WO2022142470A1 - 一种呼吸支持设备cpap模式输气控制方法和呼吸支持设备 - Google Patents

一种呼吸支持设备cpap模式输气控制方法和呼吸支持设备 Download PDF

Info

Publication number
WO2022142470A1
WO2022142470A1 PCT/CN2021/117964 CN2021117964W WO2022142470A1 WO 2022142470 A1 WO2022142470 A1 WO 2022142470A1 CN 2021117964 W CN2021117964 W CN 2021117964W WO 2022142470 A1 WO2022142470 A1 WO 2022142470A1
Authority
WO
WIPO (PCT)
Prior art keywords
respiratory support
pid
breathing
control method
support device
Prior art date
Application number
PCT/CN2021/117964
Other languages
English (en)
French (fr)
Inventor
戴征
李蒙
Original Assignee
湖南明康中锦医疗科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南明康中锦医疗科技发展有限公司 filed Critical 湖南明康中锦医疗科技发展有限公司
Publication of WO2022142470A1 publication Critical patent/WO2022142470A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3341Pressure; Flow stabilising pressure or flow to avoid excessive variation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the field of respiratory support, in particular to a respiratory support device CPAP mode gas delivery control method and respiratory support device.
  • CPAP Continuous Positive Airway Pressure
  • CPAP Continuous Positive Airway Pressure
  • PID is mainly used to adjust the pressure of respiratory support equipment, that is, according to the set pressure, the turbine is raised and lowered. power to stabilize the pressure to the set value.
  • PID is the abbreviation of Proportional (proportional), Integral (integral) and Differential (differential).
  • PID control algorithm is a control algorithm that combines proportional, integral and differential links. It is the most mature and widely used control algorithm in continuous systems. At present, most of the respiratory support equipment on the market use the PID control method for the control of the turbine motor. By setting the difference between the target pressure and the current actual pressure as the feedback amount, the operation is performed according to the functional relationship of proportional, integral and differential. Control output. Most of the PID algorithms will use fixed Kp, Ki, Kd for calculation. For the turbine motor control in respiratory support equipment, this scheme will have a larger output of the turbine motor for different target pressures and different patients. Fluctuation, affecting the stability of pressure in CPAP mode.
  • the patent document whose application number is CN201710365650.X discloses a ventilator and a pressure control method under the CPAP mode of continuous positive pressure ventilation.
  • the ventilator includes: a flow sensor, a pressure sensor, a processor, a memory, and a ventilator that is stored on the memory and can be
  • the control program running on the processor when the control program is executed by the processor, implements the following steps: when the ventilator is in the CPAP mode, obtain the flow curve and pressure curve of the ventilator, determine the inspiratory start time P, and perform inhalation At the starting time P increases the output power of the ventilator's fan; based on the flow curve and the pressure curve, the rate of change of flow and pressure are obtained respectively.
  • the object of the present invention is to provide a breathing support device CPAP mode gas delivery control method and a breathing support device, which can ensure the stable performance of the breathing support device when outputting the airflow of the set pressure, reduce the output The volatility of airflow.
  • a CPAP mode gas delivery control method for respiratory support equipment comprising the steps of:
  • the turbine is driven to output airflow at the set pressure in the CPAP mode.
  • the PID parameter curve is obtained through the following steps:
  • the breathing simulation device is an active simulated lung.
  • the turbine is driven based on the optimal PID control parameters, and specifically, the turbine is driven by outputting a PWM wave through PID calculation of a duty cycle.
  • PWM(k) PWM(k-1)+ ⁇ PWM
  • ⁇ PWM Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)];
  • Kp represents the proportional coefficient
  • Ki represents the integral coefficient
  • Kd represents the differential coefficient, preferably 0
  • e(k) represents the current deviation
  • e(k-1) represents the previous deviation
  • e(k-2) represents the previous deviation
  • ⁇ PWM represents the current increment
  • PWM(k) represents the current output duty cycle
  • PWM(k-1) represents the last output duty cycle.
  • the PID control parameters include proportional parameters, integral parameters and differential parameters; PID parameter curves are respectively constructed for each parameter, wherein the differential parameter is preferably 0.
  • a computer-readable medium storing computer-executable software, which, when executed by a computer, can complete the CPAP mode gas delivery control method for a respiratory support device.
  • a PID parameter detection system for the described breathing support equipment CPAP mode gas delivery control method for obtaining the PID parameter curve of the breathing support equipment, including the breathing support equipment and the breathing simulation device;
  • the air outlet is sleeved with the breathing pipeline, the other end of the breathing pipeline is connected with a three-way connector, and the other two interfaces of the three-way connector are respectively connected with the breathing simulation device and a plug; the plug has a leakage stomata.
  • the breathing simulation device is an active simulation of the lung, and the basic parameters are set as: airway resistance 10cmH2O, lung compliance 50ml, breathing frequency 10BPM, and inhalation duration 1.0S.
  • a respiratory support device uses the CPAP mode gas delivery control method of the respiratory support device to control the operation of a turbine.
  • a respiratory support device CPAP mode gas delivery control method and respiratory support device provided by the present invention have the following beneficial effects:
  • the PID parameter curve is set in the respiratory support equipment, and when the PID is used to control the turbine to work in the CPAP mode, the stability of the pressure of the turbine output airflow will be ensured , which can ensure that the pressure fluctuation of the output airflow is limited to 0.5cmH 2 O, which is convenient and quick, and has great progress.
  • Fig. 1 is the flow chart of respiratory support equipment CPAP mode gas delivery control method provided by the present invention
  • Fig. 2 is the pressure waveform diagram of the active simulated lung when the setting pressure of the respiratory support device provided by the present invention is set to 6cm H 2 O;
  • Fig. 3 is the fitting result diagram of proportional parameter provided by the present invention.
  • FIG. 4 is a graph of the geometric results of the differential parameters provided by the present invention.
  • the present invention provides a CPAP mode gas delivery control method for respiratory support equipment, characterized in that it includes the steps:
  • the optimal PID control parameters of the turbine under the corresponding set pressure are obtained from the PID parameter curve; further, the PID parameter curve is built in the control module of the respiratory support device, or stored in the storage module,
  • the PID parameter curve needs to be independently detected for a single respiratory support device or a single production batch of respiratory support devices.
  • the specific detection method can be the detection method commonly used in the art, or the step of obtaining the PID parameter curve provided by the present invention.
  • the turbine is driven to output airflow at the set pressure in the CPAP mode.
  • the respiratory support device After obtaining the set pressure, the respiratory support device obtains the optimal PID control parameters of the respiratory support device for the set pressure based on the PID curve, and then uses a PID control method commonly used in the art to perform a gas delivery operation, At this time, the output air flow of the turbine motor can be realized with less fluctuation, and it will not be large and small, which will cause discomfort. After testing, it can be achieved that the output fluctuation of the air delivery pressure of the respiratory support equipment is ⁇ 0.5cm H 2 O, and the experience effect is excellent.
  • the turbine is driven based on the optimal PID control parameters, specifically, the PID is used to calculate the duty cycle and output a PWM wave to drive the turbine.
  • the calculation formula of the PWM wave is:
  • PWM(k) PWM(k-1)+ ⁇ PWM
  • ⁇ PWM Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)];
  • Kp represents the proportional coefficient
  • Ki represents the integral coefficient
  • Kd represents the differential coefficient, preferably 0, that is, the differential coefficient is not considered in this embodiment, and the corresponding PID parameter curve is always 0
  • e(k) represents this time Deviation
  • e(k-1) represents the previous deviation
  • e(k-2) represents the previous two deviations
  • ⁇ PWM represents the current increment
  • PWM(k) represents the current output duty cycle
  • PWM(k) -1) represents the last output duty cycle.
  • the speed of the turbine motor is controlled with the goal of setting the pressure.
  • the closed-loop control of the motor speed is to measure the speed information of the motor according to the number of pulses obtained per unit time, and then compare the actual pressure of the turbine output at this speed with the target value to obtain the control deviation, and then pass the main control MCU to the ratio of the deviation.
  • integral and differential control that is, PID calculation, output PWM wave by controlling the duty ratio, control the speed of the motor, and make the pressure deviation tend to zero.
  • the PID parameter curve is obtained through the following steps:
  • the PID control parameters include proportional parameter Kp, integral parameter Ki and differential parameter Kd; PID parameter curves are respectively constructed for each parameter, wherein the differential parameter is preferably 0.
  • the present invention also provides a PID parameter detection system for the CPAP mode gas delivery control method of the respiratory support device, which is used to obtain the PID parameter curve of the respiratory support device, including the respiratory support device and the respiratory simulation device.
  • the air outlet of the breathing support equipment is sleeved with the breathing pipeline, the other end of the breathing pipeline is connected with a three-way joint, and the other two interfaces of the three-way joint are respectively connected with the breathing simulation device and a plug ;
  • the plug has a leak hole.
  • the breathing simulation device is an active simulation of the lung, and the basic parameters are set as: airway resistance 10 cmH2O, lung compliance 50 ml, respiratory frequency 10 BPM, and inspiratory duration 1.0 s.
  • a breathing simulation device simulating external pressure is used to connect to the air delivery port of the breathing support device to simulate different external pressures.
  • the breathing simulation device is preferably an active simulated lung commonly used in the field; using the breathing simulation device
  • the simulation device simulates different pressure outputs and simulates the state of animal respiration; a 1.8m long breathing pipeline is sleeved at the air outlet of the respiratory support equipment, the other end of the pipeline is connected with a tee joint, and the other end of the tee joint is connected
  • the two interfaces are respectively connected to the pressure simulation side and a plug for fixing the leak hole.
  • the main function of this plug is to simulate a negative leak.
  • the setting parameters of the active simulated lung are preferably an airway resistance of 10 cmH2O, a lung compliance of 50 ml, a respiratory frequency of 10 BPM, and an inspiratory duration of 1.0 s. Set as a reference only.
  • the respiratory support equipment Connect the respiratory support equipment to the active simulated lung as described above, and set the simulated lung parameters.
  • the general setting parameters are 4-20cmH 2 O.
  • the preset set pressures are 4, 6, 8...20, respectively, and Kp and Ki are adjusted until the pressure fluctuation of the simulated lung during breathing transition is within ⁇ 0.5cm H 2 O.
  • Figure 2 below which is the pressure waveform of the active simulated lung when the set pressure of the respiratory support equipment is set to 6 cm H 2 O, it can be seen that using the method provided by the present invention can make the pressure fluctuate within 0.5 cm H 2 Within O, the body feels better.
  • the PID parameters of the fan turbine under different set pressures are monitored, and the optimal PID control parameters under different set pressures are found, and the data are analyzed. Fitting, you can obtain the linear formula of the optimal parameters of the basic parameters of the turbine corresponding to different set pressures in order to obtain the set pressure.
  • the turbo The basic setting parameters are the same.
  • the control program of the respiratory support equipment is imported to ensure the stability of the output of the turbine motor when the airflow of different set pressures is set. Further, it is to ensure that when the respiratory support device is in CPAP mode, the output pressure of the turbine fluctuates within ⁇ 0.5cm H2O.
  • the present invention also provides a computer-readable medium storing computer-executable software, which, when executed by the computer, can complete the CPAP mode gas delivery control method of the respiratory support device.
  • the specific implementation principle is consistent with the foregoing content, and will not be repeated here. It should be noted that the computer-readable medium may exist alone, or may be attached to an electronic device, as long as the aforementioned control method is completely implemented when executed by the processor.
  • the present invention also provides a respiratory support device, which uses the CPAP mode gas delivery control method for the respiratory support device to control the operation of the turbine.
  • Monitor the PID parameters of the fan turbine under different set pressures find out the optimal PID control parameters under different set pressures, and fit the data to obtain the corresponding basic parameters of the turbine to obtain the set pressure.
  • the control program of the respiratory support equipment is imported to ensure the stability of the output of the turbine motor when the airflow of different set pressures is set. Further, it is to ensure that when the respiratory support device is in CPAP mode, the output pressure of the turbine fluctuates within ⁇ 0.5cm H2O.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼吸支持设备CPAP模式输气控制方法及呼吸支持设备,该呼吸支持设备CPAP模式输气控制方法包括步骤:设定呼吸支持设备的设置压力;基于设置压力,在PID参数曲线中获取涡轮在相应设置压力下的最优PID控制参数;基于最优PID控制参数驱动涡轮在CPAP模式下输出设置压力的气流。该方法首先将PID参数曲线设定在呼吸支持设备中,当使用PID控制涡轮在CPAP模式下工作时,能够保证涡轮输出气流的压力的平稳性,且输出气流的压力波动限制在0.5cmH2O,方便快捷,具有极大进步。

Description

一种呼吸支持设备CPAP模式输气控制方法和呼吸支持设备 技术领域
本发明涉及呼吸支持领域,尤其涉及一种呼吸支持设备CPAP模式输气控制方法和呼吸支持设备。
背景技术
在无创呼吸支持设备在使用中,CPAP(Continuous Positive Airway Pressure,持续气道正压)模式是一种很常用的模式,它主要提供恒定的压力输出。在使用呼吸支持设备时,用户吸气和呼气时都会引起呼吸支持设备压力的大幅度波动,用户吸气时压力会产生较大的下降,呼气时会产生较大的上升。对于不使用阀门的呼吸支持设备,维持持续正压通气CPAP模式下压力的稳定输出较难,现有技术中主要依靠PID调节呼吸支持设备的压力,即根据设置压力的大小,升高和降低涡轮的功率,使压力稳定至设置值。PID即:Proportional(比例)、Integral(积分)、Differential(微分)的缩写。顾名思义,PID控制算法是结合比例、积分和微分三种环节于一体的控制算法,它是连续***中技术最为成熟、应用最为广泛的一种控制算法。目前市场上的呼吸支持设备对于涡轮电机的控制大都采用PID的控制方式,通过设置目标压力和当前实际压力的差值作为反馈量,按照比例、积分、微分的函数关系进行运算,运算结果用以控制输出。大部分的PID算法都会采用固定的Kp,Ki,Kd进行计算,对于呼吸支持设备中的涡轮电机控制来说,此方案对于不同的目标压力,不同的患者,涡轮电机输出的会有较大的波动,影响CPAP模式下压力的稳定性。
申请号为CN201710365650.X的专利文献,公开了一种呼吸机及持续正压通气CPAP模式下的压力控制方法,呼吸机包括:流量传感器、压力传感器、处理器、存储器及存储在存储器上并可在处理器上运行的控制程序,控制程序被处理器执行时实现如下步骤:在呼吸机处于CPAP模式下,获取呼吸机的流量曲线及压力曲线,确定吸气起始时刻P,并在吸气起始时刻P增加呼吸机的风机的输出功率;基于流量曲线及压力曲线分别获取流量及压力的变化率,在流量的变化率处于持续大于0,且压力的变化率处于小于0的状态下,间歇性地增加呼吸机的风机的输出功率;在压力的变化率大于0的状态下,间歇性地降低呼吸机的风机的输出功率。但是仍然存在上述问题。
因而现有的呼吸支持设备的输气控制领域存在不足,还有待改进和提高。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种呼吸支持设备CPAP模式输 气控制方法和呼吸支持设备,能够保证呼吸支持设备在输出设置压力的气流时的稳定性能,降低输出气流的波动性。
为了达到上述目的,本发明采取了以下技术方案:
一种呼吸支持设备CPAP模式输气控制方法,包括步骤:
设定呼吸支持设备的设置压力;
基于所述设置压力,在PID参数曲线中获取涡轮在相应设置压力下的最优PID控制参数;
基于所述最优PID控制参数驱动涡轮在CPAP模式下输出设置压力的气流。
优选的所述的呼吸支持设备CPAP模式输气控制方法,所述PID参数曲线通过以下步骤得到:
将呼吸模拟装置接入呼吸支持设备的输气口;
分别记录在输出不同设置压力的气流的情况下的涡轮的最优PID控制参数;
进行数据拟合得到所述PID参数曲线。
优选的所述的呼吸支持设备CPAP模式输气控制方法,所述呼吸模拟装置为主动模拟肺。
优选的所述的呼吸支持设备CPAP模式输气控制方法,基于所述最优PID控制参数驱动涡轮中,具体为通过PID计算占空比输出PWM波驱动所述涡轮。
优选的所述的呼吸支持设备CPAP模式输气控制方法,所述PWM波的计算公式为:
PWM(k)=PWM(k-1)+△PWM;
△PWM=Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)];
其中,Kp代表比例系数;Ki代表积分系数;Kd代表微分系数,优选为0;e(k)代表本次偏差;e(k-1)代表上一次的偏差;e(k-2)代表上两次的偏差;△PWM代表本次增量;PWM(k)代表本次输出占空比;PWM(k-1)代表上一次的输出占空比。
优选的所述的呼吸支持设备CPAP模式输气控制方法,PID控制参数包括比例参数、积分参数和微分参数;针对各个参数分别构建PID参数曲线,其中微分参数优选为0。
一种计算机可读介质,存储计算机可运行软件,所述软件在被计算机执行时能够完成所述的呼吸支持设备CPAP模式输气控制方法。
一种用于所述的呼吸支持设备CPAP模式输气控制方法的PID参数检测***,用于获取呼吸支持设备的所述PID参数曲线,包括呼吸支持设备和呼吸模拟装置;所述呼吸支持设备的出气口套接呼吸管路,所述呼吸管路的另一端接插三通接头,所述三通接头的另外两个接口分别接所述呼吸模拟装置和一个堵头;所述堵头具有漏气孔。
优选的所述的PID参数检测***,所述呼吸模拟装置为主动模拟肺,基础参数设置为:气道阻力10cmH2O,肺顺应性50ml,呼吸频率10BPM,吸气时长1.0S。
一种呼吸支持设备,使用所述的呼吸支持设备CPAP模式输气控制方法控制涡轮运转。
相较于现有技术,本发明提供的一种呼吸支持设备CPAP模式输气控制方法和呼吸支持设备,具有以下有益效果:
本发明提供的呼吸支持设备CPAP模式输气控制方法,首先将PID参数曲线设定在呼吸支持设备中,当使用PID控制涡轮在CPAP模式下工作时,则会保证涡轮输出气流的压力的平稳性,能够保证输出气流的压力波动限制在0.5cmH 2O,方便快捷,具有极大进步。
附图说明
图1是本发明提供的呼吸支持设备CPAP模式输气控制方法流程图;
图2是本发明提供的呼吸支持设备的设置压力设定为6cm H 2O时主动模拟肺的压力波形图;
图3是本发明提供的比例参数的拟合结果图;
图4是本发明提供的微分参数的几何结果图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本领域技术人员应当理解,前面的一般描述和下面的详细描述是本发明的示例性和说明性的具体实施例,不意图限制本发明。
本文中术语“包括”,“包含”或其任何其他变体旨在覆盖非排他性包括,使得包括步骤 列表的过程或方法不仅包括那些步骤,而且可以包括未明确列出或此类过程或方法固有的其他步骤。同样,在没有更多限制的情况下,以“包含...一个”开头的一个或多个设备或子***,元素或结构或组件也不会没有更多限制,排除存在其他设备或其他子***或其他元素或其他结构或其他组件或其他设备或其他子***或其他元素或其他结构或其他组件。在整个说明书中,短语“在一个实施例中”,“在另一个实施例中”的出现和类似的语言可以但不一定都指相同的实施例。
除非另有定义,否则本文中使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常所理解的相同含义。
请参阅图1,本发明提供一种呼吸支持设备CPAP模式输气控制方法,其特征在于,包括步骤:
设定呼吸支持设备的设置压力;
基于所述设置压力,在PID参数曲线中获取涡轮在相应设置压力下的最优PID控制参数;进一步的,所述PID参数曲线内置在呼吸支持设备的控制模块中,或存储在存储模块中,当然,所述PID参数曲线需要针对单一呼吸支持设备或单一生产批次的呼吸支持设备进行独立检测得到。具体的检测方法,可以使用本领域常用的检测方法,也可以使用本发明提供的所述PID参数曲线获取步骤。
基于所述最优PID控制参数驱动涡轮在CPAP模式下输出设置压力的气流。在获取得到所述设置压力后,所述呼吸支持设备基于所述PID曲线得到本呼吸支持设备针对所述设置压力的最优PID控制参数后,使用本领域常用的PID控制方法进行输气操作,此时即可实现涡轮电机输出气流波动较小,不会时大时小,造成不舒服。经过试验,可以做到呼吸支持设备的输气压力的输出波动在±0.5cm H 2O,体验效果极佳。
作为优选方案,本实施例中,基于所述最优PID控制参数驱动涡轮中,具体为通过PID计算占空比输出PWM波驱动所述涡轮。所述PWM波的计算公式为:
PWM(k)=PWM(k-1)+△PWM;
△PWM=Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)];
其中,Kp代表比例系数;Ki代表积分系数;Kd代表微分系数,优选为0,即在本实施例中微分系数不考虑,同时其对应的PID参数曲线恒为0;e(k)代表本次偏差;e(k-1)代表上一次的偏差;e(k-2)代表上两次的偏差;△PWM代表本次增量;PWM(k)代表本次输出占空比;PWM(k-1)代表上一次的输出占空比。
具体的,对于呼吸支持设备的CPAP模式来讲,是以设置压力为目标对涡轮电机进行转速的控制。对电机转速的闭环控制就是根据单位时间获取的脉冲数测量电机的转速信息,再把此转速下涡轮输出的实际压力并与目标值进行比较,得到控制偏差,然后通过主控MCU对偏差的比例、积分、微分进行控制,即PID计算,通过控制占空比来输出PWM波,控制电机的转速,使压力偏差趋向于零的过程。
作为优选方案,本实施例中,所述PID参数曲线通过以下步骤得到:
将呼吸模拟装置接入呼吸支持设备的输气口;
分别记录在输出不同设置压力的气流的情况下的涡轮的最优PID控制参数;
进行数据拟合得到所述PID参数曲线。PID控制参数包括比例参数Kp、积分参数Ki和微分参数Kd;针对各个参数分别构建PID参数曲线,其中微分参数优选为0。
相应的,本发明还提供一种用于所述的呼吸支持设备CPAP模式输气控制方法的PID参数检测***,用于获取呼吸支持设备的所述PID参数曲线,包括呼吸支持设备和呼吸模拟装置;所述呼吸支持设备的出气口套接呼吸管路,所述呼吸管路的另一端接插三通接头,所述三通接头的另外两个接口分别接所述呼吸模拟装置和一个堵头;所述堵头具有漏气孔。所述呼吸模拟装置为主动模拟肺,基础参数设置为:气道阻力10cmH2O,肺顺应性50ml,呼吸频率10BPM,吸气时长1.0S。
具体的,使用模拟外在压力的呼吸模拟装置接入呼吸支持设备的输气口,用于模拟不同的外在压力,所述呼吸模拟装置优选为本领域常用的主动模拟肺;使用所述呼吸模拟装置模拟不同的压力输出,模拟动物呼吸的状态;呼吸支持设备的出气口处套接一根1.8m长的呼吸管路,管路的另一端与一个三通接头相连,三通接头的另外两个接口分别接压力模拟这边和一个固定漏气孔的堵头。这个堵头的主要作用就是模拟否定的漏气孔。所述呼吸模拟装置为主动模拟肺的情况下,所述主动模拟肺的设置参数优选为气道阻力10cmH2O,肺顺应性50ml,呼吸频率10BPM,吸气时长1.0S。只作为参考设置。
按上述所描述的连接好呼吸支持设备与主动模拟肺,并将模拟肺参数设置好。对于呼吸支持设备CPAP模式来讲,一般的设置参数为4-20cmH 2O。分别预置的设置压力为4,6,8...20,对Kp和Ki进行调节,直到调整到模拟肺在呼吸转换的时候的压力波动在±0.5cm H 2O以内。如下图2所示,其为呼吸支持设备的设置压力设定为6cm H 2O时主动模拟肺的压力波形图,可以看出,使用本发明提供的方法,能够使压力波动在0.5cm H 2O以内,体感较佳。
分别对调整好的不同设置压力下的Kp和Ki进行记录,如下表所示:
设置压力 Kp Ki
4 75.4 6.31
6 48.5 3.81
8 29.1 2.33
10 20.5 1.54
12 18.7 1.44
14 25.5 2.04
16 41.7 3.35
18 66.9 5.34
20 101 8.11
根据获取得到的数据,进行数据拟合后,得到如图3和图4的拟合曲线以及相应的公式。具体为:设置压力为Tpress,则Kp和Ki各自的拟合公式为:
Kp=1.0889*Tpress2-24.569*Tpress+156.46;
Ki=0.09*Tpress2-2.041*Tpress+12.937;
再将拟合好的Kp和Ki的公式导入到呼吸支持设备的控制模块中,进行PID调节控制时调用即可,就可以精准的控制涡轮电机输出达到设置的目标压力,并有效的减少CPAP模式下涡轮输出压力的抖动,达到更好的体感效果。
综上所述,通过呼吸支持设备与呼吸模拟装置的连接测试,对风机涡轮在不同设置压力下的PID参数进行监测,找出在不同设置压力下的最优的PID控制参数,并对数据进行拟合,即可得到为了得到设置压力,涡轮的基础参数对应不同的设置压力状态下的最优参数的线性公式,在每次所述呼吸支持设备时,只要所述设置压力确定,则涡轮的基础设置参数一致,此时只要使用PID控制算法将涡轮的基础参数滑动输出到所述相应的基础参数即可,方便快捷。导入呼吸支持设备的控制程序,保证涡轮电机在设定不同的设置压力的气流时输出的稳定性。进一步的,是确保呼吸支持设备在CPAP模式下,涡轮机的输出压力的输出波动在±0.5cm H2O。
本发明还提供一种计算机可读介质,存储计算机可运行软件,所述软件在被计算机执行时能够完成所述的呼吸支持设备CPAP模式输气控制方法。具体的实现原理与前述内容一致,此处不做赘述。应当说明的是,所述计算机可读介质可以单独存在,也可以附着于电子设备上,只要实现在被处理器执行的时候完整前述的控制方法即可。
本发明还提供一种呼吸支持设备,使用所述的呼吸支持设备CPAP模式输气控制方法控制涡轮运转。对风机涡轮在不同设置压力下的PID参数进行监测,找出在不同设置压力下的最优的PID控制参数,并对数据进行拟合,即可得到为了得到设置压力,涡轮的基础参数对应不同的设置压力状态下的最优参数的线性公式,在每次所述呼吸支持设备时,只要所述设置压力确定,则涡轮的基础设置参数一致,此时只要使用PID控制算法将涡轮的基础参数滑动输出到所述相应的基础参数即可,方便快捷。导入呼吸支持设备的控制程序,保证涡轮电机在设定不同的设置压力的气流时输出的稳定性。进一步的,是确保呼吸支持设备在CPAP模式下,涡轮机的输出压力的输出波动在±0.5cm H2O。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种呼吸支持设备CPAP模式输气控制方法,其特征在于,包括步骤:
    设定呼吸支持设备的设置压力;
    基于所述设置压力,在PID参数曲线中获取涡轮在相应设置压力下的最优PID控制参数;
    基于所述最优PID控制参数驱动涡轮在CPAP模式下输出设置压力的气流。
  2. 根据权利要求1所述的呼吸支持设备CPAP模式输气控制方法,其特征在于,所述PID参数曲线通过以下步骤得到:
    将呼吸模拟装置接入呼吸支持设备的输气口;
    分别记录在输出不同设置压力的气流的情况下的涡轮的最优PID控制参数;
    进行数据拟合得到所述PID参数曲线。
  3. 根据权利要求2所述的呼吸支持设备CPAP模式输气控制方法,其特征在于,所述呼吸模拟装置为主动模拟肺。
  4. 根据权利要求1所述的呼吸支持设备CPAP模式输气控制方法,其特征在于,基于所述最优PID控制参数驱动涡轮中,具体为通过PID计算占空比输出PWM波驱动所述涡轮。
  5. 根据权利要求4所述的呼吸支持设备CPAP模式输气控制方法,其特征在于,所述PWM波的计算公式为:
    PWM(k)=PWM(k-1)+△PWM;
    △PWM=Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)];
    其中,Kp代表比例系数;Ki代表积分系数;Kd代表微分系数,优选为0;e(k)代表本次偏差;e(k-1)代表上一次的偏差;e(k-2)代表上两次的偏差;△PWM代表本次增量;PWM(k)代表本次输出占空比;PWM(k-1)代表上一次的输出占空比。
  6. 根据权利要求1所述的呼吸支持设备CPAP模式输气控制方法,其特征在于,PID控制参数包括比例参数、积分参数和微分参数;针对各个参数分别构建PID参数曲线,其中微分参数优选为0。
  7. 一种计算机可读介质,其特征在于,存储计算机可运行软件,所述软件在被计算机执行时能够完成权利要求1-6任一所述的呼吸支持设备CPAP模式输气控制方法。
  8. 一种用于权利要求2所述的呼吸支持设备CPAP模式输气控制方法的PID参数检测***,其特征在于,用于获取呼吸支持设备的所述PID参数曲线,包括呼吸支持设备和呼吸模拟装置;所述呼吸支持设备的出气口套接呼吸管路,所述呼吸管路的另一端接插三通接头,所述三通接头的另外两个接口分别接所述呼吸模拟装置和一个堵头;所述堵头具有漏气孔。
  9. 根据权利要求8所述的PID参数检测***,其特征在于,所述呼吸模拟装置为主动模拟肺,基础参数设置为:气道阻力10cmH2O,肺顺应性50ml,呼吸频率10BPM,吸气时长1.0S。
  10. 一种呼吸支持设备,其特征在于,使用权利要求1-6任一所述的呼吸支持设备CPAP模式输气控制方法控制涡轮运转。
PCT/CN2021/117964 2020-12-29 2021-09-13 一种呼吸支持设备cpap模式输气控制方法和呼吸支持设备 WO2022142470A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011602388.4A CN112704791B (zh) 2020-12-29 2020-12-29 一种呼吸支持设备cpap模式输气控制方法和呼吸支持设备
CN202011602388.4 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022142470A1 true WO2022142470A1 (zh) 2022-07-07

Family

ID=75546930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117964 WO2022142470A1 (zh) 2020-12-29 2021-09-13 一种呼吸支持设备cpap模式输气控制方法和呼吸支持设备

Country Status (2)

Country Link
CN (1) CN112704791B (zh)
WO (1) WO2022142470A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112704791B (zh) * 2020-12-29 2023-08-22 湖南明康中锦医疗科技发展有限公司 一种呼吸支持设备cpap模式输气控制方法和呼吸支持设备
CN115465838A (zh) * 2022-09-14 2022-12-13 深圳市东吉联医疗科技有限公司 一种可自适应压缩机转速的制氧***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060878A (zh) * 2004-11-04 2007-10-24 雷斯梅德有限公司 使用pap设备中的电动机转速估计流量
CN103505788A (zh) * 2013-10-11 2014-01-15 中山大学 一种正压呼吸机的机械通气控制方法及呼吸机
CN103920214A (zh) * 2014-04-28 2014-07-16 深圳市帝迈生物技术有限公司 一种呼吸机及其呼吸压力调控***和调控方法
CN105879168A (zh) * 2014-12-16 2016-08-24 北京航天长峰股份有限公司 通过吸气相和呼气相双重控制的麻醉机压力控制方法
CN205698783U (zh) * 2016-03-31 2016-11-23 浙江理工大学 便携持续正压通气式电动呼吸机
WO2020054360A1 (ja) * 2018-09-11 2020-03-19 日本電産株式会社 呼吸パラメータ推定装置および呼吸パラメータ推定方法
CN112704791A (zh) * 2020-12-29 2021-04-27 湖南明康中锦医疗科技发展有限公司 一种呼吸支持设备cpap模式输气控制方法和呼吸支持设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397612A (zh) * 2019-07-10 2019-11-01 湖南明康中锦医疗科技发展有限公司 一种涡轮控制***、控制方法及呼吸支持设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060878A (zh) * 2004-11-04 2007-10-24 雷斯梅德有限公司 使用pap设备中的电动机转速估计流量
CN103505788A (zh) * 2013-10-11 2014-01-15 中山大学 一种正压呼吸机的机械通气控制方法及呼吸机
CN103920214A (zh) * 2014-04-28 2014-07-16 深圳市帝迈生物技术有限公司 一种呼吸机及其呼吸压力调控***和调控方法
CN105879168A (zh) * 2014-12-16 2016-08-24 北京航天长峰股份有限公司 通过吸气相和呼气相双重控制的麻醉机压力控制方法
CN205698783U (zh) * 2016-03-31 2016-11-23 浙江理工大学 便携持续正压通气式电动呼吸机
WO2020054360A1 (ja) * 2018-09-11 2020-03-19 日本電産株式会社 呼吸パラメータ推定装置および呼吸パラメータ推定方法
CN112704791A (zh) * 2020-12-29 2021-04-27 湖南明康中锦医疗科技发展有限公司 一种呼吸支持设备cpap模式输气控制方法和呼吸支持设备

Also Published As

Publication number Publication date
CN112704791B (zh) 2023-08-22
CN112704791A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
US11027080B2 (en) System and method for determining ventilator leakage during stable periods within a breath
WO2022142470A1 (zh) 一种呼吸支持设备cpap模式输气控制方法和呼吸支持设备
CA2719117C (en) Ventilator leak compensation
AU2011218803B2 (en) A method for estimating at least one parameter at a patient circuit wye in a medical ventilator providing ventilation to a patient
US8789527B2 (en) Pressure support system with automatic comfort feature modification
CN103893865B (zh) 一种呼吸机涡轮容量控制通气的方法
US20060065270A1 (en) Gas flow control method in a blower based ventilation system
CA2736528A1 (en) Model-predictive online identification of patient respiratory effort dynamics in medical ventilators
WO2012051439A1 (en) Systems and methods for controlling an amount of oxygen in blood of a ventilator patient
CN102905620B (zh) 采用诱发的中枢性呼吸暂停估计上气道阻力和肺顺应性的***
US9272111B2 (en) Leak estimation using function estimation
CN109152899A (zh) 用于给病人通气的方法和装置
CN107735133B (zh) 用于无创通气的患者气道和泄漏流量估计的方法和***
US20210052839A1 (en) Anterior interface pressure monitoring during ventilation
CN105963835B (zh) 一种vcv漏气补偿的方法
JP2016522053A (ja) 同期的な気道圧解放換気
US10912906B2 (en) Mechanical ventilation with automatic control of patient's work of breathing using classical feedback control
US20220096764A1 (en) Synchronized high-flow system
WO2024130777A1 (zh) 一种可视化呼吸治疗仪、可视化处理方法及使用方法
Pratama et al. PI Control of Pressure Inspiration In ICU Ventilator
WO2024057241A1 (en) A breathing assistance apparatus for providing resipratory therapy
Hota Mathematical models of respiratory function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913217

Country of ref document: EP

Kind code of ref document: A1