WO2022142486A1 - 基站、天线及其辐射单元 - Google Patents

基站、天线及其辐射单元 Download PDF

Info

Publication number
WO2022142486A1
WO2022142486A1 PCT/CN2021/118825 CN2021118825W WO2022142486A1 WO 2022142486 A1 WO2022142486 A1 WO 2022142486A1 CN 2021118825 W CN2021118825 W CN 2021118825W WO 2022142486 A1 WO2022142486 A1 WO 2022142486A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
radiating
radiation unit
vertical centerline
oscillators
Prior art date
Application number
PCT/CN2021/118825
Other languages
English (en)
French (fr)
Inventor
刘逸
陈宏亮
李明超
Original Assignee
京信通信技术(广州)有限公司
京信射频技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信射频技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2022142486A1 publication Critical patent/WO2022142486A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present disclosure belongs to the technical field of mobile communication, and in particular relates to a radiation unit, an antenna equipped with the radiation unit, and a base station equipped with the antenna.
  • the patch radiation unit itself has the advantages of low profile and light weight, and is now gradually applied to 5G large-scale array antennas.
  • the current base station antenna widely uses ⁇ 45° polarization diversity, which requires the vibration element to have the same polarization form.
  • the base station antenna generally has a certain preset downtilt of the pattern, and the ⁇ 45° polarization will bring a certain asymmetry to the horizontal plane pattern.
  • the ⁇ 45° polarization will bring a certain asymmetry to the horizontal plane pattern.
  • Base station antennas widely use ⁇ 45° polarization diversity, while base station antennas generally have a certain preset downtilt of the pattern, and the ⁇ 45° polarization will bring certain asymmetry to the horizontal plane pattern.
  • the first objective of the present disclosure is to provide a radiation unit with high symmetry in the horizontal pattern and wide frequency band.
  • a second object of the present disclosure is to provide an antenna.
  • Yet another object of the present disclosure is to provide a base station.
  • a radiation unit which includes two pairs of radiation oscillators arranged with orthogonal polarizations, and the two radiation oscillators of the same polarization are opposite to each other to form a matrix structure.
  • the radiation surface of the radiation unit is Constrained to the same plane, and its non-radiating surface is provided with a cutting structure to make it out of the constraint of the same plane, and the cutting structure makes the radiation oscillators on both sides of the first vertical centerline of the matrix structure to form symmetry with respect to the first vertical centerline structure, so that the radiation elements on both sides of the second vertical center line of the matrix structure form an asymmetric structure with respect to the second vertical center line.
  • the cutting structure is only arranged on the two radiating elements on the first side parallel to the second vertical center line, so that the two radiating elements have linear characteristics/jumping characteristics respectively.
  • the cutting structure has a gradation feature, so that the thickness between the radiating surface and the non-radiating surface of the radiation unit changes from the first side parallel to the second vertical centerline to the second vertical centerline/direction and the second vertical centerline.
  • the cutting structure has a jumping feature, so that the thickness between the radiating surface and the non-radiating surface of the radiation unit changes from the first side parallel to the second vertical centerline to the second vertical centerline/towards A parallel reference line parallel to the second vertical centerline/increases in a stepped manner toward a second side parallel and opposite to the first side.
  • each radiating element is equipped with a feeding column on its non-radiating surface for feeding signals to it.
  • the feeding posts on the sides are arranged asymmetrically with respect to each other.
  • the cutting structure enables the radiating elements on both sides of the second vertical centerline to have different thicknesses, wherein, the distance between the feeding columns of the two radiating elements on the side with the smallest thickness is greater than that on the side with the largest thickness.
  • the four radiating oscillators of the radiation unit are spaced apart to form "cross"-shaped slits, wherein each radiating oscillator is in the shape of a sheet, and the central area is hollowed out, and the outer sides of the two adjacent radiating oscillators are directly electrically connected. sexual connection.
  • an interference slit perpendicular to the longitudinal direction of the slit is provided.
  • the radiation vibrator is a die-casting patch vibrator.
  • an antenna comprising at least one radiating element column, each radiating element column including a plurality of radiating elements fed in parallel, the radiating elements being the radiating elements described in the first object, and
  • the first vertical centerline of the matrix structure formed by the radiation units coincides with the longitudinal direction of the radiation unit column to which it belongs.
  • the antenna includes a feeding port, the feeding port is disposed at the first end in the longitudinal direction, the end opposite to the first end is the second end, and the cutting structure in the radiation unit makes the
  • the radiating elements on both sides of the second vertical center line have different thicknesses, wherein the radiating element on the side with the largest thickness resides at the first end, and the radiating element on the side with the smallest thickness resides at the second end.
  • a base station which is characterized in that: the base station is equipped with the antenna described in the next purpose, which is used for transmitting the signals passing through the base station.
  • two pairs of radiating oscillators with orthogonal polarizations of the radiating element of the present disclosure form a matrix structure, and the radiating surface of the radiating element is constrained on the same plane, and the non-radiating surface of the radiating element is provided with a cutting structure, so that the radiating surface is It is not symmetrical with the non-radiating surface, thereby improving the radiation performance of the radiation unit.
  • a cutting structure is provided on the non-radiating surface of the radiating element of the present disclosure, so that the radiating element is only symmetrical about the first vertical center line, but not about the second vertical center line, so that the radiating element forms an asymmetric structure with respect to the second vertical center line, whereby, the horizontal symmetry of the radiation pattern of the preset down-tilt angle of the radiation unit is improved, and the frequency band is widened.
  • FIG. 1 is a perspective view of a radiation unit according to an embodiment of the present disclosure.
  • FIG. 2 is a side view of a radiation unit of one embodiment of the present disclosure.
  • FIG. 3 is a top view of a radiation unit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the arrangement of feed posts of a radiation unit according to an embodiment of the present disclosure.
  • FIG. 5 is a graph showing the standing wave performance of the antenna unit.
  • Figure 6 shows the self-isolation performance of the antenna unit.
  • FIG. 7 is a radiation performance diagram of a preset 0° downtilt antenna unit.
  • Figure 8 is a radiation performance diagram of a preset 6° downtilt antenna unit.
  • FIG. 9 is a cross-polarization ratio diagram of a preset downtilt of 0° horizontal ⁇ 60°.
  • Figure 10 is a cross-polarization ratio diagram of a preset downtilt of 6° horizontal ⁇ 60°.
  • the present disclosure provides another radiation unit, which has an asymmetric structure, can widen the frequency band, has high isolation, and has high symmetry in the horizontal pattern.
  • the radiation unit 10 includes two pairs of radiation dipoles 20 arranged with orthogonal polarizations.
  • the four radiation oscillators 20 of the radiation unit 10 are respectively the first radiation oscillator 21, the second radiation oscillator 22, the third radiation oscillator 23 and the fourth radiation oscillator 24, and the first radiation oscillator 21 and the third radiation oscillator 23 are in the same polarization. , the second radiation oscillator 22 and the fourth radiation oscillator 24 are in the same polarization.
  • the radiation surfaces of the two pairs of radiation oscillators 20 of the radiation unit 10, a total of four radiation oscillators 20, are all located on the same plane, that is, the radiation surfaces of the radiation unit 10 are constrained on the same plane.
  • the shapes of the two opposite radiating elements 20 of each polarization of the radiation unit 10 are different from each other, and the two radiating elements 20 of the same polarization are not symmetrical. Specifically, the shapes of the first radiation oscillator 21 and the third radiation oscillator 23 of the same polarization are different, and the shapes of the second radiation oscillator 22 and the fourth radiation oscillator 24 of the same polarization are different.
  • One of the radiating elements 20 of each polarization of the radiation unit 10 is respectively adjacent to two radiating elements 20 of the other polarization.
  • the first radiation oscillator 21 is adjacent to the second radiation oscillator 22 and the fourth radiation oscillator 24 respectively
  • the third radiation oscillator 23 is adjacent to the second radiation oscillator 22 and the fourth radiation oscillator 24 respectively.
  • the two radiating elements 20 of the same polarization are opposite to each other, so that the two pairs of radiating elements 10 form a matrix structure. Because the radiation units 10 are in a matrix structure, the radiation units 10 in the matrix structure can form two dummy vertical center lines that are perpendicular to each other. The two mutually perpendicular vertical midlines are called the first vertical midline and the second vertical midline, respectively.
  • the first vertical center line and the second vertical center line divide the radiation unit 10 into four parts, each part corresponds to a radiating element 20, and the vertical points of the first vertical center line and the second vertical center line are two pairs of polarized orthogonal radiation The polarization center of the vibrator 20 .
  • the first vertical centerline extends along the longitudinal direction of the radiation unit 10
  • the second vertical centerline extends along the lateral direction of the radiation unit 10 .
  • the radiating element 10 is symmetrical about the first vertical centerline, but the radiating element 10 is not symmetrical about the second vertical centerline.
  • the two radiating elements 20 on each side of the second vertical center line are symmetrical about the first vertical center line.
  • the two sides of the second vertical center line are the first side and the second side respectively, the first radiation oscillator 21 and the second radiation oscillator 22 are located on the first side, and the first radiation oscillator 21 and the second radiation oscillator 22 have the same structure;
  • the oscillator 23 and the fourth radiation oscillator 24 are located on the second side, and the third radiation oscillator 23 and the fourth radiation oscillator 24 have the same structure.
  • the first radiation oscillator 21 and the third radiation oscillator 23 of the same polarization are not symmetrical, and the second radiation oscillator 22 and the fourth radiation oscillator 24 of the same polarization are not symmetrical, so the radiation unit 10 is not centrally symmetric structure.
  • both the first radiation element 21 and the second radiation element 22 located on the first side of the second vertical center line have cutting structures 30 .
  • the cutting structure 30 is used for thinning the thicknesses of the first radiating element 21 and the second radiating element 22 , so that the structures of the first radiating element 21 and the second radiating element 22 are the same as those of the third radiating element 23 and the fourth radiating element 24 .
  • the structure is different, so that the radiation unit 10 is not symmetrical about the second vertical center line, so that the radiation unit 10 has asymmetry, and the asymmetry of the radiation unit 10 will effectively improve the horizontal symmetry of the preset down-tilt radiation pattern of the radiation unit 10 It has good stability, effective bandwidth is ⁇ 60°, and the horizontal pattern symmetry performance is improved by 1 to 2.5dB.
  • the cutting structure 30 extends and cuts from the end of the non-radiating surface of the radiation oscillator 20 that is far away from the second vertical centerline to the end of the non-radiating surface or the radiating surface that is close to the second vertical centerline, so that the radiation oscillator 20 has the cutting structure 30. thin.
  • the cutting structure 30 extends from the end of the non-radiating surface of the radiating element 20 away from the second vertical centerline to the end of the non-radiating surface or the end of the radiating surface that is close to the second vertical centerline/one parallel to the second vertical centerline
  • One end of the parallel reference line/one end of the second side parallel and opposite to the first side extends the cut.
  • the extension length of the cutting structure 30 in the longitudinal direction of the radiation oscillator 20 is 10%-90% of the longitudinal length of the radiation oscillator 20 .
  • the extension length of the cutting structure 30 in the longitudinal direction of the radiation oscillator 20 is equal to 60%, 70%, 80% and 90% of the lengthwise length.
  • the extension length of the cutting structure 30 in the lateral direction of the radiation vibrator 20 is 10%-100% of the lateral width of the radiation vibrator 20 , preferably the extension length of the cutting structure 30 in the lateral direction of the radiation vibrator 20 is 100% of the lateral width of the radiation vibrator 20 %.
  • the extension length of the cutting structure 30 in the thickness direction of the radiation vibrator 20 is 10%-90% of the thickness of the radiation vibrator 20 , preferably, the extension length of the cutting structure 30 in the thickness direction of the radiation vibrator 20 is 50% of the thickness of the radiation vibrator 20 . .
  • the thickness of the cutting structure 30 can be linearly graded, jumped, or stepped, so that the thickness between the radiating surface and the non-radiating surface of the radiating element 20 changes from the end away from the second vertical centerline to the second vertical Linear gradient or jump transition or stepped gradient transition in the direction of the midline.
  • the thickness of the cutting structure 30 when the thickness of the cutting structure 30 is linearly or stepped in a gradual transition, the thickness of the cutting structure 30 is linearly thinned or stepped in a stepwise transition from the end away from the second vertical centerline to the direction of the second vertical centerline. Thinning, the thickness between the radiating surface and the non-radiating surface of the corresponding radiating element 20 increases linearly or stepwise from the end away from the second vertical centerline to the direction of the second vertical centerline.
  • the cutting structure 30 is a jump transition, that is, the thickness of the cutting structure 30 is uniform in the direction from the end away from the second vertical centerline to the second vertical centerline, so that the radiation
  • the thickness of the vibrator 20 where the cutting structure 30 is located is consistent, preferably, the thickness is 50% of the original thickness of the radiation vibrator 20
  • the extension length of the cutting structure 30 in the longitudinal direction of the radiation vibrator 20 is equal to the longitudinal length of the radiation vibrator 20 .
  • the extension length of the cutting structure 30 in the transverse direction of the radiation element 20 is 100% of the transverse width of the radiation element 20 .
  • the first radiating element 21 and the second radiating element 22 on the first side of the first vertical center line have the same cutting structure 30, so that the first radiating element 21 and the radiating element 20 have the same structure, and about the A vertical midline is symmetrical.
  • the radiation surface of the first radiation oscillator 21 and the radiation surface of the second radiation oscillator 22 have the same shape
  • the radiation surface of the third radiation oscillator 23 and the radiation surface of the fourth radiation oscillator 24 have the same shape
  • the shapes of the radiation surfaces of the first radiator 21 and the second radiator 22 are different from those of the third radiator 23 and the fourth radiator 24 .
  • the radiation vibrator 20 has an indented groove 40 , and the indented groove 40 penetrates the radiation vibrator 20 in the thickness direction of the radiation vibrator 20 .
  • the first radiating element 21 and the second radiating element 22 have indented grooves 40 of the same shape and size
  • the third radiating element 23 and the fourth radiating element 24 have indented grooves 40 of the same shape and size
  • the The size of the recessed groove 40 of a radiation element 21 is not the same as that of the recessed groove 40 of the second radiation element 22 , the recessed groove 40 of the third radiation element 23 and the recessed groove 40 of the fourth radiation element 24 .
  • the four radiating vibrators 20 of the radiation unit 10 are spaced apart to form "cross"-shaped slits 50, and the two perpendicular slits of the "cross"-shaped slit 50 are respectively along the first vertical center and the second vertical Center settings. Moreover, the "cross"-shaped slits 50 all penetrate the radiation unit 10 in the thickness direction of the radiation unit 10, so that the central area of the radiation unit 10 is hollowed out, extending the electrical length of the radiation unit 10, and improving the self-isolation between the radiation oscillators 20. Spend.
  • the outer sides of two adjacent radiating elements 20 are electrically connected, so that the four radiating elements 20 can feed each other, and the radiation element 10 is maintained as a whole.
  • an interference slit perpendicular to the longitudinal direction of the slit is provided to extend the electrical length of the radiation unit 10 and improve the radiation oscillator. 20 rooms of self-isolation.
  • the "cross"-shaped slit 50 can be divided into four small slits, each small slit is formed by two adjacent radiating oscillators 20 spaced apart, and each small slit is provided with at least one interference slit perpendicular to it, The interference gap communicates with the small gap.
  • the four small slits of the "ten"-shaped slit 50 are provided with interference slits of the same number and structure.
  • two interference slits are provided on each small slit.
  • the radiation unit 10 has four feed posts 70 , the four feed posts 70 correspond to one radiating element 20 respectively, and the four feed posts 70 are connected to the differential feed Network 80 is connected.
  • the distance between the two feeding columns 70 corresponding to the two radiating elements 10 connected to the first side of the second vertical center line is greater than the distance between the two feeding columns 70 connecting the two radiating elements 10 to the second side of the second treatment center line.
  • the distance between the four feeding posts 70 is not symmetrical about the second vertical center line, which further strengthens the asymmetry of the radiation unit 10, and improves the horizontal symmetry of the radiation unit 10 with a certain preset down-tilt radiation pattern, effectively Bandwidth ⁇ 60°.
  • the four feeding columns 70 are a first feeding column 71 , a second feeding column 72 , a third feeding column 73 and a fourth feeding column 74 , respectively.
  • the first feeding column 71 is correspondingly connected to the first radiation oscillator 21
  • the second feeding column 72 is correspondingly connected to the second radiation oscillator 22
  • the third feeding column 73 is connected to the third radiation oscillator 23
  • the fourth feeding column 74 is connected to The fourth radiation oscillator 24 .
  • the distance between the first feeding column 71 and the second feeding column 72 is greater than the distance between the third feeding column 73 and the fourth feeding column 74 .
  • the first radiating element 21 and the third radiating element 23 are on the same polarization, the first feeding column 71 and the third feeding column 73 feed the same signal; the second radiating element 22 and the fourth radiating element 24 are in On the same polarization, the second feeding column 72 and the fourth feeding column 74 feed the same signal.
  • the differential feeding network 80 is disposed on the front surface of the dielectric board, and the four feeding posts 70 are plugged on the dielectric board and connected to the differential feeding network 80 .
  • the reverse side of the dielectric board is connected to the ground plane.
  • the radiation vibrator 20 is a die-casting patch vibrator.
  • the present disclosure also provides an antenna including at least one radiating element column, each radiating element column including a plurality of the above-mentioned radiating elements.
  • the multiple radiation elements of the same radiation element row are arranged along the same axis, and the first vertical center line of the radiation element is coincident with the axis of the longitudinal direction of the radiation element row, so that the multiple radiation elements of the same radiation element row are about the longitudinal length of the radiation element row.
  • the axes of the directions are relatively symmetrical.
  • two ends in the longitudinal direction of the radiation element column are the first end and the second end, respectively.
  • the antenna includes a feeding port, the feeding port is arranged at the first end in the longitudinal direction of the radiating element row, the two radiating elements with the cutting structure of the same radiating element are close to the second end, and the same radiating element does not have the cutting structure
  • the two radiating oscillators are close to the first end. That is to say, the third radiating element and the fourth radiating element on the second side of the second vertical center line of the radiation unit are closer to the The first end; the first radiator and the second radiator on the first side of the second vertical centerline of the radiation unit are closer to the second end than the third radiator and the fourth radiator on the second side of the second vertical centerline of the radiation unit .
  • the antenna is arranged on the pole, the two radiating elements with the cutting structure are close to the upper end of the pole, and the two radiating elements without the cutting structure are close to the lower end of the pole.
  • the antenna When the antenna is installed, the antenna is installed vertically, and the feeding port referred to in the present disclosure is located below the height direction. Therefore, for a radiating element, the side with the cut structure is located above the height direction when the antenna is installed.
  • FIG. 5 to FIG. 9 Please refer to FIG. 5 to FIG. 9 for the relevant effects obtained by the simulation test using the antenna of the present disclosure. It can be seen that the present disclosure has achieved relatively excellent effects in solving the problem of asymmetry.
  • the present disclosure also provides a base station, which is equipped with the above-mentioned antenna for transmitting a signal passed by the base station.
  • the radiation unit of the present disclosure by disposing cutting structures on two radiating elements on one side of the second vertical centerline, the radiation unit is asymmetrical with respect to the second vertical centerline, thereby broadening the frequency band of the radiation unit and improving the Horizontal symmetry of the oblique radiation pattern.
  • the radiation unit provided by the present disclosure is provided with cutting structures on two radiating elements on one side of the second vertical centerline, so that the radiation unit is asymmetrical with respect to the second vertical centerline, thereby broadening the frequency band of the radiation unit and improving the downslope radiation pattern
  • the horizontal symmetry has strong industrial practicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供了一种基站、天线及其辐射单元,所述辐射单元,包括两对以极化正交设置的辐射振子,同一极化的两个辐射振子彼此相对向以构成矩阵结构,其特征在于:该辐射单元的辐射面被约束为同一平面,而其非辐射面则设置切削结构以使其脱离同一平面的约束,且该切削结构使得所述矩阵结构的第一垂直中线两侧的辐射振子关于第一垂直中线形成对称结构,而使该矩阵结构的第二垂直中线两侧的辐射振子关于该第二垂直中线形成非对称结构。本公开的辐射单元通过在第二垂直中线其中一侧的两个辐射振子上设置切削结构,使得辐射单元关于第二垂直中线不相对称,从而拓宽辐射单元的频带,改善下倾辐射方向图的水平对称性。

Description

基站、天线及其辐射单元
本公开要求于2020年12月30日提交中国专利局、申请号为202011631317.7、发明名称为“基站、天线及其辐射单元”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于移动通信技术领域,具体涉及一种辐射单元与配置了所述辐射单元的天线,以及配设了所述天线的基站。
背景技术
随着5G移动通信网络的商业应用,大规模阵列天线广泛部署,基站主设备和天线高度融合成为了5G基站的主流发展方向。考虑到安装的便捷性与基站塔的抱杆的承重能力,5G基站天线大面阵单元的选型显得尤为重要。
相对传统巴伦偶极子单元,贴片辐射单元本身具有剖面低,重量轻的优势,现逐步应用于5G大规模阵列天线中。
但是,微带差分馈电贴片辐射单元除存在众多优点,其自隔离仍存在一定瓶颈,较难满足更高隔离度要求的天线阵列。
当前基站天线广泛采用±45°极化分集,这要求振元也具备同样的极化形式。实际应用中,基站天线一般会存在一定的方向图预置下倾,±45°极化形式会给水平面方向图带来一定的不对称性。针对这一不对称性所带来的影响如何克服,目前未见相关在先方案。
发明内容
(一)要解决的技术问题
基站天线广泛采用±45°极化分集,而基站天线一般会存在一定的方向图预置下倾,±45°极化形式会给水平面方向图带来一定的不对称性。
(二)技术方案
本公开的首一目的在于提供一种水平方向图高对称性、宽频带的辐射单元。
本公开的次一目的在于提供一种天线。
本公开的再一目的在于提供一种基站。
适应于本公开的目的,本公开采用如下技术方案:
适于本公开的首一目的而提供一种辐射单元,包括两对以极化正交设置的辐射振子,同一极化的两个辐射振子彼此相对向以构成矩阵结构,该辐射单元的辐射面被约束为同一平面,而其非辐射面则设置切削结构以使其脱离同一平面的约束,且该切削结构使得所述矩阵结构的第一垂直中线两侧的辐射振子关于第一垂直中线形成对称结构,而使该矩阵结构的第二垂直中线两侧的辐射振子关于该第二垂直中线形成非对称结构。
进一步的,所述切削结构仅设置在与所述第二垂直中线相平行的第一侧的两个辐射振子上,使该两个辐射振子均相应具有线性特征/跳变特征。
进一步的,所述切削结构具有渐变特征,以使辐射单元的辐射面与非辐射面之间的厚度从与所述第二垂直中线平行的第一侧向所述第二垂直中线/向与第二垂直中线相平行的一条平行参考线/向与该第一侧相平行对向的第二侧线性渐增。
具体的,所述切削结构具有跳变特征,以使辐射单元的辐射面与非辐射面之间的厚度从与所述第二垂直中线平行的第一侧向所述第二垂直中线/向与第二垂直中线相平行的一条平行参考线/向与该第一侧相平行对向的第二侧阶梯式递增。
进一步的,每个辐射振子均以其非辐射面装配一个用于为其馈入信号的馈电柱,居于第一垂直中线两侧的馈电柱彼此位置对称设置,而居于第二垂直中线两侧的馈电柱彼此位置非对称设置。
进一步的,所述切削结构使所述第二垂直中线两侧的辐射振子具有不同厚度,其中,具有最小厚度的一侧的两个辐射振子的馈电柱之间的间距,大于具有最大厚度的一侧的两个辐射振子的馈电柱之间的间距。
优选的,所述辐射单元的四个辐射振子两两相间隔形成“十”字型缝隙,其中各个辐射振子呈片状,且中央区域被镂空,位置相邻的两个辐射振子的外侧直接电性连接。
具体的,在相邻两个辐射振子之间的所述“十”字型缝隙中,设置有与所述缝隙的纵长方向相垂直的干涉缝隙。
进一步的,所述辐射振子为经压铸成型的贴片振子。
适于本公开的次一目的而提供一种天线,包括至少一个辐射单元列,每个辐射单元列包括多个并联馈电的辐射单元,所述辐射单元为首一目的所述的辐射单元,且所述辐射单元所形成的矩阵结构的第一垂直中线与其所属的辐射单元列的纵长方向相重合。
进一步的,所述天线包括馈电端口,该馈电端口设置于所述纵长方向的第一端,与第一端相对的一端为第二端,所述辐射单元中的切削结构使所述第二垂直中线两侧的辐射振子具有不同厚度,其中具有最大厚度的一侧的辐射振子居于所述的第一端,具有最小厚度的一侧的辐射振子居于所述的第二端。
适于本公开的再一目的而提供一种基站,其特征在于:该基站配备有次一目的所述的天线,用于发射该基站通行的信号。
(三)有益效果
相对于现有技术,本公开的优势如下:
首先,本公开的辐射单元的两对极化正交设置的辐射振子构成矩阵结构,且辐射单元的辐射面被约束在同一平面上,辐射单元的非辐射面上设有切削结构,使得辐射面和非辐射面不相对称,从而提高辐射单元的辐射性能。
其次,本公开的辐射单元的非辐射面上设置了切削结构,使得辐 射单元只关于第一垂直中线对称,而不关于第二垂直中线对称,使得辐射振子关于第二垂直中线形成非对称结构,从而改善辐射单元的预置下倾角辐射方向图的水平对称性,拓宽频带。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开的一个实施例的辐射单元的立体图。
图2为本公开的一个实施例的辐射单元的侧视图。
图3为本公开的一个实施例的辐射单元的俯视图。
图4为本公开的一个实施例的辐射单元的馈电柱的排布示意图。
图5为天线单元的驻波表现图。
图6为天线单元的自隔离表现。
图7为预置0°下倾天线单元的辐射表现图。
图8为预置6°下倾天线单元的辐射表现图。
图9为预置下倾0°水平±60°交叉极化比图。
图10为预置下倾6°水平±60°交叉极化比图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的实例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是实例性的,仅用于解释本公开而不能解释为对本公开的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本公开的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件和/或组件,但是并不排排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中 间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本公开提供另一种辐射单元,该辐射单元具有不对称结构,可拓宽频带,具有高隔离度,水平方向图高对称性。
在本公开的典型实施例中,结合图1和图2,所述辐射单元10包括两对以极化正交设置的辐射振子20。
辐射单元10的四个辐射振子20分别为第一辐射振子21、第二辐射振子22、第三辐射振子23以及第四辐射振子24,第一辐射振子21和第三辐射振子23在同一极化,第二辐射振子22与第四辐射振子24在同一极化。
辐射单元10的两对辐射振子20共四个辐射振子20的辐射面均居于同一平面上,也即是说,辐射单元10的辐射面被约束在同一平面上。
辐射单元10的每一极化的两个相对的辐射振子20的形状各不相同,同一极化的两个辐射振子20不相对称。具体言之,同一极化的第一辐射振子21与第三辐射振子23的形状不相同,同一极化的第二辐射振子22和第四辐射振子24的形状不相同。
辐射单元10的每一极化的其中一个辐射振子20分别与另一极化的两个辐射振子20相邻接。具体言之,第一辐射振子21分别与第二辐射振子22和第四辐射振子24相邻接,第三辐射振子23分别与第二辐射振子22和第四辐射振子24相邻接。
同一极化的两个辐射振子20彼此相对,使得两对辐射单元10构成矩阵结构。因,辐射单元10呈矩阵结构,则,矩阵结构的辐射单元10可形成两条虚设的相互垂直的垂直中线。称该两条相互垂直的垂直 中线分别为第一垂直中线和第二垂直中线。
第一垂直中线和第二垂直中线将辐射单元10分为四个部分,每个部分各对应一个辐射振子20,第一垂直中线和第二垂直中线的垂直点为两对极化正交的辐射振子20的极化中心。
第一垂直中线沿辐射单元10的纵长方向延伸,第二垂直中线沿辐射单元10的横向方向延伸。辐射单元10关于第一垂直中线对称,但辐射单元10不关于第二垂直中线相对称。
具体言之,第二垂直中线的每一侧的两个辐射振子20关于第一垂直中线对称。第二垂直中线的两侧分别为第一侧和第二侧,第一辐射振子21和第二辐射振子22居于第一侧,第一辐射振子21和第二辐射振子22结构相同;第三辐射振子23和第四辐射振子24居于第二侧,第三辐射振子23和第四辐射振子24结构相同。
由此,同一极化的第一辐射振子21和第三辐射振子23不相对称,同一极化的第二辐射振子22和第四辐射振子24不相对称,则,辐射单元10不呈中心对称结构。
在本公开的典型实施例中,结合图3,居于第二垂直中线的第一侧的第一辐射振子21和第二辐射振子22上均有切削结构30。该切削结构30用于将第一辐射振子21和第二辐射振子22的厚度削薄,使得第一辐射振子21和第二辐射振子22的结构与第三辐射振子23和第四辐射振子24的结构不相同,使得辐射单元10不关于第二垂直中线对称,使得辐射单元10具有不对称性,而辐射单元10的不对称性,将有效改善辐射单元10预置下倾辐射方向图的水平对称性,有效带宽±60°,水平方向图对称性能改善1至2.5dB。
所述切削结构30从辐射振子20的非辐射面的远离第二垂直中线的一端朝其非辐射面或辐射面的靠近第二垂直中线的一端延伸切削,使得辐射振子20在具有切削结构30处变薄。优选的,所述切削结构30从辐射振子20的非辐射面的远离第二垂直中线的一端朝其非辐射面或辐射面的靠近第二垂直中线的一端/与第二垂直中线相平行的一条平行参考线的一端/与该第一侧相平行对向的第二侧的一端延伸切削。
切削结构30在辐射振子20纵长方向上的延伸长度为辐射振子20 的纵长长度的10%-90%,优选切削结构30在辐射振子20的纵长方向上的延伸长度为辐射振子20的纵长长度的60%、70%、80%和90%。
切削结构30在辐射振子20的横向方向的延伸长度为辐射振子20的横向宽度的10%-100%,优选切削结构30在辐射振子20的横向方向的延伸长度为辐射振子20的横向宽度的100%。
切削结构30在辐射振子20的厚度方向的延伸长度为辐射振子20的厚度的10%-90%,优选,切削结构30在辐射振子20的厚度方向的延伸长度为辐射振子20的厚度的50%。具体言之,切削结构30在厚度可线性渐变或跳变过渡或阶梯式渐变过渡,从而使得辐射振子20的辐射面和非辐射面之间的厚度从远离第二垂直中线的一端向第二垂直中线方向线性渐变或跳变过渡或阶梯式渐变过渡。
在一个实施例中,当切削结构30的厚度线性渐变或阶梯式渐变过渡时,切削结构30的厚度在从远离第二垂直中线的一端向第二垂直中线方向线性渐变变薄或阶梯式渐变过渡变薄,对应的辐射振子20的辐射面和非辐射面之间的厚度从远离第二垂直中线的一端向第二垂直中线方向线性渐变变厚或阶梯式渐变变厚。
以上为本公开的切削结构30各个方向上的长度指标,可自由组合这些长度指标,以为辐射振子20构建出不同的切削结构30。
在本公开的典型实施例中,切削结构30为跳变过渡,也即是说,切削结构30的厚度在从远离第二垂直中线的一端向第二垂直中线方向上的厚度均一致,使得辐射振子20在有切削结构30处的厚度相一致,优选,该厚度为辐射振子20原本厚度的50%,切削结构30在辐射振子20纵长方向上的延伸长度为辐射振子20的纵长长度的60%、70%、80%和90%,切削结构30在辐射振子20的横向方向的延伸长度为辐射振子20的横向宽度的100%。
由此,第一垂直中线的第一侧的第一辐射振子21和第二辐射振子22具有相同结构的切削结构30,以使得所述第一辐射振子21和辐射振子20结构相同,且关于第一垂直中线相对称。
在本公开的典型实施例中,第一辐射振子21的辐射面和第二辐射振子22的辐射面的形状相同,第三辐射振子23的辐射面和第四辐射 振子24的辐射面的形状相同,但第一辐射振子21的辐射面和第二辐射振子22的辐射面的形状与第三辐射振子23的辐射面和第四辐射振子24的辐射面的形状不相同。
具体而言,辐射振子20上具有一个内陷槽40,且内陷槽40在辐射振子20的厚度方向上贯通辐射振子20。在辐射面方向上,第一辐射振子21和第二辐射振子22具有相同形状大小的内陷槽40,第三辐射振子23和第四辐射振子24具有相同形状大小的内陷槽40,且第一辐射振子21的内陷槽40与第二辐射振子22的内陷槽40和第三辐射振子23的内陷槽40和第四辐射振子24的内陷槽40的大小不一致。
辐射单元10的四个辐射振子20之间两两相间隔形成”十”字型缝隙50,该”十”字型缝隙50的两条相垂直的缝隙分别对应沿第一垂直中心和第二垂直中心设置。且,该”十”字型缝隙50均在辐射单元10的厚度方向上贯穿辐射单元10,使得辐射单元10的中央区域被镂空,延伸辐射单元10的电长度,改善辐射振子20间的自隔离度。
辐射单元10的四个辐射振子20中,相邻的两个辐射振子20的外边相电性连接,使得该四个辐射振子20可相互馈电,也使得辐射单元10维持一个整体。
在相邻两个辐射振子20之间的所述”十”字型缝隙50中,设置有与所述缝隙的纵长方向相垂直的干涉缝隙,以延长辐射单元10的电长度,改善辐射振子20间的自隔离度。具体而言,”十”字型缝隙50可分为四个小缝隙,每个小缝隙由两个相邻的辐射振子20间隔形成,每个小缝隙上设置与其相垂直的至少一个干涉缝隙,干涉缝隙与小缝隙相贯通。”十”字型缝隙50的四个小缝隙上设置相同数量和结构的干涉缝隙。优选,每个小缝隙上设置两个干涉缝隙。
在本公开的典型实施例中,结合图4,辐射单元10具有四个馈电柱70,该四个馈电柱70分别对应一个辐射振子20,且该四个馈电柱70与差分馈电网络80连接。对应连接第二垂直中线第一侧的两个辐射单元10的两个馈电柱70之间的间距大于对连接第二处置中线第二侧的两个辐射单元10的两个馈电柱70之间的间距,该四个馈电柱70不关于第二垂直中线对称,进一步的加强了辐射单元10的不对称性,从 改善辐射单元10一定预置下倾辐射方向图的水平对称性,有效带宽±60°。
具体言之,该四个馈电柱70分别为第一馈电柱71、第二馈电柱72、第三馈电柱73以及第四馈电柱74。其中,第一馈电柱71对应连接第一辐射振子21,第二馈电柱72对应连接第二辐射振子22,第三馈电柱73连接第三辐射振子23,第四馈电柱74连接第四辐射振子24。第一馈电柱71与第二馈电柱72之间的距离大于第三馈电柱73与第四馈电柱74之间的距离。因,第一辐射振子21和第三辐射振子23在同一极化上,则第一馈电柱71和第三馈电柱73馈入同一信号;第二辐射振子22和第四辐射振子24在同一极化上,则第二馈电柱72和第四馈电柱74馈入同一信号。
在一个实施例中,差分馈电网络80设置于介质板的正面上,四个馈电柱70插接于介质板上与差分馈电网络80连接。介质板的反面与接地层连接。
在一个实施例中,辐射振子20为经压铸成型的贴片振子。
本公开还提供了一种天线,该天线包括至少一个辐射单元列,每个辐射单元列包括多个上文所述的辐射单元。同一辐射单元列的多个辐射单元沿同一轴线设置,且辐射单元的第一垂直中线与辐射单元列的纵长方向的轴线相重合,使得该同一辐射单元列的多个辐射单元关于其纵长方向的轴线相对称。
在一个实施例中,辐射单元列的纵长方向的两端分别为第一端和第二端。所述天线包括馈电端口,该馈电端口设置于辐射单元列的纵长方向的第一端,同一辐射单元的具有切削结构的两个辐射振子靠近第二端,同一辐射单元不具有切削结构的两个辐射振子靠近第一端。也即是说,辐射单元的第二垂直中线的第二侧的第三辐射振子和第四辐射振子较辐射单元的第二垂直中线第一侧的第一辐射振子和第二辐射振子靠近所述第一端;辐射单元的第二垂直中线第一侧的第一辐射振子和第二辐射振子较辐射单元的第二垂直中线的第二侧的第三辐射振子和第四辐射振子靠近第二端。
在一个实施例中,所述天线设置于抱杆上,具有切削结构的两个辐射振子靠近抱杆的上端,不具有切削结构的两个辐射振子靠近抱杆的下端。
安装天线时,天线竖立安装,本公开所称的馈电端口居于高度方向的下方,因此,对于一个辐射单元而言,其具有切削结构的一侧居于天线安装时高度方向的上方。
采用本公开的天线进行的仿真测试获得的相关效果请参阅图5至图9所示,可以看出,在解决不对称性的问题上,本公开取得了较为优异的效果。
本公开还提供了一种基站,该基站配备有上文所述的天线,用于发射该基站所通行的信号。
综上所述,本公开的辐射单元通过在第二垂直中线其中一侧的两个辐射振子上设置切削结构,使得辐射单元关于第二垂直中线不相对称,从而拓宽辐射单元的频带,改善下倾辐射方向图的水平对称性。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中发明的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
工业实用性
本公开提供的辐射单元通过在第二垂直中线其中一侧的两个辐射振子上设置切削结构,使得辐射单元关于第二垂直中线不相对称,从而拓宽辐射单元的频带,改善下倾辐射方向图的水平对称性,具有很强的工业实用性。

Claims (12)

  1. 一种辐射单元,包括两对以极化正交设置的辐射振子,同一极化的两个辐射振子彼此相对向以构成矩阵结构,其特征在于:该辐射单元的辐射面被约束为同一平面,而其非辐射面则设置切削结构以使其脱离同一平面的约束,且该切削结构使得所述矩阵结构的第一垂直中线两侧的辐射振子关于第一垂直中线形成对称结构,而使该矩阵结构的第二垂直中线两侧的辐射振子关于该第二垂直中线形成非对称结构。
  2. 根据权利要求1所述的辐射单元,其特征在于:所述切削结构仅设置在与所述第二垂直中线相平行的第一侧的两个辐射振子上,使该两个辐射振子均相应具有线性特征/跳变特征。
  3. 根据权利要求1所述的辐射单元,其特征在于:所述切削结构具有渐变特征,以使辐射单元的辐射面与非辐射面之间的厚度从与所述第二垂直中线平行的第一侧向所述第二垂直中线/向与第二垂直中线相平行的一条平行参考线/向与该第一侧相平行对向的第二侧线性渐增。
  4. 根据权利要求1所述的辐射单元,其特征在于:所述切削结构具有跳变特征,以使辐射单元的辐射面与非辐射面之间的厚度从与所述第二垂直中线平行的第一侧向所述第二垂直中线/向与第二垂直中线相平行的一条平行参考线/向与该第一侧相平行对向的第二侧阶梯式递增。
  5. 根据权利要求1至4中任意一项所述的辐射单元,其特征在于:每个辐射振子均以其非辐射面装配一个用于为其馈入信号的馈电柱,居于第一垂直中线两侧的馈电柱彼此位置对称设置,而居于第二垂直中线两侧的馈电柱彼此位置非对称设置。
  6. 根据权利要求5所述的辐射单元,其特征在于:所述切削结构使所述第二垂直中线两侧的辐射振子具有不同厚度,其中,具有最小厚度的一侧的两个辐射振子的馈电柱之间的间距,大于具有最大厚度的一侧的两个辐射振子的馈电柱之间的间距。
  7. 根据权利要求1至4中任意一项所述的辐射单元,其特征在于:所述辐射单元的四个辐射振子两两相间隔形成“十”字型缝隙,其中各个辐射振子呈片状,且中央区域被镂空,位置相邻的两个辐射振子的外侧直接电性连接。
  8. 根据权利要求7所述的辐射单元,其特征在于:在相邻两个辐射振子之间的所述“十”字型缝隙中,设置有与所述缝隙的纵长方向相垂直的干涉缝隙。
  9. 根据权利要求1至4中任意一项所述的辐射单元,其特征在于:所述辐射振子为经压铸成型的贴片振子。
  10. 一种天线,包括至少一个辐射单元列,每个辐射单元列包括多个并联馈电的辐射单元,其特征在于:所述辐射单元为如权利要求1至9中任意一项所述的辐射单元,且所述辐射单元所形成的矩阵结构的第一垂直中线与其所属的辐射单元列的纵长方向相重合。
  11. 根据权利要求10所述的天线,其特征在于,所述天线包括馈电端口,该馈电端口设置于所述纵长方向的第一端,与第一端相对的一端为第二端,所述辐射单元中的切削结构使所述第二垂直中线两侧的辐射振子具有不同厚度,其中具有最大厚度的一侧的辐射振子居于所述的第一端,具有最小厚度的一侧的辐射振子居于所述的第二端。
  12. 一种基站,其特征在于:该基站配备有如权利要求10至11所述的天线,用于发射该基站通行的信号。
PCT/CN2021/118825 2020-12-30 2021-09-16 基站、天线及其辐射单元 WO2022142486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011631317.7 2020-12-30
CN202011631317.7A CN112864591B (zh) 2020-12-30 2020-12-30 基站、天线及其辐射单元

Publications (1)

Publication Number Publication Date
WO2022142486A1 true WO2022142486A1 (zh) 2022-07-07

Family

ID=75999863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118825 WO2022142486A1 (zh) 2020-12-30 2021-09-16 基站、天线及其辐射单元

Country Status (2)

Country Link
CN (1) CN112864591B (zh)
WO (1) WO2022142486A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864591B (zh) * 2020-12-30 2022-08-19 京信通信技术(广州)有限公司 基站、天线及其辐射单元

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633422A (zh) * 2013-11-01 2014-03-12 安弗施无线射频***(上海)有限公司 采用非对称振子的天线振子单元
CN108336491A (zh) * 2018-04-02 2018-07-27 安徽大学 基于微带巴伦馈电的双频双极化叠层贴片天线及其设计方法
CN110808450A (zh) * 2019-10-17 2020-02-18 华南理工大学 双极化天线及其辐射单元
CN112864591A (zh) * 2020-12-30 2021-05-28 京信通信技术(广州)有限公司 基站、天线及其辐射单元

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036009B (zh) * 2011-09-30 2014-12-10 京信通信***(中国)有限公司 不对称结构的双极化宽频辐射单元及阵列天线
CN103715519B (zh) * 2013-06-09 2016-12-28 京信通信技术(广州)有限公司 双极化阵列天线及其辐射单元
CN104103894A (zh) * 2014-07-14 2014-10-15 广州杰赛科技股份有限公司 天线及阵列天线
CN205194847U (zh) * 2015-09-21 2016-04-27 广东晖速通信技术股份有限公司 一种非对称性双极化超宽频振子单元及天线
CN105186107B (zh) * 2015-09-23 2018-08-31 广东曼克维通信科技有限公司 双极化天线及其辐射单元
CN204966683U (zh) * 2015-10-09 2016-01-13 广东博纬通信科技有限公司 一种超宽频双极化不对称天线单元

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633422A (zh) * 2013-11-01 2014-03-12 安弗施无线射频***(上海)有限公司 采用非对称振子的天线振子单元
CN108336491A (zh) * 2018-04-02 2018-07-27 安徽大学 基于微带巴伦馈电的双频双极化叠层贴片天线及其设计方法
CN110808450A (zh) * 2019-10-17 2020-02-18 华南理工大学 双极化天线及其辐射单元
CN112864591A (zh) * 2020-12-30 2021-05-28 京信通信技术(广州)有限公司 基站、天线及其辐射单元

Also Published As

Publication number Publication date
CN112864591B (zh) 2022-08-19
CN112864591A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
US11735807B2 (en) Antenna module and electronic device
EP3968458B1 (en) Radiating structure and array antenna
US10186778B2 (en) Wideband dual-polarized patch antenna array and methods useful in conjunction therewith
KR20170027678A (ko) 이중 대역 이중 편파 안테나 모듈 구조
CN211879611U (zh) 双频双极化天线及辐射单元
CN103779671B (zh) 一种应用于有源天线***的基站阵列天线
CN106025523A (zh) 一种十字型结构辐射单元及其天线阵列
CN108879094B (zh) 一种天线阵列及其天线单元
CN106532235A (zh) 4×4超宽带mimo天线
CN209045768U (zh) 一种电调基站天线
CN112701462B (zh) 一种siw圆极化低剖面磁电偶极子天线
CN210092335U (zh) 双极化天线及其辐射单元
CN114976665B (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
US20170179610A1 (en) Low Coupling 2x2 MIMO Array
CN112768885B (zh) 室内分布天线
US11349213B2 (en) Antenna structure and single dual-polarization antenna array
CN112688070B (zh) 一种分布式多点馈电宽带垂直极化全向天线
CN111786083B (zh) 5g低剖面高性能超宽带天线振子及基站天线
WO2022142486A1 (zh) 基站、天线及其辐射单元
CN115051142B (zh) 一种多频基站天线单元及通信设备
CN114709609A (zh) 低剖面高增益宽轴比波束的圆极化微带天线
WO2022242069A1 (zh) 双极化滤波天线单元和双极化滤波天线阵列
CN111541010A (zh) 一种5g低剖面双极化辐射单元及基站天线
WO2019080635A1 (zh) Mimo天线阵列、mimo天线及基站
US10749253B2 (en) Omnidirectional ceiling antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913233

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10.11.2023)