WO2022143528A1 - 用于dss的抗干扰方法、装置、电子设备及存储介质 - Google Patents

用于dss的抗干扰方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022143528A1
WO2022143528A1 PCT/CN2021/141652 CN2021141652W WO2022143528A1 WO 2022143528 A1 WO2022143528 A1 WO 2022143528A1 CN 2021141652 W CN2021141652 W CN 2021141652W WO 2022143528 A1 WO2022143528 A1 WO 2022143528A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
dss
communication network
radio frequency
performance parameters
Prior art date
Application number
PCT/CN2021/141652
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2023539885A priority Critical patent/JP2024502019A/ja
Priority to US18/270,016 priority patent/US20240064791A1/en
Priority to EP21914264.3A priority patent/EP4270823A1/en
Publication of WO2022143528A1 publication Critical patent/WO2022143528A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • H04B15/04Reducing interference from electric apparatus by means located at or near the interfering apparatus the interference being caused by substantially sinusoidal oscillations, e.g. in a receiver or in a tape-recorder

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to an anti-interference method for DSS.
  • DSS Dynamic Spectrum Sharing
  • LTE Long Term Evolution
  • NR 5G New Radio
  • the adoption of DSS technology can improve spectral efficiency and facilitate smooth evolution between 4G and 5G; it can not only utilize the low-band resources and base stations of old 4G, but also realize smooth evolution from 4G to 5G, greatly reducing 5G investment costs.
  • DSS is very attractive to operators, it still faces many technical challenges, mainly the problem of inter-channel interference.
  • 4G/5G DSS is a broadband system with relatively extensive channel configuration. Control channels, pilots, etc. are all mapped in full frequency bands, while 5G is also a broadband system, and there are also various physical channels. Reserving the buffer band solves the interference of various physical channels between the two systems, but by reserving the buffer band, the overall spectrum utilization rate of the traffic channel in the DSS process will be reduced.
  • the embodiments of the present application provide an anti-interference method for DSS, including: acquiring real-time radio frequency performance parameters and communication performance parameters; judging whether there is interference from dynamic spectrum sharing DSS according to the radio frequency performance parameters and communication performance parameters; If there is interference, classify the interference according to the radio frequency performance parameter and the communication performance parameter; according to the result of the classification, perform corresponding anti-interference processing for different types of interference.
  • Embodiments of the present application also provide an anti-interference device for DSS, including: an acquisition module for acquiring real-time radio frequency performance parameters and communication performance parameters; and a judgment module for acquiring real-time radio frequency performance parameters and communication performance parameters; The parameter judges whether there is interference of the dynamic spectrum sharing DSS; the classification module is used to classify the interference according to the radio frequency performance parameter and the communication performance parameter if there is interference; the processing module is used to classify the interference according to the result of the classification, Corresponding anti-jamming processing is performed for different types of interference.
  • Embodiments of the present application also provide an electronic device, comprising: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores data executable by the at least one processor The instructions are executed by the at least one processor, so that the at least one processor can execute the above-mentioned anti-jamming method for DSS.
  • Embodiments of the present application further provide a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the above-mentioned anti-interference method for DSS is implemented.
  • FIG. 1 is a schematic diagram of dynamic spectrum sharing in the background technology of the present application.
  • FIG. 3 is a schematic diagram of the cause of interference provided by the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of anti-interference processing for adjusting dynamic power provided by the first embodiment of the present application
  • FIG. 6 is a flowchart of an anti-interference method for DSS provided by the second embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an anti-interference method for DSS provided by the second embodiment of the present application.
  • FIG. 8 is a schematic diagram of an apparatus for an anti-interference method for DSS provided by a third embodiment of the present application.
  • FIG. 9 is a schematic diagram of an electronic device provided by a fourth embodiment of the present application.
  • first and second in the embodiments of the present application are only used for the purpose of description, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • the terms “comprising” and “having” and any variations thereof are intended to cover non-exclusive inclusion. For example, a system, product or device comprising a series of components or units is not limited to the listed components or units, but may optionally also include components or units not listed, or Other parts or units inherent in the equipment.
  • "a plurality of” means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the first embodiment of the present application relates to an anti-interference method for DSS, which is applied to electronic equipment including various 5G terminals, Customer Premise Equipment (CPE), base stations, and other products using 5G technology, etc. , the specific process is shown in Figure 2.
  • CPE Customer Premise Equipment
  • Step 101 acquiring real-time radio frequency performance parameters and communication performance parameters
  • Step 102 according to the radio frequency performance parameter and the communication performance parameter, determine whether there is interference from the dynamic spectrum sharing DSS, if so, go to step 103; if not, go back to step 101;
  • Step 103 classify the interference according to the radio frequency performance parameter and the communication performance parameter
  • Step 104 according to the classification result, perform corresponding anti-interference processing for different types of interference, and then return to step 101 for judgment and detection after processing.
  • the electronic device supporting the DSS function obtains real-time radio frequency performance parameters and communication performance parameters of the electronic device through a test algorithm built into the electronic device. That is, when acquiring real-time RF performance parameters and communication performance parameters, it does not rely on external test instruments, and does not rely on additional RF modules and devices, such as power dividers, combiners, couplers, coupling boxes, etc. It does not depend on the RF test cable, and is only realized by the self-test algorithm and instructions, which is located in the electronic equipment program.
  • the terminal collects the real-time power, Error Vector Magnitude (EVM), and Adjacent Channel Leakage Ratio (ACLR) three transmit indicators through the built-in test algorithm, and also collects the reference signal received power ( Reference Signal Receiving Power, RSRP) and estimated sensitivity (Sensitivity, SEN) two receiving indicators.
  • radio frequency performance parameters such as: EVM, ACLR and RSRP and block error rate (Block Error Rate, BLER), etc.
  • communication performance parameters such as: uplink and downlink throughput, bit error rate, modulation and coding strategy (Modulation and Coding Scheme, MCS) ) and multiple-in-multiple-out (Multiple-In Multiple-Out, MIMO) data streams, etc.
  • step 102 it is judged whether there is DSS interference according to the comparison of the acquired real-time radio frequency performance parameters and communication performance parameters with the preset radio frequency performance index and communication performance index threshold without DSS interference. For example, by comparing the collected uplink and downlink throughput, MCS, bit error rate and other indicators with the preset DSS indicator thresholds in the non-interference state, exceeding the preset range indicates that there is interference in the current working mode of the electronic equipment. Due to the overlapping of different communication channels, or the relationship between adjacent states, interference will occur, such as shown in Figure 3; 100% overlapping interference will occur in 01 state, 20% overlapping in-band interference will occur in 02 state, 03 and 04. Adjacent band interference will occur in the state, and harmonic interference, intermodulation interference or stray interference will occur in the 05 state.
  • the self-test algorithm when the self-test is performed based on the transmission index in the radio frequency performance parameter and the communication performance parameter, the self-test algorithm sends a control command in the idle or standby time slot of the terminal, and according to the acquired real-time transmission index, invokes the real-time acquired real-time EVM and ACLR with the same emission indicators, control the transmitter of the terminal to enter the spontaneous mode; and collect the emission indicators EVM and ACLR indicators of the transmitter through closed-loop feedback, and compare them with the preset emission indicators EVM and ACLR thresholds, such as the threshold EVM is 3%, and the threshold ACLR is -35dBc.
  • the emission indicators EVM and ACLR used for the self-test can also be calculated and estimated by sampling an in-phase quadrature signal (In-phase Quadrature, IQ).
  • the self-test algorithm controls the transmitter to transmit a single carrier (Carrier Wave, CW) reference signal, such as a continuous single-tone waveform signal with a CELL POWER signal level of -70dB, the signal can be the same frequency signal as the shared spectrum frequency point, or it can be a certain frequency offset on the basis of the shared spectrum frequency point.
  • Carrier Wave, CW Carrier Wave
  • the receiver collects the CW wave, demodulates and performs demodulation and signal strength indication (Received Power, RX) received by the terminal side/Signal Strength indication (Received Signal Strength) received by the base station side Indication, RSSI) calculation, compare the read RSRP signal with the transmitted level CELL POWER, judge the difference, and compare it with the preset threshold (such as 3dB), if it is greater than 3dB, it can judge the current sharing If there is interference in the spectrum, it is necessary to adjust the spectrum frequency of NR to a position without interference; if it is less than 3dB or close to 0, it can be judged that the current shared spectrum interference is free or acceptable, and there is no need to adjust the spectrum frequency.
  • a schematic diagram of self-testing using the transmit index and/or the receive index in the radio frequency performance parameter and the communication performance parameter is shown in FIG. 4 .
  • the above-mentioned IQ sampling value, NF (Noise Factor, noise factor) value and thermal noise value between systems can also be captured through the system software algorithm, and then the C/N carrier noise between the transceiver and the antenna end of the terminal system can be calculated. ratio, and finally converted into a SEN value; compare the RSRP value read by the above-mentioned receiver and the converted SEN value with the corresponding RSRP value and SEN target threshold value in the preset DSS interference-free state to determine whether there is currently interference.
  • NF Noise Factor, noise factor
  • the target threshold RSRP of N3 is -70+/-2dB
  • the corresponding limit SEN is -93dBm/BW
  • the calculated and detected RSRP value is - 65dB
  • the calculated SEN is -89dBm/BW, which indicates that the current shared interference is 4-5dB.
  • the interference is classified according to the radio frequency performance parameters and communication performance parameters obtained in real time.
  • the interference is classified according to the frequency point information and ACLR of the first communication network and the second communication network, where the network speed of the second communication network is greater than the network speed of the first communication network, for example, the second communication network It can be 5G NR, and the first communication network can be 4G LTE.
  • DSS interference includes harmonic interference, intermodulation interference, spurious interference, etc. Since NR occupies the spectrum of LTE frequency, sometimes even very close to or overlapping with LTE, DSS interference will occur. By calculating the frequency point information of LTE and NR, and monitoring the ACLR coexistence spur value, the interference type can be identified. For example, if the frequency of B1 and N28 is a triple frequency, it is harmonic interference. When B1 and N1 work at the same time, if the frequency is very close, and the ACLR coexistence spur value is greater than the target threshold, it is spurious interference.
  • step 104 according to the classification result, corresponding anti-interference processing is performed for different types of interference. Corresponding processing is performed for different interference types, so that the anti-interference execution process is more accurate and efficient.
  • the relevant size is recorded as the correlation coefficient and stored in the memory; through the correlation between interference and adjustment parameters, call the corresponding or highly correlated anti-interference measures.
  • the relevant AI learning process the steps of which are completed after a round of effective adjustment. That is, the model establishment process of effective adjustment measures and parameters, that is, the self-learning process of the DSS anti-interference parameter model library, establishes a correlation coefficient between each round or final adjustment measures or parameters and the predetermined target. If it is invalid, the correlation coefficient is reduced by 1. Through continuous accumulation and learning, the correlation model library is improved, so that the subsequent more accurate anti-interference adjustment can be made.
  • anti-interference processing is performed by adjusting the transmit power in the dynamic power.
  • the following examples are given:
  • the spurs of LTE or NR will cause the uplink and downlink bit error rate (Symbol Error Rate, SER) to be different, which will lead to the deterioration of the throughput performance, so it is necessary to eliminate the spurs.
  • SER symbol Error Rate
  • a significant form of abnormal spurious parameters is that the transmit power of LTE or NR in the real-time acquired RF indicators is high, reaching or approaching the maximum transmit power. At this time, the ACLR margin at this power is small, and EVM or spurious are critical. Range; adjusting the transmit power can affect ACLR, EVM and spurs at the same time, and can perform anti-jamming processing on spurious interference.
  • the transmit power of NR is 23dbm, which has reached the maximum transmit power, and the transmit power of LTE is 5dbm. At this time, adjust the transmit power, reduce the transmit power of NR to 20dbm, and improve the transmit power of LTE.
  • the transmit power reaches 8dbm (or other good power range)
  • anti-jamming processing is performed by adjusting adaptive modulation parameters.
  • the modulation parameters are for example: MCS, start resource block (Resource Block start, RB start), resource block number (Resource Block number, RB nub), Rank, Sub-Carrier Spacing (Sub-Carrier Spacing, SCS) and the like.
  • LTE adopts a fixed 15kHz SCS
  • NR supports the mixed use of different parameter sets, that is, different SCSs are allowed to be configured, such as 15kHz, 30kHz, 60kHz, etc.
  • NR reduces inter-symbol interference through the windowing/filtering technology of Orthogonal Frequency Division Multiplexing (OFDM) signals, but LTE does not have the windowing/filtering technology, resulting in spectrum sharing between NR and LTE, if the NR configuration is different from 15kHz SCS will cause interference to LTE and cause performance loss of LTE. Therefore, first check whether the current SCS is orthogonal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the SCS of NR If it is not orthogonal, adjust the SCS of NR to be orthogonal to the SCS of LTE; if the SCS of NR cannot be adjusted, there is still interference or the original SCS cannot be adjusted after the SCS is adjusted to orthogonal.
  • the adjusted SCS is originally in an orthogonal state, and other adaptive modulation parameters are adjusted until the detected real-time radio frequency index meets the preset DSS non-interference threshold requirement.
  • the shared channel is constrained to adjust according to a channel constraint algorithm.
  • the channel that restricts LTE or NR is in the available range list, and by performing channel limitation, interference can be reduced or eliminated.
  • a channel restriction mechanism is introduced into the module's software.
  • the channel constraint algorithm of LTE-NR is used to limit the working range or list of coexistence channels of LTE and NR. Channels can only be shared.
  • the channels are out of the constraint range or the specified list is unavailable, you need to adjust to the channels in the constraint range or specified list.
  • it can be restricted by whitelist or blacklist. If it is whitelist, it specifies the shared spectrum channel value of LTE and NR; if it is blacklist, it specifies the spectrum channel value that LTE and NR cannot use at the same time.
  • the channel constraint algorithm comes from the research and development acquisition values before leaving the factory, which is based on the scanning acquisition value of a large number of data models.
  • the scanning range is the combination of the LTE full channel and the NR full channel of the corresponding frequency band. /ACLR/RSRP/BLER, etc., the channels that meet the preset threshold requirements of DSS without interference are listed as available channels.
  • the channel constraint is not static, but dynamically adjustable.
  • the NR channel will also change accordingly.
  • the channel combination in the channel constraint algorithm also has a real-time update function.
  • the channel combination and condition will also be automatically added and stored in the channel constraint algorithm, that is, it can be autonomously added.
  • Real-time learning supplement at the same time, it can receive and mark the available channel combination and unavailable channel combination input by the user, and update it in real time.
  • a predetermined processing method is pre-stored for the changes of some non-complex RF performance parameters and communication performance parameters, that is, when the interference judgment is made by the RF performance parameters and the communication performance parameters, if it is identified as a pre-stored interference condition, then The pre-stored anti-interference mode corresponding to the interference is called to reduce the dynamic calculation of parameters within the abnormal threshold range and improve the processing efficiency of anti-interference.
  • the data preset in the storage space also includes: radio frequency performance parameters and communication performance parameters under different spectrum overlapping modes of NR and LTE; NR radio frequency index values in different channel ranges, such as dividing the NR channel into three segments, high, medium and low HML. , or according to the degree of interference deterioration under ENDC, it is divided into ABCDEF segments.
  • the interference is classified according to the radio frequency index, and corresponding processing is performed according to the classification result, so that the anti-interference processing is more targeted and improved without reducing the spectrum utilization rate.
  • Anti-jamming processing efficiency because the radio frequency performance parameters and communication performance parameters are real-time acquisition values, real-time feedback can be obtained after anti-jamming processing to verify whether there is still interference, which ensures the completion of anti-jamming processing. That is to say, the embodiments of the present application can solve the self-interference problem of the current 5G terminal in the DSS process, improve the spectrum anti-interference performance of 2/3/4G and 5G NR, and prevent the emission index caused by the conflict or interference in the dynamic process. Deterioration, receive large bit errors, and then improve the performance effect of terminal 5G peak upload and download throughput.
  • the second embodiment of the present application relates to an anti-interference method for DSS, and the specific process is shown in FIG. 6 .
  • Step 201 identifying the frequency band combination of dynamic spectrum sharing
  • Step 202 According to the identified frequency band combination of the dynamic spectrum sharing, it is judged whether there may be the interference of the dynamic spectrum sharing DSS, if there may be the interference of the DSS, then go to step 203; if the interference of the dynamic spectrum sharing DSS is impossible, then end process;
  • Step 203 according to the radio frequency performance parameters and communication performance parameters detected in real time, determine whether there is interference, if so, go to step 204; if not, go back to step 203;
  • Step 204 classify the interference according to the radio frequency performance parameter and the communication performance parameter
  • Step 205 according to the classification result, perform corresponding anti-interference processing for different types of interference, and return to step 203 after processing.
  • steps 203 to 205 are substantially the same as those in the first embodiment, and are not described repeatedly to avoid repetition.
  • the main difference lies in step 201 and step 202, and the implementation details will be described in detail below.
  • the electronic device system software can also capture the shared report information to identify the frequency band combination of dynamic spectrum sharing, that is, which frequency band of NR and LTE shares the spectrum, such as B1 -N1, B3-N3, B28-N28, B66-N66, B71-N71, etc.
  • SA Standalone
  • NSA Non-Standalone
  • NR-CA 5G carrier aggregation
  • LTE and NR band point information under the dual connection of LTE and NR (E-UTRA-NR-Dual Connectivity, EN-DC).
  • NR-CA NR-CA is also required.
  • Frequency band frequency information such as N3-N78; if it is 4G Long Term Evolution-Carrier Aggregation (LTE-CA) plus EN-DC mode, you need to collect the frequency band information of LTE-CA and NR at the same time.
  • LTE-CA 4G Long Term Evolution-Carrier Aggregation
  • EN-DC EN-DC
  • step 202 it is determined whether there is interference from the dynamic spectrum sharing DSS according to the identified frequency band combination of the dynamic spectrum sharing. If the identification result is that there is no frequency band combination of dynamic spectrum sharing, it means that there is no DSS interference, and this process is directly ended. If there is a frequency band combination of dynamic spectrum sharing, it means that there may be DSS interference. Real-time detection of RF performance parameters and communication performance parameters to determine whether there is interference.
  • the current shared spectrum state of the first communication network and the second communication network is detected, wherein the first communication network may be LET, and the second communication network may be NR. If there is currently no shared spectrum between LTE and NR, subsequent anti-interference processing for DSS is not required; if LTE and NR do not work at the same time in the currently shared spectrum or there is a spectrum gap (for example, in the high and low channel ranges respectively) , the interference state is known, and the preset anti-interference parameters can be called for processing.
  • the schematic diagram of the system block in the DSS state in this embodiment is shown in Figure 7, in which the sharing detection module L1 is used to identify the frequency band combination and working mode of dynamic spectrum sharing according to the sharing report information;
  • the communication performance parameter judges whether there is DSS interference;
  • the DSS interference classification module L3 is used to classify the interference according to the radio frequency performance parameter and the communication performance parameter;
  • the pre-interference adjustment module L4 is used to call the preset anti-interference parameters to deal with the known relatively simple
  • the real-time calculation and adjustment module L5 performs calculation and analysis according to the acquired real-time radio frequency performance parameters and communication performance parameters, and calls the corresponding anti-jamming processing module for corresponding processing;
  • the shared channel constraint and anti-jamming module L6 is used to adjust the channel constraints.
  • the dynamic power control anti-jamming module L7 is used to deal with stray interference; the modulation parameter adjustment anti-jamming module L8 is used to deal with harmonic interference and intermodulation interference; there is also a parameter storage module (not shown) that is connected with each operation and judgment module. , the process of anti-jamming processing provides parameter support.
  • the parameter storage module may contain the following information: different radio frequency transceiver index values and field measurement index values under different spectrum overlap modes of NR and LTE, that is, index parameter values in the dynamic spectrum sharing mode; NR in different channel ranges Radio frequency index value, such as dividing the NR channel into three segments, high, medium and low HML, or dividing into ABCDEF multi-segments according to the degree of interference deterioration under random access 4G5G dual connectivity (EUTRA-NR Dual Connectivity, ENDC); in non-dynamic power sharing mode , the transmit index value of different target transmit power, and the transmit index value under dynamic power sharing mode; different modulation coefficients, such as different RB number, transmit index value under MCS, time slot SLOT, and under different receive gain and receive level throughput and bit error values.
  • different radio frequency transceiver index values and field measurement index values under different spectrum overlap modes of NR and LTE that is, index parameter values in the dynamic spectrum sharing mode
  • NR in different channel ranges Radio frequency index value, such as dividing the
  • the pre-interference adjustment module L4, the shared channel constraint anti-jamming module L6, the dynamic power control anti-jamming module L7 and the modulation parameter adjustment anti-jamming module L8 can perform anti-jamming processing according to the parameters stored in the parameter storage module.
  • the pre-interference adjustment module L4 is mainly used for anti-interference adjustment in the case where dynamic sharing is not very complicated.
  • the LTE used in the same time period is not working at the same time, but other LTE frequency bands are working.
  • B3 is not working, and only B1 is working.
  • B3 and N3 work at the same time, but in different spectrum ranges, B3 is in the low channel range, and N3 is in the high channel range, and there is a certain spectrum interval between them.
  • the interference state between them is known, and the pre-interference adjustment module L4 can be called to limit LTE and NR to different spectrum ranges, or the anti-interference processing modules of L6-L8 can be called for adjustment and optimization.
  • the real-time calculation and adjustment module L5 is connected with the anti-jamming processing modules L4, L6 to L8, and is mainly used for calculating the anti-jamming adjustment in the case of dynamic sharing.
  • the frequency points are dynamically changing, and it is not easy to divide and preprocess.
  • the first communication network and the second communication network currently have a shared spectrum; after judging that there is spectrum sharing, real-time parameters are further received to determine whether there is interference, and anti-interference processing is performed. It avoids the useless process of receiving DSS parameters and performing interference judgment, and reduces the system resource occupation of the device for anti-interference processing.
  • the third embodiment of the present application relates to an anti-interference device for DSS, as shown in FIG. 8 , including:
  • an acquisition module 301 configured to acquire real-time radio frequency performance parameters and communication performance parameters
  • the judgment module 302 is used for judging whether there is interference of the dynamic spectrum sharing DSS according to the radio frequency performance parameter and the communication performance parameter;
  • a classification module 303 configured to classify the interference according to the radio frequency performance parameter and the communication performance parameter if there is interference
  • the processing module 304 is configured to perform corresponding anti-interference processing for different types of interference according to the classification result.
  • the obtaining module 301 before obtaining the real-time radio frequency performance parameters and communication performance parameters, it is detected whether the first communication network and the second communication network currently have a shared frequency spectrum; if the first communication network and the second communication network currently If there is a shared spectrum, and the first communication network and the second communication network do not have a spectrum gap in the shared spectrum, then the acquisition of real-time radio frequency performance parameters and communication performance parameters is performed.
  • the judgment module 302 in one example, according to the radio frequency performance parameter and the communication performance parameter, it is compared with the preset radio frequency performance index and the communication performance index threshold value of the DSS without interference to judge whether there is DSS interference.
  • the interference is classified according to the frequency point information and the adjacent channel rejection ratio ACLR of the first communication network and the second communication network; wherein, the types of interference include: harmonic interference, intermodulation interference , stray interference; the network speed of the second communication network is greater than the network speed of the first communication network.
  • adjust the dynamic power in the DSS for example: detect the current transmission power of the first communication network and the second communication network; if the difference between the current transmission power of the first communication network and the maximum transmission power of the first communication network is less than the preset first threshold, the current transmission power of the first communication network is reduced, and the current transmission power of the second communication network is increased; if the difference between the current transmission power of the second communication network and the maximum transmission power of the second communication network is less than By presetting the second threshold, the current transmit power of the second communication network is decreased, and the current transmit power of the first communication network is increased.
  • Adjust the adaptive modulation parameters for example: detect whether the current SCS is orthogonal; if the SCS is not orthogonal, adjust the SCS of the second communication network to be orthogonal to the SCS of the first communication network; wherein, if the SCS adjustment fails or the SCS adjustment If there is still interference even after the quadrature, the adaptive modulation parameter of the second communication network is adjusted.
  • the interference is channel interference
  • the shared channel is constrained to adjust according to the channel constraint algorithm; the channel interference is that the frequency points of the channels are coincident or adjacent.
  • the interference is classified according to the radio frequency index, and corresponding processing is performed according to the classification result, so that the anti-interference processing is more targeted and improved without reducing the spectrum utilization rate.
  • Anti-jamming processing efficiency because the radio frequency performance parameters and communication performance parameters are real-time acquisition values, real-time feedback can be obtained after anti-jamming processing to verify whether there is still interference, which ensures the completion of anti-jamming processing. That is to say, the embodiments of the present application can solve the self-interference problem of the current 5G terminal in the DSS process, improve the spectrum anti-interference performance of 2/3/4G and 5G NR, and prevent the emission index caused by the conflict or interference in the dynamic process. Deterioration, receive large bit errors, and then improve the performance effect of terminal 5G peak upload and download throughput.
  • this embodiment is a system example corresponding to the above-mentioned embodiment, and this embodiment can be implemented in cooperation with the above-mentioned embodiment.
  • the related technical details mentioned in the foregoing embodiment are still valid in this embodiment, and are not repeated here in order to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied to the above-mentioned embodiments.
  • each module involved in this embodiment is a logical module.
  • a logical unit may be a physical unit, a part of a physical unit, or multiple physical units.
  • a composite implementation of the unit in order to highlight the innovative part of the present application, this embodiment does not introduce units that are not closely related to solving the technical problem raised by the present application, but this does not mean that there are no other units in this embodiment.
  • the fourth embodiment of the present application relates to an electronic device, as shown in FIG. 9 , comprising at least one processor 401; and a memory 402 communicatively connected to the at least one processor 401; Instructions executed by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to execute the above-described anti-jamming method for DSS.
  • the memory and the processor are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory.
  • the bus may also connect together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface between the bus and the transceiver.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory may be used to store data used by the processor in performing operations.
  • the fifth embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于DSS的抗干扰方法、装置、电子设备及存储介质。用于DSS的抗干扰方法,包括:获取实时的射频性能参数及通讯性能参数;根据射频性能参数及通讯性能参数判断是否存在动态频谱共享DSS的干扰;若存在干扰,则根据射频性能参数及通讯性能参数对干扰进行分类;根据分类的结果,对不同类型的干扰执行对应的抗干扰处理。

Description

用于DSS的抗干扰方法、装置、电子设备及存储介质
交叉引用
本申请基于申请号为“202011578563.0”、申请日为2020年12月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信领域,特别涉及一种用于DSS的抗干扰方法。
背景技术
随着移动宽带网络业务流量需求的不断增加,频谱密集,且目前的低频段频谱资源几乎都被2/3/4G占据,由于2/3/4G,尤其是4G,将与5G长期共存,又无法全部重耕这些优质的低频段资源。运营商将2G/3G网络重耕到4G,从4G重耕到5G,已是大势所趋,如何从运营商的现有频谱资源挖掘更多潜力就成了业界普遍关注的议题。频谱共享技术能够实现在同一频段按需、动态地分配频谱资源,成为运营商的必然选择。动态频谱共享(Dynamic Spectrum Sharing,DSS),就是允许4G长期演进(Long Term Evolution,LTE)和5G新空口(New Radio,NR)共享相同的频谱,并将时频资源动态分配给4G和5G用户,如图1所示。采用DSS技术后,能够提升频谱效率,且利于4G和5G之间平滑演进;既可利用旧4G的低频段资源和基站,也可实现4G向5G平滑演进,大幅降低5G投资成本。
尽管DSS对运营商来说非常有吸引力,但在技术上仍面临不少挑战,主要是信道间干扰问题。以4G/5G的DSS为例,4G为宽带***,信道配置相对粗放,控制信道、导频等均为全频带映射,而5G也为宽带***,同样存在各类物理信道,一些例子中通过预留缓冲带来解决两种制式之间的各种物理信道的 干扰,但通过预留缓冲带的方式会降低业务信道在DSS过程中整体频谱利用率。
发明内容
本申请的实施方式提供了一种用于DSS的抗干扰方法,包括:获取实时的射频性能参数及通讯性能参数;根据所述射频性能参数及通讯性能参数判断是否存在动态频谱共享DSS的干扰;若存在干扰,则根据所述射频性能参数及通讯性能参数对所述干扰进行分类;根据所述分类的结果,对不同类型的干扰执行对应的抗干扰处理。
本申请的实施方式还提供了一种用于DSS的抗干扰装置,包括:获取模块,用于获取实时的射频性能参数及通讯性能参数;判断模块,用于根据所述射频性能参数及通讯性能参数判断是否存在动态频谱共享DSS的干扰;分类模块,用于若存在干扰,则根据所述射频性能参数及通讯性能参数对所述干扰进行分类;处理模块,用于根据所述分类的结果,对不同类型的干扰执行对应的抗干扰处理。
本申请的实施方式还提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的用于DSS的抗干扰方法。
本申请的实施方式还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的用于DSS的抗干扰方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请背景技术中的动态频谱共享示意图;
图2是本申请第一实施例提供的用于DSS的抗干扰方法的流程图;
图3是本申请第一实施例提供的干扰产生原因的示意图;
图4是本申请第一实施例提供的干扰自测的示意图;
图5是本申请第一实施例提供的调整动态功率的抗干扰处理示意图;
图6是本申请第二实施例提供的用于DSS的抗干扰方法的流程图;
图7是本申请第二实施例提供的用于DSS的抗干扰方法的模块示意图;
图8是本申请第三实施例提供的用于DSS的抗干扰方法的装置的示意图;
图9是本申请第四实施例提供的电子设备的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和用于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请实施例中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列部件或单元的***、产品或设备没有限定于已列出的部件或单元,而是可选地还包括没有列出的部件或单元,或可选地还包括对于这些产品或设备固有的其它部件或单元。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本申请的第一实施方式涉及一种用于DSS的抗干扰方法,应用于电子设备包括,各种5G终端、客户前置设备(Customer Premise Equipment,CPE)、基站以及其他使用5G技术的产品等,具体流程如图2所示。
步骤101,获取实时的射频性能参数及通讯性能参数;
步骤102,根据射频性能参数及通讯性能参数判断是否存在动态频谱共享DSS的干扰,若存在,则进入步骤103;若不存在,则返回步骤101;
步骤103,根据射频性能参数及通讯性能参数对干扰进行分类;
步骤104,根据分类的结果,对不同类型的干扰执行对应的抗干扰处理,处理后返回步骤101进行判断检测。
下面对本实施方式的用于DSS的抗干扰方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
在步骤101中,支持DSS功能的电子设备,通过内置于电子设备的测试算法,获取电子设备实时的射频性能参数及通讯性能参数。即,在获取实时的射频性能参数及通讯性能参数时不依赖于外置的测试仪表,不依赖于附加的射频模块及装置,如功分器,合路器,耦合器,耦合箱等,也不依赖于射频测试线缆,只通过自测算法及指令来实现,该自测算法位于电子设备程序内。例如:终端通过内置的测试算法,采集实时的功率,矢量幅度误差(Error Vector Magnitude,EVM),邻信道抑制比(Adjacent Channel Leakage Ratio,ACLR)三个发射指标,同时也采集参考信号接收功率(Reference Signal Receiving Power,RSRP)及预估灵敏度(Sensitivity,SEN)两个接收指标。其中,射频性能参数例如:EVM,ACLR及RSRP及误块率(Block Error Rate,BLER)等;通讯性能参数例如:上下行吞吐量,误码率,调制与编码策略(Modulation and Coding Scheme,MCS)及多进多出(Multiple-In Multiple-Out,MIMO)数据流数等。
在步骤102中,根据上述获取的实时射频性能参数及通讯性能参数和预置的DSS无干扰下的射频性能指标及通讯性能指标阈值对比,判断是否存在DSS的干扰。例如,通过采集的上下行吞吐,MCS及误码率等指标,和预置的DSS无干扰状态下的指标阈值进行对比,超出预设范围则表明当前电子设备工作模式存在干扰。由于不同通信信道存在重叠,或者关系相邻状态,就会产生干扰,例如图3所示;其中01状态下会产生100%重叠干扰,02状态下会产生20%重叠带内干扰,03与04状态下会产生邻带干扰,05状态下会产生谐波干扰、交调干扰或杂散干扰等。
在一个例子中,以射频性能参数及通讯性能参数中的发射指标进行自测时,自测算法在终端空闲或待机时隙,发送控制指令,根据获取的实时发射指标,调用与实时获取的实时发射指标相同的EVM和ACLR指标值,控制终端的发射机进入自发模式;并闭环反馈采集发射机的发射指标EVM和ACLR指标,和预置的发射指标EVM和ACLR的阈值相比较,例如阈值EVM为3%,阈值 ACLR为-35dBc,当闭环反馈装置检测到发射机的发射指标EVM超过3%或ACLR超过-35dBc时,则判断当前存在DSS的干扰。其中,用于自测的发射指标EVM和ACLR还可由同相正交信号(In-phase Quadrature,IQ)取样计算预估得到。
在另一个例子中,以射频性能参数及通讯性能参数中的接收指标进行自测时,自测算法控制发射机发射与共享频谱频点相同,且信号接收电平相同的单载波(Carrier Wave,CW)参考信号,如发射-70dB的CELL POWER信号电平的连续单音波形信号,该信号可以是和共享频谱频点同频率信号,也可以是在共享频谱频点基础上附加一定频率偏移(如500Hz)的信号,发射机发射CW波后,接收机采集该CW波,进行解调和终端侧接收的信号强度指示(Recieived power,RX)/基站侧接收的信号强度指示(Received Signal Strength Indication,RSSI)计算,将读出的RSRP信号和发射的电平CELL POWER进行比较,判断差值,并与预置的阈值门限(如3dB)相比较,如果大于3dB,则可判断当前的共享频谱有干扰,需要调整NR的频谱频点到无干扰的位置;如小于3dB或接近于0,则可判断当前的共享频谱干扰无或可接受,不用调整频谱频点。其中,以射频性能参数及通讯性能参数中的发射指标和/或接收指标进行自测的示意图如图4所示。
另外,还能通过***软件算法抓取上述IQ采样值、***间的NF(Noise Factor,噪声系数)值及热噪声值,进而计算终端***从收发机到天线端之间的C/N载噪比,最后换算成SEN值;将上述接收机读出的RSRP值和换算后的SEN值,与参预置的DSS无干扰状态下对应的RSRP值和SEN目标阈值进行比较,以判断当前是否存在干扰。如预置的的DSS无干扰状态下N3得目标阈值RSRP是-70+/-2dB,对应的极限SEN是-93dBm/BW,而当N3处于共享频谱模式后,计算检测到的RSRP值是-65dB,计算出的SEN是-89dBm/BW,则表明当前是4-5dB的共享干扰。
在步骤103中,若经过上述判断后,结果为存在干扰,则根据实时获取的射频性能参数及通讯性能参数对干扰进行分类。在一个例子中,根据第一通信网络和第二通信网络的频点信息和ACLR对干扰进行分类,第二通信网络的网络速度大于所述第一通信网络的网络速度,例如,第二通信网络可为5G NR, 第一通信网络可为4G LTE。
在一个例子中,DSS干扰有谐波干扰,互调干扰,杂散干扰等。由于NR占用LTE频的频谱,有时甚至和LTE非常近甚至重叠,就会产生DSS干扰,通过计算LTE和NR的频点信息,同时监测ACLR共存杂散值,以识别干扰类型。如B1和N28的频点,如果是三倍频,就是谐波干扰,B1和N1同时工作时,如果频点很近,并且ACLR共存杂散值大于目标阈值,就是杂散干扰。
在步骤104中,根据分类的结果,对不同类型的干扰执行对应的抗干扰处理。针对不同干扰类型进行对应的处理,使得抗干扰的执行过程更加准确和高效。
如果不同调整参数下,上述超出阈值指标的参数有明显变化,则表明存在相关性,将其相关的大小记为相关系数,存储到内存中;通过干扰和调整参数的相关性,去调用对应的或相关性高的抗干扰措施。另外,存在相关性的AI学习过程,其步骤在一轮有效调节完成后。即有效调整措施和参数的模型建立过程,也就是DSS抗干扰参数模型库的自我学习过程,将每轮或最终的调整措施或参数和预定目标建立关联系数,如果有效,关联系数加1,如果无效,关联系数减1,通过不断的积累和学习,完善相关性的模型库,以便后续更加精准的抗干扰调节。
在一个例子中,通过调整动态功率中的发射功率,进行抗干扰处理,为了便于理解以下进行举例说明:
当NR工作于LTE频谱范围内时,LTE或NR的杂散会导致上下行误码率(Symbol Error Rate,SER)不同,进而导致吞吐性能恶化,所以通过需要消除杂散。杂散参数异常一种显著表现形式为实时获取的射频指标中LTE或NR的发射功率较高,已达到或接近最大发射功率,此时该功率下ACLR余量较小,EVM或杂散处于临界范围;调整发射功率能够同时影响ACLR、EVM及杂散,可对杂散干扰进行抗干扰处理。具体为:若检测到LTE的当前发射功率与其最大发射功率之差小于预设第一门限,则降低LTE的当前发射功率,提高NR的当前发射功率;若检测到NR的当前发射功率与其最大发射功率之差小于预设第二门限,则降低NR的当前发射功率,提高LTE的当前发射功率。在降低一侧发射功率时,通过升高另一侧发射功率进行补偿,如图5所示,从而在实现 抑制杂散的同时,也不影响总发射功率。例如:检测LTE和NR的实时发射功率,NR的发射功率为23dbm,已达到最大发射功率,LTE的发射功率为5dbm,此时对发射功率进行调整,降低NR的发射功率到20dbm,提升LTE的发射功率到8dbm(或其他较好的功率范围内),在进行发射功率调整后,还可通过检测实时ACLR、EVM、SER或吞吐性能,校验是否完成针对杂散干扰的抗干扰处理。
在一个例子中,通过调整自适应调制参数,进行抗干扰处理。所述调制参数例如:MCS、起始资源块(Resource Block start,RB start)、资源块数(Resource Block number,RB nub)、Rank、子载波间隔(Sub-Carrier Spacing,SCS)等。
以SCS为例,LTE采用固定的15kHz的SCS,NR支持不同参数集的混合使用,即允许配置不同的SCS,如15kHz、30kHz、60kHz等。NR通过正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号的windowing/filtering技术降低了符号间干扰,但LTE没有windowing/filtering技术,导致NR与LTE进行频谱共享时,如果NR配置不同于15kHz的SCS时,会对LTE产生干扰,引起LTE的性能损失。所以首先检测当前的SCS是否正交,若不正交,则将NR的SCS调整为与LTE的SCS正交;如果出现NR的SCS无法调整、将SCS调整为正交后仍存在干扰或原未经过调整的SCS本处于正交状态,则调整其他自适应调制参数,直至检测到的实时射频指标满足预置的DSS无干扰下的阈值要求。
在一个例子中,若检测到信道频点重合或邻近,则根据信道约束算法对共享信道进行约束调整。在进行针对干扰的处理之前,限制LTE或NR的信道处于可用的范围列表内,通过进行信道限定,能够降低或消除干扰。例如,通过修改射频驱动配置文件,在模块的软件中引入信道限制机制。具体的,当检测到当前的电子设备处于NR的DSS工作模式时,通过LTE-NR的信道约束算法,限定LTE与NR的共存信道工作范围或清单,只有在约束范围内或指定可用清单内的信道才可共享,超出约束范围或指定清单内的信道不可用,需要调整至约束范围或指定清单内的信道。这里可以通过白名单或黑名单方式约束,如果是白名单方式,是指定LTE和NR的共享频谱信道值;如果是黑名单方式,则是指定LTE和NR不可同时使用的频谱信道值。其中,信道约束算法来自出厂 前的研发采集值,是基于大量数据模型的扫描采集值,扫描范围为对应频段的LTE全信道和NR全信道组合,通过采集不同信道组合下的射频指标值如EVM/ACLR/RSRP/BLER等,将满足预置的DSS无干扰下的阈值要求的信道列为可用信道。
其中,信道约束并不是静态的,而是动态可调整的,当LTE信道变化时,NR的信道也会随之变化。信道约束算法中的信道组合还具有实时更新功能,当有新的信道组合和条件产生,而此信道下有干扰,则该信道组合和条件也会自动添加存储在信道约束算法中,即能够自主实时学习补充,同时可接收并标记用户输入的可用信道组合和不可用信道组合,实时更新。
在一个例子中,对部分非复杂射频性能参数及通讯性能参数的变化预存有既定的处理方式,即在通过射频性能参数及通讯性能参数进行干扰判断时,若识别其为预存的干扰状况,则调用预存的该干扰对应的抗干扰方式,减少对非正常阈值范围内的参数进行动态计算,提高抗干扰的处理效率。
另外,预置在存储空间的数据还包括:NR和LTE不同频谱重合模式下的射频性能参数及通讯性能参数;不同信道范围内的NR射频指标值,如将NR信道划分为高中低HML三段,或根据ENDC下的干扰恶化程度,划分成ABCDEF多段。
本实施方式中,对于动态频谱共享过程产生的干扰,根据射频指标对干扰进分类,并根据分类结果执行对应处理,在没有降低频谱利用率的前提下,使得抗干扰处理更具有针对性,提高抗干扰处理效率;同时由于射频性能参数及通讯性能参数为实时获取值,能够在进行抗干扰处理后获取实时反馈,校验是否仍存在干扰,保证了抗干扰处理的完成度。也就是说,本申请实施方式能解决当前5G终端在DSS过程中的自干扰问题,能提升2/3/4G和5G NR的频谱抗干扰性能,防止动态过程中的冲突或干扰造成的发射指标恶化,接收大误码,进而提升终端5G峰值上传和下载吞吐率的性能效果。
本申请的第二实施方式涉及一种用于DSS的抗干扰方法,具体流程如图6所示。
步骤201,识别动态频谱共享的频段组合;
步骤202,根据识别的动态频谱共享的频段组合,判断是否可能存在动态 频谱共享DSS的干扰,若可能存在DSS的干扰,则进入步骤,203;若不可能存在动态频谱共享DSS的干扰,则结束流程;
步骤203,根据实时检测到的射频性能参数及通讯性能参数,判断是否存在干扰,若存在,则进入步骤204;若不存在,则回到步骤203;
步骤204,根据射频性能参数及通讯性能参数对干扰进行分类;
步骤205,根据分类的结果,对不同类型的干扰执行对应的抗干扰处理,处理后返回步骤203。
其中,步骤203至205与第一实施方式大致相同,为避免重复,不再赘述。主要区别之处在于步骤201和步骤202,以下对实施细节进行具体说明。
在步骤201中,获取实时的射频性能参数及通讯性能参数之前,还可以通过电子设备***软件抓取共享上报信息来识别动态频谱共享的频段组合,即NR和LTE的哪个频段共享频谱,如B1-N1,B3-N3,B28-N28,B66-N66,B71-N71等。
另外,识别电子设备当前是独立组网(Standalone,SA)还是非独立组网(Non-Standalone,NSA)模式,单NR模式,还是5G载波聚合(New Radio-Carrier Aggregation,NR-CA)模式。如果是NSA模式,还需要采集LTE与NR的双连接(E-UTRA-NR-Dual Connectivity,EN-DC)下的LTE和NR频段点信息,如果是NR-CA模式,还需要NR-CA的频段频点信息,如N3-N78;如果是4G长期演进载波聚合(Long Term Evolution-Carrier Aggregation,LTE-CA)加EN-DC模式,则需要同时采集LTE-CA及NR的频段频点信息,如B1-B3-N3-N78等。将识别结果存储至内存,作为进一步执行干扰识别及分类的辅助参考值。
在步骤202中,根据识别的动态频谱共享的频段组合,判断是否存在动态频谱共享DSS的干扰。如果识别结果为不存在动态频谱共享的频段组合,则说明不存在DSS的干扰,直接结束本流程,如果存在动态频谱共享的频段组合,则说明有可能存在DSS的干扰,则进入步骤203,根据实时检测到的射频性能参数及通讯性能参数,判断是否存在干扰。
在一个例子中,获取实时的射频性能参数及通讯性能参数前,检测第一通信网络和第二通信网络当前共享的频谱状态,其中第一通信网络可为LET,第 二通信网络可为NR。若LTE和NR当前不存在共享频谱,则不需要进行后续的用于DSS的抗干扰处理;若LTE和NR在当前共享的频谱并未同时工作或中存在频谱间隔(例如分别处于高低信道范围),则干扰状态已知,调用预置的抗干扰参数进行处理即可,不需要获取实时射频性能参数及通讯性能参数用于判断、分类及对应抗干扰处理;若LTE和NR当前存在共享频谱,且LTE和NR在当前共享的频谱中不存在频谱间隔,即LTE和NR可能存在干扰,且该干扰状态非已知,不可控,所以需要获取实时的射频性能参数及通讯性能参数,并进行后续的判断、分类及对应抗干扰处理。通过该步骤能够识别预设的可控干扰,对于可控干扰的处理减少计算过程,提高处理效率,用于提升用户体验。
本实施方式中DSS状态下的***框示意如图7,其中共享检测模块L1用于依据共享上报信息来识别动态频谱共享的频段组合及工作模式;DSS干扰检测模块L2用于根据射频性能参数及通讯性能参数判断是否存在DSS的干扰;DSS干扰分类模块L3用于根据射频性能参数及通讯性能参数对干扰进行分类;预干涉调整模块L4用于调用预置的抗干扰参数处理已知的相对简单的干扰状态;实时计算调整模块L5根据获取的实时射频性能参数及通讯性能参数进行计算分析,并调用对应的抗干扰处理模块进行对应处理;共享信道约束抗干扰模块L6用于对信道进行约束调整;动态功率控制抗干扰模块L7用于处理杂散干扰;调制参数调整抗干扰模块L8用于处理谐波干扰和互调干扰;同时还存在参数存储模块(未示出)与各运算判断模块相连,对抗干扰处理的过程提供参数支持。
具体地说,参数存储模块可以包含以下信息:NR和LTE不同频谱重合模式下的不同射频收发指标值和场测指标值,即处于动态频谱共享模式下的指标参数值;不同信道范围内的NR射频指标值,如将NR信道划分为高中低HML三段,或根据随机接入4G5G双连接(EUTRA-NR Dual Connectivity,ENDC)下的干扰恶化程度,划分成ABCDEF多段;非动态功率共享模式下,不同目标发射功率的发射指标值,以及动态功率共享模式下的发射指标值;不同调制系数,如不同RB数,MCS、时隙SLOT下的发射指标值,以及不同接收增益及接收电平下的吞吐及误码值。预干涉调整模块L4,共享信道约束抗干扰模块L6,动态功率控制抗干扰模块L7和调制参数调整抗干扰模块L8,可以根据参数存 储模块中存储的参数进行抗干扰处理。
预干涉调整模块L4主要用于动态共享不是很复杂的情形下的抗干扰调整。如NR使用的频谱,同时间段使用的LTE没有同时在工作,而是其他LTE频段在工作,如N3工作时,B3没有工作,只有B1在工作。其次是,B3和N3同时工作,但是处于不同的频谱范围,B3处于低信道范围,而N3处于高信道范围,两者之间存在一定的频谱间隔。它们之间的干扰状态是已知的,即可调用预干涉调整模块L4,将LTE和NR限制在不同的频谱范围内,或调用L6-L8的抗干扰处理模块进行调整优化。
实时计算调整模块L5与L4、L6至L8各抗干扰处理模块连接,主要用于计算动态共享的情形下的抗干扰调整。当NR和LTE处于同频段交织下的频谱共享时,所处的频点是处于动态变化的,不易分割和预处理,此时则需要调用实时的计算调整模块,对当前的干扰进行实时监测计算,并将计算结果实时更新到参数存储模块中,同时也调用L6-L8的抗干扰处理模块进行调整优化。
本实施例中,首先检测第一通信网络和第二通信网络当前是否存在共享的频谱;在判断存在频谱共享后,进一步接收实时参数判断是否存在干扰,以及进行抗干扰处理。避免无用的接收DSS参数及进行干扰判断的进程,减少设备用于抗干扰处理的***资源占用。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请第三实施方式涉及一种用于DSS的抗干扰装置,如图8所示,包括:
获取模块301,用于获取实时的射频性能参数及通讯性能参数;
判断模块302,用于根据射频性能参数及通讯性能参数判断是否存在动态频谱共享DSS的干扰;
分类模块303,用于若存在干扰,则根据射频性能参数及通讯性能参数对干扰进行分类;
处理模块304,用于根据分类的结果,对不同类型的干扰执行对应的抗干扰处理。
对于获取模块301,在一个例子中,获取实时的射频性能参数及通讯性能参数前,检测第一通信网络和第二通信网络当前是否存在共享的频谱;若第一通信网络和第二通信网络当前存在共享的频谱,且第一通信网络和第二通信网络在共享的频谱中不存在频谱间隔,则再执行获取实时的射频性能参数及通讯性能参数。
对于判断模块302,在一个例子中,根据射频性能参数及通讯性能参数,与预置的DSS无干扰下的射频性能指标及通讯性能指标阈值对比,判断是否存在DSS的干扰。
对于分类模块303,在一个例子中,根据第一通信网络和第二通信网络的频点信息和临信道抑制比ACLR,对干扰进行分类;其中,干扰的类型包括:谐波干扰,互调干扰,杂散干扰;第二通信网络的网络速度大于第一通信网络的网络速度。
对于处理模块304,调整DSS中的动态功率,例如:检测第一通信网络和第二通信网络的当前发射功率;若第一通信网络的当前发射功率与第一通信网络的最大发射功率的差值小于预设第一门限,则降低第一通信网络的当前发射功率,提高第二通信网络的当前发射功率;若第二通信网络的当前发射功率与第二通信网络的最大发射功率的差值小于预设第二门限,则降低第二通信网络的当前发射功率,提高第一通信网络的当前发射功率。
调整自适应调制参数,例如:检测当前SCS是否正交;若SCS不正交,则将第二通信网络的SCS调整为与第一通信网络的SCS正交;其中,若SCS调整失败或SCS调整为正交后仍存在干扰,则调整第二通信网络的自适应调制参数。
若所述干扰为信道干扰,则根据信道约束算法,对共享信道进行约束调整;所述信道干扰为信道频点重合或邻近。
本实施方式中,对于动态频谱共享过程产生的干扰,根据射频指标对干扰进分类,并根据分类结果执行对应处理,在没有降低频谱利用率的前提下,使得抗干扰处理更具有针对性,提高抗干扰处理效率;同时由于射频性能参数及通讯性能参数为实时获取值,能够在进行抗干扰处理后获取实时反馈,校验是否仍存在干扰,保证了抗干扰处理的完成度。也就是说,本申请实施方式能解 决当前5G终端在DSS过程中的自干扰问题,能提升2/3/4G和5G NR的频谱抗干扰性能,防止动态过程中的冲突或干扰造成的发射指标恶化,接收大误码,进而提升终端5G峰值上传和下载吞吐率的性能效果。
不难发现,本实施方式为与上述实施方式相对应的***实施例,本实施方式可与上述实施方式互相配合实施。上述实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在上述实施方式中。
值得一提的是,本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请第四实施方式涉及一种电子设备,如图9所示,包括至少一个处理器401;以及,与所述至少一个处理器401通信连接的存储器402;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的用于DSS的抗干扰方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请第五实施方式涉及一种计算机可读存储介质,存储有计算机程序。 计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种用于DSS的抗干扰方法,包括:
    获取实时的射频性能参数及通讯性能参数;
    根据所述射频性能参数及所述通讯性能参数判断是否存在动态频谱共享DSS的干扰;
    若存在干扰,则根据所述射频性能参数及所述通讯性能参数对所述干扰进行分类;
    根据所述分类的结果,对不同类型的干扰执行对应的抗干扰处理。
  2. 根据权利要求1所述的用于DSS的抗干扰方法,其中,所述根据所述射频性能参数及通讯性能参数对所述干扰进行分类,包括:
    根据第一通信网络和第二通信网络的频点信息和射频性能参数,对所述干扰进行分类;
    其中,所述干扰的类型包括以下之一或任意组合:谐波干扰,互调干扰,杂散干扰,信道干扰;所述第二通信网络的网络速度大于所述第一通信网络的网络速度。
  3. 根据权利要求2所述的用于DSS的抗干扰方法,其中,所述对不同类型的干扰执行对应的抗干扰处理,包括以下之一或其任意组合:
    根据信道约束算法对共享信道进行约束调整;
    调整DSS中的动态功率;
    调整自适应调制参数;所述自适应调制参数包括以下之一或其任意组合:5G新空口NR的子载波间隔SCS,调制与编码策略MCS,资源块RB,时隙SLOT,符号SYMBOL。
  4. 根据权利要求3所述的用于DSS的抗干扰方法,其中,所述调整DSS中的动态功率,包括:
    检测所述第一通信网络和所述第二通信网络的当前发射功率;
    若所述第一通信网络的当前发射功率与所述第一通信网络的最大发射功率的差值小于预设第一门限,则降低所述第一通信网络的当前发射功率,提高所述第二通信网络的当前发射功率;
    若所述第二通信网络的当前发射功率与所述第二通信网络的最大发射功率 的差值小于预设第二门限,则降低所述第二通信网络的当前发射功率,提高所述第一通信网络的当前发射功率。
  5. 根据权利要求1至4中任一项所述的用于DSS的抗干扰方法,其中,所述根据所述分类的结果,对不同类型的干扰执行对应的抗干扰处理,包括:
    根据所述分类的结果,按照相关系数,对不同类型的干扰执行对应的抗干扰处理;
    其中,所述相关系数根据所述抗干扰处理对所述不同类型干扰的处理结果实时更新。
  6. 根据权利要求2所述的用于DSS的抗干扰方法,其中,所述获取实时的射频性能参数及通讯性能参数前,包括:
    检测所述第一通信网络和所述第二通信网络当前是否存在共享的频谱;
    若所述第一通信网络和所述第二通信网络当前存在共享的频谱,且所述第一通信网络和所述第二通信网络在所述共享的频谱中不存在频谱间隔,则再执行所述获取实时的射频性能参数及通讯性能参数的步骤。
  7. 根据权利要求1至6中任一项所述的用于DSS的抗干扰方法,其中,所述获取实时的射频性能参数及通讯性能参数,包括:
    通过测试算法,自发自收获取所述实时的射频性能参数及通讯性能参数。
  8. 一种用于DSS的抗干扰装置,包括:
    获取模块,用于获取实时的射频性能参数及通讯性能参数;
    判断模块,用于根据所述射频性能参数及通讯性能参数判断是否存在动态频谱共享DSS的干扰;
    分类模块,用于若存在干扰,则根据所述射频性能参数及通讯性能参数对所述干扰进行分类;
    处理模块,用于根据所述分类的结果,对不同类型的干扰执行对应的抗干扰处理。
  9. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至7中任一所述的用于DSS的抗干扰方法。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的用于DSS的抗干扰方法。
PCT/CN2021/141652 2020-12-28 2021-12-27 用于dss的抗干扰方法、装置、电子设备及存储介质 WO2022143528A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023539885A JP2024502019A (ja) 2020-12-28 2021-12-27 Dss用の干渉防止方法、装置、電子機器及び記憶媒体
US18/270,016 US20240064791A1 (en) 2020-12-28 2021-12-27 Anti-interference method and apparatus for dss, and electronic device and storage medium
EP21914264.3A EP4270823A1 (en) 2020-12-28 2021-12-27 Anti-interference method and apparatus for dss, and electronic device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011578563.0A CN114696930A (zh) 2020-12-28 2020-12-28 用于dss的抗干扰方法、装置、电子设备及存储介质
CN202011578563.0 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022143528A1 true WO2022143528A1 (zh) 2022-07-07

Family

ID=82129982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141652 WO2022143528A1 (zh) 2020-12-28 2021-12-27 用于dss的抗干扰方法、装置、电子设备及存储介质

Country Status (5)

Country Link
US (1) US20240064791A1 (zh)
EP (1) EP4270823A1 (zh)
JP (1) JP2024502019A (zh)
CN (1) CN114696930A (zh)
WO (1) WO2022143528A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115694690B (zh) * 2022-10-19 2024-06-04 ***通信集团四川有限公司 无线电干扰类型的确定方法、确定装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649991A (zh) * 2018-04-28 2018-10-12 维沃移动通信有限公司 一种谐波干扰的处理方法及移动终端
CN108834159A (zh) * 2018-05-31 2018-11-16 深圳市零度智控科技有限公司 智能抗干扰无线通信方法、***、服务器及存储介质
CN108933610A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种干扰测量处理方法、相关设备和***
CN110460352A (zh) * 2019-08-21 2019-11-15 维沃移动通信有限公司 通信控制方法及相关设备
US20200359229A1 (en) * 2019-05-06 2020-11-12 Federated Wireless, Inc. Automated frequency coordination for shared spectrum wireless systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933610A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种干扰测量处理方法、相关设备和***
CN108649991A (zh) * 2018-04-28 2018-10-12 维沃移动通信有限公司 一种谐波干扰的处理方法及移动终端
CN108834159A (zh) * 2018-05-31 2018-11-16 深圳市零度智控科技有限公司 智能抗干扰无线通信方法、***、服务器及存储介质
US20200359229A1 (en) * 2019-05-06 2020-11-12 Federated Wireless, Inc. Automated frequency coordination for shared spectrum wireless systems
CN110460352A (zh) * 2019-08-21 2019-11-15 维沃移动通信有限公司 通信控制方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Scope update for Rel-17 NR demodulation performance WI: CRS-IM for LTE/NR DSS", 3GPP DRAFT; RP-202659, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. E-meeting; 20201207 - 20201211, 30 November 2020 (2020-11-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051963222 *

Also Published As

Publication number Publication date
JP2024502019A (ja) 2024-01-17
US20240064791A1 (en) 2024-02-22
EP4270823A1 (en) 2023-11-01
CN114696930A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US10091724B2 (en) Information transmission method and device
US9179417B2 (en) Method, apparatus, and terminal for wireless network connection
US20140274105A1 (en) Systems and methods for coexistence in wlan and lte communications
CN102769912B (zh) 应用于wlan的报文传输方法及装置、网络设备
US9743220B2 (en) Adaptive frequency hopping (AFH) with channel inhibition (CI) for bluetooth
EP3072333B1 (en) Dynamically adjusting roaming parameters
CN105939543B (zh) 一种信道检测方法和装置
US20070014254A1 (en) Method and apparatus for measuring uplink data throughput in WiBro repeater
CN104244354A (zh) 减少邻频段网络间共设备互扰的方法及装置
WO2014169756A1 (en) Apparatus and method in wireless communication system
US20190166626A1 (en) Wireless Device, an Access Point and Respective Methods Performed Thereby for Communicating with the Other
US9503960B2 (en) Radio communication apparatus and radio communication method
WO2022143528A1 (zh) 用于dss的抗干扰方法、装置、电子设备及存储介质
CN104661292B (zh) 用于动态调整小型蜂巢基站功率的控制装置及其控制方法
US9294951B2 (en) Method for joint cell measurement and system information identification
CN113727294A (zh) 通信方法及装置
CN111901863A (zh) 一种定时参量确定方法、装置、设备和存储介质
US20100331026A1 (en) Determination of coupling between radio devices
CN114362906A (zh) 速率匹配方法、装置、电子设备和可读介质
CN105846924B (zh) 一种无线局域网干扰抑制方法及抗干扰的无线局域网设备
US9544041B2 (en) Independent and concurrent automatic gain control for wireless communication and spectral intelligence
CN109428625B (zh) 一种小区信号的合并传输方法及装置
CN115940969B (zh) 一种5g通信方法及通信设备
CN116647911B (zh) 一种空间复用方法及第一设备
CA3197153A1 (en) Spatial reuse method, apparatus, device, and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914264

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270016

Country of ref document: US

Ref document number: 2023539885

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021914264

Country of ref document: EP

Effective date: 20230725