WO2022143111A1 - 一种可穿戴设备 - Google Patents

一种可穿戴设备 Download PDF

Info

Publication number
WO2022143111A1
WO2022143111A1 PCT/CN2021/137206 CN2021137206W WO2022143111A1 WO 2022143111 A1 WO2022143111 A1 WO 2022143111A1 CN 2021137206 W CN2021137206 W CN 2021137206W WO 2022143111 A1 WO2022143111 A1 WO 2022143111A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wearable device
back cover
conductive
plastic
Prior art date
Application number
PCT/CN2021/137206
Other languages
English (en)
French (fr)
Inventor
杨荣广
詹悦星
赵梦龙
何谦
张斌
金秋
席毅
胡轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022143111A1 publication Critical patent/WO2022143111A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to a wearable device.
  • smart wearable devices such as smart bracelets and smart watches have become basic accessories for many people.
  • smart wearable devices are equipped with functions related to recording various human data.
  • users can record real-time data related to exercise, sleep, heart rate, diet, etc. in daily life.
  • terminal devices such as mobile phones or tablets, and the terminal devices analyze these data and output the results, thereby guiding users to achieve a healthy life through the terminal devices.
  • ECG electrocardiogram
  • the ECG module includes metal electrodes used to collect potential signals of the user's skin. By wearing the wearable device, the user can You can know your heart condition at any time.
  • the wearable device is wirelessly charged, the metal electrode of the ECG module will block the magnetic field lines generated by the charging coil, and the inside of the metal electrode will also generate eddy current to generate heat, which will affect the reliability and wireless charging of the wearable device. Efficiency is adversely affected.
  • the present application provides a wearable device to improve wireless charging efficiency and use reliability of the wearable device.
  • the wearable device may include a housing, a first electrode, a second electrode, and a circuit component.
  • the housing includes a back cover, which can keep in contact with the user's skin when the user wears the wearable device.
  • the material of the first electrode is conductive plastic, and the first electrode can be arranged on the back cover to collect the first electrical signal of the skin of the user's wearing part.
  • the second electrode is disposed on the casing at a different position from the position of the first electrode, and the second electrode can be used to collect the second electrical signal of the user's skin.
  • the circuit component is arranged inside the casing, and the circuit component can be electrically connected to the first electrode and the second electrode respectively, so as to obtain the user's ECG data according to the first electrical signal and the second electrical signal.
  • the wearable device can avoid problems such as the reduction of wireless charging efficiency and product heating caused by the metal electrode, so as to meet the wireless charging requirements of the wearable device and improve its reliability.
  • the conductive plastic may include a plastic substrate and a conductive material mixed in the plastic substrate.
  • Conductive plastics can be made by mixing conductive materials into general-purpose plastics in a certain proportion, and then injection molding, so that conductive plastics can achieve good electrical conductivity.
  • the plastic substrate can be mixed with one conductive material, or can be mixed with multiple conductive materials, for example, a certain proportion of carbon black or carbon nanotubes can be added to improve the internal noise characteristics of the conductive plastic, Make the conductive plastic obtain more stable electrode performance.
  • the conductive material may include nano-conductive carbon fibers, carbon powder, superconducting carbon black, carbon nanotubes, ultra-fine conductive graphite, conductive titanium dioxide, conductive titanium dioxide fibers, steel fibers, and the like.
  • the plastic substrates can be single-phase substrates such as polyamide, polycarbonate, ABS plastic, polyethylene, polypropylene, etc., as well as ABS plastic/polycarbonate, polycarbonate/PBT plastic, Duplex or multiphase substrates such as synthetic rubber.
  • the plastic substrate of the conductive plastic may be polyamide
  • the conductive material may be carbon fiber
  • the content of carbon fiber in the conductive plastic may be between 5% and 45%.
  • the content of carbon fiber in the conductive plastic can be specifically 30%. This conductive plastic can not only meet the resistance value and electrode performance requirements of the ECG electrode, but also avoid the difficulty of injection molding and surface floating caused by excessive carbon fiber content. Appearance problems such as fiber.
  • the plastic substrate of the conductive plastic may be polyamide, the conductive material may be polycarbonate, and the content of carbon fibers in the conductive plastic may be between 5% and 45%.
  • the content of carbon fibers in the conductive plastic can be specifically 30%. This conductive plastic can also meet the resistance value and electrode performance requirements of the ECG electrode, and can avoid injection molding difficulties and surface floating caused by excessive carbon fiber content. Appearance problems such as fiber.
  • the back cover may be made of plastic material, and at this time, the back cover and the first electrode may be an integral injection molding structure. With this molding method, there is no assembly step difference between the back cover and the first electrode, and the two can be seamlessly combined, thereby improving the appearance quality of the wearable device and enabling the wearable device to achieve good waterproof performance.
  • the back cover and the first electrode can also be formed separately, and the first electrode can be assembled and fixed on the back cover.
  • This forming method is beneficial to reduce the manufacturing cost of the wearable device.
  • the first electrode may be fixed on the back cover by glue or double-sided tape.
  • the back cover may be provided with a through hole, and the first electrode may be disposed in the through hole. At this time, the back cover and the first electrode are arranged in the same layer. This arrangement can make the thickness of the back cover relatively thin, thereby reducing the weight of the back cover and realizing the lightweight design of the wearable device.
  • the back cover may be provided with a groove, and the bottom wall of the groove is provided with an opening; the first electrode is arranged in the groove, and the first electrode is further provided with a protrusion opposite to the opening , the protrusion can extend into the casing through the opening, so as to facilitate the electrical connection of the internal circuit components.
  • the back cover and the first electrode are designed with a stepped overlapping structure, and the side and inner surface of the first electrode are in contact with the side walls and bottom walls of the groove respectively, so that the distance between the first electrode and the back cover can be maximized.
  • the combined area improves the structural strength of the back cover.
  • the first electrode may include a plurality of arc structures arranged at intervals, so as to improve the contact reliability between the first electrode and the user's skin.
  • the wearable device may further include a flexible circuit board, which is electrically connected with the first electrode and the circuit component, respectively, so as to reduce the difficulty of electrical connection between the first electrode and the circuit component.
  • the wearable device may further include a display screen, the display screen is arranged opposite to the back cover, the second electrode may be specifically arranged on the display screen, and the user can measure the second electrode by touching the display screen to obtain the second electrode. electric signal.
  • the second electrode may be a transparent structure with a certain light transmittance, so as to minimize the influence of the second electrode on the display effect of the display screen.
  • the casing may further include a frame, and the frame is fixed on one side of the back cover.
  • the back cover, the frame and the display screen may enclose the interior of the wearable device.
  • a crown may be arranged on the frame, and the second electrode may be specifically arranged on the crown, and the user can obtain a second electrical signal by measuring the second electrode by pressing the crown.
  • the wearable device may further include a charging coil disposed inside the housing, so that wireless power transmission can be performed between the wearable device and the adapted charging base by means of electromagnetic induction.
  • FIG. 1 is a schematic structural diagram of a wearable device provided by an embodiment of the present application
  • FIG. 2 is a partially exploded schematic view of the wearable device shown in FIG. 1;
  • 3a is a schematic diagram of a charging state of a wearable device provided by an embodiment of the present application.
  • FIG. 3b is a schematic diagram of the charging principle of the wearable device provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a combined state of a bottom case and a first electrode according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a disassembled state of a bottom case and a first electrode according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a disassembled state of another bottom case and a first electrode provided by an embodiment of the present application;
  • FIG. 7 is a partial structural schematic diagram of the first electrode of the wearable device shown in FIG. 6 assembled to the back cover;
  • FIG. 8 is a partial cross-sectional view of the wearable device shown in FIG. 7 at A-A;
  • FIG. 9 is a partial exploded schematic diagram of a wearable device provided by an embodiment of the present application.
  • FIG. 10 is a partial structural schematic diagram of the various components of the wearable device shown in FIG. 9 assembled to the back cover in sequence from top to bottom;
  • FIG. 11 is a partial cross-sectional view of the wearable device shown in FIG. 10 at B-B;
  • FIG. 12 is a schematic diagram of a combined state of a bottom case and a first electrode provided by another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a disassembled state of a back cover and a first electrode of the wearable device shown in FIG. 12;
  • FIG. 14 is a schematic diagram of a disassembled state of another back cover and the first electrode of the wearable device shown in FIG. 12;
  • 15 is a schematic diagram of a combined state of a bottom case and a first electrode provided by another embodiment of the present application.
  • Fig. 16 is a schematic diagram of a disassembled state of a back cover and a first electrode of the wearable device shown in Fig. 15;
  • FIG. 17 is a schematic diagram of another disassembled state of the back cover and the first electrode of the wearable device shown in FIG. 15 .
  • 100-wearable device 10-shell; 20-circuit board; 11-back cover; 12-front shell; 121-frame;
  • 50-charging coil 200-charging base; 210-transmitting coil; 31-first part; 32-second part;
  • the ECG in the embodiment of the present application refers to that in each cardiac cycle of the heart, there are successive excitations from the pacemaker to the atrium and then to the ventricle.
  • the electrical detection device detects electrical signals from multiple locations on the body surface, and then determines various forms of potential changes according to the detected electrical signals.
  • the graph formed in this way is called an electrocardiogram.
  • the ECG electrode in the embodiments of the present application refers to an electrode used for measuring changes in electrical signals on the surface of a living body caused by heartbeat.
  • ECG electrodes When using ECG electrodes to measure electrical signals, multiple ECG electrodes and the biological currents on the left and right sides of the heart need to form a closed loop. In this way, the electrical signals at different positions on the body surface are detected according to the multiple ECG electrodes, and then amplified by an amplifier.
  • the electrocardiogram can be obtained by tracing it with a recorder.
  • the electrocardiogram is used for subsequent comparison with a normal electrocardiogram to determine the electrophysiological activity of the heart, to determine the details of myocardial activity, and to determine whether the beating rhythm of the upper and lower chambers of the heart is regular.
  • electrodes refer to ECG electrodes, that is, electrodes in the following can be replaced by ECG electrodes. It can be understood that although the electrodes in the embodiments of the present application are used to collect electrical signals related to cardiac items such as an electrocardiogram of a living being, in other embodiments, the electrodes can also collect electrical signals related to other vital signs of living beings, This application does not limit this.
  • FIG. 1 is a schematic structural diagram of a wearable device 100 provided by an embodiment of the present application.
  • the wearable device 100 may be, but is not limited to, portable electronic devices such as smart glasses, smart bracelets, and smart head-mounted displays.
  • the wearable device 100 of the embodiment shown in FIG. 1 is described by taking a smart watch as an example.
  • some wearable devices 100 integrate the ECG detection function, and the user can detect the heartbeat at any time by wearing these wearable devices 100. Electrical data to understand your heart health.
  • FIG. 2 is a partially exploded schematic view of the wearable device 100 shown in FIG. 1 .
  • the wearable device 100 includes a casing 10 , a circuit board 20 , a battery and an ECG module.
  • FIGS. 1 , 2 and the following related drawings only schematically show some components included in the wearable device 100 , and the actual shape, actual size, actual position and actual structure of these components are not affected by FIG. 1 , Figure 2 and the figures below define it.
  • the wearable device 100 may further include devices such as an antenna, a wireless communication module, a speaker, a receiver, a microphone, etc., which will not be described in detail here.
  • the housing 10 may include a back cover 11 and a front case 12 , the back cover 11 and the front case 12 are fixedly connected, and the two together enclose the interior of the wearable device 100 .
  • the back cover 11 may refer to the side that is easily in contact with the user's skin when worn.
  • the wearable device 100 is a smart watch
  • the outer surface of the back cover 11 may be in contact with the user's wrist.
  • the front case 12 may include a frame 121 and a front cover 122 fixed to one side of the frame 121, the front cover 122 is disposed opposite to the rear cover 11, the frame 121 may be provided with a crown 123 and a button 124, and the crown 123 and the button 124 can respond to perform certain functions depending on the user's actions.
  • the front cover 122 may specifically be a display screen. It should be noted that the labels of the display screen below are the same as those of the front cover.
  • the display screen 1222 may include a transparent cover plate and a display panel.
  • the transparent cover plate is stacked on the side of the display panel away from the back cover 11 , and is mainly used for protecting and dustproofing the display panel.
  • the material of the transparent cover plate can be, but not limited to, glass.
  • the display panel is used to display images, videos, etc., and in some embodiments, the display panel may also integrate a touch function.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED) display, an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix).
  • organic light-emitting diode, AMOLED) display flexible light-emitting diode (flex light-emitting diode, FLED), Mini LED, Micro LED, Micro OLED, quantum dot light emitting diode (quantum dot light emitting diodes, QLED), etc.
  • the battery and the circuit board 20 are accommodated inside the wearable device 100 .
  • the battery may be located on the side of the circuit board 20 facing away from the display screen 122 .
  • the battery may also be located on the side of the circuit board 20 facing the display screen 122 .
  • the circuit board 20 may be provided with a processor, a charging management module, a power management module, a wireless communication module, a sensor module, and the like.
  • the power management module is used to connect the battery, the charge management module and the processor.
  • the power management module may receive input from the battery and/or charge management module, and provide power to the processor, display screen 122, ECG module, wireless communication module, and the like.
  • the wearable device 100 may further include a bracket 13 disposed inside the housing 10 , and the battery, the circuit board 20 and some other components in the housing 10 may be carried on the bracket 13 , so as to realize that these components are inside the housing 10 . fixed to improve the structural stability of the wearable device 100 .
  • the ECG module includes a circuit component (not shown in the figure), a first electrode 30 and a second electrode 40, wherein the circuit component is provided inside the wearable device 100, for example, on the circuit board 20; the first electrode 30 and the The second electrodes 40 are respectively disposed at different positions on the outer surface of the wearable device 100 and can respectively contact the skin of different parts of the user, and the first electrodes 30 and the second electrodes 40 can be respectively electrically connected to circuit components.
  • the first electrode 30 may be disposed on the back cover 11, and when the user wears the wearable device 100, the first electrode 30 may be in contact with the user's first skin measurement point.
  • the second electrode 40 may be disposed on the display screen 122 . When specifically disposed, the second electrode 40 may be a transparent structure with a certain transmittance to minimize the influence of the second electrode 40 on the display effect of the display screen 122 .
  • the user can press the second skin measurement point on the second electrode 40. Since the display screen 122 is disposed opposite to the back cover 11, this pressure will cause the first electrode 30 to measure the user's second skin. The contact between the points is closer.
  • the first electrode 30 can accurately collect the first electrical signal of the first skin measurement point and transmit it to the circuit components
  • the second electrode 40 can also accurately collect the second skin measurement
  • the second electrical signal of the point is transmitted to the circuit component, and then the circuit component acquires the user's ECG data according to the first electrical signal and the second electrical signal, so as to realize the user's ECG detection.
  • the first skin measurement point may be the user's left wrist, and the second skin measurement point may be the user's right finger.
  • the first skin measurement point may be the user's right wrist, and the second skin measurement point may be the user's left hand finger.
  • the first electrode and the second electrode can collect stable electrical signals, which helps to improve the accuracy of electrical signals collected by the electrocardiogram detection device.
  • the second electrode 40 on the display screen 122 , the influence of the addition of the ECG detection function on the appearance design of the wearable device 100 can be reduced, which helps to make the wearable device 100 more beautiful.
  • the second electrode 40 may also be disposed on the crown 123 or the button 124 of the frame 121 of the wearable device 100 .
  • the first electrical signal is measured by the first electrode 30
  • the first skin measurement point on the user's wrist is obtained, and the second electrical signal can be measured by the second electrode 40 by pressing the crown 123 or the button 124 with the user's finger.
  • the circuit components inside the wearable device 100 can be measured according to
  • the first electrical signal collected by the first electrode 30 and the second electrical signal collected by the second electrode 40 are used for ECG detection.
  • the second electrode 40 can be made of a conventional metal material or a ceramic material, which is beneficial to reduce the manufacturing cost of the wearable device 100 .
  • the ECG module may further include a third electrode (not shown in the figure), and the third electrode may also be provided on the back cover 11 , for example, the third electrode and the first electrode 30 may be combined
  • the third electrode can collect the noise signal of the third skin measurement point and transmit it to the circuit component, and the circuit component can first use the noise signal collected by the third electrode to collect the first electrical signal and Noise compensation is performed on the second electrical signal collected by the second electrode 40, and then an electrocardiogram is drawn using the noise-compensated first electrical signal and the second electrical signal, so as to reduce the interference of noise on electrocardiographic detection and improve the accuracy of electrocardiographic detection .
  • FIG. 3a is a schematic diagram of a charging state of the wearable device 100 according to an embodiment of the present application.
  • the wearable device 100 may further include a wireless charging module.
  • the wireless charging module may specifically be a charging coil 50, and wireless power transmission can be performed between the wearable device 100 and the adapted charging base 200 by means of electromagnetic induction.
  • the charging coil 50 is accommodated in the wearable device 100 and is electrically connected to the charging management module.
  • the transmitting coil 210 of the charging base 200 can generate a magnetic field under the alternating current of a certain frequency, and the magnetic field lines of the magnetic field pass through the inner surface of the wearable device 100 .
  • the charging coil 50 makes the charging coil 50 generate an AC voltage signal, and then the charging coil 50 transmits the AC voltage signal to the charging management module. Charging of the wearable device 100 .
  • the curve passing through the charging coil 50 and the transmitting coil 210 in FIG. 3 a can be used to represent the magnetic field lines, which does not limit the strength of the magnetic field between the charging coil 50 and the transmitting coil 210 .
  • FIG. 3b is a schematic diagram of a charging principle of the wearable device 100 according to an embodiment of the present application.
  • the wearable device 100 when the wearable device 100 is placed on the charging base 200 for charging, the back cover 11 of the wearable device 100 is in contact with the bearing surface of the charging base 200 .
  • the first electrode 30 on the cover 11 is located between the charging coil 50 and the transmitting coil 210 , and the magnetic field lines generated by the transmitting coil 210 will pass through the back cover 11 and then be transmitted to the charging coil 50 .
  • the magnetic field lines generated by the transmitting coil 210 will be blocked by the first electrode 30 when passing through the back cover 11 , which will lead to a decrease in the transmission efficiency of wireless electromagnetic waves, and further This leads to a decrease in the efficiency of wireless charging.
  • the magnetic lines of force act on the first electrode 30 , an eddy current will be generated inside the first electrode 30 , causing the first electrode 30 to generate heat, which affects the reliability of the wearable device 100 .
  • the back cover 11 of the wearable device 100 is usually made of plastic material.
  • the assembled The assembly level difference often occurs on the surface of the product. The assembly level difference not only affects the appearance and texture of the wearable device 100 , but also affects the waterproof performance of the wearable device 100 , thereby reducing the reliability of the wearable device 100 .
  • the first electrode 30 may also be made of conductive plastic material, so as to avoid problems such as the reduction of wireless charging efficiency and product heating caused by the metal electrode; in addition, since the first electrode 30
  • the back cover 11 and the back cover 11 are made of the same plastic material, so they can be formed by an integral injection molding process, so that the appearance of the wearable device 100 can be seamlessly combined, and the waterproof problem caused by the traditional part-processing can also be solved.
  • the material of the first electrode 30 and its assembling process will be specifically described below.
  • FIG. 4 is a schematic diagram of a combined state of the back cover 11 and the first electrode 30 according to an embodiment of the present application.
  • the material of the back cover 11 includes but is not limited to polyamide, polycarbonate, ABS plastic, polyethylene, polypropylene and other single-phase plastic materials, and ABS plastic/polycarbonate , Polycarbonate/PBT plastic, synthetic rubber and other dual-phase or multi-phase plastic materials.
  • the first electrode 30 is embedded in the back cover 11 and exposed on the outer surface of the back cover 11 .
  • the first electrode 30 may include two parts spaced apart, such as the first part 31 and the second part 32 shown in FIG. 4 , so that the contact reliability between the first electrode 30 and the user's skin can be improved.
  • both the first part 31 and the second part 32 may be arc-shaped structures, the first part 31 and the second part 32 are arranged concentrically, and are symmetrically distributed on the back cover 11 .
  • the outer surface of the first electrode 30 and the outer surface of the rear cover 11 may be flush, that is, the outer surface of the first electrode 30 and the outer surface of the rear cover 11 are coplanar.
  • orientation terms such as “inside” and “outside” used in the embodiments of the present application are mainly described based on the structure of the wearable device, and the side facing the inner cavity of the wearable device 100 is defined as the “inside” side , the side away from the internal cavity of the wearable device is the “outer” side.
  • the first electrode 30 in the embodiment of the present application can be made of a conductive plastic material, so as to solve the problems of the reduction of wireless charging efficiency and the heat of the product caused by the metal electrode.
  • the resistivity of the conductive plastic used for the first electrode 30 may be greater than or equal to less than 10 ⁇ 4 ohm/cm, so as to meet the conductivity requirement of the first electrode 30 .
  • the conductive plastic may be structural conductive plastic.
  • Structural conductive plastic is a plastic that uses the inherent conductivity of the polymer itself. This kind of plastic can achieve electrical conductivity by using the function of its own chemical structure, and then chemically doped to enhance its conductivity. Dopants include, but are not limited to, iodine, arsenic pentafluoride, boron pentafluoride and other chemicals.
  • the conductive plastic may also be a composite conductive plastic.
  • Composite conductive plastic is a plastic with electrical conductivity after physical modification.
  • composite conductive plastic is a conductive plastic that is formed by mixing conductive materials in a certain proportion of general-purpose plastics, and then injection molding.
  • the conductive materials used in composite conductive plastics include but are not limited to nano conductive carbon fibers, carbon powder, superconducting carbon black, carbon nanotubes, ultra-fine conductive graphite, conductive titanium dioxide, conductive titanium dioxide fibers, steel fibers and other materials.
  • the plastic substrates used in plastics include but are not limited to single-phase bases such as polyamide (PA), polycarbonate (PC), ABS plastic, polyethylene (PE), polypropylene (PP), etc.
  • a conductive material can be mixed in the plastic substrate, or a variety of conductive materials can be mixed, for example, a certain proportion of carbon black or carbon nanotubes can be added to improve the internal noise characteristics of the conductive plastic, so that the conductive plastic can obtain More stable electrode performance.
  • the first electrode 30 provided on the back cover 11 generally needs to meet a certain requirement. It also needs to have certain safety to avoid toxic side effects and sensitization to the skin.
  • the first electrode 30 may be a conductive plastic formed by mixing polyamide and carbon fiber after injection molding.
  • This conductive plastic not only satisfies chemical corrosion resistance and safety, but also has excellent mechanical properties, oxidation resistance, wear resistance and low friction coefficient, which helps to improve the service life and wearing comfort of wearable devices. sex. Among them, the mass content of carbon fiber in the conductive plastic directly affects the electrode performance of the conductive plastic.
  • the carbon fiber content is less than 5%
  • the conductive network components of the conductive plastic are imperfect
  • the surface resistance of the conductive plastic is about 10 ⁇ 7 ⁇
  • the offset voltage about 150mV
  • the composite offset instability and internal noise are about 3000 ⁇ V, which is difficult to meet the electrical performance requirements of ECG electrodes
  • the carbon fiber content is greater than 45%
  • the surface resistance of the conductive plastic is about 10 ⁇ 1 ⁇
  • the offset voltage is about 20mV.
  • the composite misalignment instability and internal noise are about 500 ⁇ V.
  • the mass content of carbon fibers in the conductive plastic can be between 5% and 45%, and the conductive plastics that meet the carbon fiber content can not only meet the resistance value and electrode performance requirements of the ECG electrode, but also It can avoid the difficulty of injection molding and the appearance problems such as floating fibers on the surface caused by high carbon fiber content.
  • the carbon fiber content may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and the like.
  • a commonly used conductive plastic formulation is polyamide mixed with 30% carbon fiber material, which can meet the resistance value of ECG electrodes and related electrode performance requirements.
  • the first electrode 30 may also be a conductive plastic formed by mixing polycarbonate and carbon fiber after injection molding.
  • the mass content of carbon fibers in the conductive plastic may be in the range of 5% to 45%, for example, the content of carbon fibers may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% %, 45%, etc.
  • a commonly used conductive plastic formulation is to mix 30% carbon fiber material in polycarbonate, and a variety of conductive components can also be added at the same time to meet the resistance value of the ECG electrode and related electrode performance requirements.
  • the performance of this conductive plastic is similar to the performance of the aforementioned conductive plastic formed by polyamide and carbon fiber, and will not be repeated here.
  • FIG. 5 is a schematic diagram of an exploded state of a back cover 11 and a first electrode 30 according to an embodiment of the present application.
  • the back cover 11 is provided with a first through hole 111 and a second through hole 112 , and the first part 31 and the second part 32 of the first electrode 30 can be They are respectively embedded in the first through hole 111 and the second through hole 112 .
  • the back cover 11 and the first electrode are arranged in the same layer, and the combined structure of the two is a single-layer structure.
  • the outer surface of the first electrode 30 is flush with the outer surface of the back cover 11 , and the inner surface of the first electrode 30 is exposed to the inside of the wearable device, so as to facilitate electrical connection with the circuit components.
  • the thickness of the back cover 11 can be designed to be relatively thin, which is beneficial to reduce the weight of the back cover 11 and realize the lightweight design of the wearable device.
  • the back cover 11 and the first electrode 30 can be integrally formed by a two-color injection molding process.
  • the specific manufacturing process of the two-color injection molding includes two injection molding processes, wherein the first injection molding includes mixing the conductive material in a liquid plastic base material in a certain proportion, and then injection molding the first electrode 30 after mixing uniformly through the mixing process.
  • the first part 31 and the second part 32; the second injection is to complete the molding of the back cover 11 on the basis of the first injection, and the two injections can be automatically completed on a two-color injection molding machine.
  • this molding method there is no assembly step difference between the manufactured back cover 11 and the first electrode 30, and the two can be seamlessly combined, thereby improving the appearance quality of the wearable device and enabling the wearable device Achieve good waterproof performance.
  • the back cover 11 and the first electrode 30 can also be separately formed by two injection molding processes before being assembled. At this time, the back cover 11 and the first electrode 30 can be respectively injection-molded by two injection molding machines, and then the first electrode 30 is fixed on the back cover 11 .
  • the first part 31 and the second part 32 can be fixed in the first through hole 111 and the second through hole 112 by glue or double-sided tape, respectively, or between the first part 31 and the inner wall of the first through hole 111 .
  • the second part 32 and the inner wall of the second through hole 112 can also be fixed and sealed by arranging a sealing ring.
  • a filler can also be injected into the assembly gap between the first part 31 and the first through hole 111 to increase the bonding force between the first part 31 and the back cover 11, and strengthen the waterproof capability of the back cover 11; similarly, after the second part 32 is fixed to the second through hole 112, a filler can be injected into the assembly gap between the second part 32 and the second through hole 112 to increase the The bonding force between the two parts 32 and the back cover 11 strengthens the waterproof capability of the back cover 11 .
  • first electrode 30 and the back cover 11 in addition to the fixed connection between the first electrode 30 and the back cover 11 by the above-mentioned bonding or sealing ring, it can also be fixed by metal sheet welding, laser welding, ultrasonic welding or diffusion welding, etc., as long as It only needs to be able to realize reliable combination of the first electrode 30 and the back cover 11 .
  • FIG. 6 is a schematic diagram of an exploded state of another rear cover 11 and the first electrode 30 according to an embodiment of the present application.
  • the rear cover 11 is provided with a first groove 113 and a second groove 114 , and the first part 31 and the second part 32 of the first electrode 30 are respectively embedded in the inside the first groove 113 and the second groove 114 .
  • the bottom cover 11 and the first electrode 30 adopt a stepped overlapping structure design, the side and inner surface of the first part 31 are in contact with the side wall and bottom wall of the first groove 113 respectively, and the side and inner surface of the second part 32 are in contact with each other. Contact with the side wall and bottom wall of the second groove 114 respectively, so as to maximize the bonding area of the first electrode 30 and the back cover 11 and improve the structural strength of the back cover 11 .
  • the first electrode 30 and the back cover 11 can be integrally formed by a two-color injection molding process, or can be separately formed by two injection molding processes and then assembled. The specific manufacturing process is not described here. Repeat.
  • FIG. 7 is a partial structural schematic diagram of the first electrode of the wearable device shown in FIG. 6 assembled to the back cover 11
  • FIG. 8 is a partial cross-sectional view of the wearable device shown in FIG. 7 at A-A.
  • the inner surface of the first part 31 is provided with a first protrusion 311
  • the bottom wall of the first groove 113 is provided with a first opening at a position opposite to the first protrusion 311 .
  • the hole 1131, the first protrusion 311 can extend into the first opening 1131, and the end of the first protrusion 311 is exposed to the inside of the wearable device so as to be electrically connected with the internal circuit components.
  • the inner surface of the second part 32 is provided with a second protrusion 321
  • the bottom wall of the second groove 114 is provided with a second opening 1141 at a position opposite to the second protrusion 321
  • the second protrusion 321 can extend into the second opening 1141, and the end of the second protrusion 321 is exposed to the inside of the wearable device, so as to be electrically connected to the internal circuit components.
  • FIG. 9 is a partial exploded schematic diagram of the wearable device provided by the embodiment of the present application.
  • the wearable device may further include a flexible circuit board 60, and the flexible circuit board 60 is accommodated inside the wearable device.
  • the flexible circuit board 60 is electrically connected to the first electrodes 30 and the circuit components respectively, that is, the first electrodes 30 and the circuit components can be electrically connected through the flexible circuit board 60 .
  • the first electrode 30 and the flexible circuit board 60 can be electrically connected through the elastic sheet.
  • the number of the elastic pieces can be two, and the two elastic pieces are the first elastic piece 61 and the second elastic piece 62 respectively.
  • the two elastic pieces 62 are used to connect the second protrusion 321 of the second part 32 with the flexible circuit board 60 .
  • FIG. 10 is a schematic view of the partial structure of the wearable device shown in FIG. 9 after each component is assembled to the back cover 11 in sequence from top to bottom.
  • FIG. 11 is a partial cross-sectional view of the wearable device shown in FIG. 10 at B-B.
  • the first elastic piece 61 and the second elastic piece 62 can be pre-welded on the flexible circuit board 60.
  • the first protrusion 311 and the first elastic piece 61 are aligned and pressed tightly, and the second protrusion 321 and the second The elastic pieces 62 are pressed in alignment, so that the first electrode 30 can be electrically connected to the flexible circuit board 60 reliably.
  • first protrusions 311 and the second protrusions 321 and the flexible circuit board 60 may also be electrically connected by conductive glue, or may be soldered by solder paste, etc. Not limited.
  • the circuit components are disposed on the circuit board, and in this case, the electrical connection between the flexible circuit board 60 and the circuit components can be achieved by electrically connecting the flexible circuit board 60 to the circuit board.
  • the flexible circuit board 60 and the circuit board may be electrically connected in a detachable manner, so as to facilitate the assembly between the flexible circuit board 60 and the circuit board, and facilitate subsequent maintenance operations of the wearable device.
  • the flexible circuit board 60 and the circuit board may be connected through a board to board (BTB) connector.
  • BTB board to board
  • the flexible circuit board 60 and the circuit board may also be electrically connected by means of welding or the like.
  • the first electrode 30 may include a plurality of arc structures 31a arranged at intervals to improve the contact reliability between the first electrode 30 and the user's skin.
  • the arc-shaped structure 31a may be four-segmented, and the four-segment arc-shaped structures 31a may be arranged concentrically and evenly distributed on the back cover 11 .
  • the rear cover 11 is provided with through holes 111a corresponding to the four arc structures 41a respectively, so that the four arc structures 31a are respectively embedded in the corresponding through holes 111a.
  • the thickness of the cover 11 is designed to be relatively thin, so as to reduce the weight of the back cover 11 and realize the lightweight design of the wearable device.
  • FIG. 14 is a schematic diagram of another disassembled state of the back cover 11 and the first electrode 30 of the wearable device shown in FIG. 12 . 12 and 14 together, in other embodiments, the rear cover 11 is provided with grooves 113a corresponding to the four arc structures 31a, so that the four arc structures 31a are respectively embedded in in the corresponding groove 113a.
  • protrusions 311a are respectively provided on each segment of the arc structure 31a, and correspondingly, the bottom walls of each groove 113a are respectively provided with openings 1131a, so that the protrusions 311a of each segment of the arc structure 31a can pass through the corresponding
  • the opening 1131a extends into the wearable device and is electrically connected to the circuit components.
  • the bottom cover 11 and the first electrode 30 adopt a stepped overlapping structure design, so as to maximize the bonding area of the first electrode 30 and the back cover 11 and improve the structural strength of the back cover 11 .
  • the first electrode 30 formed by the above-mentioned four-segment arc structure 31a and the back cover 11 can either be integrally formed by a two-color injection molding process, or can be separately formed by two injection molding processes and then assembled.
  • the process reference may be made to the descriptions in the foregoing embodiments, which will not be repeated here.
  • the first electrode 30 may further include a plurality of protruding posts 33 arranged at intervals to improve the contact reliability of the first electrode 30 with the user's skin.
  • the number of protruding pillars 33 may be four, and the four protruding pillars 33 are evenly distributed on the back cover 11 .
  • the rear cover 11 is provided with through holes 111 a corresponding to the four protruding pillars 33 , so that the four protruding pillars 33 are respectively embedded in the corresponding through holes 111 a .
  • the thickness of the wearable device is designed to be relatively thin, which is beneficial to reduce the weight of the back cover 11 and realize the lightweight design of the wearable device.
  • FIG. 17 is a schematic diagram of another disassembled state of the back cover 11 and the first electrode 30 of the wearable device shown in FIG. 15 .
  • the rear cover is provided with grooves 113a corresponding to the above-mentioned four protruding pillars 33 respectively, so that the four protruding pillars 33 are respectively embedded in the corresponding recesses inside the groove 113a.
  • protrusions 311a are respectively provided on each protruding post 33, and correspondingly, the bottom wall of each groove 113a is respectively provided with openings 1131a, so that the protrusions 311a of each protruding post 33 can extend through the corresponding openings 1131a.
  • the inside of the wearable device is electrically connected to the circuit components.
  • the bottom cover 11 and the first electrode 30 adopt a stepped overlapping structure design, so as to maximize the bonding area of the first electrode 30 and the back cover 11 and improve the structural strength of the back cover 11 .
  • the first electrode 30 formed by the above four protruding columns 33 and the back cover 11 can either be integrally formed by a two-color injection molding process, or can be separately formed by two injection molding processes before being assembled.
  • the specific production process please refer to The descriptions in the foregoing embodiments are not repeated here.
  • the first electrode also adopts other structural forms, such as annular, circular, petal-shaped, polygonal, etc., which will not be described one by one here.
  • the wearable device provided by the present application can avoid problems such as the decrease of wireless charging efficiency and product heating caused by the metal electrode by using the first electrode of conductive plastic material, so as to meet the wireless charging requirements of the wearable device and improve the use of the wearable device. reliability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种可穿戴设备(100),其ECG电极设计和材料可以提高可穿戴设备(100)的无线充电效率及使用可靠性。可穿戴设备(100)包括壳体(10)、第一电极(30)、第二电极(40)及电路部件,其中:壳体(10)包括后盖(11),后盖(11)可在用户佩戴可穿戴设备(100)时与用户的皮肤保持接触;第一电极(30)的材质为导电塑胶,第一电极(30)设置于后盖(11)上,用于采集用户的皮肤的第一电信号;第二电极(40)设置于壳体(10)上与第一电极(30)的位置相异的位置,第二电极(40)用于采集用户的皮肤的第二电信号;电路部件设置于壳体(10)的内部,电路部件分别与第一电极(30)和第二电极(40)电连接,用于根据第一电信号和第二电信号获取用户的心电数据。

Description

一种可穿戴设备
相关申请的交叉引用
本申请要求在2020年12月31日提交中国专利局、申请号为202011628185.2、申请名称为“一种可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及到一种可穿戴设备。
背景技术
随着智能可穿戴设备的普及,智能手环、智能手表等智能可穿戴设备已经成为许多人的基本配件。作为服务生活的便携式产品,智能可穿戴设备大都配有记录各项与人体数据有关的功能,通过智能可穿戴设备,用户可以记录日常生活中的锻炼、睡眠、心率、饮食等相关的实时数据,并将这些数据同步至手机或平板等终端设备,终端设备对这些数据进行分析后输出结果,由此通过终端设备指导用户实现健康生活。
例如,目前一些可穿戴设备设置有可以对用户的心电图(electrocardiograph,ECG)进行检测的ECG模组,ECG模组包括用于采集用户皮肤的电位信号的金属电极,用户通过佩戴可穿戴设备,就可以随时了解自己的心脏情况。然而,在对可穿戴设备进行无线充电时,ECG模组的金属电极会阻断充电线圈所产生的磁力线,且金属电极内部还会产生涡流而发热,从而对可穿戴设备的可靠性及无线充电效率产生不利影响。
发明内容
本申请提供了一种可穿戴设备,以提高可穿戴设备的无线充电效率及使用可靠性。
第一方面,本申请提供了一种可穿戴设备,该可穿戴设备可包括壳体、第一电极、第二电极及电路部件。其中,壳体包括后盖,该后盖可在用户佩戴可穿戴设备时与用户的皮肤保持接触。第一电极的材质为导电塑胶,第一电极可以设置在后盖上,用于采集用户佩戴部位的皮肤的第一电信号。第二电极设置在壳体上与第一电极所在位置相异的其它位置,第二电极可用于采集用户皮肤的第二电信号。电路部件设置在壳体的内部,电路部件可分别与第一电极及第二电极电连接,以根据第一电信号与第二电信号获取用户的心电数据。
上述方案中,可穿戴设备通过采用导电塑胶材质的第一电极,可以规避由于金属电极造成的无线充电效率下降及产品发热等问题,从而可以满足穿戴设备的无线充电需求,提高其使用可靠性。
在一些可能的实施方案中,导电塑胶可以包括塑胶基材以及混合在塑胶基材中的导电材料。导电塑胶可以通过将导电材料按一定比例混合在通用塑胶中,再经过注塑成型,以使得导电塑胶实现良好的导电性。
在一些可能的实施方案中,塑胶基材中可以混合有一种导电材料,也可以混合有多种导电材料,例如可以增加一定比例的炭黑或者碳纳米管,以改善导电塑胶的内部噪声特性,使导电塑胶获得更稳定的电极性能。
在一些可能的实施方案中,导电材料可以包括纳米导电碳纤维、碳粉、超导电炭黑、碳纳米管、超细导电石墨、导电钛白粉、导电二氧化钛纤维、钢纤维等。
在一些可能的实施方案中,塑胶基材的可以为聚酰胺、聚碳酸脂、ABS塑料、聚乙烯、聚丙烯等单相基材,以及ABS塑料/聚碳酸脂、聚碳酸脂/PBT塑料、合成橡胶等双相或多相基材。
在一些可能的实施方案中,导电塑胶的塑胶基材可以为聚酰胺,导电材料可以为碳纤维,导电塑胶中碳纤维的含量可以介于5%~45%之间。示例性地,导电塑胶中碳纤维的含量具体可以为30%,这种导电塑胶既可以满足ECG电极的阻值及电极性能要求,还可以避免由于碳纤维含量过高而导致的注塑成型困难以及表面浮纤等外观问题。
在一些可能的实施方案中,导电塑胶的塑胶基材可以为聚酰胺,导电材料可以为聚碳酸脂,导电塑胶中碳纤维的含量可以介于5%~45%之间。示例性地,导电塑胶中碳纤维的含量具体可以为30%,这种导电塑胶也可以满足ECG电极的阻值及电极性能要求,以及可以避免由于碳纤维含量过高而导致的注塑成型困难以及表面浮纤等外观问题。
在一些可能的实施方案中,后盖可以为塑胶材质,此时后盖与第一电极可以为一体注塑成型结构。采用这种成型方式,后盖与第一电极之间无装配段差,两者可以达到无缝结合的效果,从而提高了可穿戴设备的外观品质,并且能够使可穿戴设备实现良好的防水性能。
在另外一些可能的实施方案中,后盖与第一电极也可以分别成型,此时第一电极可组装固定于后盖上,这种成型方式有利于减小可穿戴设备的制作成本。示例性地,第一电极可以通过胶水或者双面胶固定在后盖上。
在一些可能的实施方案中,后盖可以设置有通孔,第一电极可设置于通孔内。这时,后盖与第一电极同层设置,这种设置方式可以使后盖的厚度设计得相对较薄,从而有利于减小后盖的重量,实现可穿戴设备的轻量化设计。
在另外一些可能的实施方案中,后盖可以设置有凹槽,凹槽的底壁设置有开孔;第一电极设置在凹槽内,第一电极上还设置有与开孔相对的凸起,凸起可通过开孔伸入壳体内,以便于内部的电路部件电连接。该方案中,后盖与第一电极采用台阶式重叠结构设计,第一电极的侧面以及内表面分别与凹槽的侧壁及底壁接触,从而能够最大限度地增加第一电极与后盖的结合面积,提高后盖的结构强度。
在一些可能的实施方案中,第一电极可以包括间隔设置的多段弧形结构,以提高第一电极与用户皮肤的接触可靠性。
在一些可能的实施方案中,可穿戴设备还可以包括柔性电路板,该柔性电路板分别与第一电极和电路部件电连接,从而降低第一电极与电路部件的电连接难度。
在一些可能的实施方案中,可穿戴设备还可以包括显示屏,显示屏与后盖相对设置,第二电极具体可以设置在显示屏上,用户通过触摸显示屏即可由第二电极测量得到第二电信号。示例性地,第二电极可以为具有一定透光率的透明结构,以尽量减小第二电极对显示屏的显示效果的影响。
在另外一些可能的实施方案中,壳体还可以包括边框,边框固定于后盖的一侧,此时,后盖、边框及显示屏可围成可穿戴设备的内部。边框上可设置有表冠,第二电极具体可以设置在表冠上,用户通过按压表冠即可由第二电极测量得到第二电信号。
在一些可能的实施方案中,可穿戴设备还可以包括设置于壳体内部的充电线圈,以使 得可穿戴设备与适配的充电底座之间可通过电磁感应的方式进行无线电能传输。
附图说明
图1为本申请实施例提供的可穿戴设备的结构示意图;
图2为图1中所示的可穿戴设备的部分分解示意图;
图3a为本申请实施例提供的可穿戴设备的充电状态示意图;
图3b为本申请实施例提供的可穿戴设备的充电原理示意图;
图4为本申请实施例提供的一种底壳与第一电极的组合状态示意图;
图5为本申请实施例提供的一种底壳与第一电极的分解状态示意图;
图6为本申请实施例提供的另一种底壳与第一电极的分解状态示意图;
图7为图6中所示可穿戴设备的第一电极装配至后盖的局部结构示意图;
图8为图7所示可穿戴设备在A-A处的局部剖视图;
图9为本申请实施例提供的可穿戴设备的局部分解示意图;
图10为图9所示的可穿戴设备的各个部件从上至下依次装配至后盖后的局部结构示意图;
图11为图10中所示的可穿戴设备在B-B处的局部剖视图;
图12为本申请另一实施例提供的底壳与第一电极的组合状态示意图;
图13为图12所示可穿戴设备的一种后盖与第一电极的分解状态示意图;
图14为图12所示可穿戴设备的又一种后盖与第一电极的分解状态示意图;
图15为本申请另一实施例提供的底壳与第一电极的组合状态示意图;
图16为图15所示可穿戴设备的一种后盖与第一电极的分解状态示意图;
图17为图15所示可穿戴设备的又一种后盖与第一电极的分解状态示意图。
附图标记:
100-可穿戴设备;10-壳体;20-电路板;11-后盖;12-前壳;121-边框;
122-前盖、显示屏;111-边框;123-表冠;124-按钮;30-第一电极;40-第二电极;
50-充电线圈;200-充电底座;210-发射线圈;31-第一部分;32-第二部分;
111-第一通孔;112-第二通孔;113-第一凹槽;114-第二凹槽;311-第一凸起;
1131-第一开孔;321-第二凸起;1141-第二开孔;60-柔性电路板;61-第一弹片;
62-第二弹片;31a-弧形结构;111a-通孔;113a-凹槽;311a-凸起;1131a-开孔;
330-凸柱。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
首先对本申请实施例中涉及到的部分术语进行简单说明。本申请实施例中的ECG是指,在心脏的每个心动周期中,都是由起搏点至心房再至心室的相继兴奋,这种情况会导致生物体表的电信号发生变化,通过心电检测装置从生物体表检测多个位置的电信号,再根据检测到的电信号确定多种形式的电位变化,这种方式下形成的图形称为心电图。
本申请实施例中的ECG电极是指,用于测量由于心动所引发的生物体表的电信号变 化的电极。使用ECG电极测量电信号时,多个ECG电极与心脏左右两侧的生物电流需形成闭合回路,如此,根据多个ECG电极将生物体表不同位置的电信号检测出来,再用放大器加以放大,用记录器描记下来,就可得到心电图。该心电图用于后续与正常心电图进行对比,以确定心脏的电生理活动,确定心肌活动的细节,判定心脏上下腔室的跳动节奏是否规则等。
为了便于描述,在本申请的以下实施例中,电极即是指ECG电极,即下文中的电极均可以替换为ECG电极。可以理解的是,虽然本申请实施例中的电极用于采集与生物的心电图等心脏项目相关的电信号,但是在其它实施方式中,电极也可以采集与生物的其他生命体征相关的电信号,本申请对此不作限定。
图1为本申请实施例提供的可穿戴设备100的结构示意图。可穿戴设备100可以但不限于为智能眼镜、智能手环、智能头戴式显示器等便携性电子设备。图1所示实施例的可穿戴设备100以智能手表为例进行阐述。目前,在进行可穿戴设备100的设计时,考虑到部分用户群体对于心电检测方面的需求,一些可穿戴设备100集成了心电检测功能,用户通过佩戴这些可穿戴设备100就可以随时检测心电数据,了解自己的心脏健康状况。
图2为图1中所示的可穿戴设备100的部分分解示意图。请一并参考图1和图2所示,可穿戴设备100包括壳体10、电路板20、电池以及ECG模组。需要说明的是,图1、图2以及下文相关附图仅示意性地示出了可穿戴设备100包括的一些部件,这些部件的实际形状、实际大小、实际位置和实际构造不受图1、图2以及下文各附图限定。另外,尽管图中未示出,可穿戴设备100还可以包括天线、无线通信模块、扬声器、受话器、麦克风等装置,在此不予赘述。
在本申请实施例中,壳体10可包括后盖11和前壳12,后盖11与前壳12固定连接,两者共同围出可穿戴设备100的内部。其中,后盖11可以是指佩戴时容易与用户皮肤接触的一侧,例如当可穿戴设备100为智能手表,后盖11的外表面可与用户的手腕部位接触。前壳12可以包括边框121以及固定于边框121的一侧的前盖122,前盖122与后盖11相对设置,边框121可以设置有表冠123和按钮124,表冠123和按钮124可响应于用户的操作执行某些功能。
在一些实施例中,前盖122具体可以为显示屏。需要说明的是,下文显示屏的标号与前盖的标号相同。显示屏1222可包括透明盖板和显示面板,透明盖板叠置于显示面板背离后盖11的一侧,主要用于对显示面板起到保护和防尘作用。透明盖板的材质可以为但不仅限于为玻璃。显示面板用于显示图像、视频等,在一些实施例中,显示面板还可以集成触摸功能。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,柔性发光二极管(flex light-emitting diode,FLED),Mini LED,Micro LED,Micro OLED,量子点发光二极管(quantum dot light emitting diodes,QLED)等。
电池及电路板20收容于可穿戴设备100的内部。在一种实施方式中,电池可位于电路板20背向显示屏122的一侧。在另外一种实施方式中,电池也可位于电路板20朝向显示屏122的一侧。电路板20上可设置有处理器、充电管理模块、电源管理模块、无线通信模块以及传感器模块等。电源管理模块用于连接电池、充电管理模块与处理器。电源管理模块可接收电池和/或充电管理模块的输入,为处理器、显示屏122、ECG模组及无线通 信模块等供电。
另外,可穿戴设备100还可以包括设置在壳体10内部的支架13,电池、电路板20以及壳体10内的其它一些部件可承载在该支架13上,以实现这些部件在壳体10内部的固定,提高可穿戴设备100的结构稳定性。
ECG模组包括电路部件(图中未示出)、第一电极30及第二电极40,其中,电路部件设置在可穿戴设备100的内部,例如设置在电路板20上;第一电极30与第二电极40分别设置在可穿戴设备100的外表面的不同位置,可分别与用户的不同部位的皮肤接触,且第一电极30和第二电极40可以分别与电路部件电连接。
在一些实施例中,第一电极30可以设置在后盖11上,当用户佩戴上该可穿戴设备100,第一电极30可与用户的第一皮肤测量点接触。第二电极40可以设置在显示屏122上,具体设置时,第二电极40可以为具有一定透光率的透明结构,以尽量减小第二电极40对显示屏122的显示效果的影响。在进行心电检测时,用户可将第二皮肤测量点按压在第二电极40上,由于显示屏122与后盖11相对设置,这种压力会使得第一电极30与用户的第二皮肤测量点的接触更为紧密,这种情况下,不仅第一电极30能够准确采集到第一皮肤测量点的第一电信号并传输给电路部件,第二电极40也能够准确采集到第二皮肤测量点的第二电信号并传输给电路部件,进而由电路部件根据第一电信号和第二电信号获取用户的心电数据,实现对用户的心电检测。
示例性地,当可穿戴设备100为智能手表时,第一皮肤测量点可以是用户的左手手腕部位,第二皮肤测量点可以是用户的右手手指。或者,第一皮肤测量点可以是用户的右手手腕部位,第二皮肤测量点可以是用户的左手手指。采用这种设计,第一电极和第二电极能够采集到稳定的电信号,有助于提高心电检测装置采集电信号的准确性。另外,通过将第二电极40设置在显示屏122上,还能减小增设心电检测功能对可穿戴设备100的外观设计的影响,有助于使可穿戴设备100更为美观。
在其它一些实施例中,第二电极40还可以设置在可穿戴设备100边框121的表冠123或者按钮124上,这时,在进行心电检测时,第一电信号由第一电极30测量用户手腕部位的第一皮肤测量点得到,而第二电信号则可由用户的手指按压表冠123或者按钮124而使第二电极40测量得到,如此,可穿戴设备100内部的电路部件即可根据第一电极30采集的第一电信号和第二电极40采集的第二电信号进行心电检测。采用这种方案,第二电极40可以采用常规的金属材质或者陶瓷等材料制作,有利于降低可穿戴设备100的制作成本。
在一种可选地实施方式中,ECG模组还可以包括第三电极(图中未示出),第三电极也可以设置在后盖11上,例如可以将第三电极和第一电极30封装为一体,也可以将第三电极和第一电极30分别单独设置。在进行心电检测时,第三电极可以采集第三皮肤测量点的噪声信号并传输给电路部件,电路部件可以先使用第三电极采集的噪声信号对第一电极30采集的第一电信号及第二电极40采集的第二电信号进行噪声补偿,然后再使用噪声补偿后的第一电信号与第二电信号绘制心电图,以降低噪声对心电检测的干扰,提高心电检测的准确性。
图3a为本申请实施例提供的可穿戴设备100的充电状态示意图。参考图3a所示,本申请实施例中,为了提高可穿戴设备100的充电便捷性及安全性,可穿戴设备100还可以包括无线充电模块。示例性地,该无线充电模块具体可以为充电线圈50,可穿戴设备100 与适配的充电底座200之间可通过电磁感应的方式进行无线电能传输。充电线圈50收容于可穿戴设备100的内部,并与充电管理模块电连接。在对可穿戴设备100进行充电时,将可穿戴设备100放置于充电底座200上,充电底座200的发射线圈210在一定频率的交流电下可产生磁场,磁场的磁力线穿过可穿戴设备100内部的充电线圈50,使得充电线圈50产生交流电压信号,之后充电线圈50将交流电压信号传输给充电管理模块,充电管理模块在将交流电压信号转换成直流电压信号后传输至电池进行贮存,实现对可穿戴设备100的充电。需要说明的是,图3a中穿过充电线圈50与发射线圈210的曲线可用于表示磁力线,其并不对充电线圈50与发射线圈210之间的磁场的强弱构成限定。
图3b为本申请实施例提供的可穿戴设备100的充电原理示意图。一并参考图3a和图3b所示,在将可穿戴设备100放置于充电底座200上进行充电时,可穿戴设备100的后盖11与充电底座200的承载面相接触,此时,设置于后盖11上的第一电极30则位于充电线圈50与发射线圈210之间,发射线圈210产生的磁力线会穿过后盖11再传输到充电线圈50。
在一些实施方式中,当第一电极30为金属材质时,发射线圈210产生的磁力线在经过后盖11时会被第一电极30所阻断,这样就会导致无线电磁波的传输效率下降,进而导致无线充电效率下降。并且,磁力线作用到第一电极30时还会使第一电极30内部产生涡流,致使第一电极30发热,影响可穿戴设备100的可靠性。
此外,可穿戴设备100的后盖11通常采用塑胶材质制作,在将第一电极30与后盖11组装的过程中,由于零件尺寸总是有或大或小的公差和棱角,因此装配后的产品表面经常会出现装配段差的问题,装配段差不仅会影响可穿戴设备100的外观质感,还会影响可穿戴设备100的防水性能,从而导致可穿戴设备100的可靠性下降。
针对上述问题,在本申请的一些实施例中,第一电极30还可以采用导电塑胶材质,这样就可以规避由于金属电极造成的无线充电效率下降及产品发热等问题;另外,由于第一电极30与后盖11同为塑胶材质,因此两者可以通过一体注塑工艺成型,从而使可穿戴设备100的外观达到无缝结合的效果,并且也可以解决传统的分件加工所产生的防水问题。下面具体对第一电极30的材质及其组装工艺进行说明。
图4为本申请实施例提供的一种后盖11与第一电极30的组合状态示意图。参考图4所示,在本申请实施例中,后盖11的材质包括但不限于聚酰胺、聚碳酸脂、ABS塑料、聚乙烯、聚丙烯等单相塑胶材料,以及ABS塑料/聚碳酸脂、聚碳酸脂/PBT塑料、合成橡胶等双相或多相塑胶材料。
第一电极30嵌设于后盖11,并暴露于后盖11的外表面。第一电极30可以包括间隔设置的两部分,例如图4中所示的第一部分31与第二部分32,这样可以提高第一电极30与用户皮肤的接触可靠性。示例性地,第一部分31与第二部分32均可以为弧形结构,第一部分31与第二部分32同心设置,且两者对称分布于后盖11上。另外,为了提高用户的佩戴舒适性,第一电极30的外表面与后盖11的外表面可以平齐,也即,第一电极30的外表面与后盖11的外表面共面设置。需要说明的是,本申请实施例所采用的“内”、“外”等方位用词主要依据可穿戴设备的结构进行阐述,定义朝向可穿戴设备100内部腔体的一侧为“内”侧,远离可穿戴设备内部腔体的一侧为“外”侧。
如前所述,本申请实施例中的第一电极30可采用导电塑胶材质制作而成,以解决由于金属电极造成的无线充电效率下降及产品发热等问题。其中,用于第一电极30的导电 塑胶的电阻率可以大于或等于小于10 -4欧姆/厘米,以满足第一电极30的导电性要求。
在一些实施例中,导电塑胶可以为结构型导电塑胶。结构型导电塑胶是利用高分子本身所固有的导电性的塑胶,这种塑胶利用自身化学结构上的功能就能实现导电,然后再经过化学方法进行掺杂来增强其导电性,其所使用的掺杂物包括但不限于碘、五氟化砷、五氟化硼等化学物质。
在另外一些实施例中,导电塑胶还可以为复合型导电塑胶。复合型导电塑胶是经过物理改性后具有导电性的塑胶,具体而言,复合型导电塑胶是通过将导电材料按一定比例混合在通用塑胶中,再经过注塑工艺成型的导电塑胶。复合型导电塑胶所使用的导电材料包括但不限于纳米导电碳纤维、碳粉、超导电炭黑、碳纳米管、超细导电石墨、导电钛白粉、导电二氧化钛纤维、钢纤维等材料,复合型导电塑胶所使用的塑胶基材包括但不限于聚酰胺(polyamide,PA)、聚碳酸脂(polycarbonate,PC)、ABS塑料、聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)等单相基材,以及ABS塑料/PC、PC/PBT塑料、合成橡胶等双相或多相基材。具体实施时,塑胶基材内可混合有一种导电材料,也可以混合有多种导电材料,比如可以增加一定比例的炭黑或者碳纳米管,以改善导电塑胶的内部噪声特性,使导电塑胶获得更稳定的电极性能。
需要说明的是,用户在佩戴可穿戴设备的过程中,由于可穿戴设备的后盖11始终与用户的佩戴部位接触,因此对于设在后盖11的第一电极30来说,通常要满足一定的抗化学腐蚀能力,例如对香水、护肤品以及酸碱汗液等物质的抗腐蚀能力,同时也需要具备一定的安全性,避免对皮肤产生毒副作用及致敏性。
在满足上述要求的前提下,一种可能的实施方式中,第一电极30可以采用由聚酰胺与碳纤维混合后注塑形成的导电塑胶。这种导电塑胶不仅满足抗化学腐蚀能力及安全性,另外还具有优良的力学性能、抗氧化性、抗磨损性以及较低的摩擦系数,从而有助于提高可穿戴设备的使用寿命以及佩戴舒适性。其中,导电塑胶中碳纤维的质量含量直接影响着导电塑胶的电极性能,例如,当碳纤维含量小于5%时,导电塑胶的导电网络构件不完善,导电塑胶的表面电阻约为10^7Ω,失调电压约为150mV,复合失调不稳定性和内部噪声约为3000μV,难以满足ECG电极的电性能要求;当碳纤维含量大于45%时,导电塑胶的表面电阻约为10^1Ω,失调电压约为20mV,复合失调不稳定性和内部噪声约为500μV,此时虽然能够满足ECG电极的电性能,但是导电塑胶的加工会比较困难,且容易出现表面浮纤,外观质量较差。基于这些考虑,在该实施例中,导电塑胶中碳纤维的质量含量可以介于5%~45%之间,符合该种碳纤维含量的导电塑胶既可以满足ECG电极的阻值及电极性能要求,还可以避免由于碳纤维含量过高而导致的注塑成型困难以及表面浮纤等外观问题。示例性地,碳纤维的含量可以为5%、10%、15%、20%、25%、30%、35%、40%、45%,等等。优选地,经常使用的一种导电塑胶配方是聚酰胺内混合30%碳纤维材料,可以满足ECG电极的阻值和相关的电极性能要求。
在另外一种可能的实施方式中,第一电极30也可以采用由聚碳酸脂与碳纤维混合后注塑形成的导电塑胶。这种导电塑胶中碳纤维的质量含量可以在5%~45%范围内,示例性地,碳纤维的含量可以为5%、10%、15%、20%、25%、30%、35%、40%、45%,等等。优选地,经常使用的一种导电塑胶配方是聚碳酸脂内混合30%碳纤维材料,也可以同时增加多种导电成分,以满足ECG电极的阻值和相关的电极性能要求。这种导电塑胶的性能与前述聚酰胺与碳纤维所形成的导电塑胶的性能类似,此处不再过多赘述。
图5为本申请实施例提供的一种后盖11与第一电极30的分解状态示意图。一并参考图4和图5所示,在本申请一些实施例中,后盖11设置有第一通孔111和第二通孔112,第一电极30的第一部分31与第二部分32可分别嵌设于第一通孔111及第二通孔112内。这时,后盖11与第一电极同层设置,两者的组合结构为单层结构。第一电极30的外表面与后盖11的外表面平齐,第一电极30的内表面暴露于可穿戴设备的内部,以便于与电路部件电连接。这种设置方式可以使后盖11的厚度设计得相对较薄,从而有利于减小后盖11的重量,实现可穿戴设备的轻量化设计。
在一种实施方式中,后盖11与第一电极30可以通过双色注塑工艺一体成型。双色注塑的具体制作过程包括可两次注塑工艺,其中,第一次注塑包括将导电材料按一定比例混合在液态的塑胶基材内,通过混料工艺混合均匀后注塑成型为第一电极30的第一部分31和第二部分32;第二次注塑是在第一次注塑的基础上完成后盖11的成型,两次注塑可在双色注塑机上自动完成。采用这种成型方式,所制得的后盖11及第一电极30之间无装配段差,两者可以达到无缝结合的效果,从而提高了可穿戴设备的外观品质,并且能够使可穿戴设备实现良好的防水性能。
在另一种实施方式中,后盖11与第一电极30也可以通过两次注塑工艺分别成型后再进行组装。此时,后盖11与第一电极30可以由两台注塑机分别注塑成型,然后将第一电极30固定在后盖11上。示例性地,第一部分31与第二部分32可分别通过胶水或者双面胶固定在第一通孔111与第二通孔112内,或者,第一部分31与第一通孔111的内壁之间、第二部分32与第二通孔112的内壁之间还可以通过设置密封圈的方式来实现固定及密封。另外,在将第一部分31固定于第一通孔111内之后,还可以向第一部分31与第一通孔111的装配缝隙内注入填充胶,以增加第一部分31与后盖11的结合力,以及强化后盖11的防水能力;类似地,在将第二部分32固定于第二通孔112之后,可以向第二部分32与第二通孔112的装配缝隙内注入填充胶,以增加第二部分32与后盖11的结合力,强化后盖11的防水能力。
可以理解的是,第一电极30与后盖11之间除通过上述粘接或者密封圈的方式固定连接以外,还可以通过金属片焊接、激光焊接、超声波焊接或者扩散焊接等工艺进行固定,只要能够实现第一电极30与后盖11的可靠结合即可。
图6为本申请实施例提供的另一种后盖11与第一电极30的分解状态示意图。一并参考图4和图6所示,该实施例中,后盖11设置有第一凹槽113和第二凹槽114,第一电极30的第一部分31与第二部分32分别嵌设于第一凹槽113及第二凹槽114内。这时,底盖11与第一电极30采用台阶式重叠结构设计,第一部分31的侧面及内表面分别与第一凹槽113的侧壁及底壁接触,第二部分32的侧面及内表面分别与第二凹槽114的侧壁及底壁接触,从而能够最大限度地增加第一电极30与后盖11的结合面积,提高后盖11的结构强度。
与前述实施例类似,本实施例中第一电极30与后盖11之间既可以通过双色注塑工艺一体成型,也可以通过两次注塑工艺分别成型后再进行组装,具体制作过程此处不再进行赘述。
图7为图6中可穿戴设备的第一电极装配至后盖11的局部结构示意图,图8为图7所示可穿戴设备在A-A处的局部剖视图。一并参考图6、图7和图8所示,第一部分31的内表面设置有第一凸起311,第一凹槽113的底壁与第一凸起311相对的位置设置有第一开孔1131,第一凸起311可伸入该第一开孔1131内,且第一凸起311的端部暴露于可 穿戴设备的内部,以便与内部的电路部件电连接。类似地,第二部分32的内表面设置有第二凸起321,第二凹槽114的底壁与第二凸起321相对的位置设置有第二开孔1141,第二凸起321可伸入该第二开孔1141内,且第二凸起321的端部暴露于可穿戴设备的内部,以便与内部的电路部件电连接。
图9为本申请实施例提供的可穿戴设备的局部分解示意图,在本申请实施例中,可穿戴设备还可以包括柔性电路板60,柔性电路板60收容于可穿戴设备的内部。柔性电路板60分别与第一电极30和电路部件电连接,也即,第一电极30与电路部件可通过柔性电路板60实现电连接。在一些可能的实施方式中,第一电极30与柔性电路板60可通过弹片导通。弹片的数量可以为两个,该两个弹片分别为第一弹片61和第二弹片62,其中,第一弹片61用将第一部分31的第一凸起311与柔性电路板60导通,第二弹片62用于将第二部分32的第二凸起321与柔性电路板60导通。
图10为图9所示的可穿戴设备的各个部件从上至下依次装配至后盖11后的局部结构示意图,通过柔性电路板60将第一弹片61和第二弹片62分别抵接至第一部分31的第一凸起311与第二部分32的第二凸起321。
图11为图10中所示的可穿戴设备在B-B处的局部剖视图。一并参考图9,第一弹片61与第二弹片62可预先焊接在柔性电路板60上,组装时第一凸起311与第一弹片61对位压紧,第二凸起321与第二弹片62对位压紧,这样即可将第一电极30与柔性电路板60可靠电连接。
在另外一些可能的实施方式中,第一凸起311及第二凸起321与柔性电路板60之间还可以通过导电胶电连接,或者也可以通过锡膏焊接,等等,本申请对此不做限定。
一些实施例中,电路部件设置于电路板上,这时通过将柔性电路板60与电路板电连接即可实现柔性电路板60与电路部件的电连接。具体实施时,柔性电路板60与电路板之间可通过可拆卸的方式电连接,以便于柔性电路板60与电路板之间的装配,并且能够方便可穿戴设备后续的维护作业。例如,柔性电路板60与电路板之间可以通过板对板(board to board,BTB)连接器进行连接。可以理解的,在其它一些实施例中,柔性电路板60与电路板之间也可以通过焊接等方式进行电连接。
图12为本申请另一实施例提供的后盖11与第一电极30的组合状态示意图,图13为图12所示可穿戴设备的一种底壳11与第一电极40的分解状态示意图。一并参考图12和图13所示,该实施例中,第一电极30可以包括间隔设置的多段弧形结构31a,以提高第一电极30与用户皮肤的接触可靠性。示例性地,弧形结构31a可以为四段,四段弧形结构31a可同心设置,并均匀分布于后盖11上。这时,后盖11设置有与该四段弧形结构41a分别对应的通孔111a,以使该四段弧形结构31a分别嵌设于对应的通孔111a内,这种设置方式可以使后盖11的厚度设计得相对较薄,从而有利于减小后盖11的重量,实现可穿戴设备的轻量化设计。
图14为图12所示可穿戴设备的又一种后盖11与第一电极30的分解状态示意图。一并参考图12和图14所示,在其它一些实施方式中,后盖11设置有与上述四段弧形结构31a分别对应的凹槽113a,以使四段弧形结构31a分别嵌设于对应的凹槽113a内。这时,各段弧形结构31a上分别设置有凸起311a,相应地,各个凹槽113a的底壁分别设置有开孔1131a,以使各段弧形结构31a的凸起311a能够通过对应的开孔1131a伸入可穿戴设备的内部与电路部件电连接。该实施例中,底盖11与第一电极30采用台阶式重叠结构设计, 从而能够最大限度地增加第一电极30与后盖11的结合面积,提高后盖11的结构强度。
应当理解的是,上述四段弧形结构31a所构成的第一电极30与后盖11之间既可以通过双色注塑工艺一体成型,也可以通过两次注塑工艺分别成型后再进行组装,具体制作过程可参考前述实施例中的描述,此处不再进行赘述。
图15为本申请另一实施例提供的后盖11与第一电极30的组合状态示意图,图16为图15所示可穿戴设备的一种后盖11与第一电极30的分解状态示意图。一并参考图15和图16所示,该实施例中,第一电极30还可以包括间隔设置的多个凸柱33,以提高第一电极30与用户皮肤的接触可靠性。示例性地,凸柱33可以为四个,四个凸柱33均匀分布于后盖11上。这时,后盖11设置有与该四个凸柱33分别对应的通孔111a,以使该四个凸柱33分别嵌设于对应的通孔111a内,这种设置方式可以使后盖11的厚度设计得相对较薄,从而有利于减小后盖11的重量,实现可穿戴设备的轻量化设计。
图17为图15所示可穿戴设备的又一种后盖11与第一电极30的分解状态示意图。一并参考图15和图17所示,在其它一些实施方式中,后盖设置有与上述四个凸柱33分别对应的凹槽113a,以使四个凸柱33分别嵌设于对应的凹槽113a内。这时,各个凸柱33上分别设置有凸起311a,相应地,各个凹槽113a的底壁分别设置有开孔1131a,以使各个凸柱33的凸起311a能够通过对应的开孔1131a伸入可穿戴设备的内部与电路部件电连接。该实施例中,底盖11与第一电极30采用台阶式重叠结构设计,从而能够最大限度地增加第一电极30与后盖11的结合面积,提高后盖11的结构强度。
类似地,上述四个凸柱33所构成的第一电极30与后盖11之间既可以通过双色注塑工艺一体成型,也可以通过两次注塑工艺分别成型后再进行组装,具体制作过程可参考前述实施例中的描述,此处不再进行赘述。
可以理解的,除上述列举的各种结构外,第一电极还以采用其它一些结构形式,例如环形、圆形、花瓣形、多边形,等等,此处不再一一进行说明。
综上,本申请提供的可穿戴设备通过采用导电塑胶材质的第一电极,可以规避由于金属电极造成的无线充电效率下降及产品发热等问题,从而可以满足穿戴设备的无线充电需求,提高其使用可靠性。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种可穿戴设备,其特征在于,包括壳体、第一电极、第二电极及电路部件,其中:
    所述壳体包括后盖,所述后盖可在用户佩戴所述可穿戴设备时与用户的皮肤保持接触;
    所述第一电极的材质为导电塑胶,所述第一电极设置于所述后盖上,用于采集用户的皮肤的第一电信号;
    所述第二电极设置于所述壳体上与所述第一电极的位置相异的位置,所述第二电极用于采集用户的皮肤的第二电信号;
    所述电路部件设置于所述壳体的内部,所述电路部件分别与所述第一电极和所述第二电极电连接,用于根据所述第一电信号和所述第二电信号获取用户的心电数据。
  2. 如权利要求1所述的可穿戴设备,其特征在于,所述导电塑胶包括塑胶基材以及混合于所述塑胶基材中的导电材料。
  3. 如权利要求2所述的可穿戴设备,其特征在于,所述塑胶基材中混合有一种或多种导电材料。
  4. 如权利要求2或3所述的可穿戴设备,其特征在于,所述导电材料包括纳米导电碳纤维、碳粉、超导电炭黑、碳纳米管、超细导电石墨、导电钛白粉、导电二氧化钛纤维、钢纤维。
  5. 如权利要求2~4任一项所述的可穿戴设备,其特征在于,所述塑胶基材为聚酰胺,所述导电材料为碳纤维,所述导电塑胶中的碳纤维的含量为5%~45%。
  6. 如权利要求5所述的可穿戴设备,其特征在于,所述导电塑胶中的碳纤维的含量为30%。
  7. 如权利要求2~4任一项所述的可穿戴设备,其特征在于,所述塑胶基材为聚碳酸脂,所述导电材料为碳纤维,所述导电塑胶中的碳纤维的含量为5%~45%。
  8. 如权利要求7所述的可穿戴设备,其特征在于,所述导电塑胶中的碳纤维的含量为30%。
  9. 如权利要求1~8任一项所述的可穿戴设备,其特征在于,所述后盖为塑胶材质,所述后盖与所述第一电极为一体注塑成型结构。
  10. 如权利要求1~8任一项所述的可穿戴设备,其特征在于,所述第一电极组装固定于所述后盖上。
  11. 如权利要求1~10任一项所述的可穿戴设备,其特征在于,所述后盖设置有通孔,所述第一电极设置于所述通孔内。
  12. 如权利要求1~10任一项所述的可穿戴设备,其特征在于,所述后盖设置有凹槽,所述凹槽的底壁设置有开孔;
    所述第一电极设置于所述凹槽内,所述第一电极设置有与所述开孔相对的凸起,所述凸起通过所述开孔伸入所述壳体内。
  13. 如权利要求1~12任一项所述的可穿戴设备,其特征在于,所述可穿戴设备还包括柔性电路板,所述柔性电路板分别与所述第一电极及所述电路部件电连接。
  14. 如权利要求1~13任一项所述的可穿戴设备,其特征在于,所述可穿戴设备还包括显示屏,所述显示屏与所述后盖位置相对;
    所述第二电极设置于所述显示屏上。
  15. 如权利要求1~13任一项所述的可穿戴设备,其特征在于,所述壳体还包括边框,所述边框固定于所述后盖的一侧,所述边框设置有表冠;
    所述第二电极设置于所述表冠上。
  16. 如权利要求1~15任一项所述的可穿戴设备,其特征在于,所述可穿戴设备还包括充电线圈,所述充电线圈设置于所述壳体的内部。
PCT/CN2021/137206 2020-12-31 2021-12-10 一种可穿戴设备 WO2022143111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011628185.2 2020-12-31
CN202011628185.2A CN114680898A (zh) 2020-12-31 2020-12-31 一种可穿戴设备

Publications (1)

Publication Number Publication Date
WO2022143111A1 true WO2022143111A1 (zh) 2022-07-07

Family

ID=82134152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137206 WO2022143111A1 (zh) 2020-12-31 2021-12-10 一种可穿戴设备

Country Status (2)

Country Link
CN (1) CN114680898A (zh)
WO (1) WO2022143111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116421191A (zh) * 2023-03-08 2023-07-14 宁波康麦隆医疗器械有限公司 柔性一体化生物电信号传感器、检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082276A (zh) * 2010-12-08 2011-06-01 深圳市图门电子技术有限公司 复合塑料导电电极制造方法及用该方法制成的导电电极
CN102144922A (zh) * 2011-04-15 2011-08-10 北京正业德盈科技有限公司 生理信号采集电极及采集放大电路
US20160121100A1 (en) * 2014-10-30 2016-05-05 West Affum Holdings Corp. Wearable cardiac defibrillation system with flexible electrodes
US20180020937A1 (en) * 2015-01-26 2018-01-25 Chang-An Chou Wearable electrocardiographic measurement device
CN107920742A (zh) * 2015-07-02 2018-04-17 威里利生命科学有限责任公司 具有集成电子元件的手腕式设备
CN210784331U (zh) * 2019-08-13 2020-06-19 安徽华米信息科技有限公司 一种可穿戴ecg设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082276A (zh) * 2010-12-08 2011-06-01 深圳市图门电子技术有限公司 复合塑料导电电极制造方法及用该方法制成的导电电极
CN102144922A (zh) * 2011-04-15 2011-08-10 北京正业德盈科技有限公司 生理信号采集电极及采集放大电路
US20160121100A1 (en) * 2014-10-30 2016-05-05 West Affum Holdings Corp. Wearable cardiac defibrillation system with flexible electrodes
US20180020937A1 (en) * 2015-01-26 2018-01-25 Chang-An Chou Wearable electrocardiographic measurement device
CN107920742A (zh) * 2015-07-02 2018-04-17 威里利生命科学有限责任公司 具有集成电子元件的手腕式设备
CN210784331U (zh) * 2019-08-13 2020-06-19 安徽华米信息科技有限公司 一种可穿戴ecg设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116421191A (zh) * 2023-03-08 2023-07-14 宁波康麦隆医疗器械有限公司 柔性一体化生物电信号传感器、检测方法及装置

Also Published As

Publication number Publication date
CN114680898A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN205493818U (zh) 一种可穿戴式心电检测装置
CN206930913U (zh) 一种智能手表
CN108471948A (zh) 健康监视器贴片
CN111973174B (zh) 一种心电图检测装置
CN104997503A (zh) 一种便携式心电图监测装置
WO2022143111A1 (zh) 一种可穿戴设备
WO2021135613A1 (zh) 一种可穿戴设备
CN217566091U (zh) 可穿戴设备
CN205485350U (zh) 具有弹簧连接器的可拼装的骨传导智能手表
CN208984960U (zh) 一种新型智能健康手表
CN209788687U (zh) 可穿戴智能手环
CN208541302U (zh) 一种贴片式心电电极
CN207135158U (zh) 一种心电感测手机及心电感测***
CN206292724U (zh) 一种具有低功耗蓝牙ibeacon的智能穿戴设备
CN204909432U (zh) 便携式心电图监测装置
CN204856050U (zh) 一种包含心电监测功能的手表
WO2021098589A1 (zh) 可穿戴设备及其绑带
WO2021180172A1 (zh) 能够测量心电图信号的可穿戴设备
JP2024509675A (ja) 携帯型の生理学的パラメータモニタリング及び治療介入のシステムのためのネットワーク物理層構成
CN208973840U (zh) 一种具有生理检测功能的移动充电装置
CN216960382U (zh) 设备主体以及智能穿戴设备
CN210811008U (zh) 一种可穿戴血压仪
CN214547742U (zh) 一种智能手环分屏显示装置
CN216907072U (zh) 智能穿戴设备
CN216776310U (zh) 一种手环散热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913852

Country of ref document: EP

Kind code of ref document: A1