS YSZ TBC manufactured at high powder feed rate (100 g/min) and deposition efficiency (70%): microstructure, bond strength and thermal gradients
WO2022145328A1 (ja) 遮熱コーティングの施工方法及び耐熱部材
US20110086177A1 (en) Thermal spray method for producing vertically segmented thermal barrier coatings
WO2022145324A1 (ja) 遮熱コーティングの施工方法及び耐熱部材
US20050129868A1 (en) Repair of zirconia-based thermal barrier coatings
EP3453778A1 (en) Segmented ceramic coatings and methods
Chen et al. Segmented thermal barrier coatings for ID and OD components using the SinplexPro plasma torch
Barnwal et al. Thermal barrier coating system and different processes to apply them-a review
CN105171149A (zh) 一种防钛火涂层的高能微弧火花数控化沉积方法
WO2023199725A1 (ja) 遮熱コーティングの施工方法及び耐熱部材
WO2022145326A1 (ja) 遮熱コーティングの施工方法及び耐熱部材
WO2023176577A1 (ja) 遮熱コーティングの施工方法及び耐熱部材
US11613805B2 (en) Systems and methods for optimal source material deposition along hole edges
EP2942421B1 (en) Method and system for controlling coating in non-line-of-sight locations
US20230398635A1 (en) Slotted coatings and methods of forming the same
Scheibel et al. Gas turbine low conductivity thermal barrier coating validation and demonstration
Viswanathan An Integrated Assessment of Processing, Microstructure, Properties and Performance in Plasma Sprayed Thermal Barrier Coatings
Ostergren et al. TBC Systems in Space Nozzles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180072964.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021915188

Country of ref document: EP

Effective date: 20230421

NENP Non-entry into the national phase

Ref country code: DE