WO2022143269A1 - 数据传输方法和装置、存储介质和电子装置 - Google Patents

数据传输方法和装置、存储介质和电子装置 Download PDF

Info

Publication number
WO2022143269A1
WO2022143269A1 PCT/CN2021/139773 CN2021139773W WO2022143269A1 WO 2022143269 A1 WO2022143269 A1 WO 2022143269A1 CN 2021139773 W CN2021139773 W CN 2021139773W WO 2022143269 A1 WO2022143269 A1 WO 2022143269A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduled
ues
space division
physical resource
resource block
Prior art date
Application number
PCT/CN2021/139773
Other languages
English (en)
French (fr)
Inventor
许嘉乐
居文涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022143269A1 publication Critical patent/WO2022143269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a data transmission method and device, a storage medium, and an electronic device.
  • MIMO Multiple-Input Multiple-Output
  • multiple antennas or array antennas
  • multiple channels are used at both the transmitting and receiving ends to effectively to suppress channel fading.
  • the multi-antenna communication system using MIMO can not only double the system capacity, but also improve the reliability of the channel and reduce the bit error rate.
  • the transmission bandwidth is significantly higher than that of 4G communication, and the capacity of single-carrier network access terminals is multiplied compared to 4G.
  • How to use the limited system bandwidth to improve system throughput and allow more user terminals Multiplexing) to improve spectral efficiency is a technical problem to be solved urgently in this field.
  • the traditional space division multiplexing technology allocates the same time-frequency resources to the user terminals that are paired successfully. However, in most cases, the service data volume of the terminal users is not the same. If it is small, it will cause a certain waste of resources in the frequency domain.
  • the traditional space division multiplexing technology has the problem of low transmission resource efficiency in the process of transmitting resources.
  • Embodiments of the present application provide a data transmission method and device, a storage medium, and an electronic device, so as to at least solve the problem of low data transmission efficiency in the related art.
  • a data transmission method which includes: acquiring multiple UEs to be scheduled; when the number of space divisions occupied by the multiple UEs to be scheduled is greater than L, selecting from the multiple UEs to be scheduled Determine M UEs to be scheduled, where L is the number of empty layers of the base station, and M is a positive integer less than or equal to L; each layer of space division in the L layers of space division of the base station is determined as the current layer of space division, Perform the following operations: when the target physical resource block value of the UE currently to be scheduled in the current layer space division is smaller than the first threshold, add the first UE to be scheduled into the space division of the current layer, where the first UE to be scheduled is For the UEs other than the M UEs to be scheduled among the multiple UEs to be scheduled, the target physical resource block value is the number of resource blocks to be used for scheduling the UEs to be scheduled, and the first threshold value is the largest target physical resource block among the M UEs to be scheduled
  • a data transmission apparatus including: a first acquisition unit configured to acquire multiple UEs to be scheduled; When the number of space divisions is greater than L, M UEs to be scheduled are determined from the multiple UEs to be scheduled, where L is the number of empty layers of the base station, and M is less than or equal to the L A positive integer of When the target physical resource block value is less than the first threshold, add the first UE to be scheduled into the space division of the current layer, where the first UE to be scheduled is among the multiple UEs to be scheduled, except all the UEs to be scheduled.
  • the target physical resource block value is the number of resource blocks to be used for scheduling the to-be-scheduled UEs, and the first threshold is the largest of the M to-be-scheduled UEs.
  • Target physical resource block value, the current layer space division is one layer space division in the L layer space division of the base station.
  • a computer-readable storage medium is also provided, where a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any one of the above method embodiments when running steps in .
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any of the above method embodiments steps in .
  • FIG. 1 is a hardware environment diagram of a data transmission method according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment of the present application.
  • Fig. 4 is the UE queue to be scheduled according to the data transmission method of the embodiment of the present application.
  • FIG. 5 is a schematic diagram of UE combining according to a data transmission method according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of an enhanced space division reassembly matrix according to a data transmission method according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a plurality of matrices on space division of a data transmission method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a common air separation scheme according to an embodiment of the present application.
  • Fig. 9 is the enhanced space division scheme of the data transmission method according to the embodiment of the present application.
  • 11 is another enhanced space division scheme of the data transmission method according to an embodiment of the present application.
  • FIG. 12 is a simulation diagram of empty packet traffic according to a data transmission method according to an embodiment of the present application.
  • 13 is a simulation diagram of the number of space division users according to the data transmission method of the embodiment of the present application.
  • FIG. 14 is a schematic diagram of a UE occupied space division according to a data transmission method according to an embodiment of the present application.
  • FIG. 15 is a structural block diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to a data transmission method according to an embodiment of the present application.
  • the mobile terminal may include one or more (only one is shown in FIG. 1 ) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data, wherein the above-mentioned mobile terminal may also include a transmission device 106 and an input and output device 108 for communication functions.
  • FIG. 1 is only a schematic diagram, which does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than those shown in FIG. 1 , or have a different configuration than that shown in FIG. 1 .
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as computer programs corresponding to the data transmission methods in the embodiments of the present application. A functional application and data processing are implemented, namely, the above-mentioned method is implemented.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory. In some instances, the memory 104 may further include memory located remotely from the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Transmission means 106 are used to receive or transmit data via a network.
  • the specific example of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • An embodiment of the present application proposes a data transmission method, as shown in FIG. 2 , the method includes the following steps:
  • Step S202 acquiring multiple UEs to be scheduled
  • Step S204 in the case where the number of space divisions occupied by multiple UEs to be scheduled is greater than L, determine M UEs to be scheduled from the multiple UEs to be scheduled, where L is the number of empty layers of the base station, and M is less than or a positive integer equal to L;
  • each layer of space division in the L-layer space division of the base station is determined as the current layer space division, and the following operations are performed: the target physical resource block value of the currently to-be-scheduled UE in the current layer space division is less than the value of the first threshold.
  • the first UE to be scheduled is added to the space division of the current layer, wherein the first UE to be scheduled is the UE to be scheduled among the multiple UEs to be scheduled, except the M UEs to be scheduled, and the target physical resource block value is the UE to be scheduled.
  • the number of resource blocks to be used for scheduling UEs, the first threshold is the maximum target physical resource block value among the M UEs to be scheduled, and the current layer space is divided into one layer of L space divisions of the base station.
  • one transmission resource in the process of scheduling the UE to be scheduled, can be used to schedule at least two UEs according to the target physical resource block value of the UE to be scheduled, so the problem of low data transmission efficiency can be solved, To achieve the effect of improving the efficiency of data transmission.
  • L is the maximum scheduling capability of the base station, that is, the number of empty layers of the base station, and each layer of space division includes physical resource blocks, which can be used to schedule UEs.
  • one layer of space division when scheduling UEs, one layer of space division may be used to schedule more than one UE. As long as the sum of the target physical resource block values of the UE is less than or equal to the first threshold, one layer of space division can be used for scheduling, and one UE may occupy more than one layer of space division.
  • the first threshold is the maximum number of target physical resource blocks among the M UEs scheduled by the base station.
  • the scheduling capability of the base station is 10
  • 10 or less UEs to be scheduled are determined from the 15 UEs to be scheduled, and the determined UEs occupy 10 floors in total. Empty points.
  • the maximum value of the number of target physical resource blocks of 10 or less UEs to be scheduled is determined as the first threshold.
  • the UE with the largest target physical resource block value is scheduled by one or more layers of space division, while the other UEs to be scheduled in space division, because the target physical resource block is smaller than the first one Therefore, other UEs can be added, such as the remaining UEs among the 15 UEs to be scheduled.
  • the condition for supplementing is to ensure that after the UE is supplemented, the sum of the target physical resource block values is less than or equal to the first threshold. Thereby, 15 UEs to be scheduled are scheduled using 10-layer space division. Of course, if the sum of the target physical resource block values is greater than the first threshold, it cannot be supplemented.
  • different UEs can be scheduled by using different resource blocks of space division. For example, UE1 is scheduled with 1-60 resource blocks, UE2 is scheduled with 1-100 resource blocks, and there is no conflict between UEs to be scheduled.
  • the above numerical values are only examples and do not limit the present application.
  • the "fill-in" in this embodiment can be understood as using different resource blocks of one layer of space division to simultaneously schedule multiple UEs to be scheduled.
  • adding the first to be scheduled UE to the current layer space division includes:
  • one or more first to-be-scheduled UEs are determined from among the multiple to-be-scheduled UEs except the M to-be-scheduled UEs, wherein the target physical resource block value of the currently to-be-scheduled UE The sum of the target physical resource block values of the one or more first UEs to be scheduled is less than or equal to the first threshold;
  • the determined one or more first UEs to be scheduled are added to the current layer space division.
  • the condition for determining whether to add the UE to be scheduled into the first layer of space division is whether the sum of the target physical resource block values is still less than or equal to the first threshold after the UE to be scheduled is added. If it is greater than the first threshold, then fill-in is not allowed. If the sum of the target physical resource block values is still less than the first threshold after the UEs to be scheduled are added, the UEs to be scheduled can continue to be added. In the first layer of space division, multiple UEs to be scheduled can be added. For example, the target physical resource block value of the UE to be scheduled in the first layer of space division is 30, and the first threshold is 100. If there are multiple target physical resources of the UE to be scheduled. If the resource block values are 60, 20, 10, and 30, respectively, the UEs with the target physical resource block value of 20, 10, and 30 can be added to the space division with the target physical resource block value of 30.
  • the method further includes:
  • the space division to be scheduled in one of the two layers of space division Schedule the UE to fill in another layer of space division.
  • some space divisions may be filled with UEs to be scheduled, while some space divisions are not filled with UEs to be scheduled, or all of the space divisions may be filled with UEs to be scheduled.
  • the air divisions are filled into UE.
  • some space division schedules one UE to be scheduled, and some space division schedules multiple UEs to be scheduled. If the sum of the target physical resource block values of the UEs to be scheduled in the two space divisions is less than or equal to the first threshold, the UEs to be scheduled in the two space divisions are scheduled by one layer of space divisions, and the remaining one layer is empty. The points can continue to be added to the UE to be scheduled.
  • the method further includes:
  • the padding field is added to any layer of space division until any layer of space is empty.
  • the sum of the target physical resource block values of the UE to be scheduled in the split is equal to the first threshold.
  • padding data is a type of padding data, which can be zero. For example, if the first threshold is 100, the sum of the target physical resource block values of multiple UEs to be scheduled in one layer of space division is 90, and the UEs to be scheduled cannot be added any more, then padding data of 10 is added.
  • the method before determining each layer of space division in the L-layer space division of the base station as the current layer space division, the method further includes:
  • the target physical resource block value of each to-be-scheduled UE is determined according to the modulation and coding scheme, rank and buffer status report size of each to-be-scheduled UE.
  • the target physical resource block value of each UE to be scheduled needs to be determined, and subsequent scheduling processing has been done.
  • MCS Modulation and Coding scheme
  • RI Rank indicator
  • BSR Buffer Status Report
  • SRS SINR Signal to Interference plus Noise Ratio
  • users that satisfy the spatial correlation are selected to perform empty allocation pairs, and then a matrix is formed with the number of users as the row vector and the number of PRBs as the column vector; this step is to select from all UEs in the cell, UEs that can perform combined scheduling are selected. It should be noted that, in this embodiment, from all the UEs in the cell, the UEs that can be combined and scheduled, that is, the multiple UEs to be scheduled mentioned in this embodiment, are selected, and then the users that satisfy the spatial correlation are selected to perform idle scheduling.
  • the allocation timing needs to select L UEs to be scheduled from multiple UEs to be scheduled according to the scheduling capability of the base station, that is, the size of L, and perform empty allocation pairs for the L UEs to be scheduled.
  • the process of assigning an empty pair is a process of selecting L UEs to be scheduled from multiple UEs to be scheduled.
  • the above matrix is obtained, and the number of PRBs is the value of the target physical resource block.
  • the UEs in the paired matrix are reordered according to the required number of PRBs from large to small; that is, the above-mentioned L to-be-scheduled UEs are sorted according to the size of the target physical resource block value, and the largest target physical resource The block value serves as the first threshold.
  • the remaining to-be-scheduled UEs are added to the L-layer space division where the L to-be-scheduled UEs are located.
  • the current premise is that after the UE to be scheduled is added, the sum of the target physical resource block values of the UE to be scheduled in the space division is less than or equal to the first threshold, otherwise it will not be added.
  • the above resource alignment means that after the UE to be scheduled is added to the space division, the sum of the target physical resource block values can reach the first threshold, and if the first threshold has not been reached, padding data is added.
  • the enhanced space allocation pair matrix is to add the matrix of UEs to be scheduled into space division.
  • the adaptive pairing algorithm As many UEs as possible can be space-division multiplexed together, which not only improves spectrum utilization, but also saves resources and brings better network experience.
  • space division users By enhancing the space allocation pair algorithm, space division users continue to be added to the idle frequency domain resources in the space division matrix, which solves the problem of asymmetric spectrum resource scheduling during space division multiplexing due to the difference in the size of terminal user traffic.
  • FIG. 3 is a flow chart of the present application, as shown in FIG. 3 .
  • Step S301 Acquire a queue of UEs to be scheduled that have been sorted according to user priorities in the current cell; this step is to select L UEs to be scheduled among multiple UEs to be scheduled according to the scheduling capability of the base station.
  • FIG. 4 is an optional queue of UEs to be scheduled.
  • n is the number of UEs to be scheduled. n is greater than or equal to L. If n is less than L, some space divisions schedule one UE to be scheduled, or some space divisions schedule multiple UEs to be scheduled, and the remaining one or more space divisions do not need to schedule UEs to be scheduled.
  • Step S302 Obtain the BSR, SRS SINR, MCS, and RI of all UEs to be scheduled in the cell.
  • the calculated number of resource blocks to be scheduled is represented by PRB num.
  • the target physical resource block value of each UE to be scheduled can be obtained by calculation.
  • Step S303 Under certain channel conditions, select users that satisfy the spatial correlation to perform empty allocation pairs, and form a matrix whose row vector is the number of users and column vector is PRB num.
  • L to-be-scheduled UEs are selected from the n to-be-scheduled UEs, and the selection basis may be selection according to the priority of the UEs.
  • the UEs in the user pairing matrix are sorted according to the required PRB num from large to small for subsequent steps.
  • Step S304 More importantly, according to the user pairing matrix in the preceding steps, perform adaptive enhanced null allocation pairs. Continue to select users that meet the conditions of the empty allocation pair to join the idle PRB positions in the user pairing matrix, and perform spectrum resource alignment; that is, by adding the UE to be scheduled or the padding data, the data in a space division is supplemented to the size of the first threshold.
  • the PRB num, the size of the free PRBs in the user pairing matrix, and the spatial correlation of the users are scheduled, and the UEs that meet the conditions of the empty allocation pair are added to the free PRB positions in the user pairing matrix, and the frequency domain is complemented.
  • UE11 is added to the space division where UE2 is located. After the UE11 is added, the data of the second-layer space division is still less than the first threshold, that is, the target material resource value of the UE1 in the first-layer space division.
  • the pairing matrix can also be reorganized.
  • the users in the matrix are moved to the free PRB positions in the user matrix, and the frequency domain filling is continued to reduce the number of rows in the matrix.
  • the frequency domain filling is continued to reduce the number of rows in the matrix.
  • UE3 is moved to the idle PRB position of UE2, and the frequency domain complementing is continued.
  • the number of row vectors in the overall matrix is reduced from 10 users to 8, reducing the mutual interference of users in spatial multiplexing.
  • the UE to be scheduled when performing space division multiplexing, the UE to be scheduled, that is, the user, may be added to the L-layer space division, or the user and the user may be combined, that is, the above-mentioned UE3 is added to the space where UE2 is located.
  • the two supplementary methods are used in combination, as long as the UE to be scheduled, that is, the user, is supplemented, the total target physical resource block value, that is, the PRB value is less than or equal to the first threshold.
  • the number of matrices may be multiple.
  • UE1-19 form a matrix
  • the matrix includes a plurality of matrices to be scheduled.
  • the UEs scheduled at the same time include UE8, UE11 and UE21.
  • Step S305 Traverse the UEs in the queue to be scheduled to obtain one or more enhanced null allocation pair matrices.
  • Step S306 Allocate resources in the time domain and the frequency domain for the UE satisfying the space division multiplexing.
  • the enhanced empty allocation pair matrix obtained by this method solves the problem of asymmetric spectrum resource scheduling caused by the difference in terminal traffic.
  • On the premise of ensuring the demodulation capability let as many UEs as possible perform space division to avoid filling a large amount of padding. It not only saves RB resources, but also improves air separation performance, enhances data transmission efficiency, and brings better network experience.
  • UE1 to 10 satisfy the condition of empty allocation pair, and the pairing is successful, forming a matrix with 10 users and 10 streams in row vector and 244 PRB in column vector. Add padding to fill in the frequency domain for the insufficient PRB of UE2 ⁇ 10.
  • the final number of space division users is 10, and the empty packet traffic is 2.08Gbps.
  • Fig. 12 and Fig. 13 are respectively the simulation diagram of empty packet traffic and the simulation diagram of the number of space division users when the number of empty layers is 3 to 10 layers, respectively, comparing the ordinary space division scheme and the enhanced space division scheme. It can be seen from the simulation diagram that the number of scheduled users and the overall air packet flow of the enhanced space division scheme are both higher than those of the ordinary space division scheme, and the maximum flow is increased by about 65.9%, which achieves the effect of improving the transmission efficiency of the wireless system.
  • one UE may occupy at least two layers of space division. As shown in FIG. 14 , the UE 10 occupies two layers of space division.
  • the enhanced air separation scheme in this application can also be used.
  • Other UEs are respectively added to the two layers of space division occupied by the UE10, or a UE that occupies two layers of space division is also added.
  • space division users By enhancing the space allocation pair algorithm, space division users continue to be added to the idle frequency domain resources in the space division matrix, which effectively solves the problem of asymmetric spectrum resource scheduling.
  • the embodiment of the present application achieves increasing the number of users for space division multiplexing, and also greatly improves the data transmission efficiency of the system, achieving the effect of optimal system capacity and taking into account the scheduling data volume of users.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods of the various embodiments of the present application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM
  • a data transmission apparatus is also provided, and the apparatus is used to implement the above-mentioned embodiments and preferred implementation manners, and what has been described will not be repeated.
  • the term "module” may be a combination of software and/or hardware that implements a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, implementations in hardware, or a combination of software and hardware, are also possible and contemplated.
  • FIG. 15 is a structural block diagram of a data transmission apparatus according to an embodiment of the present application. As shown in FIG. 15 , the apparatus includes:
  • a first obtaining unit 1502 configured to obtain a plurality of UEs to be scheduled
  • the first determining unit 1504 is configured to determine M UEs to be scheduled from the UEs to be scheduled when the number of space divisions occupied by the UEs to be scheduled is greater than L, wherein the UEs to be scheduled are L is the number of empty layers of the base station, and the M is a positive integer less than or equal to the L;
  • the execution unit 1506 is configured to determine each layer of space division in the L-layer space division of the base station as the current layer space division, and perform the following operations: the target physical resource of the UE currently to be scheduled in the current layer space division In the case where the block value is less than the first threshold, the first UE to be scheduled is added to the current layer space division, where the first UE to be scheduled is among the multiple UEs to be scheduled, except the M For UEs other than the UEs to be scheduled, the target physical resource block value is the number of resource blocks to be used for scheduling the UEs to be scheduled, and the first threshold value is the largest target physical resource among the M UEs to be scheduled A block value, the current layer space division is one layer space division in the L layer space division of the base station.
  • the execution unit includes:
  • the acquisition module is configured to acquire the target physical resource block value of the currently to-be-scheduled UE and the plurality of to-be-scheduled UEs, among the UEs other than the M to-be-scheduled UEs, all the values of each to-be-scheduled UE; Describe the target physical resource block value;
  • a determining module configured to determine, according to the target physical resource block value, one or more first UEs to be scheduled from among the multiple UEs to be scheduled, except the M UEs to be scheduled, wherein , the sum of the target physical resource block value of the UE currently to be scheduled and the target physical resource block value of the one or more first UE to be scheduled is less than or equal to the first threshold;
  • the first supplementing module is configured to supplement the determined one or more first UEs to be scheduled into the current layer space division.
  • the execution unit further includes:
  • the second supplementary module is configured to, after adding the determined one or more first UEs to be scheduled into the current layer space division, in the L-layer space division of the base station, the to-be-scheduled UEs in any two layers of space division When the sum of the target physical resource block values is less than the first threshold, the UE to be scheduled in one layer of space division in any two layers of space division is supplemented into another layer of space division.
  • the execution unit further includes:
  • the third supplementary module is set to, after the UE to be scheduled in one of the two layers of air division is supplemented into the other layer of air division, in the L-layer air division, in any one layer of air division
  • the padding field is added to any layer of space division until the sum of the target physical resource block values of the UE to be scheduled in any layer of space division is equal to first threshold.
  • the device further includes:
  • the second obtaining unit is configured to obtain the modulation and coding scheme, the rank sum of each UE to be scheduled among the multiple UEs to be scheduled before determining each layer of space division in the L-layer space division of the base station as the current layer space division cache status report size;
  • the second determining unit is configured to determine the target physical resource block value of each to-be-scheduled UE according to the modulation and coding scheme, rank and buffer status report size of each to-be-scheduled UE.
  • the above-mentioned unit modules can be implemented by software or hardware, and the latter can be implemented in the following ways, but not limited to this: the above-mentioned modules are all located in the same processor; The combined forms are located in separate processors.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute the steps in any one of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include, but is not limited to, a USB flash drive, a read-only memory (Read-Only Memory, referred to as ROM for short), and a random access memory (Random Access Memory, referred to as RAM for short) , mobile hard disk, magnetic disk or CD-ROM and other media that can store computer programs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present application further provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present application can be implemented by a general-purpose computing device, and they can be centralized on a single computing device, or distributed in a network composed of multiple computing devices
  • they can be implemented in program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, can be performed in a different order than shown here.
  • the described steps, or they are respectively made into individual integrated circuit modules, or a plurality of modules or steps in them are made into a single integrated circuit module to realize.
  • the present application is not limited to any particular combination of hardware and software.

Abstract

本申请实施例提供了一种数据传输方法和装置、存储介质和电子装置,该方法包括:获取多个待调度UE;在多个待调度UE占用的空分的数量大于L的情况下,从多个待调度UE中确定出M个待调度UE;将基站的L层空分中的每一层空分确定为当前层空分,执行以下操作:在当前层空分中的当前待调度UE的目标物理资源块值小于第一阈值的情况下,向当前层空分中补入第一待调度UE,通过本申请实施例,解决了数据传输效率低的问题,进而达到了提高数据传输效率的效果。

Description

数据传输方法和装置、存储介质和电子装置
相关申请的交叉引用
本公开基于2020年12月31日提交的发明名称为“数据传输方法和装置、存储介质和电子装置”的中国专利申请CN202011639509.2,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本申请实施例涉及通信领域,具体而言,涉及一种数据传输方法和装置、存储介质和电子装置。
背景技术
多输入多输出(Multiple-Input Multiple-Output,简称为MIMO)技术是用于多天线通信***的技术,具体的,在发射端和接收端均采用多天线(或阵列天线)和多通道来有效的抑制信道衰落。同时,相对以往的单天线通信***,采用MIMO的多天线通信***即能够成倍的提高***容量,也能够提高信道的可靠性,降低误码率。
在5GNR***中,传输带宽较4G通信大幅上升,单载波网络接入终端容量较4G成倍数增长,如何利用有限的***带宽提高***吞吐量,让更多用户终端通过空分复用(spatial division multiplexing)提升频谱效率,是本领域亟待解决的技术问题。传统空分复用技术是对配对成功的用户终端,业务分配相同的时频资源,但是大部分情况下,终端用户的业务数据量大小并不一致,如果参与配对的某个终端用户,业务数据较小则在频域上造成一定的资源浪费。
也就是说,传统空分复用技术在传输资源的过程中,存在传输资源效率低的问题。
发明内容
本申请实施例提供了一种数据传输方法和装置、存储介质和电子装置,以至少解决相关技术中数据传输效率低的问题。
根据本申请的一个实施例,提供了一种数据传输方法,包括:获取多个待调度UE;在多个待调度UE占用的空分的数量大于L的情况下,从多个待调度UE中确定出M个待调度UE,其中,L为基站的空分层数,M为小于或等于L的正整数;将基站的L层空分中的每一层空分确定为当前层空分,执行以下操作:在当前层空分中的当前待调度UE的目标物理资源块值小于第一阈值的情况下,向当前层空分中补入第一待调度UE,其中,第一待调度UE为多个待调度UE中,除M个待调度UE外的UE,目标物理资源块值为调度待调度UE需使用的资源块的数量,第一阈值为M个待调度UE中最大的目标物理资源块值,当前层空分为基站的L层空分中的一层空分。
根据本申请的另一个实施例,提供了一种数据传输装置,包括:第一获取单元,设置为获取多个待调度UE;第一确定单元,设置为在所述多个待调度UE占用的空分的数量大于L的情况下,从所述多个待调度UE中确定出M个待调度UE,其中,所述L为基站的空分层数,所述M为小于或等于所述L的正整数;执行单元,设置为将所述基站的L层空分中的每一层 空分确定为当前层空分,执行以下操作:在所述当前层空分中的当前待调度UE的目标物理资源块值小于第一阈值的情况下,向所述当前层空分中补入第一待调度UE,其中,所述第一待调度UE为所述多个待调度UE中,除所述M个待调度UE外的UE,所述目标物理资源块值为调度所述待调度UE需使用的资源块的数量,所述第一阈值为所述M个待调度UE中最大的所述目标物理资源块值,所述当前层空分为所述基站的L层空分中的一层空分。
根据本申请的又一个实施例,还提供了一种计算机可读存储介质,上述计算机可读存储介质中存储有计算机程序,其中,上述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,上述存储器中存储有计算机程序,上述处理器被设置为运行上述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是根据本申请实施例的数据传输方法的硬件环境图;
图2是根据本申请实施例的数据传输方法的流程图;
图3是根据本申请实施例的数据传输方法的流程图;
图4是根据本申请实施例的数据传输方法的待调度UE队列;
图5是根据本申请实施例的数据传输方法的UE合并示意图;
图6是根据本申请实施例的数据传输方法的增强空分重组矩阵示意图;
图7是根据本申请实施例的数据传输方法的空分上的多个矩阵的示意图;
图8是根据本申请实施例的普通空分方案的示意图;
图9是根据本申请实施例的数据传输方法的增强空分方案;
图10是根据本申请实施例的数据传输方法的另一种增强空分方案;
图11是根据本申请实施例的数据传输方法的又一种增强空分方案;
图12是根据本申请实施例的数据传输方法的空分组流量仿真图;
图13是根据本申请实施例的数据传输方法的空分用户数仿真图;
图14是根据本申请实施例的数据传输方法的一种UE占用空分的示意图;
图15是根据本申请实施例的数据传输装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本申请实施例的一种数据传输方法的移动终端的硬件结构框图。如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的数据传输方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
本申请实施例提出一种数据传输方法,如图2所示,该方法包括如下步骤:
步骤S202,获取多个待调度UE;
步骤S204,在多个待调度UE占用的空分的数量大于L的情况下,从多个待调度UE中确定出M个待调度UE,其中,L为基站的空分层数,M为小于或等于L的正整数;
步骤S206,将基站的L层空分中的每一层空分确定为当前层空分,执行以下操作:在当前层空分中的当前待调度UE的目标物理资源块值小于第一阈值的情况下,向当前层空分中补入第一待调度UE,其中,第一待调度UE为多个待调度UE中,除M个待调度UE外的UE,目标物理资源块值为调度待调度UE需使用的资源块的数量,第一阈值为M个待调度UE中最大的目标物理资源块值,当前层空分为基站的L层空分中的一层空分。
本申请实施例,由于在对待调度的UE进行调度的过程中,可以根据待调度UE的目标物理资源块值来使用一个传输资源调度至少两个UE,因此,可以解决数据传输效率低的问题,达到提高数据传输效率的效果。
本申请实施例中的L为基站的最大调度能力,也就是基站的空分层数,每一层空分包括了物理资源块,可以用于调度UE。
本申请实施例中,在调度UE时,可以使用一层空分调度一个以上的UE。只要UE的目标物理资源块值的和小于或者等于第一阈值即可使用一层空分进行调度,也可能一个UE占用一层以上的空分。
第一阈值是基站调度的M个UE中,最大的目标物理资源块数。
也就是说,以15个待调度UE为例,基站的调度能力为10,则首先从15个待调度UE中,确定出10个或10个以下待调度UE,确定出的UE共占用10层空分。然后确定10或10以下个待调度UE的目标物理资源块数的最大值,作为第一阈值。接下来,10或10以下个待调度UE中,目标物理资源块值最大的UE由一层或多层空分进行调度,而其他空分的待调度UE,由于目标物理资源块小于了第一阈值,因此可以补入其他的UE,如补入15个待调度UE中剩余的UE。补入的条件是,保证补入UE后,目标物理资源块值的和小于或者等于第一阈值。从而实现了,使用10层空分调度15个待调度UE。当然,如果目标物理资源块值的和大于了第一阈值,则不可以补入。当一层空分中包括了至少两个待调度的UE的情况下,可以使用空分的不同的资源块调度不同的UE。例如,1-60个资源块调度UE1,1-100个资源块调度UE2, 待调度UE之间不冲突。以上的数值仅为示例,并不构成对本申请的限定。
本实施例中的“补入”可以理解为使用一层空分的不同资源块来同时调度多个待调度UE。
作为一种可选的示例,在当前层空分中的当前待调度UE的目标物理资源块值小于第一阈值的情况下,向当前层空分中补入第一待调度UE包括:
获取当前待调度UE的目标物理资源块值和多个待调度UE中,除M个待调度UE外的UE中,每一个待调度UE的目标物理资源块值;
根据目标物理资源块值,从多个待调度UE中,除M个待调度UE外的UE中,确定出一个或多个第一待调度UE,其中,当前待调度UE的目标物理资源块值和一个或多个第一待调度UE的目标物理资源块值的和小于或等于第一阈值;
将确定出的一个或多个第一待调度UE补入当前层空分中。
也就是说,确定是否向一层空分中补入待调度UE的条件,是补入待调度UE后,目标物理资源块值的和是否仍然小于或等于第一阈值。如果大于了第一阈值,则不允许补入。如果补入待调度UE后,目标物理资源块值的和仍然小于了第一阈值,则可以继续补入待调度UE。一层空分中,可以补入多个待调度UE,如一层空分中的待调度UE的目标物理资源块值为30,而第一阈值为100,如果有多个待调度UE的目标物理资源块值分别为60、20、10、30,则可以将目标物理资源块值为20、10、30的UE均补入到目标物理资源块值为30的空分中。
作为一种可选的示例,在将确定出的一个或多个第一待调度UE补入当前层空分中之后,方法还包括:
在基站的L层空分中,任意两层空分中的待调度UE的目标物理资源块值的和小于第一阈值的情况下,将任意两层空分中的一层空分中的待调度UE补入到另一层空分中。
可选地,如果L层空分中,在补入待调度UE之后,可能有的空分中补入了待调度的UE,而有的空分中没有补入待调度UE,也可能所有的空分都补入了UE。那么,在补入UE后,L层空分中,有的空分调度1个待调度的UE,有的空分调度多个待调度的UE。如果存在两个空分中的待调度UE的目标物理资源块值的和小于或等于第一阈值,则将两个空分中的待调度UE由一层空分进行调度,剩余的一层空分可以继续补入待调度UE。
作为一种可选的示例,在将任意两层空分中的一层空分中的待调度UE补入到另一层空分中之后,方法还包括:
在L层空分中的,任意一层空分中的待调度UE的目标物理资源块值的和小于第一阈值的情况下,向任意一层空分中补充padding字段,直到任意一层空分中待调度UE的目标物理资源块值的和等于第一阈值。
可选地,在L层空分中,补入待调度UE之后,如果无法继续补入待调度UE,则而空分中的待调度UE的目标物理资源块值的和小于了第一阈值,则需要补入padding数据,直到空分的目标物理资源块值的和等于第一阈值。padding数据是一种填充数据,可以为零。例如,第一阈值为100,一层空分的多个待调度UE的目标物理资源块值的和为90,且无法再继续补入待调度UE,则补充10的padding数据。
作为一种可选的示例,在将基站的L层空分中的每一层空分确定为当前层空分之前,方法还包括:
获取多个待调度UE中每个待调度UE的调制和编码方案、秩和缓存状态报告大小;
根据每个待调度UE的调制和编码方案、秩和缓存状态报告大小确定出每个待调度UE的目标物理资源块值。
也就是说,本实施例中,需要确定每一个待调度UE的目标物理资源块值,已做后续的调度处理。
结合一个具体示例进行说明。
获取当前小区的待调度UE队列;
获取小区内所有待调度UE的MCS(调制和编码方案,Modulation and coding scheme)、RI(秩,Rank indicator)、BSR(缓存状态报告,Buffer Status Report)大小、根据当前BSR计算的调度时需要的PRB(物理资源块,Physical Resource Block)的数量,也就是目标物理资源块值,以及UE测量的探测参考信号(Sounding Reference Singal)强度和干扰噪声比值(信噪比,Signal to Interference plus Noise Ratio,简称SINR),用SRS SINR表示;
进一步的,在一定的信道条件下,选取满足空间相关的用户进行空分配对,然后形成一个行向量为用户数,列向量为PRB数的矩阵;此步骤,是从小区内所有的UE中,选择出可以进行合并调度的UE。需要说明的是,本实施例中,从小区的所有的UE中,选择的可以合并调度的UE,即本实施例中提到的多个待调度UE,然后,选取满足空间相关的用户进行空分配对时,需要根据基站的调度能力,也就是L的大小,从多个待调度UE中选择出L个待调度UE,对L个待调度UE进行空分配对。空分配对的过程就是从多个待调度UE中选择L个待调度UE的过程。得到上述矩阵,PRB数也就是目标物理资源块值。
进一步的,对已配对的矩阵里的UE按需要的PRB数从大到小进行重排序;也就是,对上述L个待调度UE按照目标物理资源块值的大小进行排序,最大的目标物理资源块值作为第一阈值。
然后,继续选取满足空分配对条件的用户加入到用户配对矩阵中空闲的PRB位置,进行频谱资源拉齐。也就是说,在多个待调度UE中选择L个待调度UE之后,剩余的待调度UE补入L个待调度UE所在的L层空分中。当前前提是补入待调度UE后,空分中的待调度UE的目标物理资源块值的和小于或等于第一阈值,否则不补入。上述资源拉齐也就是在向空分中补入待调度UE后,目标物理资源块值的和能够达到第一阈值,如果还未达到第一阈值,则补入padding数据。
最后,遍历待调度UE队列,得到增强空分配对矩阵。增强空分配对矩阵就是向空分中补入待调度UE的矩阵。通过自适应配对算法,让尽可能多的UE一起空分复用,既提升频谱利用率,又节省资源,带来更好的网络体验。通过增强空分配对算法,在空分矩阵中的空闲频域资源继续添加空分用户,解决了由于终端用户业务量大小差异导致空分复用时频谱资源调度不对称的问题。在保证解调的可靠性的同时,既增加空分复用的UE数,又节省资源,提升了频谱效率,带来更好的网络体验,达到***容量最优且兼顾用户的调度数据量的效果。
具体地,图3是本申请的一种流程图,如图3所示。
步骤S301:获取当前小区已按照用户优先级排序的待调度UE队列;此步骤,是对于多个待调度UE中,按照基站的调度能力,选择出L个待调度UE。图4为一种可选的待调度UE队列。n为待调度UE的数量。n大于或者等于L。如果n小于L,则有的空分调度一个待调度UE,或者有的一个空分调度多个待调度UE,剩余一个或多个空分无需调度待调度UE。
步骤S302:获取小区内所有待调度UE的BSR、SRS SINR、MCS、RI。
根据UE当前的BSR和MCS,计算得到的需要调度的资源块数,用PRB num表示。此步骤,可以计算得到每一个待调度UE的目标物理资源块值。步骤S303:在一定的信道条件下,选取满足空间相关性的用户进行空分配对,形成一个行向量为用户数,列向量为PRB num的矩阵。此步骤,即从n个待调度UE中,选择L个待调度UE,选择的依据可以为按照UE的优先级进行选择。
选取SRS SINR大于SINR门限且空间相关性小于相关性门限的UE进行空分配对,最终形成行向量为UE数,列向量为UE的PRB num的用户配对矩阵。此处需要说明的是,对于信道相关性弱的待调度UE,干扰会弱一些,不容易出现混淆的情况,因此,可以使用一层空分进行调度。如果待调度UE之间相关性强,则容易出现数据混淆,不使用一层空分进行调度。
对用户配对矩阵内的UE按需要的PRB num从大到小进行排序,以便后续步骤。
步骤S304:更重要的,根据前述步骤的用户配对矩阵,进行自适应的增强空分配对。继续选取满足空分配对条件的用户加入到用户配对矩阵中空闲的PRB位置,进行频谱资源拉齐;也就是通过补入待调度UE或者补入padding数据的方式,将一个空分中的数据补充到第一阈值的大小。
根据待配对UE的需要调度PRB num、用户配对矩阵中空闲的PRB大小和用户的空间相关性,把满足空分配对条件的UE继续添加用户配对矩阵中空闲的PRB位置,进行频域补齐。例如,图5中,在原1-10共10个UE,10层空分的情况下,将UE11补入到UE2所在的空分。补入UE11后,第二层空分的数据仍然不到第一阈值,也就是第一层空分中的UE1的目标物力资源值,还可以继续补入待调度UE,或者补入padding数据。本实施例效解决频谱资源调度不对称的问题。
需要说明的是,本步骤还可以对配对矩阵进行重组。
进一步的对空分配对完的矩阵进行重组。将配对矩阵内满足重组条件的的用户搬移到矩阵中空闲的PRB位置,进行频域拉齐,减少矩阵行向量的用户数。
即,根据配对矩阵内用户的PRB以及配对矩阵中空闲PRB大小,把矩阵内用户的搬移到用户矩阵中空闲的PRB位置,继续进行频域补齐,减少矩阵中的行数。例如,图6中,把UE3搬移到UE2的空闲PRB位置中,继续频域补齐。整体矩阵中的行向量从10用户数减少到8,减少空间复用中用户互相的干扰。也就是说,本实施例中,在进行空分的复用的时候,可以向L层空分中补入待调度的UE,即用户,也可以将用户与用户之间进行合并,即上述将UE3补入到UE2所在的空分中。或者两种补入方式组合使用,只要补入待调度UE也就是用户后,总的目标物理资源块值,也就是PRB的值小于或等于第一阈值。
可选地,本实施例中,矩阵的数量可以有多个。例如,如图7所示,图7中,UE1-19组成一个矩阵,而在相同的空分上,还可以有第二矩阵,矩阵中包括多个待调度的矩阵。则对于第二层空分,同时调度的UE包括了UE8、UE11和UE21。
步骤S305:遍历待调度队列中的UE,得到一个或多个增强空分配对矩阵。
步骤S306:为满足空分复用的UE进行时域和频域资源分配。
根据此方法得到的增强空分配对矩阵,解决了由于终端业务量差异导致的频谱资源调度不对称的问题。在保证解调能力的前提下,让尽可能多的UE进行空分,避免填充大量的padding。既节省了RB资源,也提高空分性能,增强数据传输效率,带来更好的网络体验。
现把普通空分与本申请实施例中的增强空分进行仿真,对比整体的效果。
当前小区里共19个UE,分别是UE1 ̄19、需要的PRB num分别如下表。假设UEMCS均为20,RI=1单流传输模式。假设空分组最大支持流数为10流。并且,假设UE均满足SRS SINR门限和相关性门限。
Figure PCTCN2021139773-appb-000001
普通空分方案,如图8所示。
UE1 ̄10满足空分配对条件、配对成功,形成一个行向量为10个用户10流,列向量为244PRB的矩阵。对UE2 ̄10的PRB不足添加padding进行频域补齐。最终空分用户数为10,空分组流量为2.08Gbps。
增强空分方案,如图9所示。
在10用户244PRB的空分矩阵中,对UE2 ̄10的空闲PRB,继续添加UE11、12、13、14、15、16、17、18、19进行频域补齐。最终空分用户数为19,空分组流量约为3.45Gbps。相比于普通空分方案,整体流量提升约(3.45-2.08)/2.08=65.9%。当然。图10和图11也是可选的实施方式。图10中,将UE7补入到UE2的空闲PRB之后,还可以将UE3补入UE2的空闲PRB,只要UE2的空闲PRB能够承载补入的UE3和UE7即可。而图11中,例如将UE3补入到UE4的空闲PRB之后,还可以向UE4的剩余PRB中补充Padding。补充padding字段后,UE4的PRB不应超出UE1的PRB。
最后,整体流量提升:
Figure PCTCN2021139773-appb-000002
图12和图13分别是空分层数分别为3-10层时,对比了普通空分方案和增强空分方案的空分组流量仿真图和空分用户数仿真图。通过仿真图可以看出,增强空分方案的调度用户数和空分组整体流量都比普通空分方案有提升,最多流量提升约65.9%,达到了提升无线***传输效率的效果。
本实施例还提供了一种示例,一个UE可以占用至少两层空分。如图14所示,其中的UE10占用两层空分。也可以使用本申请中的增强空分方案。向UE10占用的两层空分中分别补入其他UE,或者也补入一个占用两层空分的UE。
通过增强空分配对算法,在空分矩阵中的空闲频域资源继续添加空分用户,有效解决频谱资源调度不对称问题。本申请实施例实现了增加空分复用的用户数,同时也大大提升了***数据传输效率,达到***容量最优且兼顾用户的调度数据量的效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例的方法。
在本实施例中还提供了一种数据传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图15是根据本申请实施例的数据传输装置的结构框图,如图15所示,该装置包括:
第一获取单元1502,设置为获取多个待调度UE;
第一确定单元1504,设置为在所述多个待调度UE占用的空分的数量大于L的情况下,从所述多个待调度UE中确定出M个待调度UE,其中,所述L为基站的空分层数,所述M为小于或等于所述L的正整数;
执行单元1506,设置为将所述基站的L层空分中的每一层空分确定为当前层空分,执行以下操作:在所述当前层空分中的当前待调度UE的目标物理资源块值小于第一阈值的情况下,向所述当前层空分中补入第一待调度UE,其中,所述第一待调度UE为所述多个待调度UE中,除所述M个待调度UE外的UE,所述目标物理资源块值为调度所述待调度UE需使用的资源块的数量,所述第一阈值为所述M个待调度UE中最大的所述目标物理资源块值,所述当前层空分为所述基站的L层空分中的一层空分。
作为一种可选的实施方式,执行单元包括:
获取模块,设置为获取所述当前待调度UE的所述目标物理资源块值和所述多个待调度UE中,除所述M个待调度UE外的UE中,每一个待调度UE的所述目标物理资源块值;
确定模块,设置为根据所述目标物理资源块值,从所述多个待调度UE中,除所述M个待调度UE外的UE中,确定出一个或多个第一待调度UE,其中,所述当前待调度UE的所述目标物理资源块值和所述一个或多个所述第一待调度UE的所述目标物理资源块值的和小于或等于所述第一阈值;
第一补充模块,设置为将确定出的一个或多个所述第一待调度UE补入所述当前层空分中。
作为一种可选的实施方式,执行单元还包括:
第二补充模块,设置为在将确定出的一个或多个第一待调度UE补入当前层空分中之后,在基站的L层空分中,任意两层空分中的待调度UE的目标物理资源块值的和小于第一阈值的 情况下,将任意两层空分中的一层空分中的待调度UE补入到另一层空分中。
作为一种可选的实施方式,执行单元还包括:
第三补充模块,设置为在将任意两层空分中的一层空分中的待调度UE补入到另一层空分中之后,在L层空分中的,任意一层空分中的待调度UE的目标物理资源块值的和小于第一阈值的情况下,向任意一层空分中补充padding字段,直到任意一层空分中待调度UE的目标物理资源块值的和等于第一阈值。
作为一种可选的实施方式,装置还包括:
第二获取单元,设置为在将基站的L层空分中的每一层空分确定为当前层空分之前,获取多个待调度UE中每个待调度UE的调制和编码方案、秩和缓存状态报告大小;
第二确定单元,设置为根据每个待调度UE的调制和编码方案、秩和缓存状态报告大小确定出每个待调度UE的目标物理资源块值。
本实施例的其他示例请参见上述示例,在此不再赘述。
需要说明的是,上述各个单元模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本申请的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、 改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种数据传输方法,包括:
    获取多个待调度UE;
    在所述多个待调度UE占用的空分的数量大于L的情况下,从所述多个待调度UE中确定出M个待调度UE,其中,所述L为基站的空分层数,所述M为小于或等于所述L的正整数;
    将所述基站的L层空分中的每一层空分确定为当前层空分,执行以下操作:在所述当前层空分中的当前待调度UE的目标物理资源块值小于第一阈值的情况下,向所述当前层空分中补入第一待调度UE,其中,所述第一待调度UE为所述多个待调度UE中,除所述M个待调度UE外的UE,所述目标物理资源块值为调度所述待调度UE需使用的资源块的数量,所述第一阈值为所述M个待调度UE中最大的所述目标物理资源块值,所述当前层空分为所述基站的L层空分中的一层空分。
  2. 根据权利要求1所述的方法,其中,所述在所述当前层空分中的当前待调度UE的目标物理资源块值小于第一阈值的情况下,向所述当前层空分中补入第一待调度UE包括:
    获取所述当前待调度UE的所述目标物理资源块值和所述多个待调度UE中,除所述M个待调度UE外的UE中,每一个待调度UE的所述目标物理资源块值;
    根据所述目标物理资源块值,从所述多个待调度UE中,除所述M个待调度UE外的UE中,确定出一个或多个第一待调度UE,其中,所述当前待调度UE的所述目标物理资源块值和所述一个或多个所述第一待调度UE的所述目标物理资源块值的和小于或等于所述第一阈值;
    将确定出的一个或多个所述第一待调度UE补入所述当前层空分中。
  3. 根据权利要求2所述的方法,其中,在将确定出的一个或多个所述第一待调度UE补入所述当前层空分中之后,所述方法还包括:
    在所述基站的L层空分中,任意两层空分中的待调度UE的所述目标物理资源块值的和小于所述第一阈值的情况下,将所述任意两层空分中的一层空分中的待调度UE补入到另一层空分中。
  4. 根据权利要求3所述的方法,其中,在将所述任意两层空分中的一层空分中的待调度UE补入到另一层空分中之后,所述方法还包括:
    在所述L层空分中的,任意一层空分中的待调度UE的所述目标物理资源块值的和小于所述第一阈值的情况下,向所述任意一层空分中补充padding字段,直到所述任意一层空分中所述待调度UE的所述目标物理资源块值的和等于所述第一阈值。
  5. 根据权利要求1至4任意一项所述的方法,其中,在将所述基站的L层空分中的每一层空分确定为当前层空分之前,所述方法还包括:
    获取所述多个待调度UE中每个待调度UE的调制和编码方案、秩和缓存状态报告大小;
    根据每个所述待调度UE的所述调制和编码方案、所述秩和所述缓存状态报告大小确定出 每个所述待调度UE的所述目标物理资源块值。
  6. 一种数据传输装置,包括:
    第一获取单元,设置为获取多个待调度UE;
    第一确定单元,设置为在所述多个待调度UE占用的空分的数量大于L的情况下,从所述多个待调度UE中确定出M个待调度UE,其中,所述L为基站的空分层数,所述M为小于或等于所述L的正整数;
    执行单元,设置为将所述基站的L层空分中的每一层空分确定为当前层空分,执行以下操作:在所述当前层空分中的当前待调度UE的目标物理资源块值小于第一阈值的情况下,向所述当前层空分中补入第一待调度UE,其中,所述第一待调度UE为所述多个待调度UE中,除所述M个待调度UE外的UE,所述目标物理资源块值为调度所述待调度UE需使用的资源块的数量,所述第一阈值为所述M个待调度UE中最大的所述目标物理资源块值,所述当前层空分为所述基站的L层空分中的一层空分。
  7. 根据权利要求6所述的装置,其中,所述执行单元包括:
    获取模块,设置为获取所述当前待调度UE的所述目标物理资源块值和所述多个待调度UE中,除所述M个待调度UE外的UE中,每一个待调度UE的所述目标物理资源块值;
    确定模块,设置为根据所述目标物理资源块值,从所述多个待调度UE中,除所述M个待调度UE外的UE中,确定出一个或多个第一待调度UE,其中,所述当前待调度UE的所述目标物理资源块值和所述一个或多个所述第一待调度UE的所述目标物理资源块值的和小于或等于所述第一阈值;
    第一补充模块,设置为将确定出的一个或多个所述第一待调度UE补入所述当前层空分中。
  8. 根据权利要求6所述的装置,其中,所述执行单元还包括:
    第二补充模块,设置为在将确定出的一个或多个所述第一待调度UE补入所述当前层空分中之后,在所述基站的L层空分中,任意两层空分中的待调度UE的所述目标物理资源块值的和小于所述第一阈值的情况下,将所述任意两层空分中的一层空分中的待调度UE补入到另一层空分中。
  9. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求1至5任一项中所述的方法的步骤。
  10. 一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述权利要求1至5任一项中所述的方法的步骤。
PCT/CN2021/139773 2020-12-31 2021-12-20 数据传输方法和装置、存储介质和电子装置 WO2022143269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011639509.2 2020-12-31
CN202011639509.2A CN114698134A (zh) 2020-12-31 2020-12-31 数据传输方法和装置、存储介质和电子装置

Publications (1)

Publication Number Publication Date
WO2022143269A1 true WO2022143269A1 (zh) 2022-07-07

Family

ID=82135612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139773 WO2022143269A1 (zh) 2020-12-31 2021-12-20 数据传输方法和装置、存储介质和电子装置

Country Status (2)

Country Link
CN (1) CN114698134A (zh)
WO (1) WO2022143269A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038188A (zh) * 2022-07-13 2022-09-09 中国联合网络通信集团有限公司 资源调度方法、基站设备及存储介质
CN115119282B (zh) * 2022-07-13 2024-04-19 中国联合网络通信集团有限公司 Ue配对方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781045A (zh) * 2012-07-17 2012-11-14 大唐移动通信设备有限公司 空分复用方法及装置
CN108880641A (zh) * 2017-05-16 2018-11-23 中兴通讯股份有限公司 一种无线移动通信***资源分配方法及装置
US20200099419A1 (en) * 2018-09-20 2020-03-26 Verizon Patent And Licensing Inc. Systems and methods for dynamic inter-sector mimo transmission
CN111357348A (zh) * 2017-12-27 2020-06-30 华为技术有限公司 调度方法、装置和***
WO2020213877A1 (ko) * 2019-04-17 2020-10-22 삼성전자 주식회사 무선 통신 시스템에서 전이중동작을 지원하기 위한 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781045A (zh) * 2012-07-17 2012-11-14 大唐移动通信设备有限公司 空分复用方法及装置
CN108880641A (zh) * 2017-05-16 2018-11-23 中兴通讯股份有限公司 一种无线移动通信***资源分配方法及装置
CN111357348A (zh) * 2017-12-27 2020-06-30 华为技术有限公司 调度方法、装置和***
US20200099419A1 (en) * 2018-09-20 2020-03-26 Verizon Patent And Licensing Inc. Systems and methods for dynamic inter-sector mimo transmission
WO2020213877A1 (ko) * 2019-04-17 2020-10-22 삼성전자 주식회사 무선 통신 시스템에서 전이중동작을 지원하기 위한 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on MuST demodulation performance requirements", 3GPP DRAFT; R4-1700560 - INTEL - MUST, vol. RAN WG4, 3 February 2017 (2017-02-03), Athens, Greece, pages 1 - 5, XP051225644 *

Also Published As

Publication number Publication date
CN114698134A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN106716865B (zh) 下行链路开环多用户协同多点传输的***和方法
WO2022143269A1 (zh) 数据传输方法和装置、存储介质和电子装置
CN106685494B (zh) 一种mu-mimo***中的分组调度方法和装置
US9674863B2 (en) Methods and systems for distributed coordination
WO2023005448A1 (zh) 无线资源利用率确定方法、装置、电子设备及存储介质
WO2016033953A1 (zh) 资源分配方法及装置
CN106507489B (zh) 一种资源分配方法,及接入设备
EP3193463B1 (en) User pairing processing method, device and base station
US11877311B2 (en) Rate selection in multiple-input multiple-output communication systems
CN103369690A (zh) 一种无线资源的分配方法及装置
CN108777857B (zh) 一种URLLC和mMTC共存场景下的接入控制方法及***
CN109564516A (zh) 一种载波选择方法、终端设备及计算机存储介质
WO2013044468A1 (zh) 多点协作***中的调度分配方法以及装置
CN115037342B (zh) Ue配对方法、装置和存储介质
CN114125896B (zh) 无线资源负荷评估方法、装置及计算机可读存储介质
CN108880641B (zh) 一种无线移动通信***资源分配方法及装置
CN115665879A (zh) 资源调度方法、装置及存储介质
CN115568027A (zh) 资源调度方法、装置及存储介质
JP7425197B2 (ja) スケジューリング方法及び装置
CN107155220B (zh) 一种资源调度方法及装置
CN111224761B (zh) 一种上行调度方法及装置
CN111357348B (zh) 调度方法、装置和***
CN113170437A (zh) 用于多用户多输入多输出的方法和基站
CN116133000B (zh) 空分复用方法、装置、计算机设备和存储介质
CN115955443B (zh) 资源调度方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.11.2023)