WO2022142694A1 - 发送光组件、双向光组件、光模块、及光通信设备 - Google Patents

发送光组件、双向光组件、光模块、及光通信设备 Download PDF

Info

Publication number
WO2022142694A1
WO2022142694A1 PCT/CN2021/127756 CN2021127756W WO2022142694A1 WO 2022142694 A1 WO2022142694 A1 WO 2022142694A1 CN 2021127756 W CN2021127756 W CN 2021127756W WO 2022142694 A1 WO2022142694 A1 WO 2022142694A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
platform
base
pins
light
Prior art date
Application number
PCT/CN2021/127756
Other languages
English (en)
French (fr)
Inventor
李书
李远谋
林华枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022142694A1 publication Critical patent/WO2022142694A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to a transmitting optical component, a bidirectional optical component, an optical module, and an optical communication device.
  • the optical module is mainly used to realize the conversion between the optical signal and the electrical signal, that is, to convert the transmitted data electrical signal into an optical signal and send it to the opposite end through the optical fiber, and to receive the optical signal sent by the opposite end from the optical fiber. After receiving the signal and converting the optical signal into an electrical signal, the received data is recovered from the electrical signal.
  • the light-emitting or light-emitting component in the optical component is the transmitting optical component.
  • the transmitting optical component includes a laser diode driver (LDD) and a laser diode (laser diode, LD).
  • the laser diode can also be called a laser.
  • the LDD is used to drive the LD to convert the electrical signal into an optical signal, and the LD generates and transmits the optical signal. Because the temperature is too high, it will affect the optical signal quality of the LD, the light output performance such as the size of the light output power. In the prior art, LDD will generate a lot of heat when working, and LDD and LD are usually located on the same metal base. on the LD, thus affecting the accuracy of the LD light output.
  • the embodiments of the present application provide a transmitting optical component, a bidirectional optical component, an optical module, and an optical communication device.
  • the base in the transmitting optical component is isolated from the LD, thereby greatly reducing the heat generated by the LDD and transferring it to the LD, further ensuring that The precision of LD light output.
  • the present application provides a light-transmitting component, comprising: a base, a carrying platform, a laser diode LD, a laser diode driver LDD, a first heat sink, and platform pins; wherein: the LD is located on the first surface of the carrying platform , the LDD can be connected to the first bottom surface of the base in various ways, and the connection between the LDD and the base can conduct heat transfer; the bearing platform and the base are thermally isolated, and there are many ways of thermal isolation : For example: air isolation or isolation material isolation; the bearing platform is located on the side of the first bottom surface of the base, and the first heat dissipation block is located on the side of the second bottom surface of the base, wherein the first bottom surface and the second bottom surface are Opposite, opposite can also be understood as parallel, that is: the first bottom surface is the upper bottom, and the second bottom surface is the lower bottom.
  • the base includes holes, the platform pins pass through the holes, and the gaps between the platform pins and the holes are filled and sealed by a first thermal isolation material; wherein, one end of the platform pins is connected to the The second surface of the platform is supported, and the other end of the platform pin is connected to the first heat dissipation block, and the platform pin is used for transferring the heat generated when the LD works to the first heat dissipation block.
  • the carrying platform and the base are thermally isolated, and the platform pins on the carrying platform pass through the holes of the base, and the gaps between the platform pins and the holes are formed by
  • the thermal isolation material is filled and sealed, so that the LDD located on the base and the LD located on the bearing platform are thermally isolated, which greatly reduces the heat generated by the LDD and transfers to the LD, and further ensures the accuracy of the LD light output.
  • the light-transmitting component further includes a second heat dissipation block, wherein the second heat dissipation block is fixed on the side surface of the base, and the heat generated by the LDD is transmitted to the base through the base. the second heat sink. Since one or more second heat sinks can be set at any position on the side of the base of the light-emitting component, the heat generated by the LDD can be quickly dissipated, thereby reducing the temperature of the base or the LD, which further ensures the accuracy of the LD light output. .
  • the thermal isolation between the carrying platform and the base may be achieved by the following manner: a gap exists between the second surface of the carrying platform and the base; or the The second surface of the carrying platform and the base are connected together by a second thermal insulating material.
  • the transmitting light assembly further includes an LD spacer, wherein the LD spacer is located between the LD and the carrying platform.
  • the LDD can be directly connected to the LD through a metal dielectric.
  • the metal dielectric between the LDD and LD needs to be as short as possible, but this As a result, the distance between the LDD and the LD will be very close.
  • the heat generated during the LDD operation has a greater impact on the LD, and the heat has a greater impact on the performance of the LD.
  • through LD spacers can make the distance between LDD and LD longer.
  • the LD gasket and the LDD are connected through a metal medium.
  • Metal media can be used for power supply and electrical signal transmission, etc.
  • the light-transmitting component further includes electrical pins, wherein the electrical pins penetrate through the holes.
  • the LDD and the electrical pins are connected through a metal medium.
  • Metal media can be used for power supply and electrical signal transmission, etc.
  • the light-transmitting component further includes a lens tube cap, wherein the lens tube cap is fixed on the bottom surface of the base.
  • the first thermal isolation material or the second thermal isolation material may be the same or different, and the first thermal isolation material or the second thermal isolation material is specifically a glue containing silicon dioxide. Due to the good thermal isolation of silica, heat transfer between the base and the carrying platform is ensured.
  • the bearing platform is in a vertical relationship or a parallel relationship with the first bottom surface of the base. Between the carrying platform and the base
  • the light-transmitting component when the carrying platform is in a parallel relationship with the bottom surface of the base, the light-transmitting component further includes a reflector, and the reflector is located on the LD spacer.
  • the number of the holes is M and the number of platform pins is N; wherein: each platform pin of the N platform pins passes through the One hole among the M holes, or a plurality of platform pins among the N platform pins pass through one hole among the M holes.
  • the carrying platform and the platform pins use the same thermally conductive material.
  • the present application provides a bidirectional optical component, including a transmitting optical component as in the first aspect and any possible implementation of the first aspect, and a receiving optical component, the receiving optical component is used for receiving optical signals, and convert the optical signals into electrical signals.
  • the number of transmitting optical components is one or more, and the number of the receiving optical components is one or more.
  • the present application provides an optical module, including a bidirectional optical component as in the second aspect and any possible implementation of the second aspect.
  • the present application provides an optical communication device, including the optical module as in the third aspect.
  • the optical communication device is specifically an optical line terminal or an optical terminal unit.
  • FIG. 1 is a schematic diagram of a system structure of a passive optical network
  • FIG. 2 is a schematic cross-sectional structural diagram of a light-transmitting component provided by an embodiment of the application;
  • FIG. 3 is a schematic cross-sectional structural diagram of another light-transmitting component provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a pin according to an embodiment of the application.
  • FIG. 5 is a schematic three-dimensional structural diagram of an unsealed light-transmitting component provided by an embodiment of the application.
  • FIG. 6 is a schematic three-dimensional structural diagram of a closed light-transmitting component provided by an embodiment of the application.
  • FIG. 7 is a schematic cross-sectional structural diagram of another light-transmitting component provided by an embodiment of the application.
  • FIG. 8 is a schematic cross-sectional structural diagram of another light-transmitting component provided by an embodiment of the application.
  • FIG. 9 is a schematic three-dimensional structural diagram of another unsealed light-transmitting component provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a bidirectional optical component provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of an optical module provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another optical module provided by an embodiment of the application.
  • the embodiments of the present application relate to receiving optical components, transmitting optical components, combined transceiver components, combined optical modules, and passive optical network systems.
  • the concepts involved in the above embodiments are briefly described below:
  • Wavelength division multiplexing is the combination of two or more optical carrier signals of different wavelengths (carrying various information) at the transmitting end through a multiplexer (also known as a combiner). The technology of transmitting them together and coupled to the same fiber of the optical line; at the receiving end, the optical carriers of various wavelengths are separated by a demultiplexer (also known as a demultiplexer or a demultiplexer), and then Further processing is performed by the optical receiver to recover the original signal.
  • a demultiplexer also known as a demultiplexer or a demultiplexer
  • This technique of simultaneously transmitting two or more optical signals of different wavelengths in the same fiber is called wavelength division multiplexing.
  • the passive optical network includes an optical line terminal (Optical Line Terminal, OLT) 110 located in a central control station (such as a computer room), a plurality of optical network units (Optical Network Unit, ONU) installed in the user premises 120 and an Optical Distribution Network (ODN) 130.
  • OLT optical Line Terminal
  • ONU optical Network Unit
  • ODN Optical Distribution Network
  • a TDM mechanism, a WDM mechanism or a TDM/WDM hybrid mechanism may be used for communication between the OLT 110 and the ONU 120 .
  • the direction from the OLT 110 to the ONU 120 is defined as the downstream direction, and the direction from the optical network unit 120 to the OLT 110 is the upstream direction.
  • the passive optical network system 100 may be a communication network that does not require any active devices to realize data distribution between the OLT 110 and the ONU 120. source optical devices (such as beam splitters) to achieve.
  • the passive optical network system 100 can be an Asynchronous Transfer Mode (ATM) PON system or a broadband passive optical network (BPON) system defined by the ITU-T G.983 standard, an ITU-T The Gigabit-Capable Passive Optical Network (GPON) system defined by the G.984 series of standards, the Ethernet passive optical network (EPON) defined by the IEEE 802.3ah standard, and wavelength division multiplexing Passive Optical Network (WDM PON) system or Next Generation Passive Optical Network (NGA PON system, such as 10GGPON system, 25GGPON system and 50GGPON system defined by ITU system standard, 10G EPON system, 25GEPON system and 50GEPON system defined by IEEE system standard , TDM/WDM hybrid PON system, etc.).
  • ATM Asynchronous Transfer Mode
  • BPON broadband passive optical network
  • GPON The Gigabit-Capable Passive Optical Network
  • EPON Ethernet passive optical network
  • WDM PON wavelength division multiplexing Passive
  • the OLT 110 is usually located at a central location (eg, Central Office, CO), which can manage the plurality of ONUs 120 in a unified manner.
  • the OLT 110 can act as an intermediary between the ONU 120 and an upper-layer network (not shown), forward data received from the upper-layer network to the optical network unit 120 as downlink data, and forward the uplink data received from the ONU 120 to the upper layer network.
  • the specific structural configuration of the OLT 110 may vary depending on the specific type of the passive optical network 100.
  • the OLT 110 may include an optical module 200 and a data processing module (not shown), and the optical module 200 may Convert the downlink data processed by the data processing module into downlink optical signals, and send the downlink optical signals to ONU120 through ODN130, and receive the uplink optical signals sent by ONU120 through ODN130, and convert the uplink data signals into electrical signals and provided to the data processing module for processing.
  • the ONUs 120 may be distributed in customer-side locations (eg, customer premises).
  • the ONU 120 may be a network device for communicating with the OLT 110 and the user, specifically, the ONU 120 may act as an intermediary between the OLT 110 and the user, for example, the ONU 120 may forward the downlink data received from the OLT 110 to the user, and The data received from the user is forwarded to the OLT 110 as uplink data.
  • the specific structural configuration of the ONU 120 may vary depending on the specific type of the passive optical network 100.
  • the ONU 120 may include an optical module 300, and the optical module 300 is configured to receive downlink data sent by the OLT 110 through the ODN 130 signal, and send the uplink data signal to the OLT110 through the ODN130.
  • ONT optical Network Terminal
  • ODN 130 may be a data distribution system, which may include optical fibers, optical couplers, optical multiplexers/demultiplexers, optical splitters, and/or other devices.
  • the optical fiber, optical coupler, optical multiplexer/demultiplexer, optical splitter and/or other devices may be passive optical devices, specifically, the optical fiber, optical coupler, optical combiner Wave/splitters, optical splitters, and/or other devices may be devices that distribute data signals between OLT 110 and ONU 120 without requiring power support.
  • the ODN 130 may further include one or more processing devices, for example, an optical amplifier or a relay device (Relay device).
  • the ODN 130 may extend from the OLT 110 to the plurality of ONUs 120 , but may also be configured in any other point-to-multipoint structure.
  • the optical modules 200 and/or 300 may be optical modules in the following embodiments.
  • the optical module 200 of the OLT 110 is used as an example.
  • the optical module 200 includes a bi-directional optical component (Bi-directional Optical sub- assembly, BOSA) and electronic components (Electrical Subassembly, ESA).
  • the electrical pins of the bidirectional optical component are electrically connected with the peripheral electronic components, and then loaded into the optical module housing, which constitutes an optical transmission module.
  • the BOSA mainly includes a transmitting optical sub-assembly (TOSA) and a receiving optical sub-assembly (ROSA).
  • TOSA transmitting optical sub-assembly
  • ROSA receiving optical sub-assembly
  • the function of TOSA is to convert the electrical signal from the outside into an optical signal and transmit the optical signal in the optical fiber.
  • the role of ROSA is to receive the optical signal from the optical fiber and convert the optical signal into an electrical signal.
  • the TOSA may be the TOSA
  • FIG. 2 is a schematic cross-sectional structure diagram of a first type of TOSA
  • FIG. 3 is a cross-sectional structure schematic diagram of a second type TOSA
  • FIG. 7 is a cross-sectional structure schematic diagram of a third type of TOSA
  • FIG. 8 is a fourth type of TOSA.
  • FIG. 5 is a schematic diagram of the three-dimensional structure of the first TOSA or the second type of TOSA before packaging
  • FIG. 6 is a schematic diagram of the three-dimensional structure of any TOSA after packaging according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of the third type of TOSA.
  • the TOSA includes: a base 201 , a carrying platform 202 , an LDD 203 , a lens tube cap 204 , a second heat dissipation block 205 and a first heat dissipation block 206 .
  • the base 201 can be of various types, such as: transistor outline (TO) base or TO base, the base 201 can adopt a traditional circular structure, or can be oval, quasi-circular, square and other shapes , the drawings and the embodiments of the present invention are described by taking the base 201 as an example of a circular structure.
  • the base 201 includes a plurality of holes, and different pins can pass through different holes. Generally speaking, one hole is only passed through by one pin. As shown in FIG. 4 , the pins can be of single type or multiple types, and the pins can be cylindrical or flat.
  • the pins can include platform pins 207 and electrical pins 208. Generally speaking, the platform pins 207 are common pins, the platform pins 207 are used to fix the heat sink, and the electrical pins 208 can be used for electrical signal transmission and For power supply, the electrical pins 208 are electrically connected to electronic components (such as circuit boards), so that the electrical signals of the electronic components can be transmitted to the LDD 222 through the electrical pins 208 .
  • the platform pins 207 may be single, or the platform pins 207 may be multiple, the platform pins 207 may be cylindrical, and the platform pins 207 may also be flat.
  • the LDD 222 and the carrying platform 202 are located on the first bottom surface of the base 201
  • the first heat dissipation block 206 is located on the second bottom surface of the base 201
  • the carrying platform 202 and the base 201 are thermally isolated, wherein the first bottom surface It is opposite to the second bottom surface;
  • the specific implementation of thermal isolation between the bearing platform 202 and the base 201 is: as shown in Figure 2 and Figure 7, the bearing platform 202 and the base 201 can be left with a gap, Or as shown in FIG. 3 and FIG.
  • the carrying platform 202 and the base 201 may be connected together by thermal insulation materials, so that the thermal energy between the base 201 and the carrying platform 202 will not affect each other.
  • the carrying platform 202 includes more than one platform pin 207, and the carrying platform 202 passes through the holes of the base 201 through the platform pins 207.
  • the carrying platform 202 and the platform pins 207 are structurally connected as a whole, and the carrying platform 202 and the platform The pins 207 are made of the same thermal conductive material.
  • the platform pins 207 are fixed and sealed on the base 201 by glass material (eg glass glue). There will be gaps when the platform pins 207 are inserted into the holes of the base 201.
  • the first thermal isolation material in the space between the platform pins and the holes may be the same as or different from the second thermal isolation material between the carrying platform and the base.
  • the number of platform pins, electrical pins and holes is uncertain.
  • 1 hole can be composed of 1 A platform pin or one electrical pin passes through, and one hole can be passed through by multiple platform pins or multiple electrical pins.
  • the packaging surface of the carrying platform 202 is parallel to the bottom surface of the base 201 or forms a certain small angle.
  • the LD spacer 221 , the LD222 and the reflector 223 are arranged on the carrying platform 202 , wherein the LD 222 is fixed on the LD spacer 221 and finally fixed on the carrying platform 202 .
  • the reflector 223 can change the light-emitting direction of the LD 222 to better converge through the lens 241 .
  • the LDD 203 is fixed on the base 201, and the above-mentioned fixing method may be by welding or silver glue bonding.
  • the LDD 203 is connected to the LD pad 221 through a metal dielectric 209 (eg, gold wire), and the LDD 3 is connected to an electrical pin 208 through a metal dielectric 210, which can be used for power supply and electrical signal transmission.
  • a metal dielectric 209 eg, gold wire
  • LDD203 and LD222 can be directly connected through a metal medium.
  • the heat generated by LDD203 has a greater impact on LD222, and the heat has a greater impact on the performance of LD222.
  • the distance between the LDD and the LD can be made longer by the LD spacer 221 .
  • the lens tube cap 204 is fixed on the bottom surface of the base 201 by welding or silver glue bonding, so that the lens tube cap 204 can protect the internal components such as the LD222 and LDD203, and the lens tube cap 204 also includes a lens 241, and the lens 241 can be used for receiving
  • the LD222 emits light, converges the optical signals, and transmits these converged optical signals to the optical fiber.
  • the integral device can be regarded as a TOSA, made of After TOSA, the electrical pins are generally cut short.
  • the first heat dissipation block 206 can be installed on the platform pins 207 after passing through the holes of the base 201.
  • the shape of the first heat dissipation block 206 can be sheet-like.
  • the first heat dissipation block 206 can also be referred to as a heat sink.
  • the first heat sink 206 is made of heat-dissipating metal, such as copper, aluminum alloy, etc., and the first heat-dissipating block 206 can be connected to the platform tube by welding or silver glue bonding.
  • the feet 207 are fixed.
  • the length of the platform pins 207 exposed on the base 201 exceeds the length of the electrical pins 208 exposed on the base, so that the first heat sink 206 can be easily fixed on the platform pins 207 .
  • the periphery of the base 201 is mounted and fixed on the second heat dissipation block 205 by welding or silver glue.
  • Both the above-mentioned base 201 and the carrying platform 202 can be made of metal material, so the heat generated when the LDD is working is dissipated through the second heat dissipation block 205, and the heat generated when the LD is working is dissipated through the first heat dissipation block 206. out, so as to ensure that the temperature of the LD does not increase significantly, thereby ensuring the accuracy of the LD when the light is emitted.
  • the working principle of the above-mentioned bidirectional optical component is as follows, the electrical signal of the electronic component is transmitted to the metal medium 210 through the electrical pin 208, and then the electrical signal is transmitted to the LDD 203 by the metal medium 210, and then the electrical signal is transmitted to the LD pad through the metal medium 209. 221, and then the LD pad 221 transmits the electrical signal to the LD222.
  • the LD222 that receives the electrical signal (light-emitting command) can send out an optical signal. The light is concentrated and transmitted over an optical fiber.
  • the bidirectional optical components designed above realize the separation of the key heat dissipation paths of the LDD and the LD. Specifically, the heat impact path of the LDD on the LD is changed from the same base, air radiation and gold wire heat conduction in the prior art to this one.
  • the base passes through the glass material and then conducts heat to the pins, air radiation and gold wires. Since the glass material fills up the gap existing in the holes in which the platform pins are inserted into the base, the isolation between the base and the carrying platform is realized.
  • the main component of the glass material represented by glass glue is silicon dioxide, which has good thermal insulation performance
  • the heat on the T0 base mainly from the heat generated during the LDD operation
  • the heat on the bearing platform mainly from The heat generated during the LD work
  • the second heat dissipation block is arranged around the base, the heat generated by the LDD is transferred to the second heat dissipation block through the base, so that the heat generated by the LDD can be dissipated or cooled as soon as possible.
  • the heat generated by the LD is transferred to the first heat dissipation block through the carrying platform, so that the heat generated by the LD is dissipated or cooled down as soon as possible. In this way, the heat generated by LDD and LD is dissipated through different optimal heat dissipation paths respectively. Due to the above-mentioned bidirectional optical components, the thermal influence of the LDD on the LD is greatly reduced, and the stability of the light output of the LD is also improved.
  • another bidirectional optical module provided by the embodiment of the present invention is different from the embodiment shown in FIG. 2 in that the package surface of the carrying platform is perpendicular to the base surface or the included angle is slightly less than 90 degrees.
  • the light emitted by the rear LD can be directly sent to the lens 41, so the carrier platform does not need to include a mirror.
  • another bidirectional optical component provided by the embodiment of the present invention is different from the embodiment shown in FIG. 3 in that the package surface of the carrying platform is perpendicular to the base surface or the included angle is slightly less than 90 degrees.
  • the light emitted by the rear LD can be directly sent to the lens 41, so the carrier platform does not need to include a mirror.
  • a BOSA provided by an embodiment of the present invention includes: TOSA1001, ROSA1002, a ferrule 1003, a WDM module 1004, and a housing 1005, wherein the TOSA1001 has any TOSA structure shown in the above-mentioned FIGS. 2 to 9, and the TOSA1001 Including the lens 1011, the function of the TOSA1001 is to convert the electrical signal into an optical signal, and transmit it to the optical fiber in the ferrule 1003 through the lens 1011 and the WDM module 1004 and transmit it to the outside of the optical module.
  • the optical signal outside the module is transmitted to the optical fiber in the ferrule 1003, and further transmits the optical signal to the ROSA1002 through the lens 1021, and the ROSA1002 also has the function of converting the optical signal into an electrical signal.
  • the WDM module 1004 needs to be placed in the housing 1005 to separate the two types of wavelengths.
  • One of the functions included in the WDM module 1004 is to transmit light of certain wavelengths, At the same time reflect other wavelengths of light.
  • the optical transmission path is shown by the dashed arrow in Figure 10.
  • the light emitted by TOSA1001 is transmitted in a straight line when passing through the WDM module 1004, and then enters the optical fiber in the ferrule 1003 for transmission; the light receiving path is shown by the solid arrow in Figure 10, in the ferrule 1003
  • the optical signal from the optical fiber is reflected when it passes through the WDM module 1004, and the ROSA 1002 is located on the reflected optical path, thereby realizing the reception of the optical signal.
  • the optical module may further include an isolator 1006, and the isolator 1006 may be used to reduce the influence of reflected light in the network on the performance of the laser in the TOSA 1001.
  • Figure 10 shows that the optical module only includes one ROSA and one TOSA, and the optical module can also have more than one ROSA and more than one TOSA, and each TOSA can have the TOSA structure and the TOSA shown in Figure 2-9. Function.
  • the present invention further provides an optical module 1100 and a passive optical network system using the optical module 1100 .
  • the optical module 1100 is mainly used to realize photoelectric and electro-optical conversion, that is, convert the transmitted data signal into an optical signal and send it to the opposite end through an optical fiber, and receive the optical signal sent by the opposite end from the optical fiber and convert the optical signal into an electrical signal. After that, the received data is recovered from the electrical signal, and the optical module 1100 is a pluggable optical module that integrates optical signal transceiving and photoelectric conversion functions.
  • the optical module 1100 includes a casing 1120 , a circuit board 1130 and the optical component 1140 , the optical component 1140 and the circuit board 1130 are accommodated in the casing 1120 , and the optical component 1100 and the circuit board 1130 Electrical connection.
  • the difference between the optical module shown in FIG. 11 and the optical module shown in FIG. 12 is that when the optical component is connected to the circuit board, it is connected by two ways of connecting pins 1115 or ceramic conductors 1125 .
  • the optical component applied to the optical module 1100 may be an optical component with light-receiving performance or an optical component with emitting performance, etc., which is not limited.
  • a thermal conductor 1150 is further provided inside the housing 1120 , and the thermal conductor 1150 is attached to the heat dissipation block on the base 1110 of the optical component 1140 .
  • the optical line terminal includes: the optical module described in the embodiment corresponding to FIG. 11 or FIG. 12 ; the optical network unit may also include: the optical module described in the embodiment corresponding to FIG. 11 or FIG. 12 , which is not repeated here.
  • the platform pins of the transmitting optical component located on the carrier platform pass through the holes of the base, and the gaps between the platform pins and the holes are thermally isolated
  • the material is filled and sealed, so that the heat generated by the LDD located on the base is isolated from the LD located on the bearing platform, thereby greatly reducing the heat generated by the LDD and transmitting to the LD, further ensuring the accuracy of the LD light output.
  • one or more second heat dissipation blocks can be set at any position on the side of the base of the light-emitting component, the heat generated by the LDD can be quickly dissipated, thereby reducing the temperature of the base or the LD, which further ensures that the LD emits light. accuracy.
  • the LDD can be directly connected to the LD through a metal medium.
  • the longer the metal medium the greater the impact on the electrical signal transmission efficiency. Therefore, the metal medium between the LDD and the LD needs to be as short as possible. However, this leads to a very close distance between LDD and LD.
  • the heat generated in the LDD operation has a greater impact on the LD, and the heat has a greater impact on the performance of the LD.
  • the distance between LDD and LD can be made longer by LD spacers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种发送光组件,其中发送光组件的激光二极管驱动器LDD(203)连接在底座(201)上,激光二极管LD在承载平台(202)上,承载平台(202)和底座(201)是热隔离的。平台管脚(207)穿过底座(201)上的孔洞,在平台管脚(207)和孔洞之间空隙由热隔离材料填充。平台管脚(207)一端连接承载平台(202),平台管脚(207)另一端连接散热块(206),这样LDD(203)与LD(222)之间进行热隔离,减少了LDD(203)产生的热量传输到LD(222)。还提供了包括该发送光组件的双向光组件、光模块(200)及光通信设备。

Description

发送光组件、双向光组件、光模块、及光通信设备
本申请要求于2020年12月30日提交中国国家知识产权局、申请号为202011617874.3、申请名称为“发送光组件、双向光组件、光模块、及光通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种发送光组件、双向光组件、光模块、及光通信设备。
背景技术
在光通信***中,光模块主要用来实现光信号与电信号之间的转换,即把发送的数据电信号转换成光信号并通过光纤发送给对端,及从光纤接收对端发送的光信号并把光信号转换成电信号之后,从电信号中恢复接收数据。
目前,光组件中用于发光或者出光的部件为发送光组件,发送光组件包含了激光二极管驱动器(laser diode driver,LDD)和激光二极管(laser diode,LD),激光二极管又可以称为激光器,LDD用于驱动LD将电信号转换成光信号,LD生成并将光信号发送出去。由于温度过高会影响LD的光信号质量,出光功率大小等的出光性能。现有技术中LDD工作时会产生大量的热量,而LDD和LD通常都位于同一个金属材质的底座上,众所周知,金属材料是非常良好的热传导的材质,因此LDD产生的热量将通过底座传导到LD上,从而导致影响LD出光的精度。
发明内容
本申请的实施例提供发送光组件、双向光组件、光模块、及光通信设备,在实现上在发送光组件内的底座和LD隔离出来,从而大大减少LDD产生的热量传输到LD,进一步确保LD出光的精度。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供一种发送光组件,包括:底座、承载平台、激光二极管LD、激光二极管驱动器LDD、第一散热块和平台管脚;其中:LD位于所述承载平台的第一面,LDD可以通过多种方式连接在所述底座的第一底面上,LDD和底座之间的连接是可以进行热传输的;承载平台和底座之间是热隔离的,热隔离的方式有多种:比如:空气隔离或者隔离材料隔离;承载平台位于所述底座的第一底面这一侧,第一散热块位于底座的第二底面这一侧,其中,第一底面和所述第二底面是相对的,相对的也可以理解为平行,即:第一底面为上底,第二底面为下底。底座包含孔洞,所述平台管脚穿过所述孔洞,在所述平台管脚和所述孔洞之间的空隙由第一热隔离材料填充密封;其中,所述平台管脚的一端连接所述承载平台的第二面,所述平台管脚的另一端连接所述第一散热块,所述平台管脚用于将所述LD工作时产生的热量传输到所述第一散热块。
由于本发明的新型发送光组件,由于承载平台和底座之间是热隔离的,并且位于承载平台上的平台管脚穿过底座的孔洞,而在所述平台管脚和所述孔洞中空隙由热隔离材料填充密 封,这样位于底座的LDD与位于承载平台的LD之间进行热隔离了,从而大大减少LDD产生的热量传输到LD,进一步确保LD出光的精度。
在一种可能的实现方式中,发送光组件还包括第二散热块,其中所述第二散热块固定在所述底座的侧面上,,所述LDD工作时产生的热量通过所述底座传输到所述第二散热块。由于在发送光组件的底座侧面任意位置上都可以设置一个或多个第二散热块,这样可以迅速将LDD产生的热量散发出来,从而使得降低底座或者LD的温度,这样进一步确保LD出光的精度。
在一种可能的实现方式中,所述承载平台和所述底座之间是热隔离的可以通过如下的方式实现:所述承载平台的第二面和所述底座之间存在空隙;或者所述承载平台的第二面和所述底座之间通过第二热隔离材料连接在一起。
在一种可能的实现方式中,发送光组件还包括LD垫片,其中所述LD垫片位于所述LD和所述承载平台之间。如果没有LD垫片,LDD可以和LD直接通过金属介质连接,通常来说,金属介质越长对电信号传输效率影响越大,因此需要LDD和LD之间的金属介质越短越好,但是这就导致LDD和LD之间的距离会很近,LDD工作中产生的热量对LD的影响比较大,热量对LD的性能影响较大,为了避免上述情况出现,以及不影响电信号传输效率,通过LD垫片可以使得LDD和LD之间的距离变得更长一些。
在一种可能的实现方式中,所述LD垫片和所述LDD之间通过金属介质相连接。金属介质可以用于供电和电信号传输等。
在一种可能的实现方式中,发送光组件还包括电气管脚,其中,所述电气管脚穿透过所述孔洞。
在一种可能的实现方式中,LDD和电气管脚之间通过金属介质相连接。金属介质可以用于供电和电信号传输等。
在一种可能的实现方式中,发送光组件还包括透镜管帽,其中,所述透镜管帽固定在底座的底面上。
在一种可能的实现方式中,第一热隔离材料或者第二热隔离材料可以相同,也可以不同的,第一热隔离材料或者第二热隔离材料具体为包含二氧化硅的胶水。由于二氧化硅具有良好的热隔离的效果,因此确保了底座和承载平台之间的热量传输。
在一种可能的实现方式中,所述承载平台与所述底座的第一底面呈垂直关系或平行关系。承载平台和底座之间
在一种可能的实现方式中,当所述承载平台与所述底座的底面平行关系,所述发送光组件还包括反射镜,所述反射镜位于所述LD垫片上。
在一种可能的实现方式中,所述孔洞为M个和所述平台管脚为N个;其中:所述N个平台管脚中的每个平台管脚分别一一对应地穿过所述M个孔洞中一个孔洞,或者所述N个平台管脚中的多个平台管脚穿过所述M个孔洞中一个孔洞。
在一种可能的实现方式中,所述承载平台和所述平台管脚采用相同的导热材料。
第二方面,本申请提供一种双向光组件,包括如第一方面及其第一方面的任一可能性的实现方式中的发送光组件,以及接收光组件,所述接收光组件用于接收光信号,并将所述光信号转换为电信号。
在一种可能的实现方式中,发送光组件数量为一个或一个以上,所述接收光组件数量为一个或一个以上。
第三方面,本申请提供一种光模块,包括如第二方面及其第二方面的任一可能性的实现 方式中的双向光组件。
第四方面,本申请提供一种光通信设备,包括如第三方面中的光模块。
在一种可能的实现方式中,光通信设备具体为光线路终端或者光终端单元。
附图说明
图1为无源光网络的***结构示意图;
图2为申请实施例提供的一种发送光组件剖面结构示意图;
图3为申请实施例提供的另一种发送光组件剖面结构示意图;
图4为申请实施例的管脚的结构示意图
图5为申请实施例提供的一种未封闭的发送光组件立体结构示意图;
图6为申请实施例提供的一种封闭的发送光组件立体结构示意图;
图7为申请实施例提供的另一种发送光组件剖面结构示意图;
图8为申请实施例提供的另一种发送光组件剖面结构示意图;
图9为申请实施例提供的另一种未封闭的发送光组件立体结构示意图;
图10为申请实施例提供的一种双向光组件的结构示意图;
图11为申请实施例提供的一种光模块的结构示意图;
图12为申请实施例提供的另一种光模块的结构示意图。
具体实施方式
本申请实施例涉及接收光组件、发送光组件、组合收发组件、组合光模块及无源光网络***,以下对上述实施例涉及到的概念进行简单说明:
波分复用(wavelength division multiplexing,WDM):波分复用是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
时分复用(time-division multiplexing,TDM),将一个标准时长(例如1秒)分成若干段小的时间段(8000),每一个小时间段(1/8000=125us)传输一路信号;是将不同的信号相互交织在不同的时间段内,沿着同一个信道传输;在接收端再用某种方法,将各个时间段内的信号提取出来还原成原始信号的通信技术。这种技术可以在同一个信道上传输多路信号。
光传输凭借其独有的超高带宽,低电磁干扰等特性,为现代通信方案主流,尤其是新建的网络,以光纤到户为代表的接入网络,正在大规模的部署。在光网络全面普及的整体形势之下,无源光网络(Passive Optical Network,PON)得到了大量的普及。如图1中所示,无源光网络包括位于中心控制站(比如机房)的光线路终端(Optical Line Terminal,OLT)110、多个安装于用户场所的光网络单元(Optical Network Unit,ONU)120以及光分配网络(Optical Distribution Network,ODN)130。每一OLT110通过所述ODN130以点到多点的形式连接到所述多个ONU120。OLT110和ONU120之间可以采用TDM机制、WDM机制或者TDM/WDM混合机制进行通信。其中,从OLT110到ONU120的方向定义为下行方向,而从所述光网络单元120到OLT110的方向为上行方向。所述无源光网络***100可以是不需要任何有源器件来实现OLT110与ONU120之间的数据分发的通信网络,在具体实施例中,OLT110与ONU120之间的数据分发可以通过ODN130中的无源光器件(比如分光器)来实现。 所述无源光网络***100可以为ITU-T G.983标准定义的异步传输模式(Asynchronous Transfer Mode,ATM)PON***或宽带无源光网络(broadband passive optical network,BPON)***、ITU-T G.984系列标准定义的吉比特无源光网络(Gigabit-Capable Passive Optical Network,GPON)***、IEEE 802.3ah标准定义的以太网无源光网络(ethernet passive optical network,EPON)、波分复用无源光网络(WDM PON)***或者下一代无源光网络(NGA PON***,比如ITU***标准定义的10GGPON***、25GGPON***和50GGPON***、IEEE***标准定义的10G EPON***、25GEPON***和50GEPON***、TDM/WDM混合PON***等)。上述标准定义的各种无源光网络***的全部内容通过引用结合在本申请文件中。上述标准定义的各种无源光网络***的全部内容通过引用结合在本申请文件中
OLT110通常位于中心位置(例如中心局Central Office,CO),其可以统一管理所述多个ONU120。OLT110可以充当ONU120与上层网络(图未示)之间的媒介,将从所述上层网络接收到的数据作为下行数据转发到所述光网络单元120,以及将从ONU120接收到的上行数据转发到所述上层网络。OLT110的具体结构配置可能会因所述无源光网络100的具体类型而异,在一种实施例中,OLT110可以包括光模块200和数据处理模块(图未示),所述光模块200可以将经过所述数据处理模块处理的下行数据转换成下行光信号,并通过ODN130将下行光信号发送给ONU120,并且接收ONU120通过ODN130发送的上行光信号,并将所述上行数据信号转换为电信号并提供给所述数据处理模块进行处理。
ONU120可以分布式地设置在用户侧位置(比如用户驻地)。ONU120可以为用于与OLT110和用户进行通信的网络设备,具体而言,ONU120可以充当OLT110与所述用户之间的媒介,例如,ONU120可以将从OLT110接收到的下行数据转发到用户,以及将从用户接收到的数据作为上行数据转发到OLT110。ONU120的具体结构配置可能会因所述无源光网络100的具体类型而异,在一种实施例中,ONU120可以包括光模块300,所述光模块300用于接收OLT110通过ODN130发送的下行数据信号,并且通过ODN130向OLT110发送上行数据信号。应当理解,在本申请文件中,ONU120的结构与光网络终端(Optical Network Terminal,ONT)相近,因此在本申请文件提供的方案中,光网络单元和光网络终端之间可以互换。
ODN130可以是一个数据分发***,其可以包括光纤、光耦合器、光合波/分波器、光分路器和/或其他设备。在一个实施例中,所述光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是无源光器件,具体来说,所述光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是在OLT110和ONU120之间分发数据信号是不需要电源支持的器件。另外,在其他实施例中,该ODN130还可以包括一个或多个处理设备,例如,光放大器或者中继设备(Relay device)。在如图1所示的分支结构中,ODN130具体可以从OLT110延伸到所述多个ONU120,但也可以配置成其他任何点到多点的结构。
需要说明书的是所述光模块200和/或300可以为下面各个实施例的光模块,本实施例中以OLT110的光模块200为例,光模块200包括双向光组件(Bi-directional Optical sub-assembly,BOSA)及电子组件(Electrical Subassembly,ESA)两大部分。将双向光组件的电气管脚与***的电子组件进行电连接,然后装入光模块壳体,即构成了光传输模块。进一步地,BOSA主要包括发送光组件(Transmitting Optical sub-assembly,TOSA)和接收光组件(Receiving Optical sub-assembly,ROSA)。TOSA的作用是将来自于外部的电信号转化为光信号,并将光信号在光纤中进行传输。ROSA的作用是接收由光纤传入的光信号,并将光信号转化为电信号。需要说明书的是TOSA可以为下面各个实施例的TOSA,BOSA可以为下面各个实施例的BOSA。
请参阅图2至图9,图2为第一种TOSA的剖面结构示意图,图3为第二种TOSA的剖面结构示意图,图7为第三种TOSA的剖面结构示意图,图8为第四种TOSA的剖面结构示意图,图5为第一种TOSA或者第二种TOSA未封装前的立体结构示意图,图6为本发明实施例任意一种TOSA封装后的立体结构示意图,图8为第三种TOSA或者第四种TOSA未封装前的立体结构示意图。本发明实施例TOSA包括:底座201、承载平台202、LDD203、透镜管帽204、第二散热块205和第一散热块206。其中,底座201可以多种类型,比如:晶体管外型(transistor outline,TO)底座或者TO基座,底座201可以采用传统的圆形结构,也可以为椭圆形、类圆形、方形等其它形状,附图以及本发明实施例以底座201为圆形结构为例进行说明。底座201上进行开孔,底座201包含多个孔洞,不同的管脚可以穿过不同孔洞,通常来说,一个孔洞只由一个管脚穿过。如图4所示,管脚可以是单根型和多根型,管脚可以是圆柱型或者平板型。管脚可以包括平台管脚207和电气管脚208,通常来说,平台管脚207为普通管脚,平台管脚207用于固定散热块的,电气管脚208,可以用于电信号传输和供电,电气管脚208与电子组件(比如电路板)进行电连接,这样就可以将电子组件的电信号通过电气管脚208传递到LDD222。平台管脚207可以是单根,平台管脚207也可以是多根,平台管脚207可以是圆柱形,平台管脚207也可以是平板型。LDD222和承载平台202位于所述底座201的第一底面,第一散热块206位于所述底座201的第二底面,承载平台202和底座201之间是热隔离的,其中,所述第一底面和所述第二底面是相对的;承载平台202和底座201之间是热隔离的具体的实现方式为:如图2和图7所示,承载平台202可以与底座201之间留有空隙,或者如图3和图8所示,承载平台202可以与底座201之间通过热隔离材料连接在一起,这样底座201和承载平台202之间的热能量就不会相互影响。承载平台202包含1个以上的平台管脚207,承载平台202通过平台管脚207穿过到底座201的孔洞中,承载平台202和平台管脚207在结构上连为一体,承载平台202和平台管脚207采用同一种导热材料,平台管脚207通过玻璃材料(例如:玻璃胶)固定和密封在底座201,平台管脚207***到底座201的孔洞中会存在空隙,由于玻璃材料填补了这些空隙,从而实现平台管脚207密封在底座201上,进一步地实现了底座201与承载平台202之间的隔离,从而使得底座上热量(主要来自于LDD工作中产生的热量)和承载平台202上的热量(主要来自于LD工作中产生的热量)相互隔离,避免了底座上热量影响了承载平台202上LD的性能。需要说明的是:在平台管脚和孔洞之间的空隙的第一热隔离材料可以和承载平台和底座之间的第二热隔离材料是相同的,也可以是不同的。另外,平台管脚、电气管脚和孔洞的数量是不确定的,假设平台管脚的数量为M个,电气管脚的数量为N个孔洞的数量为P个,1个孔洞可以由1个平台管脚或1个电气管脚穿过,1个孔洞有可以由多个平台管脚或者多个电气管脚穿过。
另外,承载平台202的封装面与底座201的底面平行或成一定的小角度。承载平台202平台上设置LD垫片221、LD222和反射镜223,其中LD222固定在LD垫片221上,并最终固定在承载平台202上。反射镜223可改变LD222出光方向以更好地通过透镜241进行汇聚。LDD203通过固定在底座201上,上述固定的方式可以通过焊接或者银胶粘接等方式。LDD203通过金属介质209(例如:金丝)连接到LD垫片221上,LDD3通过金属介质210连接到一个电气管脚208上,金属介质可以用于供电和电信号传输。如果没有LD垫片221,LDD203可以和LD222直接通过金属介质连接,通常来说,金属介质越长对电信号传输效率影响越大,因此需要LDD203和LD222之间的金属介质越短越好,但是这就导致LDD203和LD222之间的距离会很近,LDD203工作中产生的热量对LD222的影响比较大,热量对LD222的性能 影响较大,为了避免上述情况出现,以及不影响电信号传输效率,通过LD垫片221可以使得LDD和LD之间的距离变得更长一些。透镜管帽204通过焊接或者银胶粘接等工艺固定在底座201底面上,这样透镜管帽204可以保护LD222和LDD203等内部器件,透镜管帽204还包含透镜241,该透镜241可以用于接收LD222的出光,并对光信号进行汇聚,并将这些汇聚的光信号传输到光纤上,当透镜管帽204封装在T0底座201之后形成一个整体器件,该整体器件就可以被认为TOSA,制成TOSA后电气管脚一般要剪短处理,可以在穿过底座201的孔洞后的平台管脚207上安装第一散热块206,第一散热块206的形状可以是片状的,第一散热块206也可以被称作为散热片,通常来说,该第一散热块206采用散热金属,如铜、铝合金等材质,可以采用焊接或者银胶粘接等工艺将第一散热块206与平台管脚207进行固定,通常来说,该平台管脚207露出于底座201的长度超过电气管脚208露出于底座的长度,这样可以方便地第一散热块206固定在平台管脚207。另外,底座201四周通过焊接或者银胶粘接等工艺安装固定在第二散热块205,该第二散热块205可以位于底座201圆周上任意位置,以靠近LDD203为最优。上述底座201和承载平台202都可以为金属材质的,因此位于LDD工作时的产生的热量通过第二散热块205将热量散发出去,位于LD工作时产生的热量通过第一散热块206将热量散发出去,从而确保LD的温度不会大幅升高,从而确保了LD出光时的精度。
上述双向光组件的工作原理如下,通过电气管脚208将电子组件的电信号传输到金属介质210,然后由金属介质210将电信号传输到LDD203,接着电信号通过金属介质209传输到LD垫片221,然后由LD垫片221将电信号传输到LD222,接收到电信号(发光命令)的LD222可以发出光信号,该LD222发出的光信号经过反射镜223传输到透镜241,这样透镜241就可以将光汇聚起来在光纤上进行传输。
上述设计的双向光组件实现了LDD与LD的关键散热路径做了分离处理,具体来说:LDD对LD的热量影响路径由现有技术的同一个底座、空气辐射和金丝导热,改变为本发明实施例中底座经过玻璃材料然后到管脚、空气辐射和金丝导热。由于玻璃材料填补了平台管脚***到底座的孔洞中存在的空隙,从而实现底座与承载平台之间的隔离。由于以玻璃胶为代表的玻璃材料主要成分为二氧化硅具有较好的隔热性能,因此,T0底座上热量(主要来自于LDD工作中产生的热量)和承载平台上的热量(主要来自于LD工作中产生的热量)相互隔离,避免了T0底座上热量影响了承载平台上LD。另外,由于底座四周设置第二散热块,这样LDD产生的热量通过底座传递到第二散热块,使得LDD产生的热量尽快地散发或冷却掉,平台管脚安装了第一散热块,这样LD产生的热量通过承载平台传递到第一散热块,使得LD产生的热量尽快地散发或冷却掉。这样使得LDD和LD产生的热量分别通过不同的最优散热路径进行耗散。由于上述双向光组件,大大地降低LDD对LD的热影响,同时也提高了LD出光的稳定性。
如图7所示,本发明实施例提供的另一种双向光组件,和图2实施例不同的地方在于:承载平台的封装面与底座面呈垂直或者夹角略小于90度,这样的设置后LD发的光可以直接发送透镜41,因此承载平台可以无需包含反射镜。如图8所示,本发明实施例提供的另一种双向光组件,和图3实施例不同的地方在于:承载平台的封装面与底座面呈垂直或者夹角略小于90度,这样的设置后LD发的光可以直接发送透镜41,因此承载平台可以无需包含反射镜。
如图10所示,本发明实施例提供的一种BOSA包括:TOSA1001、ROSA1002、插芯1003、WDM模块1004和外壳1005,其中TOSA1001如上述图2-图9所示的任一TOSA结构, TOSA1001包含了透镜1011,TOSA1001的作用是将电信号转化为光信号,并经过透镜1011和WDM模块1004传输到插芯1003中光纤中并向光模块之外进行传输,ROSA1002包含透镜1021,来自于光模块之外光信号传输到插芯1003中光纤,并进一步通过透镜1021将光信号传输到R0SA1002中,ROSA1002还具有将光信号转化成电信号的功能。一般情况下,由于发送和接收的光的波长不同,因此需要在外壳1005内放置WDM模块1004,将这两类波长进行分离,WDM模块1004包括的功能之一是:透射某些波长的光,而同时反射其他波长的光。光发送路径如图10中虚线箭头所示,TOSA1001发出的光经过WDM模块1004时直线透射,然后进入插芯1003中光纤传输;光接收路径如图10中实线箭头所示,插芯1003中光纤传入的光信号经过WDM模块1004时发生反射,ROSA1002正好位于反射光路上,从而实现光信号的接收。另外,光模块还可以包括隔离器1006,该隔离器1006可以用于降低网络中反射光对TOSA1001中激光器性能影响。另外,图10中示出了光模块只包括了1个ROSA和1个TOSA,光模块还可以1个以上ROSA和一个以上TOSA,其中各个TOSA可以如图2-9所示的TOSA的结构和功能。
请参阅图11和图12,本发明还提供一种光模块1100及应用所述光模块1100的无源光网***。所述光模块1100主要用来实现光电、电光转换,即把发送的数据信号转换成光信号并通过光纤发送给对端,及从光纤接收对端发送的光信号并把光信号转换成电信号之后,从电信号中恢复接收数据,所述光模块1100是集成有光信号收发与光电转换功能的可插拔光模块。所述光模块1100包括外壳1120、电路板1130及所述光组件1140,所述光组件1140与所述电路板1130收容于所述外壳1120内,并且所述光组件1100与所述电路板1130电性连接。图11所述的光模块与图12所述的光模块不同之处在于光组件与电路板连接时通过导接插针1115或陶瓷导接体1125两种方式连接。所述光模块1100应用的所述光组件可以使收发光性能的光组件或者是发射性能的光组件等,再此不做限定。进一步的,所述外壳1120内部还设有导热体1150,所述导热体1150与所述光组件1140的底座1110上的散热块贴合。
另外,所述光线路终端包括:图11或图12对应的实施例描述的光模块;光网络单元也可以包括:图11或图12对应的实施例描述的光模块,这里不再赘述。
由于本发明的包含新型发送光组件的光模块或者光网络单元,发送光组件位于承载平台上的平台管脚穿过底座的孔洞,而在所述平台管脚和所述孔洞中空隙由热隔离材料填充密封,这样位于底座的LDD所产生的热量与位于承载平台的LD隔离了,从而大大减少LDD产生的热量传输到LD,进一步确保LD出光的精度。另外,由于在发送光组件的底座侧面任意位置上都可以设置一个或多个第二散热块,这样可以迅速将LDD产生的热量散发出来,从而使得降低底座或者LD的温度,这样进一步确保LD出光的精度。另外,如果没有LD垫片,LDD可以和LD直接通过金属介质连接,通常来说,金属介质越长对电信号传输效率影响越大,因此需要LDD和LD之间的金属介质越短越好,但是这就导致LDD和LD之间的距离会很近,LDD工作中产生的热量对LD的影响比较大,热量对LD的性能影响较大,为了避免上述情况出现,以及不影响电信号传输效率,通过LD垫片可以使得LDD和LD之间的距离变得更长一些。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种发送光组件,其特征在于,包括底座、承载平台、激光二极管LD、激光二极管驱动器LDD、第一散热块和平台管脚;其中:
    所述LD位于所述承载平台的第一面,所述LDD连接在所述底座的第一底面上,所述承载平台和所述底座之间是热隔离的,所述承载平台位于所述底座的第一底面,所述第一散热块位于所述底座的第二底面,其中,所述第一底面和所述第二底面是相对的;
    所述底座包含孔洞,所述平台管脚穿过所述孔洞,在所述平台管脚和所述孔洞之间的空隙由第一热隔离材料填充;其中,所述平台管脚的一端连接所述承载平台的第二面,所述平台管脚的另一端连接所述第一散热块,所述平台管脚用于将所述LD工作时产生的热量传输到所述第一散热块。
  2. 根据权利要求1所述的发送光组件,其特征在于,还包括:第二散热块,其中所述第二散热块设置在所述底座的侧面上,其中,所述底座用于将所述LDD工作时产生的热量传输到所述第二散热块。
  3. 根据权利要求1或2所述的发送光组件,其特征在于,所述承载平台和所述底座之间是热隔离的具体为:所述承载平台的第二面和所述底座之间存在空隙;
    或者所述承载平台的第二面和所述底座之间通过第二热隔离材料连接在一起。
  4. 根据权利要求1至3任意一个所述的发送光组件,其特征在于,还包括:LD垫片,其中所述LD垫片位于所述LD和所述承载平台之间。
  5. 根据权利要求1至4任意一个所述的发送光组件,其特征在于,所述LD垫片和所述LDD之间通过金属介质相连接。
  6. 根据权利要求1至5任意一个所述的发送光组件,其特征在于,还包括:电气管脚,其中,所述电气管脚穿透过所述孔洞。
  7. 根据权利要求1至6任意一个所述的发送光组件,其特征在于,所述LDD和所述电气管脚之间通过金属介质相连接。
  8. 根据权利要求1至7任意一个所述的发送光组件,其特征在于,还包括:透镜管帽,其中,所述透镜管帽固定在底座的底面上。
  9. 根据权利要求1至8任意一个所述的发送光组件,其特征在于,所述第一隔热材料具体为包含二氧化硅的胶水。
  10. 根据权利要求1至9任意一个所述的发送光组件,其特征在于,所述第一面和所述第二面为垂直关系或平行关系。
  11. 根据权利要求10所述的发送光组件,其特征在于,当所述第一面和所述第二面为平行关系,所述发送光组件还包括反射镜,所述反射镜位于所述LD垫片上。
  12. 根据权利要求1至11任一项所述的发送光组件,其特征在于,所述孔洞为M个和所述平台管脚为N个;
    其中:所述N个平台管脚中的每个平台管脚分别一一对应地穿过所述M个孔洞中一个孔洞,或者所述N个平台管脚中的多个平台管脚穿过所述M个孔洞中一个孔洞。
  13. 根据权利要求1至12任一项所述的发送光组件,其特征在于,所述承载平台和所述平台管脚采用相同的导热材料。
  14. 一种双向光组件,其特征在于,包括权利要求1至13任一项所述的发送光组件,以 及接收光组件,所述接收光组件用于接收光信号,并将所述光信号转换为电信号。
  15. 根据权利要求14所述的双向光组件,其特征在于,所述发送光组件数量为一个或一个以上,所述接收光组件数量为一个或一个以上。
  16. 一种光模块,其特征在于,包括权利要求14或15所述的双向光组件。
  17. 一种光通信设备,其特征在于,包括权利要求16所述的光模块。
  18. 根据权利要求17所述的光通信设备,其特征在于,所述光通信设备具体为光线路终端或者光终端单元。
PCT/CN2021/127756 2020-12-30 2021-10-30 发送光组件、双向光组件、光模块、及光通信设备 WO2022142694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011617874.3A CN114690338A (zh) 2020-12-30 2020-12-30 发送光组件、双向光组件、光模块、及光通信设备
CN202011617874.3 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022142694A1 true WO2022142694A1 (zh) 2022-07-07

Family

ID=82133893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127756 WO2022142694A1 (zh) 2020-12-30 2021-10-30 发送光组件、双向光组件、光模块、及光通信设备

Country Status (2)

Country Link
CN (1) CN114690338A (zh)
WO (1) WO2022142694A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040240800A1 (en) * 2003-03-27 2004-12-02 Kenichiro Uchida Light-transmitting module capable of heating the light-emitting module and the substrate included therein
US20050207459A1 (en) * 2004-03-19 2005-09-22 Hitachi Cable, Ltd. Photoelectric conversion module with cooling function
JP2007035697A (ja) * 2005-07-22 2007-02-08 Ricoh Co Ltd 光電気変換モジュール
US8908728B1 (en) * 2013-07-08 2014-12-09 Schott Ag Transistor outline package
CN104201557A (zh) * 2014-08-28 2014-12-10 青岛海信宽带多媒体技术有限公司 一种可调激光器的封装结构及其封装方法
CN104969426A (zh) * 2013-02-04 2015-10-07 微软技术许可有限责任公司 激光二极管设备中的热管理
CN107069420A (zh) * 2016-02-10 2017-08-18 肖特股份有限公司 用于电子元件的壳体以及激光模块

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662526B2 (ja) * 2003-07-29 2011-03-30 セイコーインスツル株式会社 レーザダイオードモジュール
JP2005159036A (ja) * 2003-11-26 2005-06-16 Matsushita Electric Ind Co Ltd 光送受信モジュール
JP2006351610A (ja) * 2005-06-13 2006-12-28 Sumitomo Electric Ind Ltd 光モジュール
JP2007012856A (ja) * 2005-06-30 2007-01-18 Toyoda Gosei Co Ltd Led装置及びled装置用筐体
JP2013110138A (ja) * 2011-11-17 2013-06-06 Sumitomo Electric Ind Ltd 発光モジュール
JP6969154B2 (ja) * 2017-05-16 2021-11-24 富士通オプティカルコンポーネンツ株式会社 光送信器及び光受信器
WO2019155602A1 (ja) * 2018-02-09 2019-08-15 三菱電機株式会社 光モジュール
CN211603627U (zh) * 2020-04-21 2020-09-29 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040240800A1 (en) * 2003-03-27 2004-12-02 Kenichiro Uchida Light-transmitting module capable of heating the light-emitting module and the substrate included therein
US20050207459A1 (en) * 2004-03-19 2005-09-22 Hitachi Cable, Ltd. Photoelectric conversion module with cooling function
JP2007035697A (ja) * 2005-07-22 2007-02-08 Ricoh Co Ltd 光電気変換モジュール
CN104969426A (zh) * 2013-02-04 2015-10-07 微软技术许可有限责任公司 激光二极管设备中的热管理
US8908728B1 (en) * 2013-07-08 2014-12-09 Schott Ag Transistor outline package
CN104201557A (zh) * 2014-08-28 2014-12-10 青岛海信宽带多媒体技术有限公司 一种可调激光器的封装结构及其封装方法
CN107069420A (zh) * 2016-02-10 2017-08-18 肖特股份有限公司 用于电子元件的壳体以及激光模块

Also Published As

Publication number Publication date
CN114690338A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US11916600B2 (en) Receiver optical sub-assembly, combo bi-directional optical sub- assembly, combo optical module, OLT, and PON system
WO2021004387A1 (zh) 一种tosa、bosa、光模块以及光网络设备
US20210149129A1 (en) Receiver Optical Subassembly, Combo Transceiver Subassembly, Combo Optical Module, Communications Apparatus, and PON System
WO2020187149A1 (zh) 光模块
CN111684739A (zh) 一种光收发模块的光学结构和封装结构以及操作方法
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon***
WO2022142694A1 (zh) 发送光组件、双向光组件、光模块、及光通信设备
CN113296199A (zh) 一种单纤双向光组件和光模块
KR101500056B1 (ko) 광학 네트워크용 반사 반도체 광학 증폭기
US10644481B2 (en) Optical component packaging structure, optical component, optical module, and related apparatus and system
CN219780149U (zh) 一种光发射组件、光收发模块以及光通信设备
US11799555B2 (en) Multi-channel light emitting module including lithium niobate modulator
WO2018014220A1 (zh) 一种双向bosa组件及光模块、pon***
WO2024041154A1 (zh) 晶体管外壳封装件及其制备方法、光器件、光模块及光通信***
CN116931185A (zh) 光学装置及光通信设备
CN117170039A (zh) Bosa装置
CN110235250A (zh) 光电转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913438

Country of ref document: EP

Kind code of ref document: A1