WO2022142994A1 - 传感器装置以及阀组件 - Google Patents

传感器装置以及阀组件 Download PDF

Info

Publication number
WO2022142994A1
WO2022142994A1 PCT/CN2021/135068 CN2021135068W WO2022142994A1 WO 2022142994 A1 WO2022142994 A1 WO 2022142994A1 CN 2021135068 W CN2021135068 W CN 2021135068W WO 2022142994 A1 WO2022142994 A1 WO 2022142994A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
circuit substrate
channel
sensing element
sensing
Prior art date
Application number
PCT/CN2021/135068
Other languages
English (en)
French (fr)
Inventor
万霞
金骑宏
黄隆重
黄宁杰
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Publication of WO2022142994A1 publication Critical patent/WO2022142994A1/zh
Priority to US18/217,509 priority Critical patent/US20230345657A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • H05K5/069Other details of the casing, e.g. wall structure, passage for a connector, a cable, a shaft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/18Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • G01K1/10Protective devices, e.g. casings for preventing chemical attack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0209Thermal insulation, e.g. for fire protection or for fire containment or for high temperature environments
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • H05K5/066Hermetically-sealed casings sealed by fusion of the joining parts without bringing material; sealed by brazing

Definitions

  • the present application relates to the technical field of signal sensing, in particular to a sensor device and a valve assembly.
  • Sensors in the related art generally include a bottom case, an upper case, and a ceramic base.
  • the ceramic base is provided with a through hole, and the surface of the ceramic base is bonded with a back pressure chip through an adhesive.
  • the flow channel is used to guide the fluid to the through hole, and then to the back pressure cavity of the back pressure chip.
  • the bottom case is provided with a groove, and a sealing ring is arranged in the groove, and the ceramic base is sealed by the sealing ring, in order to prevent the fluid from the lower part from leaking into the inner cavity of the upper part of the ceramic base.
  • the sealing ring is prone to deformation and failure, and the fluid in the flow channel is at risk of leaking into the inner cavity.
  • the purpose of the present application is to provide a sensor device and valve assembly with better sealing performance.
  • the present application provides a sensor device, which includes: a housing and a sensing assembly; the sensing assembly includes a circuit substrate, a sensing element and a sleeve; the sensor device further has an inner cavity and a channel; the inner cavity is connected with the channels are respectively located on different sides of the circuit substrate in the thickness direction;
  • the sleeve is located on one side in the thickness direction of the circuit substrate, and the sleeve has a cylindrical wall; one end of the cylindrical wall along the axial direction of the channel is sealed with the circuit substrate; the cylindrical wall of the sleeve located on the outer periphery of the channel; the sensing element is electrically connected with the circuit substrate, and the sensing element can sense the pressure and/or temperature of the fluid in the channel;
  • the housing has a matching part, and the matching part and the sleeve are located on the same side in the thickness direction of the circuit board; the matching part has a accommodating part; the sleeve is at least partially accommodated in the accommodating part; the The fitting portion includes a first peripheral wall portion forming the accommodating portion; the first peripheral wall portion is in sealing connection with the outer peripheral side of the cylindrical wall of the sleeve; the inner cavity is not communicated with the passage.
  • the present application also provides a valve assembly, the valve assembly includes a valve body portion, the valve body portion has a first flow channel, the valve assembly further includes the aforementioned sensor device, the sensor device is mounted on the A valve body, the channel is in fluid communication with the first flow channel.
  • the sleeve is at least partially accommodated in the accommodating portion, the end of the sleeve wall along the axial direction of the channel is sealed with the circuit substrate, and the outer peripheral side of the sleeve is connected to the first peripheral wall of the matching portion. Sealing connection, so that the sealing between the inner cavity and the channel is better.
  • FIG. 1 is a schematic three-dimensional structural diagram of a first embodiment of a sensor device of the present application
  • FIG. 2 is a schematic three-dimensional structural diagram of the sensor device shown in FIG. 1 from another angle;
  • Figure 3 is an exploded schematic view of the sensor device shown in Figure 1;
  • Fig. 4 is another perspective exploded schematic diagram of the sensor device shown in Fig. 1;
  • Figure 5 is a schematic cross-sectional view of the sensor device shown in Figure 1;
  • FIG. 6 is a schematic three-dimensional cross-sectional view of the sensor device shown in FIG. 1 from another angle;
  • FIG. 7 is a schematic three-dimensional structure diagram corresponding to an embodiment of the sensing assembly as shown in FIG. 1;
  • FIG. 8 is an exploded schematic view of the sensing assembly shown in FIG. 7;
  • FIG. 9 is a schematic perspective cross-sectional view corresponding to another embodiment of the sensing assembly as shown in FIG. 1;
  • FIG. 10 is a schematic perspective cross-sectional view of the second embodiment of the sensor device of the present application.
  • FIG. 11 is a schematic perspective cross-sectional view of the third embodiment of the sensor device of the present application.
  • Fig. 12 is an exploded schematic diagram of some structural components of the sensor device shown in Fig. 11;
  • FIG. 13 is an exploded schematic view of the fourth embodiment of the sensor device of the present application.
  • Figure 14 is a schematic cross-sectional view of the sensor device shown in Figure 13;
  • Fig. 15 is a schematic three-dimensional structure diagram corresponding to an embodiment of the sensing assembly as shown in Fig. 13;
  • 16 is a schematic three-dimensional structure diagram corresponding to an embodiment of the valve assembly of the present application.
  • FIG. 17 is a schematic cross-sectional view of the valve assembly shown in FIG. 16 .
  • words such as “first”, “second” and similar words used in the description and claims of the present application do not indicate any order, quantity or importance, but are only used to distinguish the names of features .
  • “a” or “an” and the like do not denote a quantitative limitation, but rather denote the presence of at least one.
  • words such as “front”, “rear”, “left”, “right”, “upper”, “lower” and other similar words appearing in this application are only for the convenience of description, and are not limited to a specific position or a type of spatial orientation.
  • the present application provides a sensor device 100 .
  • the sensor device 100 includes a housing 1 and a sensing assembly 2 . At least part of the sensing component 2 is accommodated in the housing 1 .
  • the sensor device 100 also has a lumen 200 and a channel 231 .
  • the sensing assembly 2 includes a circuit substrate 21 , at least one sensing element 22 and a sleeve 23 .
  • the inner cavity 200 and the channel 231 are respectively located on different sides of the circuit substrate 21 in the thickness direction.
  • the circuit substrate 21 includes a first surface 211 , a second surface 212 and a side surface 215 , the first surface 211 and the second surface 212 are located on different sides in the thickness direction of the circuit substrate 21 respectively, and the side surface 215 is located on the first surface 211 and the second surface 212 between.
  • the first surface 211 may be the upper surface of the circuit substrate 21 illustrated in FIG. 7
  • the second surface 212 may be the lower surface of the circuit substrate 21 illustrated in FIG. 7 .
  • the inner cavity 200 is located on the side where the first surface 211 of the circuit substrate 21 is located, and the channel 231 is located on the side where the second surface 212 of the circuit substrate 21 is located.
  • a plurality of circuit elements 213 may be disposed on the first surface 211 , that is, the plurality of circuit elements 213 are mostly distributed in the inner cavity 200 .
  • the circuit elements 213 may be common circuit elements such as resistors, capacitors, inductors, conditioning chips, and processing chips.
  • the first surface 211 of the circuit substrate 21 may also be provided with a number of pads 214 for soldering the circuit elements 213 and for transmitting electrical signals to the outside world.
  • the sensor device 100 can be used to detect the temperature and/or pressure of the refrigerant in the automobile air conditioning system. Due to the high pressure of automobile air conditioners, the pressure of the refrigerant generally reaches 500Psi. Therefore, it is more important to ensure the airtightness of the internal space of the sensor assembly under high pressure, and special attention should be paid to ensure that the circuit components avoid contact with fluids as much as possible (such as refrigerant). Correspondingly, in order to ensure the normal operation of the circuit element 213, the inner cavity 200 is not communicated with the channel 231 for fluid flow. This is beneficial for the entire sensor device 100 to ensure better sealing.
  • the sleeve 23 is located on one side in the thickness direction of the circuit substrate 21, and the sleeve 23 has a cylindrical wall 232.
  • the cylindrical wall 232 is located at the periphery of the channel 231.
  • the sleeve 23 is a hollow cylindrical structure.
  • the hollow area forms the channel 231 .
  • the channel 231 may also be formed by other elements located in the sleeve 23 .
  • the cylindrical wall 232 of the sleeve 23 has two ends along the axial direction of the channel 231 , namely a first end 233 , a second end 234 and a middle section 235 between the first end 233 and the second end 234 .
  • the first end 233 is the upper end of the cylindrical wall 232 in FIG. 10
  • the second end 234 is the lower end of the cylindrical wall 232 in FIG. 10 .
  • the first end 233 is hermetically connected to the circuit substrate 21 .
  • the fluid when the fluid flows in the channel 231 , the fluid is not easy to leak out from the position where the first end 233 of the cylinder wall 232 is sealed with the circuit substrate 21 , that is, it is not easy to leak from the channel 231 to the inner cavity 200 .
  • the sensing element 22 is electrically connected to the circuit substrate 21 .
  • the sensing element 22 is capable of sensing the pressure and/or temperature of the fluid within the channel 231 . That is, the sensing element 22 can integrate the functions of temperature sensing and pressure sensing at the same time, and the sensing component 2 can only have one sensing element 22 to realize the sensing of the temperature signal and the pressure signal. Of course, the sensing element 22 can also be used only for sensing temperature, or only for sensing pressure.
  • the sensing assembly 2 may be provided with two or more sensing elements 22 , so that temperature sensing is achieved through one sensing element 22 , and temperature sensing is achieved through the other sensing element 22 . Implement pressure sensing.
  • the housing 1 has a matching portion 11 , and the matching portion 11 and the sleeve 23 are located on the same side in the thickness direction of the circuit substrate 21 , that is, the matching portion 11 and the sleeve 23 are both located on the side of the second surface 212 of the circuit substrate 21 .
  • the matching portion 11 has an accommodating portion 111, and the accommodating portion 111 may be a through hole structure passing through the matching portion 11. Thereby facilitating processing and manufacturing.
  • the sleeve 23 is at least partially accommodated in the accommodating portion 111 .
  • the fitting portion 11 includes a first peripheral wall portion 112 that forms the accommodating portion 111 .
  • the first peripheral wall portion 112 is hermetically connected to the outer peripheral side of the cylindrical wall 232 of the sleeve 23 . In this way, the fluid does not easily enter between the cylindrical wall 23 of the sleeve 23 and the first peripheral wall 112 of the matching portion 11 , and accordingly, does not easily flow into the inner cavity 200 on the upper portion of the circuit substrate 21 .
  • first sealing position A between the outer side of the cylindrical wall 23 of the sleeve 23 and the first peripheral wall portion 112 of the fitting portion 11 .
  • second sealing position B between the two surfaces 212 , and the inner cavity 200 of the sensor device 100 can be disconnected from the channel 231 of the sleeve 23 through the sealing of the above two key positions.
  • the tightness between the inner cavity 200 and the channel 231 is good.
  • the embodiments of the present application use the welding or bonding connection between different structural components to achieve sealing.
  • the sealing ring is less likely to appear. The problem of fatigue failure, the sealing reliability is higher.
  • the first end 233 of the cylindrical wall 231 along the axial direction of the channel 231 and the circuit substrate 21 can be sealed and fixed as an integral structure by one of soldering, laser welding, and bonding.
  • the first peripheral wall portion 112 and the outer peripheral side of the cylinder wall 232 are sealed and fixed as an integral structure by one of soldering, laser welding, bonding, and ultrasonic welding.
  • the cylinder wall 231 and the circuit substrate 21 may be sealed and fixed first. Then the assembly formed by the two is put into the casing 1, and then the sealing between the first peripheral wall portion 112 and the outer peripheral side of the cylinder wall 232 is realized, the installation operation is simpler, and the processing and manufacturing are convenient.
  • the circuit substrate 21 includes a ceramic base 24 and a metal bonding portion 25 covered on a part of the surface area of the ceramic base 24 by a copper cladding process.
  • the metal joint 25 is at least partially located on the lower surface of the ceramic base 24.
  • the base of the circuit substrate 21 can also be a common resin circuit board, but the ceramic base 24 is more resistant to high temperature and corrosion than ordinary resin circuit boards. Therefore, it is more conducive to the fluid environment of high temperature and high pressure.
  • the copper cladding process is a process in which the idle space on the circuit substrate is used as a reference plane and then filled with solid copper.
  • the copper cladding process is a relatively mature technology in the field of circuit board manufacturing, and will not be described in detail in this application.
  • the metal joints 25 can form metal pads 214 for connecting the circuit elements 213 and transmitting signals to the outside world and other circuit board structures with functions such as electrical conduction and heat conduction.
  • the material of the sleeve 23 is metal, and the cylindrical wall 232 of the sleeve 23 and the metal joint 25 are sealed and connected by soldering.
  • the soldering process has low cost and good sealing effect, and is suitable for industrial production.
  • the material of the fitting portion 11 of the housing 1 is also metal.
  • the first peripheral wall portion 112 of the fitting portion 11 and the outer peripheral side of the cylinder wall 232 are sealed and fixed by laser welding.
  • the sealing effect of laser welding is better, and laser welding is more suitable for the welding of micro parts and parts with poor accessibility.
  • laser welding has the characteristics of low heat input and small welding deformation.
  • the sensor device 100 When manufacturing the sensor device 100, all components can be assembled first, and laser welding can be used as the last processing process, that is, at the first sealing position A in FIG. 5 .
  • the sealing between the matching portion 11 and the cylinder wall 232 is achieved by laser welding, and the welding temperature is not easy to damage other components, and the welding process has little influence on the assembly deformation of other components.
  • the housing 1 includes a first shell 12 and a second shell 13 .
  • the first shell 12 includes an outer cylindrical portion 121 , the matching portion 11 and a bending portion 122 .
  • One side of the outer cylinder portion 121 in the axial direction (ie, the vertical direction in FIG. 5 ) is connected to the fitting portion 11 , and the other side is connected to the bending portion 122 .
  • the outer cylindrical portion 121 is provided around the circuit board 21 .
  • the bent portion 122 extends from the outer cylindrical portion 121 in the axial direction of the outer cylindrical portion 121 .
  • the second case 13 has a main body part 131 and an extension part 132 , and the inner cavity 200 is located between the main body part 131 and the circuit substrate 21 .
  • the extension portion 132 is located on the outer periphery of the main body portion 131 , the extension portion 132 presses against the circuit board 21 , and the bending portion 122 presses against the extension portion 132 .
  • the second shell 13 may be provided with a through hole 133, and the sensor device 100 may include a plurality of conductive members 40, and the conductive members 40 are at least partially received in the through hole 133.
  • the conductive member 40 is a metal spring.
  • the conductive member 40 includes a first end 41 , a second end 42 and an intermediate portion 43 connected between the first end 41 and the second end 42 , the first end 41 and a pad formed on the first surface 211 of the circuit substrate 21 214 , the middle portion 43 is received in the through hole 133 of the second casing 13 , and the second end 42 extends upward from the middle portion 43 beyond the second casing 13 .
  • the first end 41 of the conductive member 40 is electrically connected to the circuit substrate 21 , and the second end 42 of the conductive member 40 is used for electrical connection with the components outside the sensor device 100 , for example, the second end 42 is connected to circuits inside other valve members
  • the board is in conflict, that is, the signal sensed by the sensing element 22 can be conducted to the circuit board of the valve element, which facilitates further control of the valve element.
  • the size of the through hole 133 on the side of the second shell 13 close to the circuit substrate 21 is larger than the size of the hole on the side away from the circuit substrate 21 .
  • the through hole 133 is a tapered hole with a gradually decreasing diameter
  • the conductive member 40 is a conical spring adapted to the diameter of the through hole 133 . That is, the conductive member 40 can be a conical spring with a small top and a large bottom, and the conductive member 40 can be in a compressed state after being connected with other circuit boards, which is beneficial to improve the stability of the connection between the conductive member 40 and the external circuit board.
  • the second shell 13 can also be injection-molded by using the conductive member 40 as an injection-molding insert.
  • the first shell 12 can be made of metal material.
  • the purpose of using metal material is to facilitate the processing of flanging to form the bent portion 122, which reduces the difficulty of forming.
  • the use of metal material also facilitates the matching portion 11 of the first shell 12 and the barrel of the sleeve 23. Welding between walls 232 is secured.
  • the first housing 11 is a metal part, which can also reduce the electromagnetic interference (EMI) from the outside to the electronic components inside the sensor device 100 .
  • the second shell 13 may be made of plastic material. This contributes to cost reduction and weight reduction of the sensor device 100 .
  • the second casing 13 is an insulating member, so that the first casing 12 and the conductive member 40 can be insulated and isolated.
  • the first housing 12 may be a metal part made of aluminum or a metal part made of stainless steel, and the metal part made of aluminum is lighter in weight, so that when the sensor device 100 is used in an automobile thermal management system, it is beneficial to the overall Lightweight design of the car.
  • the metal parts made of stainless steel are slightly heavier than those made of aluminum, but the metal parts made of stainless steel have the advantage of being convenient for welding.
  • the first shell 12 made of metal can be manufactured by metal die casting (Die casting), extrusion molding, or metal injection molding (Metal Injection Molding, MIM) and other processes.
  • the second shell 13 is an insulating member made of plastic material, which can be manufactured by injection molding.
  • the second shell 12 made of insulating material insulates the conductive member 40 from the first shell 12 .
  • the specific assembly and forming process among the second shell 13 , the sensing assembly 2 and the first shell 12 is as follows: the bending portion 122 first maintains the same vertical state as the outer cylindrical portion 121 and extends in the longitudinal direction, and after the sensing assembly is placed 2. Installed into the inner space of the first shell 12, the extension portion 132 of the second shell 13 and the first edge portion of the circuit board 21 are at least partially aligned in the longitudinal direction and are assembled into the cylindrical space enclosed by the outer cylindrical portion 121 after being butted. At this time, the vertical bending portion 122 is pressed inward to form a lateral flange through the tooling. Therefore, the extending portion 132 of the second shell 13 and the circuit board 21 are clamped and positioned between the bending portion 122 and the matching portion 11 , so that the second shell 13 can be stably installed relative to the first shell 12 without falling.
  • the fitting portion 11 includes a transverse wall 113 and a longitudinal wall 114 , the transverse wall 113 extends from the outer cylindrical portion 121 in the axial direction of the vertical channel 231 , and the longitudinal wall 114 is located away from the transverse wall 113 One side of the cavity 200 and the longitudinal wall 114 extend in the axial direction of the channel 231 .
  • the matching portion 11 is provided with a groove 115 , and the notch of the groove 115 is disposed toward the circuit substrate 21 .
  • the groove wall of the groove 115 of the matching portion 11 may be formed by protruding from the lateral wall 113 toward the second surface 112 side of the circuit substrate 21 .
  • the groove wall of the matching portion 11 forming the groove 115 may also be a part of the lateral wall 113 , that is, the groove 115 is formed by concave from the lateral wall 113 toward the second surface 112 of the circuit substrate 21 . In the manner shown in FIG.
  • the matching portion 11 further includes several protruding structures protruding from the lateral wall 113 toward the second surface 112 of the circuit substrate 21 toward the circuit substrate 21 , and the second surface 112 of the circuit substrate 21 can be pressed against at the above-mentioned raised structures.
  • the sensor device 100 further includes a buffer member 5 .
  • the buffer member 5 is at least partially accommodated in the groove 115 .
  • One side of the buffer member 5 is in contact with the circuit substrate 21 , and the other side is in contact with the bottom of the groove 115 .
  • the provision of the buffer member 5 here can produce a buffer effect in the process of press-fitting the circuit substrate 21 to the mating portion 11 , thereby reducing the friction between the second surface 212 of the circuit substrate 21 and the inner wall surface of the mating portion 11 facing the second surface 212 of the circuit substrate 21 . Risk of damage to the circuit substrate 21 by hard contact.
  • a sealing ring with certain elasticity can be used for the buffer member 5 , and the sealing ring used as the buffer member 5 can also play a double sealing function, which is more conducive to enhancing the sealing performance of the sensor device 100 .
  • the sensor device 100 may not be provided with the buffer member 5 , and as shown in FIG. 10 , some stepped structures may be provided at the lateral wall 113 to support the circuit substrate 21 . Since the contact area between the circuit substrate 21 and the mating portion 11 is small, the corresponding risk of crushing damage during the assembly process is also small. Other structures are basically the same as those shown in FIG. 5 , and will not be described in detail in this application.
  • the sensing element 22 has a back-pressure chip structure, and the sensing element 22 is at least partially located on the side of the circuit substrate 21 close to the inner cavity 200 , and also That is, the sensing element 22 may be located on the side where the first surface 211 is located.
  • the circuit substrate 21 is provided with a through hole 26 , the sensing element 22 has a sensing cavity 221 , and the sensing cavity 221 is not communicated with the inner cavity 200 .
  • the through hole 26 communicates with the sensing cavity 221 of the sensing element 22 and the channel 231 .
  • the sensing element 22 is located at the other end of the through hole 26 , and the sensing cavity 221 of the sensing element 22 communicates with the through hole 26 .
  • the sensing cavity 221 of the sensing element 22 , the through hole 26 of the circuit substrate 21 , and the channel 231 of the sleeve 23 can be linearly distributed along the axis X, which is conducive to shortening the flow path of the fluid and making the product small change.
  • the sensing element 22 and the circuit substrate 21 may be bonded and fixed by a sealant 27 . That is, the bottom of the sensing element 22 and the substrate structure around the through hole 26 are sealed and bonded by the sealant 27, one side of the sensing cavity 221 is open, and the other side is not open, so the sensing cavity 221 is communicated with the through hole 26, but the sensing cavity 221 is connected with the through hole 26.
  • the measuring cavity 221 is not in communication with the inner cavity 200 .
  • the sensing element 22 may not be fixed to the circuit substrate 21 by the sealant 27 , and the sensing element 22 can be welded on the circuit substrate 21 by eutectic welding. The sealing performance is good, and it is not easy for the fluid to enter the inner cavity 200 from the through hole 26 .
  • the sensing element 22 is a back pressure type temperature and pressure chip, that is, the sensing element 22 is a back pressure type pressure and temperature sensor chip that integrates pressure and temperature at the same time, and the back pressure type sensing element includes Structures such as glass substrates and silicon wafers.
  • the sensing area can realize pressure detection through a piezoresistive Wheatstone bridge. When the circuit is connected, when no pressure acts on the thin film of the silicon wafer, the Wheatstone bridge is balanced and the output voltage is 0.
  • the temperature sensing area can realize temperature detection through the PN junction diode circuit. Using the back-pressure-type temperature-pressure-integrated sensing element 22 improves the degree of integration, which is beneficial to reduce the volume of the sensor device 100 .
  • the metal joint 25 includes a heat conducting sub-portion 251 , and the heat conducting sub-portion 251 is located on the side of the ceramic base 24 close to the sleeve 23 , and The thermally conductive sub-portion 251 is at least partially opposite to the channel 231 .
  • the thermally conductive sub-portion 251 is also a metal structure covered on the surface of the ceramic base 24 by a copper cladding process.
  • the circuit board 21 includes a second peripheral wall portion 261 forming the through hole 26 , and at least a partial area of the second peripheral wall portion 261 is made of a metal material.
  • the through hole 26 can be similar to the through hole of the circuit board or can be realized by using the circuit board through hole, which adopts the copper immersion process so that the second peripheral wall portion 261 corresponding to the through hole 26 is also made of metal material.
  • the fluid when the fluid flows in the channel 231 , compared with the sensing cavity 221 of the sensing element 22 , the fluid is more likely to contact the thermally conductive sub-portion 251 and the second peripheral wall portion 261 , and the thermally conductive sub-portion 251 and the second peripheral wall portion 261
  • the material itself is metal, with good thermal conductivity, and accordingly it is easier to transmit the temperature of the fluid to the sensing element 22 . Therefore, the detection of the temperature signal is more accurate.
  • the sensing assembly 2 includes two sensing elements 22 , and the two sensing elements 22 are a back pressure type pressure sensing element 71 and a pin respectively
  • a temperature sensing element 72 of the type, the structure of the pressure sensing element 71 of the back pressure type can refer to the back pressure sensing element 22 shown in FIG. .
  • the temperature sensing portion 721 is located on the side of the circuit substrate 21 where the sleeve 23 is provided, that is, the temperature sensing portion 721 is closer to the channel 231 than the pressure sensing element 71 . Accordingly, the temperature sensing portion 721 can be closer to the fluid to detect temperature signals.
  • the temperature sensing portion 721 may be located in the channel 231 or at least partially exposed outside the sleeve 23 .
  • the conductive pins 722 are at least partially located in the channel 231 , and the conductive pins 722 are electrically connected to the temperature sensing portion 721 and the circuit substrate 21 .
  • the circuit substrate 21 may be provided with several via holes 216 , and the conductive pins 722 may be located at least partially within the via holes 216 .
  • the conductive pins 722 may extend to the first surface 211 of the circuit substrate 21 through the holes 216 , and the conductive pins 722 are fixed at the via holes 216 by soldering.
  • the sensing assembly 2 further includes an insulating protective shell 8 , which is at least partially located in the channel 231 , and has a protective cavity 81 that accommodates at least part of the conductive pins 722 .
  • the insulating protective shell 8 is made of plastic material.
  • the insulating protective case 8 includes two lead protection cavities 81 extending along the length direction of the insulating protective case 8 (the L direction illustrated in FIG. 12 ).
  • the conductive pins 722 are at least partially located in the protective cavity 81 .
  • the conductive pins 722 of the temperature sensing element 72 penetrate through the lower end of the insulating protective case 8 and protrude from the upper end of the insulating protective case 8 and are welded to the circuit substrate 21 .
  • the upper end of the insulating protective shell 8 may be fixed on the second surface 212 of the circuit substrate 21 by means of physical structure fixing, gluing, soldering, etc., thereby enhancing the insulating protective shell 8 when it is impacted by the refrigerant stability.
  • the insulating protective shell 8 can also be directly sandwiched between the temperature sensing portion 721 and the circuit substrate 21 , so that the structure is simpler and the production process is less.
  • the lower end of the insulating protective shell 8 is adjacent to the temperature sensing portion 721 , so as to protect the conductive pins 722 to the maximum extent.
  • the design of the insulating protective case 8 reduces the risk of the conductive pins 722 of the temperature sensing unit 72 being impacted and corroded by the refrigerant, thereby improving the service life of the sensor device 100 .
  • the conductive pins 722 may also be coated with a refrigerant corrosion resistant coating, thereby further reducing the conductive pins 722 from being affected by the corrosion of the refrigerant.
  • the upper end of the insulating protective shell 8 is an integral cylindrical shape, and the lower end portion is two mutually coupled cylindrical shapes. This design can play a foolproof design and prevent the insulating protective shell 8 from being inserted in the wrong direction.
  • one side of the insulating protective shell 8 is in contact with the circuit substrate 21 , and the other side is in contact with the temperature sensing portion 721 .
  • the insulating protective case 8 may be sandwiched between the circuit board 21 and the temperature sensing portion 721 .
  • the sensing element 22 is a positive pressure temperature and pressure integrated chip, or the sensing element 22 is a positive pressure pressure chip, or the sensing element 22 is a chip NTC temperature element, and the sensing element 22 is at least partially located in the channel 231 .
  • the cylindrical wall 232 of the sleeve 23 is arranged around the sensing element 22 .
  • the sensing component 2 also includes a corrosion-resistant glue 60 filled in the channel 231 , the corrosion-resistant glue 60 is adhered to the inner peripheral side of the cylinder wall 232 , and the corrosion-resistant glue 60 covers the sensing element 22 so that the sensing element 22 is not connected to the inner peripheral side of the cylinder wall 232 . fluid in direct contact.
  • the sensing component 2 includes two sensing elements 22 , namely, a temperature sensing element 51 and a pressure sensing element 52 , and both sensing elements 22 are of a positive pressure patch type.
  • the temperature sensing element 51 is a chip NTC structure
  • the pressure sensing element 52 is a chip positive pressure MEMS structure.
  • the chip NTC structure is a chip thermistor, and the thermistor-type temperature sensor decreases in resistance as the temperature increases.
  • the size of the temperature sensing element corresponding to the chip thermistor is small, and some products are about 1.0mm ⁇ 0.5mm in size.
  • the corrosion-resistant glue 104 may be fluorine-containing flexible silicone.
  • the sensing component 2 may further include a conditioning chip 53 .
  • the conditioning chip 53 is disposed on the side where the second surface 212 of the circuit substrate 21 is located, and is also wrapped and covered by the corrosion-resistant glue 60 ,
  • the function of the conditioning chip 53 is to perform processing such as denoising, signal amplification, and signal compensation on the pressure signal or the temperature signal to improve the quality of the signal.
  • an embodiment of the present application further provides a valve assembly 300, which includes the sensor device 100 in the above-mentioned embodiment, the valve assembly 300 further includes a valve body portion 301, and the sensor device 100 is fixedly installed on the The valve body portion 301 includes a first flow channel 302 .
  • a sealing element 91 is further provided between the housing 1 of the sensor device 100 and the valve body 301 , the valve body 301 is provided with an installation cavity, and the sensor device 100 is at least partially accommodated in the valve body 301 . installed in the cavity.
  • the sealing element 91 can be compressed between the wall of the valve body portion 301 forming the mounting cavity and the transverse wall 113 of the housing 1 .
  • the sealing element 91 seals between the housing 1 and the valve body portion 301, so that the passage 231 forms a fluid-tight passage allowing fluid to flow in its axial direction.
  • the valve assembly 300 further includes a compression nut 92 .
  • the transverse wall 113 of the first housing 12 thereof is radially outwardly convex with respect to the outer cylindrical portion 121 , and at least part of the convex structure cooperates with the compression nut 92 , the compression nut 92 is annular, which is arranged on the outer peripheral side of the outer cylinder portion 121 , and the outer periphery of the compression nut 92 is screwed with the valve body portion 301 to fix the sensor device 100 and the valve body portion 301 together.
  • the valve assembly 300 provided in the embodiment of the present application may further include a fluid control assembly, and the fluid control assembly is fixed to the valve body portion 301 .
  • the fluid control component can be an electronic expansion valve, which is used for refrigerant flow control in an automobile air conditioning system to realize throttling of the refrigerant.
  • the fluid control assembly correspondingly includes structures such as a coil assembly, which will not be repeated in this application.
  • the sensor device 100 can be used as an integrated temperature and pressure sensor to detect the pressure and temperature of the refrigerant passing through the fluid control assembly.
  • the fluid control component may also be other control valves or thermal management system components, etc., which can implement corresponding control of the refrigerant in the thermal management system components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种传感器装置,包括:外壳(1)和感测组件(2);感测组件(2)包括电路基板(21)、感测元件(22)以及套筒(23);传感器装置还具有内腔(200)和通道(231);内腔(200)与通道(231)分别位于电路基板厚度方向的不同侧;套筒(23)具有筒壁(232);筒壁(232)沿通道轴向方向的末端与电路基板(21)密封连接;套筒(23)的筒壁(232)位于通道(231)的外周;外壳(1)具有配合部(11),配合部(11)具有容纳部(111);套筒(23)至少部分收容于容纳部(111);配合部(11)包括形成容纳部(111)的第一周壁部(112);第一周壁部(112)与套筒(23)的筒壁(232)外周侧密封连接;内腔(200)与通道(231)不连通。传感器装置内腔(200)与流道之间的密封性较好。还提供了一种具有传感器装置的阀组件(300)。

Description

传感器装置以及阀组件
本申请要求于2020年12月31日提交的、申请号为202011642169.9、发明创造名称为“传感器装置”的中国专利申请的优先权,该中国专利申请的全文以引用的方式并入本文中。
技术领域
本申请涉及信号感测技术领域,尤其是一种传感器装置以及阀组件。
背景技术
相关技术中的传感器通常包括底壳、上壳以及陶瓷基座。陶瓷基座开有通孔,陶瓷基座的表面通过粘接胶粘结有背压芯片。流道用于引流体到达通孔,进而到达背压芯片的背压腔内。底壳具有凹槽,凹槽内有密封圈,通过密封圈对陶瓷基座密封,目的是防止从下部上来的流体泄漏到陶瓷基座上部的内腔。然而在实际中,特别是对高温高压的流体而言,密封圈容易变形失效,流道中的流体有泄漏到内腔中的风险。
发明内容
本申请的目的在于提供一种密封性能较好的传感器装置以及阀组件。
本申请提供了一种传感器装置,其包括:外壳和感测组件;所述感测组件包括电路基板、感测元件以及套筒;所述传感器装置还具有内腔和通道;所述内腔与所述通道分别位于所述电路基板的厚度方向的不同侧;
所述套筒位于所述电路基板的厚度方向的一侧,所述套筒具有筒壁;所述筒壁沿通道轴向方向的一端与所述电路基板密封连接;所述套筒的筒壁位于所述通道的外周;所述感测元件与所述电路基板电性连接,所述感测元件能够感测所述通道内流体的压力和/或温度;
所述外壳具有配合部,所述配合部和所述套筒位于所述电路基板厚度方向的同侧;所述配合部具有容纳部;所述套筒至少部分收容于所述容纳部;所述配合部包括形成所述容纳部的第一周壁部;所述第一周壁部与所述套筒的筒壁的外周侧密封连接;所述内腔与所述通道不连通。
本申请还提供了一种阀组件,所述阀组件包括阀体部,所述阀体部具有第一流道,所述阀组件还包括前述的所述传感器装置,所述传感器装置安装于所述阀体部,所述通道与所述第一流道流体连通。
在本申请提供的传感器装置中,套筒至少部分收容于容纳部,套筒的筒壁沿通道轴向方向的末端与电路基板密封连接,筒壁的外周侧与配合部的第一周壁部密封连接,从而使得内腔与通道之间的密封性较好。
附图说明
图1是本申请传感器装置第一实施例的立体结构示意图;
图2是如图1所示传感器装置另一角度的立体结构示意图;
图3是如图1所示传感器装置的分解示意图;
图4是如图1所示传感器装置的另一角度分解示意图;
图5是如图1所示传感器装置的剖视示意图;
图6是如图1所示传感器装置的又一角度的立体剖视示意图;
图7是如图1中感测组件的一种实施方式对应的立体结构示意图;
图8是如图7所示感测组件的分解示意图;
图9是如图1中感测组件的另一种实施方式对应的立体剖视示意图;
图10是本申请传感器装置第二实施例的立体剖视示意图;
图11是本申请传感器装置第三实施例的立体剖视示意图;
图12是如图11所示传感器装置部分结构件分解示意图;
图13是本申请传感器装置第四实施例的分解示意图;
图14是如图13所述传感器装置的剖视示意图;
图15是如图13中感测组件的一种实施方式对应的立体结构示意图;
图16是本申请阀组件的一种实施方式对应的立体结构示意图;
图17是如图16所示的阀组件的剖视示意图。
具体实施方式
下面将结合附图详细地对本申请示例性具体实施方式进行说明。如果存在若干具体实施方式,在不冲突的情况下,这些实施方式中的特征可以相互组合。当描述涉及附图时,除非另有说明,不同附图中相同的数字表示相同或相似的要素。以下示例性具体实施方式中所描述的内容并不代表与本申请相一致的所有实施方式;相反,它们仅是与本申请的权利要求书中所记载的、与本申请的一些方面相一致的装置、产品和/或方法的例子。
在本申请中使用的术语是仅仅出于描述具体实施方式的目的,而非旨在限制本申请的保护范围。在本申请的说明书和权利要求书中所使用的单数形式的“一种”、“所述”或“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本申请的说明书以及权利要求书中所使用的,例如“第一”、“第二”以及类似的词语, 并不表示任何顺序、数量或者重要性,而只是用来区分特征的命名。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。除非另行指出,本申请中出现的“前”、“后”、“左”、“右”、“上”、“下”等类似词语只是为了便于说明,而并非限于某一特定位置或者一种空间定向。“包括”或者“包含”等类似词语是一种开放式的表述方式,意指出现在“包括”或者“包含”前面的元件涵盖出现在“包括”或者“包含”后面的元件及其等同物,这并不排除出现在“包括”或者“包含”前面的元件还可以包含其他元件。本申请中如果出现“若干”,其含义是指两个以及两个以上。
如图1至图15所示,本申请提供了一种传感器装置100,该传感器装置100包括外壳1和感测组件2。至少部分感测组件2收容于外壳1内。传感器装置100还具有内腔200和通道231。
感测组件2包括电路基板21、至少一个感测元件22以及套筒23。内腔200与通道231分别位于电路基板21的厚度方向的不同侧。电路基板21包括第一表面211、第二表面212和侧面215,第一表面211和第二表面212分别位于电路基板21的厚度方向的不同侧,侧面215位于第一表面211和第二表面212之间。第一表面211可以为图7中所示意的电路基板21的上侧表面,第二表面212可以为图7中所示意的电路基板21的下侧表面。内腔200位于电路基板21的第一表面211所在侧,通道231位于电路基板21的第二表面212所在侧。在第一表面211处可以设有若干电路元件213,也即该若干电路元件213多分布于内腔200中。电路元件213可以为电阻、电容、电感、调理芯片、处理芯片等常见的电路元器件。电路基板21的第一表面211还可以设有若干用于供电路元件213焊接以及用于向外界传输电信号的焊盘214。在相关技术中如汽车空调应用场景中,传感器装置100可以用来检测汽车空调***中冷媒的温度和/或压力。而由于汽车空调压力较大,其冷媒的压力一般要达到500Psi,因此在较大的压力下要保证传感器组件内部空间的密封性则较为重要,特别需要注意保证电路元件尽可能避免接触到流体(例如冷媒)。相应的,为了保证电路元件213的正常工作,内腔200与供流体流动的通道231不相连通。这样有利于整个传感器装置100保证较好的密封性。
套筒23位于电路基板21厚度方向的一侧,套筒23具有筒壁232,筒壁232位于通道231***,在一些实施方式中,套筒23即为中空的筒状结构,套筒23的中空区域形成通道231。当然在其他实施方式中,通道231也可以是位于套筒23内的其他元件所形成的。
套筒23的筒壁232沿通道231轴向方向具有两个末端,即第一末端233、第二末端234和位于第一末端233和第二末端234之间的中间段235。第一末端233即为图10中的筒壁232的上侧末端,第二末端234即为图10中的筒壁232的下侧末端。第一末端233与电路基板21密封连接。这样,流体在通道231内流动时,流体不容易从筒壁232的第一末端233与电路基板21密封连接的位置处泄漏出去,也即不容易从通道231内泄漏到内腔200。
感测元件22与电路基板21电性连接。感测元件22能够感测通道231内流体的压力和/或温度。也就是说,感测元件22能够同时集成温度感测和压力感测的功能,感测组件2可以只具有一个感测元件22就能实现温度信号和压力信号的感测。当然,感测元件22也可以只用于感测温度,或者只用于感测压力。当传感器装置100有温度压力感测的需求时,感测组件2可以设有两个或者更多的感测元件22,使得通过一个感测元件22实现温度感测,通过另一个感测元件22实现压力感测。
外壳1具有配合部11,配合部11和套筒23位于电路基板21厚度方向的同侧,即配合部11和套筒23均位于电路基板21的第二表面212所在侧。配合部11具有容纳部111,容纳部111可以 是贯穿配合部11的通孔结构。从而方便加工和制造。
套筒23至少部分收容于容纳部111。配合部11包括形成容纳部111的第一周壁部112。第一周壁部112与套筒23的筒壁232外周侧密封连接。这样,流体不容易进入套筒23的筒壁23和配合部11的第一周壁部112之间,相应的,也不容易流动到电路基板21上部的内腔200中。
参考图5中所示,套筒23的筒壁23的外侧和配合部11的第一周壁部112之间具有第一密封位置A,筒壁232的第一末端233与电路基板21的第二表面212之间具有第二密封位置B,通过上述两个关键位置的密封,可以使得传感器装置100的内腔200与套筒23的通道231不连通。内腔200与通道231之间的密封性较好。与相关技术采用密封圈实现密封的方案相比,本申请的实施方式采用不同结构件之间的焊接或粘接的连接关系实现密封,相比采用密封圈弹性密封的方式,不容易出现密封圈疲劳失效的问题,密封可靠性更高。
在一些实施方式中,筒壁231沿通道231轴向方向的第一末端233与电路基板21可以通过锡焊、激光焊接、粘接中的一种方式密封固定为一体结构。第一周壁部112与筒壁232的外周侧通过锡焊、激光焊接、粘接、超声波焊接中的一种方式密封固定为一体结构。在实际加工制作时,可以先将筒壁231与电路基板21之间实现密封固定。然后将二者形成的组件装入外壳1内,然后实现第一周壁部112与筒壁232的外周侧之间的密封,安装操作更简单,方便加工和制造。
在一些实施方式中,电路基板21包括陶瓷基体24和通过覆铜工艺覆设于陶瓷基体24部分表面区域的金属结合部25。金属结合部25至少部分位于陶瓷基体24的下侧表面,电路基板21的基体当然也可以选择常见的树脂类电路板板材,但陶瓷基体24相比普通的树脂电路板更耐高温和抗腐蚀,因此更有利于高温高压的流体环境。覆铜工艺即为将电路基板上闲置的空间作为基准面,然后用固体铜填充的工艺,覆铜工艺为电路板制造领域较为成熟的技术,本申请不作过多赘述。金属结合部25可以形成供电路元件213连接以及向外界传输信号的金属焊盘214和其他具有导电、导热等作用的电路板结构。
套筒23的材质为金属,套筒23的筒壁232与金属结合部25之间通过锡焊密封连接,锡焊工艺成本较低且密封效果较好,适于工业化生产。外壳1的配合部11的材质也为金属,相应的,配合部11的第一周壁部112与筒壁232的外周侧通过激光焊接的方式密封固定。激光焊接密封效果较好,且激光焊更适合于微型零件和可达性很差的部位的焊接。且激光焊还有热输入低,焊接变形小等特点,在加工制造传感器装置100时,所有部件可以先组装完毕,激光焊可以作为最后一道加工工序,即在图5中第一密封位置A处通过激光焊实现配合部11与筒壁232之间的密封,且焊接温度不容易破坏其他组件,且该焊接工序对其他组件组装变形的影响较小。
在一些实施方式中,如图5所示,外壳1包括第一壳12和第二壳13。第一壳12包括外筒部121、所述配合部11以及折弯部122。外筒部121的轴向方向(即为图5中的竖直方向)的一侧与配合部11连接,另一侧和折弯部122连接。外筒部121围绕电路基板21设置。折弯部122自外筒部121向外筒部121轴心线方向延伸。
第二壳13具有主体部131和延伸部132,内腔200位于主体部131与电路基板21之间。延伸部132位于主体部131的外周,延伸部132抵压电路基板21,折弯部122抵压延伸部132。
第二壳13可以设有通孔133,传感器装置100可以包括若干导电件40,导电件40至少部分收 容于通孔133之内。如图3至图4所示,导电件40为金属弹簧。导电件40包括第一端41、第二端42及连接于第一端41和第二端42之间的中间部43,第一端41与电路基板21的第一表面211上形成的焊盘214抵触,中间部43收容于第二壳体13的通孔133内,第二端42自中间部43向上延伸超出第二壳体13。导电件40的第一端41与电路基板21电性连接,导电件40的第二端42用于与传感器装置100外部的元件电性连接,例如,第二端42与其他阀件内部的电路板抵触,即可以将感测元件22感测的信号传导至阀件的电路板,方便了阀件的进一步控制。通孔133位于第二壳13靠近电路基板21一侧的孔口尺寸大于远离电路基板21一侧的孔口尺寸。一些实施方式中,在沿通孔133的轴向远离电路基板21的方向上,通孔133为孔径逐渐缩小的锥形孔,导电件40为与通孔133的孔径适配的锥形弹簧。即导电件40可以为上小下大的锥形弹簧,导电件40在与其他电路板连接后可以处以压缩状态,这样有利于提高导电件40与外部电路板连接的稳定性。当然,第二壳13也可以以导电件40为注塑嵌件注塑成型。
第一壳12可以为金属材质制造,采用金属材料的目的是便于加工翻边形成折弯部122,降低成型难度,同时采用金属材质也便于第一壳12的配合部11与套筒23的筒壁232之间的焊接固定。第一壳体11为金属件也可以降低外界对传感器装置100内部电子元件的电磁干扰(EMI)。第二壳13可以是塑料材质。这样有利于降低成本且减轻传感器装置100的重量。第二壳13为绝缘件,从而可以将第一壳体12和导电件40之间绝缘隔离。
一些实施方式中,第一壳体12可以为铝材质的金属件或者不锈钢材质的金属件,铝材质的金属件质量较轻,从而在传感器装置100用于汽车热管理***中时,有利于整车轻量化设计。不锈钢材质的金属件相对铝材质的金属质量略重,但是不锈钢材质的金属件具有方便焊接的优势。金属材质的第一壳体12可以通过金属压铸成型(Die casting)或者挤压成型或者金属粉末射出成形(Metal Injection Molding,MIM)等工艺制造而成。第二壳13为塑料材质的绝缘件,可以通过注塑成型的工艺制造而成,绝缘材质的第二壳体12将导电件40和第一壳体12绝缘开。
第二壳13、感测组件2和第一壳12之间的具体组装及成型过程为:折弯部122先是与外筒部121保持同样的竖直状态在纵向上延伸,在将感测组件2装入第一壳12的内部空间,第二壳13的延伸部132和电路基板21的第边缘部分在纵向上至少部分对齐且对接后装入外筒部121围成的筒状空间内,这时候再通过工装把竖直的折弯部122向内压成呈横向的翻边。因此,第二壳13的延伸部132和电路基板21共同夹持定位于折弯部122与配合部11之间,故而第二壳13能够相对于第一壳12安装稳定不掉落。
在一些实施方式中,如图5所示,配合部11包括横向壁113和纵向壁114,横向壁113自外筒部121沿垂直通道231轴向方向延伸,纵向壁114位于横向壁113远离内腔200的一侧且纵向壁114沿通道231的轴向方向延伸。
参考图5所示,配合部11设有凹槽115,凹槽115的槽口朝向电路基板21设置。配合部11形成凹槽115的槽壁可以是自横向壁113朝向电路基板21的第二表面112侧凸伸而形成。当然配合部11形成凹槽115的槽壁也可以是横向壁113的一部分即凹槽115是自横向壁113朝向电路基板21的第二表面112下凹而形成的。在图5所示意的方式中,配合部11还包括自横向壁113朝向电路基板21的第二表面112向电路基板21凸伸的若干凸起结构,电路基板21的第二表面112可以抵压在 上述凸起结构处。传感器装置100还包括缓冲件5,缓冲件5至少部分收容于凹槽115,缓冲件5一侧与电路基板21接触,另一侧与凹槽115的槽底接触。这里设置缓冲件5可以对电路基板21压装到配合部11的过程产生缓冲作用,从而降低电路基板21的第二表面212与配合部11朝向电路基板21第二表面212的内壁面之间的硬接触损坏电路基板21的风险。图5所示实施例中,缓冲件5可以采用具有一定弹性的密封圈,采用的密封圈作为缓冲件5也能起到双重密封的作用,从而更有利于增强了传感器装置100的密封性。
当然,传感器装置100也可以不设置缓冲件5,可以参考图10所示,在横向壁113处可以设置一些台阶结构去支撑电路基板21。由于电路基板21与配合部11的接触面积较小,相应的在装配过程中挤压损坏风险也较小。其他结构与图5中结构基本一致,本申请不再过多赘述。
如图5至图10所示,在本申请提供的一些实施方式中,感测元件22具有背压式的芯片结构,感测元件22至少部分位于电路基板21靠近内腔200的一侧,也就是感测元件22可以位于第一表面211所在侧。电路基板21设有贯通孔26,感测元件22具有感测腔221,感测腔221与内腔200不连通。贯通孔26连通感测元件22的感测腔221与通道231。也就是说,贯通孔26一端与通道231连通,感测元件22位于贯通孔26的另一端,感测元件22的感测腔221与贯通孔26连通。参考图8所述,感测元件22的感测腔221、电路基板21的贯通孔26以及套筒23的通道231可以沿轴线X直线分布,这样有利于缩短流体的流动路径,以及利于产品小型化。
参考图9所示,感测元件22与电路基板21之间可以通过密封胶27粘接固定。即感测元件22的底部与贯通孔26周围的基板结构通过密封胶27密封粘接,感测腔221一侧开口,另一侧不开口,从而感测腔221与贯通孔26连通,但是感测腔221与内腔200不连通。当然,感测元件22也可以不通过密封胶27与电路基板21固定,感测元件22可以选择共晶焊的方式焊接于电路基板21上,这种焊接方式使得感测元件22对贯通孔26的密封性较好,流体不容易从贯通孔26进入到内腔200中。
在本申请的一种实施方式中,感测元件22为背压式温度压力芯片,即感测元件22为同时集成压力和温度的背压式压力温度传感器芯片,背压式的感测元件包含玻璃衬底和硅晶圆等结构。流体从感测元件22的底部小孔进入感测腔221,背压式的感测元件22的正面不接触流体,在硅晶圆形成感测腔221的表面可以通过MEMS(Micro Electromechanical System,微机电***)技术制备形成感压区域和感温区域,MEMS技术制备的芯片尺寸较小,相应的产品尺寸一般都在毫米级,甚至更小。感应区域可以通过压阻式的惠斯通电桥实现压力检测,在接入电路时,当没有压力作用在硅晶元的薄膜上,惠斯通电桥平衡,输出电压为0。当有压力作用在硅晶元的薄膜上,惠斯通电桥平衡被打破,有电压输出。因此,通过检测电路***号的变化可以反映压力的变化,从而实现压力检测功能。感温区域可以通过PN结二极管电路实现温度检测。使用背压式的温度压力集成的感测元件22提高了集成度,有利于减小传感器装置100的体积。
为了更好的传递流体热量,减小温差对温度检测的影响,参考图9所示,金属结合部25包括导热子部251,导热子部251位于陶瓷基体24靠近套筒23的一侧,且导热子部251与通道231至少部分区域相对。导热子部251也是通过覆铜工艺覆设在陶瓷基体24表面的金属结构。和/或,电路基板21包括形成贯通孔26的第二周壁部261,第二周壁部261的至少部分区域为金属材质。贯通孔 26可以类似于电路板的过孔或就是采用电路板过孔实现,其采用沉铜工艺使得贯通孔26对应的第二周壁部261也为金属材质。
这样,当流体在通道231内流动,相比感测元件22的感测腔221而言,流体更容易接触到导热子部251和第二周壁部261,导热子部251和第二周壁部261本身材质均为金属,导热性较好,相应的更容易将流体的温度传递给感测元件22。从而使得温度信号的检测更为准确。
如图11所示,在本申请的另一种实施方式中,感测组件2包括两个感测元件22,该两个感测元件22分别为背压式的压力感测元件71和引脚式的温度感测元件72,背压式的压力感测元件71的结构可以参考图5中背压式的感测元件22所示,温度感测元件72包括感温部721和导电引脚722。感温部721位于电路基板21设有套筒23的一侧,即感温部721相比压力感测元件71更靠近通道231,相应的,感温部721能够更接近流体以检测温度信号。感温部721可以位于通道231或者至少部分露出套筒23之外。导电引脚722至少部分位于通道231内,导电引脚722电性连接感温部721与电路基板21。在实际中,电路基板21可以设置有若干过孔216,导电引脚722可以至少部分位于过孔216内。可选的,导电引脚722可以经过孔216延伸至电路基板21的第一表面211处,并在过孔216处通过焊锡对导电引脚722进行固定。
在一些实施方式中,感测组件2还包括绝缘保护壳8,绝缘保护壳8至少部分位于通道231,绝缘保护壳8具有收容至少部分导电引脚722的保护腔81。
可选地,绝缘保护壳8为塑料材质制成。如图12所示,绝缘保护壳8包括沿绝缘保护壳8的长度方向(图12中示意的L方向)延伸的两个引脚保护腔81。导电引脚722至少部分位于保护腔81。例如,温度感测元件72的导电引脚722从绝缘保护壳8的下端部穿入,以及从绝缘保护壳8的上端部穿出并焊接至电路基板21。在一些实施方式中,绝缘保护壳8的上端部可以通过物理结构固定、胶粘、锡焊等方式固定在电路基板21的第二表面212,从而增强了绝缘保护壳8在受到制冷剂冲击时候的稳定性。绝缘保护壳8也可以直接夹设于感温部721与电路基板21之间,从而结构更加简单,生产工艺更少。绝缘保护壳8的下端部紧邻感温部721,从而最大限度地保护导电引脚722。绝缘保护壳8的设计,降低了温度感测单元72的导电引脚722受到制冷剂冲击和腐蚀的风险,从而提高了传感器装置100的使用寿命。导电引脚722也可以涂上耐制冷剂腐蚀的涂层,从而进一步降低导电引脚722受到制冷剂的腐蚀的影响。在图12中,绝缘保护壳8的上端部呈一整体圆柱状,下端部呈两个相互耦合的圆柱状,这样的设计可以起到防呆设计,预防绝缘保护壳8***错方向。可选的,绝缘保护壳8一侧与电路基板21接触,另一侧与感温部721接触。绝缘保护壳8可以夹设于电路基板21与感温部721之间。
参考图13至图15所示,在本申请的另一种实施方式中,感测元件22为正压式温度压力集成芯片,或者感测元件22为正压式的压力芯片,或者感测元件22为贴片式NTC温度元件,感测元件22至少部分位于通道231。套筒23的筒壁232环绕感测元件22设置。
感测组件2还包括填充于通道231的耐腐蚀胶60,耐腐蚀胶60与筒壁232的内周侧相粘附,耐腐蚀胶60包覆感测元件22以使得感测元件22不与流体直接接触。
在本实施方式中,如图15所示,感测组件2包括两个感测元件22,即温度感测元件51和压力感测元件52,两个感测元件22均采用正压贴片式结构,温度感测元件51为贴片式NTC结构,压 力感测元件52为贴片式正压MEMS结构。贴片式NTC结构为贴片式热敏电阻,热敏电阻型温度传感器随温度增大而电阻减小。贴片式热敏电阻对应的温度感测元件尺寸较小,一些产品约为1.0mm×0.5mm的大小。通过采用耐腐蚀胶60对贴片式温度感测元件51和贴片式压力感测元件52进行包裹,有利于保护度感测元件51和压力感测元件52免受制冷剂的腐蚀、冲击等影响。可选地,耐腐蚀胶104可以是含氟柔性硅胶。
参考图15所示,在一些实施方式中,感测组件2还可以包括调理芯片53,调理芯片53设置在电路基板21的第二表面212所在侧,且其也被耐腐蚀胶60包裹覆盖,调理芯片53的作用在于对压力信号或者温度信号进行去噪、信号放大、信号补偿等处理,改善信号的质量。
参考图16和图17所示,本申请的实施方式还提供了一种阀组件300,其包括上述实施方式中的传感器装置100,阀组件300还包括阀体部301,传感器装置100固定安装于阀体部301,阀体部301包括第一流道302。
在图17示意的剖面结构中,传感器装置100的外壳1和阀体部301之间还设有一密封元件91,阀体部301设有安装腔,传感器装置100至少部分收容于阀体部301的安装腔内。密封元件91可以被压紧于阀体部301形成安装腔的壁部与外壳1的横向壁113之间。通过密封元件91将外壳1和阀体部301之间密封住,这样,通道231就形成一个允许流体沿其轴向流动的液密通道。
阀组件300还包括压紧螺母92,对于传感器装置100而言,其第一壳12的横向壁113相对于外筒部121径向外凸,该外凸结构的至少部分与压紧螺母92配合,压紧螺母92呈环形,其设于外筒部121的外周侧,压紧螺母92的外周与阀体部301螺纹连接,以将传感器装置100和阀体部301固定在一起。
在本申请实施方式提供的阀组件300还可以包括流体控制组件,流体控制组件与阀体部301固定。流体控制组件可以是电子膨胀阀,用于汽车空调***中的制冷剂流量控制,实现对制冷剂的节流。流体控制组件相应的包括线圈组件等结构,对此本申请不再过多赘述。传感器装置100作为温度压力一体式的传感器,可以用于检测经过流体控制组件内的制冷剂的压力和温度。当然,流体控制组件也可能是其他控制阀或热管理***部件等,可以实现对热管理***部件内制冷剂进行相应的控制。
以上实施例仅用于说明本申请而并非限制本申请所描述的技术方案,对本说明书的理解应该以所属技术领域的技术人员为基础,例如对“前”、“后”、“左”、“右”、“上”、“下”等方向性的描述,尽管本说明书参照上述的实施例对本申请已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本申请进行修改或者等同替换,而一切不脱离本申请的精神和范围的技术方案及其改进,均应涵盖在本申请的权利要求范围内。

Claims (16)

  1. 一种传感器装置,其特征在于,包括:外壳(1)和感测组件(2);所述感测组件(2)包括电路基板(21)、感测元件(22)以及套筒(23);所述传感器装置(100)还具有内腔(200)和通道(231);所述内腔(200)与所述通道(231)分别位于所述电路基板(21)的厚度方向的不同侧;
    所述套筒(23)位于所述电路基板(21)的厚度方向的一侧,所述套筒(23)具有筒壁(232);所述筒壁(232)沿所述通道(231)的轴向方向的一端与所述电路基板(21)密封连接;所述套筒(23)的筒壁(232)位于所述通道(231)的外周;所述感测元件(22)与所述电路基板(21)电性连接,所述感测元件(22)能够感测所述通道(231)内流体的压力和/或温度;
    所述外壳(1)具有配合部(11),所述配合部(11)和所述套筒(23)位于所述电路基板(21)的厚度方向的同侧;所述配合部(11)具有容纳部(111);所述套筒(23)至少部分收容于所述容纳部(111);所述配合部(11)包括形成所述容纳部(111)的第一周壁部(112);所述第一周壁部(112)与所述套筒(23)的筒壁(232)的外周侧密封连接;所述内腔(200)与所述通道(231)不连通。
  2. 根据权利要求1所述的传感器装置,其中所述筒壁(232)沿所述通道(231)的轴向方向的末端与所述电路基板(21)通过锡焊或激光焊接的方式密封固定为一体;所述第一周壁部(112)与所述筒壁(232)的外周侧通过锡焊、激光焊接、粘接、超声波焊接中的一种方式密封固定为一体。
  3. 根据权利要求1所述的传感器装置,其中所述电路基板(21)包括陶瓷基体(24)和通过覆铜工艺覆设于所述陶瓷基体(24)的部分表面区域的金属结合部(25);所述套筒(23)的材质为金属;所述筒壁(232)与所述金属结合部(25)之间通过锡焊密封连接;所述配合部(11)的材质为金属,所述第一周壁部(112)与所述筒壁(232)的外周侧通过激光焊接的方式密封固定。
  4. 根据权利要求2所述的传感器装置,其中所述外壳(1)包括第一壳(12)和第二壳(13);所述第一壳(12)包括外筒部(121)、所述配合部(11)以及折弯部(122);所述外筒部(121)的轴向方向的一侧与所述配合部(11)连接,所述外筒部(121)的轴向方向的另一侧和所述折弯部(122)连接;所述外筒部(121)围绕所述电路基板(21)设置;所述折弯部(122)自所述外筒部(121)向所述外筒部(121)的轴心线方向延伸;
    所述第二壳(13)具有主体部(131)和延伸部(132);所述内腔(200)位于所述主体部(131)与所述电路基板(21)之间;所述延伸部(132)位于所述主体部(131)的外周;所述延伸部(132)抵压所述电路基板(21),所述折弯部(122)抵压所述延伸部(132)。
  5. 根据权利要求4所述的传感器装置,其中所述配合部(11)包括横向壁(113)和纵向壁(114),所述横向壁(113)自所述外筒部(121)沿垂直所述通道(231)的轴向方向延伸,所述纵向壁(114)位于所述横向壁(113)远离所述内腔(200)的一侧且沿所述通道(231)的轴向方向延伸;
    所述配合部(11)设有凹槽(115),所述凹槽(115)的槽口朝向所述电路基板(21);
    所述传感器装置(100)还包括缓冲件(5),所述缓冲件(5)至少部分收容于所述凹槽(115),所述缓冲件(5)的一侧与所述电路基板(21)接触,所述缓冲件(5)的另一侧与所述凹槽(115)的槽底接触。
  6. 根据权利要求3所述的传感器装置,其中所述感测元件(22)位于所述电路基板(21)靠近所述内腔(200)的一侧;所述电路基板(21)设有贯通孔(26);所述感测元件(22)具有感测腔(221);所述感测腔(221)与所述内腔(200)不连通;所述贯通孔(26)连通所述感测元件(22)的感测腔(221)与所述通道(231)。
  7. 根据权利要求6所述的传感器装置,其中所述金属结合部(25)包括导热子部(251),所述导热子部(251)位于所述电路基板(21)靠近所述套筒(23)的一侧,且所述导热子部(251)与所述通道(231)至少部分区域相对;
    和/或,所述电路基板(21)包括形成所述贯通孔(26)的第二周壁部(261),所述第二周壁部(261)的至少部分区域为金属材质。
  8. 根据权利要求2所述的传感器装置,其中所述感测元件(22)位于所述通道(231)内;所述套筒(23)的筒壁(232)环绕所述感测元件(22)设置;
    所述感测组件(2)还包括填充于所述通道(231)的耐腐蚀胶(60),所述耐腐蚀胶(60)与所述筒壁(232)的内周侧相粘附;所述耐腐蚀胶(60)包覆所述感测元件(22)以使得所述感测元件(22)不与所述流体直接接触。
  9. 根据权利要求2或3所述的传感器装置,其中所述感测元件(22)包括温度感测元件(72);所述温度感测元件(72)包括感温部(721)和导电引脚(722);所述感温部(721)位于所述电路基板(21)靠近所述套筒(23)的一侧;所述导电引脚(722)至少部分位于所述通道(231)中;所述导电引脚(722)电性连接所述感温部(721)与所述电路基板(21)。
  10. 根据权利要求9所述的传感器装置,其中所述感测组件(2)还包括绝缘保护壳(8),所述绝缘保护壳(8)位于所述通道(231)中;所述绝缘保护壳(8)具有收容至少部分所述导电引脚(722)的保护腔(81);所述绝缘保护壳(8)的一侧与所述电路基板(21)接触,所述绝缘保护壳(8)的另一侧与所述感温部(721)接触;所述绝缘保护壳(8)夹设于所述电路基板(21)与所述感温部(721)之间。
  11. 根据权利要求9所述的传感器装置,其中所述感测元件(22)还包括背压式的压力感测元件(71),所述感温部(721)相比所述压力感测元件(71)更靠近所述通道(231)。
  12. 根据权利要求4所述的传感器装置,其中所述第二壳(13)设有通孔(133),所述传感器装置(100)包括导电件(40),所述导电件(40)包括第一端(41)、第二端(42)以及连接于 所述第一端(41)和所述第二端(42)之间的中间部(43),所述第一端(41)与所述电路基板(21)电性连接,所述中间部(43)收容于所述第二壳体(13)的通孔(133)内,所述第二端(42)自所述中间部(43)向上延伸超出所述第二壳体(13)。
  13. 根据权利要求12所述的传感器装置,其中所述导电件(40)为金属弹簧,所述第一端(41)的外径大于所述第二端(42)的外径;所述电路基板(21)包括焊盘(214),所述第一端(41)与所述焊盘(214)抵触,所述第二端(42)用以与外部元件电性连接。
  14. 根据权利要求1所述的传感器装置,其中所述感测元件(22)为正压式温度压力集成芯片、正压式的压力芯片以及贴片式NTC温度元件中的至少一种,所述套筒(23)的筒壁(232)环绕所述感测元件(22)设置。
  15. 一种阀组件(300),包括阀体部(301),所述阀体部(301)具有第一流道(302),其特征在于,所述阀组件(300)还包括安装于所述阀体部(301)的传感器装置(100),所述传感器装置(100)为权利要求1至14项中任意一项所述的传感器装置(100),所述通道(231)与所述第一流道(302)流体连通。
  16. 根据权利要求15所述的阀组件(300),其中所述阀组件(300)还包括压紧螺母(92),所述压紧螺母(92)的外周与所述阀体部(301)螺纹连接,所述压紧螺母(92)抵压所述传感器装置(100)的外壳(1),以将所述传感器装置(100)固定于所述阀体部(301)。
PCT/CN2021/135068 2020-12-31 2021-12-02 传感器装置以及阀组件 WO2022142994A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/217,509 US20230345657A1 (en) 2020-12-31 2023-06-30 Sensor device and valve assembly with improved sealing features

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011642169.9A CN114764039A (zh) 2020-12-31 2020-12-31 传感器装置
CN202011642169.9 2020-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/217,509 Continuation-In-Part US20230345657A1 (en) 2020-12-31 2023-06-30 Sensor device and valve assembly with improved sealing features

Publications (1)

Publication Number Publication Date
WO2022142994A1 true WO2022142994A1 (zh) 2022-07-07

Family

ID=82259028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135068 WO2022142994A1 (zh) 2020-12-31 2021-12-02 传感器装置以及阀组件

Country Status (3)

Country Link
US (1) US20230345657A1 (zh)
CN (1) CN114764039A (zh)
WO (1) WO2022142994A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116818156A (zh) * 2023-08-30 2023-09-29 河北美泰电子科技有限公司 Mems汽车压力传感器
WO2024124768A1 (zh) * 2022-12-13 2024-06-20 武汉飞恩微电子有限公司 一种压力测量组件及压力传感器
WO2024124767A1 (zh) * 2022-12-13 2024-06-20 武汉飞恩微电子有限公司 压力传感器
WO2024124766A1 (zh) * 2022-12-13 2024-06-20 武汉飞恩微电子有限公司 一种压力传感器信号处理组件及压力传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111198A (ja) * 1996-10-09 1998-04-28 Fuji Koki:Kk 圧力センサ
CN1453566A (zh) * 2002-04-24 2003-11-05 株式会社电装 具有耐蚀膜片的压力传感器
CN103728093A (zh) * 2012-10-11 2014-04-16 大陆汽车***公司 具有对抗安装应力的稳健性的压力传感器
CN110735958A (zh) * 2018-07-20 2020-01-31 杭州三花研究院有限公司 一种电子膨胀阀以及热管理组件
CN111503277A (zh) * 2019-01-31 2020-08-07 杭州三花研究院有限公司 阀组件及其制造方法
CN214066405U (zh) * 2020-12-31 2021-08-27 杭州三花研究院有限公司 传感器装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111198A (ja) * 1996-10-09 1998-04-28 Fuji Koki:Kk 圧力センサ
CN1453566A (zh) * 2002-04-24 2003-11-05 株式会社电装 具有耐蚀膜片的压力传感器
CN103728093A (zh) * 2012-10-11 2014-04-16 大陆汽车***公司 具有对抗安装应力的稳健性的压力传感器
CN110735958A (zh) * 2018-07-20 2020-01-31 杭州三花研究院有限公司 一种电子膨胀阀以及热管理组件
CN111503277A (zh) * 2019-01-31 2020-08-07 杭州三花研究院有限公司 阀组件及其制造方法
CN214066405U (zh) * 2020-12-31 2021-08-27 杭州三花研究院有限公司 传感器装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124768A1 (zh) * 2022-12-13 2024-06-20 武汉飞恩微电子有限公司 一种压力测量组件及压力传感器
WO2024124767A1 (zh) * 2022-12-13 2024-06-20 武汉飞恩微电子有限公司 压力传感器
WO2024124766A1 (zh) * 2022-12-13 2024-06-20 武汉飞恩微电子有限公司 一种压力传感器信号处理组件及压力传感器
CN116818156A (zh) * 2023-08-30 2023-09-29 河北美泰电子科技有限公司 Mems汽车压力传感器

Also Published As

Publication number Publication date
CN114764039A (zh) 2022-07-19
US20230345657A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2022142994A1 (zh) 传感器装置以及阀组件
JP5127140B2 (ja) 圧力・温度共用トランスデューサー
KR100968055B1 (ko) 압력 센서 모듈
US7555957B2 (en) Pressure sensor equipped with pressure sensing diaphragm
CN115096377B (zh) 一种温度压力传感器及其感温组件的组装工艺
US20240044734A1 (en) Sensor assembly and valve device
CN212377399U (zh) 传感器装置和阀组件
WO2022142738A1 (zh) 传感器、阀装置以及热管理***
CN216954627U (zh) 一种快速感温方形电容式温度压力传感器
WO2022105451A1 (zh) 传感器组件和阀装置
CN214066405U (zh) 传感器装置
US11067463B2 (en) Pressure meter for fluid circuits
CN215296319U (zh) 传感器
CN214308873U (zh) 传感器
CN113108831A (zh) 传感器
CN215296282U (zh) 传感器
CN115683204A (zh) 传感器
CN113108823A (zh) 传感器及阀装置
KR102105704B1 (ko) 근접센서 이용한 압력 및 온도 복합센서
CN113108829A (zh) 传感器组件
CN115683199A (zh) 传感器
CN214308885U (zh) 传感器
CN113266964A (zh) 阀组件和传感器
WO2022228361A1 (zh) 阀组件和传感器
CN114427886A (zh) 一种快速感温方形电容式温度压力传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24-11-2023)