WO2022142974A1 - 一种电机的转子及电机 - Google Patents

一种电机的转子及电机 Download PDF

Info

Publication number
WO2022142974A1
WO2022142974A1 PCT/CN2021/134657 CN2021134657W WO2022142974A1 WO 2022142974 A1 WO2022142974 A1 WO 2022142974A1 CN 2021134657 W CN2021134657 W CN 2021134657W WO 2022142974 A1 WO2022142974 A1 WO 2022142974A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminations
rotor
holes
air duct
air
Prior art date
Application number
PCT/CN2021/134657
Other languages
English (en)
French (fr)
Inventor
陈亮
Original Assignee
广东美的制冷设备有限公司
美的集团(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011634178.3A external-priority patent/CN114696494A/zh
Priority claimed from CN202023352344.9U external-priority patent/CN214958948U/zh
Application filed by 广东美的制冷设备有限公司, 美的集团(上海)有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2022142974A1 publication Critical patent/WO2022142974A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the invention relates to the technical field of electric motors, in particular to a rotor of an electric motor and an electric motor.
  • the motor As a driving device, the motor has been widely used in various electric equipment such as robots, home appliances, and industries.
  • permanent magnet servo motors occupy most of the servo motor market due to their high torque density and high work efficiency.
  • a permanent magnet motor generally includes an inner rotor and a stator sleeved outside the inner rotor, and the inner rotor includes a rotor iron core and a permanent magnet disposed on the rotor iron core.
  • the inner rotor will generate a lot of heat, which is blocked by the air gap between the inner rotor and the stator, and the inner rotor will have the problem of poor heat dissipation. Motor failed.
  • the present invention provides a rotor of a motor and a motor to solve the technical problem of poor heat dissipation effect of a permanent magnet motor with an inner rotor in the prior art.
  • a technical solution adopted by the present invention is to provide a rotor of a motor, including:
  • a rotor iron core the rotor iron core includes a plurality of laminations of the same shape, stacked and coaxially arranged, the laminations are formed with a rotating shaft mounting hole, a plurality of rotating shaft key slot holes and a plurality of air duct holes, a plurality of the The shaft key slot hole communicates with the shaft installation hole and is arranged at intervals along the circumference of the shaft installation hole, and a plurality of the air duct holes are arranged at intervals along the circumference of the shaft installation hole.
  • the laminations in the upper layer are offset relative to the laminations in the lower layer, so that the air duct holes of the plurality of laminations together form a spiral air duct, and the laminations in the upper layer and The shaft key groove holes of the next layer of the laminations are aligned along the axial direction of the shaft mounting holes;
  • a plurality of permanent magnets are arranged on the rotor iron core.
  • a plurality of magnetic pole installation grooves are further formed on the laminations, the plurality of magnetic pole installation grooves are respectively used for installing a plurality of the permanent magnets, and the number of the shaft key slot holes is equal to the plurality of the plurality of the magnetic pole installation grooves. The number of pole pairs of the permanent magnet.
  • the offset angle of the laminations in the upper layer of the laminations relative to the laminations in the next layer is m times the angle corresponding to the number of pairs of magnetic poles, where m is A natural number, so that the upper layer of the plurality of laminations is aligned with the shaft key slot hole and the magnetic pole installation groove of the lower layer of the laminations along the axial direction of the rotation shaft installation hole.
  • the difference between the number of the air duct holes and the number of the magnetic poles of the permanent magnet is 2, 4 or 7.
  • the number of the air duct holes of the laminations is not equal to an integer multiple of the number of pairs of magnetic poles of the permanent magnet, so that the air duct holes of the plurality of laminations can work together.
  • the spiral air duct is formed.
  • a motor including:
  • a rotor sleeved on the rotating shaft and located in the casing, the rotor is the above-mentioned rotor;
  • the stator is sleeved outside the rotor and located in the casing, the stator and the rotor are spaced apart, the stator is in contact with the casing, and the inner side wall of the casing is formed with a plurality of The air duct grooves are evenly distributed along the circumferential direction of the casing.
  • the casing is formed with an air inlet and an air outlet, the air inlet is located at the bottom end of the casing, and the air outlet is located at a portion of the air inlet close to the top end of the casing. side, so that the airflow can enter the housing from the air inlet, and then flow through the helical air duct to between the rotor and the stator, the air duct slot, and flow out from the air outlet .
  • the rotor of the motor of the present invention includes a rotor iron core and a permanent magnet arranged on the rotor iron core.
  • the rotor iron core includes a plurality of laminations of the same shape, stacked and coaxially arranged, and the laminations are formed with rotating shaft installation holes and a plurality of rotating shaft key grooves hole and a plurality of air duct holes, a plurality of shaft key groove holes communicate with the shaft installation hole and are arranged at intervals along the circumferential direction of the shaft installation hole, a plurality of air duct holes are arranged at intervals along the circumferential direction of the shaft installation hole, among the plurality of laminations
  • the upper lamination sheet is offset relative to the next lamination sheet, so that the air duct holes of the multiple lamination sheets together form a spiral air duct, and the shaft key groove holes of the upper lamination sheet and the next lamination sheet are along the rotation shaft installation holes.
  • Axial alignment by setting the helical air duct in the rotor, the air in the helical air duct can form a pressure difference in the axial direction of the rotor during the rotation of the rotor, thereby forming an airflow, which can take the heat out of the motor and realize
  • the rapid heat dissipation of the motor protects the permanent magnet from the risk of demagnetization, and can also reduce the weight of the rotor, thereby reducing the rotational inertia of the rotor, which is conducive to the rapid start and rapid braking of the motor.
  • Fig. 1 is the three-dimensional structure schematic diagram of the rotor embodiment of the motor of the present invention
  • Fig. 2 is the perspective structure schematic diagram of the rotor embodiment of the motor of the present invention.
  • Fig. 3 is the top-view structure schematic diagram of the lamination in the rotor embodiment of the motor of the present invention.
  • FIG. 4 is a schematic cross-sectional structure diagram of an embodiment of the motor of the present invention.
  • FIG. 5 is a top-view structural schematic diagram of an embodiment of the motor of the present invention.
  • FIG. 6 is a schematic cross-sectional structural diagram of another embodiment of the motor of the present invention.
  • first and second in this application are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a plurality of means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “comprising” and “having” and any variations thereof are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes unlisted steps or units, or optionally also includes For other steps or units inherent to these processes, methods, products or devices.
  • an embodiment of the rotor 10 of the motor of the present invention includes a rotor iron core 100 and a plurality of permanent magnets 200 disposed on the rotor iron core 100 .
  • the rotor iron core 100 includes a plurality of identical shapes, stacked and coaxially arranged
  • the laminated sheet 110 is formed with a rotating shaft mounting hole 111, a plurality of rotating shaft key groove holes 112 and a plurality of air duct holes 113, and the multiple rotating shaft key groove holes 112 are communicated with the rotating shaft mounting hole 111 and along the circumference of the rotating shaft mounting hole 111
  • the plurality of air duct holes 113 are arranged at intervals along the circumferential direction of the shaft mounting hole 111 , and the upper lamination sheet 110 of the plurality of lamination sheets 110 is offset from the next lamination sheet 110 , so that the plurality of lamination sheets 110
  • the air duct holes 113 form a spiral air duct together, and the shaft key groove holes 112 of the upper laminated sheet
  • the air in the helical air duct can form a pressure difference in the axial direction of the rotor 10 during the rotation of the rotor 10, thereby forming an air flow, which can make the air in the motor
  • the heat is carried out to achieve rapid heat dissipation of the motor, protect the permanent magnet 200 from the risk of demagnetization, and can also reduce the weight of the rotor 10, thereby reducing the moment of inertia of the rotor 10, which is conducive to the rapid start and braking of the motor.
  • the rotating shaft mounting holes 111 are arranged in a circular shape, which facilitates assembly with the rotating shaft (not shown in the figure), and facilitates alignment along the axial direction of the rotating shaft mounting holes 111 when a plurality of laminations 110 are stacked and arranged, so as to The rotor core 100 is press-formed.
  • the shaft keyway holes 112 are arranged in a square shape, and the plurality of shaft keyway holes 112 on the same lamination sheet 110 are evenly spaced along the circumferential direction of the shaft installation hole 111 , so that the shaft keyway holes on the plurality of lamination sheets 110 are evenly spaced.
  • the axial alignment of 112 can achieve precise alignment and positioning when the laminations 110 are stacked, and can cooperate with the shaft key in the shape of a straight strip on the rotating shaft to limit the rotor core 100, so that the rotor core 100 is in the
  • the rotor 10 is not easy to slide relative to the rotating shaft during the rotation process, the structure of the rotor 10 is more stable, and the reliability is higher, so that the torque generated on the rotor 10 can be efficiently output to the rotating shaft through the rotating shaft key.
  • the shaft keyway hole 112 may be provided in other shapes such as a circle or a trapezoid, which is not limited herein.
  • the plurality of air duct holes 113 and the shaft key slot holes 112 are arranged at intervals along the radial direction of the shaft installation hole 111 to avoid interference with the shaft key slot holes 112, resulting in irregular structures of the plurality of air duct holes 113. Affects the smoothness of airflow in the spiral duct.
  • the air duct hole 113 may also be communicated with the rotating shaft mounting hole 111 or the rotating shaft key slot hole 112 to realize direct heat dissipation to the rotating shaft and improve heat dissipation efficiency.
  • the air duct holes 113 are fan-shaped, so that the ratio of the cross-sectional area of the air duct holes 113 in the radial direction of the shaft mounting hole 111 to the cross-sectional area of the laminations 110 in the radial direction of the shaft installation hole 111 can be larger. , the airflow flowing through the spiral air duct is larger, and the heat dissipation effect is better, and the plurality of air duct holes 113 are evenly spaced along the circumference of the rotating shaft installation hole 111, which can form a regular spiral air duct, so that the spiral air The airflow in the channel is smoother and the airflow speed is faster, which further improves the heat dissipation effect.
  • the air duct holes 113 may also be provided in other shapes such as a circle, a square, or a trapezoid, which is not limited herein.
  • the side wall of the air duct hole 113 can also be smoothed by spraying or melting, which can make the air flow in the air duct hole 113 smoother, the heat dissipation speed is faster, and the heat dissipation effect is better.
  • the structures of the plurality of laminations 110 are completely the same, and can be processed by the same mold, which is convenient for batch processing and lowers the processing difficulty and cost.
  • the number of the air duct holes 113 of the laminations 110 is not equal to the integer multiple of the number of pole pairs of the permanent magnet 200 , so that the solid part of the upper lamination piece 110 and the air duct holes of the next lamination piece 110 are not equal.
  • the projections of 113 on the axial direction of the shaft mounting hole 111 are at least partially overlapped, so that the air channel holes 113 of the plurality of laminations 110 can jointly form a spiral air channel.
  • a plurality of magnetic pole installation slots 114 are further formed on the laminations 110 , the plurality of magnetic pole installation slots 114 are respectively used for installing the plurality of permanent magnets 200 , and the number of the shaft key slot holes 112 is equal to the magnetic poles of the plurality of permanent magnets 200 .
  • the magnetic pole installation slots 114 are formed on the outer surface of the laminations 110 to facilitate the interaction between the rotor 10 and the outer stator (not shown in the figure), thereby realizing the rotation of the rotor 10 relative to the stator.
  • the pole mounting grooves 114 may also be formed in the laminations 110 , which is not limited herein.
  • the laminations 110 may not be provided with magnetic pole installation slots, and the permanent magnets 200 are directly fixed on the outer surface of the rotor core 100 by welding, sticking or snapping, etc., which is not limited here.
  • an angle by which an upper lamination 110 of the plurality of laminations 110 is offset relative to the next lamination 110 is an angle corresponding to m times the number of magnetic pole pairs, where m is a natural number, so that the plurality of laminations
  • the shaft key slot 112 and the magnetic pole installation slot 114 of the upper laminated sheet 110 and the next laminated sheet 110 in the 110 are aligned along the axial direction of the shaft installation hole 111 .
  • the sheet 110 is offset at an angle of m ⁇ 72°, so that the shaft key slot 112 and the magnetic pole installation slot 114 of the two laminated sheets 110 are aligned along the axial direction of the shaft installation hole 111 .
  • each lamination 110 is assembled with an offset of m ⁇ 72° relative to the next lamination 110 in the same direction (counterclockwise or clockwise), so that a rotor core formed by pressing a plurality of laminations 110 100 can form a helical air duct, and the shaft key slot 112 and the magnetic pole installation slot 114 of the plurality of laminations 110 are aligned along the axial direction of the shaft installation hole 111 , so that the shaft and the permanent magnet 200 can be installed.
  • S is the number of air duct holes 113 of the laminations 110
  • P is the number of pole pairs of the permanent magnet 200
  • k is the rounded integer value of m ⁇ S/P.
  • n is a natural number, which can make two adjacent laminations
  • the overlapping area of the air duct holes 113 of the 110 is larger, so that the helical air duct of the rotor core 100 has a larger cross-sectional area along the radial direction of the rotating shaft installation hole 111, and the air flow through the spiral air duct is larger. The cooling effect is better.
  • the difference between the number S of the air duct holes 113 and the number 2 ⁇ P of the number of magnetic poles of the permanent magnet 200 is 2, 4, or 7, etc., so that the number of the air duct holes 113 of the laminations 110 is related to the rotation axis.
  • the number of the key slot holes 112 achieves a better matching effect, which makes the volume of the spiral air duct larger without excessively increasing the processing difficulty of the laminations 110, thereby making the air flow through the spiral air duct larger and the heat dissipation effect. better.
  • the number of pole pairs P of the permanent magnet 200 is 5
  • the number S of the air duct holes 113 of the laminated sheet 110 is 14, and the upper laminated sheet 110 is opposite to the next laminated sheet
  • m may also take other values such as 2 or 3, which are not limited herein.
  • the number of pole pairs P of the permanent magnet 200 can also be a commonly used number 4, the number S of the air duct holes 113 of the laminations 110 is 15, and the upper lamination 110 rotates relative to the next lamination 110
  • the number of pole pairs P of the permanent magnet 200 may also take other required numbers such as 2 or 3, which is not limited herein.
  • the side wall of the air duct hole 113 may also be inclined relative to the axial direction of the shaft mounting hole 111 , and the inclination angle may be relative to the next laminated sheet connected with the air duct hole 113 of the previous laminated sheet 110 according to the axial direction of the shaft mounting hole 111 .
  • the offset angle of the air duct holes 113 of 110 is set, so that the transition of the air duct holes 113 of the two adjacent laminated sheets 110 is smoother, the airflow in the spiral air duct is smoother, and the airflow speed is faster, which further improves the heat dissipation effect.
  • an embodiment of the motor of the present invention includes a casing 20 , a rotating shaft 30 , a rotor 10 and a stator 40 .
  • the rotating shaft 30 is disposed through the casing 20
  • the rotor 10 is sleeved on the rotating shaft 30 and is located in the casing 20
  • the stator 40 is sleeved outside the rotor 10, and is located in the casing 20, the stator 40 and the rotor 10 are spaced apart
  • the stator 40 is in contact with the casing 20
  • the inner side wall of the casing 20 is formed with a plurality of circumferences along the casing.
  • the structure of the rotor 10 can be referred to in the above-mentioned embodiment of the rotor 10 , and details are not repeated here.
  • the air in the casing 20 can enter the spiral air duct from the bottom of the rotor 10 to form a spiral air flow and flow out from the top of the rotor 10 to the top of the casing 20, and then from the top of the rotor 10 to the top of the casing 20.
  • the top of the casing 20 flows to the bottom of the casing 20 through the gap between the rotor 10 and the stator 40 and the air duct slot 210, so as to realize heat dissipation of the motor.
  • the helical air duct can also be set so that the air enters from the top of the rotor 10 and flows out from the bottom, which is not limited here.
  • the flow direction of the air can be changed by changing the spiral direction of the helical air duct, and the flow direction of the air can also be changed by changing the rotation direction of the rotor 10 .
  • the air in the helical air duct can form a pressure difference in the axial direction of the rotor 10 during the rotation of the rotor 10, thereby forming an airflow, which can take out the heat in the motor and realize the motor
  • the rapid heat dissipation can protect the permanent magnet 200 from demagnetization risk, and can also reduce the weight of the rotor 10, thereby reducing the rotational inertia of the rotor 10, which is conducive to the rapid start and rapid braking of the motor.
  • another embodiment of the motor of the present invention includes a housing 20 , a rotating shaft 30 , a rotor 10 and a stator 40 , wherein the structures of the rotating shaft 30 , the rotor 10 and the stator 40 refer to the above-mentioned motor embodiment, and are not repeated here.
  • an air inlet 201 and an air outlet 202 are formed on the casing 20 , and the air inlet 201 is located at the bottom end of the casing 20 and formed in the casing 20 .
  • the air outlet 202 is located on the side of the air inlet 201 close to the top of the casing 20, and is formed on the side wall of the casing 20, so that the air can enter the casing 20 from the air inlet 201, and then pass through the spiral air duct It flows between the rotor 10 and the stator 40, the air duct slot 210, and flows out from the air outlet 202, so that the airflow entering the spiral air duct is the air with lower temperature introduced from the outside through the air inlet 201, and the air flows through the rotor 10.
  • stator 40 and the housing 20 increase the contact area with the inner surface of the motor, so that the heat generated by the motor can be more effectively conducted into the air flow, and dissipated to the outside through the air outlet 202 with the air flow to achieve better heat dissipation Effect.
  • the air inlet 201 and the air outlet 202 may also be formed on the top wall and/or the bottom wall of the housing 20 , which is not limited herein.
  • the air inlet 201 and the air outlet 202 may also be disposed at opposite ends of the housing 20, so that air can enter from one end of the housing 20 and flow out from the other end of the housing 20, so that the air inside the motor The conversion speed between air and outside air is faster, and the heat dissipation effect is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明公开了一种电机的转子及电机,该转子包括转子铁芯及设置于转子铁芯上的永磁体,转子铁芯包括多个相同形状、层叠且同轴设置的叠片,叠片上形成有转轴安装孔、多个转轴键槽孔以及多个风道孔,多个转轴键槽孔、多个风道孔沿转轴安装孔的周向间隔设置,多个叠片中的上一层叠片相对下一层叠片偏移设置,以使得多个叠片的风道孔共同形成螺旋形风道,并且使得上一层叠片与下一层叠片的转轴键槽孔沿转轴安装孔的轴向对齐。通过在转子内设置螺旋形风道能够使得转子在转动过程中螺旋形风道内的空气在转子的轴向上形成压力差,进而形成气流,能够将电机内的热量带出,实现电机的快速散热,保护永磁体不易产生退磁风险。

Description

一种电机的转子及电机
本申请要求于2020年12月31日提交的申请号为2020116341783,发明名称为“一种电机的转子及电机”的中国专利申请的优先权,其通过引用方式全部并入本申请。
【技术领域】
本发明涉及电机技术领域,特别涉及一种电机的转子及电机。
【背景技术】
电机作为一种驱动装置,已经广泛应用于各种机器人、家电、工业等电动设备中。而在电机领域,永磁伺服电机因其转矩密度高、工作效率高等优点,占据了伺服电机的大部分市场。
本申请的发明人在长期的研发中发现,永磁电机一般包括内转子和套设于内转子外的定子,内转子包括转子铁芯和设置于转子铁芯上的永磁体,永磁电机的运行过程中,内转子会产生大量的热量,受到内转子和定子之间的气隙阻挡,内转子会产生散热不良的问题,永磁体在连续的高温作用下会存在退磁的风险,造成永磁电机失效。
【发明内容】
本发明提供一种电机的转子及电机,以解决现有技术中内转子的永磁电机散热效果差的技术问题。
为解决上述技术问题,本发明采用的一个技术方案是提供一种电机的转子,包括:
转子铁芯,所述转子铁芯包括多个相同形状、层叠且同轴设置的叠片,所述叠片上形成有转轴安装孔、多个转轴键槽孔以及多个风道孔,多个所述转轴键槽孔与所述转轴安装孔连通且沿所述转轴安装孔的周向间隔设置,多个所述风道孔沿所述转轴安装孔的周向间隔设置,多个所述叠片中的上一层所述叠片相对下一层所述叠片偏移设置,以使得多个所述叠片的所述风道孔共同形成螺旋形风道,并且使得上一层所述叠片与下一层所述叠片的所述转轴键槽孔沿所 述转轴安装孔的轴向对齐;
多个永磁体,设置于所述转子铁芯上。
在一具体实施例中,所述叠片上进一步形成有多个磁极安装槽,多个所述磁极安装槽分别用于安装多个所述永磁体,所述转轴键槽孔的数量等于多个所述永磁体的磁极对数。
在一具体实施例中,多个所述叠片中的上一层所述叠片相对下一层所述叠片偏移的角度为m倍的所述磁极对数对应的角度,其中m为自然数,以使得多个所述叠片中的上一层所述叠片与下一层所述叠片的所述转轴键槽孔、所述磁极安装槽沿所述转轴安装孔的轴向对齐。
在一具体实施例中,多个所述叠片中的上一层所述叠片的所述风道孔相对与其连通的下一层所述叠片的所述风道孔偏移的角度Δθ=360°×(m×S/P-k)/S,其中S为所述叠片的所述风道孔的数量,P为所述永磁体的磁极对数,k为计算m×S/P的四舍五入后的整数值。
在一具体实施例中,所述永磁体的磁极对数P和所述叠片的所述风道孔的数量S满足:n×P=m×S±1,其中n为自然数。
在一具体实施例中,多个所述叠片中的上一层所述叠片的所述风道孔相对与其连通的下一层所述叠片的所述风道孔偏移的角度Δθ=±360°/(P×S)。
在一具体实施例中,所述风道孔的数量与所述永磁体的磁极数的数量的差值为2、4或7。
在一具体实施例中,所述叠片的所述风道孔的数量与所述永磁体的磁极对数的整数倍不等,以使得多个所述叠片的所述风道孔能够共同形成所述螺旋形风道。
为解决上述技术问题,本发明采用的另一个技术方案是提供一种电机,包括:
壳体;
转轴,贯穿所述壳体设置;
转子,套设于所述转轴上,且位于所述壳体内,所述转子为如上述的转子;
定子,套设于所述转子外,且位于所述壳体内,所述定子与所述转子间隔设置,所述定子与所述壳体抵接,所述壳体的内侧壁上形成有多个沿所述壳体的周向均匀分布的风道槽。
在一具体实施例中,所述壳体形成有进风口和出风口,所述进风口位于所 述壳体的底端,所述出风口位于所述进风口靠近所述壳体的顶端的一侧,以使得气流能够从所述进风口进入所述壳体,再经所述螺旋形风道流至所述转子与所述定子之间、所述风道槽,并从所述出风口流出。
本发明电机的转子包括转子铁芯及设置于转子铁芯上的永磁体,转子铁芯包括多个相同形状、层叠且同轴设置的叠片,叠片上形成有转轴安装孔、多个转轴键槽孔以及多个风道孔,多个转轴键槽孔与转轴安装孔连通且沿转轴安装孔的周向间隔设置,多个风道孔沿转轴安装孔的周向间隔设置,多个叠片中的上一层叠片相对下一层叠片偏移设置,以使得多个叠片的风道孔共同形成螺旋形风道,并且使得上一层叠片与下一层叠片的转轴键槽孔沿转轴安装孔的轴向对齐,通过在转子内设置螺旋形风道能够使得转子在转动过程中螺旋形风道内的空气在转子的轴向上形成压力差,进而形成气流,能够将电机内的热量带出,实现电机的快速散热,保护永磁体不易产生退磁风险,并且还能够减小转子的重量,进而减低转子的转动惯量,有利于电机的快速启动和快速制动。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明电机的转子实施例的立体结构示意图;
图2是本发明电机的转子实施例的透视结构示意图;
图3是本发明电机的转子实施例中叠片的俯视结构示意图;
图4是本发明电机一实施例的剖视结构示意图;
图5是本发明电机一实施例的俯视结构示意图;
图6是本发明电机另一实施例的剖视结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。而术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
参见图1至图3,本发明电机的转子10实施例包括转子铁芯100及设置于转子铁芯100上的多个永磁体200,转子铁芯100包括多个相同形状、层叠且同轴设置的叠片110,叠片110上形成有转轴安装孔111、多个转轴键槽孔112以及多个风道孔113,多个转轴键槽孔112与转轴安装孔111连通且沿转轴安装孔111的周向间隔设置,多个风道孔113沿转轴安装孔111的周向间隔设置,多个叠片110中的上一层叠片110相对下一层叠片110偏移设置,以使得多个叠片110的风道孔113共同形成螺旋形风道,并且使得上一层叠片110与下一层叠片110的转轴键槽孔112沿转轴安装孔111的轴向对齐,从而能够不影响转轴键(图中未示出)的安装,通过在转子10内设置螺旋形风道能够使得转子10在转动过程中螺旋形风道内的空气在转子10的轴向上形成压力差,进而形成气流,能够将电机内的热量带出,实现电机的快速散热,保护永磁体200不易产生退磁风险,并且还能够减小转子10的重量,进而减低转子10的转动惯量,有利于电机的快速启动和快速制动。
在本实施例中,转轴安装孔111呈圆形设置,能够便于与转轴(图中未示出)进行装配,并且便于多个叠片110层叠设置时沿转轴安装孔111的轴向对齐,以压合成转子铁芯100。
在本实施例中,转轴键槽孔112呈方形设置,同一叠片110上的多个转轴键槽孔112沿转轴安装孔111的周向均匀间隔设置,且使得多个叠片110上的转轴键槽孔112沿轴向对齐能够在叠片110叠压时实现精准的对齐定位,并且能够与转轴上的直长条形状的转轴键进行配合以对转子铁芯100进行限位,使得 转子铁芯100在转子10转动过程中不易与转轴发生相对滑动,转子10的结构更加稳固,可靠性更高,使转子10上产生的转矩能通过转轴键高效的输出到转轴上。
在其他实施例中,转轴键槽孔112可以呈圆形或梯形等其他形状设置,在此不做限制。
在本实施例中,多个风道孔113与转轴键槽孔112沿转轴安装孔111的径向间隔设置,以避免与转轴键槽孔112产生干涉,造成多个风道孔113的结构不规整,影响螺旋形风道内气流的流畅性。
在其他实施例中,风道孔113也可以与转轴安装孔111或转轴键槽孔112连通,以实现对转轴的直接散热,提高散热效率。
在本实施例中,风道孔113呈扇形设置,能够使得风道孔113在转轴安装孔111的径向上的截面积与叠片110在转轴安装孔111的径向上的截面积的比值更大,流经螺旋形风道的气流量更大,散热效果更好,并且多个风道孔113沿转轴安装孔111的周向均匀间隔设置,能够形成规整的螺旋形风道,使得螺旋形风道内的气流流动更加流畅,气流速度更快,进一步提高散热效果。
在其他实施例中,风道孔113也可以呈圆形、方形或梯形等其他形状设置,在此不做限制。
在本实施例中,风道孔113的侧壁上还可以通过喷涂或融注等方式进行光滑处理,能够使得风道孔113内的空气流动更加流畅,散热速度更快,散热效果更好。
在本实施例中,多个叠片110的结构完全相同,可以通过同一模具进行加工,便于批量加工,使得加工难度及成本都较低。
在本实施例中,叠片110的风道孔113的数量与永磁体200的磁极对数的整数倍不等,能够使得上一层叠片110的实体部分与下一层叠片110的风道孔113在转轴安装孔111的轴向上的投影至少部分重叠,进而使得多个叠片110的风道孔113能够共同形成螺旋形风道。
在本实施例中,叠片110上进一步形成有多个磁极安装槽114,多个磁极安装槽114分别用于安装多个永磁体200,转轴键槽孔112的数量等于多个永磁体200的磁极对数(即永磁体200的数量的1/2),以使得多个叠片110中的上一层叠片110的转轴键槽孔112与下一层叠片110的转轴键槽孔112沿转轴安装孔111的轴向对齐时,上一层叠片110的磁极安装槽114与下一层叠片110的磁极 安装槽114也沿转轴安装孔111的轴向对齐,进而使得永磁体200能够安装于转子铁芯100上。
在本实施例中,磁极安装槽114形成于叠片110的外表面上,便于转子10与外侧的定子(图中未示出)相互作用,进而实现转子10相对定子的转动。
在其他实施例中,磁极安装槽114也可以形成于叠片110内,在此不做限制。
在其他实施例中,叠片110也可以不设置磁极安装槽,永磁体200直接通过焊接、粘贴或卡扣等当时固定设置于转子铁芯100的外表面上,在此不做限制。
在本实施例中,多个叠片110中的上一层叠片110相对下一层叠片110偏移的角度为m倍的磁极对数对应的角度,其中m为自然数,以使得多个叠片110中的上一层叠片110与下一层叠片110的转轴键槽孔112、磁极安装槽114沿转轴安装孔111的轴向对齐。
具体的,以图3为例进行说明,本实施例中永磁体200的磁极对数为5,则磁极对数对应的角度为360°/5=72°,上一层叠片110相对下一层叠片110偏移的角度为m×72°,使得两层叠片110的转轴键槽孔112、磁极安装槽114沿转轴安装孔111的轴向对齐。以此类推,每一层叠片110相对下一层叠片110沿相同的方向(逆时针方向或顺时针方向)偏移m×72°进行装配,以使得多个叠片110压合成的转子铁芯100能够形成螺旋形风道,且多个叠片110的转轴键槽孔112、磁极安装槽114沿转轴安装孔111的轴向对齐,能够实现转轴及永磁体200的安装。
在本实施例中,多个叠片110中的上一层叠片110的风道孔113相对与其连通的下一层叠片110的风道孔113偏移的角度Δθ=360°×(m×S/P-k)/S,其中S为叠片110的风道孔113的数量,P为永磁体200的磁极对数,k为计算m×S/P的四舍五入后的整数值。其中,Δθ的计算结果符号为正时,表示风道孔113向叠片110偏移的相同方向偏移,Δθ的计算结果符号为负时,表示风道孔113向叠片110偏移的相反方向偏移。
在本实施例中,永磁体200的磁极对数P和叠片110的风道孔113的数量S满足:n×P=m×S±1,其中n为自然数,能够使得相邻两层叠片110的风道孔113的重合面积更大,从而使得转子铁芯100的螺旋形风道沿转轴安装孔111的径向的截面的面积更大,流经螺旋形风道的气流量更大,散热效果更好。
在本实施例中,当风道孔113的数量S满足n×P=m×S±1时,多个叠片110中的上一层叠片110的风道孔113相对与其连通的下一层叠片110的风道孔113偏移的角度Δθ=±360°/(P×S)。
在本实施例中,风道孔113的数量S与永磁体200的磁极数的数量2×P的差值为2、4或7等,能够使得叠片110的风道孔113的数量与转轴键槽孔112的数量达到更好的配合效果,在不过度增加叠片110的加工难度的同时使得螺旋形风道的体积更大,从而使得流经螺旋形风道的气流量更大,散热效果更好。
具体的,以图3为例进行说明,本实施例中永磁体200的磁极对数P为5,叠片110的风道孔113的数量S为14,上一层叠片110相对下一层叠片110旋转跨越的磁极对数m取1,则上一层叠片110的风道孔113相对与其连通的下一层叠片110的风道孔113偏移的角度Δθ=360°×(m×S/P-k)/S=Δθ=360°×(1×14/5-3)/14≈﹣5.14°,偏移角度较小,使得流经螺旋形风道的气流量较多且风速较大,能够达到较好的散热效果。
在其他实施例中,m也可以取2或3等其他数值,在此不做限制。
在磁极对数P和m的取值一定的情况下,叠片110的风道孔113的数量S越多,上一层叠片110的风道孔113相对与其连通的下一层叠片110的风道孔113偏移角度Δθ越小,能够使得转子铁芯100的螺旋形风道沿转轴安装孔111的径向的截面的面积更大,流经螺旋形风道的气流量更大,散热效果更好。
在另一具体实施例中,永磁体200的磁极对数P还可以取常用的数量4,叠片110的风道孔113的数量S取15,上一层叠片110相对下一层叠片110旋转跨越的磁极对数m取1,则上一层叠片110的风道孔113相对与其连通的下一层叠片110的风道孔113偏移的角度Δθ=360°×(m×S/P-k)/S=Δθ=360°×(1×15/4-4)/15=﹣6°,偏移角度较小,使得流经螺旋形风道的气流量较多且风速较大,能够达到较好的散热效果。
在其他实施例中,永磁体200的磁极对数P还可以取2或3等其他所需的数量,在此不做限制。
在本实施例中,风道孔113的侧壁还可以为相对转轴安装孔111的轴向倾斜设置,其倾斜角度可以根据上一层叠片110的风道孔113相对与其连通的下一层叠片110的风道孔113的偏移角度进行设置,使得相邻两层叠片110的风道孔113的过渡更加光滑,螺旋形风道内的气流流动更加流畅,气流速度更快,进一步提高散热效果。
参见图4和图5,本发明电机一实施例包括壳体20、转轴30、转子10以及定子40,转轴30贯穿壳体20设置,转子10套设于转轴30上,且位于壳体20内,定子40套设于转子10外,且位于壳体20内,定子40与转子10间隔设置,定子40与壳体20抵接,壳体20的内侧壁上形成有多个沿壳体的周向均匀分布的风道槽210,其中,转子10的结构参见上述转子10实施例,在此不再赘述。
具体的,当转子10相对定子40转动时,壳体20内的空气能够从转子10的底部进入螺旋形风道,形成螺旋形气流并从转子10的顶部流出至壳体20的顶部,再从壳体20的顶部经转子10与定子40之间的间隙、风道槽210流至壳体20的底部,从而实现对电机的散热。
在其他实施例中,螺旋形风道也可以设置成使得空气从转子10的顶部进入,从底部流出,在此不做限制。具体的,可以通过改变螺旋形风道的螺旋方向而改变空气的流动方向,也可以通过改变转子10的旋转方向而改变空气的流动方向。
通过在转子10内设置螺旋形风道能够使得转子10在转动过程中螺旋形风道内的空气在转子10的轴向上形成压力差,进而形成气流,能够将电机内的热量带出,实现电机的快速散热,保护永磁体200不易产生退磁风险,并且还能够减小转子10的重量,进而减低转子10的转动惯量,有利于电机的快速启动和快速制动。
参见图6,本发明电机另一实施例包括壳体20、转轴30、转子10以及定子40,其中,转轴30、转子10以及定子40的结构参见上述电机实施例,在此不再赘述。
本实施例与上述实施例的不同之处在于,在本实施例中,壳体20上形成有进风口201和出风口202,进风口201位于壳体20的底端,且形成于壳体20的侧壁,出风口202位于进风口201靠近壳体20的顶端的一侧,且形成于壳体20的侧壁,以使得气流能够从进风口201进入壳体20,再经螺旋形风道流至转子10与定子40之间、风道槽210,并从出风口202流出,使得进入螺旋形风道的气流为经进风口201从外界引入的温度较低的空气,空气流经转子10、定子40和壳体20,增大了与电机内表面接触的面积,使电机产生的热量能更有效的传导到气流中,并随气流经出风口202散出至外界,达到更好的散热效果。
在其他实施例中,进风口201和出风口202也可以形成于壳体20的顶壁和/或底壁上,在此不做限制。
在其他实施例中,进风口201和出风口202也可以设置于壳体20的相对两端,使得空气能够从壳体20的一端进入,从壳体20的另一端流出,从而使得电机内的空气与外界的空气的转换速度更快,散热效果更好。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种电机的转子,其特征在于,所述转子包括:
    转子铁芯,所述转子铁芯包括多个相同形状、层叠且同轴设置的叠片,所述叠片上形成有转轴安装孔、多个转轴键槽孔以及多个风道孔,多个所述转轴键槽孔与所述转轴安装孔连通且沿所述转轴安装孔的周向间隔设置,多个所述风道孔沿所述转轴安装孔的周向间隔设置,多个所述叠片中的上一层所述叠片相对下一层所述叠片偏移设置,以使得多个所述叠片的所述风道孔共同形成螺旋形风道,并且使得上一层所述叠片与下一层所述叠片的所述转轴键槽孔沿所述转轴安装孔的轴向对齐;
    多个永磁体,设置于所述转子铁芯上。
  2. 根据权利要求1所述的转子,其特征在于,所述叠片上进一步形成有多个磁极安装槽,多个所述磁极安装槽分别用于安装多个所述永磁体,所述转轴键槽孔的数量等于多个所述永磁体的磁极对数。
  3. 根据权利要求2所述的转子,其特征在于,多个所述叠片中的上一层所述叠片相对下一层所述叠片偏移的角度为m倍的所述磁极对数对应的角度,其中m为自然数,以使得多个所述叠片中的上一层所述叠片与下一层所述叠片的所述转轴键槽孔、所述磁极安装槽沿所述转轴安装孔的轴向对齐。
  4. 根据权利要求3所述的转子,其特征在于,多个所述叠片中的上一层所述叠片的所述风道孔相对与其连通的下一层所述叠片的所述风道孔偏移的角度Δθ=360°×(m×S/P-k)/S,其中S为所述叠片的所述风道孔的数量,P为所述永磁体的磁极对数,k为计算m×S/P的四舍五入后的整数值。
  5. 根据权利要求4所述的转子,其特征在于,所述永磁体的磁极对数P和所述叠片的所述风道孔的数量S满足:n×P=m×S±1,其中n为自然数。
  6. 根据权利要求5所述的转子,其特征在于,多个所述叠片中的上一层所述叠片的所述风道孔相对与其连通的下一层所述叠片的所述风道孔偏移的角度Δθ=±360°/(P×S)。
  7. 根据权利要求1所述的转子,其特征在于,所述风道孔的数量与所述永磁体的磁极数的数量的差值为2、4或7。
  8. 根据权利要求1所述的转子,其特征在于,所述叠片的所述风道孔的数量与所述永磁体的磁极对数的整数倍不等,以使得多个所述叠片的所述风道孔能够共同形成所述螺旋形风道。
  9. 一种电机,其特征在于,包括:
    壳体;
    转轴,贯穿所述壳体设置;
    转子,套设于所述转轴上,且位于所述壳体内,所述转子为如权利要求1至8任意一项所述的转子;
    定子,套设于所述转子外,且位于所述壳体内,所述定子与所述转子间隔设置,所述定子与所述壳体抵接,所述壳体的内侧壁上形成有多个沿所述壳体的周向均匀分布的风道槽。
  10. 根据权利要求9所述的电机,其特征在于,所述壳体形成有进风口和出风口,所述进风口位于所述壳体的底端,所述出风口位于所述进风口靠近所述壳体的顶端的一侧,以使得气流能够从所述进风口进入所述壳体,再经所述螺旋形风道流至所述转子与所述定子之间、所述风道槽,并从所述出风口流出。
PCT/CN2021/134657 2020-12-31 2021-11-30 一种电机的转子及电机 WO2022142974A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011634178.3A CN114696494A (zh) 2020-12-31 2020-12-31 一种电机的转子及电机
CN202011634178.3 2020-12-31
CN202023352344.9U CN214958948U (zh) 2020-12-31 2020-12-31 一种电机的转子及电机
CN202023352344.9 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142974A1 true WO2022142974A1 (zh) 2022-07-07

Family

ID=82259031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134657 WO2022142974A1 (zh) 2020-12-31 2021-11-30 一种电机的转子及电机

Country Status (1)

Country Link
WO (1) WO2022142974A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106451856A (zh) * 2016-11-18 2017-02-22 广西大学 一种带气体循环功能的永磁同步电机转子
WO2017125371A1 (de) * 2016-01-19 2017-07-27 Continental Automotive Gmbh Rotorblechpaket für eine elektrische maschine
CN108432093A (zh) * 2016-01-15 2018-08-21 大陆汽车有限公司 电动机器
CN110036553A (zh) * 2016-12-15 2019-07-19 世倍特集团有限责任公司 电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108432093A (zh) * 2016-01-15 2018-08-21 大陆汽车有限公司 电动机器
WO2017125371A1 (de) * 2016-01-19 2017-07-27 Continental Automotive Gmbh Rotorblechpaket für eine elektrische maschine
CN106451856A (zh) * 2016-11-18 2017-02-22 广西大学 一种带气体循环功能的永磁同步电机转子
CN110036553A (zh) * 2016-12-15 2019-07-19 世倍特集团有限责任公司 电机

Similar Documents

Publication Publication Date Title
US7705503B2 (en) Rotating electrical machine
WO2021031973A1 (zh) 一种单元模块组合式定子轴向磁场有齿轮毂电机
CN108649749B (zh) 具有注水型绕组和多向自循环通风***的开关磁阻电机
WO2023097845A1 (zh) 一种全封闭自通风式电机冷却结构
US7696658B2 (en) Magnet generator
EP4254737A2 (en) Oil-cooled motor
JP2004312898A (ja) 回転子、固定子および回転機
WO2022142974A1 (zh) 一种电机的转子及电机
CN112383191B (zh) 一种带外置离心风机的自扇冷轴向磁通电机
CN112383194B (zh) 一种带内置离心风机的自扇冷轴向磁通电机
TW201813248A (zh) 電動機之定子組合結構
WO2024087682A1 (zh) 一种高效油冷电机
CN206412853U (zh) 转子、电机和压缩机
CN206099654U (zh) 带风扇组件的转子及无刷直流电机
CN214958948U (zh) 一种电机的转子及电机
CN114696494A (zh) 一种电机的转子及电机
CN212462912U (zh) 转子冲片、斜极转子、电机及电动汽车
CN111049297B (zh) 一种转子及电机
JP2013223291A (ja) 回転電機のロータ
CN208112432U (zh) 一种用于锯床的永磁直驱电机
JPH08331781A (ja) かご形三相誘導電動機の回転子と固定子のダクト配列
CN110729833A (zh) 电机转子和同步磁阻电机
CN110671347A (zh) 风扇
TWI835682B (zh) 磁通切換式馬達
JPH03256543A (ja) かご型回転子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21913715

Country of ref document: EP

Kind code of ref document: A1