WO2022145034A1 - ニッケル水素二次電池 - Google Patents

ニッケル水素二次電池 Download PDF

Info

Publication number
WO2022145034A1
WO2022145034A1 PCT/JP2020/049285 JP2020049285W WO2022145034A1 WO 2022145034 A1 WO2022145034 A1 WO 2022145034A1 JP 2020049285 W JP2020049285 W JP 2020049285W WO 2022145034 A1 WO2022145034 A1 WO 2022145034A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
separator
negative electrode
positive electrode
metal hydride
Prior art date
Application number
PCT/JP2020/049285
Other languages
English (en)
French (fr)
Inventor
クーシャン ヤン
泰平 大内
浩 福永
伸二 椎▲崎▼
Original Assignee
カワサキモータース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カワサキモータース株式会社 filed Critical カワサキモータース株式会社
Priority to PCT/JP2020/049285 priority Critical patent/WO2022145034A1/ja
Publication of WO2022145034A1 publication Critical patent/WO2022145034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material

Definitions

  • the present invention relates to a nickel-metal hydride secondary battery, and more particularly to a nickel-metal hydride secondary battery provided with a separator that contributes to weight reduction of the battery.
  • Nickel-metal hydride secondary batteries have excellent charge / discharge characteristics and overcharge / discharge characteristics, and can be used repeatedly with a long life, so they are widely used in electronic devices that are significantly smaller and lighter (see, for example, Patent Document 1).
  • a separator for a nickel-metal hydride secondary battery a polyolefin-based non-woven fabric having a large fiber diameter, such as polyethylene or polypropylene, which is produced by graft polymerization and has a high grain weight has been conventionally used.
  • the separator itself is heavy and absorbs a large amount of electrolytic solution between the fibers, so that the amount of electrolytic solution required as a battery also increases. As a result, the miniaturization and weight reduction originally required for nickel-metal hydride secondary batteries could not be sufficiently achieved.
  • An object of the present invention is to provide a nickel-metal hydride secondary battery provided with a separator that contributes to miniaturization and weight reduction of the battery in order to solve the above problems.
  • the nickel-metal hydride secondary battery according to the present invention is A negative electrode having a negative electrode active material whose main component is a hydrogen storage alloy, and a negative electrode A positive electrode having a positive electrode active material containing nickel hydroxide as a main component, A separator that is interposed between the negative electrode and the positive electrode and contains an anion exchange membrane that allows hydroxide ions to permeate. To prepare for.
  • the thickness and weight of the separator can be dramatically reduced while maintaining the charge / discharge performance of the battery equal to or higher than that when the conventional separator is used. Therefore, the nickel-metal hydride secondary battery can be made smaller and lighter.
  • the ion resistivity of the anion exchange membrane may be 1000 ⁇ ⁇ cm or less, further 500 ⁇ ⁇ cm or less, and further 300 ⁇ ⁇ cm or less. May be.
  • the nickel-hydrogen secondary battery according to the embodiment of the present invention may include an electrolytic solution consisting of an alkaline aqueous solution containing potassium, sodium, calcium, lithium, or an hydroxide of any combination thereof.
  • the nickel-hydrogen secondary battery according to the present embodiment includes a negative electrode having a negative electrode active material containing a hydrogen storage alloy as a main component, a positive electrode having a positive electrode active material containing nickel hydroxide as a main component, and the negative electrode and the positive electrode.
  • a separator including an anion exchange film which is interposed between the above and allows the hydroxide ion to permeate is provided.
  • this nickel-metal hydride secondary battery includes an electrolytic solution that enables ion conduction between the positive electrode and the negative electrode.
  • the "negative electrode” refers to a pole on the side containing a substance that electrochemically receives electrons during charging
  • the "positive electrode” means that electrons are electrochemically emitted during charging. Refers to the pole on the side containing the substance.
  • the positive electrode active material is, for example, a hydroxide of a transition metal.
  • the positive electrode active material may be, for example, a nickel hydroxide or a nickel-containing composite hydroxide containing nickel and other transition metals. More specifically, the positive electrode active material is represented by, for example, Ni (1-xy) Co x Zn y (OH) 2 (where 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.1). It may be a compound to be used.
  • the negative electrode active material is, for example, a hydrogen storage alloy capable of storing hydrogen electrochemically generated in an electrolytic solution during charging and easily releasing the stored hydrogen during discharging.
  • a hydrogen storage alloy may have a structure represented as an ABx type.
  • A is a hydride-forming element
  • B is a non-hydride-forming element
  • x is a real number of 1 to 5.
  • the hydride forming element (A) includes, but is not limited to, for example, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, yttrium, titanium, zirconium or combinations thereof, or other metals such as mischmetal.
  • Non-hydride forming elements include, but are not limited to, for example, aluminum, nickel, cobalt, copper, manganese, or metals that are combinations thereof.
  • hydrogen storage alloys AB 5 type systems such as LaNi 5 and MmNi 5 (Mm is Mish metal), AB 3 type systems such as rare earth-magnesium-nickel system, and rare earths having a superlattice structure-magnesium.
  • a 2 B 7 type systems such as nickel type and AB 2 type systems such as (Zr, Ti) Ni 2
  • the present invention is not limited thereto.
  • One or both of the negative electrode active material and the positive electrode active material may be in the form of powder or granules.
  • the particles can be held by the binder and formed in layers on the current collector in the formation of the negative electrode or the positive electrode.
  • the binder any binder known in the art can be used as long as it is suitable for use in forming a negative electrode, a positive electrode, or both, and is suitable for proton conduction.
  • binders used to form negative electrodes include, but are not limited to, polymer binder materials.
  • the binder material include an elastomer material, and more specifically, for example, styrene-butadiene (SB), styrene-butadiene-styrene block copolymer (SBS), and styrene-isoprene-styrene block.
  • SB styrene-butadiene
  • SBS styrene-butadiene-styrene block copolymer
  • SEBS styrene-isoprene-styrene block.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), teflonated acetylene black (TAB-2), styrene-butadiene binder material, or carboxymethyl cellulose (CMC). , Not limited to these.
  • PTFE polytetrafluoroethylene
  • PVA polyvinyl alcohol
  • TAB-2 teflonated acetylene black
  • CMC carboxymethyl cellulose
  • One or both of the positive electrode and the negative electrode may further contain one or more kinds of additives contained in the active material.
  • the additive is, for example, a conductive material.
  • This conductive material is preferably conductive carbon.
  • Examples of conductive carbon include graphite or graphitized carbon such as graphitized coke.
  • Still other examples of conductive carbon include amorphous or amorphous non-graphitized carbons such as petroleum coke and carbon black.
  • the conductive material is contained in the positive electrode or the negative electrode, for example, in the range of 0.1% by weight to 20% by weight.
  • the negative electrode and the positive electrode can be formed by any method known in the art.
  • the active material of the negative electrode or the active material of the positive electrode is mixed with a binder in a suitable solvent and optionally a conductive material to form a slurry, and the slurry is coated on the current collector and dried.
  • a layer of active material can be formed on the surface of the current collector.
  • the current collector may be in the form of a mesh, foil, or other suitable form.
  • the current collector can be formed of an aluminum-based metal such as an aluminum alloy, nickel or a nickel alloy, steel such as stainless steel, copper or a material such as a copper alloy.
  • the current collector may be, for example, in the form of a sheet, and may be a foil, a solid substrate, a porous substrate, a grid, a foam, or a form known in the art.
  • the current collector may be any suitable electron conductive and selectively impermeable or substantially impermeable material, such as copper, stainless steel, titanium, or carbon paper / film, non-permeable.
  • the nickel-metal hydride secondary battery according to the present embodiment includes a separator interposed between the negative electrode and the positive electrode.
  • a separator that is permeable to hydroxide ions is used so as to ensure electrical insulation between the negative electrode and the positive electrode and not to limit the ion transfer to an acceptable or unacceptable level. That is, in this embodiment, an anion exchange membrane is used as the separator.
  • an anion exchange membrane is used as the separator.
  • FIG. 1 in the conventional separator made of polyethylene / polypropylene-based non-woven fabric, not only hydroxide ions but also water molecules ( H2O ) can permeate during the reaction at the positive and negative negatives, but anion exchange. The membrane selectively permeates only hydroxide ions.
  • the anion exchange membrane used as the material of the separator may have an ion resistivity of 1000 ⁇ ⁇ cm or less, further may be 500 ⁇ ⁇ cm or less, and more specifically, an ion resistivity of 300 ⁇ ⁇ cm or less. May be.
  • the anion exchange membrane may be a hydroxide ion permeable polymer material.
  • Anion exchange materials that form such anion exchange membranes are generally based on a polymer material that is bonded to or contains one or more cationic groups that allow anion conduction.
  • the anion exchange membrane forming the separator in the present embodiment may also be made of such a material.
  • the anion exchange membrane may be one in which an anion exchange material is bonded or embedded in polyolefin.
  • Typical examples of the above-mentioned cationic group include a quaternary ammonium group or an imidazolium group.
  • Other examples of the above cationic groups include guanidinium-based, DABCO-based, benzimidazolium-based, pyrrolidinium-based, sulfonium-based, phosphonium-based, and ruthenium-based cationic groups.
  • a modified benzimidazolium-based polymer material for example, poly [2,2'-(2,2'', 4,4'', 6,6''- Hexamethyl-p-terphenyl-3,3''-diyl) -5,5'-bibenzoimidazole] (HMT-PBI) or its methylated product, HMT-PMBI.
  • HMT-PBI poly [2,2'-(2,2'', 4,4'', 6,6''- Hexamethyl-p-terphenyl-3,3''-diyl) -5,5'-bibenzoimidazole]
  • HMT-PMBI methylated product
  • anion exchange membrane poly [2,2'-(m-mesitylene) -5,5'-bis (N, N'-dimethylbenzoimidazolium)] (Mes-PDMBI, 2-X- ) And poly [2,2'-(m-phenylene) -5,5'-bis (N, N'-dimethylbenzoimidazolium)] (PDMBI, 3-X-).
  • IONOMR poly [2,2'-(m-mesitylene) -5,5'-bis (N, N'-dimethylbenzoimidazolium)]
  • the electrolytic solution used in the nickel-hydrogen secondary battery according to the present embodiment is an alkaline aqueous solution containing potassium, sodium, calcium, lithium, or an hydroxide of any combination thereof.
  • the above negative electrode, positive electrode, separator, and electrolytic solution are housed in the exterior body.
  • the exterior may be, for example, a metal or polymer can, or a laminated film such as heat sealable aluminum foil such as an aluminum coated polypropylene film.
  • the electrochemical battery provided in the present specification may be any known form, for example, a button battery, a pouch battery, a cylindrical battery, a square battery, or the like.
  • the current collector and / or the substrate may be provided with one or more tabs for allowing the transfer of electrons from the current collector to the outside of the battery and for connecting the current collector to a device such as a circuit.
  • the tabs can be made of any suitable conductive material (eg nickel, aluminum, or other metal) and are connected to the current collector, eg, by welding.
  • the positive electrode active material As the positive electrode active material, a powder of sintered Ni (OH) 2 particles (China: manufactured by Shandong Xinxu) was used. A positive electrode was prepared by mixing this powder with a dry TAB-2 (Japan: manufactured by Hosen Co., Ltd.) binder at a weight ratio of 1: 3 and then press-molding it on a nickel mesh substrate as a current collector. ..
  • an AB5 type hydrogen storage alloy (Michigan, USA: manufactured by Eutectix ) prepared by a standard method was used.
  • a 30% by weight KOH aqueous solution was used as the electrolytic solution.
  • AF-1-ENN5-50-X Example 1
  • AF-1-ENN8-50-X Example 2
  • AF-1 manufactured by Ionomr Vancouver, Canada
  • -ENN5-25-X Example 3
  • AF-1-ENN8-25-X Example 4
  • a separator according to the comparative example a polypropylene / polyethylene-based non-woven fabric (Germany: Scimat 700/79 manufactured by Freudenberg Co., Ltd.) was used.
  • an electrochemical cell for conducting a comparative test of electrochemical properties was prepared.
  • the structure of the test cell T used for this charge / discharge test is shown in FIG. After immersing the separator 1 as a test sample in the electrolytic solution, a sheet-shaped positive electrode 3 and a negative electrode 5 are laminated via the separator 1, sandwiched between two plexiglas plates 7 from both sides, and two of these.
  • the test cell T was produced by tightening the plexiglas sheet 7 of the above with stainless steel bolts 9 and nuts 11.
  • Test results The thickness and the weight of the separator according to each of the above Examples and Comparative Examples after immersion in the electrolytic solution were measured.
  • the charge rate and the discharge rate shown below are values per weight (g) of the positive electrode active material.
  • charging conditions charging rate 50mA / g, charging time 8 hours.
  • the discharge conditions after discharging for 3 hours at a discharge rate of 50 mA / g, the discharge time is 30 seconds in the order of discharge rate 100 mA / g ⁇ 50 mA / g ⁇ 12 mA / g.
  • the discharge is a discharge for adjusting the charge state (SOC) of the test cell to the level in the intermediate region.
  • the slope (dV / dI) of the change in voltage value with respect to the change in current value is obtained by linear approximation from the measurement results (current value and voltage value) of the subsequent three-step constant current discharge, and this slope is obtained.
  • This slope is obtained.
  • the voltage profiles of the three-stage constant current discharge of each cell of Example 1, Example 2, and Comparative Example are shown in FIGS. 3, 4, and 5, respectively.
  • the thickness and weight of the anion exchange membrane separators according to the examples are significantly reduced as compared with the comparative example separators. Specifically, in Examples 1 and 2, the thickness is reduced to 1/3 or less and the weight is reduced to 1/2 or less, and in Examples 3 and 4, the thickness is about 1/6 and the weight is about 1. It is reduced to 4/4.
  • the separator of the example is an order of magnitude larger than the separator of the comparative example in terms of resistivity, the DC resistance of the separator as a whole is the same as that of the comparative example.
  • the discharge performance of the cell which can be seen from the discharge capacity and the high current discharge efficiency, was equal to or higher than that of the comparative example.
  • the thickness and weight of the separator can be significantly increased while ensuring the same or better discharge performance as when the conventional separator is used. Can be reduced to. This makes it possible to reduce the size and weight of the nickel-metal hydride secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

水素吸蔵合金を主成分とする負極活物質を有する負極と、水酸化ニッケルを主成分とする正極活物質を有する正極とを備えるニッケル水素二次電池の、前記負極と前記正極との間に介在するセパレータとして、水酸化イオンを透過させるアニオン交換膜を含むセパレータを用いる。前記アニオン交換膜のイオン抵抗率は1000Ω・cm以下であることが好ましい。

Description

ニッケル水素二次電池
 本発明は、ニッケル水素二次電池に関し、特には電池の軽量化に寄与するセパレータを備えるニッケル水素二次電池に関する。
 ニッケル水素二次電池は、充放電特性、過充放電特性に優れ、長寿命で繰り返し使用できるため、小型軽量化の著しい電子機器に広く使用されている(例えば、特許文献1参照。)。ニッケル水素二次電池のセパレータとして、従来より、グラフト重合によって作製された、ポリエチレンやポリプロピレンといったポリオレフィン系の、太い繊維径の繊維からなる高目付重量の不織布が用いられてきた。
米国特許第5536591号明細書
 しかし、上記のような従来のセパレータでは、セパレータ自体が高重量であるうえ、繊維間に大量の電解液を吸収することから電池として必要な電解液量も増大する。その結果、本来ニッケル水素二次電池に要求される小型化および軽量化を十分に達成できていなかった。
 本発明の目的は、上記の課題を解決するために、電池の小型化および軽量化に寄与するセパレータを備えるニッケル水素二次電池を提供することにある。
 前記した目的を達成するために、本発明に係るニッケル水素二次電池は、
 水素吸蔵合金を主成分とする負極活物質を有する負極と、
 水酸化ニッケルを主成分とする正極活物質を有する正極と、
 前記負極と前記正極との間に介在し、水酸化イオンを透過させるアニオン交換膜を含むセパレータと、
を備える。
 この構成によれば、セパレータとしてアニオン交換膜を用いたことにより、電池の充放電性能を従来のセパレータを用いた場合と同等以上に維持しながら、セパレータの厚み及び重量を飛躍的に低減できる。したがって、ニッケル水素二次電池の小型化、軽量化が可能になる。
 本発明の一実施形態に係るニッケル水素二次電池において、前記アニオン交換膜のイオン抵抗率が1000Ω・cm以下であってよく、さらには500Ω・cm以下であってよく、さらには300Ω・cm以下であってよい。
 本発明の一実施形態に係るニッケル水素二次電池において、カリウム、ナトリウム、カルシウム、リチウム、またはこれらの任意の組み合わせの水酸化物を含むアルカリ水溶液からなる電解液を備えていてもよい。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の一実施例に係るセパレータの動作原理を示す模式図である。 本発明の一実施例に係るセパレータの特性を試験するための試験用セルを模式的に示す断面図である。 本発明の実施例1に係るセパレータについての直流抵抗測定試験結果を示すグラフである。 本発明の実施例2に係るセパレータについての直流抵抗測定試験結果を示すグラフである。 比較例に係るセパレータについての直流抵抗測定試験結果を示すグラフである。
 以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。
 本実施形態に係るニッケル水素二次電池は、水素吸蔵合金を主成分とする負極活物質を有する負極と、水酸化ニッケルを主成分とする正極活物質を有する正極と、前記負極と前記正極との間に介在し、水酸化イオンを透過させるアニオン交換膜を含むセパレータとを備える。さらに、このニッケル水素二次電池は、正極と負極との間でイオンの伝導を可能にする電解液を備える。
 このニッケル水素二次電池では、後に詳述するように、アニオン交換膜を含むセパレータを使用することにより、電池の充放電性能を従来のセパレータを用いた場合と同等以上に維持しながら、セパレータの厚み及び重量を飛躍的に低減できることが見出された。
 なお、本明細書において「負極」とは、充電時において、電気化学的に電子を受け取る物質を含む側の極を指し、「正極」とは、充電時において、電気化学的に電子を放出する物質を含む側の極を指す。
 ニッケル水素二次電池の充電時の正極および負極で生じる反応は、以下の各半反応式で表される。
 (正極) Ni(OH)+OH → NiOOH+HO+e
 (負極) M+HO+e → MH+OH
 また、放電時の正極および負極で生じる反応は、上記と逆の反応であり、以下の各半反応式で表される。
 (正極) NiOOH+HO+e → Ni(OH)+OH
 (負極) MH+OH → M+HO+e
 これらの式における負極活物質であるMについては後述する。
 前記正極活物質は、例えば、遷移金属の水酸化物である。具体的には、前記正極活物質は、例えば、ニッケル水酸化物またはニッケルと他の遷移金属を含むニッケル含有複合水酸化物であってよい。より具体的には、正極活物質は、例えば、Ni(1-x-y)CoZn(OH)(ただし、0≦x≦0.1,0≦y≦0.1)で表される化合物であってよい。
 前記負極活物質は、例えば、充電時に電解液中で電気化学的に発生させた水素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出できる水素吸蔵合金である。このような水素吸蔵合金は、ABx型として表される構造を有するものであってよい。ここで、Aは水素化物形成元素であり、Bは非水素化物形成元素であり、xは1~5の実数である。水素化物形成元素(A)は、例えばランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、イットリウム、チタン、ジルコニウムまたはこれらの組み合わせ、またはミッシュメタルなどの他の金属を含むが、これらに限定されない。非水素化物形成元素は、例えば、アルミニウム、ニッケル、コバルト、銅、マンガン、又はそれらの組み合わせである金属を含むが、これらに限定されない。水素吸蔵合金のさらに具体的な例として、LaNiやMmNi(Mmはミッシュメタル)等のAB型系、希土類-マグネシウム-ニッケル系等のAB型系、超格子構造をなす希土類-マグネシウム-ニッケル系等のA型系、(Zr,Ti)Ni等のAB2型系のものが挙げられるが、これらに限定されない。
 負極活物質および正極活物質の一方または両方は、粉末または粒状の形態であってよい。粒子同士は、バインダによって保持されて、負極または正極の形成において集電体上に層状に形成され得る。バインダとしては、負極、正極、またはその両方の形成に使用するのに適し、かつプロトン伝導に適したものであれば、当技術分野において知られている任意のバインダを使用することができる。
 負極の形成に用いられるバインダの例には、ポリマーバインダ材料が含まれるが、これに限定されない。バインダの素材の具体例としては、エラストマー材料が挙げられ、より具体的には、例えば、スチレン-ブタジエン(SB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)およびスチレン-エチレン-ブタジエン-スチレンブロック共重合体(SEBS)等が挙げられる。バインダのより具体的な例としては、ポリテトラフルオロエチレン(PTFE)、ポリビニルアルコール(PVA)、テフロン化アセチレンブラック(TAB-2)、スチレン-ブタジエンバインダ材料、またはカルボキシメチルセルロース(CMC)が含まれるが、これらに限定されない。
 正極および負極の一方または両方は、さらに、活物質に含まれる1種類または複数種類の添加剤を含んでいてもよい。添加剤は、例えば導電性材料である。この導電性材料は、好適には導電性炭素である。導電性炭素の例としては、グラファイト、あるいは黒鉛化コークスなどの黒鉛状炭素が挙げられる。導電性炭素のさらに他の例には、アモルファスまたは非晶質である非黒鉛化炭素、例えば石油コークスやカーボンブラックが含まれる。導電性材料は、正極または負極に、例えば、0.1重量%から20重量%の範囲で含まれる。
 負極および正極は、当該技術分野において公知の任意の方法によって形成することができる。例えば、負極の活物質または正極の活物質を、適切な溶媒中でバインダ、および任意選択で導電性の材料と混合してスラリーを形成し、スラリーを集電体上にコーティングし、乾燥させて溶媒の一部または全部を蒸発させることによって、集電体の表面に活物質の層を形成することができる。
 集電体は、メッシュ状、箔状、または他の適当な形態であってよい。例えば、集電体は、アルミニウム合金などのアルミニウム系金属、ニッケルまたはニッケル合金、ステンレス鋼などの鋼、銅または銅合金等の材料で形成することができる。集電体は、例えばシート状であってよく、さらには、箔、固体基板、多孔質基板、グリッド、発泡体、または当技術分野において公知の形態であり得る。集電体は、任意の適切な電子伝導性かつ選択的に不透過性または実質的に不透過性の材料であってよく、その例として銅、ステンレス鋼、チタン、または炭素紙/フィルム、非穿孔金属箔、アルミ箔、ニッケルおよびアルミニウムを含むクラッド材、銅およびアルミニウムを含むクラッド材、ニッケルめっき鋼、ニッケルめっき銅、ニッケルめっきアルミニウム、金、銀、またはこれらの任意の適切な組み合わせであってよい。
 本実施形態に係るニッケル水素二次電池は、負極と正極との間に介在するセパレータを備えている。セパレータとしては、負極と正極との間の電気的な絶縁を確保できると共に、イオン移動を許容可能にまたは許容できないほど制限しないように、水酸化物イオンに対して透過性のものを用いる。すなわち、本実施形態では、セパレータとして、アニオン交換膜を用いている。図1に示すように、従来のポリエチレン/ポリプロピレン系不織布からなるセパレータでは、上述の正負極における反応時に、水酸化物イオンのみならず水分子(HO)も透過可能であるが、アニオン交換膜は、水酸化物イオンのみを選択的に透過させる。
 前記セパレータの素材として用いられるアニオン交換膜は、そのイオン抵抗率が1000Ω・cm以下であってよく、さらには500Ω・cm以下であってよく、より具体的にはイオン抵抗率が300Ω・cm以下であってよい。
 前記アニオン交換膜は、水酸化イオン透過性のポリマー材料であってよい。このようなアニオン交換膜を形成するアニオン交換性材料は、一般的に、アニオン伝導を許容する1つ以上のカチオン基に結合された、または1つ以上のカチオン基を含むポリマー材料を主成分とするものであり、本実施形態におけるセパレータを形成するアニオン交換膜もこのような材料で形成されていてよい。他の例として、アニオン交換膜は、ポリオレフィンにアニオン交換性材料が結合されたもの、または埋め込まれたものであってよい。
 上記カチオン基は、代表的な例として、第四級アンモニウム基またはイミダゾリウム基が挙げられる。上記カチオン基の他の例として、グアニジニウム系、DABCO系、ベンズイミダゾリウム系、ピロリジニウム系、スルホニウム系、ホスホニウム系、およびルテニウム系のカチオン基が挙げられる。
 アニオン交換膜の例として、より具体的には、変性ベンゾイミダゾリウム系のポリマー材料、例えば、ポリ[2,2’-(2,2’’,4,4’’,6,6’’-ヘキサメチル-p-テルフェニル-3,3’’-ジイル)-5,5’-ビベンゾイミダゾール](HMT-PBI)またはそのメチル化物であるHMT-PMBIが挙げられる。アニオン交換膜の他の具体例として、ポリ[2,2′-(m-メシチレン)-5,5′-ビス(N,N′-ジメチルベンゾイミダゾリウム)] (Mes-PDMBI, 2-X-)およびポリ[2,2′-(m-フェニレン)-5,5′-ビス(N,N′-ジメチルベンゾイミダゾリウム)] (PDMBI, 3-X-)が挙げられる。このような材料は、カナダのバンクーバーにあるIONOMR社から市販されている。
 本実施形態に係るニッケル水素二次電池に用いられる電解液は、カリウム、ナトリウム、カルシウム、リチウム、またはこれらの任意の組み合わせの水酸化物を含むアルカリ水溶液である。
 上記の負極、正極、セパレータ、及び電解液は、外装体に収容される。外装体は、例えば、金属またはポリマー製の缶、またはアルミニウム被覆ポリプロピレンフィルムなどのヒートシール可能なアルミホイルなどのラミネートフィルムであってよい。このように、本明細書において提供される電気化学電池は、任意の公知の形態、例えばボタン電池,パウチ電池,円筒型電池、角型電池等であってよい。
 集電体および/または基板は、集電体から電池の外部への電子の移動を可能にし、集電体を回路などの装置に接続するための1つ以上のタブを備えていていよい。タブは、任意の適切な導電性材料(例えば、ニッケル、アルミニウム、または他の金属)で形成することができ、集電体に、例えば溶接することによって接続される。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
(試験電池の作製)
 正極活物質として、焼結式Ni(OH)粒子(中国:Shangdong Xinxu社製)の粉末を用いた。この粉末を1:3の重量比で乾燥状態のTAB-2(日本:宝泉株式会社製)バインダと混合したうえで、集電体であるニッケルメッシュ基板にプレス成形することにより正極を作製した。
 負極活物質として、AB5型水素吸蔵合金(米国ミシガン州:Eutectix社製)を標準的な方法で作製したものを使用した。
 電解液として、30重量%のKOH水溶液を用いた。
 実施例に係るアニオン交換膜セパレータとして、カナダ,バンクーバーのIonomr社製AF-1-ENN5-50-X(実施例1)、AF-1-ENN8-50-X(実施例2)、AF-1-ENN5-25-X(実施例3)、AF-1-ENN8-25-X(実施例4)を用いた。また、比較例に係るセパレータとして、ポリプロピレン/ポリエチレン系不織布(ドイツ:Freudenberg社製Scimat700/79)を用いた。
 上記の実施例および各比較例に係るセパレータについて、電気化学的特性の比較試験を行うための電気化学セルを作製した。この充放電試験に使用した試験用セルTの構造を図2に示す。試験サンプルであるセパレータ1を電解液に浸漬させた後に、このセパレータ1を介してシート状の正極3および負極5を積層し、これを両側から2枚のプレキシガラス板7で挟み、さらにこれら2枚のプレキシガラス板7をステンレス鋼製のボルト9およびナット11によって締め付けることにより、試験用セルTを作製した。
(試験結果)
 上記各実施例および比較例に係るセパレータについて、厚みおよび電解液浸漬後の重量を測定した。
 その後、上記の試験用セルによって下記の条件で充電および放電を行うことにより、各セパレータの直流抵抗を測定した。なお、以下に示す充電レートおよび放電レートは、正極活物質の重量(g)当たりの値である。
・充電条件として充電レート50mA/g、充電時間8時間、
・放電条件として、放電レート50mA/gで3時間放電した後、放電レート100mA/g→50mA/g→12mA/gの順でそれぞれ放電時間30秒
なお、上記放電条件のうち、第1段階の放電は試験用セルの充電状態(SOC)を中間領域のレベルに合わせるための放電である。セパレータの抵抗は、これに続く3段階の定電流放電の測定結果(電流値および電圧値)から、電流値の変化に対する電圧値の変化の傾き(dV/dI)を直線近似により求め、この傾きを直流抵抗とした。実施例1,実施例2,比較例の各セルの3段階定電流放電の電圧プロファイルをそれぞれ図3,図4,図5に示す。
 さらに、上記試験用セルについて、
・充電条件として充電レート50mA/g、充電時間10時間、
・放電条件として放電レート50mA/g→12mA/g→4mA/gの順でそれぞれ放電終止電圧0.9V
の充放電条件にて20サイクル充放電を行った。これらの結果を表1に示す。なお、下表中の各実施例および比較例セパレータの重量は電解液に含浸した後の重量である。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例に係るアニオン交換膜セパレータは、いずれも、比較例セパレータに対して、厚さ及び重量が大幅に低減している。具体的には、実施例1,2では厚さが1/3以下、重量が1/2以下に低減しており、実施例3,4では、厚さが約1/6,重量が約1/4に低減している。これにより、実施例のセパレータは、抵抗率において比較例セパレータに対して一桁大きいものの、セパレータ全体としての直流抵抗は比較例と同等となっている。その結果、実施例のセルにおいて、放電容量および高電流放電効率から見て取れるセルの放電性能は、比較例に対して同等以上であった。
 このように、実施例に係るアニオン交換膜をニッケル水素二次電池のセパレータとして用いることにより、従来のセパレータを用いた場合と同等以上の放電性能を確保しながら、セパレータの厚さおよび重量を大幅に低減することができる。これにより、ニッケル水素二次電池の小型化および軽量化が可能となる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。

Claims (5)

  1.  水素吸蔵合金を主成分とする負極活物質を有する負極と、
     水酸化ニッケルを主成分とする正極活物質を有する正極と、
     前記負極と前記正極との間に介在し、水酸化イオンを透過させるアニオン交換膜を含むセパレータと、
    を備える、ニッケル水素二次電池。
  2.  請求項1に記載のニッケル水素二次電池において、前記アニオン交換膜のイオン抵抗率が1000Ω・cm以下である、ニッケル水素二次電池。
  3.  請求項2に記載のニッケル水素二次電池において、前記アニオン交換膜のイオン抵抗率が500Ω・cm以下である、ニッケル水素二次電池。
  4.  請求項3に記載のニッケル水素二次電池において、
     前記アニオン交換膜のイオン抵抗率が300Ω・cm以下である、
    ニッケル水素二次電池。
  5.  請求項1から4のいずれか一項に記載のニッケル水素二次電池において、
     さらに、カリウム、ナトリウム、カルシウム、リチウム、またはこれらの任意の組み合わせの水酸化物を含むアルカリ水溶液からなる電解液を備える、
    ニッケル水素二次電池。
     
PCT/JP2020/049285 2020-12-29 2020-12-29 ニッケル水素二次電池 WO2022145034A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049285 WO2022145034A1 (ja) 2020-12-29 2020-12-29 ニッケル水素二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049285 WO2022145034A1 (ja) 2020-12-29 2020-12-29 ニッケル水素二次電池

Publications (1)

Publication Number Publication Date
WO2022145034A1 true WO2022145034A1 (ja) 2022-07-07

Family

ID=82259209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049285 WO2022145034A1 (ja) 2020-12-29 2020-12-29 ニッケル水素二次電池

Country Status (1)

Country Link
WO (1) WO2022145034A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288734A (ja) * 1998-04-01 1999-10-19 Toshiba Battery Co Ltd アルカリ二次電池
JP2017033717A (ja) * 2015-07-30 2017-02-09 株式会社Gsユアサ 蓄電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288734A (ja) * 1998-04-01 1999-10-19 Toshiba Battery Co Ltd アルカリ二次電池
JP2017033717A (ja) * 2015-07-30 2017-02-09 株式会社Gsユアサ 蓄電池

Similar Documents

Publication Publication Date Title
JP6847041B2 (ja) アルカリ性のパウチセルバッテリおよび非水系プロトン伝導性のパウチセルバッテリ
KR101326623B1 (ko) 프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지
RU2121198C1 (ru) Перезаряжаемый водородный элемент
JP2588523B2 (ja) 炭素電極
KR20120099373A (ko) 탄소 섬유 아연 음극
JP2006252902A (ja) ハイブリッド電池
US6420067B1 (en) MG-based negative electrode active material, method of manufacturing the same, hydrogen-storage alloy electrode, and alkali secondary battery
JP3805876B2 (ja) ニッケル水素電池
CN112151793A (zh) 一种可大倍率放电的正极片及包括该正极片的锂离子电池
JP2023133607A (ja) 亜鉛電池用電解液及び亜鉛電池
JP2001313066A (ja) アルカリ蓄電池
WO2022145034A1 (ja) ニッケル水素二次電池
JP5487384B2 (ja) ファイバー電池用合金負極
JP2018147626A (ja) アルカリ二次電池
WO2022239205A1 (ja) プロトン伝導型二次電池
JP5100718B2 (ja) 角型ニッケル水素蓄電池
JP2019139986A (ja) 亜鉛電池用負極及び亜鉛電池
RU2691974C1 (ru) Положительный электрод и щелочная аккумуляторная батарея, содержащая его
JP7092639B2 (ja) アルカリ二次電池
WO2023195233A1 (ja) 亜鉛電池用負極及び亜鉛電池
WO2022145032A1 (ja) プロトン伝導型二次電池用電解液およびこれを備えるプロトン伝導型二次電池
JP3182790B2 (ja) 水素吸蔵合金電極およびその製造法
JP2566912B2 (ja) ニッケル酸化物・水素電池
CN117716559A (zh) 具备基于质子及氢氧化物离子传导性聚合物的隔膜的双极性电池
JPH0935718A (ja) アルカリ二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20968037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20968037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP