WO2022142488A1 - 牙科矫正***及其设计方法和制造方法 - Google Patents

牙科矫正***及其设计方法和制造方法 Download PDF

Info

Publication number
WO2022142488A1
WO2022142488A1 PCT/CN2021/118854 CN2021118854W WO2022142488A1 WO 2022142488 A1 WO2022142488 A1 WO 2022142488A1 CN 2021118854 W CN2021118854 W CN 2021118854W WO 2022142488 A1 WO2022142488 A1 WO 2022142488A1
Authority
WO
WIPO (PCT)
Prior art keywords
erupted
teeth
unerupted
cavity
incompletely
Prior art date
Application number
PCT/CN2021/118854
Other languages
English (en)
French (fr)
Inventor
王星星
吴刚
赵晓磊
刘珊珊
姚峻峰
Original Assignee
正雅齿科科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011636066.1A external-priority patent/CN112674890A/zh
Application filed by 正雅齿科科技(上海)有限公司 filed Critical 正雅齿科科技(上海)有限公司
Publication of WO2022142488A1 publication Critical patent/WO2022142488A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions

Definitions

  • the present application relates to the technical field of dental orthodontics, and in particular, to a dental orthodontic system and its design method and manufacturing method.
  • a dental appliance is a device for treating malocclusion, which can generate force, or the functional force of the masticatory muscle and perioral muscles to change the deformed jaw, dislocated teeth and periodontal tissue through the appliance, so as to benefit the teeth. Maxillofacial normal growth and development.
  • Invisible appliances are recognized by consumers for their beauty, comfort, and good orthodontic effect. Among them, adolescents are some special cases. In a certain stage, there will be deciduous teeth falling off and permanent teeth erupting, which is different from adult permanent teeth orthodontic treatment. In the process of using invisible appliances for orthodontic treatment, if the actual model is the same as that in the mouth If the structure of the tooth is used for orthodontic treatment, it is possible that the part of the dental arch corresponding to the unerupted teeth is covered by the invisible appliance. With the eruption of the teeth, the position corresponding to the invisible appliance covers the adjacent gums, and there is not enough space for the erupted teeth.
  • the eruption affects the normal eruption of the teeth, or the phenomenon that invisible orthodontics cannot be worn after the teeth erupt; some methods in the prior art adopt the method of follow-up design of the eruption space and the eruption of the teeth, but the above methods have certain problems, For example, there are many comprehensive factors in the process of tooth eruption in the patient's mouth. During the design of the treatment plan, if the eruption space is not properly designed, there may be contact between the eruption space and the teeth, resulting in a force that affects the normal eruption of the teeth. In addition, if the prediction of tooth eruption speed and eruption parameters in the follow-up design process is inaccurate, the result of eruption design error may occur, resulting in the effect that the patient cannot wear the appliance normally. The above effects are not expected to be produced in the process of orthodontic treatment. Therefore, with the progress of the orthodontic plan, the design of the eruption space is simple and does not affect the normal growth and eruption of teeth. Design methods and preparation methods are of great significance.
  • the present application provides an orthodontic system and a method of designing and manufacturing the same, which can be used for orthodontic treatment of dentition with unerupted or erupted teeth.
  • the present application provides an orthodontic system comprising a series of shell-like appliances designed to carry out at least a portion of a treatment plan, wherein the series of shell-like appliances
  • the series of shell-like appliances Any one of the shell-like appliances includes a housing in which a plurality of cavities are provided, the plurality of cavities are designed to accommodate at least a portion of the teeth of the jaw, at least one of the plurality of cavities one cavity is an eruption cavity for accommodating an unerupted or erupting tooth, the geometry of the eruption cavity is shaped based on a tooth prediction parameter of the fully erupted state of the unerupted or incompletely erupted tooth;
  • the Tooth prediction parameters include corresponding parameters determined based on the shape, size, position and orientation of the fully erupted state of the unerupted or incompletely erupted teeth, and the teeth prediction parameters are set to satisfy a predetermined threshold range so that in the During the use of the shell-shaped appliance, the eruption cavity is always kept out of contact with the unerupted
  • the predetermined threshold range of the size is 1.02-1.05 times of the size of the one or more unerupted or incompletely erupted teeth in a fully erupted state, and toward the predetermined threshold.
  • the threshold range is 0-5° with the long axis of the fully erupted state of the one or more unerupted or incompletely erupted teeth
  • the predetermined threshold range of the position is the one or more unerupted teeth.
  • the position of the fully erupted tooth in the three-dimensional coordinate system of space is 0-1mm
  • the predetermined threshold range of the shape is that the one or more teeth are not erupted or incompletely erupted.
  • the offset of each vertex coordinate value in the three-dimensional coordinate system of the shape of the fully erupted tooth is 0-1 mm.
  • the size of the tooth prediction parameter includes a labial/buccal side setting parameter and/or a lingual side setting parameter based on the fully erupted state of the unerupted or incompletely erupted teeth.
  • At least one feature of the lip/buccal side setting parameter is set based on at least one parameter of the labial/buccal side in the fully erupted state of the unerupted or incompletely erupted teeth; the lingual side setting parameter The at least one characteristic of is set based on at least one parameter of the lingual side of the fully erupted state of the unerupted or incompletely erupted teeth.
  • the shape and size of the lip/buccal side of the eruption cavity are set based on the shape and size parameters of the lip/buccal side in the tooth prediction parameter, the shape and size of the lip/buccal side in the tooth prediction parameter and
  • the size parameter is set based on the line connecting the high points of the fully erupted labial/buccal side of the unerupted or incompletely erupted teeth at at least one height; the shape and size of the lingual side of the erupted cavity is based on the teeth
  • the shape and size parameters of the lingual side in the prediction parameter are set, and the shape and size parameters of the lingual side in the tooth prediction parameter are based on the high point of the lingual side in the fully erupted state of the unerupted or incompletely erupted teeth on at least one height set up for connection.
  • the lip/buccal side of the eruption cavity is a plane or a curved surface that smoothly transitions with the lip/buccal side of the cavity that accommodates its near and distal adjacent teeth;
  • the lingual side of the eruption cavity is a plane Or a curved surface that smoothly transitions to the lingual side of the cavity that accommodates its proximal and distal adjacent teeth.
  • the tooth prediction parameter further includes a dental and maxillofacial setting parameter
  • the dental and maxillofacial setting parameter is set based on at least one parameter of the dental and maxillofacial in a state of fully erupted teeth that are not erupted or incompletely erupted. , so that the dental and maxillofacial surfaces of the eruption cavity are arranged in a manner that does not affect the occlusion of the upper and lower jaws.
  • the dental and maxillofacial setting parameters are set based on the maximum height of the non-erupted or incompletely erupted teeth in the long-axis direction of the fully grown state.
  • the maxillofacial surface of the teeth of the eruption cavity is a plane or a curved surface that smoothly transitions with the buccal surface of the cavity accommodating the proximal and distal adjacent teeth.
  • the present application also provides a method for designing a dental orthodontic system, comprising the following steps:
  • Acquisition of a digital dental model acquiring a digital dental model, the digital dental model includes a digital tooth model and a digital gingival model;
  • Virtual design of orthodontic plan virtual design is carried out on the single digital crown model, so that the single digital crown model is gradually changed from the initial position to the target orthodontic position, and a series of intermediate digital dental models are obtained;
  • Design of orthodontic system Design a series of shell-like appliances designed to implement at least part of a treatment plan, any of the series of shell-like appliances comprising a shell
  • the casing is provided with a plurality of cavities, the plurality of cavities are designed to accommodate at least part of the teeth of the jaw, and at least one of the plurality of cavities is used to accommodate unerupted teeth or an eruption cavity of an erupting tooth, the geometry of the eruption cavity is shaped based on a tooth prediction parameter of the fully erupted state of the unerupted or incompletely erupted tooth;
  • the tooth prediction parameter includes a tooth prediction parameter based on the unerrupted or
  • the corresponding parameters determined by the shape, size, position and orientation of the fully erupted state of incompletely erupted teeth, the tooth prediction parameters are set to satisfy a predetermined threshold range so that the The eruption cavity is kept out of contact with the unerupted or erupting teeth at all times; wherein, during treatment with the series of shell-like appliances,
  • the predetermined threshold range of the size is 1.02-1.05 times of the size of the one or more unerupted or incompletely erupted teeth in a fully erupted state, and toward the predetermined threshold.
  • the threshold range is 0-5° with the long axis of the fully erupted state of the one or more unerupted or incompletely erupted teeth
  • the predetermined threshold range of the position is the one or more unerupted teeth.
  • the position of the fully erupted tooth in the three-dimensional coordinate system of space is 0-1mm
  • the predetermined threshold range of the shape is that the one or more teeth are not erupted or incompletely erupted.
  • the offset of each vertex coordinate value in the three-dimensional coordinate system of the shape of the fully erupted tooth is 0-1 mm.
  • the size of the tooth prediction parameter includes a labial/buccal side setting parameter and/or a lingual side setting parameter based on the fully erupted state of the unerupted or incompletely erupted teeth.
  • At least one feature of the lip/buccal side setting parameter is set based on at least one parameter of the labial/buccal side in the fully erupted state of the unerupted or incompletely erupted teeth; the lingual side setting parameter The at least one characteristic of is set based on at least one parameter of the lingual side of the fully erupted state of the unerupted or incompletely erupted teeth.
  • the shape and size of the lip/buccal side of the eruption cavity are set based on the shape and size parameters of the lip/buccal side in the tooth prediction parameter, the shape and size of the lip/buccal side in the tooth prediction parameter and
  • the size parameter is set based on the line connecting the high points of the fully erupted labial/buccal side of the unerupted or incompletely erupted teeth at at least one height; the shape and size of the lingual side of the erupted cavity is based on the teeth
  • the shape and size parameters of the lingual side in the prediction parameter are set, and the shape and size parameters of the lingual side in the tooth prediction parameter are based on the high point of the lingual side in the fully erupted state of the unerupted or incompletely erupted teeth on at least one height set up for connection.
  • the lip/buccal side of the eruption cavity is a plane or a curved surface that smoothly transitions with the lip/buccal side of the cavity that accommodates its near and distal adjacent teeth;
  • the lingual side of the eruption cavity is a plane Or a curved surface that smoothly transitions to the lingual side of the cavity that accommodates its proximal and distal adjacent teeth.
  • the tooth prediction parameter further includes a dental and maxillofacial setting parameter
  • the dental and maxillofacial setting parameter is set based on at least one parameter of the dental and maxillofacial state of the unerupted or incompletely erupted teeth. so that the dental and maxillofacial surfaces of the eruption cavity are arranged in a manner that does not affect the occlusion of the upper and lower jaws.
  • the dental and maxillofacial setting parameters are set based on the maximum height of the non-erupted or incompletely erupted teeth in the long-axis direction of the fully grown state.
  • the maxillofacial surface of the eruption cavity is a plane or a curved surface smoothly transitioning from the buccal surface of the cavity accommodating the proximal and distal adjacent teeth.
  • the present application also provides a manufacturing method of a dental orthodontic system, wherein the dental orthodontic appliance in the dental orthodontic system obtained according to any of the above-mentioned design methods is formed by hot pressing film or by additive material According to the manufacturing process, the series of dental aligners are obtained.
  • the present application has at least the following advantages.
  • the dental orthodontic system and its design method and manufacturing method provided by the present application can effectively perform the orthodontic correction of the dentition containing unerupted teeth or erupted teeth, and each shell-shaped appliance in a series of shell-shaped appliances in the dental orthodontic system
  • the appliances all contain eruption cavities to accommodate unerupted or erupting teeth, the eruption cavities on each shell appliance remain the same or substantially the same during orthodontic treatment, and in a series of shell appliances
  • the eruption cavity is kept out of contact with the unerupted or erupting teeth during the treatment, ensuring that the unerupted or erupting teeth will not be affected by the force generated by the interaction with the shell-like appliance, which will affect the eruption.
  • This setting method is easy to operate in the preparation process of a series of shell-shaped appliances, and with the progress of the orthodontic plan, the preparation can be realized by setting a substantially constant structure on a series of dental models corresponding to the preparation of shell-shaped appliances.
  • the eruption cavities remain the same or substantially the same on a series of shell-like aligners that come out.
  • the dental appliance provided by the present application can effectively correct the dentition containing unerupted teeth or erupted teeth; an eruption cavity is provided on the dental appliance, and the dental appliance can be used for the eruption of the erupted teeth, and the remaining teeth are relatively
  • the effect of position maintenance provides a relatively stable eruption space for tooth eruption, and avoids the inclination of adjacent teeth in the eruption space due to the space between the teeth during the tooth eruption process.
  • Fig. 1 is a schematic view of the shape of a shell-shaped dental instrument.
  • FIG. 2 is a flowchart of a method for designing a dental orthodontic system according to an embodiment of the present application.
  • FIG. 3 is another flowchart of a method for designing a dental orthodontic system according to an embodiment of the present application.
  • the present application provides a dental orthodontic system and its design method and manufacturing method, and the present application also provides a dental orthodontic appliance and its setting method and manufacturing method.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • One embodiment of the present application provides an orthodontic system comprising a series of shell-like aligners, such as all shell-like aligners used in the entire treatment plan, which can be designed To implement the entire treatment plan, or be a part of all the shell-like aligners used in the entire treatment plan, designed to implement part of the treatment plan, the series of shell-like aligners includes a plurality of shell-like aligners, wherein, Any one of the plurality of shell-shaped orthodontic appliances includes a housing, for example, in the shape of a shell-shaped dental appliance as shown in FIG.
  • a plurality of cavities are provided in the housing, so Each cavity is mainly surrounded by the lingual side, the labial/buccal side and the dentomaxillofacial, and a plurality of cavities are connected with each other, and the plurality of cavities are designed to accommodate a part or all of the teeth of the jaw.
  • at least one cavity in the plurality of cavities is an eruption cavity for accommodating unerupted or erupting teeth, and the geometry of the eruption cavity is determined through the following method steps.
  • tooth data is obtained, and unerupted or incompletely erupted teeth are identified in the tooth data.
  • the method for obtaining dental data is, for example, that a dental model can be extracted according to the patient's current tooth state, or the state of the tooth and its surrounding tissues (such as gingiva and facial soft tissue), that is, making a physical tooth model (for example, making a plaster tooth model by taking an impression). ), and then scan the physical three-dimensional tooth model to generate a virtual tooth model (corresponding to the basic tooth state) representing the original state of the patient's teeth.
  • the image of the tooth or the tooth and its surrounding tissues can also be directly obtained through optical scanning, three-dimensional photography, three-dimensional imaging or medical CT scanning, so as to obtain the three-dimensional data of the original tooth state. According to the obtained image information, it is possible to easily identify unerupted or incompletely erupted teeth in the dentition.
  • the method used to determine the fully erupted state of the unerupted or incompletely erupted teeth may be: prediction by data analysis of the state data of some fully erupted adult permanent teeth. For example, by analyzing the size of fully erupted adult permanent teeth, the size of unerupted or erupting teeth can be calculated, eg, from a population mean anatomical shape standard. Status data for each incompletely erupted tooth in the oral cavity can be estimated by a computer program.
  • the method used to determine the fully erupted state of the unerupted or incompletely erupted teeth is to establish a standard data set of fully erupted teeth based on parameters such as the average anatomical shape of the tooth population, and according to the type of unerupted or incompletely erupted teeth.
  • the corresponding data of the corresponding tooth type are found in the standard data set as the fully erupted state data of unerupted or incompletely erupted teeth.
  • the method used to determine the fully grown state of the unerupted or incompletely erupted teeth is to create a common dimension of the outermost surface of the overlapping geometry based on the data of a plurality of teeth, and use the common dimension as the fully grown state.
  • Standard data, and according to the type of unerupted or incompletely erupted teeth, the corresponding data of the corresponding tooth type is found in the standard data set as the fully erupted state data of unerupted or incompletely erupted teeth.
  • the state parameter of the eruption cavity for accommodating the unerupted or incompletely erupted teeth is determined based on the fully erupted state tooth data corresponding to the unerupted or incompletely erupted teeth and a determined tooth prediction parameter.
  • the fully-grown tooth data includes, but is not limited to, at least one of the shape, size, position, and orientation of the fully-grown tooth, and the tooth prediction parameter includes the shape, size, position, and orientation of the fully-grown state.
  • the respective predetermined threshold ranges for shape, size, position and orientation for example, the corresponding scale factor or the corresponding deviation value, by setting the appropriate parameters for each tooth prediction, respectively, so that each meets the predetermined threshold.
  • the threshold value range can further realize that the eruption cavity and the unerupted or erupting teeth are always kept out of contact during the use of the shell-shaped appliance.
  • the eruption cavity in each of the series of shell-like aligners and all the other shell-like aligners in the series of shell-like aligners remain the same or substantially the same, that is, in the series of shell-shaped orthodontics, the designs of the eruption cavities on different shell-shaped orthodontics are basically the same, that is, through one design,
  • the state parameters of the eruption cavity can be obtained, and the state parameters can be applied to all shell-shaped correctors designed in the subsequent steps. It should be noted that basically the same means that the main body shape, size, position and orientation of the eruption cavity are the same, because in the process of wearing a series of shell-shaped aligners, the teeth will move with the progress of the treatment, and the eruption cavity will appear.
  • the smooth transition connection between the body and the adjacent tooth cavity will have some adaptive adjustment of the space.
  • the tooth prediction parameters include respective predetermined threshold ranges for shape, size, position and orientation, eg, the predetermined threshold range for size is that the one or more teeth are not erupted or incomplete 1.02-1.05 times the predicted fully erupted size of the erupting tooth; more specifically, based on the size of the non-erupted or incompletely erupted tooth after complete eruption, which is a fixed size and does not change, so based on the above basis Determine the size of the tooth prediction parameters. If the fixed size is enlarged by 1.02-1.05 times, the size is larger than the size of the unerupted or incompletely erupted teeth after the complete eruption, which ensures that the unerupted or incompletely erupted teeth are in the eruption process.
  • the predetermined threshold range of orientation is 0-5° with the predicted fully erupted long axis orientation of the one or more unerupted or incompletely erupted teeth; more specifically, based on the aforementioned unerupted or partially erupted teeth; The orientation of the incompletely erupted teeth after they have fully erupted. This orientation is the determined orientation. Therefore, the orientation in the tooth prediction parameters is determined based on the above-mentioned basis. This orientation is lower than the orientation angle range of the incompletely erupted or incompletely erupted teeth in most cases.
  • the predetermined threshold range of the position is that the predicted position of the one or more unerupted or incompletely erupted teeth after complete eruption is offset by 0-1 mm of each vertex coordinate value in the three-dimensional spatial coordinate system; more Specifically, based on the position of the non-erupted or incompletely erupted tooth after complete eruption, the position is a determined position, so the determination of the position in the tooth prediction parameters is performed based on the above-mentioned basis.
  • the design of the dental orthodontic system is based on the digital dental model, and the digital dental model is composed of multiple triangular facets under a unified three-dimensional coordinate system.
  • Each vertex in the patch has its corresponding spatial coordinate value in the three-dimensional coordinate system, and the position determination of the unerupted or incompletely erupted tooth after complete eruption is based on the spatial coordinate value of each vertex that constitutes it,
  • the position of the tooth prediction parameters is larger than the position offset range of the unerupted or incompletely erupted teeth after complete eruption, that is, the 0-1mm offset is performed based on each vertex of the unerupted or incompletely erupted teeth.
  • the enlargement of the volume ensures that the teeth that are not erupted or not fully erupted do not always remain in contact with the formed eruption cavity during the eruption process.
  • the predetermined threshold range of the shape is that the predicted fully erupted shape of the one or more unerupted or incompletely erupted teeth has an offset of 0-1 mm of each vertex coordinate value in the three-dimensional spatial coordinate system. More specifically, based on the shape of the non-erupted or incompletely erupted teeth after complete eruption, the shape is a definite shape, so the shape in the tooth prediction parameters is determined based on the above-mentioned basis.
  • the predetermined threshold range of the size of the tooth prediction parameter comprises setting a scaling factor or bias value based on a plurality of sizes, for example based on the teeth in the fully erupted state of the unerupted or partially erupted teeth
  • the at least one characteristic of the lip/buccal side setting parameter is set based on at least one parameter of the lip/buccal side of the fully erupted state of the unerupted or incompletely erupted teeth;
  • the characteristics of the setting parameters of the buccal side may be the curvature of the lip/buccal side, the length of the mesiodistal direction of the lip/buccal side, etc., the parameters of the lip/buccal side of the fully erupted state of the unerupted or incompletely erupted teeth It can be the highest point of the lip/buccal profile, the buccal axis ridge, etc., where the highest point of the profile refers to the most prominent part of each axis of the tooth (introduction to Stomatology, page 35, Part II (1)) .
  • the buccal axial ridge refers to the buccal longitudinal bulge extending from the top of the cusp to the neck of the tooth on the axial plane (the expression in the second part (3) of "Introduction to Stomatology", p. 36), etc.
  • At least one characteristic of the lingual side setting parameter is set based on at least one parameter of the lingual side of the fully erupted state of the unerupted or incompletely erupted teeth
  • the characteristic of the lingual side setting parameter may be lingual side Arc, the length in the mesiodistal direction of the lingual side, etc.
  • the parameters of the lingual side in the fully grown state of the unerupted or incompletely erupted teeth can be the highest point of the lingual side profile, the lingual axis ridge, etc., wherein, the highest point of the profile It refers to the most prominent part of each axis of the tooth (the expression in Part II (1) on page 35 of "Introduction to Stomatology").
  • the lingual ridge refers to the longitudinal bulge on the lingual side on the axial plane, extending from the top of the cusp to the neck of the tooth (the expression in the second part (3) of "Introduction to Stomatology", p. 36), etc.
  • the shape and size of the labial/buccal side of the eruption cavity is set based on the shape and size of the buccal side in the tooth prediction parameters, for example, the unerupted or incompletely erupted teeth are fully long
  • the shape and size of the emergent state are respectively multiplied, divided or added and subtracted by the shape and size parameters of the buccal side to obtain the shape and size of the lip/buccal side of the eruption cavity.
  • the shape and size parameters of the buccal surface in the tooth prediction parameters may be based on the high point of the buccal surface after the complete eruption of the unerupted or incompletely erupted teeth (which may also be the height of the shape).
  • a plane is set based on a line connecting high points on a certain height, or a surface is set based on a line connecting high points on two or more heights.
  • the shape and size of the lingual side of the eruption cavity are set based on the shape and size parameters of the lingual side in the tooth prediction parameter, for example, the shape and size of the fully grown state of the unerupted or incompletely erupted teeth are multiplied and divided respectively. Or add or subtract the shape and size parameters of the lingual side to obtain the shape and size of the lingual side of the eruption cavity.
  • the shape and size parameters of the lingual side in the tooth prediction parameters are set based on the line connecting the high points of the lingual side on at least one height after the unerupted or incompletely erupted teeth have fully erupted, for example, based on a certain height
  • a plane is formed by connecting the high points of two or more heights, or a curved surface or an irregular non-planar shape is formed based on the connection of high points at two or more heights.
  • the specific shape of the labial/buccal side of the eruption cavity can be a plane or a curved surface that smoothly transitions with the labial/buccal side of the cavity that accommodates its proximal and distal adjacent teeth; the eruption The specific shape of the lingual side of the cavity can be a plane or a curved surface that smoothly transitions with the lingual side of the cavity for accommodating the proximal and distal adjacent teeth.
  • the tooth prediction parameter further includes a dental and maxillofacial setting parameter
  • the dental and maxillofacial setting parameter is based on at least a A parameter is set so that the dental and maxillofacial surfaces of the eruption cavity are set in a manner that does not affect the occlusion of the upper and lower jaws.
  • the dental and maxillofacial parameters may be the curvature of the dental and maxillofacial surfaces, the height of the dental and maxillofacial surfaces from the cervical line, and the like.
  • the height of the apex of the maxillofacial can be determined according to the lengths of the buccal cusps and the lingual cusps of the teeth and maxillofacial surfaces from the cervical line in the fully erupted state of the unerupted or incompletely erupted teeth; it can also be determined according to the height of the adjacent teeth.
  • the height of the apex of the dentomaxillofacial was determined by the lengths of the buccal and lingual cusps from the dental neck line, respectively.
  • the dental and maxillofacial surfaces of the eruption cavity are obtained based on the dental and maxillofacial parameters of the fully erupted state of the unerupted or incompletely erupted teeth that meet the threshold requirements of the dental and maxillofacial setting parameters.
  • the dental and maxillofacial setting parameters are set based on the maximum height of the non-erupted or incompletely erupted teeth in the long-axis direction of the fully erupted state, and the dental and maxillofacial parameters of the erupted cavity are set.
  • the determination is, for example, multiplying or dividing by a parameter, or adding or subtracting a parameter, on the basis of the height maximum value.
  • the parameter determination of the maxillofacial area of the eruption cavity is, for example, 1.02-1.05 times larger on the basis of the maximum height.
  • the specific shape of the tooth and maxillofacial surface of the eruption cavity is a plane or a curved surface smoothly transitioning from the labial/buccal and lingual surfaces of the cavity containing the proximal and distal adjacent teeth.
  • the maxillofacial surface of the teeth in the erupting cavity can be set as a plane or curved surface according to the determined labial/buccal and lingual surfaces, and can also be adjusted based on the labial/buccal and lingual surfaces within a predetermined threshold range. or surface settings.
  • the main body shape, size, position and orientation of the eruption cavity are consistent.
  • the teeth will move with the progress of the treatment, and the eruption cavity and the adjacent tooth cavity will smoothly transition.
  • the connection will have some adaptations for the space.
  • the geometry other than the eruption cavity on the shell-like appliance enables the teeth other than the unerupted or incompletely erupted teeth to be gradually adjusted from the initial position to the target orthodontic position. That is, the eruption cavity in this embodiment only reserves growth space for the one or more teeth that have not grown to the predetermined parameters for eruption, so that the whole shell-shaped appliance will not interfere with the natural growth of the erupted teeth.
  • the eruption cavity of this example does not have a corrective effect on the abnormal growth of the erupted teeth. That is, if the one or more teeth that have not grown to the predetermined parameters of eruption are deformed teeth, the eruption cavity of this embodiment is also set according to the erupted teeth, but no orthodontic intervention is performed on them.
  • the geometric structure of the shell-shaped appliance except for the eruption cavity enables the teeth other than the unerupted or incompletely erupted teeth to be gradually adjusted from the initial position to the target orthodontic position. Teeth other than the erupting teeth have an orthodontic effect so that the eruption of the eruption is not interfered with while the teeth are aligned.
  • the present application also provides a method for designing a dental orthodontic system for designing the above-mentioned dental orthodontic system. As shown in FIG. 2 , the designing method includes the following steps S1 to S4.
  • Acquisition of a digital dental model acquiring a digital dental model, the digital dental model includes a digital tooth model and a digital gingival model.
  • the digital dental model can be obtained by any one of the following methods: tomography (CAT scan), digital tomography (CT), cone beam CT scan (CBCT), magnetic resonance imaging (MRI) , intraoral optical scanning and other means to obtain a digital model representing the original tooth layout; alternatively, a plaster cast of the patient's teeth can be made by conventional means, and then scanned by a scanning device such as a laser scanning device, CT scanning device. Digital mockup of layout.
  • CAT scan tomography
  • CT digital tomography
  • CBCT cone beam CT scan
  • MRI magnetic resonance imaging
  • intraoral optical scanning intraoral optical scanning and other means to obtain a digital model representing the original tooth layout
  • a plaster cast of the patient's teeth can be made by conventional means, and then scanned by a scanning device such as a laser scanning device, CT scanning device.
  • Digital mockup of layout Digital mockup of layout.
  • the cutting also referred to as “segmentation”, where “cutting” and “segmentation” are used interchangeably herein
  • the cutting may employ the following non-limiting examples.
  • the segmentation method is performed by, for example, the following steps S200 to S202.
  • S200 Select the first type of feature points on the digital dental model to be segmented, where the digital dental model is a triangular face model.
  • S201 Classify the second type of feature points in the digital dental and jaw model according to the first type of feature points, and determine the teeth to which each second type of feature point belongs.
  • S202 Merge the feature points of the second type belonging to each tooth respectively to obtain a digital tooth region of each single tooth divided by the digital jaw model.
  • the above-mentioned first type of feature points are vertices of triangular facets selected based on the digital dental model and used to guide the segmentation of each single tooth in the dental jaw, and the second type of feature points are selected based on the digital dental model and The triangular facet vertices used to characterize the overall shape of the digital dental model; that is, the first type of feature points are used to guide the segmentation of the teeth and jaws, and the second type of feature points are the feature points for the specific segmentation of the teeth and jaws ; Through the segmentation guidance of the first type of feature points, the second type of feature points can be accurately classified to each tooth, thereby improving the segmentation accuracy of the teeth and jaws.
  • the segmentation of a single tooth is achieved by selecting the first type of feature points on the digital dental model as a whole, and then classifying and reassembling the second type of feature points on the digital dental model according to the first type of feature points. It is selected based on the overall digital dental model.
  • the classification information of the feature points covers the overall classification features of the digital dental model. Therefore, even if there is noise data in the model, the noise data will be evenly distributed to the global data, making the entire segmentation method fault-tolerant. With high rate, single tooth can be segmented more accurately, ensuring the integrity of each tooth.
  • the specific embodiment of identifying and marking the data representing the teeth that have not erupted or not completely erupted can be to identify the tooth position first, and then compare the volume of the identified tooth with the standard tooth. When the identified tooth volume is smaller than the corresponding standard Teeth are marked as unerupted or incompletely erupted teeth when the volume of the teeth is within a certain threshold, for example, half the volume of the standard teeth.
  • the method for tooth position identification may adopt the following methods: Step 1: Establish a first priori model, a second priori model and a third priori model; wherein, the first priori model includes collecting existing The distance between every two adjacent teeth in the tooth model and the number of missing teeth corresponding to the distance, the probability distribution function value is calculated for the distance between different numbers of missing teeth; the second prior model includes collecting each tooth in the existing tooth model. The feature quantity of the characteristic position of the tooth, and the probability distribution function value is calculated for the characteristic quantity of the tooth with the same number that is at least the characteristic position; the third a priori model includes collecting the existing tooth model.
  • Step 2 The tooth arrangement of every two adjacent teeth after the missing tooth is calculated, and the probability distribution function value of the tooth arrangement is calculated;
  • Step 2 Obtain the characteristic value of the representative position of each tooth of the tooth model to be tested and the adjacent two adjacent teeth. The distance between the teeth;
  • Step 3 Determine the tooth position of the tooth model to be tested based on the Hidden Markov Model. The tooth position is identified according to the above method, and then the tooth volume is compared according to the tooth position mark and the standard tooth model. Erupting teeth.
  • Virtual design of orthodontic plan perform virtual design on the single digital crown model, so that the single digital crown model is gradually changed from the initial position to the target orthodontic position, and a series of intermediate digital dental models are obtained, At the same time, the target orthodontic position was obtained.
  • Design of orthodontic system Design a series of shell-like appliances designed to implement at least part of a treatment plan, any of the series of shell-like appliances comprising a shell
  • the casing is provided with a plurality of cavities, the plurality of cavities are designed to accommodate at least part of the teeth of the jaw, and at least one of the plurality of cavities is used to accommodate unerupted teeth or an eruption cavity of an erupting tooth, the geometry of the eruption cavity is shaped based on a tooth prediction parameter of the fully erupted state of the unerupted or incompletely erupted tooth;
  • the tooth prediction parameter includes a tooth prediction parameter based on the unerrupted or
  • the corresponding parameters determined by the shape, size, position and orientation of the fully erupted state of incompletely erupted teeth, the tooth prediction parameters are set to satisfy a predetermined threshold range so that the The eruption cavity is kept out of contact with the unerupted or erupting teeth at all times; wherein, during treatment with the series of shell-like appliances,
  • the tooth prediction parameters include predictions for each parameter of the fully erupted state of each unerupted or incompletely erupted tooth, such as, but not limited to, the shape of the fully grown state of each unerupted or incompletely erupted tooth, size, location and orientation, etc.
  • the shape, size, position and orientation it is subdivided into shapes, sizes, positions and orientations of multiple dimensions, and the tooth prediction parameters include the shape, size, position and orientation for each subdivision dimension
  • the parameter determines, for example, a scaling factor or an offset value.
  • the tooth prediction parameters include shape, size, position, and prediction parameters toward each dimension, and each prediction parameter has a corresponding threshold range, specifically, as described below.
  • the predetermined threshold range of size is 1.02-1.05 times the predicted fully erupted size of the one or more unerupted or incompletely erupted teeth; more specifically, based on the aforementioned unerupted or incompletely erupted teeth
  • the size after complete eruption is a fixed size and will not change. Therefore, the size of the tooth prediction parameters is determined based on the above-mentioned basis. For example, the fixed size is enlarged by 1.02-1.05 times, and the size is smaller than that of the unerupted or incompletely erupted
  • the large size of the fully erupted teeth ensures that the unerupted or incompletely erupted teeth do not always remain out of contact with the formed eruption cavity during the eruption process.
  • the predetermined threshold range of orientation is 0-5° with the predicted fully erupted long axis orientation of the one or more unerupted or incompletely erupted teeth; more specifically, based on the aforementioned unerupted or partially erupted teeth; The orientation of the incompletely erupted teeth after they have fully erupted. This orientation is the determined orientation. Therefore, the orientation in the tooth prediction parameters is determined based on the above-mentioned basis. , that is, based on the long axis of the unerupted or incompletely erupted teeth, the angle of 0-5° is enlarged to ensure that the unerupted or incompletely erupted teeth do not always keep out of contact with the formed eruption cavity during the eruption process. .
  • the predetermined threshold range of the position is that the predicted position of the one or more unerupted or incompletely erupted teeth after complete eruption is offset by 0-1 mm of each vertex coordinate value in the three-dimensional spatial coordinate system; more Specifically, based on the position of the non-erupted or incompletely erupted tooth after complete eruption, the position is a determined position, so the determination of the position in the tooth prediction parameters is performed based on the above-mentioned basis. It should be noted that the design of the dental orthodontic system is based on the digital dental model, and the digital dental model is composed of multiple triangular facets under a unified three-dimensional coordinate system.
  • Each vertex in the patch has its corresponding spatial coordinate value in the three-dimensional coordinate system, and the position determination of the unerupted or incompletely erupted tooth after complete eruption is based on the spatial coordinate value of each vertex that constitutes it,
  • the position of the tooth prediction parameters is larger than the position offset range of the unerupted or incompletely erupted teeth after complete eruption, that is, the 0-1mm offset is performed based on each vertex of the unerupted or incompletely erupted teeth.
  • the enlargement of the volume ensures that the teeth that are not erupted or not fully erupted do not always remain in contact with the formed eruption cavity during the eruption process.
  • the predetermined threshold range of the shape is that the predicted fully erupted shape of the one or more unerupted or incompletely erupted teeth has an offset of 0-1 mm of each vertex coordinate value in the three-dimensional spatial coordinate system. More specifically, based on the shape of the non-erupted or incompletely erupted teeth after complete eruption, the shape is a definite shape, so the shape in the tooth prediction parameters is determined based on the above-mentioned basis.
  • the size prediction parameter of the tooth prediction parameter includes a set parameter based on the fully erupted state of the unerupted or incompletely erupted tooth, and/or the tongue
  • the setting parameter of the side dimension is to set a predetermined threshold range for the dimension of the lip/buccal side of the unerupted or incompletely erupted teeth in the fully grown state to obtain the corresponding dimension of the erupted cavity, which is the unerupted tooth.
  • a predetermined threshold range is set for the dimension of the lingual side of the fully erupted state of the incompletely erupted teeth to obtain the corresponding dimension of the erupted cavity.
  • the at least one characteristic of the lip/buccal side setting parameter is set based on at least one parameter of the lip/buccal side of the fully erupted state of the unerupted or incompletely erupted teeth;
  • the characteristics of setting parameters of the buccal surface can be the curvature of the lip/buccal surface, the length in the mesiodistal direction of the lip/buccal surface, etc.
  • the parameters of the lip/buccal surface in the fully grown state of the unerupted or incompletely erupted teeth can be is the highest point of the lip/buccal side profile, the buccal axis ridge, etc., and at least one characteristic of the setting parameter of the lingual side is set based on at least one parameter of the lingual side of the fully erupted state of the unerupted or incompletely erupted teeth,
  • the characteristics of the setting parameters of the lingual side can be the curvature of the lingual side, the length in the mesio-distal direction of the lingual side, etc.
  • the parameters of the lingual side of the fully grown state of the unerupted or incompletely erupted teeth can be the lingual side.
  • the shape and size of the labial/buccal side of the eruption cavity is set based on the shape and size parameters of the labial/buccal side in the tooth prediction parameter, the shape of the buccal side in the tooth prediction parameter. and size parameters are set based on the line connecting the high points of the buccal side after the fully erupted teeth of the unerupted or incompletely erupted teeth at at least one height; the shape and size of the lingual side of the erupted cavity are predicted based on the teeth
  • the shape and size parameters of the lingual side in the parameters are set, and the shape and size parameters of the lingual side in the tooth prediction parameter are based on the connection of the high points of the lingual side on at least one height after the fully erupted teeth of the unerupted or incompletely erupted teeth.
  • the unerupted tooth is the left first molar.
  • the left first molar can be set in the fully erupted state, such as the shape of the lip/buccal side of the eruption cavity of the left first molar.
  • the size is based on the full growth of the left first molar.
  • the highest point of the lip/buccal profile is one of the marked points, and it is connected with the highest point of the lip/buccal profile of the two adjacent distal teeth to get the eruption.
  • the labial/buccal side of the cavity; the shape and size of the lingual side is based on the highest point of the lingual side profile of the fully grown left first molar as one of the marked points, which is aligned with the lingual side of the adjacent distal two teeth Connect the highest point of the shape to get the tongue surface that emerges from the cavity.
  • the shape of the labial/buccal side of the eruption cavity can be a plane or a curved surface that smoothly transitions with the labial/buccal side of the cavity for accommodating the proximal and distal adjacent teeth; the lingual side of the eruption cavity
  • the shape of the tooth can be a plane or a curved surface that smoothly transitions with the lingual side of the cavity that accommodates its proximal and distal adjacent teeth.
  • the tooth prediction parameter further includes a dental and maxillofacial setting parameter
  • the dental and maxillofacial setting parameter is based on at least one parameter of the dental and maxillofacial in the fully erupted state of the unerupted or incompletely erupted teeth.
  • Setting is performed so that the dental and maxillofacial surfaces of the eruption cavity are set in a manner that does not affect the occlusion of the upper and lower jaws.
  • the dental and maxillofacial surfaces of the eruption cavity are obtained based on the dental and maxillofacial parameters of the fully erupted state of the unerupted or incompletely erupted teeth that meet the threshold requirements of the dental and maxillofacial setting parameters.
  • the design of the dental and maxillofacial parameters is set based on the maximum height in the long axis direction of the fully erupted state of the unerupted or incompletely erupted teeth, and the parameters of the teeth and maxillofacial surfaces of the erupted cavity are determined, for example. is to multiply or divide a parameter, or add or subtract a parameter, based on the height maximum value.
  • the height of the apex of the maxillofacial can be determined according to the lengths of the buccal cusps and the lingual cusps of the teeth and maxillofacial surfaces from the cervical line in the fully erupted state of the unerupted or incompletely erupted teeth; it can also be determined according to the height of the adjacent teeth.
  • the height of the apex of the dentomaxillofacial was determined by the lengths of the buccal and lingual cusps from the dental neck line, respectively.
  • the dental and maxillofacial surfaces of the eruption cavity are obtained based on the dental and maxillofacial parameters of the fully erupted state of the unerupted or incompletely erupted teeth that meet the threshold requirements of the dental and maxillofacial setting parameters.
  • the shape of the maxillofacial surface of the eruption cavity may be a plane or a curved surface that smoothly transitions with the buccal surface of the cavity for accommodating the proximal and distal adjacent teeth.
  • the maxillofacial surface of the teeth in the erupting cavity can be set as a plane or curved surface according to the determined labial/buccal and lingual surfaces, and can also be adjusted based on the labial/buccal and lingual surfaces within a predetermined threshold range. or surface settings.
  • the main body shape, size, position and orientation of the eruption cavity are consistent. During the process of wearing a series of shell-shaped appliances, the teeth will move with the progress of the treatment, and the eruption cavity and the adjacent tooth cavity will smoothly transition.
  • the connection will have some adaptations for the space.
  • the present application also provides a method for manufacturing a dental orthodontic system, the manufacturing method specifically includes: applying heat to each dental appliance in the dental orthodontic system obtained according to any of the above design methods
  • the series of dental orthodontic appliances are obtained by lamination molding or manufacturing using an additive manufacturing process.
  • the specific manufacturing method includes: 3D printing based on the digital dental model and a series of intermediate digital dental models, to produce a solid dental model, and then printing in the The shell-shaped dental appliance containing the tooth shape is obtained by thermoforming on the solid dental model, and then the shell-shaped dental appliance containing the tooth shape is cut along the gum line or adjacent to the gum line to obtain a shell capable of accommodating the teeth. shaped dental appliances.
  • the specific manufacturing process is to use the 3D printing method to print and manufacture the designed shell-shaped dental appliance digital model.
  • the present application also provides an orthodontic system comprising a series of shell-like appliances, the series of shell-like appliances comprising a plurality of shell-like appliances, the Multiple shell aligners are designed to implement part or all of a treatment plan.
  • the dental orthodontic system may include, but is not limited to, a first shell-shaped appliance and a second shell-shaped appliance.
  • the eruption cavities in the first and second shell-like appliances remain the same or substantially the same.
  • the first shell-shaped orthodontic device or the second shell-shaped orthodontic device can be obtained by any of the above-mentioned design methods and manufacturing methods, and its structure can be any of the above-mentioned shell-shaped orthodontic devices.
  • the present application also provides a method for designing a dental orthodontic system, which can be used to design the above-mentioned dental orthodontic system.
  • the designing method includes steps S1 to S4 .
  • the steps S1, S2, and S3 are as described above, which will not be repeated here, and only step S4 will be described in detail below.
  • Design of orthodontic system including designing a series of shell-shaped appliances, such as the first shell-shaped appliance and the second shell-shaped appliance.
  • a series of shell-like aligners designed to implement at least a portion of a treatment plan, the series of shell-like aligners including a first shell-like aligner, the first
  • the shell-like appliance includes a housing in which a plurality of cavities are provided, the plurality of cavities are designed to receive at least part of the teeth of the jaw, at least one of the plurality of cavities is An eruption cavity for accommodating an unerupted or erupting tooth, the geometry of the eruption cavity being shaped based on a tooth prediction parameter of the fully erupted state of the unerupted or incompletely erupted tooth; the tooth prediction parameter includes Based on the corresponding parameters determined for the shape, size, position and orientation of the fully erupted state of the unerupted or incompletely erupted teeth, the tooth prediction parameters are designed to satisfy a predetermined threshold range so that the During use, the eruption cavity is always kept out of contact with the unerupted or erupting teeth.
  • the series of shell-like aligners further includes a second shell-like aligner including a housing having a plurality of cavities disposed therein, the plurality of cavities being designed to be housing at least a portion of the teeth of the jaw, at least one of the plurality of cavities is an eruption cavity for housing unerupted or erupting teeth, the eruption cavity having a geometry based on the unerupted teeth or the tooth prediction parameters of the fully erupted state of incompletely erupted teeth; the tooth prediction parameters include corresponding parameters determined based on the shape, size, position and orientation of the fully erupted state of the non-erupted or incompletely erupted teeth.
  • the tooth prediction parameters are set to satisfy a predetermined threshold range so that the eruption cavity and the non-erupted or erupting teeth are always kept out of contact during use of the shell-like appliance.
  • the eruption cavities in the first and second shell-like appliances remain the same or substantially the same.
  • the first shell-shaped orthodontic device and the second shell-shaped orthodontic device may be any of the above-mentioned shell-shaped orthodontic devices, or a shell-shaped orthodontic device obtained by any of the above-mentioned design methods or manufacturing methods.
  • the present application also provides a shell-like orthosis designed to implement at least a portion of a treatment plan, the shell-like orthosis comprising a housing having a plurality of cavities disposed therein, The plurality of cavities are designed to accommodate at least part of the teeth of the jaw, at least one of the plurality of cavities is an eruption cavity for accommodating unerupted or erupting teeth, the eruption cavity
  • the geometric shape of the body is shaped based on the tooth prediction parameters of the fully erupted state of the unerupted or incompletely erupted teeth; the tooth prediction parameters include the shape, size, and position based on the fully grown state of the unerupted or incompletely erupted teeth and towards the determined corresponding parameters, the tooth prediction parameters are designed to satisfy a predetermined threshold range so that the eruption cavity and the non-erupted or erupting teeth are always maintained during use of the shell-like appliance not in contact.
  • the shell-shaped orthosis may be any of the above-mentioned implementation structures of the shell-shaped orthosis.
  • the present application also provides a method for designing a shell-shaped orthosis, which can be used to design the above-mentioned shell-shaped orthosis, and the design method includes the following steps S1 to S4.
  • the steps S1, S2, S3, and S4 are as described above, and will not be repeated here.
  • the shell-shaped orthodontic device may specifically be any of the above-mentioned shell-shaped orthodontic devices, or a shell-shaped orthodontic device obtained by adopting any of the above-mentioned design methods or manufacturing methods.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

一种牙科矫正***,包括一系列壳状矫正器,壳状矫正器包括至少一个用于容置未萌出或萌出中的牙齿的萌出腔体,萌出腔体的几何形状基于未萌出或未完全萌出牙齿完全长出状态的牙齿预测参数成型;牙齿预测参数设定为满足预定的阈值范围以使在壳状矫正器的使用过程中萌出腔体与未萌出或萌出中的牙齿始终保持不接触;在使用一系列壳状矫正器治疗期间,一系列的壳状矫正器中每一个壳状矫正器中的萌出腔体与其它的壳状矫正器中的萌出腔体保持相同或基本相同。还提供一种牙科矫正***的设计方法及制造方法。

Description

牙科矫正***及其设计方法和制造方法
相关申请的交叉引用
本申请要求享有于2020年12月31日递交的中国专利申请202011636066.1和202023324583.3的优先权,它们的全部内容在此通过援引并入本文。
技术领域
本申请涉及牙科矫正技术领域,特别涉及一种牙科矫正***及其设计方法和制造方法。
背景技术
牙科矫治器是一种治疗错颌畸形的装置,可产生作用力,或是咀嚼肌口周肌的功能作用力通过矫治器使畸形的颌骨、错位牙及牙周组织发生变化,以利于牙颌面正常生长发育。
隐形矫治器凭借其美观、佩戴舒适、矫治效果佳,被广大消费者所认可。其中青少年为一部分特殊的病例,其一定阶段中会有乳牙脱落、恒牙萌出的阶段,与成人恒牙矫治有所区别,在使用隐形矫治器进行矫治的过程中若按照与其口内实际的模型相同的结构进行牙齿矫治,则有可能会出现牙弓中对应没有萌出牙齿的部分被隐形矫治器覆盖,随着牙齿的萌出,隐形矫治器对应的位置处由于覆盖邻近牙龈,萌牙没有足够的空间萌出而影响牙齿的正常萌出,或者在牙齿萌出后会出现隐形牙齿矫治无法佩戴的现象;现有技术中有的方法采用萌出空间与牙齿萌出随动设计的方法,但是上述方法存在一定的问题,如患者口内牙齿萌出过程中综合因素较多,在进行矫治计划设计过程中,如果萌出空间设计不合理,就有可能会出现萌出空间与牙齿之间相互接触,产生作用力,而影响牙齿正常萌出的效果;另外,随动设计过程中对于牙齿萌出速度及萌出参数的预测若不精准,还有可能发生萌出设计误差的结果,产生患者无法正常佩戴矫治器的效果。上述效果均是在矫治过程中不希望产生的,因此,设计一种随着矫治计划的进行,萌出空间设计简单、并且不影响牙齿的正常生长萌出的牙科矫正器和牙科矫治***,以及它们的设计方法和制备方法具有重要的意义。
发明内容
在部分实施例中,本申请提供了一种牙科矫正***及其设计方法和制造方法,可以用于带有未萌牙或者萌出牙的牙列的矫正。
在部分实施例中,本申请提供了一种牙科矫正***,包括一系列的壳状矫正器,所述壳状矫正器设计为实施治疗计划的至少一部分,其中,所述一系列壳状矫正器中的任一壳状矫正器包括壳体,所述壳体中设置有多个腔体,所述多个腔体被设计为至少容置一部分颌的牙齿,所述多个腔体中的至少一个腔体是用于容置未萌出或萌出中的牙齿的萌出腔体,所述萌出腔体的几何形状基于所述未萌出或未完全萌出牙齿完全长出状态的牙齿预测参数成型;所述牙齿预测参数包括基于所述未萌出或未完全萌出牙齿完全长出状态的形状、尺寸、位置和朝向所确定的对应参数,所述牙齿预测参数设定为满足预定的阈值范围以使在所述壳状矫正器的使用过程中所述萌出腔体与所述未萌出或萌出中的牙齿始终保持不接触;其中,在使用所述一系列壳状矫正器治疗期间,所述一系列的壳状矫正器中每一个壳状矫正器中的所述萌出腔体与其它的所述壳状矫正器中的所述萌出腔体保持相同或基本相同。
进一步地,所述牙齿预测参数中,尺寸的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的尺寸的1.02-1.05倍,朝向的所述预定的阈值范围为与所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的长轴朝向呈0-5°角度,位置的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的位置在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm,形状的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的形状在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm。
进一步地,所述牙齿预测参数的所述尺寸包括基于所述未萌出或未完全萌出牙齿完全长出状态的唇/颊侧面设定参数、和/或舌侧面设定参数。
进一步地,所述唇/颊侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的唇/颊侧面的至少一个参数而设置;所述舌侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的舌侧面的至少一个参数而设置。
进一步地,所述萌出腔体的所述唇/颊侧面的形状和尺寸基于所述牙齿预测参数中唇/颊侧面的形状和尺寸参数设置,所述牙齿预测参数中唇/颊侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出状态的唇/颊侧面在至少一个高度上的高点连线而设置;所述萌出腔体的舌侧面的形状和尺寸基于所述牙齿预测参数中舌侧面的形状和尺寸参数设置,所述牙齿预测参数中舌侧面的形状和尺寸参数基于所述未萌出或未完全萌出 的牙齿完全萌出状态的舌侧面在至少一个高度上的高点连线而设置。
进一步地,所述萌出腔体的所述唇/颊侧面为平面或与容纳其近、远中邻牙的腔体的唇/颊侧面光滑过渡的曲面;所述萌出腔体的舌侧面为平面或与容纳其近、远中邻牙的腔体的舌侧面光滑过渡的曲面。
进一步地,所述牙齿预测参数还包括牙颌面设定参数,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态的牙颌面的至少一个参数进行设定,以使所述萌出腔体的牙颌面以不影响上下颌咬合的方式设置。
进一步地,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态长轴方向的高度最大值设置。
进一步地,所述萌出腔体的所述牙颌面为平面或与容纳其近、远中邻牙的腔体的颊侧面光滑过渡的曲面。
在部分实施例中,本申请还提供了一种牙科矫正***的设计方法,包括如下步骤:
S1.数字化牙颌模型的获取:获取一数字化牙颌模型,所述数字化牙颌模型包括数字化牙齿模型及数字化牙龈模型;
S2.数字化牙颌模型的切割和识别:将所述数字化牙颌模型分割为独立的数字化牙龈模型和单颗数字化牙冠模型;识别并标记表示未萌出或者未完全萌出的牙齿的数据;
S3.矫治计划的虚拟设计:将所述单颗数字化牙冠模型进行虚拟设计,以使所述单颗数字化牙冠模型由初始位置逐渐变化至目标矫治位置,得到一系列中间数字化牙颌模型;
S4.牙科矫正***的设计:设计一系列的壳状矫正器,所述壳状矫正器设计为实施治疗计划的至少一部分,所述一系列壳状矫正器中的任一壳状矫正器包括壳体,所述壳体中设置有多个腔体,所述多个腔体被设计为至少容置部分颌的牙齿,所述多个腔体中的至少一个腔体是用于容置未萌出或萌出中的牙齿的萌出腔体,所述萌出腔体的几何形状基于所述未萌出或未完全萌出牙齿完全长出状态的牙齿预测参数成型;所述牙齿预测参数包括基于所述未萌出或未完全萌出牙齿完全长出状态的形状、尺寸、位置和朝向所确定的对应参数,所述牙齿预测参数设定为满足预定的阈值范围以使在所述壳状矫正器的使用过程中所述萌出腔体与所述未萌出或萌出中的牙齿始终保持不接触;其中,在使用所述一系列壳状矫正器治疗期间,所述一系列的壳状矫正器中每一个壳状矫正器中的所述萌出腔体与其它的所述壳状矫正器中的所述萌出腔体保持相同或基本相同。
进一步地,所述牙齿预测参数中,尺寸的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的尺寸的1.02-1.05倍,朝向的所述预定的阈值范围为与所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的长轴朝向呈0-5°角度,位置 的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的位置在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm,形状的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的形状在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm。
进一步地,所述牙齿预测参数的所述尺寸包括基于所述未萌出或未完全萌出牙齿完全长出状态的唇/颊侧面设定参数、和/或舌侧面设定参数。
进一步地,所述唇/颊侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的唇/颊侧面的至少一个参数而设置;所述舌侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的舌侧面的至少一个参数而设置。
进一步地,所述萌出腔体的所述唇/颊侧面的形状和尺寸基于所述牙齿预测参数中唇/颊侧面的形状和尺寸参数设置,所述牙齿预测参数中唇/颊侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出状态的唇/颊侧面在至少一个高度上的高点连线而设置;所述萌出腔体的舌侧面的形状和尺寸基于所述牙齿预测参数中舌侧面的形状和尺寸参数设置,所述牙齿预测参数中舌侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出状态的舌侧面在至少一个高度上的高点连线而设置。
进一步地,所述萌出腔体的所述唇/颊侧面为平面或与容纳其近、远中邻牙的腔体的唇/颊侧面光滑过渡的曲面;所述萌出腔体的舌侧面为平面或与容纳其近、远中邻牙的腔体的舌侧面光滑过渡的曲面。
进一步地,所述牙齿预测参数还包括牙颌面设定参数,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态的的牙颌面的至少一个参数进行设定,以使所述萌出腔体的牙颌面以不影响上下颌咬合的方式设置。
进一步地,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态长轴方向的高度最大值设置。
进一步地,所述萌出腔体的牙颌面为平面或与容纳其近、远中邻牙的腔体的颊侧面光滑过渡的曲面。
在部分实施例中,本申请还提供了一种牙科矫正***的制作方法,将根据上述任一所述的设计方法得到的牙科矫正***中的牙科矫正器,采用热压膜成型或者采用增材制造的工艺制作,得到所述一系列牙科矫正器。
与现有技术相比,本申请至少具有以下优势。
本申请提供的牙科矫正***及其设计方法和制造方法能够有效的进行包含未萌牙或者萌出牙的牙列的矫正,并且在牙科矫正***中的一系列壳状矫正器中的每一个壳状矫 正器均包含萌出腔体,用于容置未萌出或萌出中的牙齿,每个壳状矫正器上的萌出腔体在矫治治疗期间均保持相同或基本相同,并且一系列壳状矫正器中的萌出腔体在治疗期间与未萌出或萌出中的牙齿始终保持不接触,确保了未萌出或萌出中的牙齿不会受到与壳状矫正器相互作用产生的力,而影响萌出。此种设置方式在一系列壳状矫正器的制备过程中操作简单,并且随着矫治计划的进行,在制备壳状矫正器对应的一系列牙颌模型上设置基本恒定的结构,即可实现制备出的一系列壳状矫正器上的萌出腔体保持相同或基本相同。
此外,本申请提供的牙科矫正器能够有效的进行包含未萌牙或者萌出牙的牙列的矫正;牙科矫正器上设置萌出腔体,该牙科矫正器可以用于萌出牙齿的萌出,其余牙齿相对位置保持的效果,为牙齿萌出提供相对稳定的萌出空间,避免因为牙齿萌出过程中的牙齿间的空隙而导致萌出空间相邻牙齿的倾斜。
附图说明
图1是壳状牙科器械的形状示意图。
图2是本申请一实施例的牙科矫正***的设计方法的一种流程框图。
图3是本申请一实施例的牙科矫正***的设计方法的另一种流程框图。
具体实施方式
在部分实施例中,本申请提供一种牙科矫正***及其设计方法和制造方法,本申请还提供一种牙科矫正器及其设置方法和制造方法。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含义而进 行使用的,除非内容另外明确指出外。
下面具体阐述本申请的一些实施方式,以进一步说明本申请。
本申请的一个实施例提供了一种牙科矫正***,包括一系列的壳状矫正器,所述一系列的壳状矫正器例如是在整个治疗计划中使用的所有的壳状矫正器,能够设计为实施整个治疗计划,或者是整个治疗计划中使用的所有的壳状矫正器中的一部分,设计为实施治疗计划的一部分,所述一系列壳状矫正器包括多个壳状矫正器,其中,多个壳状矫正器中的任一壳状矫正器包括壳体,所述壳体例如是如图1所示的壳状牙科器械的形状,所述壳体中设置有多个腔体,所述每个腔体主要是由舌侧面、唇/颊侧面及牙颌面围合而成的,多个腔体相互连通,所述多个腔体被设计为容置一部分或全部的颌的牙齿,所述多个腔体中的至少一个腔体是用于容置未萌出或萌出中的牙齿的萌出腔体,所述萌出腔体的几何形状是经如下方法步骤确定的。
首先,获得牙齿数据,并在牙齿数据中识别未萌出或未完全萌出牙齿。
获得牙齿数据的方法例如是:可以根据患者当前的牙齿状态、或者牙齿及其周边组织(如牙龈、面部软组织)的状态提取牙模,即制作物理牙齿模型(例如借助取印模制作石膏牙齿模型),再对该物理的三维牙齿模型进行扫描,以生成代表患者牙齿的原始状态的虚拟牙齿模型(对应于基础牙齿状态)。或者,也可通过光学扫描、三维照相、三维摄像或医用CT扫描直接获得牙齿、或者牙齿及其周边组织的图像,以获得原始牙齿状态的三维数据。根据得到的图像信息能够容易的识别出牙列中未萌出或未完全萌出的牙齿。
其次,确定所述未萌出或未完全萌出牙齿的完全长出状态。
确定所述未萌出或未完全萌出牙齿的完全长出状态使用的方法可以是:通过数据分析某些已完全萌出的成人恒齿的状态数据来进行预测。例如,通过分析已完全萌出的成人恒齿的尺寸,可计算出未萌出或正在萌出牙齿的尺寸,例如未萌出或正在萌出牙齿的尺寸可从牙齿群体平均解剖形状标准中获得。口腔中每个未完全萌出牙齿的状态数据可通过一计算机程序进行估计。
或者,确定所述未萌出或未完全萌出牙齿的完全长出状态使用的方法是,基于牙齿群体平均解剖形状等参数建立完全萌出牙的标准数据集,并根据未萌出或未完全萌出牙齿的类型在标准数据集中找到对应牙齿类型的相应数据,作为未萌出或未完全萌出牙齿的完全长出状态数据。
又或者,确定所述未萌出或未完全萌出牙齿的完全长出状态使用的方法是,基于多个牙齿的数据创建重叠几何结构的最外表面的通用尺寸,以该通用尺寸作为完全长出状态标准数据,并根据未萌出或未完全萌出牙齿的类型在标准数据集中找到对应牙齿类型的 相应数据,作为未萌出或未完全萌出牙齿的完全长出状态数据。
然后,基于所述未萌出或未完全萌出牙齿对应的完全长出状态牙齿数据及确定的一牙齿预测参数决定用于容纳所述未萌出或未完全萌出牙齿的萌出腔体的状态参数。
所述完全长出状态牙齿数据包括但不限于牙齿完全长出状态的形状、尺寸、位置和朝向中至少之一,所述牙齿预测参数包括在牙齿完全长出状态的形状、尺寸、位置和朝向的基础上分别对于形状、尺寸、位置和朝向设定各自的预定的阈值范围,例如是对应的比例因子或者对应的偏差值,通过分别设定合适的各个牙齿预测参数,使其各自满足预定的阈值范围,进而能够实现在所述壳状矫正器的使用过程中所述萌出腔体与所述未萌出或萌出中的牙齿始终保持不接触。
并且,在使用所述一系列壳状矫正器治疗期间,所述一系列的壳状矫正器中每一个壳状矫正器中的所述萌出腔体与其它的所述壳状矫正器中的所述萌出腔体保持相同或基本相同,也就是说,在所述一系列的壳状矫正器中,不同壳状矫正器上的萌出腔体的设计是基本相同的,即,通过一次设计,就能够得到萌出腔体的状态参数,并且该状态参数能够适用于后续步骤设计的所有壳状矫正器。需要说明的是基本相同是指萌出腔体的主体形状、尺寸、位置和朝向是一致的,由于在一系列壳状矫正器佩戴矫治过程中,牙齿会随着矫治的进行而发生移动,萌出腔体与邻牙腔体光滑过渡连接会有部分空间的适应性调整。
在一个实施方式中,所述牙齿预测参数包括形状、尺寸、位置和朝向的各自的预定的阈值范围,例如,尺寸的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿预测的完全萌出的尺寸的1.02-1.05倍;更具体地说,基于上述未萌出或未完全萌出的牙齿完全萌出之后的尺寸,该尺寸为固定尺寸,并且不会变化,因此基于上述基础进行牙齿预测参数中尺寸的确定,如固定尺寸再放大1.02-1.05倍,该尺寸较未萌出或未完全萌出的牙齿完全萌出之后的尺寸大,确保了未萌出或未完全萌出的牙齿在萌出过程中与形成的萌出腔体始终保持不接触。朝向的所述预定的阈值范围为与所述一颗或多颗未萌出或未完全萌出牙齿预测的完全萌出之后的长轴朝向呈0-5°角度;更具体地说,基于上述未萌出或未完全萌出的牙齿完全萌出之后的朝向,该朝向为确定朝向,因此基于上述基础进行牙齿预测参数中朝向的确定,该朝向较未萌出或未完全萌出的牙齿完全萌出之后的朝向角度范围多数情况更大,即以未萌出或未完全萌出牙齿的长轴为基准进行0-5°角度朝向的扩大,确保了未萌出或未完全萌出的牙齿在萌出过程中不与形成的萌出腔体始终保持不接触。位置的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿预测的完全萌出之后的位置在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm;更具体地说,基于上述未萌出或未完全萌出的牙齿完全萌出之后的位置,该位置为确定位置,因此基于上述基础 进行牙齿预测参数中位置的确定。需要说明的是,在进行牙科矫正***设计时,是基于数字化的牙颌模型进行的,而数字化的牙颌模型是在统一的三维坐标系下,由多个三角面片组成的,每个三角面片中的各个顶点在三维坐标系中均有其对应的空间坐标值,该未萌出或未完全萌出的牙齿完全萌出之后的位置确定是基于组成其的每个顶点的空间坐标值组成的,而牙齿预测参数中的位置较未萌出或未完全萌出的牙齿完全萌出之后的位置偏移量范围更大,即以未萌出或未完全萌出牙齿的组成的各个顶点为基准进行0-1mm偏移量的扩大,确保了未萌出或未完全萌出的牙齿在萌出过程中不与形成的萌出腔体始终保持不接触。形状的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿预测的完全萌出之后的形状在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm。更具体地说,基于上述未萌出或未完全萌出的牙齿完全萌出之后的形状,该形状为确定形状,因此基于上述基础进行牙齿预测参数中形状的确定。
在一个实施方式中,所述牙齿预测参数的所述尺寸的预定阈值范围包括基于多种尺寸设定比例因子或者偏差值,例如基于所述未萌出或未完全萌出牙齿完全长出状态的牙齿的唇/颊侧面尺寸、和/或舌侧面尺寸等,分别确定萌出腔体的唇/颊侧面设定参数、和/或舌侧面设定参数。
在一个实施例中,所述唇/颊侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的唇/颊侧面的至少一个参数而设置;所述唇/颊侧面设定参数的特征可以是唇/颊侧面的弧度、唇/颊侧面的近远中方向的长度等,所述未萌出或未完全萌出的牙齿完全长出状态的唇/颊侧面的参数可以是唇/颊侧面外形最高点、颊轴嵴等,其中,外形最高点是指牙体各轴面最突出的部分(《口腔医学导论》第35页第二部分(一)中的表述)。颊轴嵴是指颊侧在轴面上,从牙尖顶端伸向牙颈部的纵形***(《口腔医学导论》第36页第二部分(三)中的表述)等。所述舌侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的舌侧面的至少一个参数而设置,所述舌侧面设定参数的特征可以是舌侧面的弧度、舌侧面的近远中方向的长度等,所述未萌出或未完全萌出的牙齿完全长出状态的舌侧面的参数可以是舌侧面外形最高点、舌轴嵴等,其中,外形最高点是指牙体各轴面最突出的部分(《口腔医学导论》第35页第二部分(一)中的表述)。舌轴嵴是指舌侧在轴面上,从牙尖顶端伸向牙颈部的纵形***(《口腔医学导论》第36页第二部分(三)中的表述)等。
在一个实施例中,所述萌出腔体的唇/颊侧面的形状和尺寸基于所述牙齿预测参数中颊侧面的形状和尺寸参数设置,例如是所述未萌出或未完全萌出的牙齿完全长出状态的形状和尺寸分别乘除或者加减所述颊侧面的形状和尺寸参数,得到所述萌出腔体的唇/颊侧 面的形状和尺寸。更具体的说,所述牙齿预测参数中颊侧面的形状和尺寸参数可以基于所述未萌出或未完全萌出的牙齿完全萌出之后的颊侧面在至少一个高度上的高点(也可以是外形高点)连线而设置,例如基于在某一个高度上的高点连线而设置一平面,或者基于两个或更多高度上的高点连线而设置一曲面。所述萌出腔体的舌侧面的形状和尺寸基于所述牙齿预测参数中舌侧面的形状和尺寸参数设置,例如是所述未萌出或未完全萌出的牙齿完全长出状态的形状和尺寸分别乘除或者加减所述舌侧面的形状和尺寸参数,得到所述萌出腔体的舌侧面的形状和尺寸。所述牙齿预测参数中舌侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出之后的舌侧面在至少一个高度上的高点连线而设置,例如基于在某一个高度上的高点连线而设置一平面,或者基于两个或更多高度上的高点连线而设置一曲面或不规则的非平面形状。
在一具体的实施方式中,所述萌出腔体的唇/颊侧面的具体形状可以为平面或与容纳其近、远中邻牙的腔体的唇/颊侧面光滑过渡的曲面;所述萌出腔体的舌侧面的具体形状可以为平面或与容纳其近、远中邻牙的腔体的舌侧面光滑过渡的曲面。
在一具体的实施方式中,所述牙齿预测参数还包括牙颌面设定参数,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态的牙颌面的至少一个参数进行设定,以使所述萌出腔体的牙颌面以不影响上下颌咬合的方式设置。所述牙颌面的参数可以是牙颌面的弧度、牙颌面距离牙颈线的高度等。更具体地说,可以根据未萌出或未完全萌出牙齿完全长出状态牙颌面的颊尖和舌尖分别距离牙颈线的长度对牙颌面的顶点高度进行确定;也可以根据相邻牙齿的牙颌面的颊尖和舌尖分别距离牙颈线的长度对牙颌面的顶点高度进行确定。所述萌出腔体的牙颌面是在所述未萌出或未完全萌出牙齿完全长出状态的牙颌面参数的基础上符合所述牙颌面设定参数的阈值要求而得到的。
在一个示例性实施方式中,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态长轴方向的高度最大值设置,所述萌出腔体的牙颌面的参数确定例如是在所述高度最大值的基础上乘以或除以一个参数,或者加上或减去一个参数。例如,在萌出腔体的牙颌面的参数确定例如是在所述高度最大值的基础上扩大1.02-1.05倍。
在一具体的实施方式中,所述萌出腔体的牙颌面的具体形状为平面或与容纳其近、远中邻牙的腔体的唇/颊侧面和舌侧面光滑过渡的曲面。需要说明的是,萌出腔体牙颌面可以为根据确定的唇/颊侧面和舌侧面进行平面或曲面的设定,还可以基于唇/颊侧面和舌侧面在预定阈值范围内调整而进行平面或曲面的设定。萌出腔体的主体形状、尺寸、位置和朝向是一致的,由于在一系列壳状矫正器佩戴矫治过程中,牙齿会随着矫治的进行而发生移动,萌出腔体与邻牙腔体光滑过渡连接会有部分空间的适应性调整。
在一些实施例中,所述壳状矫治器上除萌出腔体之外的几何结构使除未萌出或未完全萌出牙齿之外的牙齿从初始位置逐渐调整至目标矫治位置。即本实施例中的萌出腔体仅为所述一颗或多颗未生长至萌出预定参数的牙齿预留生长的空间,使得壳状矫治器整体不会干涉萌牙的自然生长,但本实施例的萌出腔体对于畸形生长的萌牙并不具有矫治作用。即,如果该一颗或多颗未生长至萌出预定参数的牙齿为畸形生长的牙齿,本实施例的萌出腔体也根据该萌牙进行设置,但不对其进行矫治干预。而壳状矫治器上除萌出腔体之外的几何结构使除未萌出或未完全萌出牙齿之外的牙齿从初始位置逐渐调整至目标矫治位置,即除萌出腔体之外的几何结构对其余除萌牙之外的牙齿具有矫治作用,使得在排齐牙齿的同时不干预萌芽的萌出。
在部分实施例中,本申请还提供了一种牙科矫正***的设计方法,用于设计上述的牙科矫正***,如图2所示,所述设计方法包括如下步骤S1至S4。
S1.数字化牙颌模型的获取:获取一数字化牙颌模型,所述数字化牙颌模型包括数字化牙齿模型及数字化牙龈模型。
其中,数字化牙颌模型的获取可以采用如下任一的方法:通过层析X射线扫描(CAT扫描)、数字化断层X线扫描(CT)、锥束CT扫描(CBCT)、核磁共振造像(MRI)、口内光学扫描等手段获得表示原始牙齿布局的数字模型;或者,可以先用常规手段制作患者牙齿的石膏铸件,再通过扫描设备比如激光扫描设备、CT扫描设备扫描该石膏铸件,获得表示原始牙齿布局的数字模型。
S2.数字化牙颌模型的切割和识别:将所述数字化牙颌模型分割为独立的数字化牙龈模型和单颗数字化牙冠模型;识别并标记表示未萌出或者未完全萌出的牙齿的数据。
数字化牙颌模型的切割(又称作“分割”,在本文中,“切割”、“分割”可互换使用)可以采用如下的非限制性实施例。
分割方法例如采用如下步骤S200至S202进行。
S200:选取待分割的数字化牙颌模型上的第一类特征点,所述数字化牙颌模型为三角面片模型。
S201:根据第一类特征点对所述数字化牙颌模型中第二类特征点进行分类,确定各第二类特征点所属的牙齿。
S202:分别合并属于每颗牙齿的所述第二类特征点,获得数字化牙颌模型分割后的各单颗牙齿的数字化牙齿区域。
上述的第一类特征点为基于数字化牙颌模型选取的且用于对牙颌中各单颗牙齿的分割进行导向的三角面片顶点,第二类特征点为基于数字化牙颌模型选取的且用于表征数 字化牙颌模型整体形状的三角面片顶点;也即是,第一类特征点是用来对牙颌的分割进行导向,而第二类特征点是具体分割牙颌时的特征点;通过第一类特征点的分割导向,能将第二类特征点精确地分类到各个牙齿,进而提高牙颌的分割精度。
通过在数字化牙颌模型整体上选取第一类特征点,继而根据第一类特征点对数字化牙颌模型上第二类特征点进行分类再集合,实现单颗牙齿的分割,由于两类特征点是基于数字化牙颌模型整体选取的,特征点的分类信息涵盖了数字化牙颌模型整体的分类特征,所以即使模型存在噪声数据,也会将噪声数据均摊至全局数据中,使得整个分割方法的容错率高,单颗牙齿得以分割得更为准确,确保每颗牙齿的完整性。
识别并标记表示未萌出或者未完全萌出的牙齿的数据的具体实施方式可以为先进行牙位的识别,在将识别后的牙齿与标准牙齿的体积进行比较,当识别后的牙齿体积小于对应标准牙齿体积在一定阈值内即标记为未萌出或者未完全萌出的牙齿,上述阈值例如为标准牙齿体积的一半。
更具体地,牙位识别的方法可以采用如下方法:步骤1:建立第一先验模型、第二先验模型和第三先验模型;其中,所述第一先验模型包括采集已有的牙齿模型中每两颗相邻牙齿的间距以及该间距对应的缺牙数量,为不同数量缺失牙齿的间距计算概率分布函数值;所述第二先验模型包括采集已有的牙齿模型中每颗牙齿的表征位置的特征量,为具有相同编号的牙齿的至少是表征位置的特征量计算概率分布函数值;所述第三先验模型包括采集已有的牙齿模型中牙齿未缺失、或不同数量的牙齿缺失后每两颗相邻牙齿的牙位排列情况,计算牙位排列情况的概率分布函数值;步骤2:获取待测试牙齿模型的每颗牙齿的表征位置的特征量以及相邻两颗牙齿之间的间距;步骤3:基于隐马尔科夫模型确定待测试牙齿模型的牙位。根据上述方法进行牙位的识别,之后根据牙位标记与标准牙齿模型进行牙齿体积的比较,如采用特征点坐标值的变化在一定阈值范围内进行比较,并判断是否标记为未萌出或者未完全萌出的牙齿。
S3.矫治计划的虚拟设计:将所述单颗数字化牙冠模型进行虚拟设计,以使所述单颗数字化牙冠模型由初始位置逐渐变化至目标矫治位置,得到一系列中间数字化牙颌模型,同时也得到了目标矫治位置。
S4.牙科矫正***的设计:设计一系列的壳状矫正器,所述壳状矫正器设计为实施治疗计划的至少一部分,所述一系列壳状矫正器中的任一壳状矫正器包括壳体,所述壳体中设置有多个腔体,所述多个腔体被设计为至少容置部分颌的牙齿,所述多个腔体中的至少一个腔体是用于容置未萌出或萌出中的牙齿的萌出腔体,所述萌出腔体的几何形状基于所述未萌出或未完全萌出牙齿完全长出状态的牙齿预测参数成型;所述牙齿预测参数包 括基于所述未萌出或未完全萌出牙齿完全长出状态的形状、尺寸、位置和朝向所确定的对应参数,所述牙齿预测参数设定为满足预定的阈值范围以使在所述壳状矫正器的使用过程中所述萌出腔体与所述未萌出或萌出中的牙齿始终保持不接触;其中,在使用所述一系列壳状矫正器治疗期间,所述一系列的壳状矫正器中每一个壳状矫正器中的所述萌出腔体与其它的所述壳状矫正器中的所述萌出腔体保持相同或基本相同。
所述牙科矫正***的设计的具体实施可以参考上述的牙科矫正***的具体设计操作的任一种或任几种。
所述牙齿预测参数包括对于每个未萌出或未完全萌出牙齿的完全长出状态的每个参数的预测,例如但不限于是每个未萌出或未完全萌出牙齿的完全长出状态的形状、尺寸、位置和朝向等。在形状、尺寸、位置和朝向的每一个里面,又会细分为多种维度的形状、尺寸、位置和朝向,所述牙齿预测参数包括对于每个细分维度的形状、尺寸、位置和朝向参数确定例如一个比例因子或者偏差值。
在一个具体的实施例中,所述牙齿预测参数包括形状、尺寸、位置和朝向每个维度的预测参数,每个预测参数具有对应的阈值范围,具体而言,例如下文所述。
尺寸的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿预测的完全萌出的尺寸的1.02-1.05倍;更具体地说,基于上述未萌出或未完全萌出的牙齿完全萌出之后的尺寸,该尺寸为固定尺寸,并且不会变化,因此基于上述基础进行牙齿预测参数中尺寸的确定,如固定尺寸再放大1.02-1.05倍,该尺寸较未萌出或未完全萌出的牙齿完全萌出之后的尺寸大,确保了未萌出或未完全萌出的牙齿在萌出过程中不与形成的萌出腔体始终保持不接触。朝向的所述预定的阈值范围为与所述一颗或多颗未萌出或未完全萌出牙齿预测的完全萌出之后的长轴朝向呈0-5°角度;更具体地说,基于上述未萌出或未完全萌出的牙齿完全萌出之后的朝向,该朝向为确定朝向,因此基于上述基础进行牙齿预测参数中朝向的确定,该朝向较未萌出或未完全萌出的牙齿完全萌出之后的朝向角度范围更大,即以未萌出或未完全萌出牙齿的长轴为基准进行0-5°角度朝向的扩大,确保了未萌出或未完全萌出的牙齿在萌出过程中不与形成的萌出腔体始终保持不接触。位置的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿预测的完全萌出之后的位置在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm;更具体地说,基于上述未萌出或未完全萌出的牙齿完全萌出之后的位置,该位置为确定位置,因此基于上述基础进行牙齿预测参数中位置的确定。需要说明的是,在进行牙科矫正***设计时,是基于数字化的牙颌模型进行的,而数字化的牙颌模型是在统一的三维坐标系下,由多个三角面片组成的,每个三角面片中的各个顶点在三维坐标系中均有其对应的空间坐标值,该未萌出或未完全萌出的牙齿 完全萌出之后的位置确定是基于组成其的每个顶点的空间坐标值组成的,而牙齿预测参数中的位置较未萌出或未完全萌出的牙齿完全萌出之后的位置偏移量范围更大,即以未萌出或未完全萌出牙齿的组成的各个顶点为基准进行0-1mm偏移量的扩大,确保了未萌出或未完全萌出的牙齿在萌出过程中不与形成的萌出腔体始终保持不接触。形状的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿预测的完全萌出之后的形状在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm。更具体地说,基于上述未萌出或未完全萌出的牙齿完全萌出之后的形状,该形状为确定形状,因此基于上述基础进行牙齿预测参数中形状的确定。
在一个更具体的实施例中,所述牙齿预测参数的所述尺寸预测参数包括基于所述未萌出或未完全萌出牙齿完全长出状态的唇/颊侧面尺寸的设定参数、和/或舌侧面尺寸的设定参数,即为所述未萌出或未完全萌出牙齿完全长出状态的唇/颊侧面尺寸设定一预定的阈值范围以得到萌出腔体的相应维度尺寸,为所述未萌出或未完全萌出牙齿完全长出状态的舌侧面尺寸设定一预定的阈值范围以得到萌出腔体的相应维度尺寸。
在一实施例中,所述唇/颊侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的唇/颊侧面的至少一个参数而设置;所述唇/颊侧面设定参数的特征可以是唇/颊侧面的弧度、唇/颊侧面的近远中方向的长度等所述未萌出或未完全萌出的牙齿完全长出状态的唇/颊侧面的参数可以是唇/颊侧面外形最高点、颊轴嵴等,所述舌侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的舌侧面的至少一个参数而设置,所述舌侧面设定参数的特征可以是舌侧面的弧度、舌侧面的近远中方向的长度等,所述未萌出或未完全萌出的牙齿完全长出状态的舌侧面的参数可以是舌侧面外形最高点、舌轴嵴等。
在一具体的实施方式中,所述萌出腔体的唇/颊侧面的形状和尺寸基于所述牙齿预测参数中唇/颊侧面的形状和尺寸参数设置,所述牙齿预测参数中颊侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出之后的颊侧面在至少一个高度上的高点连线而设置;所述萌出腔体的舌侧面的形状和尺寸基于所述牙齿预测参数中舌侧面的形状和尺寸参数设置,所述牙齿预测参数中舌侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出之后的舌侧面在至少一个高度上的高点连线而设置。例如,未萌出牙齿为左侧第一磨牙,在进行牙齿预测参数设置时,可以以左侧第一磨牙完全长出状态进行设置,如左侧第一磨牙萌出腔体的唇/颊侧面的形状和尺寸基于左侧第一磨牙完全长出状态唇/颊侧面的外形最高点为标记点之一,将其与相邻近远中两颗牙齿的唇/颊侧面外形最高点进行连线得到萌出腔体的唇/颊侧面;舌侧面的形状和尺寸基于左侧第一磨牙完全长出状态 的舌侧面外形最高点为标记点之一,将其与相邻近远中两颗牙齿的舌侧面外形最高点进行连线得到萌出腔体的舌面。
具体而言,所述萌出腔体的唇/颊侧面的形状可以为平面或与容纳其近、远中邻牙的腔体的唇/颊侧面光滑过渡的曲面;所述萌出腔体的舌侧面的形状可以为平面或与容纳其近、远中邻牙的腔体的舌侧面光滑过渡的曲面。
在一实施例中,所述牙齿预测参数还包括牙颌面设定参数,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态的牙颌面的至少一个参数进行设定,以使所述萌出腔体的牙颌面以不影响上下颌咬合的方式设置。所述萌出腔体的牙颌面是在所述未萌出或未完全萌出牙齿完全长出状态的牙颌面参数的基础上符合所述牙颌面设定参数的阈值要求而得到的。
更具体地例如,所述牙颌面设定参数设计基于所述未萌出或未完全萌出牙齿完全长出状态长轴方向的高度最大值设置,所述萌出腔体的牙颌面的参数确定例如是在所述高度最大值的基础上乘以或除以一个参数,或者加上或减去一个参数。更具体地说,可以根据未萌出或未完全萌出牙齿完全长出状态牙颌面的颊尖和舌尖分别距离牙颈线的长度对牙颌面的顶点高度进行确定;也可以根据相邻牙齿的牙颌面的颊尖和舌尖分别距离牙颈线的长度对牙颌面的顶点高度进行确定。所述萌出腔体的牙颌面是在所述未萌出或未完全萌出牙齿完全长出状态的牙颌面参数的基础上符合所述牙颌面设定参数的阈值要求而得到的。
在一实施例中,所述萌出腔体的牙颌面的形状可以为平面或与容纳其近、远中邻牙的腔体的颊侧面光滑过渡的曲面。需要说明的是,萌出腔体牙颌面可以为根据确定的唇/颊侧面和舌侧面进行平面或曲面的设定,还可以基于唇/颊侧面和舌侧面在预定阈值范围内调整而进行平面或曲面的设定。萌出腔体的主体形状、尺寸、位置和朝向是一致的,由于在一系列壳状矫正器佩戴矫治过程中,牙齿会随着矫治的进行而发生移动,萌出腔体与邻牙腔体光滑过渡连接会有部分空间的适应性调整。
在一些实施例中,本申请还提供了一种牙科矫正***的制作方法,所述制作方法具体包括:将根据上述任一的设计方法得到的牙科矫正***中的每个牙科矫正器,采用热压膜成型或者采用增材制造的工艺制作,得到所述一系列牙科矫正器。
例如,当采用所述热压膜成型工艺制作时,具体的制作方法包括:基于所述数字化牙颌模型及一系列中间数字化牙颌模型进行3D打印,制作出实体的牙颌模型,之后在所述实体的牙颌模型上热压成型的方式得到包含牙齿形状的壳状牙科器械,之后在所述包含牙齿形状的壳状牙科器械上沿牙龈线或邻近牙龈线处切割得到能够容纳牙齿的壳状牙 齿矫治器。
例如,当采用增材制造的工艺制作时,具体的制作工艺为采用3D打印的方法对设计出来的壳状牙齿矫治器数字模型进行打印制作。
在一些实施例中,本申请还提供了一种牙科矫正***,所述牙科矫正***包括一系列的壳状矫正器,所述一系列的壳状矫正器包括多个壳状矫正器,所述多个壳状矫正器设计为实施治疗计划的一部分或者全部。
所述牙科矫正***,例如可以包括但不限于:第一壳状矫正器和第二壳状矫正器。
在使用所述一系列壳状矫正器治疗的期间,所述第一壳状矫正器和第二壳状矫正器中的所述萌出腔体保持相同或基本相同。
所述第一壳状矫正器或所述第二壳状矫正器可以用上述任一的设计方法和制作方法得到,其结构可以是上述的壳状矫正器的任一种结构。
在部分实施例中,本申请还提供一种牙科矫正***的设计方法,可以用于设计上述的牙科矫正***,如图3所示,所述设计方法包括步骤S1至S4。其中步骤S1、S2、S3如上文所述,这里不再赘述,下面仅针对步骤S4进行详细描述。
S4.牙科矫正***的设计:包括设计一系列的壳状矫治器,例如第一壳状矫正器和第二壳状矫正器。
具体地,设计一系列的壳状矫正器,所述一系列的壳状矫正器设计为实施治疗计划的至少一部分,所述一系列壳状矫正器包括第一壳状矫正器,所述第一壳状矫正器包括壳体,所述壳体中设置有多个腔体,所述多个腔体被设计为至少容置部分颌的牙齿,所述多个腔体中的至少一个腔体是用于容置未萌出或萌出中的牙齿的萌出腔体,所述萌出腔体的几何形状基于所述未萌出或未完全萌出牙齿完全长出状态的牙齿预测参数成型;所述牙齿预测参数包括基于所述未萌出或未完全萌出牙齿完全长出状态的形状、尺寸、位置和朝向所确定的对应参数,所述牙齿预测参数设计为满足预定的阈值范围以使在所述壳状矫正器的使用过程中所述萌出腔体与所述未萌出或萌出中的牙齿始终保持不接触。
所述一系列壳状矫正器还包括第二壳状矫正器,所述第二壳状矫正器包括壳体,所述壳体中设置有多个腔体,所述多个腔体被设计为至少容置部分颌的牙齿,所述多个腔体中的至少一个腔体是用于容置未萌出或萌出中的牙齿的萌出腔体,所述萌出腔体的几何形状基于所述未萌出或未完全萌出牙齿完全长出状态的牙齿预测参数成型;所述牙齿预测参数包括基于所述未萌出或未完全萌出牙齿完全长出状态的形状、尺寸、位置和朝向所确定的对应参数,所述牙齿预测参数设定为满足预定的阈值范围以使在所述壳状矫正器的使用过程中所述萌出腔体与所述未萌出或萌出中的牙齿始终保持不接触。
在使用所述一系列壳状矫正器治疗期间,所述第一壳状矫正器和第二壳状矫正器中的所述萌出腔体保持相同或基本相同。
所述第一壳状矫正器和第二壳状矫正器具体可以为上述任一的壳状矫正器,或者采用上述任一的设计方法或制作方法得到的壳状矫正器。
在部分实施例中,本申请还提供了一种壳状矫正器,其设计为实施治疗计划的至少一部分,所述壳状矫正器包括壳体,所述壳体中设置有多个腔体,所述多个腔体被设计为至少容置部分颌的牙齿,所述多个腔体中的至少一个腔体是用于容置未萌出或萌出中的牙齿的萌出腔体,所述萌出腔体的几何形状基于所述未萌出或未完全萌出牙齿完全长出状态的牙齿预测参数成型;所述牙齿预测参数包括基于所述未萌出或未完全萌出牙齿完全长出状态的形状、尺寸、位置和朝向所确定的对应参数,所述牙齿预测参数设计为满足预定的阈值范围以使在所述壳状矫正器的使用过程中所述萌出腔体与所述未萌出或萌出中的牙齿始终保持不接触。
所述壳状矫正器可以是本申请上述任一种实施结构的壳状矫正器。
在部分实施例中,本申请还提供了一种壳状矫正器的设计方法,能够用于设计上述的壳状矫正器,所述设计方法包括如下步骤S1至S4。其中步骤S1、S2、S3、S4如上文所述,这里不再赘述。
所述壳状矫正器具体可以为上述任一的壳状矫正器,或者采用上述任一的设计方法或制作方法得到的壳状矫正器。
以上公开的仅为本申请优选实施例,优选实施例并没有详尽叙述所有的细节,应该理解,这些实施例仅用于说明本申请,而不用于限定本申请的保护范围,本申请仅受权利要求书及其全部范围和等效物的限制。
本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属领域技术人员能很好地利用本申请。以上不同实施例中的技术特征在不发生相互冲突的前提下可以任意的结合,在实际应用中本领域技术人员根据本申请做出的改进和调整,仍属于本申请的保护范围。

Claims (19)

  1. 一种牙科矫正***,包括一系列的壳状矫正器,所述壳状矫正器设计为实施治疗计划的至少一部分,其中,
    所述一系列壳状矫正器中的任一壳状矫正器包括壳体,所述壳体中设置有多个腔体,所述多个腔体被设计为至少容置一部分颌的牙齿,所述多个腔体中的至少一个腔体是用于容置未萌出或萌出中的牙齿的萌出腔体,所述萌出腔体的几何形状基于所述未萌出或未完全萌出牙齿完全长出状态的牙齿预测参数成型;
    所述牙齿预测参数包括基于所述未萌出或未完全萌出牙齿完全长出状态的形状、尺寸、位置和朝向所确定的对应参数,所述牙齿预测参数设定为满足预定的阈值范围以使在所述壳状矫正器的使用过程中所述萌出腔体与所述未萌出或萌出中的牙齿始终保持不接触;
    其中,在使用所述一系列壳状矫正器治疗期间,所述一系列的壳状矫正器中每一个壳状矫正器中的所述萌出腔体与其它的所述壳状矫正器中的所述萌出腔体保持相同或基本相同。
  2. 根据权利要求1所述的牙科矫正***,其中,所述牙齿预测参数中,尺寸的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的尺寸的1.02-1.05倍,朝向的所述预定的阈值范围为与所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的长轴朝向呈0-5°角度,位置的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的位置在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm,形状的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的形状在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm。
  3. 根据权利要求2所述的牙科矫正***,其中,所述牙齿预测参数的所述尺寸包括基于所述未萌出或未完全萌出牙齿完全长出状态的唇/颊侧面设定参数、和/或舌侧面设定参数。
  4. 根据权利要求3所述的牙科矫正***,其中,所述唇/颊侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的唇/颊侧面的至少一个参数而设置;所述舌侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的舌侧面的至少一个参数而设置。
  5. 根据权利要求4所述的牙科矫正***,其中,所述萌出腔体的所述唇/颊侧面的形状和尺寸基于所述牙齿预测参数中唇/颊侧面的形状和尺寸参数设置,所述牙齿预测参数中唇/颊侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出状态的唇/颊侧 面在至少一个高度上的高点连线而设置;所述萌出腔体的舌侧面的形状和尺寸基于所述牙齿预测参数中舌侧面的形状和尺寸参数设置,所述牙齿预测参数中舌侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出状态的舌侧面在至少一个高度上的高点连线而设置。
  6. 根据权利要求5所述的牙科矫正***,其中,所述萌出腔体的所述唇/颊侧面为平面或与容纳其近、远中邻牙的腔体的唇/颊侧面光滑过渡的曲面;所述萌出腔体的舌侧面为平面或与容纳其近、远中邻牙的腔体的舌侧面光滑过渡的曲面。
  7. 根据权利要求1所述的牙科矫正***,其中,所述牙齿预测参数还包括牙颌面设定参数,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态的牙颌面的至少一个参数进行设定,以使所述萌出腔体的牙颌面以不影响上下颌咬合的方式设置。
  8. 根据权利要求7所述的牙科矫正***,其中,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态长轴方向的高度最大值设置。
  9. 根据权利要求8所述的牙科矫正***,其中,所述萌出腔体的所述牙颌面为平面或与容纳其近、远中邻牙的腔体的颊侧面光滑过渡的曲面。
  10. 一种牙科矫正***的设计方法,其中,所述设计方法包括如下步骤:
    S1.数字化牙颌模型的获取:获取一数字化牙颌模型,所述数字化牙颌模型包括数字化牙齿模型及数字化牙龈模型;
    S2.数字化牙颌模型的切割和识别:将所述数字化牙颌模型分割为独立的数字化牙龈模型和单颗数字化牙冠模型;识别并标记表示未萌出或者未完全萌出的牙齿的数据;
    S3.矫治计划的虚拟设计:将所述单颗数字化牙冠模型进行虚拟设计,以使所述单颗数字化牙冠模型由初始位置逐渐变化至目标矫治位置,得到一系列中间数字化牙颌模型;
    S4.牙科矫正***的设计:
    设计一系列的壳状矫正器,所述壳状矫正器设计为实施治疗计划的至少一部分,所述一系列壳状矫正器中的任一壳状矫正器包括壳体,所述壳体中设置有多个腔体,所述多个腔体被设计为至少容置部分颌的牙齿,所述多个腔体中的至少一个腔体是用于容置未萌出或萌出中的牙齿的萌出腔体,所述萌出腔体的几何形状基于所述未萌出或未完全萌出牙齿完全长出状态的牙齿预测参数成型;所述牙齿预测参数包括基于所述未萌出或未完全萌出牙齿完全长出状态的形状、尺寸、位置和朝向所确定的对应参数,所述牙齿预测参数设定为满足预定的阈值范围以使在所述壳状矫正器的使用过程中所述萌出腔体与所述未萌出或萌出中的牙齿始终保持不接触;其中,在使用所述一系列壳状矫正器治疗期间,所述一系列的壳状矫正器中每一个壳状矫正器中的所述萌出腔体与其它的所述壳状矫正器中的 所述萌出腔体保持相同或基本相同。
  11. 根据权利要求10所述的牙科矫正***的设计方法,其中,所述牙齿预测参数中,尺寸的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的尺寸的1.02-1.05倍,朝向的所述预定的阈值范围为与所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的长轴朝向呈0-5°角度,位置的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的位置在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm,形状的所述预定的阈值范围为所述一颗或多颗未萌出或未完全萌出牙齿完全萌出状态的形状在空间三维坐标系中各个顶点坐标值的偏移量为0-1mm。
  12. 根据权利要求11所述的牙科矫正***的设计方法,其中,所述牙齿预测参数的所述尺寸包括基于所述未萌出或未完全萌出牙齿完全长出状态的唇/颊侧面设定参数、和/或舌侧面设定参数。
  13. 根据权利要求12所述的牙科矫正***的设计方法,其中,所述唇/颊侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的唇/颊侧面的至少一个参数而设置;所述舌侧面设定参数的至少一个特征基于所述未萌出或未完全萌出的牙齿完全长出状态的舌侧面的至少一个参数而设置。
  14. 根据权利要求13所述的牙科矫正***的设计方法,其中,所述萌出腔体的所述唇/颊侧面的形状和尺寸基于所述牙齿预测参数中唇/颊侧面的形状和尺寸参数设置,所述牙齿预测参数中唇/颊侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出状态的唇/颊侧面在至少一个高度上的高点连线而设置;所述萌出腔体的舌侧面的形状和尺寸基于所述牙齿预测参数中舌侧面的形状和尺寸参数设置,所述牙齿预测参数中舌侧面的形状和尺寸参数基于所述未萌出或未完全萌出的牙齿完全萌出状态的舌侧面在至少一个高度上的高点连线而设置。
  15. 根据权利要求14所述的牙科矫正***的设计方法,其中,所述萌出腔体的所述唇/颊侧面为平面或与容纳其近、远中邻牙的腔体的唇/颊侧面光滑过渡的曲面;所述萌出腔体的舌侧面为平面或与容纳其近、远中邻牙的腔体的舌侧面光滑过渡的曲面。
  16. 根据权利要求11所述的牙科矫正***的设计方法,其中,所述牙齿预测参数还包括牙颌面设定参数,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态的的牙颌面的至少一个参数进行设定,以使所述萌出腔体的牙颌面以不影响上下颌咬合的方式设置。
  17. 根据权利要求16所述的牙科矫正***的设计方法,其中,所述牙颌面设定参数基于所述未萌出或未完全萌出牙齿完全长出状态长轴方向的高度最大值设置。
  18. 根据权利要求17所述的牙科矫正***的设计方法,其中,所述萌出腔体的牙颌面为平面或与容纳其近、远中邻牙的腔体的颊侧面光滑过渡的曲面。
  19. 一种牙科矫正***的制作方法,其中,将根据权利要求10-18中任一所述的设计方法得到的牙科矫正***中的牙科矫正器,采用热压膜成型或者采用增材制造的工艺制作,得到所述一系列牙科矫正器。
PCT/CN2021/118854 2020-12-31 2021-09-16 牙科矫正***及其设计方法和制造方法 WO2022142488A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202023324583 2020-12-31
CN202011636066.1 2020-12-31
CN202011636066.1A CN112674890A (zh) 2020-12-31 2020-12-31 牙科矫正器及牙科矫正***、其设计方法及制造方法
CN202023324583.3 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142488A1 true WO2022142488A1 (zh) 2022-07-07

Family

ID=82258977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118854 WO2022142488A1 (zh) 2020-12-31 2021-09-16 牙科矫正***及其设计方法和制造方法

Country Status (1)

Country Link
WO (1) WO2022142488A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116636940A (zh) * 2023-05-06 2023-08-25 佛山臻硅科技有限公司 正畸矫治器设计方法、制造方法及正畸矫治器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139944A (en) * 1975-10-28 1979-02-20 Bergersen Earl Olaf Orthodontic appliance and method of using same during mixed dentition stage
US20030224314A1 (en) * 2002-05-30 2003-12-04 Bergersen Earl O. Dental appliance having a duplicated tooth area and/or a predicted tooth area and a method for correcting the position of the teeth of a patient
CN105266905A (zh) * 2014-07-17 2016-01-27 上海时代天使医疗器械有限公司 适用于混合牙列的牙齿矫治***及其制造方法
CN107106258A (zh) * 2014-11-13 2017-08-29 阿莱恩技术有限公司 具有用于未长出或者长出中的牙齿的腔体的牙科矫正器
CN211094852U (zh) * 2019-09-20 2020-07-28 上海正雅齿科科技股份有限公司 壳状牙科器械套组、壳状牙科器械组合及矫治***
CN112674890A (zh) * 2020-12-31 2021-04-20 上海正雅齿科科技股份有限公司 牙科矫正器及牙科矫正***、其设计方法及制造方法
CN112842573A (zh) * 2020-12-31 2021-05-28 上海正雅齿科科技股份有限公司 牙齿矫治***、设计方法、制备方法及预测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139944A (en) * 1975-10-28 1979-02-20 Bergersen Earl Olaf Orthodontic appliance and method of using same during mixed dentition stage
US20030224314A1 (en) * 2002-05-30 2003-12-04 Bergersen Earl O. Dental appliance having a duplicated tooth area and/or a predicted tooth area and a method for correcting the position of the teeth of a patient
CN105266905A (zh) * 2014-07-17 2016-01-27 上海时代天使医疗器械有限公司 适用于混合牙列的牙齿矫治***及其制造方法
CN107106258A (zh) * 2014-11-13 2017-08-29 阿莱恩技术有限公司 具有用于未长出或者长出中的牙齿的腔体的牙科矫正器
CN211094852U (zh) * 2019-09-20 2020-07-28 上海正雅齿科科技股份有限公司 壳状牙科器械套组、壳状牙科器械组合及矫治***
CN112674890A (zh) * 2020-12-31 2021-04-20 上海正雅齿科科技股份有限公司 牙科矫正器及牙科矫正***、其设计方法及制造方法
CN112842573A (zh) * 2020-12-31 2021-05-28 上海正雅齿科科技股份有限公司 牙齿矫治***、设计方法、制备方法及预测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116636940A (zh) * 2023-05-06 2023-08-25 佛山臻硅科技有限公司 正畸矫治器设计方法、制造方法及正畸矫治器

Similar Documents

Publication Publication Date Title
US20230404714A1 (en) Methods and apparatuses for customizing a rapid palatal expander
US11744676B2 (en) Dental appliances with repositioning jaw elements
US10828135B2 (en) Systems and processes for forming anatomical features in dentures
EP2635231B1 (en) Systems and process for forming anatomical features in dentures
EP3791824B1 (en) Method for displaying repositioning jaw elements
CN106137414B (zh) 确定目标牙列布局的方法和***
US9757141B2 (en) Gum tissue guide, systems and methods of producing and utilizing the same
US20230338119A1 (en) Orthodontic system and design method and preparing method thereof
CN112674890A (zh) 牙科矫正器及牙科矫正***、其设计方法及制造方法
CN114948287B (zh) 咬合诱导矫治器设计与制造方法及咬合诱导矫治器
CN112842573A (zh) 牙齿矫治***、设计方法、制备方法及预测方法
WO2022142488A1 (zh) 牙科矫正***及其设计方法和制造方法
US11833759B1 (en) Systems and methods for making an orthodontic appliance
TWM625015U (zh) 殼狀矯正器、牙科矯正器及牙科矯正裝置
TWM621566U (zh) 牙齒矯治裝置
CN115252173B (zh) 牙龈线的确定方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913235

Country of ref document: EP

Kind code of ref document: A1