WO2022142476A1 - 基于振镜的三维扫描成像加工设备及加工方法 - Google Patents

基于振镜的三维扫描成像加工设备及加工方法 Download PDF

Info

Publication number
WO2022142476A1
WO2022142476A1 PCT/CN2021/118309 CN2021118309W WO2022142476A1 WO 2022142476 A1 WO2022142476 A1 WO 2022142476A1 CN 2021118309 W CN2021118309 W CN 2021118309W WO 2022142476 A1 WO2022142476 A1 WO 2022142476A1
Authority
WO
WIPO (PCT)
Prior art keywords
galvanometer
workpiece
light
laser
laser beam
Prior art date
Application number
PCT/CN2021/118309
Other languages
English (en)
French (fr)
Inventor
王雪辉
雷桂明
许维
喻浩
王建刚
Original Assignee
武汉华工激光工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华工激光工程有限责任公司 filed Critical 武汉华工激光工程有限责任公司
Publication of WO2022142476A1 publication Critical patent/WO2022142476A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the field of laser processing, and in particular, to a galvanometer-based three-dimensional scanning imaging processing device and a processing method.
  • the principle of laser processing is to focus the laser through a lens to achieve a high energy density at the focus, and process by photothermal effect.
  • CNC machine tool laser processing technology combines multi-axis machine tools, galvanometers and lasers, making full use of the advantages of non-contact laser processing and high energy density, and is widely used in welding, cutting, engraving, surface modification, marking, drilling, micro Processing and processing of traditional difficult-to-machine materials, etc.
  • one of the purposes of this application is to provide a galvanometer-based 3D scanning imaging processing device.
  • the present application provides a galvanometer-based three-dimensional scanning imaging processing device, comprising:
  • a light source configured to emit at least two laser beams
  • a focusing mirror configured to focus the laser beam before it irradiates the workpiece
  • a galvanometer mirror connected to the light entrance side of the focusing mirror, and the galvanometer mirror is configured to change the focal position of the laser beam in the first direction and the second direction;
  • the first zoom lens is arranged on the light entrance side of the galvanometer, and the first zoom lens is configured to change the focal position of the laser beam in the third direction;
  • a first optical mirror disposed on the light entrance side of the first zoom lens, one side of the first optical mirror allows light to transmit, and the other side of the first optical mirror allows light to reflect;
  • a detection unit and the light source are respectively disposed on both sides of the first optical mirror, and the detection unit is configured to detect the state of the light spot formed by the laser beam irradiating the workpiece.
  • the detection unit includes a detection element and a convex lens, and the convex lens is configured to focus the light reflected from the first optical mirror on the on the detection element.
  • the detection unit further includes a filter, and the filter is disposed between the detection element and the convex lens.
  • the detection unit further includes a shutter, and the shutter is disposed on the light-entering side of the convex lens.
  • the first optical mirror adopts a beam splitter.
  • the first zoom lens adopts an adjustable beam expander or a liquid lens.
  • At least two types of laser beams are laser beams with the same wavelength and different powers, or laser beams with different wavelengths, or laser beams obtained by spectroscopy.
  • the galvanometer-based three-dimensional scanning imaging processing equipment further includes a second optical mirror and a second zoom lens, and the light source includes a first laser and a second laser;
  • the second optical mirror is arranged on the light entrance side of the galvanometer, one side of the second optical mirror allows light to transmit, and the other side of the second optical mirror allows light to reflect;
  • the second zoom lens and the first zoom lens are respectively arranged on both sides of the second optical mirror;
  • the first laser is configured to emit scanning laser light to the first optical mirror
  • the second laser is configured to emit processing laser light to the second zoom lens.
  • the at least two laser beams include a scanning laser beam for scanning the workpiece and a processing laser beam for processing the workpiece,
  • the light source emits the machining laser beam based on the three-dimensional coordinates.
  • the present application provides a processing method using the above-mentioned galvanometer-based three-dimensional scanning imaging processing equipment, including:
  • Knowing the z xy step changing the focal position of the first type of laser beam in the third direction through the first zoom lens until the detection unit detects that the first type of laser beam is focused on the surface of the workpiece, according to the first type of laser beam.
  • the focal length of a zoom lens is known as z xy ;
  • the three-dimensional coordinates are imported into the laser processing software, so that the light source emits a second laser beam to process the workpiece.
  • the first laser beam is focused on the surface of the workpiece, including:
  • the light spot has the highest energy or the smallest area.
  • FIG. 1 shows a schematic diagram of the overall structure of a galvanometer-based three-dimensional scanning imaging processing device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram showing the variation relationship between the focal position of the laser beam and the size of the light spot in the embodiment of the present application;
  • FIG. 3 shows a schematic diagram of the signal state of the detection element when the laser beam is not focused on the surface of the workpiece in the galvanometer-based three-dimensional scanning imaging processing device provided by the embodiment of the present application;
  • FIG. 4 shows a schematic diagram of the signal state of the detection element when the laser beam is focused on the surface of the workpiece in the galvanometer-based three-dimensional scanning imaging processing device provided by the embodiment of the present application;
  • FIG. 5 shows a flowchart of the processing method provided by the embodiment of the present application.
  • FIG. 6 shows a schematic diagram of the overall structure of a galvanometer-based three-dimensional scanning imaging processing device provided by an embodiment of the present application
  • FIG. 7 shows a flowchart of the processing method provided by the embodiment of the present application.
  • 10-light source 11-first laser; 12-second laser; 20-first optical mirror; 30-first zoom lens; 40-galvanometer; 50-focusing mirror; 60-detection unit; 61-detection element ; 62-convex lens; 63-filter; 64-shutter; 70-second optical mirror; 80-second zoom lens; 90-spot.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plurality means two or more, unless otherwise expressly and specifically defined.
  • This embodiment provides a galvanometer-based three-dimensional scanning imaging processing device, which processes workpieces based on photothermal effects, such as welding, cutting, engraving, surface modification, marking, and drilling. and micromachining, etc.
  • This galvanometer-based three-dimensional scanning imaging processing device includes a light source 10 , a first optical mirror 20 , a first zoom lens 30 , a galvanometer 40 , a focusing mirror 50 and a detection unit 60 .
  • the laser beam emitted by the light source 10 passes through the first optical mirror 20, the first zoom lens 30, the galvanometer 40, and the focusing mirror 50 in sequence, and then irradiates the surface of the workpiece to form an incident light path.
  • the light reflected from the surface of the workpiece passes through the focusing mirror 50, the galvanometer 40, the first zoom lens 30 and the first optical mirror 20 in sequence, and then enters the detection unit 60 to form a reflected light path.
  • the light source 10 adopts a laser, and the light source 10 can emit at least two kinds of laser beams. At least two types of laser beams are laser beams with the same wavelength and different powers, or laser beams with different wavelengths, or laser beams obtained by splitting. One of the laser beams is low power and configured to scan the workpiece surface. Additional laser beams may be high-frequency pulsed lasers, high-speed controllable continuous light and shaped beams, etc., configured to process the workpiece surface.
  • the first optical mirror 20 allows light to be transmitted, and the other side allows light to be reflected.
  • the first optical mirror 20 is inclined with respect to the laser beam, and the light source 10 and the detection unit 60 are disposed on both sides of the first optical mirror 20, respectively. At this time, the incident light path and the reflected light path overlap between the first optical mirror 20 and the workpiece, and the laser beam emitted by the light source 10 and the reflected light received by the detection unit 60 do not interfere with each other.
  • one side of the first optical mirror 20 that allows light to transmit is facing the light source 10 , and the other side is facing the detection unit 60 .
  • the light source 10 , the first optical mirror 20 , the first zoom lens 30 and the galvanometer 40 arranged in the first direction.
  • the laser beam emitted by the light source 10 propagates to the first optical mirror 20 along the first direction, and continues to propagate along the first direction after being transmitted.
  • the light reflected from the surface of the workpiece enters the first optical mirror 20 , and then enters the detection unit 60 after being reflected.
  • the first optical mirror 20 adopts a beam splitter.
  • the incident light can be divided into two parts: reflected light and transmitted light.
  • the optical path composed of incident light and reflected light is the aforementioned reflected optical path, and the optical path composed of incident light and transmitted light overlaps with the aforementioned incident optical path, and the propagation direction of the light is opposite, but the optical path is reversible.
  • the side of the first optical mirror 20 that allows light reflection can be directed toward the light source 10, and the detection unit 60, the first optical mirror 20, the first zoom lens 30 and the galvanometer 40 are arranged in the first direction.
  • the laser beam emitted by the light source 10 is incident on the first optical mirror 20, and then propagates in the first direction after being reflected.
  • the light reflected from the surface of the workpiece enters the first optical mirror 20 , and then enters the detection unit 60 after being transmitted.
  • the light entrance side of the focusing mirror 50 is connected to the galvanizing mirror 40 .
  • the laser beam propagating in the first direction is reflected twice by the galvanizing mirror 40 , and then propagates in the third direction and enters the focusing mirror 50 .
  • the laser beam is focused by the focusing mirror 50 and irradiated on the surface of the workpiece to form a light spot 90 .
  • the galvanometer 40 When the galvanometer 40 reflects the laser beam, it can change the coordinates of the center of the spot 90 along the first direction and the second direction, and also the coordinates of the focus of the laser beam in the first direction and the second direction, so that the laser beam is irradiated on the workpiece surface. at different locations.
  • the coordinates of the focus of the laser beam in the third direction can be changed.
  • the upper and lower light spots 90 are formed when the laser beam is not focused on the workpiece surface, and the middle light spot 90 is formed when the laser beam is focused on the workpiece surface, which is smaller than the upper and lower light spots 90 .
  • the focus position of the first type of laser beam scanning the workpiece surface in the third direction is changed by the first zoom lens 30 until the detection unit 60 detects that the first type of laser beam is focused on the workpiece surface, according to the
  • the focal length of the first zoom lens 30 is known as z xy .
  • the galvanometer 40 is used to change the coordinate x and/or the coordinate y of the center of the light spot 90 , and repeat this step to obtain the corresponding z xy , and finally obtain the three-dimensional coordinates of the workpiece surface.
  • the data of the obtained three-dimensional coordinates are stored in a storage device not shown.
  • the light source 10 emits a second laser beam for processing the surface of the workpiece based on the three-dimensional coordinates of the surface of the workpiece to process the workpiece.
  • the first zoom lens 30 may be an adjustable beam expander or a liquid lens or the like.
  • the detection unit 60 is composed of a detection element 61, an optical filter 63, a convex lens 62 and an optical shutter 64. After the light reflected by the surface of the workpiece is reflected by the first optical mirror 20, it sequentially passes through the optical shutter 64, the convex lens 62, the optical filter 63 and the detection element 61.
  • the detection element 61 adopts a photoelectric probe, a CCD (Charge Coupled Device: charge coupled device) or a CMOS (Complementary Metal-Oxide-Semiconductor Transistor: complementary metal oxide semiconductor) photosensitive probe.
  • the detection element 61 detects the state of the light spot 90, such as whether the energy of the light spot 90 reaches the highest or whether the area of the light spot 90 shrinks to the minimum, so as to judge whether the focus of the laser beam is on the surface of the workpiece.
  • 3 shows a schematic diagram of the signal state of the detection element 61 when the laser beam is not focused on the workpiece surface
  • FIG. 4 shows a schematic diagram of the signal state of the detection element 61 when the laser beam is focused on the workpiece surface.
  • the signal in FIG. 4 is smaller in width and larger in intensity than that in FIG. 3 .
  • the convex lens 62 focuses the light reflected from the first optical mirror 20 on the detection element 61 , and the filter 63 filters the light in the wavelength band different from the laser beam before the light enters the detection element 61 to avoid ambient light interference.
  • the shutter 64 When a low-power laser beam is used to scan the surface of the workpiece, the shutter 64 is in an open state, and the detection element 61 works normally. When a high-power laser beam is used to process the surface of the workpiece, the shutter 64 is closed to prevent the detection element 61 from being damaged by excessively strong light reflected from the surface of the workpiece.
  • the shutter 64 adopts a motorized mirror, a motorized baffle, or a motorized diaphragm.
  • first direction and the second direction are perpendicular to each other, both the first direction and the second direction are perpendicular to the third direction, and the third direction is vertically upward or vertically downward.
  • the calibration process refers to the well-known three-dimensional galvanometer format calibration method.
  • the light source 10 emits a first laser beam to irradiate the workpiece to form a light spot 90 .
  • the first type of laser beam is a low-power laser beam for scanning the workpiece. After passing through the first optical mirror 20, the first zoom lens 30, the galvanometer 40 and the focusing mirror 50 in sequence, it is irradiated on the surface of the workpiece along the third direction, And the light spot 90 is formed. Part of the reflected light at the spot 90 passes through the focusing mirror 50, the galvanometer 40, the first zoom lens 30 and the first optical mirror 20 in sequence and then enters the detection unit 60.
  • the focal length of the zoom lens 30 is known as z xy .
  • the spot 90 When the laser beam is focused on the workpiece surface, the spot 90 has the highest energy or the smallest area.
  • the coordinate x of the center of the light spot 90 is changed first, and then the coordinate y is continuously changed, so that the laser beam moves from one side of the workpiece to the other side along the second direction. This process is repeated, scanning the workpiece back and forth.
  • the coordinates x and y of the center of the light spot 90 can also be changed at the same time to scan the workpiece along a spiral trajectory.
  • the light source 10 stops emitting the first laser beam, and the shutter 64 is closed.
  • the second type of laser beam is a high-power laser beam for processing the workpiece. Based on the three-dimensional coordinates, the focal position of the second type of laser beam in the first direction and the second direction is changed by the galvanometer 40.
  • the lens 30 changes the focal position of the second laser beam in the third direction, so that the focal point of the second laser beam is always located on the surface of the workpiece.
  • the light source 10 is connected to a computer or a microcomputer that runs laser processing software.
  • the computer or WeChat computer includes a processor and a storage unit, etc., and the three-dimensional coordinate data is stored in the storage unit. By running the laser processing software and calling the above-mentioned three-dimensional coordinate data , so that the light source 10 emits a second type of laser beam based on the above-mentioned three-dimensional coordinates to process the workpiece.
  • the human error generated in the process of placing the workpiece will not affect the processing process, and it can ensure that all points on the workpiece surface coincide with the focal plane of the laser.
  • this embodiment provides a galvanometer-based three-dimensional scanning imaging processing device, which is different from FIG. 1 in that it further includes a second optical mirror 70 and a second zoom lens 80 , and the light source 10 is composed of a second optical mirror 70 and a second zoom lens 80 .
  • a laser 11 and a second laser 12 are formed.
  • One side of the first optical mirror 20 that allows light to be reflected is toward the first laser 11 , and the other side is toward the detection unit 60 .
  • the second optical mirror 70 adopts a beam splitter, one side of which allows light to be transmitted, and the other side of which allows light to be reflected.
  • the second optical mirror 70 is parallel to the first optical mirror 20, and is located on the same side of the first optical mirror 20 as the first laser 11.
  • the second optical mirror 70 allows one side of the reflected light to face the first optical mirror 20 and the other side to face the second laser 12 .
  • the first laser 11 emits scanning laser light along the first direction, and the scanning laser light continues to propagate along the first direction after being reflected by the first optical mirror 20 and the second optical mirror 70 .
  • the second laser 12 emits processing laser light along the first direction, the processing laser light transmits through the second optical mirror 70 and then continues to propagate in the first direction, and the subsequent optical path coincides with the optical path of the scanning laser light.
  • the first zoom lens 30 is disposed between the first optical mirror 20 and the second optical mirror 70, and adjusts the focus of the scanning laser light.
  • the second zoom lens 80 is disposed between the second laser 12 and the second optical mirror 70 to adjust the focus of the processing laser.
  • FIG. 7 Please refer to FIG. 7 to illustrate the processing method using the galvanometer-based three-dimensional scanning imaging processing equipment shown in FIG. 6 .
  • the specific steps of the method are as follows:
  • the first laser 11 emits a low-power scanning laser to irradiate the workpiece to form a light spot 90 .
  • the scanning laser passes through the first optical mirror 20 , the first zoom lens 30 , the second optical mirror 70 , the galvanometer 40 and the focusing mirror 50 in sequence, and then irradiates the surface of the workpiece along the third direction to form a light spot 90 .
  • Part of the reflected light at the spot 90 passes through the focusing mirror 50 , the galvanometer mirror 40 , the second optical mirror 70 , the first zoom lens 30 and the first optical mirror 20 in sequence and then enters the detection unit 60 .
  • a coordinate system is established with the first direction, the second direction and the third direction as a reference, and the coordinates of the center of the light spot 90 along the first direction are respectively x, the coordinates along the second direction are y, and the coordinates along the third direction are z.
  • the focal position of the scanning laser in the third direction is changed by the first zoom lens 30 until the detection unit 60 detects that the scanning laser is focused on the workpiece surface, and z xy is obtained according to the focal length of the first zoom lens 30 .
  • the galvanometer 40 is used to change the coordinates x and/or the coordinates y of the center of the light spot 90, repeat the previous step, obtain the corresponding z xy , and finally obtain the three-dimensional coordinates of the workpiece surface.
  • the first laser 11 is stopped and the shutter 64 is closed.
  • the three-dimensional coordinates are imported into the laser processing software, so that the second laser 12 emits a high-power processing laser to process the workpiece.
  • the processing laser After the processing laser passes through the second zoom lens 80 , the second optical mirror 70 , the galvanometer 40 and the focusing mirror 50 in sequence, it is irradiated on the surface of the workpiece along the third direction. Based on the three-dimensional coordinates, the focus position of the processing laser in the first direction and the second direction is changed by the galvanometer 40, and the focus position of the processing laser in the third direction is changed by the first zoom lens 30, so that the focus of the processing laser is always on the surface of the workpiece.
  • the light source can emit at least two types of laser beams, which are respectively configured to scan and process the workpiece.
  • the light source emits the first type of laser beam.
  • the first type of laser beam passes through the first optical mirror, the first zoom lens, the galvanometer and the focusing mirror in sequence, it is irradiated on the surface of the workpiece along the third direction to form a light spot.
  • Part of the reflected light at the spot passes through the focusing mirror, the galvanometer, the first zoom lens and the first optical mirror and then enters the detection unit.
  • the detection unit detects the state of the spot, and then judges whether the first laser beam is focused on the surface of the workpiece. .
  • the upward coordinate is the coordinate of the corresponding point on the workpiece surface in the third direction.
  • the coordinates of the spot center along the first direction and/or the second direction are changed by the galvanometer, and the above process of measuring the coordinates of the spot center along the third direction is repeated to finally obtain the three-dimensional coordinates of the workpiece surface.
  • the light source emits a second laser beam to process the workpiece. Since the two laser beams are of the same source and the optical paths overlap, the human error generated in the process of placing the workpiece will not affect the processing process, and it can ensure that all points on the workpiece surface coincide with the focal plane of the laser.
  • the present application is applied to the field of laser processing, and provides a galvanometer-based three-dimensional scanning imaging processing equipment and processing method, which can solve the technical problem that all points on the workpiece surface cannot be guaranteed to coincide with the focal plane of the laser due to human error.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种基于振镜的三维扫描成像加工设备及加工方法,基于振镜的三维扫描成像加工设备包括:光源(10);聚焦镜(50);振镜(40),与聚焦镜(50)的进光侧相连;第一变焦距透镜(30),设置在振镜(40)的进光侧;第一光学镜(20),设置在第一变焦距透镜(30)的进光侧,第一光学镜(20)的一侧允许激光束透射,第一光学镜(20)的另一侧允许激光束反射;和探测单元(60),与光源(10)分别设置在第一光学镜(20)的两侧。光源(10)先后发射出两种激光束,分别配置为扫描工件表面的三维坐标和对工件表面进行加工。由于两种激光束同源,光路重合,故放置工件过程中产生的人为误差不会对加工过程造成影响,能够保证工件表面所有的点都与激光的焦平面重合。

Description

基于振镜的三维扫描成像加工设备及加工方法
相关申请的交叉引用
本申请要求于2020年12月31日提交中国专利局的申请号为202011626083.7、名称为“基于振镜的三维扫描成像加工设备及加工方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光加工领域,尤其涉及一种基于振镜的三维扫描成像加工设备及加工方法。
背景技术
激光加工的原理是使激光经过透镜聚焦,在焦点上达到很高的能量密度,靠光热效应进行加工。数控机床激光加工技术将多轴机床、振镜与激光相结合,充分利用了激光非接触加工、能量密度高等优点,广泛应用于焊接、切割、雕刻、表面改性、打标、钻孔、微加工以及传统难加工材料的加工等。
利用现有的激光加工设备加工三维工件时,为了生成三维加工轨迹,需要事先获得工件的三维模型,然后将模型导入三维激光加工软件中,再对模型的位置进行调整,与此同时,还需要操作人员手动将工件放置于指定的位置。
由于将模型导入三维激光加工软件的过程和将工件放置到三维激光加工***中的过程分开进行,因而存在明显的人为误差,在后续加工过程中,无法保证工件表面所有的点都与激光的焦平面重合。
发明内容
为了解决现有技术中存在人为误差,导致无法保证工件表面所有的点都与激光的焦平面重合的问题,本申请的目的之一是提供一种基于振镜的三维扫描成像加工设备。
第一方面,本申请一种基于振镜的三维扫描成像加工设备,包括:
光源,配置为发射至少两种激光束;
聚焦镜,配置为在激光束照射工件之前对激光束进行聚焦;
振镜,与所述聚焦镜的进光侧相连,所述振镜配置为改变激光束在第一方向和第二方向上的焦点位置;
第一变焦距透镜,设置在所述振镜的进光侧,所述第一变焦距透镜配置为改变激光束 在第三方向上的焦点位置;
第一光学镜,设置在所述第一变焦距透镜的进光侧,所述第一光学镜的一侧允许光线透射,所述第一光学镜的另一侧允许光线反射;和
探测单元,与所述光源分别设置在所述第一光学镜的两侧,所述探测单元配置为探测激光束照射工件形成的光斑的状态。
可选的,在上述的基于振镜的三维扫描成像加工设备中,所述探测单元包括探测元件和凸透镜,所述凸透镜配置为使自所述第一光学镜反射而来的光线聚焦于所述探测元件上。
可选的,在上述的基于振镜的三维扫描成像加工设备中,所述探测单元还包括滤光片,所述滤光片设置于所述探测元件与所述凸透镜之间。
可选的,在上述的基于振镜的三维扫描成像加工设备中,所述探测单元还包括光闸,所述光闸设置在所述凸透镜的进光侧。
可选的,在上述的基于振镜的三维扫描成像加工设备中,所述第一光学镜采用分光镜。
可选的,在上述的基于振镜的三维扫描成像加工设备中,所述第一变焦距透镜采用可调扩束镜或液体透镜。
可选的,在上述的基于振镜的三维扫描成像加工设备中,至少两种激光束为波长相同且功率不同的激光束,或波长不同的激光束,或经过分光得到的激光束。
可选的,在上述的基于振镜的三维扫描成像加工设备中,还包括第二光学镜和第二变焦距透镜,所述光源包括第一激光器和第二激光器;
所述第二光学镜设置在所述振镜的进光侧,所述第二光学镜的一侧允许光线透射,所述第二光学镜的另一侧允许光线反射;
所述第二变焦距透镜和所述第一变焦距透镜分别设置在所述第二光学镜的两侧;
所述第一激光器配置为发射扫描激光至所述第一光学镜,所述第二激光器配置为发射加工激光至第二变焦距透镜。
可选的,在上述的基于振镜的三维扫描成像加工设备中,
所述至少两种激光束包括对所述工件进行扫描的扫描激光束和对所述工件进行加工的加工激光束,
通过从所述光源发射所述扫描激光束,获取所述工件的表面的三维坐标,
所述光源基于所述三维坐标发射所述加工激光束。
第二方面,本申请提供一种利用上述基于振镜的三维扫描成像加工设备的加工方法,包括:
放置工件,将所述振镜和所述第一变焦距透镜校正至零位;
使所述光源发射出第一种激光束,照射工件形成光斑,以所述第一方向、所述第二方 向和所述第三方向为参考建立坐标系,记所述光斑的中心的坐标为L(x,y,z xy),此时x=0,y=0;
获知z xy步骤,通过所述第一变焦距透镜改变第一种激光束在所述第三方向上的焦点位置,直至所述探测单元探测到第一种激光束聚焦于工件表面,根据所述第一变焦距透镜的焦距获知z xy
通过所述振镜改变所述光斑的中心的坐标x和/或坐标y,重复所述获知z xy步骤,获知对应的z xy,得到工件表面的三维坐标;以及
将所述三维坐标导入激光加工软件中,使所述光源发射出第二种激光束,对工件进行加工。
可选的,在上述的加工方法中,所述第一种激光束聚焦于工件表面,包括:
所述光斑的能量最高或者面积最小。
为使本申请的上述目的、特征和优点能更明显和易懂,下文特举较佳实施例,并配合所附附图,做详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请实施例提供的基于振镜的三维扫描成像加工设备的整体结构的示意图;
图2示出了本申请实施例中激光束的焦点位置与光斑的大小之间的变化关系的示意图;
图3示出了本申请实施例提供的基于振镜的三维扫描成像加工设备中的激光束未聚焦于工件表面时的探测元件的信号状态的示意图;
图4示出了本申请实施例提供的基于振镜的三维扫描成像加工设备中的激光束聚焦于工件表面时的探测元件的信号状态的示意图;
图5示出了本申请实施例提供的加工方法的流程图;
图6示出了本申请实施例提供的基于振镜的三维扫描成像加工设备的整体结构的示意图;
图7示出了本申请实施例提供的加工方法的流程图。
附图标记说明:
10-光源;11-第一激光器;12-第二激光器;20-第一光学镜;30-第一变焦距透镜;40-振镜;50-聚焦镜;60-探测单元;61-探测元件;62-凸透镜;63-滤光片;64-光闸;70-第二光学镜;80-第二变焦距透镜;90-光斑。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在模板的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请一并参阅图1至图4,本实施例提供一种基于振镜的三维扫描成像加工设备,基于光热效应对工件进行加工,如焊接、切割、雕刻、表面改性、打标、钻孔和微加工等。这种基于振镜的三维扫描成像加工设备包括光源10、第一光学镜20、第一变焦距透镜30、振镜40、聚焦镜50和探测单元60。其中,光源10发射出的激光束依次经过第一光学镜20、第一变焦距透镜30、振镜40、聚焦镜50,然后照射在工件表面,形成入射光路。工件表面反射的光线依次经过聚焦镜50、振镜40、第一变焦距透镜30和第一光学镜20,然后入 射至探测单元60,形成反射光路。
光源10采用激光器,且光源10能够发射至少两种激光束。至少两种激光束为波长相同且功率不同的激光束,或波长不同的激光束,或经过分光得到的激光束。其中一种激光束的功率低,配置为扫描工件表面。另外的激光束则可以是高频脉冲激光、高速可控的连续光和整形光束等,配置为对工件表面进行加工。
第一光学镜20的一侧允许光线透射,另一侧允许光线反射。使第一光学镜20相对于激光束倾斜,并将光源10和探测单元60分别设置在第一光学镜20的两侧。此时,入射光路和反射光路在第一光学镜20与工件之间重合,而光源10发射激光束与探测单元60接收反射光之间互不干扰。
在本实施例中,第一光学镜20允许光线透射的一侧朝向光源10,另一侧朝向探测单元60,此时光源10、第一光学镜20、第一变焦距透镜30和振镜40沿第一方向排列。
光源10发射出的激光束沿第一方向传播至第一光学镜20,透射后继续沿第一方向传播。工件表面反射的光线入射至第一光学镜20,反射后入射至探测单元60。
可选的,第一光学镜20采用分光镜。分光镜相对于入射光倾斜时,可以将入射光分为反射光和透射光两部分。入射光和反射光组成的光路即为前述反射光路,入射光和透射光组成的光路与前述入射光路重合,光的传播方向相反,但光路可逆。
可选的,可以使第一光学镜20允许光线反射的一侧朝向光源10,此时探测单元60、第一光学镜20、第一变焦距透镜30和振镜40沿第一方向排列。
光源10发射出的激光束入射至第一光学镜20,被反射后沿第一方向传播。工件表面反射的光线入射至第一光学镜20,透射后入射至探测单元60。
聚焦镜50的进光侧与振镜40相连,沿第一方向传播的激光束经过振镜40的两次反射之后,变为沿第三方向传播,并入射至聚焦镜50。激光束经过聚焦镜50的聚焦,照射在工件表面形成光斑90。
振镜40反射激光束时,能够改变光斑90的中心沿第一方向和第二方向的坐标,也是激光束的焦点在第一方向和第二方向上的坐标,使激光束照射在工件表面的不同位置处。
第一变焦距透镜30通过调整焦距,则能够改变激光束的焦点在第三方向上的坐标。激光束的焦点越接近工件的表面,则工件表面的光斑90越小,能量越集中。如图2所示,上下两个光斑90是激光束未聚焦于工件表面时形成的光斑,中间的光斑90是激光束聚焦于工件表面时形成的光斑,小于上下两个光斑90。
以第一方向、第二方向和第三方向为参考建立坐标系,记光斑90的中心沿第一方向的坐标为x,沿第二方向的坐标为y,沿第三方向的坐标为z xy,则光斑90的中心的坐标为L(x,y,z xy),最初为x=0,y=0。
通过所述第一变焦距透镜30改变扫描工件表面的第一种激光束在所述第三方向上的焦点位置,直至所述探测单元60探测到第一种激光束聚焦于工件表面,根据所述第一变焦距透镜30的焦距获知z xy。并且,通过所述振镜40改变所述光斑90的中心的坐标x和/或坐标y,重复该步骤,获知对应的z xy,最终得到工件表面的三维坐标。所得到的三维坐标的数据存储于未图示的存储装置中。
光源10基于工件表面的三维坐标发射出对工件表面进行加工的第二种激光束,对工件进行加工。
可选的,第一变焦距透镜30可以为可调扩束镜或者液体透镜等。
探测单元60由探测元件61、滤光片63、凸透镜62和光闸64组成,工件表面反射的光线经过第一光学镜20的反射之后,依次经过光闸64、凸透镜62、滤光片63和探测元件61。
探测元件61采用光电探头、CCD(Charge Coupled Device:电荷耦合器件)或者CMOS(Complementary Metal-Oxide-Semiconductor Transistor:互补金属氧化物半导体)光敏探头。探测元件61探测光斑90的状态,如光斑90的能量是否达到最高或者光斑90的面积是否缩到最小,以此来判断激光束的焦点是否位于工件表面。图3示出了激光束未聚焦于工件表面时的探测元件61的信号状态的示意图,图4示出了激光束聚焦于工件表面时的探测元件61的信号状态的示意图。图4的信号与图3相比,宽度缩小且强度大。
凸透镜62使自第一光学镜20反射而来的光线聚焦于探测元件61上,滤光片63在在光线入射至探测元件61之前过滤不同于激光束的波段的光线,避免环境光干扰。
使用低功率的激光束扫描工件表面时,光闸64处于打开状态,探测元件61正常工作。使用高功率的激光束加工工件表面时,光闸64关闭,避免工件表面反射的光线过强而损坏探测元件61。
可选的,光闸64采用电动反射镜、电动挡板或者电动光阑等。
在本实施例中,第一方向与第二方向相互垂直,第一方向和第二方向均与第三方向垂直,且第三方向竖直向上或者竖直向下。
请参阅图5,对本实施例提供的利用上述基于振镜的三维扫描成像加工设备的加工方法进行说明,该方法具体步骤如下:
S1,放置工件,将所述振镜40和所述第一变焦距透镜30校正至零位。
校正过程参照公知的三维振镜幅面校正方法。
S2,使所述光源10发射出第一种激光束,照射工件形成光斑90。
第一种激光束为对工件进行扫描的低功率激光束,其依次经过第一光学镜20、第一变焦距透镜30、振镜40和聚焦镜50后,沿第三方向照射在工件表面,并形成光斑90。光斑 90处的部分反射光线依次经过聚焦镜50、振镜40、第一变焦距透镜30和第一光学镜20后入射至探测单元60。
以第一方向、第二方向和第三方向为参考建立坐标系,记光斑90的中心沿第一方向的坐标为x,沿第二方向的坐标为y,沿第三方向的坐标为z xy,则光斑90的中心的坐标为L(x,y,z xy),且此时x=0,y=0。
S3,通过所述第一变焦距透镜30改变第一种激光束在所述第三方向上的焦点位置,直至所述探测单元60探测到第一种激光束聚焦于工件表面,根据所述第一变焦距透镜30的焦距获知z xy
激光束聚焦于工件表面表现为光斑90的能量最高或者面积最小。
S4,通过所述振镜40改变所述光斑90的中心的坐标x和/或坐标y,重复上一步骤,获知对应的z xy,最终得到工件表面的三维坐标。
在本实施例中,先改变光斑90的中心的坐标x,然后不断地改变坐标y,使激光束沿第二方向从工件的一侧移动至另一侧。重复这一过程,对工件进行来回扫描。
可选的,也可以同时改变光斑90的中心的坐标x和坐标y,沿螺旋形的轨迹对工件进行扫描。
扫描结束后,使光源10停止发射第一种激光束,并关闭光闸64。
S5,将所述三维坐标导入激光加工软件中,使所述光源10发射出第二种激光束,对工件进行加工。
第二种激光束为对工件进行加工的高功率激光束,以三维坐标为依据,通过振镜40改变第二种激光束在第一方向和第二方向上的焦点位置,通过第一变焦距透镜30改变第二种激光束在第三方向上的焦点位置,使第二种激光束的焦点始终位于工件的表面。
光源10与运行激光加工软件的计算机或微型计算机等连接,计算机或微信计算机包括处理器和存储单元等,在存储单元中存储有三维坐标的数据,通过运行激光加工软件并调用上述的三维坐标数据,由此使所述光源10基于上述的三维坐标发射出第二种激光束,来对工件进行加工。
由于两种激光束同源,光路重合,故放置工件过程中产生的人为误差不会对加工过程造成影响,能够保证工件表面所有的点都与激光的焦平面重合。
请参阅图6,本实施例提供一种基于振镜的三维扫描成像加工设备,与图1的不同之处在于,还包括第二光学镜70和第二变焦距透镜80,光源10则由第一激光器11和第二激光器12组成。
第一光学镜20允许光线反射的一侧朝向第一激光器11,另一侧朝向探测单元60。
第二光学镜70采用分光镜,其一侧允许光线透射,另一侧允许光线反射。此外,第二 光学镜70与第一光学镜20平行,与第一激光器11位于第一光学镜20的同一侧。第二光学镜70允许光线反射的一侧朝向第一光学镜20,另一侧朝向第二激光器12。
第一激光器11沿第一方向发射出扫描激光,扫描激光经过第一光学镜20和第二光学镜70的反射之后继续沿第一方向传播。
第二激光器12沿第一方向发射出加工激光,加工激光透射过第二光学镜70之后继续沿第一方向传播,且之后的光路与扫描激光的光路重合。
第一变焦距透镜30设置在第一光学镜20与第二光学镜70之间,对扫描激光的焦点进行调节。第二变焦距透镜80则设置在第二激光器12与第二光学镜70之间,对加工激光的焦点进行调节。
请参阅图7,说明利用图6所示的基于振镜的三维扫描成像加工设备的加工方法,该方法具体步骤如下:
S100,放置工件,将振镜40和第一变焦距透镜30校正至零位。
S200,使第一激光器11发射出低功率的扫描激光,照射工件形成光斑90。
扫描激光依次经过第一光学镜20、第一变焦距透镜30、第二光学镜70、振镜40和聚焦镜50后,沿第三方向照射在工件表面,并形成光斑90。光斑90处的部分反射光线依次经过聚焦镜50、振镜40、第二光学镜70、第一变焦距透镜30和第一光学镜20后入射至探测单元60。
以第一方向、第二方向和第三方向为参考建立坐标系,分别记光斑90的中心沿第一方向的坐标为x,沿第二方向的坐标为y,沿第三方向的坐标为z xy,则光斑90的中心的坐标为L(x,y,z xy),且此时x=0,y=0。
S300,通过第一变焦距透镜30改变扫描激光在第三方向上的焦点位置,直至探测单元60探测到扫描激光聚焦于工件表面,根据第一变焦距透镜30的焦距获知z xy
S400,通过振镜40改变光斑90的中心的坐标x和/或坐标y,重复上一步骤,获知对应的z xy,最终得到工件表面的三维坐标。
扫描结束后,使第一激光器11停止工作,并关闭光闸64。
S500,将三维坐标导入激光加工软件中,使第二激光器12发射出高功率的加工激光,对工件进行加工。
加工激光依次经过第二变焦距透镜80、第二光学镜70、振镜40和聚焦镜50后,沿第三方向照射在工件表面。以三维坐标为依据,通过振镜40改变加工激光在第一方向和第二方向上的焦点位置,通过第一变焦距透镜30改变加工激光在第三方向上的焦点位置,使加工激光的焦点始终位于工件的表面。
本申请实施例具有如下有益效果:光源可以发射至少两种激光束,分别配置为对工件 进行扫描和加工。先使光源发射出第一种激光束,第一种激光束依次经过第一光学镜、第一变焦距透镜、振镜和聚焦镜后,沿第三方向照射在工件表面,并形成光斑。光斑处的部分反射光线依次经过聚焦镜、振镜、第一变焦距透镜和第一光学镜后入射至探测单元,由探测单元探测光斑的状态,进而判断第一种激光束是否聚焦于工件表面。通过第一变焦距透镜改变第一种激光束在第三方向上的焦点位置,直至探测单元探测到第一种激光束聚焦于工件表面,进而根据第一变焦距透镜的焦距获知光斑中心在第三方向上的坐标,即为工件表面对应点在第三方向上的坐标。通过振镜改变光斑中心沿第一方向上和/或第二方向上的坐标,重复上述测量光斑中心沿第三方向上的坐标的过程,最终得到工件表面的三维坐标。根据该三维坐标,使光源发射出第二种激光束,对工件进行加工。由于两种激光束同源,光路重合,故放置工件过程中产生的人为误差不会对加工过程造成影响,能够保证工件表面所有的点都与激光的焦平面重合。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。
工业实用性
本申请应用于激光加工领域,提供一种基于振镜的三维扫描成像加工设备及加工方法,能够解决因人为误差而导致无法保证工件表面所有的点都与激光的焦平面重合的技术问题。

Claims (11)

  1. 一种基于振镜的三维扫描成像加工设备,包括:
    光源,配置为发射至少两种激光束;
    聚焦镜,配置为在激光束照射工件之前对激光束进行聚焦;
    振镜,与所述聚焦镜的进光侧相连,所述振镜配置为改变激光束在第一方向和第二方向上的焦点位置;
    第一变焦距透镜,设置在所述振镜的进光侧,所述第一变焦距透镜配置为改变激光束在第三方向上的焦点位置;
    第一光学镜,设置在所述第一变焦距透镜的进光侧,所述第一光学镜的一侧允许光线透射,所述第一光学镜的另一侧允许光线反射;和
    探测单元,与所述光源分别设置在所述第一光学镜的两侧,所述探测单元配置为探测激光束是否聚焦于工件表面。
  2. 根据权利要求1所述的基于振镜的三维扫描成像加工设备,其中,所述探测单元包括探测元件和凸透镜,所述凸透镜配置为使自所述第一光学镜反射而来的光线聚焦于所述探测元件上。
  3. 根据权利要求2所述的基于振镜的三维扫描成像加工设备,其中,所述探测单元还包括滤光片,所述滤光片设置于所述探测元件与所述凸透镜之间。
  4. 根据权利要求2或3所述的基于振镜的三维扫描成像加工设备,其中,所述探测单元还包括光闸,所述光闸设置在所述凸透镜的进光侧。
  5. 根据权利要求1至4中任一项所述的基于振镜的三维扫描成像加工设备,其中,所述第一光学镜采用分光镜。
  6. 根据权利要求1至5中任一项所述的基于振镜的三维扫描成像加工设备,其中,所述第一变焦距透镜采用可调扩束镜或液体透镜。
  7. 根据权利要求1至6中任一项所述的基于振镜的三维扫描成像加工设备,其中,至少两种激光束为波长相同且功率不同的激光束,或波长不同的激光束,或经过分光得到的激光束。
  8. 根据权利要求1至6中任一项所述的基于振镜的三维扫描成像加工设备,其中,还包括第二光学镜和第二变焦距透镜,所述光源包括第一激光器和第二激光器;
    所述第二光学镜设置在所述振镜的进光侧,所述第二光学镜的一侧允许光线透射,所述第二光学镜的另一侧允许光线反射;
    所述第二变焦距透镜和所述第一变焦距透镜分别设置在所述第二光学镜的两侧;
    所述第一激光器配置为发射扫描激光至所述第一光学镜,所述第二激光器配置为发射 加工激光至第二变焦距透镜。
  9. 根据权利要求1至7中任一项所述的基于振镜的三维扫描成像加工设备,其中,所述至少两种激光束包括对所述工件进行扫描的扫描激光束和对所述工件进行加工的加工激光束,
    通过从所述光源发射所述扫描激光束,获取所述工件的表面的三维坐标,
    所述光源基于所述三维坐标发射所述加工激光束。
  10. 一种利用权利要求1-9中任意一项所述的基于振镜的三维扫描成像加工设备的加工方法,包括:
    放置工件,将所述振镜和所述第一变焦距透镜校正至零位;
    使所述光源发射出第一种激光束,照射工件形成光斑,以所述第一方向、所述第二方向和所述第三方向为参考建立坐标系,记所述光斑的中心的坐标为L(x,y,z xy),此时x=0,y=0;
    获知z xy步骤,通过所述第一变焦距透镜改变第一种激光束在所述第三方向上的焦点位置,直至所述探测单元探测到第一种激光束聚焦于工件表面,根据所述第一变焦距透镜的焦距获知z xy
    通过所述振镜改变所述光斑的中心的坐标x和/或坐标y,重复所述获知z xy步骤,获知对应的z xy,得到工件表面的三维坐标;以及
    将所述三维坐标导入激光加工软件中,使所述光源发射出第二种激光束,对工件进行加工。
  11. 根据权利要求10所述的加工方法,其中,所述第一种激光束聚焦于工件表面,包括:
    所述光斑的能量最高或者面积最小。
PCT/CN2021/118309 2020-12-31 2021-09-14 基于振镜的三维扫描成像加工设备及加工方法 WO2022142476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011626083.7A CN112828448B (zh) 2020-12-31 2020-12-31 基于振镜的三维扫描成像加工设备及加工方法
CN202011626083.7 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142476A1 true WO2022142476A1 (zh) 2022-07-07

Family

ID=75924554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118309 WO2022142476A1 (zh) 2020-12-31 2021-09-14 基于振镜的三维扫描成像加工设备及加工方法

Country Status (2)

Country Link
CN (1) CN112828448B (zh)
WO (1) WO2022142476A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116909014A (zh) * 2023-09-11 2023-10-20 之江实验室 一种基于椭球面的振镜平面扫描装置和扫描方法
CN117604202A (zh) * 2023-11-20 2024-02-27 广东宏石激光技术股份有限公司 一种基于温度场的激光热处理***及其控制方法
CN117798508A (zh) * 2024-03-01 2024-04-02 珠海市申科谱工业科技有限公司 一种晶圆激光开槽装置及开槽方法
CN117870576A (zh) * 2024-03-13 2024-04-12 广东普洛宇飞生物科技有限公司 一种实时校正的激光***及工作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112828448B (zh) * 2020-12-31 2023-05-05 武汉华工激光工程有限责任公司 基于振镜的三维扫描成像加工设备及加工方法
CN113387601A (zh) * 2021-05-31 2021-09-14 西南电子技术研究所(中国电子科技集团公司第十研究所) 高真空磁控溅射界面辅助提高玻璃焊接强度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150171A (ja) * 1999-11-26 2001-06-05 Nippon Sharyo Seizo Kaisha Ltd レーザ加工機のフォーカス調整方法およびその装置
CN209349704U (zh) * 2018-12-07 2019-09-06 武汉华工激光工程有限责任公司 激光剥线装置及***
CN110238521A (zh) * 2019-06-26 2019-09-17 北京工业大学 一种准直器栅格结构激光精密焊接装置与方法
CN110421253A (zh) * 2019-07-22 2019-11-08 廊坊西波尔钻石技术有限公司 激光扫描***及具有其的激光雕刻***
CN210451368U (zh) * 2019-07-22 2020-05-05 廊坊西波尔钻石技术有限公司 激光扫描***及具有其的激光雕刻***
CN112828448A (zh) * 2020-12-31 2021-05-25 武汉华工激光工程有限责任公司 基于振镜的三维扫描成像加工设备及加工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786200B (zh) * 2010-02-26 2012-01-25 华中科技大学 一种自由曲面上的投影式激光刻蚀方法
CN102500921B (zh) * 2011-11-14 2016-02-03 镭射谷科技(深圳)有限公司 复路激光焊接装置
CN204075510U (zh) * 2014-09-05 2015-01-07 深圳市大族激光科技股份有限公司 一种激光加工扫描光学***
CN207787974U (zh) * 2017-11-09 2018-08-31 云南电网有限责任公司临沧供电局 一种基于ccd成像的激光加工和定焦装置
CN109530912B (zh) * 2018-12-28 2021-02-09 武汉华工激光工程有限责任公司 基于内同轴的对焦装置及基于内同轴的对焦方法
CN109903342B (zh) * 2019-02-25 2021-07-13 西安交通大学 一种基于扫描振镜的激光原位加工装备及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150171A (ja) * 1999-11-26 2001-06-05 Nippon Sharyo Seizo Kaisha Ltd レーザ加工機のフォーカス調整方法およびその装置
CN209349704U (zh) * 2018-12-07 2019-09-06 武汉华工激光工程有限责任公司 激光剥线装置及***
CN110238521A (zh) * 2019-06-26 2019-09-17 北京工业大学 一种准直器栅格结构激光精密焊接装置与方法
CN110421253A (zh) * 2019-07-22 2019-11-08 廊坊西波尔钻石技术有限公司 激光扫描***及具有其的激光雕刻***
CN210451368U (zh) * 2019-07-22 2020-05-05 廊坊西波尔钻石技术有限公司 激光扫描***及具有其的激光雕刻***
CN112828448A (zh) * 2020-12-31 2021-05-25 武汉华工激光工程有限责任公司 基于振镜的三维扫描成像加工设备及加工方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116909014A (zh) * 2023-09-11 2023-10-20 之江实验室 一种基于椭球面的振镜平面扫描装置和扫描方法
CN116909014B (zh) * 2023-09-11 2023-12-01 之江实验室 一种基于椭球面的振镜平面扫描装置和扫描方法
CN117604202A (zh) * 2023-11-20 2024-02-27 广东宏石激光技术股份有限公司 一种基于温度场的激光热处理***及其控制方法
CN117798508A (zh) * 2024-03-01 2024-04-02 珠海市申科谱工业科技有限公司 一种晶圆激光开槽装置及开槽方法
CN117798508B (zh) * 2024-03-01 2024-05-14 珠海市申科谱工业科技有限公司 一种晶圆激光开槽装置及开槽方法
CN117870576A (zh) * 2024-03-13 2024-04-12 广东普洛宇飞生物科技有限公司 一种实时校正的激光***及工作方法
CN117870576B (zh) * 2024-03-13 2024-06-04 广东普洛宇飞生物科技有限公司 一种实时校正的激光***及工作方法

Also Published As

Publication number Publication date
CN112828448B (zh) 2023-05-05
CN112828448A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2022142476A1 (zh) 基于振镜的三维扫描成像加工设备及加工方法
KR101007724B1 (ko) 레이저 용접 모니터
US9610729B2 (en) Device and method for performing and monitoring a plastic laser transmission welding process
TWI652748B (zh) Height position detecting device
WO2018000586A1 (zh) 一种去除薄膜或涂层的激光加工方法及设备
CN201721134U (zh) 近波长同轴定位激光打标***
JP2013036981A (ja) 接合継ぎ目を監視する光学測定装置、ならびに同測定装置を備える接合ヘッド及びレーザ溶接ヘッド
JP2000312985A (ja) レーザを集束するための方法および装置
CN104209650A (zh) 激光加工装置
CN105397281A (zh) 激光加工装置
CN205817104U (zh) 一种去除薄膜或涂层的激光加工设备
CN101750711B (zh) 聚焦方法与自动聚焦装置及其侦测模块
CN202916206U (zh) 一种薄膜抗激光损伤能力测量与评价装置
CN113305418A (zh) 一种激光加工同轴寻焦装置及激光加工方法
CN107870511B (zh) 基于双光路的快速扫描装置及应用其的扫描方法
CN116586755A (zh) 一种激光焦点校准装置及方法
WO2016147751A1 (ja) レーザビームの強度分布測定装置およびレーザビームの強度分布測定方法
Jezeršek et al. High-speed measurements of steel-plate deformations during laser surface processing
CN210587635U (zh) 一种激光器的辅助对焦***
JP6905670B2 (ja) レーザー溶接方法
US8093540B2 (en) Method of focus and automatic focusing apparatus and detecting module thereof
JP2004105971A (ja) レーザー溶接装置
JPS6125011A (ja) 光学式距離測定装置
CN220659538U (zh) 一种激光焦点校准装置
CN219113159U (zh) 一种匀化光斑焊接光学***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913223

Country of ref document: EP

Kind code of ref document: A1