WO2022143729A1 - 光学膜片、光学模组及电子设备 - Google Patents

光学膜片、光学模组及电子设备 Download PDF

Info

Publication number
WO2022143729A1
WO2022143729A1 PCT/CN2021/142322 CN2021142322W WO2022143729A1 WO 2022143729 A1 WO2022143729 A1 WO 2022143729A1 CN 2021142322 W CN2021142322 W CN 2021142322W WO 2022143729 A1 WO2022143729 A1 WO 2022143729A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical film
optical
arrangement direction
protrusions
Prior art date
Application number
PCT/CN2021/142322
Other languages
English (en)
French (fr)
Inventor
吴华平
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020237025593A priority Critical patent/KR20230121915A/ko
Priority to EP21914462.3A priority patent/EP4273593A4/en
Priority to JP2023540630A priority patent/JP2024502076A/ja
Publication of WO2022143729A1 publication Critical patent/WO2022143729A1/zh
Priority to US18/344,627 priority patent/US20230341700A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the application belongs to the technical field of communication equipment, and specifically relates to an optical film, an optical module and an electronic device.
  • the optical module of the electronic device mainly includes a fingerprint module and a camera module.
  • the fingerprint module realizes the fingerprint recognition function of the electronic device
  • the camera module mainly realizes the shooting function of the electronic device.
  • an electronic device includes a fingerprint module and a display module.
  • the fingerprint module is arranged below the display module, and the display module emits light. After the light is refracted by the user's finger, part of the light enters the fingerprint. module, so as to realize the identification of user fingerprints.
  • an optical film such as a microlens film can be attached to the photosensitive chip of the fingerprint module. The microlens film can convert scattered light into parallel light, thereby improving the optical performance of the fingerprint module.
  • the inventor found that the related art has the following problems. Since the optical film material is not uniform in structure, the light will propagate in multiple directions when entering the non-uniform optical film material, and the propagation path With the change of the film structure, part of the light will be lost or interfered with the light in other propagation directions, and the light transmission quality of the optical module is poor, thus affecting the imaging of the fingerprint module.
  • the purpose of the embodiments of the present application is to provide an optical film, an optical module and an electronic device, which can solve the problem of poor light transmission quality of the optical module.
  • an embodiment of the present application provides an optical film, including a base body and a plurality of light-concentrating protrusions, wherein the plurality of light-concentrating protrusions form a first array group on the first surface of the base body, so the first array group has a first arrangement direction and a second arrangement direction;
  • the base body has a first optical axis, the first optical axis is perpendicular to the first direction, the first arrangement direction is parallel to the first direction, and the second arrangement direction is parallel to the first direction There is a first preset angle between the arrangement directions;
  • the matrix is an anisotropic structure
  • the first direction is a direction corresponding to the anisotropic structure
  • an embodiment of the present application provides an optical module including a photosensitive unit and the above-mentioned optical film, and the optical film covers a photosensitive surface of the photosensitive unit.
  • the embodiments of the present application provide an electronic device, including a casing, a display module and the above-mentioned optical module, the casing and the display module are enclosed to form a accommodating cavity, and the optical module located in the accommodating cavity and distributed relative to the display module
  • the optical film includes a base body and a plurality of light-concentrating protrusions, the plurality of light-concentrating protrusions form a first array group on the first surface of the substrate, and the first array group has a first arrangement direction and The second arrangement direction.
  • the substrate has a first optical axis, the first optical axis is perpendicular to the first direction, the substrate is an anisotropic structure, and the first direction is a direction corresponding to the anisotropic structure.
  • the first arrangement direction is parallel to the first direction.
  • the arrangement direction of the plurality of light-concentrating protrusions is parallel to the first direction, which weakens the birefringence effect in the optical film, increases the light passing through the light-concentrating protrusions, and improves the optical module's performance.
  • Optical properties and light transmission quality are similar to the first direction, which weakens the birefringence effect in the optical film, increases the light passing through the light-concentrating protrusions, and improves the optical module's performance.
  • FIG. 1 is a schematic structural diagram of an optical film disclosed in an embodiment of the present application.
  • FIGS. 2 and 3 are schematic structural diagrams of the substrate of the optical film disclosed in the embodiments of the present application.
  • FIGS. 4 to 6 are schematic diagrams of the arrangement of the light-converging protrusions on the substrate in the optical film disclosed in the embodiments of the present application;
  • FIG. 7 is a schematic diagram of the distribution of the first symmetry axis in the optical film disclosed in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of an arrangement of pixel units on a display module in an electronic device disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the distribution of the second symmetry axis of the display module in the electronic device disclosed in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of the distribution of the first symmetry axis and the second symmetry axis in the electronic device disclosed in the embodiment of the present application;
  • FIG. 11 is a schematic diagram of the distribution of the first pitch and the second pitch in the electronic device disclosed in the embodiment of the present application;
  • FIG. 12 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the length and the optical axis angle of the film material for making the base in the optical film disclosed in the embodiment of the present application.
  • 200-display module 210-pixel unit, 211-second axis of symmetry, 212-second spacing.
  • an embodiment of the present application discloses an optical film 100 .
  • the disclosed optical film 100 includes a base body 110 and a plurality of light-converging protrusions 120 .
  • the plurality of light-concentrating protrusions 120 form a first array group on the first surface of the base body 110 , and the first array group has a first arrangement direction 121 and a second arrangement direction 123 .
  • the base body 110 may be made of a PET (polyethyleneterephthalate, polyethylene terephthalate) material, and certainly may be made of other materials, which are not limited herein.
  • the light collecting protrusion 120 can refract the light passing through the optical film 100 , so as to change the propagation path of the light, so as to achieve the effect of light collimation.
  • the base body 110 has a first optical axis 111 , and the first optical axis 111 is perpendicular to the base body 110 , so the first optical axis is the main optical axis of the base body 110 .
  • the first optical axis 111 is perpendicular to the first direction 112
  • the first arrangement direction 121 is parallel to the first direction 112
  • the substrate 110 is an anisotropic structure, and the first direction 112 is a direction corresponding to the anisotropic structure. It can be understood that when the matrix 110 is biaxially stretched, the lattice in the matrix 110 is stretched with the force of the matrix 110 . At this time, the anisotropic lattice structure of the matrix corresponds to a specific direction with the smallest birefringence. That is, the first direction above, which may also be referred to as the angular direction of the optical axis of the substrate 110 .
  • the plurality of light-concentrating protrusions 120 are arranged along this specific direction, so that light loss and interference caused by the birefringence effect can be reduced, and the light utilization rate of the optical film 100 can be improved.
  • the first optical axis in the base body 110 is the main optical axis of the base body 110, and the first optical axis is perpendicular to the base body, that is, the first optical axis is perpendicular to the first direction, and the above-mentioned first direction is mainly related to
  • the force-stretching of the substrate 110 is related to the polarization direction of the crystal when the substrate 110 is subjected to force-stretching.
  • the first direction 112 can be measured by means of the polarization of light or the birefringence effect.
  • the polarized light of the substrate 110 can be measured by using a polarizer, and the polarized light is parallel to the direction of the optical axis angle, so the direction of the polarized light is the first direction.
  • the above-mentioned first preset angle may be 30°, 45°, 90°, etc.
  • the first preset angle may also be other numerical values, of course, may also be other numerical values, which is not limited herein.
  • the relationship between the optical axis angle of the film and the position of the film is shown in Figure 13 after the film for making the substrate 110 is biaxially stretched.
  • the total length of the stretched film can be 5900mm.
  • the optical axis angle of each position is different, so in each section, the corresponding optical axis angle is different.
  • the optical axis angle of the film material between 50 mm and 500 mm is closer to 45°, so the light-condensing protrusions 120 are arranged along the direction of the 45° optical axis angle.
  • the optical axis angle of the film material between 950mm and 1400mm is closer to 30°, so the light-condensing protrusions 120 are arranged along the direction of the 30° optical axis angle. Therefore, the light-concentrating protrusions are arranged according to the optical axis angle corresponding to each section of film material.
  • the included angle between the first direction 112 and one side of the base body 110 may be 45°, or may be other angles.
  • the included angle between the first direction 112 and one side of the base body 110 depends on the base body 110 specific shape.
  • the arrangement direction of the plurality of light-concentrating protrusions 120 is parallel to the first direction 112 , so that the light passing through the light-concentrating protrusions 120 can be polarized along the first direction 112 , so that the light is as far as possible It propagates along the direction of the optical axis of the base body 110 , thereby weakening the birefringence effect and improving the optical characteristics and light transmission quality of the optical module.
  • the substrate 110 is an anisotropic structure, and there may be optical axes in other directions. Since the light of the light-concentrating protrusions 120 is along the first direction 112, the light is not easy to propagate along other optical axes, thereby weakening the optical axis of the substrate 110. Birefringence effect.
  • the optical film 100 is allowed to deviate ⁇ 5° between the first direction 112 and the first arrangement direction 121 due to the factors of control precision and instrument tolerance during the manufacturing process.
  • the first arrangement direction 121 and the second arrangement direction 123 are perpendicular to each other.
  • the polarization directions of the polarized light in the first arrangement direction 121 and the polarized light in the second direction are the same, thus further weakening the birefringence effect.
  • the second surface of the base body 110 may be provided with a light shielding layer 130
  • the light shielding layer 130 may be provided with a plurality of collimation holes 131
  • each light collecting protrusion 120 corresponds to one collimation hole 131 .
  • the light shielding layer 130 can block large-angle light from passing through the optical film 100 , thereby improving the optical performance of the optical film 100 .
  • the center connecting line between the adjacent concentrating protrusions 120 is the first center connecting line 122
  • the first center connecting line 122 is the light collecting protrusion 120 and the collimation hole the axis of symmetry. That is to say, the line connecting the centers of the light-converging protrusions 120 arranged in the first arrangement direction 121 is parallel to the first direction 112 , that is, the center of the light-converging protrusions 120 is parallel to the center of the first optical axis 111 . coincide with each other, so that the light can propagate along the direction of the first optical axis 111 as much as possible, thereby further weakening the birefringence effect.
  • the center connecting line between adjacent light-concentrating protrusions 120 is the second center connecting line 124
  • the second center connecting line 124 is the center connecting line 124 .
  • the projected contour of the light-concentrating protrusion 120 may be a circle, a regular quadrilateral, a regular hexagon, or other centrally symmetric shapes, so that the light-concentrating protrusion 120 is located in the first position.
  • Both the arrangement direction and the second arrangement direction 123 can be relatively symmetrical, which further improves the optical effect of the optical film 100 .
  • the projection of the light-concentrating protrusion 120 may be a regular hexagon.
  • the reflective surface area of the regular hexagon is larger, so you can improve the light collimation effect of the optical film 100.
  • the display module 200 of the electronic device may cover the optical film 100, and the display module 200 may have a plurality of pixel units 210, and the pixel units 210 may be arranged in an array to form a second array group. At this time, the light will present grid-like interference fringes after passing through the display module 200 and the optical film 100, thus affecting the imaging effect of the optical module.
  • the first array group may have a plurality of first symmetry axes 125 , and the first array group may be symmetric along each of the first symmetry axes 125 .
  • the second array group may have a plurality of second symmetry axes 211 .
  • the second array groups may be symmetrically arranged along each of the second symmetry axes 211 .
  • Each of the first symmetry axes 125 does not coincide with the plurality of second symmetry axes 211 .
  • the first symmetry axis 125 does not coincide with the plurality of second symmetry axes 211 , that is, the arrangement direction of the light-concentrating protrusions 120 and the arrangement direction of the pixel points are staggered, and the The arrangement direction and the arrangement direction of the pixel points are offset by a certain angle, so the condensing protrusion 120 and the pixel unit 210 are not easy to overlap, so that the pixel unit 210 and the light condensing protrusion 120 are not easy to form interference fringes, which in turn makes it difficult to form interference fringes. image is clearer.
  • the first symmetry axis 125 does not coincide with the plurality of second symmetry axes 211 , so that some discrete interference points are locally formed, so the imaging of the optical module is less affected.
  • the included angle between the two adjacent first symmetry axes 125 is 45°, and at this time, a larger staggered space is reserved between the adjacent two first symmetry axes 125, so as to further The pixel unit 210 and the light collecting protrusion 120 are prevented from forming interference fringes.
  • the included angle between two adjacent second symmetry axes 211 may be 45°. At this time, a large interlaced space is reserved between the two adjacent second symmetry axes 211 , so as to further prevent the pixel unit 210 and the light collecting protrusion 120 from forming interference fringes.
  • the range of the included angle ⁇ between the adjacent first symmetry axes 125 and the second symmetry axes 211 may be 0° ⁇ 45°. At this time, it can be ensured that the pixel units 210 and the light collecting protrusions 120 can be staggered in each arrangement direction.
  • the included angle ⁇ between the first symmetry axis 125 and the second symmetry axis 211 may range from 12.5° to 32.5°, preferably 22.5°.
  • first spacing 126 between adjacent light-concentrating protrusions 120, and the transmittance of the region within the first spacing 126 is low.
  • second spacing 212 between adjacent pixel units 210, and the local transmittance within the second spacing 212 is relatively high.
  • the first distance 126 may be smaller than the second distance 212, and the absolute value of the difference between the multiple of the first distance 126 and the second distance 212 is greater than or equal to the first preset threshold, which is a positive number.
  • the first spacing 126 and the second spacing 212 are not integral multiples, so that the parts with low transmittance are not easily overlapped with each other, and thus interference fringes are not easily generated.
  • the optical film 100 disclosed in the present application may further include a light-shielding layer 130 , the light-shielding layer 130 is provided with a plurality of light-transmitting holes, and the light-shielding layer 130 may be disposed on the base 110 away from the display module 200 .
  • the plurality of light-concentrating protrusions 120 may be located on the first surface of the base 110 facing the display module 200 , and the plurality of light-transmitting holes and the plurality of light-concentrating protrusions 120 are distributed in a one-to-one correspondence. That is to say, the light first passes through the light-concentrating protrusion 120 and then passes through the light-transmitting hole. During this process, the light-concentrating protrusions 120 can play a role of concentrating light, thereby increasing the amount of light passing through each light-transmitting hole.
  • the area of the light-transmitting holes may be the first area, the distance between two adjacent light-transmitting holes is the third distance, and the light-transmitting holes are areas with high light transmittance on the optical film 100, and the third distance is between the third distances. area with low transmittance.
  • the area of the pixel unit 210 is the second area, the distance between two adjacent pixel units 210 is the fourth distance, the pixel point is the area with low transmittance on the display module 200, and the area between the fourth distances High transmittance.
  • the first area may be smaller than the second area, and the third spacing may be smaller than the fourth spacing.
  • the multiple of the first area is different from that of the second area, and/or the multiple of the third distance is different from that of the fourth distance.
  • the area of the first spacing 126 is different from the third area, so that the parts with low transmittance are not easily overlapped with each other, and thus interference fringes are not easily generated.
  • the multiple of the third spacing is different from that of the fourth spacing, and the same effect can also be achieved, and details are not described herein again.
  • the light-transmitting hole and the collimating hole in the above text have the same structure, and the names are only different in different embodiments.
  • the area of the collimating hole 131 above is smaller than or equal to the area of the light-concentrating protrusion 120 , so that the light-converging protrusion 120 can completely cover the collimating hole 131 .
  • the embodiment of the present application further discloses an optical module, and the disclosed optical module includes the optical film 100 described in any of the above embodiments.
  • the optical module disclosed in the embodiments of the present application may further include a photosensitive unit 300 , and the optical film 100 covers the photosensitive surface of the photosensitive unit 300 . At this time, the light transmits through the optical film 100 and then enters the photosensitive unit 300 .
  • the arrangement direction of the plurality of light-concentrating protrusions 120 is parallel to the first direction 112 , so that the light passing through the light-concentrating protrusions 120 is polarized along the first direction 112 , so that the light rays pass along the first direction 112 of the base 110 .
  • An optical axis 111 propagates, thereby weakening the birefringence effect and improving the safety and reliability of the optical module.
  • the optical module may include at least one of a fingerprint recognition module and a camera module.
  • the embodiment of the present application further discloses an electronic device, and the disclosed electronic device includes the optical module described in any of the above embodiments.
  • the electronic device disclosed in the embodiments of the present application may further include a housing and a display module 200, the housing provides a mounting base for other components of the electronic device, the housing and the display module 200 may enclose a accommodating cavity, and the optical module may It is located in the accommodating cavity and distributed relative to the display module 200 . At this time, the optical module may be located below the display module 200, so as to realize functions such as under-screen fingerprinting or under-screen photography of the electronic device.
  • the arrangement direction of the plurality of light-concentrating protrusions 120 is parallel to the first direction 112, so that the light passing through the light-concentrating protrusions 120 follows the first direction 112.
  • One direction 112 is polarized, so that the light propagates along the first optical axis 111 of the base 110, thereby weakening the birefringence effect, improving the security and reliability of the optical module, and further improving the fingerprint recognition function of the electronic device, or Improve the shooting performance of electronic equipment.
  • the optical module can be a fingerprint module, the light-emitting unit of the display module 200 emits light, and the light is refracted by the user's finger and transmitted through the display module 200, and then injected into the optical module, thereby realizing fingerprint recognition. .
  • the electronic devices disclosed in the embodiments of the present application may be devices such as smart watches, smart phones, and tablet computers, and the embodiments of the present application do not limit the specific types of electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Studio Devices (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)

Abstract

一种光学膜片、光学模组及电子设备,属于通信设备技术领域。光学膜片包括基体(110)和多个聚光凸起(120),所述多个聚光凸起(120)在所述基体(110)的第一表面上形成第一阵列组,所述第一阵列组具有第一排布方向(121)和第二排布方向(123)。基体(110)具有第一光轴(111),所述第一光轴(111)与第一方向(112)相垂直,所述第一排布方向(121)与所述第一方向(112)相平行,所述第二排布方向(123)与所述第一排布方向(121)之间具有第一预设夹角。其中,所述基体(110)为各向异性结构,所述第一方向(112)为所述各向异性结构对应的方向。

Description

光学膜片、光学模组及电子设备
本申请要求2020年12月31日提交在中国专利局、申请号为202011637061.0、发明名称为“光学膜片、光学模组及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信设备技术领域,具体涉及一种光学膜片、光学模组及电子设备。
背景技术
随着电子设备的快速发展,电子设备的应用越来越广泛,诸如手机、平板电脑等电子设备在人们工作、生活、娱乐等方面发挥着越来越多的作用。电子设备的光学模组主要包括指纹模组和摄像模组,指纹模组实现电子设备的指纹识别功能,摄像模组主要实现电子设备的拍摄功能。
以指纹模组为例,相关技术中,电子设备包括指纹模组和显示模组,指纹模组设置于显示模组的下方,显示模组发出光线,光线经过用户手指折射后,部分光线进入指纹模组,从而实现用户指纹的识别。为了提高指纹模组的光学性能,指纹模组的感光芯片上可以贴设微透镜膜等光学膜片,微透镜膜能够将分散的光线变为平行光线,从而能够提高指纹模组的光学性能。
在实现本发明创造的过程中,发明人发现相关技术存在如下问题,由于光学膜材在结构上并非是均匀的,因此光线在进入非均匀的光学膜材会沿多个方向传播,并且传播路径会随着膜材结构发生改变,部分光线会损失或者干扰到其它传播方向上的光线,光学模组的透光质量较差,从而影响指纹模组成像。
发明内容
本申请实施例的目的是提供一种光学膜片、光学模组及电子设备,能够解决光学模组的透光质量较差的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种光学膜片,包括基体和多个聚光凸起,所述多个聚光凸起在所述基体的第一表面上形成第一阵列组,所述第一阵列组具有第一排布方向和第二排布方向;
所述基体具有第一光轴,所述第一光轴与第一方向相垂直,所述第一排布方向与所述 第一方向相平行,所述第二排布方向与所述第一排布方向之间具有第一预设夹角;
其中,所述基体为各向异性结构,所述第一方向为所述各向异性结构对应的方向。
第二方面,本申请实施例提供了一种光学模组,包括感光单元和上述光学膜片,所述光学膜片覆盖于所述感光单元的感光面。
第三方面,本申请实施例提供了一种电子设备,包括壳体、显示模组和上述的光学模组,所述壳体和所述显示模组围合形成容纳腔,所述光学模组位于所述容纳腔内且与所述显示模组相对分布
在本申请实施例中,光学膜片包括基体和多个聚光凸起,多个聚光凸起在基板的第一表面上形成第一阵列组,第一阵列组具有第一排布方向和第二排布方向。基体具有第一光轴,第一光轴与第一方向相垂直,基体为各向异性结构,第一方向为各向异性结构对应的方向。第一排布方向与第一方向相平行。此方案中,多个聚光凸起的排布方向与第一方向相平行,削弱了光学膜片中的双折射效应,增加了透过聚光凸起的光线,从而提高了光学模组的光学特性和透光质量。
附图说明
图1是本申请实施例公开的光学膜片的结构示意图;
图2和图3是本申请实施例公开的光学膜片的基体的结构示意图;
图4~图6是本申请实施例公开的光学膜片中聚光凸起在基体上的排布示意图;
图7是本申请实施例公开的光学膜片中第一对称轴线分布示意图;
图8是本申请实施例公开的电子设备中显示模组上的像素单元的排列示意图;
图9是本申请实施例公开的电子设备中显示模组的第二对称轴线的分布示意图;
图10是本申请实施例公开的电子设备中第一对称轴线和第二对称轴线的的分布示意图;
图11是本申请实施例公开的电子设备中第一间距和第二间距的分布示意图;
图12是本申请实施例公开的电子设备的结构示意图;
图13是本申请实施例公开的光学膜片中制作基体的膜材的长度与光轴角的示意图。
附图标记说明:
100-光学膜片、110-基体、111-第一光轴、112-第一方向、120-聚光凸起、121-第一排布方向、122-第一中心连线、123-第二排布方向、124-第二中心连线、125-第一对称轴线、126-第一间距、130-遮光层、131-准直孔、
200-显示模组、210-像素单元、211-第二对称轴线、212-第二间距。
300-感光单元。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的光学膜片进行详细地说明。
请参考图1~图13,本申请实施例公开一种光学膜片100,所公开的光学膜片100包括基体110和多个聚光凸起120。
多个聚光凸起120在基体110的第一表面上形成第一阵列组,第一阵列组具有第一排布方向121和第二排布方向123。可选地,基体110可以采用PET(polyethyleneterephthalate,聚对苯二甲酸乙二醇酯)材料制作,当然也可以采用其他材料制作,本文对此不作限制。聚光凸起120能够对穿过光学膜片100的光线进行折射,从而改变光线的传播路径,以达到光线准直的作用。
基体110具有第一光轴111,第一光轴111垂直于基体110,因此第一光轴为基体110的主光轴。第一光轴111与第一方向112相垂直,第一排布方向121与第一方向112相平行,第二排布方向123与第一排布方向121之间具有第一预设夹角。
基体110为各向异性结构,第一方向112为各向异性结构对应的方向。可以理解为,基体110在双向拉伸时,基体110内的晶格随着基体110的受力拉伸,此时基体的各向异性晶格结构对应存在一个双折射最小的特定方向,此方向即为上文的第一方向,也可以称为基 体110的光轴角方向。多个聚光凸起120沿着这个特定的方向排列,从而可以减小双折射效应所造成的光线损失和干扰,提升光学膜片100的光利用率。
一种理解方式中,基体110内的第一光轴为基体110的主光轴,第一光轴垂直于基体,也即第一光轴与第一方向相垂直,上述的第一方向主要与基体110的受力拉伸有关,由基体110在受力拉伸时,晶体的极化方向决定。
可选地,可以采用光线的偏振手段或双折射效应测量第一方向112,例如,采用偏振片测量出基体110的偏振光,偏振光与光轴角的方向平行,因此偏振光的方向就是第一方向112。上文中的第一预设角度可以为30°、45°、90°等,当然第一预设角度也可以为其他数值,当然也可以为其他数值,本文不作限制。
制作基体110的膜材在经过双向拉伸后,膜材的光轴角与膜材位置之间的关系如图13所示,膜材被拉伸后的总长度可以为5900mm,膜材被拉伸后,各位置的光轴角不同,因此在每一段区间内,对应的光轴角不同。例如,50mm~500mm之间的膜材的光轴角更接近45°,因此聚光凸起120沿着45°光轴角的方向排列。950mm~1400mm之间的膜材的光轴角更接近30°,因此聚光凸起120沿着30°光轴角的方向排列。因此,根据每段膜材所对应的光轴角,从而对聚光凸起进行排列。
如图3所示,第一方向112与基体110的一条边的夹角为可以45°,或者也可以为其他角度,当然,第一方向112与基体110的一条边的夹角取决于基体110的具体形状。
本申请实施例中,多个聚光凸起120的排布方向与第一方向112相平行,使得透过聚光凸起120的光线可以沿着第一方向112偏振,从而使得光线尽可能地沿着基体110的光轴方向传播,进而削弱了双折射效应,提高了光学模组的光学特性和透光质量。
基体110内为各向异性结构,可能存在着其他方向的光轴,由于聚光凸起120的光线沿着第一方向112,因此光线不容易沿着其他光轴传播,从而削弱了基体110的双折射效应。
上述实施例中,光学膜片100在制作过程中由于控制精度、仪器公差的因素,允许第一方向112和第一排布方向121偏差±5°。
为了进一步减弱光学膜片100的双折射效应,在另一种可选的实施例中,第一排布方向121和第二排布方向123相垂直。此方案中,第一排布方向121的偏振光和第二方向的偏振光的偏振方向相同,因此进一步弱化了双折射效应。
在另一种可选的实施例中,基体110的第二表面可以设有遮光层130,遮光层130可以开设有多个准直孔131,每个聚光凸起120对应一个准直孔131。此时,遮光层130能够将阻挡大角度光线透过光学膜片100,从而提高了光学膜片100的光学性能。
进一步地,在第一排布方向121上,相邻的聚光凸起120之间的中心连线为第一中心连线122,第一中心连线122为聚光凸起120和准直孔的对称轴。也就是说,在第一排布方向121上排布的聚光凸起120的中心连线与第一方向112相平行,也就使得聚光凸起120的中心与第一光轴111的中心相重合,从而使得光线尽可能的沿着第一光轴111的方向传播,从而进一步削弱了双折射效应。
在另一种可选的实施例中,在第二排布方向123上,相邻的聚光凸起120之间的中心连线为第二中心连线124,第二中心连线124为聚光凸起120和准直孔131的对称轴。此方案能够进一步削弱双折效应。
上述实施例中,在所述基体110的垂线方向上,聚光凸起120的投影轮廓可以为圆形,正四边形、正六边形等中心对称图形,从而使得聚光凸起120在第一排布方向和第二排布方向123上均能够相对称,进一步提高了光学膜片100的光学作用。
在另一种可选的实施例中,在基体110的垂线方向上,聚光凸起120的投影可以为正六边形。此方案中,正六边形的反射面面积较大,因此你能够提高光学膜片100光线准直的效果。
上述实施例中,电子设备的显示模组200可以覆盖于光学膜片100,且显示模组200可以具有多个像素单元210,像素单元210可以阵列排布形成第二阵列组。此时光线在透过显示模组200和光学膜片100后会呈现网格状的干涉条纹,因此影响光学模组成像的效果。
在另一种可选的实施例中,第一阵列组可以具有多条第一对称轴线125,第一阵列组可以沿着每一条第一对称轴线125对称。第二阵列组可以具有多条第二对称轴线211。第二阵列组可以沿着每一条第二对称轴线211对称设置。每条第一对称轴线125与多条第二对称轴线211均不重合。
此方案中,第一对称轴线125与多条第二对称轴线211均不重合,也就是说,聚光凸起120的排布方向和像素点的排布方向交错分布,聚光凸起120的排布方向和像素点的排布方向偏移一定的角度,因此聚光凸起120和像素单元210不容易重合,从而使得像素单 元210与聚光凸起120不容易形成干涉条纹,进而使得形成的图像较为清晰。
如图11所示,第一对称轴线125与多条第二对称轴线211均不重合,从而进行在局部形成一些离散的干扰点,因此对光学模组的成像影响较小。
可选地,相邻的两条第一对称轴线125之间的夹角为45°,此时,相邻的两条第一对称轴线125之间预留出较大的交错的空间,从而进一步防止像素单元210与聚光凸起120形成干涉条纹。
进一步地,相邻的两条第二对称轴线211之间的夹角可以为45°。此时相邻的两条第二对称轴线211之间预留出较大的交错空间,从而进一步防止像素单元210与聚光凸起120形成干涉条纹。
进一步地,相邻的第一对称轴线125与第二对称轴线211之间的夹角θ的范围为可以为0°<θ<45°。此时,能够保证像素单元210与聚光凸起120在每个排布方向上都可以错开。
可选地,第一对称轴线125与第二对称轴线211之间的夹角θ的范围可以为12.5°~32.5°之间,优选的为22.5°。
在另一种可选的实施例中,相邻的聚光凸起120之间可以具有第一间距126,第一间距126内的区域透过率较低。相邻的像素单元210之间可以具有第二间距212,第二间距212内的局域透过率较高。第一间距126可以小于第二间距212,且第一间距126的倍数与第二间距212之差的绝对值大于或者等于第一预设阈值,第一预设阈值为正数。此方案中,第一间距126和第二间距212不成整数倍,从而使得透过率低的部分不容易相互叠置,进而不容易产生干涉条纹。
在另一种可选的实施例中,本申请公开的光学膜片100还可以包括遮光层130,遮光层130开设有多个透光孔,遮光层130可以设置于基体110背离显示模组200的第二表面,多个聚光凸起120可以位于基体110朝向显示模组200的第一表面,多个透光孔和多个聚光凸起120一一对应分布。也就是说,光线首先穿过聚光凸起120,然后穿过透光孔。在此过程中,聚光凸起120可以起到聚光作用,从而可以增加每个透光孔的通光量。
透光孔的面积可以为第一面积,相邻的两个透光孔之间的间距为第三间距,透光孔为光学膜片100上透光率较高的区域,第三间距之间的区域透光率较低。像素单元210的面积为第二面积,相邻的两个像素单元210之间的间距为第四间距,像素点为显示模组200 上透光率较低的区域,第四间距之间的区域透光率较高。第一面积可以小于第二面积,第三间距可以小于第四间距。
其中,第一面积的倍数与第二面积不同,和/或,第三间距的倍数与第四间距不同。此方案中,此方案中,第一间距126面积和第三面积不相同,从而使得透过率低的部分不容易相互叠置,进而不容易产生干涉条纹。第三间距的倍数与第四间距不同,也可以达到相同的效果,本文不再赘述。
上述文中的透光孔与准直孔为同一结构,仅是在不同实施例中的命名不同。上文中的准直孔131的面积小于或等于聚光凸起120的面积,从而使得聚光凸起120能够全部覆盖准直孔131。
基于本申请实施例公开的光学膜片100,本申请实施例还公开一种光学模组,所公开的光学模组包括上文任一实施例所述的光学膜片100。本申请实施例公开的光学模组还可以包括感光单元300,光学膜片100覆盖于感光单元300的感光面。此时光线透射过光学膜片100后射入感光单元300。
此方案中,多个聚光凸起120的排布方向与第一方向112相平行,使得透过聚光凸起120的光线沿着第一方向112偏振,从而使得光线沿着基体110的第一光轴111传播,进而削弱了双折射效应,提高了光学模组的安全性和可靠性。
可选地,光学模组可以包括指纹识别模组、摄像模组中的至少一者。
基于本申请实施例公开的光学模组,本申请实施例还公开一种电子设备,所公开的电子设备包括上文任一实施例所述的光学模组。本申请实施例公开的电子设备还可以包括壳体和显示模组200,壳体为电子设备的其他组成部件提供安装基础,壳体和显示模组200可以围合形成容纳腔,光学模组可以位于容纳腔内且与显示模组200相对分布。此时,光学模组可以位于显示模组200的下方,从而实现电子设备的屏下指纹或者屏下拍摄等功能。
此方案中,光线透光显示模组200后进入光学模组内,多个聚光凸起120的排布方向与第一方向112相平行,使得透过聚光凸起120的光线沿着第一方向112偏振,从而使得光线沿着基体110的第一光轴111传播,进而削弱了双折射效应,提高了光学模组的安全性和可靠性,进而提高了电子设备的指纹识别功能,或者提高电子设备的拍摄性能。
如图12所示,光学模组可以为指纹模组,显示模组200的发光单元发射出光线,光线 经过用户手指折射后透射显示模组200后,射入光学模组内,从而实现指纹识别。
本申请实施例公开的电子设备可以是智能手表、智能手机、平板电脑等设备,本申请实施例不限制电子设备的具体种类。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (14)

  1. 一种光学膜片,其中,包括基体(110)和多个聚光凸起(120),所述多个聚光凸起(120)在所述基体(110)的第一表面上形成第一阵列组,所述第一阵列组具有第一排布方向(121)和第二排布方向(123);
    所述基体(110)具有第一光轴(111),所述第一光轴(111)与第一方向(112)相垂直,所述第一排布方向(121)与所述第一方向(112)相平行,所述第二排布方向(123)与所述第一排布方向(121)之间具有第一预设夹角;
    其中,所述基体(110)为各向异性结构,所述第一方向(112)为所述各向异性结构对应的方向。
  2. 根据权利要求1所述的光学膜片,其中,所述第一排布方向(121)与所述第二排布方向(123)相垂直。
  3. 根据权利要求1所述的光学膜片,其中,所述基体(110)的第二表面设有遮光层(130),所述遮光层(130)开设有多个准直孔(131),每个所述聚光凸起(120)对应一个所述准直孔(131);
    在所述第一排布方向(121)上,相邻的聚光凸起(120)之间的中心连线为第一中心连线(122),所述第一中心连线(122)为所述聚光凸起(120)和所述准直孔(131)的对称轴。
  4. 根据权利要求3所述的光学膜片,其中,在所述基体(110)的垂线方向上,所述聚光凸起(120)的投影为正六边形。
  5. 根据权利要求3所述的光学膜片,其中,在所述第二排布方向(123)上,相邻的所述聚光凸起(120)之间的中心连线为第二中心连接(124),所述第二中心连线(124)为所述聚光凸起(120)和所述准直孔(131)的对称轴。
  6. 根据权利要求3~5中任一项所述的光学膜片,其中,所述准直孔(131)的面积小 于或等于所述聚光凸起(120)的面积,所述聚光凸起(120)能够全部覆盖所述准直孔(131)。
  7. 根据权利要求1所述的光学膜片,其中,所述第一阵列组具有多条第一对称轴线(125);
    电子设备的显示模组(200)覆盖于所述光学膜片(100),且所述显示模组(200)具有多个像素单元(210),所述像素单元(210)阵列排布形成第二阵列组,所述第二阵列组具有多条第二对称轴线(211);
    其中,每条第一对称轴线(125)与所述多条第二对称轴线(211)均不重合。
  8. 根据权利要求7所述的光学膜片,其中,相邻的两条所述第一对称轴线(125)之间的夹角为45°;和/或,
    相邻的两条第二对称轴线(211)之间的夹角为45°。
  9. 根据权利要求7所述的光学膜片,其中,相邻的所述第一对称轴线(125)与所述第二对称轴线(211)之间的夹角θ的范围为0°<θ<45°。
  10. 根据权利要求7所述的光学膜片,其中,相邻的所述聚光凸起(120)之间具有第一间距(126),相邻的所述像素单元(210)之间具有第二间距(212);
    其中,所述第一间距(126)小于第二间距(212),且所述第一间距(126)的倍数与所述第二间距(212)之差的绝对值大于或者等于第一预设阈值,所述第一预设阈值为正数。
  11. 根据权利要求7所述的光学膜片,其中,还包括遮光层(130),所述遮光层(130)开设有多个透光孔,所述遮光层(130)设置于所述基体(110)背离所述显示模组(200)的第一表面,所述多个聚光凸起(120)位于所述基体(110)朝向所述显示模组(200)的第二表面,所述多个透光孔和所述多个聚光凸起(120)一一对应分布;
    所述透光孔的面积为第一面积,相邻的两个透光孔之间的间距为第三间距,所述像素单元(210)的面积为第二面积,相邻的两个像素单元(210)之间的间距为第四间距,所述第一面积小于所述第二面积,所述第三间距小于所述第四间距;
    其中,所述第一面积的倍数与所述第二面积不同,和/或,所述第三间距的倍数与所述 第四间距不同。
  12. 根据权利要求1所述的光学膜片,其中,多个所述聚光凸起(120)的排布方向与所述第一方向(112)相平行,透过所述聚光凸起(120)的光线沿所述第一方向(112)偏振以沿着所述基体(110)的光轴方向传播。
  13. 一种光学模组,其中,包括感光单元和权利要求1至12中任一项所述的光学膜片,所述光学膜片覆盖于所述感光单元(300)的感光面。
  14. 一种电子设备,其中,包括壳体、显示模组和权利要求13中所述的光学模组,所述壳体和所述显示模组(200)围合形成容纳腔,所述光学模组位于所述容纳腔内且与所述显示模组(200)相对分布。
PCT/CN2021/142322 2020-12-31 2021-12-29 光学膜片、光学模组及电子设备 WO2022143729A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237025593A KR20230121915A (ko) 2020-12-31 2021-12-29 광학 필름, 광학 모듈 및 전자기기
EP21914462.3A EP4273593A4 (en) 2020-12-31 2021-12-29 OPTICAL FILM, OPTICAL MODULE AND ELECTRONIC DEVICE
JP2023540630A JP2024502076A (ja) 2020-12-31 2021-12-29 光学フィルム、光学モジュール及び電子機器
US18/344,627 US20230341700A1 (en) 2020-12-31 2023-06-29 Optical film, optical module, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011637061.0A CN112698432B (zh) 2020-12-31 2020-12-31 光学膜片、光学模组及电子设备
CN202011637061.0 2020-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,627 Continuation US20230341700A1 (en) 2020-12-31 2023-06-29 Optical film, optical module, and electronic device

Publications (1)

Publication Number Publication Date
WO2022143729A1 true WO2022143729A1 (zh) 2022-07-07

Family

ID=75513791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142322 WO2022143729A1 (zh) 2020-12-31 2021-12-29 光学膜片、光学模组及电子设备

Country Status (6)

Country Link
US (1) US20230341700A1 (zh)
EP (1) EP4273593A4 (zh)
JP (1) JP2024502076A (zh)
KR (1) KR20230121915A (zh)
CN (1) CN112698432B (zh)
WO (1) WO2022143729A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112698432B (zh) * 2020-12-31 2022-08-19 维沃移动通信有限公司 光学膜片、光学模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108460349A (zh) * 2017-02-22 2018-08-28 辛纳普蒂克斯公司 用于减轻莫尔效应的显示器下光学指纹传感器布置结构
CN208848221U (zh) * 2019-04-10 2019-05-10 深圳市汇顶科技股份有限公司 光学指纹识别装置和电子设备
US20190179488A1 (en) * 2017-12-11 2019-06-13 Synaptics Incorporated Optical sensor having apertures
CN211236934U (zh) * 2020-01-15 2020-08-11 南昌欧菲生物识别技术有限公司 一种光学模组、屏下指纹识别装置及终端
CN211956495U (zh) * 2020-04-02 2020-11-17 南昌欧菲生物识别技术有限公司 微透镜组件、指纹识别模组及电子设备
CN112036228A (zh) * 2020-06-19 2020-12-04 北京极豪科技有限公司 活体指纹识别装置、方法以及触控终端
CN112698432A (zh) * 2020-12-31 2021-04-23 维沃移动通信有限公司 光学膜片、光学模组及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910842B2 (ja) * 2007-04-02 2012-04-04 ソニー株式会社 光学シートおよび表示装置
CN101726770A (zh) * 2008-10-28 2010-06-09 邹竞 大视角微透镜复制阵列增亮膜
CN108445558B (zh) * 2018-03-27 2021-01-26 京东方科技集团股份有限公司 光学膜材结构、其形成方法和显示装置
CN210295120U (zh) * 2019-07-12 2020-04-10 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备
CN111788577B (zh) * 2020-03-03 2024-04-30 深圳市汇顶科技股份有限公司 指纹识别装置、显示屏和电子设备
CN111611952B (zh) * 2020-05-27 2023-07-14 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108460349A (zh) * 2017-02-22 2018-08-28 辛纳普蒂克斯公司 用于减轻莫尔效应的显示器下光学指纹传感器布置结构
US20190179488A1 (en) * 2017-12-11 2019-06-13 Synaptics Incorporated Optical sensor having apertures
CN208848221U (zh) * 2019-04-10 2019-05-10 深圳市汇顶科技股份有限公司 光学指纹识别装置和电子设备
CN211236934U (zh) * 2020-01-15 2020-08-11 南昌欧菲生物识别技术有限公司 一种光学模组、屏下指纹识别装置及终端
CN211956495U (zh) * 2020-04-02 2020-11-17 南昌欧菲生物识别技术有限公司 微透镜组件、指纹识别模组及电子设备
CN112036228A (zh) * 2020-06-19 2020-12-04 北京极豪科技有限公司 活体指纹识别装置、方法以及触控终端
CN112698432A (zh) * 2020-12-31 2021-04-23 维沃移动通信有限公司 光学膜片、光学模组及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4273593A4 *

Also Published As

Publication number Publication date
EP4273593A4 (en) 2024-06-19
JP2024502076A (ja) 2024-01-17
CN112698432A (zh) 2021-04-23
EP4273593A1 (en) 2023-11-08
KR20230121915A (ko) 2023-08-21
CN112698432B (zh) 2022-08-19
US20230341700A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP7234121B2 (ja) 表示装置及びその制御方法
US9818017B2 (en) Fingerprint identification module
WO2017071404A1 (zh) 一种光学结构及其制作方法以及显示基板和显示器件
CN107392132B (zh) 一种显示面板及显示装置
WO2020015436A1 (zh) 具有纹路检测功能的电子设备
WO2018223726A1 (zh) 显示面板及显示装置
TW201702933A (zh) 指紋辨識模組
US20200320267A1 (en) Image acquisition device and fingerprint acquisition apparatus
JPS63263520A (ja) 入出力一体型デイスプレイ装置
CN105760808A (zh) 成像板、图像采集器及终端
WO2022143729A1 (zh) 光学膜片、光学模组及电子设备
CN110945527B (zh) 指纹识别装置和电子设备
WO2021213514A1 (zh) 一种侧入式背光模组、液晶显示装置
KR20220079999A (ko) 디스플레이 모듈 및 이의 제어 방법과 장치, 전자기기
WO2021083231A1 (zh) 电子设备
US10444529B2 (en) Polarized light source and display apparatus
CN109036162B (zh) 一种有机发光显示面板、制备方法和一种显示装置
CN110908174A (zh) 一种显示面板及显示装置
CN111427183A (zh) 显示面板和显示装置
WO2021213037A1 (zh) 显示面板、显示装置和显示面板的制作方法
TWM606633U (zh) 電子裝置
US8736738B2 (en) Optical lens and image pick-up apparatus having same
WO2020015761A1 (zh) 具有纹路检测功能的电子设备
TW202040306A (zh) 顯示裝置
KR102236511B1 (ko) 백라이트 유닛과 이를 포함하는 액정 표시 장치, 및 도광판의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914462

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540630

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237025593

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021914462

Country of ref document: EP

Effective date: 20230731