WO2022143046A1 - 一种多路业务传输方法、***、存储介质及电子装置 - Google Patents

一种多路业务传输方法、***、存储介质及电子装置 Download PDF

Info

Publication number
WO2022143046A1
WO2022143046A1 PCT/CN2021/136132 CN2021136132W WO2022143046A1 WO 2022143046 A1 WO2022143046 A1 WO 2022143046A1 CN 2021136132 W CN2021136132 W CN 2021136132W WO 2022143046 A1 WO2022143046 A1 WO 2022143046A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
ofp
frames
service
channel
Prior art date
Application number
PCT/CN2021/136132
Other languages
English (en)
French (fr)
Inventor
潘涛涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022143046A1 publication Critical patent/WO2022143046A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/16Tuning without displacement of reactive element, e.g. by varying permeability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and to a method, system, storage medium, and electronic device for transmitting multiplex services.
  • OTN Optical Transport Network
  • ODU Organic Database Unloader
  • FIG. 1 is a schematic diagram of the OSU frame structure.
  • OSU Optical Service Unit
  • OSU Optical Service Unit
  • PB Fixed-length blocks
  • the length of the PB block is short, and the purpose is to improve the efficiency of carrying small-granularity services.
  • the OSU signal is carried by PB, so as to finally realize the signal processing process that the small-particle client signal is loaded into the OSU signal, the OSU signal is loaded into the ODU signal, and the ODU signal is loaded into the OTU signal.
  • OSU plans to use a 10-bit Tributary Port Number (TPN for short) to identify each OSU service, and the goal is to carry up to 1024 small-particle services.
  • TPN Tributary Port Number
  • the line card (customer board or circuit board) in the mainstream centralized packet switching OTN equipment is mainly connected with the cross-connect board through the Interlaken interface of the chip-level general interface protocol of the high-speed interconnection between chips.
  • the Interlaken protocol is an extensible chip-level general interface protocol formulated by some equipment manufacturers and chip manufacturers such as Cisco. The feature is that the protocol itself has nothing to do with the underlying physical link rate. Since the line card has limited interlaken logical channel resources (up to 256), if each small-granularity service occupies one interlaken logical channel, the current line card cannot achieve the above-mentioned goal of 1024 small-granularity services.
  • Embodiments of the present application provide a method for transmitting multiple services, including: in a client board, encapsulating multiple client services into OFP frames, and loading the OFP frames into one chip-level general interface protocol interlaken logical channel
  • the OFP frame carried by each interlaken logical channel is forwarded to the line board through the cross-connect board; in the line board, the OFP frame is converted into an OTU frame, and the OTU frame is output.
  • Embodiments of the present application further provide a multi-channel service transmission system, including: a customer board, a cross-connect board, and a circuit board, wherein the customer board is used to encapsulate the multi-channel customer service into an OFP frame, and convert the The OFP frame is loaded into one interlaken logical channel of the chip-level general interface protocol; the cross board is used to forward the OFP frame carried by each interlaken logical channel to the circuit board; the circuit board is used to transfer the The OFP frame is converted into an OTU frame, and the OTU frame is output.
  • the embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the storage medium, wherein the computer program is configured to execute the steps in any one of the above method embodiments when running.
  • Embodiments of the present application further provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute any one of the above method embodiments steps in .
  • Fig. 1 is the schematic diagram of OSU frame structure
  • Fig. 2 is the hardware structure block diagram of the mobile terminal of the multi-channel service transmission method of the embodiment of the present application;
  • FIG. 3 is a flowchart of a method for transmitting multiple services according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of an OFP frame header structure according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an interlaken size channel according to an embodiment of the present application.
  • FIG. 7 is a block diagram of an OTN device system composition of an embodiment of the present application.
  • FIG. 8 is a flowchart of a client board CBR service processing according to an embodiment of the present application.
  • FIG. 9 is a flowchart of a client board grouping service processing according to an embodiment of the present application.
  • FIG. 11 is a block diagram of a multiplex service transmission system according to an embodiment of the present application.
  • Embodiments of the present application provide a multi-channel service transmission method, system, storage medium, and electronic device, so as to at least solve the problem that due to the limited interlaken logical channel resources of line cards, if each channel of small-granularity services in the multi-channel small-granularity services occupies one channel
  • the interlaken logical channel leads to the problem that the small-granularity services that can be carried by the current line card are greatly limited.
  • FIG. 2 is a block diagram of the hardware structure of the mobile terminal of the multi-channel service transmission method according to the embodiment of the present application.
  • the mobile terminal may include one or more (only shown in FIG. 2 ).
  • a processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA, etc.) and a memory 104 for storing data, wherein the above-mentioned mobile terminal may also include a communication device for communication Function transmission device 106 and input and output device 108.
  • a processing device such as a microprocessor MCU or a programmable logic device FPGA, etc.
  • a memory 104 for storing data
  • the above-mentioned mobile terminal may also include a communication device for communication Function transmission device 106 and input and output device 108.
  • FIG. 2 is only for illustration, and does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than those shown in FIG. 2 , or have a different configuration than that shown in FIG. 2 .
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the multiplex service transmission method in the embodiments of the present application. Execute various functional applications and business chain address pool slice processing, that is, to implement the above method.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory. In some instances, the memory 104 may further include memory located remotely from the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Transmission means 106 are used to receive or transmit data via a network.
  • the specific example of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 3 is a flowchart of the multi-channel service transmission method according to the embodiment of the present application. As shown in FIG. 3 , the process includes: Follow the steps below:
  • Step S302 in the client board, encapsulate the multi-channel client services into OFP frames, and load the OFP frames into one chip-level general interface protocol interlaken logical channel.
  • OFP frame is the abbreviation of OTN Over Packet Fabric Protocol, which refers to the transmission of OTN services through packet switching.
  • step S304 the OFP frame carried by each interlaken logical channel is forwarded to the line board through the cross-connect board.
  • Step S306 in the circuit board, convert the OFP frame into an OTU frame, and output the OTU frame.
  • the above step S304 may specifically include: if the customer service is a fixed rate signal (Constant Bit Rate, referred to as CBR for short) service, combining multiple CBR services into a high-speed time division multiplexing data signal;
  • CBR Constant Bit Rate
  • the high-speed time division multiplexed data signal is mapped into a plurality of OSU frames; the plurality of OSU frames are converted into the OFP frames.
  • the CBR service configuration information issued by the management and control plane is received; according to the size of the CBR service carried in the CBR service configuration information, the channel number is the The multi-channel CBR service identifies the small channel number, wherein the large and small channel number includes the large channel number and the small channel number; the small channel number corresponding to the multi-channel CBR service is set in the frame header of the OFP frame, and the large channel number is set in the interlaken frame header of the outer layer of the OFP frame.
  • the above step S204 may specifically further include: if the client service is a packet service, converting the multi-channel packet service into a MAC frame, and storing the MAC frame in a shared buffer queue; The shared buffer queue extracts the MAC frame, maps the MAC frame into multiple OSU frames, and converts the multiple OSU frames into the OFP frame.
  • the grouping service configuration information issued by the management and control plane before storing the MAC frame in the shared buffer queue, receive the grouping service configuration information issued by the management and control plane; VLAN in the MAC frame; according to the VLAN, the grouping service is divided, and the association relationship of the VLAN, the size channel number and the optical port index is recorded.
  • the small channel number is identified for the multi-channel packet service according to the large and small channel number carried in the packet service configuration information , wherein the large and small channel numbers include the large channel number and the small channel number; the small channel number corresponding to the multi-channel packet service is set in the frame header of the OFP frame, and the large channel number is set In the interlaken frame header of the outer layer of the OFP frame.
  • the above step S206 may specifically include: parsing the OFP frame to obtain the large channel numbers and small channel numbers of the multiple customer services; Demap the OFP frame into multiple OSU frames with TPN numbers; buffer the multiple OSU frames into a linked list cache queue; map the multiple OSU frames in the linked list cache queue to ODU time division multiplexed frames In the corresponding PB block; split the ODU time-division multiplexing frame into multiple ODU frames;
  • the OTU frame is generated from a plurality of ODU frames.
  • demapping the OFP frame into a plurality of OSU frames with TPN numbers according to the large channel number and the small channel number may further include: receiving configuration information delivered by a management and control plane; According to the size channel number of the client service carried in the configuration information, the mapping relationship between the size channel number and the TPN number is obtained, wherein the size channel number includes a large channel number and a small channel number; according to the size channel number The mapping relationship with the TPN number, the OFP frame is demapped into multiple OSU frames with TPN numbers.
  • the mapping of the plurality of OSU frames in the linked list cache queue to the PB blocks corresponding to the ODU time division multiplexing frame includes: according to the customer service bandwidth carried in the configuration message, determining the The mapping table between the PB block and the TPN number of the multi-channel customer service; according to the mapping table, the OSU frame in the linked list cache queue is mapped to the PB block corresponding to the ODU time division multiplexing frame.
  • FIG. 4 is a flowchart of an inverse method for multi-service transmission according to an optional embodiment of the present application, as shown in FIG. 4 , including:
  • Step S402 in the line board, receive the OTU frame, and convert the OUT frame into the OFP frame.
  • Step S404 forward the OFP frame carried by each interlaken logical channel to the client board through the cross-connect board.
  • Step S406 in the client board, decapsulate the OFP frame into the multi-channel client service.
  • the foregoing step S402 may specifically include: decapsulating the OTU frame into multiple ODU frames;
  • the TPN number of the OFP frame is converted into a large channel according to the size channel number of the customer service carried in the configuration information. number and small channel number, wherein, the large and small channel number includes the large channel number and the small channel number; respectively write the large channel number and the small channel number into the interlaken frame header and the OFP frame OFP frame header.
  • the foregoing step S406 may specifically include: if the multi-channel customer service is a multi-channel CBR service, according to the OFP frame header of the OFP frame and the interlaken frame header of the outer layer of the OFP frame, Parse out the large channel number and the small channel number; convert the OFP frame into a plurality of OSU frames according to the large channel number and the small channel number; demultiplex the plurality of OSU frames into high-speed time division multiplexed data signals; The multiplexed CBR service is extracted from the high speed time division multiplexed data signal.
  • the above step S406 may further include: if the multi-channel customer service is a multi-channel packet service, according to the OFP frame header of the OFP frame and the interlaken frame header of the outer layer of the OFP frame , parse out the large channel number and the small channel number; convert the OFP frame into a plurality of OSU frames according to the large channel number and the small channel number; convert the plurality of OSU frames into a MAC frame, and convert the MAC frame The frame is put into the shared buffer queue; according to the pre-stored association between the VLAN and the optical port index, the multi-channel packet service corresponding to the VLAN is obtained from the shared buffer queue.
  • the line card of the mainstream OTN device is connected to the cross-connect board through the Interlaken interface, and the line card slices the payload and adds the OFP frame header and the Interlaken frame header.
  • the cross-board is scheduled through the Interlaken frame header, and the smallest particle is generally ODU0 or a similar rate.
  • OTN equipment that carries small-granularity customer services is generally placed on the edge access network. Although the number of small-granularity customer services is large, the overall bandwidth occupied is not large. Although the number of interlaken logical channels of an OTN line card is limited, it can use the feature of interlaken that is independent of the underlying physical link rate, and load multiple small-granular customer services as sub-channels into one interlaken logical channel, so as to achieve a limited number of interlaken logical channels. The purpose of carrying more small-granularity services under the logical channel.
  • FIG. 5 is a schematic diagram of the structure of an OFP frame header according to an embodiment of the present application.
  • the feature of transparent transmission of the OFP frame header in the cross-board can be used to expand the unused PPSI field and RSV1 field of the OFP frame header , and use these 8 bits to identify the number of small-granular services (small channels) that can be carried in one interlaken logical channel (large channel), that is, one large channel can carry 256 small-channel services.
  • Figure 6 is a schematic diagram of interlaken size channels according to this embodiment. As shown in Figure 6, a mainstream OTN line card supports a maximum of 256 interlaken logical channels, so theoretically it can support 65536 channels of OSU services, which is enough to cover the above-mentioned 1024 small particle services The goal.
  • FIG. 7 is a block diagram of an OTN device system according to an embodiment of the present application. As shown in FIG. 7 , the system involved in the present application is composed of a client board and a circuit board supporting the OSU adaptation layer, and a cross-connect board.
  • the client board completes the mapping and de-mapping of small-granularity services to OSU frames, and identifies the small channel number for each incoming small-granularity service (fill in the 8-bit reserved field of the OFP frame header described above). According to the configuration of the management and control plane, multiple small channel services are loaded into one or more large channel numbers (the interlaken frame header described above includes the interlaken channel number mailbox).
  • the line board completes the mapping and demapping of the OSU frame to the position of the OPU payload PB block, and completes the multiplexing and demultiplexing of multiple OSU services according to the large and small channel numbers.
  • the cross-connect board performs cross-scheduling according to the cross-connect configuration of the management and control plane.
  • the cross-connect board does not perceive the OSU, and the scheduling particle is the above-mentioned large channel. Therefore, the multi-channel OSU service can be transparently transmitted in the OTN network, and the OSU service is duplicated by the corresponding line card. use and demultiplex.
  • multiplexing and demultiplexing multiplexing and demultiplexing of multiplex OSU services are implemented by mapping multiple small-granularity services to the OSU frame format, and the detailed processing flow is as follows:
  • FIG. 8 is a flowchart of the CBR service processing of the client board according to the embodiment of the present application. As shown in FIG. 8 , the processing flow of the fixed-rate CBR service includes:
  • Step 1 The management and control plane delivers the CBR service configuration to the client board, which carries configuration information such as the index of the optical port, the type of the CBR service, and the size and channel number of the CBR service.
  • the CBR service configuration information delivered by the control plane includes the following information:
  • CBR service types such as GE/FE/STM1/STM4, etc., the frame formats and rates of these services are different, and the optical port supports a variety of customer services;
  • Optical port index There are multiple optical ports, and each optical port can be configured with one service
  • Small channel number used to identify each customer service, the range is 1 to 1000.
  • the user can specify it arbitrarily, for example, the GE service coming in from optical port 1 is marked as 1, and the STM4 service coming in from optical port 2 is marked as 10;
  • Large channel number Multiple customer services can share one large channel number.
  • the above 1 and 10 can be loaded into the large channel 1 together.
  • the large channel is the unit capacity of the cross-forwarding of traditional OTN equipment, for example, the particle is ODU0/ODU2, etc.; as long as the combined customer service bandwidth of multiple small channels does not exceed the bandwidth of the large channel.
  • Step 2 According to the configuration of the management and control plane, first pass the sampling and bit width processing module of the incoming CBR service from each optical port, and adjust the corresponding bit width and clock processing according to the specific CBR service type; the reverse is similar, and it is restored to the CBR service output. to the corresponding optical port.
  • Sampling and bit width processing modules are available on traditional OTN equipment and do not belong to the scope of rights protection.
  • a physical optical port can enter a variety of services, such as GE/STM, etc.
  • the rate and bit width of each service are different.
  • the device has a processing step, which is to uniformly perform sampling and bit-width processing on the customer services coming in from the optical port, which can be understood as processing into a unified format, which is convenient for subsequent processing.
  • Step 3 After the client signals coming in from all the optical ports are processed by the sampling and bit width processing module, a high-speed time-division multiplexing data signal is synthesized by the time-space division multiplexing module. Similar in reverse, the time-space-division multiplexing module extracts the signal from the high-speed time-division multiplexed data signal to the corresponding optical port.
  • the time-space division multiplexing module there are multiple optical ports on the client board. At the same time, there may be multiple services coming in from different optical ports at the same time. At this time, there is a high-speed signal inside, which is faster than the business coming in from the optical port. The speed is fast, so the services coming in from different optical ports can be loaded into the high-speed signal at different times. For example, at time t1, customer service 1 is loaded into position 1 of the high-speed signal, and at time t2, customer service 2 is loaded into position 2 of the high-speed signal. In this way, multiple customer services can be loaded into a high-speed signal, and the conversion from the time domain to the space domain is completed.
  • Step 4 The CBR/OSU conversion module maps the high-speed time-division multiplexed data signal to the OSU frame format. Similarly, the OSU frame is mapped to a high-speed time-division multiplexed data signal.
  • mapping customer services (here, mapping is more appropriate than conversion) into OSU frame format is to prepare for the processing of the back circuit board.
  • the OSU frame is a fixed-length frame format. It is necessary to map the customer service in the high-speed signal to the payload of the OSU frame through a certain mapping method, which is a synchronous mapping method.
  • the OSU frame is an enterprise standard that is being drawn up to facilitate subsequent interoperability between different enterprises. There is no TPN number in the OSU frame in the client board, the TPN number is reset in the line board.
  • the OFP adaptation module converts the OSU frame into an OFP frame, and according to the configuration of the large and small channels of the management and control plane, identifies the small channel number for each OSU service (write the 8bit field of the OFP frame header described above); and Multiple OSU services are multiplexed into one or more large channels (the Interlaken frame header described above contains the interlaken channel number information), and finally sent to the cross-connect board through the interlaken interface.
  • the reverse is similar, extracting the 8-bit field of the OFP frame header and the interlaken frame header, parsing the large and small channel numbers, and demapping one large channel into the OSU service of multiple small channels.
  • the role of the OFP adaptation module is to convert the OSU frame into an OFP frame.
  • OFP frames may be carried on interlaken channels. Originally, the OFP frame only contains the information of the interlaken channel number, and there is no information to identify the customer service. Each customer service occupies one interlaken channel. The 2-bit reserved field is extended in the OFP, which is used to identify the customer service or the OSU service (small channel). According to the configuration of the management and control plane, each customer service is mapped to its own OSU frame, and a unique small channel number is assigned to it (identifying each customer service)
  • the large channel here refers to the channel that originally carried the service, and its minimum particle size is relatively large, such as the rate of ODU0 and ODU2.
  • Fig. 9 is a flow chart of the grouping service processing of the client board according to the embodiment of the present application.
  • the grouping service refers to an Ethernet Multiple Access Channel (Multiple Access Channel, referred to as MAC) frame, such as Gigabit Ethernet (Gigabit Ethernet, referred to as GE), Fast Ethernet (Fast Ethernet, referred to as FE), etc.
  • MAC Multiple Access Channel
  • GE Gigabit Ethernet
  • FE Fast Ethernet
  • the specific processing flow includes:
  • Step 1 the management and control plane delivers the packet service to the client board, which carries information such as optical port port index, packet service type, virtual local area network (Virtual Local Area Network, referred to as VLAN) ID, channel number and other information.
  • VLAN Virtual Local Area Network
  • Packet services generally refer to Ethernet services. There may be multiple Ethernet services coming from a physical optical port, which are distinguished by VLAN IDs. An optical port of the CBR service can only be one type of service, and this is the biggest difference between the two.
  • the management and control plane will deliver the following configuration: There are three Ethernet services VLAN1, VLAN2, and VLAN3 in optical port 1. Users are identified by small channels 1, 2, and 3 respectively (this can be specified arbitrarily). The services of these three small channels are carried by large channel 1. Optical port 2 receives 3 service VLANs 2, 3, and 4. Users are identified by small channels 4, 5, and 6 respectively, and are carried by large channel 2. The large channel is the cross connecting the client board and the circuit board, which can be understood as a virtual channel.
  • Step 2 The GE/MAC conversion module converts the GE signal into a MAC frame, parses the VLAN in the MAC frame according to the configuration of the management and control plane, distributes the customer service according to the VLAN, and stores the corresponding MAC frame in the shared buffer queue.
  • the client board software records the association relationship between VLAN, channel number, and optical port index. In the reverse direction, the service of the corresponding VLAN is sent to the corresponding optical port.
  • the difference between the packet service and the CBR is that the incoming process of the packet service is not constant but random. Therefore, all incoming Ethernet services are identified by VLANID, and after these Ethernet frames are converted into MAC frames, they are put into a shared buffer queue.
  • the single-board software configures the management and control plane, associates the VLANID of the Ethernet and the size of the channel by setting the corresponding hardware, so as to achieve the specific VLANID customer service coming from the optical port of the guide, and the corresponding OFP adapter module is marked with the corresponding service. Small channel number and loaded into the specified interlaken channel to carry.
  • Step 3 the IMP/OSU conversion module extracts the MAC from the shared buffer queue and maps it into an OSU frame; in the reverse direction, it demaps and converts the OSU frame into a MAC frame and puts it into the buffer queue.
  • the MAC frame is mapped to the OSU frame through the IMP (Idle Mapping Procedure) mapping method.
  • the OFP adaptation module is the same as the CBR in the above-mentioned embodiment, and it does not distinguish whether it is a CBR service or a packet service.
  • the OFP adaptation modules all complete the mapping and demapping of the OSU to the OFP.
  • FIG. 10 is a flowchart of circuit board processing according to an embodiment of the present application. As shown in FIG. 10 , the processing flow of the circuit board includes:
  • Step 1 The management and control plane delivers configuration information to the line board, including information such as OSU service size channel number, OSU service bandwidth, and OSU service layer TPN number.
  • the function of the line board is to map the OSU frame forwarded by the backplane under the customer board into the ODUk frame structure, and then send out the optical port.
  • the configuration of the control plane to the line board includes:
  • OSU service size channel number In order to find the corresponding OSU frame according to the large and small channel numbers
  • This service bandwidth is the service rate before the OSU frame is processed by the client board.
  • the circuit board needs to allocate enough space (PB blocks) to place this service according to this rate.
  • the TPN number can be understood as the role of the middle identification inside the circuit board.
  • the circuit board binds the large and small channel numbers and TPN numbers in one-to-one correspondence.
  • the ODUk frame is divided into many data blocks (PB blocks) with the same bit width and size.
  • the circuit board binds the TPN number to multiple PB blocks according to the service bandwidth, so that each OSU frame can be placed in the position of the ODUk. middle.
  • Step 2 The OFP de-adaptation module parses the OFP frames from the cross-connect board, parses out the large and small channel numbers, and completes the demultiplexing of the multi-channel and small-channel OSU services; and searches for the mapping relationship between the large and small channel numbers and the TPN number according to the configuration of the management and control plane. , which demaps OFP frames into OSU frames with TPN numbers. In the reverse direction, the OSU frame is mapped into the OFP frame, and according to the configuration of the management and control plane, the TPN number is converted into a large and small channel number, and written into the OFP frame header and the interlaken frame header respectively to complete the multiplexing of small-channel OSU services. All the way to interlaken channel.
  • the OFP frame is the frame format transmitted from the client board to the backplane.
  • the data part of the OFP frame is the OSU frame, and the overhead includes the channel number of the big and small. This step is to extract the size channel number and OSU frame data in the overhead, and then store them in a linked list structure.
  • step 3 multiple OSU frames are buffered and processed through the linked list buffer queue.
  • the ODU PB mapping module calculates the mapping relationship table between the PB location of each OSU service and the TPN number according to the bandwidth allocated by the management and control plane for each OSU service. Then, the OSU frame in the buffer queue is mapped to the corresponding PB position in the ODU time division multiplexing frame according to the allocated mapping table. In the reverse direction, the PB block in the ODU time division multiplexing frame is advanced and demapped into the OSU frame.
  • FPGA Field Programming Gate Array
  • Step 4 the ODU time-division multiplexing frame is split into multiple ODU frames by the time-space demultiplexing and multiplexing module, and the ODU frame is generated after the overhead is inserted through framing processing, and finally output from the corresponding different optical ports.
  • the time-space division multiplexing module decomposes the ODUk frame into multiple ODUk frames through space division multiplexing, and then outputs them to different optical ports.
  • FIG. 11 is a block diagram of the multi-channel service transmission system according to the embodiment of the present application. ,in,
  • the customer board 112 is used to encapsulate multiple customer services into OFP frames, and load the OFP frames into a chip-level general interface protocol interlaken logical channel;
  • the cross-connect board 114 is used to forward the OFP frame carried by each interlaken logical channel to the circuit board 116;
  • the circuit board 116 is configured to convert the OFP frame into an Optical Transform Unit (Optical Transform Unit, OTU for short) frame, and output the OTU frame.
  • Optical Transform Unit Optical Transform Unit, OTU for short
  • multiplex client services are encapsulated into OFP frames, and the OFP frames are loaded into one chip-level general interface protocol interlaken logical channel;
  • the OFP frame carried by each interlaken logical channel is forwarded to the circuit board 116 through the cross-connect board 114;
  • the OFP frame is converted into an OTU frame, and the OTU frame is output.
  • the client board 112 is further configured to combine multiple CBR services into a high-speed time-division multiplexed data signal if the client service is a CBR service;
  • the client board 112 is further configured to receive CBR service configuration information delivered by the management and control plane;
  • the small channel number is identified for the multi-channel CBR service, wherein the large and small channel number includes the large channel number and the small channel number;
  • the small channel number corresponding to the multi-channel CBR service is set in the frame header of the OFP frame, and the large channel number is set in the interlaken frame header of the outer layer of the OFP frame.
  • the client board 112 is further configured to, if the client service is a packet service, convert the multi-channel packet service into a MAC frame, and store the MAC frame in a shared buffer queue;
  • the client board 112 is further configured to receive packet service configuration information delivered by the management and control plane;
  • the packet service is divided according to the VLAN, and the association relationship between the VLAN, the size channel number and the optical port index is recorded.
  • the client board 112 is further configured to identify a small channel number for the multi-channel packet service according to the large and small channel number carried in the packet service configuration information, wherein the large and small channel number includes: The large channel number and the small channel number;
  • the small channel number corresponding to the multi-channel packet service is set in the frame header of the OFP frame, and the large channel number is set in the interlaken frame header of the outer layer of the OFP frame.
  • the circuit board 116 is further configured to parse the OFP frame to obtain the large channel number and the small channel number of the multiple customer services;
  • the OTU frame is generated from a plurality of ODU frames.
  • the circuit board 116 is further configured to receive configuration information delivered by the management and control plane;
  • the mapping relationship between the size channel number and the TPN number is obtained, wherein the size channel number includes a large channel number and a small channel number;
  • the OFP frame is demapped into a plurality of OSU frames with TPN numbers.
  • the circuit board 116 is further configured to determine the mapping table between the PB block and the TPN number of the multi-channel customer service according to the customer service bandwidth carried in the configuration message;
  • the OSU frame in the linked-list cache queue is mapped to the PB block corresponding to the ODU time-division multiplexing frame.
  • the circuit board 116 is further configured to receive the OTU frame and convert the OUT frame into the OFP frame;
  • the cross board 114 is further configured to send the OFP frame to the client board 112 through one or more large channels;
  • the client board 112 is further configured to decapsulate the OFP frame into the multi-channel client service.
  • the circuit board 116 is further configured to decapsulate the OTU frame into a plurality of ODU frames
  • the circuit board 116 is further configured to convert the TPN number of the OFP frame into a large channel number and a small channel number according to the large and small channel number of the customer service carried in the configuration information, wherein , the large and small channel numbers include the large channel number and the small channel number;
  • the large channel number and the small channel number are respectively written into the interlaken frame header and the OFP frame header of the OFP frame.
  • the client board 112 is also used for
  • the multi-channel customer service is a multi-channel CBR service
  • the large channel number and the small channel number are parsed according to the OFP frame header of the OFP frame and the interlaken frame header of the outer layer of the OFP frame;
  • the multiplexed CBR service is extracted from the high speed time division multiplexed data signal.
  • the client board 112 is also used for
  • the multi-channel customer service is a multi-channel packet service
  • the large channel number and the small channel number are parsed according to the OFP frame header of the OFP frame and the interlaken frame header of the outer layer of the OFP frame;
  • the multi-channel packet service corresponding to the VLAN is acquired from the shared buffer queue according to the pre-stored association between the VLAN and the optical port index.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute the steps in any of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include, but is not limited to, a USB flash drive, a read-only memory (Read-Only Memory, referred to as ROM for short), and a random access memory (Random Access Memory, referred to as RAM for short) , mobile hard disks, magnetic disks or CD-ROMs and other media that can store computer programs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present application further provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present application can be implemented by a general-purpose computing device, and they can be centralized on a single computing device or distributed in a network composed of multiple computing devices
  • they can be implemented in program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, can be performed in a different order than shown here.
  • the described steps, or they are respectively made into individual integrated circuit modules, or a plurality of modules or steps in them are made into a single integrated circuit module to realize.
  • the present application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供了一种多路业务传输方法、***、存储介质及电子装置,该方法包括:在客户板中,将多路客户业务封装为OFP帧,并将OFP帧装入到一路interlaken逻辑通道中;通过交叉板,将每路interlaken逻辑通道承载的OFP帧转发给线路板,在线路板中,将OFP帧转换为OTU帧,并输出OTU帧。

Description

一种多路业务传输方法、***、存储介质及电子装置
交叉引用
本申请基于申请号为“202011631061.X”、申请日为2020年12月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信技术领域,涉及一种多路业务传输方法、***、存储介质及电子装置。
背景技术
光传送网(Optical Transport Network,简称为OTN)设备应用于核心骨干传输网络,基于G.709标准规范的最小集光纤配线单元(Oracle Database Unloader,简称为ODU)容器为ODU0。随着OTN设备逐步下沉,采用传统OTN方式承载1G以下客户信号时,每路业务需要占用单独的ODU0容器。当前仍然存在大量2~100Mb/s专线业务的需求,因此存在巨大的带宽浪费;
而采用分组增强型OTN承载小颗粒业务时,需要引入额外的VC容器或者分组管道,本质上类似两种技术叠加,带来了实现复杂度和兼容性问题。
图1是OSU帧结构的示意图,如图1所示,业界启动的基于高效传输小颗粒业务的技术和标准立项中,光业务单位(Optical Service Unit,简称为OSU)是为了高效承载小颗粒信号定义的一个新的信号结构。OSU是对OTN帧结构的优化和扩展,将OTN***中定义的ODUk信号的净荷划分为多个固定长度块(Payload Block,简称为PB)。PB块的长度较短,目的是提高小颗粒业务承载效率。通过PB实现对OSU信号的承载,从而最终实现小颗粒客户信号装到OSU信号中,OSU信号装到ODU信号中,ODU信号装到OTU信号中的信号处理过程。OSU拟定用10bit的支路端口号(Tributary Port Number,简称为TPN)来标识每路OSU业务,目标是能承载多达1024条小颗粒业务。
而主流的集中式分组交换OTN设备中的线卡(客户板或线路板)主要是通过芯片间高速互联芯片级通用接口协议Interlaken接口与交叉板对接。Interlaken协议是思科等一些设备厂家和芯片厂家制定的一项可扩展的芯片级通用接口协议,特点是协议本身与底层物理链路速率无关。由于线卡的interlaken逻辑通道资源有限(最多256条),如果每一路小颗粒业务占用一条interlaken逻辑通道,则当前线卡无法达成上述的1024条小颗粒业务的目标。
由于线卡的interlaken逻辑通道资源有限,若多路小颗粒业务中的每一路小颗粒业务占用一条interlaken逻辑通道,导致当前线卡能够承载的小颗粒业务受限较大的问题,尚未提出解决方案。
发明内容
本申请的实施例提供了一种多路业务传输方法,包括:在客户板中,将多路客户业务封装为OFP帧,并将所述OFP帧装入到一路芯片级通用接口协议interlaken逻辑通道中;通过交叉板,将每路interlaken逻辑通道承载的所述OFP帧转发给线路板;在所述线路板中,将所述OFP帧转换为OTU帧,并输出所述OTU帧。
本申请的实施例还提供了一种多路业务传输***,包括:客户板、交叉板以及线路板,其中,所述客户板,用于将多路客户业务封装为OFP帧,并将所述OFP帧装入到一路芯片级通用接口协议interlaken逻辑通道中;所述交叉板,用于将每路interlaken逻辑通道承载的所述OFP帧转发给线路板;所述线路板,用于将所述OFP帧转换为OTU帧,并输出所述OTU帧。
本申请的实施例还提供了一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理+器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是OSU帧结构的示意图;
图2是本申请实施例的多路业务传输方法的移动终端的硬件结构框图;
图3是本申请实施例的多路业务传输方法的流程图;
图4是本申请可选实施例的多业务传输反方法的流程图;
图5是本申请实施例的OFP帧头结构的示意图;
图6是本申请实施例的interlaken大小通道的示意图;
图7是本申请实施例的OTN设备***组成的框图;
图8是本申请实施例的客户板CBR业务处理的流程图;
图9是本申请实施例的客户板分组业务处理的流程图;
图10是本申请实施例的线路板处理的流程图;
图11是本申请实施例的多路业务传输***的框图。
具体实施方式
本申请实施例提供了一种多路业务传输方法、***、存储介质及电子装置,以至少解决由于线卡的interlaken逻辑通道资源有限,若多路小颗粒业务中的每一路小颗粒业务占用一条interlaken逻辑通道,导致当前线卡能够承载的小颗粒业务受限较大的问题。
下文中将参考附图并结合实施例来详细说明本申请的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图2是本申请实施例的多路业务传输方法的移动终端的硬件结构框图,如图2所示,移动终端可以包括一个或多个(图2中仅示出一个)处理器102 (处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的多路业务传输方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及业务链地址池切片处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
本申请实施例中提供了一种运行于上述移动终端或网络架构的多路业务传输方法,图3是本申请实施例的多路业务传输方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,在客户板中,将多路客户业务封装为OFP帧,并将所述OFP帧装入到一路芯片级通用接口协议interlaken逻辑通道中。
其中,OFP帧为OTN Over Packet Fabric Protocol的缩写,指的是通过分组交换来实现OTN业务的传输。
步骤S304,通过交叉板,将每路interlaken逻辑通道承载的所述OFP帧转发给线路板。
步骤S306,在所述线路板中,将所述OFP帧转换为OTU帧,并输出所述OTU帧。
通过上述步骤S302至S306,可以解决由于线卡的interlaken逻辑通道资源有限,若多路小颗粒业务中的每一路小颗粒业务占用一条interlaken逻辑通道,导致当前线卡能够承载的小颗粒业务受限较大的问题,将多路小颗粒客户业务作为子通道装入到一路或多路interlaken逻辑大通道中,通过一路或多路interlaken逻辑大通道将多路客户业务透传给线路板,以达到在有限的interlaken逻辑通道下可以承载更多小颗粒业务的目的。
在一示例性实施例中,上述步骤S304具体可以包括:若客户业务为固定速率信号(Constant Bit Rate,简称为CBR)业务,将多路CBR业务合成一个高速时分复用数据信号;将所述高速时分复用数据信号映射为多个OSU帧;将所述多个OSU帧转换成所述OFP帧。
可选地,在将所述多个OSU帧转换成所述OFP帧之后,接收管控平面下发的CBR业务配置信息;根据所述CBR业务配置信息中携带的CBR业务的大小通道号为所述多路CBR业务标识小通道号,其中,所述大小通道号包括大通道号与所述小通道号;将所述多路CBR业务对应的小通道号设置在所述OFP帧的帧头中,并将所述大通道号设置在所述OFP帧外层的interlaken帧头中。
在另一示例性实施例中,上述步骤S204具体还可以包括:若所述客户业务为分组业务, 将多路分组业务转换成MAC帧,并将所述MAC帧存入共享缓存队列中;从所述共享缓存队列提取所述MAC帧,并将所述MAC帧映射成多个OSU帧;将所述多个OSU帧转换成所述OFP帧。
在一可选的实施例中,在将所述MAC帧存入共享缓存队列中之前,接收管控平面下发的分组业务配置信息;根据所述分组业务配置信息中携带的VLAN标识,解析所述MAC帧中的VLAN;根据所述VLAN对所述分组业务进行分流,并记录所述VLAN、大小通道号以及光口索引的关联关系。
在另一可选的实施例中,在将所述多个OSU帧转换成所述OFP帧之后,根据所述分组业务配置信息中携带的大小通道号为所述多路分组业务标识小通道号,其中,所述大小通道号包括大通道号与所述小通道号;将所述多路分组业务对应的小通道号设置在所述OFP帧的帧头中,并将所述大通道号设置在所述OFP帧外层的interlaken帧头中。
本申请实施例中,上述步骤S206具体可以包括:解析所述OFP帧,得到所述多个客户业务的大通道号与小通道号;根据所述大通道号与所述小通道号将所述OFP帧解映射成带有TPN号的多个OSU帧;将所述多个OSU帧缓存到链表缓存队列中;将所述链表缓存队列中的所述多个OSU帧映射到ODU时分复用帧对应的PB块中;将所述ODU时分复用帧拆分为多个ODU帧;
根据多个ODU帧生成所述OTU帧。
在一示例性实施例中,根据所述大通道号与所述小通道号将所述OFP帧解映射成带有TPN号的多个OSU帧进一步可以包括:接收管控平面下发的配置信息;根据所述配置信息中携带的客户业务的大小通道号,获取所述大小通道号与TPN号的映射关系,其中,所述大小通道号包括大通道号与小通道号;根据所述大小通道号与TPN号的映射关系,将OFP帧解映射成带有TPN号的多个OSU帧。
在一示例性实施例中,将所述链表缓存队列中的所述多个OSU帧映射到ODU时分复用帧对应的PB块中包括:根据所述配置消息中携带的客户业务带宽,确定所述多路客户业务的PB块与TPN号的映射表;根据所述映射表将所述链表缓存队列中的OSU帧映射到所述ODU时分复用帧对应的PB块中。
图4是本申请可选实施例的多业务传输反方法的流程图,如图4所示,包括:
步骤S402,在线路板中,接收所述OTU帧,并将所述OUT帧转换为所述OFP帧。
步骤S404,通过所述交叉板,将每路interlaken逻辑通道承载的所述OFP帧转发给所述客户板。
步骤S406,在所述客户板中,将所述OFP帧解封装为所述多路客户业务。
在一示例性实施例中,上述步骤S402具体可以包括:将所述OTU帧解封装为多个ODU帧;
根据所述多个ODU帧生成ODU时分复用帧;提取所述ODU时分复用帧的PB块,根据所述PB块将所述ODU时分复用帧解映射成多个OSU帧;将所述多个OSU帧转换为所述OFP帧。
在一示例性实施例中,在将所述多个OSU帧转换为所述OFP帧之后,根据所述配置信息中携带的客户业务的大小通道号将所述OFP帧的TPN号转换成大通道号与小通道号,其中,所述大小通道号包括所述大通道号与所述小通道号;分别将所述大通道号与所述小通道 号写入interlaken帧头与所述OFP帧的OFP帧头中。
在一可选的实施例中,上述步骤S406具体可以包括:若所述多路客户业务为多路CBR业务,根据所述OFP帧的OFP帧头与所述OFP帧外层的interlaken帧头,解析出大通道号与小通道号;根据所述大通道号与小通道号将所述OFP帧转换为多个OSU帧;将所述多个OSU帧解复用为高速时分复用数据信号;从所述高速时分复用数据信号中提取所述多路CBR业务。
在另一可选的实施例中,上述步骤S406还可以包括:若所述多路客户业务为多路分组业务,根据所述OFP帧的OFP帧头与所述OFP帧外层的interlaken帧头,解析出大通道号与小通道号;根据所述大通道号与小通道号将所述OFP帧转换为多个OSU帧;将所述多个OSU帧转换成MAC帧,并将所述MAC帧放入共享缓存队列中;根据预先存储的VLAN与光口索引的关联关系,从所述共享缓存队列中获取所述VLAN对应的所述多路分组业务。
本实施例中,主流OTN设备的线卡通过Interlaken接口与交叉板对接,线卡将净荷进行切片,加上OFP帧头和Interlaken帧头。交叉板通过Interlaken帧头进行调度,最小颗粒一般是ODU0或者类似速率。
承载小颗粒客户业务的OTN设备一般放在边缘接入网络,小颗粒客户业务数量虽然多,但总体占用带宽并不大。OTN线卡的interlaken逻辑通道数量虽然有限,但是可以利用interlaken的与底层物理链路速率无关的特点,将多路小颗粒客户业务作为子通道装入到一路interlaken逻辑通道,以达到在有限的interlaken逻辑通道下承载更多小颗粒业务的目的。
图5是本申请实施例的OFP帧头结构的示意图,如图5所示,可以利用OFP帧头在交叉板中透明传递这一特点,扩展了OFP帧头的未使用的PPSI字段和RSV1字段,用这8bit来标识1路interlaken逻辑通道(大通道)中可承载的小颗粒业务数量(小通道),即1路大通道可承载256路小通道业务。图6是根据本实施例的interlaken大小通道的示意图,如图6所示,主流OTN线卡最多支持256路interlaken逻辑通道,因此理论上可以支持65536路OSU业务,足以覆盖上述1024条小颗粒业务的目标。
图7是本申请实施例的OTN设备***组成的框图,如图7所示,本申请涉及***由支持OSU适配层的客户板和线路板,以及交叉板组成。
客户板完成小颗粒业务到OSU帧的映射解映射,为进来的每路小颗粒业务标识上小通道号(填写前文所述的OFP帧头的8bit保留字段)。将根据管控平面的配置,将多路小通道业务装入一路或者多路大通道号中(前文所述的interlaken帧头包含interlaken通道号信箱)。
线路板完成OSU帧到OPU净荷PB块位置的映射和解映射,并通过大小通道号完成多路OSU业务复用和解复用。
交叉板依据管控平面的交叉配置进行交叉调度,交叉板不感知OSU,调度颗粒是上述的大通道,因此多路OSU业务可在OTN网络中透明传输,由支持相应的线卡对OSU业务进行复用和解复用。
本实施例中,将多路小颗粒业务映射到OSU帧格式,并通过大小通道的方法实现多路OSU业务的复用和解复用,详细的处理流程如下:
图8是本申请实施例的客户板CBR业务处理的流程图,如图8所示,固定速率CBR业务的处理流程包括:
步骤1,管控平面下发CBR业务配置到客户板,携带信息有光口端口索引、CBR业务类型、CBR业务的大小通道号等配置信息。
管控平面下发的CBR业务配置信息包含以下信息:
CBR业务类型:如GE/FE/STM1/STM4等,这些业务的帧格式不一样,速率也不一样,光口支持多种客户业务;
光口索引:有多个光口,每个光口可以配置一种业务;
小通道号:用于标识每路客户业务,范围是1到1000。用户可以任意指定,比如将光口1进来的GE业务标识成1,将光口2进来的STM4业务标识成10;
大通道号:多路客户业务可以共用一路大通道号。比如上述的1和10,可以一起装入到大通道1里面。大通道就是传统OTN设备交叉转发的单位容量,比如颗粒是ODU0/ODU2等;只要多路小通道的客户业务宽带加起来不超过大通道的带宽就行。
步骤2,根据管控平面的配置,先将每个光口进来的CBR业务经过采样和位宽处理模块,根据具体CBR业务类型调整相应的位宽和时钟处理;反向类似,还原成CBR业务输出到相应光口。
采样和位宽处理模块,是传统OTN设备上就有,不属于权利保护范围。前面提到了一个物理光口进来的业务可以是多种的,比如GE/STM等,每种业务的速率,位宽都不一样。设备有个处理步骤,就是把从光口进来的客户业务,统一进行采样和位宽处理,可以理解为处理成统一的格式,便于后续处理。
步骤3,所有光口进来的客户信号经过上述采样和位宽处理模块处理后,经过时空分复用模块合成一个高速时分复用数据信号。反向类似,时空分复用模块从高速时分复用数据信号提取信号到相应光口。
时空分复用模块,客户板上有多个光口,同一个时刻,可能同时有多路业务从不同的光口进来,这个时候,内部有个高速的信号,速度要比光口进来的业务速度要快,所以可以将不同光口进来的业务,分时刻,分别装入到高速信号中。举个例子:比如t1时间,把客户业务1装入到高速信号的位置1上,t2时刻,把客户业务2装入到高速信号的位置2上。这样就可以把多路客户业务,装入到一条高速信号中,完成了时间域到空间域的转换。
步骤4、CBR/OSU转换模块将高速时分复用数据信号映射为OSU帧格式。反向类似,将OSU帧接映射为高速时分复用数据信号。
这个地方是保护范围。将客户业务映射(这里用映射比用转换合适)成OSU帧格式,是为后面线路板的处理做好准备。OSU帧是一个固定长度的帧格式,需要将高速信号中的客户业务通过某种映射方式,映射到OSU帧的净荷里面,是采用的是同步映射方式。
OSU帧是正在拟定的企业标准,便于后续不同企业的互通。在客户板中的OSU帧里面没有TPN号,TPN号是在线路板中重置的。
步骤5、OFP适配模块将OSU帧转换成OFP帧,根据管控平面的大小通道配置,为每路OSU业务标识上小通道号(写入前文所述的OFP帧头的8bit字段);并将多路OSU业务复用到一路或者多路大通道中(前文所述的Interlaken帧头包含了interlaken通道号信息),最终通过interlaken接口发送给交叉板。反向类似,提取OFP帧头的8bit字段和interlaken帧头,解析出大小通道号,将一路大通道解映射成多路小通道的OSU业务。
这个地方是保护范围。OFP适配模块的作用是将OSU帧,转换成OFP帧。OFP帧可以被承载在interlaken通道上。原本OFP帧里面只包含interlaken通道号信息,没有标识客户业务的信息。每路客户业务占用一路interlaken通道。在OFP里面扩展了2bit保留字段,将其 用于标识客户业务或OSU业务(小通道)。根据管控平面的配置,为每路客户业务映射到各自的OSU帧里面,并为其分配唯一的小通道号(标识每路客户业务)
这里的大通道,指原来承载业务的通道,它的最小颗粒比较大,如ODU0,ODU2的速率。可通过将多路客户业务的OSU帧装入到一路大通道中。
图9是本申请实施例的客户板分组业务处理的流程图,如图9所示,分组业务指以太网的多址接入信道(Multiple Access Channel,简称为MAC)帧,如千兆以太网(Gigabit Ethernet,简称为GE),快速以太网(Fast Ethernet,简称为FE)等,具体处理流程包括:
步骤1,管控平面下发分组业务到客户板,携带信息有光口端口索引、分组业务类型、虚拟局域网(Virtual Local Area Network,简称为VLAN)标识ID、大小通道号等信息。
分组业务一般是指以太网业务,一个物理光口进来的可能有多条以太网业务,使用VLAN ID来区分。CBR业务一个光口只可能是一种业务,这就是两者的最大区别。举例说明:管控平面会下发这样的配置:光口1里面进来了三条以太网业务VLAN1,VLAN2,VLAN3。用户分别用小通道1,2,3来标识(这个可以任意指定),这三个小通道的业务,使用大通道1承载。光口2进来3条业务VLAN 2,3,4,用户分别用小通道4,5,6标识,使用大通道2承载。大通道就是连接客户板和线路板的交叉,可以理解为一个虚拟通道。
步骤2,GE/MAC转换模块将GE信号转换成MAC帧,并根据管控平面的配置,解析MAC帧中的VLAN,根据VLAN来对客户业务进行分流,将相应MAC帧存入共享缓存队列中。客户板软件记录VLAN、大小通道号、光口索引的关联关系。反向的时候,将对应VLAN的业务送至相应的光口。
分组业务和CBR不同的是,分组业务进来的流程不是恒定的,是随机的。所以将所有进来的以太网业务通过VLANID来标识,将这些以太网帧转换成MAC帧后,放入到一段共享缓存队列中。单板软件将管控平面的配置,将以太网的VLANID和大小通道,通过设置相应的硬件,关联起来,以达到从指导光口进来的特定VLANID客户业务,被后面的OFP适配模块打上相应的小通道号,并装入到指定的interlaken通道来承载。
步骤3,IMP/OSU转换模块从共享缓存队列提取MAC并映射成OSU帧;反向,则是将OSU帧解映射转换成MAC帧放入缓存队列。
同CBR的高速信号映射到OSU帧一样,这里也是一种通用技术,把MAC帧通过IMP(Idle Mapping Procedure)的映射方法,映射成OSU帧。
步骤4,OFP适配模块与上述实施例中的CBR一样,这里不区分是CBR业务还是分组业务。OFP适配模块均是完成OSU到OFP的映射和解映射。
图10是本申请实施例的线路板处理的流程图,如图10所示,线路板的处理流程包括:
步骤1,管控平面下发配置信息到线路板,包含OSU业务大小通道号、OSU业务带宽、OSU服务层TPN号等信息。
线路板的作用是把客户板下背板转发的OSU帧映射到ODUk帧结构中,然后送出光口,管控平面对线路板下发的配置包括:
OSU业务大小通道号:为了能根据大、小通道号找到对应的OSU帧
OSU业务带宽:这个业务带宽是OSU帧被客户板业务处理之前的业务速率,线路板需要根据这个速率大小分配足够的空间(PB块)来放置这个业务
OSU服务层TPN号:TPN号可以理解为线路板内部的中间标识的作用,首先,线路板 把大小通道号和TPN号进行一一对应的绑定。ODUk帧被切分成很多个位宽大小相同的数据块(PB块),然后,线路板按照业务带宽把TPN号和多个PB块绑定,这样就能实现把各个OSU帧放入ODUk的位置中。
步骤2,OFP解适配模块解析经交叉板过来OFP帧,解析出大小通道号,完成多路小通道OSU业务的解复用;并根据管控平面配置,查找大小通道号与TPN号的映射关系,将OFP帧解映射成带有TPN号的OSU帧。反向,则是将OSU帧映射成OFP帧,并依据管控平面的配置,将TPN号转换成大小通道号,分别写入到OFP帧头和interlaken帧头,完成多路小通道OSU业务复用到一路interlaken通道。
OFP帧是客户板传输到背板中的帧格式,OFP帧的数据部分就是OSU帧,开销中包含大小通道号。这一步是把开销中的大小通道号和OSU帧数据提取出来,然后放在一个链表结构中缓存起来。
步骤3,多个OSU帧都经由链表缓存队列缓存处理。ODU PB映射模块根据管控平面为每路OSU业务分配的带宽,来计算各路OSU业务的PB位置与TPN号的映射关系表。然后根据已分配的映射表将缓存队列中的OSU帧映射到ODU时分复用帧中的对应PB位置中。反向,则是提前ODU时分复用帧中PB块,解映射成OSU帧。
线路板先根据管控下发的配置,把PB块和TPN号绑定起来,具体就是业务带宽/PB块的带宽=PB块占用的数量N,把这N个PB块都标上TPN号。然后现场可编程门阵列(Field Programming Gate Array,简称为FPGA)从头开始扫描ODUk帧,根据当前位置的PB块对应的TPN号在链表中找到OSU帧,然后把OSU帧放在当前位置上,一直扫到ODUk帧尾,完成一帧ODUk的处理。
步骤4,ODU时分复用帧经过时空分解复用模块拆分为多个ODU帧,并经过定帧处理***开销后生成OTU帧,最后从对应的不同光口输出。
线路板上会有多个光口,时空分复用模块就是把ODUk帧通过空分解复用解成多个ODUk帧,然后输出给不同的光口。
本申请实施例还提供了一种多路业务传输***,图11是本申请实施例的多路业务传输***的框图,如图11所示,包括:客户板112、交叉板114以及线路板116,其中,
所述客户板112,用于将多路客户业务封装为OFP帧,并将所述OFP帧装入到一路芯片级通用接口协议interlaken逻辑通道中;
所述交叉板114,用于将每路interlaken逻辑通道承载的所述OFP帧转发给线路板116;
所述线路板116,用于将所述OFP帧转换为光转换单元(Optical Transform Unit,简称为OTU)帧,并输出所述OTU帧。
在客户板112中,将多路客户业务封装为OFP帧,并将所述OFP帧装入到一路芯片级通用接口协议interlaken逻辑通道中;
通过交叉板114,将每路interlaken逻辑通道承载的所述OFP帧转发给线路板116;
在所述线路板116中,将所述OFP帧转换为OTU帧,并输出所述OTU帧。
在一示例性实施例中,所述客户板112,还用于若客户业务为CBR业务,将多路CBR业务合成一个高速时分复用数据信号;
将所述高速时分复用数据信号映射为多个OSU帧;
将所述多个OSU帧转换成所述OFP帧。
在一示例性实施例中,所述客户板112,还用于接收管控平面下发的CBR业务配置信息;
根据所述CBR业务配置信息中携带的CBR业务的大小通道号为所述多路CBR业务标识小通道号,其中,所述大小通道号包括大通道号与所述小通道号;
将所述多路CBR业务对应的小通道号设置在所述OFP帧的帧头中,并将所述大通道号设置在所述OFP帧外层的interlaken帧头中。
在一示例性实施例中,所述客户板112,还用于若所述客户业务为分组业务,将多路分组业务转换成MAC帧,并将所述MAC帧存入共享缓存队列中;
从所述共享缓存队列提取所述MAC帧,并将所述MAC帧映射成多个OSU帧;
将所述多个OSU帧转换成所述OFP帧。
在一示例性实施例中,所述客户板112,还用于接收管控平面下发的分组业务配置信息;
根据所述分组业务配置信息中携带的VLAN标识,解析所述MAC帧中的VLAN;
根据所述VLAN对所述分组业务进行分流,并记录所述VLAN、大小通道号以及光口索引的关联关系。
在一示例性实施例中,所述客户板112,还用于根据所述分组业务配置信息中携带的大小通道号为所述多路分组业务标识小通道号,其中,所述大小通道号包括大通道号与所述小通道号;
将所述多路分组业务对应的小通道号设置在所述OFP帧的帧头中,并将所述大通道号设置在所述OFP帧外层的interlaken帧头中。
在一示例性实施例中,所述线路板116,还用于解析所述OFP帧,得到所述多个客户业务的大通道号与小通道号;
根据所述大通道号与所述小通道号将所述OFP帧解映射成带有TPN号的多个OSU帧;
将所述多个OSU帧缓存到链表缓存队列中;
将所述链表缓存队列中的所述多个OSU帧映射到ODU时分复用帧对应的PB块中;
将所述ODU时分复用帧拆分为多个ODU帧;
根据多个ODU帧生成所述OTU帧。
在一示例性实施例中,所述线路板116,还用于接收管控平面下发的配置信息;
根据所述配置信息中携带的客户业务的大小通道号,获取所述大小通道号与TPN号的映射关系,其中,所述大小通道号包括大通道号与小通道号;
根据所述大小通道号与TPN号的映射关系,将OFP帧解映射成带有TPN号的多个OSU帧。
所述线路板116,还用于根据所述配置消息中携带的客户业务带宽,确定所述多路客户业务的PB块与TPN号的映射表;
根据所述映射表将所述链表缓存队列中的OSU帧映射到所述ODU时分复用帧对应的PB块中。
在一示例性实施例中,所述线路板116,还用于接收所述OTU帧,并将所述OUT帧转换为所述OFP帧;
所述交叉板114,还用于通过一路或多路大通道将所述OFP帧发送给所述客户板112;
所述客户板112,还用于将所述OFP帧解封装为所述多路客户业务。
在一示例性实施例中,所述线路板116,还用于将所述OTU帧解封装为多个ODU帧;
根据所述多个ODU帧生成ODU时分复用帧;
提取所述ODU时分复用帧的PB块,根据所述PB块将所述ODU时分复用帧解映射成多个OSU帧;
将所述多个OSU帧转换为所述OFP帧。
在一示例性实施例中,所述线路板116,还用于根据所述配置信息中携带的客户业务的大小通道号将所述OFP帧的TPN号转换成大通道号与小通道号,其中,所述大小通道号包括所述大通道号与所述小通道号;
分别将所述大通道号与所述小通道号写入interlaken帧头与所述OFP帧的OFP帧头中。
在一示例性实施例中,所述客户板112,还用于
若所述多路客户业务为多路CBR业务,根据所述OFP帧的OFP帧头与所述OFP帧外层的interlaken帧头,解析出大通道号与小通道号;
根据所述大通道号与小通道号将所述OFP帧转换为多个OSU帧;
将所述多个OSU帧解复用为高速时分复用数据信号;
从所述高速时分复用数据信号中提取所述多路CBR业务。
在一示例性实施例中,所述客户板112,还用于
若所述多路客户业务为多路分组业务,根据所述OFP帧的OFP帧头与所述OFP帧外层的interlaken帧头,解析出大通道号与小通道号;
根据所述大通道号与小通道号将所述OFP帧转换为多个OSU帧;
将所述多个OSU帧转换成MAC帧,并将所述MAC帧放入共享缓存队列中;
根据预先存储的VLAN与光口索引的关联关系,从所述共享缓存队列中获取所述VLAN对应的所述多路分组业务。
本申请的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员 来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种多路业务传输方法,包括:
    在客户板中,将多路客户业务封装为OFP帧,并将所述OFP帧装入到一路芯片级通用接口协议interlaken逻辑通道中;
    通过交叉板,将每路interlaken逻辑通道承载的所述OFP帧转发给线路板;
    在所述线路板中,将所述OFP帧转换为光转换单元OTU帧,并输出所述OTU帧。
  2. 根据权利要求1所述的多路业务传输方法,其中,将多路客户业务封装为OFP帧包括:
    若客户业务为固定速率信号CBR业务,将多路CBR业务合成一个高速时分复用数据信号;
    将所述高速时分复用数据信号映射为多个光服务层单元OSU帧;
    将所述多个OSU帧转换成所述OFP帧。
  3. 根据权利要求2所述的多路业务传输方法,其中,在将所述多个OSU帧转换成所述OFP帧之后,所述方法还包括:
    接收管控平面下发的CBR业务配置信息;
    根据所述CBR业务配置信息中携带的CBR业务的大小通道号为所述多路CBR业务标识小通道号,其中,所述大小通道号包括大通道号与所述小通道号;
    将所述多路CBR业务对应的小通道号设置在所述OFP帧的帧头中,并将所述大通道号设置在所述OFP帧外层的interlaken帧头中。
  4. 根据权利要求1所述的多路业务传输方法,其中,所述将多路客户业务封装为OFP帧包括:
    若所述客户业务为分组业务,将多路分组业务转换成多址接入信道MAC帧,并将所述MAC帧存入共享缓存队列中;
    从所述共享缓存队列提取所述MAC帧,并将所述MAC帧映射成多个OSU帧;
    将所述多个OSU帧转换成所述OFP帧。
  5. 根据权利要求4所述的多路业务传输方法,其中,在将所述多个OSU帧转换成所述OFP帧之后,所述方法还包括:
    根据管控平面下发的分组业务配置信息中携带的大小通道号为所述多路分组业务标识小通道号,其中,所述大小通道号包括大通道号与所述小通道号;
    将所述多路分组业务对应的小通道号设置在所述OFP帧的帧头中,并将所述大通道号设置在所述OFP帧外层的interlaken帧头中。
  6. 根据权利要求1至权利要求5中任一项所述的多路业务传输方法,其中,将所述OFP帧转换为所述OTU帧包括:
    解析所述OFP帧,得到所述多个客户业务的大通道号与小通道号;
    根据所述大通道号与所述小通道号将所述OFP帧解映射成带有TPN号的多个光服务层单元OSU帧;
    将所述多个OSU帧缓存到链表缓存队列中;
    将所述链表缓存队列中的所述多个OSU帧映射到集光纤配线单元ODU时分复用帧对应 的固定长度块PB块中;
    将所述ODU时分复用帧拆分为多个ODU帧;
    根据多个ODU帧生成所述OTU帧。
  7. 根据权利要求6所述的多路业务传输方法,其中,根据所述大通道号与所述小通道号将所述OFP帧解映射成带有支路端口号TPN号的多个OSU帧包括:
    接收管控平面下发的配置信息;
    根据所述配置信息中携带的客户业务的大小通道号,获取所述大小通道号与TPN号的映射关系,其中,所述大小通道号包括大通道号与小通道号;
    根据所述大小通道号与TPN号的映射关系,将OFP帧解映射成带有TPN号的多个OSU帧。
  8. 根据权利要求7所述的多路业务传输方法,其中,将所述链表缓存队列中的所述多个OSU帧映射到ODU时分复用帧对应的PB块中包括:
    根据所述配置消息中携带的客户业务带宽,确定所述多路客户业务的PB块与TPN号的映射表;
    根据所述映射表将所述链表缓存队列中的OSU帧映射到所述ODU时分复用帧对应的PB块中。
  9. 根据权利要求7至权利要求8中任一项所述的多路业务传输方法,其中,所述方法还包括:
    在所述线路板中,接收所述OTU帧,并将所述OUT帧转换为所述OFP帧;
    通过所述交叉板,将每路interlaken逻辑通道承载的所述OFP帧转发给所述客户板;
    在所述客户板中,将所述OFP帧解封装为所述多路客户业务。
  10. 根据权利要求9所述的多路业务传输方法,其中,将所述OUT帧转换为所述OFP帧包括:
    将所述OTU帧解封装为多个ODU帧;
    根据所述多个ODU帧生成ODU时分复用帧;
    提取所述ODU时分复用帧的PB块,根据所述PB块将所述ODU时分复用帧解映射成多个OSU帧;
    将所述多个OSU帧转换为所述OFP帧。
  11. 根据权利要求10所述的多路业务传输方法,其中,在将所述多个OSU帧转换为所述OFP帧之后,所述方法还包括:
    根据所述配置信息中携带的客户业务的大小通道号将所述OFP帧的TPN号转换成大通道号与小通道号,其中,所述大小通道号包括所述大通道号与所述小通道号;
    分别将所述大通道号与所述小通道号写入interlaken帧头与所述OFP帧的OFP帧头中。
  12. 根据权利要求9所述的多路业务传输方法,其中,将所述OFP帧解封装为所述多路客户业务包括:
    若所述多路客户业务为多路CBR业务,根据所述OFP帧的OFP帧头与所述OFP帧外层的interlaken帧头,解析出大通道号与小通道号;
    根据所述大通道号与小通道号将所述OFP帧转换为多个OSU帧;
    将所述多个OSU帧解复用为高速时分复用数据信号;
    从所述高速时分复用数据信号中提取所述多路CBR业务。
  13. 根据权利要求9所述的多路业务传输方法,其中,将所述OFP帧解封装为所述多路客户业务包括:
    若所述多路客户业务为多路分组业务,根据所述OFP帧的OFP帧头与所述OFP帧外层的interlaken帧头,解析出大通道号与小通道号;
    根据所述大通道号与小通道号将所述OFP帧转换为多个OSU帧;
    将所述多个OSU帧转换成MAC帧,并将所述MAC帧放入共享缓存队列中;
    根据预先存储的VLAN与光口索引的关联关系,从所述共享缓存队列中获取所述VLAN对应的所述多路分组业务。
  14. 一种多路业务传输***,包括:客户板、交叉板以及线路板,其中,
    所述客户板,用于将多路客户业务封装为OFP帧,并将所述OFP帧装入到一路芯片级通用接口协议interlaken逻辑通道中;
    所述交叉板,用于将每路interlaken逻辑通道承载的所述OFP帧转发给线路板;
    所述线路板,用于将所述OFP帧转换为光转换单元OTU帧,并输出所述OTU帧。
  15. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至13中任一项所述的多路业务传输方法。
  16. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至13中任一项所述的多路业务传输方法。
PCT/CN2021/136132 2020-12-30 2021-12-07 一种多路业务传输方法、***、存储介质及电子装置 WO2022143046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011631061.XA CN114765566A (zh) 2020-12-30 2020-12-30 一种多路业务传输方法、***、存储介质及电子装置
CN202011631061.X 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022143046A1 true WO2022143046A1 (zh) 2022-07-07

Family

ID=82260232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136132 WO2022143046A1 (zh) 2020-12-30 2021-12-07 一种多路业务传输方法、***、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN114765566A (zh)
WO (1) WO2022143046A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117201434A (zh) * 2023-11-07 2023-12-08 杭州初灵信息技术股份有限公司 一种以太网数据交互方法和***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115361342B (zh) * 2022-10-21 2023-03-10 中国信息通信研究院 一种电力cbr业务小颗粒通道配置方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217334A (zh) * 2004-08-11 2008-07-09 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
CN101350691A (zh) * 2008-09-05 2009-01-21 华为技术有限公司 一种业务汇聚和adm分插复用方法及设备
CN103795605A (zh) * 2014-01-14 2014-05-14 烽火通信科技股份有限公司 将otn信号转换为以太网净荷的方法及***
CN106301661A (zh) * 2012-07-30 2017-01-04 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
EP3396880A1 (en) * 2017-04-27 2018-10-31 SM Optics S.r.l. Method for mapping digital signals into an optical transport network and corresponding network element, optical telecommunications network and frame for optical telecommunications network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217334A (zh) * 2004-08-11 2008-07-09 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
CN101350691A (zh) * 2008-09-05 2009-01-21 华为技术有限公司 一种业务汇聚和adm分插复用方法及设备
CN106301661A (zh) * 2012-07-30 2017-01-04 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
CN103795605A (zh) * 2014-01-14 2014-05-14 烽火通信科技股份有限公司 将otn信号转换为以太网净荷的方法及***
EP3396880A1 (en) * 2017-04-27 2018-10-31 SM Optics S.r.l. Method for mapping digital signals into an optical transport network and corresponding network element, optical telecommunications network and frame for optical telecommunications network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117201434A (zh) * 2023-11-07 2023-12-08 杭州初灵信息技术股份有限公司 一种以太网数据交互方法和***

Also Published As

Publication number Publication date
CN114765566A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
US11477549B2 (en) Transmission network system, data switching and transmission method, apparatus and equipment
WO2019128664A1 (zh) 一种数据传输方法、通信设备及存储介质
US6965619B2 (en) Flexible multiplexer/demultiplexer and method for transport of optical line data to a wide/metro area link
US8743915B2 (en) Method and apparatus for transmitting packet in optical transport network
EP2991252B1 (en) Otn adaptation for support of subrate granularity and flexibility and for distribution across multiple modem engines
WO2022143046A1 (zh) 一种多路业务传输方法、***、存储介质及电子装置
US10608766B2 (en) Multi-service transport and receiving method and apparatus
US7656910B2 (en) Add drop multiplexing method, apparatus and system based on GFP
EP3687088A1 (en) Method for transmitting data in optical network and optical network device
US11381338B2 (en) Data transmission method, communications device, and storage medium
CN101695144A (zh) 一种支持多业务接入和传输的方法及***
CN101610430B (zh) 一种实现ODUk交叉调度的方法和装置
WO2009074002A1 (fr) Dispositif et procédé de mise en œuvre d'un canal de réseau de communication de signalisation et d'un réseau de communication de gestion
EP1971050A1 (en) An optical transport node construction device and service dispatch method
EP1655864B1 (en) Apparatus and method for carrying out integration of multi-ports traffics
EP1701495A1 (en) Hybrid digital cross-connect for switching circuit and packet based data traffic
US8036236B2 (en) Gateway for use in an electronic communications recording system
WO2016041318A1 (zh) 数据传输方法和装置
WO2021218721A1 (zh) 业务处理的方法和装置
WO2023232097A1 (zh) 业务数据处理方法和装置
CN101350691B (zh) 一种业务汇聚和adm分插复用方法及设备
CN1946242B (zh) 光接入网络中支持tdm业务的方法及装置
WO2023231764A1 (zh) 业务数据处理的方法和装置
WO2024032269A1 (zh) 通信方法、相关装置及计算机可读存储介质
WO2023151483A1 (zh) 数据帧的处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913787

Country of ref document: EP

Kind code of ref document: A1